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Abstract

In this work, we present an explicite expression for the Green function in a
viscoelastic medium. We choose Szabo and Wu’s frequency power law model
to describe the viscoelastic properties and derive a generalized viscoelastic
wave equation. We express the ideal Green function (without any viscus
effect) in terms of the viscus Green function using an attenuation operator.
By means of an approximation of the ideal Green function, we address the
problem of reconstructing a small anomaly in a viscoelastic medium from
wavefield measurements.

1 Introduction

The elastic properties of human soft tissues have been exploited in a number of
imaging modalities in recent past, because the elasticity varies significantly in order
of magnitude with different tissue types and is closely linked with the pathology of
the tissue.

Most of the time, medium is considered to be ideal (without any viscus effect),
neglecting the fact that a wave losses some of its energy to the medium and its
amplitude decreases with time due to viscosity. While, an estimation of the viscosity
effects can some times be very useful in the characterization and identification of
the anomaly [9].

To address the problem of reconstructing a small anomaly in viscoelastic media
from wavefield measurements, it is important to first model the mechanical response
of such media to excitations .

The Voigt model is a common model to describe the viscoelastic properties of
tissues. Catheline et al. [10] have shown that this model is well adapted to describe
the viscoelastic response of tissues to low-frequency excitations. However, we choose
a more general model derived by Szabo and Wu in [16] that describes observed
power-law behavior of many viscoelastic materials including human myocardium.
This model is based on a time-domain statement of causality [15] and reduces to
the Voigt model for the specific case of quadratic frequency losses.

Expressing the ideal elastic field without any viscous effect in terms of the
measured field in a viscous medium, one can generalize the methods described in
[2, 3, 4, 5, 8], namely the time reversal, back-propagation and Krichhoff Imaging,
to recover the viscoelastic and geometric properties of an anomaly from wavefield
measurements. To achieve this goal, we focus on the Green function in this article.
We present a relationship between the ideal Green function and the viscoelastic
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Green function in the limiting case when the shear modulus λ → ∞, in a quasi-
incompressible medium. We also provide an approximation of this relationship using
the stationary phase theorem.

The article is organized as follows. In section 2, we introduce a general visco-
elastic wave equation based on Szabo and Wu’s power law model. Section 3 is
devoted to the derivation of the Green function in the viscoelastic medium. In
section 4, we present an approximation of the ideal green function in the case of
quadratic losses and provide a procedure of image reconstruction in viscoelastic
media. We support our work with numerical illustrations, which are presented in
section 5.

2 General Visco-Elastic Wave Equation

When a wave travels through a biological medium, its amplitude decreases with
time due to attenuation. The attenuation coefficient for biological tissue may be
approximated by a power-law over a wide range of frequencies. Measured attenua-
tion coefficients of soft tissues typically have linear or greater than linear dependence
on frequency. [11, 15, 16]

In an ideal elastic medium; without attenuation, Hooke’s law gives the following
relationship between stress and strain tensors:

T = C : S (1)

where T , C and S are respectively stress, stiffness and strain tensors of orders 2, 4
and 2 and : represents tensorial product.

Consider a viscoelastic medium. Suppose that the medium is homogeneous and
isotropic. We write

C = [Cijkl] = [λδijδkl + µ(δikδjl + δilδjk)] ,
η = [ηijkl] = [ηsδijδkl + ηp(δikδjl + δilδjk)] ,

where δab is the Kronecker delta function, µ, λ are the Lamé parameters, and ηs, ηp
are the shear and bulk viscosities, respectively. Here we have adopted the general-
ized summation convention over the repeated index.

Throughout this work we suppose that

ηp, ηs << 1. (2)

For a medium obeying a power-law attenuation model and under the smallness
condition (2), a generalized Hooke’s law reads [16]

T (x, t) = C : S(x, t) + η :M(S)(x, t) (3)

where M is the convolution operator given by

M(S) =



−(−1)γ/2 ∂
γ−1S
∂tγ−1 γ is an even integer,

2
π (γ − 1)!(−1)(γ+1)/2H(t)

tγ ∗ S γ is an odd integer,

− 2
πΓ(γ) sin(γπ/2)H(t)

|t|γ ∗ S γ is a non integer.

(4)

Here H(t) is the Heaviside function and Γ denotes the gamma function.
Note that for the common case when, γ = 2, the generalized Hooke’s law (3)

reduces to the Voigt model,

T = C : S + η :
∂S
∂t
. (5)
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Taking the divergence of (3) we get

∇ · T =
(
λ̄+ µ̄

)
∇(∇ · u) + µ̄∆u, (6)

where

λ̄ = λ+ ηpM(·) and µ̄ = µ+ ηsM(·).

Consider the equation of motion for the system,

ρ
∂2u
∂t2
− F = ∇ · T , (7)

with ρ being the constant density and F the applied force. Using the expression (6)
for ∇ · T in (7), we obtain the generalized viscoelastic wave equation

ρ
∂2u
∂t2
− F =

(
λ̄+ µ̄

)
∇(∇ · u) + µ̄∆u. (8)

3 Green Function

In this section we find the Green function of the viscoelastic wave equation (8). We
first provide the following Helmholtz decomposition:

3.1 Helmholtz Decomposition

The following lemma holds.

Lemma 3.1 If the displacement field u(x, t) satisfy (8), ∂u(x,0)
∂t = ∇A+∇×B and

u(x, 0) = ∇C + ∇ × D and if the body force F = ∇ϕf + ∇ × ψf then there exist
potentials ϕu and ψu such that

� u = ∇ϕu +∇× ψu; ∇ · ψu = 0;

�
∂2ϕu
∂t2 = ϕf

ρ + c2p∆ϕu + νpM(∆ϕu) ≈ ϕf
ρ −

νpM(ϕf )
ρc2p

+ c2p∆ϕu + νp
c2p
M(∂2

t ϕu);

�
∂2ψu
∂t2 = ψf

ρ + c2s∆ψu + νsM(∆ψu) ≈ ψf
ρ −

νsM(ψf )
ρc2s

+ c2s∆ψu + νs
c2s
M(∂2

t ψu),

with
c2p =

λ+ 2µ
ρ

, c2s =
µ

ρ
, νp =

ηp + 2ηs
ρ

and νs =
ηs
ρ
.

Proof. For ϕu and ψu defined as

ϕu(x, t) =
∫ t

0

∫ τ

0

[
ϕf
ρ

+ (c2p + νpM)(∇ · u)
]
dsdτ + tA+ C (9)

ψu(x, t) =
∫ t

0

∫ τ

0

[
~ψf
ρ
− (c2s + νsM)(∇× u)

]
dsdτ + t ~B + ~D (10)

we have the required expression for u. Moreover, it is evident from (10) that
∇ · ψu = 0

Now, on differentiating ϕu and ψu twice with respect to time, we get

∂2ϕu
∂t2

=
ϕf
ρ

+ c2p∆ϕu + νpM(∆ϕu)

3



∂2ψu
∂t2

=
ψf
ρ

+ c2s∆ψu + νsM(∆ψu)

Finally, applying M on last two equations, neglecting the higher order terms in νs
and νp and injecting back the expressions for M(∆ϕu) and M(∆ψu), we get the
required differential equations for ϕu and ψu. 2

Let

Km(ω) = ω

√(
1− νm

c2m
M̂(ω)

)
, m = s, p, (11)

where the multiplication operator M̂(ω) is the Fourier transform of the convolution
operator M.

If ϕu and ψu are causal then it implies the causality of the inverse Fourier
transform of Km(ω),m = s, p. Applying the Kramers-Krönig relations1, it follows
that

−=mKm(ω) = H
[
<eKm(ω)

]
and <eKm(ω) = H

[
=mKm(ω)

]
, m = p, s,

(12)
where H is the Hilbert transform. Note that H2 = −I. The convolution operator
M given by (4) is based on the constraint that causality imposes on (3). Under the
smallness assumption (2), the expressions in (4) can be found from the Kramers-
Krönig relations (12). One drawback of (12) is that the attenuation, =mKm(ω),
must be known at all frequencies to determine the dispersion, <eKm(ω). However,
bounds on the dispersion can be obtained from measurements of the attenuation
over a finite frequency range [13].

3.2 Solution of (8) with a Concentrated Force.

Let uij denote the i-th component of the solution uj of the elastic wave equation
related to a force F concentrated in the xj-direction. Let j = 1 for simplicity and
suppose that

F = −T (t)δ(x− ξ)e1 = −T (t)δ(x− ξ)(1, 0, 0), (13)

where ξ is the source point and (e1, e2, e3) is an orthonormal basis of R3.
Let Z be the solution of the poisson equation

∇2Z = F

Then

Z(x, t; ξ) =
T (t)
4π

1
r
e1.

As ∇2Z = ∇(∇ · Z) − ∇ × (∇ × Z), the Helmholtz decomposition of the force F
can be written [14] as

F = ∇ϕf +∇× ψf ,

ϕf = ∇ · Z = T (t)
4π

∂
∂x1

(
1
r

)
,

ψf = −∇× Z = −T (t)
4π

(
0, ∂

∂x3

(
1
r

)
,− ∂

∂x2

(
1
r

))
,

(14)

where r = |x− ξ|.
1see [15, 16, 17] for more details on causality and KKR
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Consider the Helmholtz decomposition for u1 as

u1 = ∇ϕ1 +∇× ~ψ1 (15)

then, according to lemma 3.1, ϕ1 and ψ1 are the solutions of the equations

∆ϕ1 −
1
c2p

∂2ϕ1

∂t2
+
νp
c4p
M(∂2

t ϕ1) =
νpM(ϕf )

ρc4p
− ϕf
c2pρ

, (16)

∆ψ1 −
1
c2s

∂2ψ1

∂t2
+
νs
c4s
M(∂2

t ψ1) =
νsM(ψf )

ρc4s
− ψf
c2sρ

. (17)

Taking the Fourier transform of (15),(16) and (17) with respect to t we get

û1 = ∇ϕ̂1 +∇× ψ̂1 (18)

∆ϕ̂1 +
K2
p(ω)
c2p

ϕ̂1 =
νpM̂(ω)ϕ̂f

ρc4p
− ϕ̂f
ρc2p

, (19)

∆ψ̂1 +
K2
s (ω)
c2s

ψ̂1 =
νsM̂(ω)ψ̂f

ρc4s
− ψ̂f
ρc2s

, (20)

where Km(ω),m = p, s, are defined in (11).

It is well known that the Green functions of the Helmholtz equations (19) and
(20) are

ĝm(x, ω) =
e
√
−1

Km(ω)
cm

|x|

4π|x|
, m = s, p.

We closely follow the argument in [14], and write ϕ̂1 as

ϕ̂1(x, ω; ξ) = ĝm(x, ω) ∗x

(
νpM̂(ω)ϕf

ρc4p
− ϕf
c2pρ

)

= −

(
1− νpM̂(ω)

c2p

)
T̂ (ω)

ρ(4πcp)2

∫
R3
ĝp(x− z, ω)

∂

∂z1

1
|z − ξ|

dz.

Note that z → ĝp(x− z, ω) is constant on each sphere ∂B(x, h), centered on x with
radius h. Use of spherical coordinates leads to

ϕ̂1(x, ω; ξ) = −(1−νpM̂(ω)
c2p

)
T̂ (ω)

ρ(4πcp)2

∫ ∞
0

ĝp(h, ω)
∫
∂B(x,h)

∂

∂z1

(
1

|z − ξ|

)
dσ(z)dh.

From [1], it follows that∫
∂B(x,h)

∂

∂z1

(
1

|z − ξ|

)
dσ(z) =

{
0 if h > r

4πh2 ∂
∂x1

(
1
r

)
if h < r.

Therefore, we have following expression for ϕ̂1:

ϕ̂1(x, ω; ξ) = −

(
1− νpM̂(ω)

c2p

)
T̂ (ω)
4πρc2p

∂

∂x1

(
1
r

)∫ r

0

he
√
−1

Kp(ω)
cp

h
dh,

= −

(
1− νpM̂(ω)

c2p

)
T̂ (ω)
4πρ

∂

∂x1

(
1
r

)∫ r/cp

0

ζe
√
−1Kp(ω)ζ dζ. (21)
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In the same way, the vector ψ̂1 is given by

ψ̂1(x, ω; ξ) = (1−νsM̂(ω)
c2s

)
T̂ (ω)
4πρ

(
0,

∂

∂x3

(
1
r

)
,− ∂

∂x2

(
1
r

))∫ r/cs

0

ζe
√
−1Ks(ω)ζ dζ.

(22)
We Introduce following notation for simplicity:

Im(r, ω) = Am

∫ r/cm

0

ζe
√
−1Km(ω)ζ dζ (23)

Em(r, ω) = Ame
√
−1Km(ω) r

cm , (24)

Am(ω) =

(
1− νmM̂(ω)

c2m

)
, m = p, s. (25)

Now, we calculate ûi1 = ∇ϕ1 +∇× ~ψ1. For all i = 1 : 3

(∇ϕ̂1)i = − ∂

∂xi

[(
1− νpM̂(ω)

c2p

)
T̂ (ω)
4πρ

∂

∂x1

(
1
r

)∫ r/cp

0

ζe
√
−1Kp(ω)ζ dζ

]
,

= −

(
1− νpM̂(ω)

c2p

)
T̂ (ω)
4πρ

∂2

∂x1xi

(
1
r

)∫ r/cp

0

ζe
√
−1Kp(ω)ζ dζ

−

(
1− νpM̂(ω)

c2p

)
T̂ (ω)
4πρ

∂

∂x1

(
1
r

)
∂r

∂xi

(
r

c2p
e
√
−1Kp(ω) rcp

)
,

= − T̂ (ω)
4πρ

∂2

∂xi∂x1

(
1
r

)
Ip(r, ω) +

T̂ (ω)
4πρ

1
rc2p

∂r

∂x1

∂r

∂xi
Ep(r, ω),

where we have used the equality ∂
∂x1

(
1
r

)
= − 1

r2
∂r
∂x1

. In the same way, the value(
∇× ~̂

ψ1

)
i

is given by

(
∇× ~̂

ψ1

)
i

=
T̂ (ω)
4πρ

∂2

∂xi∂x1

(
1
r

)
Is(r, ω) +

T̂ (ω)
4πρc2sr

(
δi1 −

∂r

∂xi

∂r

∂x1

)
Es(r, ω).

Therefore

ûi1 =
T̂ (ω)
4πρ

∂2

∂xix1

(
1
r

)
[Is(r, ω)− Ip(r, ω)] +

T̂ (ω)
4πρc2pr

∂r

∂xi

∂r

∂x1
Ep(r, ω)

+
T̂ (ω)

4πρc2sr

(
δi1 −

∂r

∂xi

∂r

∂x1

)
Es(r, ω).

Hence, ûij , the i-th component of the solution ûj for an arbitrary j, is

ûij =
T̂ (ω)
4πρ

(3γiγj − δij)
1
r3

[Is(r, ω)− Ip(r, ω)] +
T̂ (ω)
4πρc2p

γiγj
1
r
Ep(r, ω)

+
T̂ (ω)
4πρc2s

(δij − γiγj)
1
r
Es(r, ω),

where γi = ∂r
∂xi

= (xi − ξi)/r and Im and Em are given by equations (23) and (24).

3.3 Viscoelastic Green function

If we substitute T (t) = δ(t), where delta is the Dirac mass, then the function uij =
Gij is the i-th component of the Green function related to the force concentrated
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in the xj-direction. In this case, we have T̂ (ω) = 1. Therefore, we have following
expression for Ĝij :

Ĝij(x, ω; ξ) = 1
4πρ (3γiγj − δij) 1

r3 [Is(r, ω)− Ip(r, ω)] + 1
4πρc2p

γiγj
1
rEp(r, ω)

+ 1
4πρc2s

(δij − γiγj) 1
rEs(r, ω),

or equivalently,

Ĝij(x, ω; ξ) = ĝpij(x, ω; ξ) + ĝsij(x, ω; ξ) + ĝpsij (x, ω; ξ), (26)

where
ĝpsij (x, ω; ξ) =

1
4πρ

(3γiγj − δij)
1
r3

[Is(r, ω)− Ip(r, ω)] , (27)

ĝpij(x, ω; ξ) =
Ap(ω)
ρc2p

γiγj ĝ
p(r, ω), (28)

and

ĝsij(x, ω; ξ) =
As(ω)
ρc2s

(δij − γiγj) ĝs(r, ω). (29)

Let G(x, t; ξ) = (Gij(x, t; ξ)) denote the transient Green function of (8) asso-
ciated with the source point ξ. Let Gm(r, t) and Wm(x, t) be the inverse Fourier
transforms of Am(ω)ĝm(r, ω) and Im(r, ω),m = p, s, respectively. Then, from (26-
29), we have

Gij(x, t; ξ) = 1
ρc2p

γiγjG
p(r, t) + 1

ρc2s
(δij − γiγj)Gs(r, t)

+ 1
4πρ (3γiγj − δij) 1

r3 [Ws(r, t)−Wp(r, t)] .
(30)

Note that by a change of variables,

Wm(r, t) =
4π
c2m

∫ r

0

ζ2Gm(ζ, t; ξ)dζ.

4 Approximate Green Function and the Imaging
Problem

Consider the limiting case λ→ +∞. The Green function for a quasi-incompressible
visco-elastic medium is given by

Gij(x, t; ξ) = 1
ρc2s

(δij − γiγj)Gs(r, t) + 1
ρc2s

(3γiγj − δij) 1
r3

∫ r
0
ζ2Gs(ζ, t)dζ.

To generalize the detection algorithms presented in [2, 3, 4, 5] to the visco-elastic
case we shall express the ideal Green function without any viscous effect in terms
of the Green function in a viscous medium. From

Gs(r, t) =
1√
2π

∫
R
e−
√
−1ωtAs(ω)gs(r, ω) dω,

it follows that

Gs(r, t) =
1√
2π

∫
R
As(ω)

e
√
−1(−ωt+Ks(ω)

cs
r)

4πr
dω.
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4.1 Approximation of the Ideal Green Function

Let us introduce the operator

Lφ(t) =
1

2π

∫
R

∫ +∞

0

As(ω)φ(τ)e
√
−1Ks(ω)τe−

√
−1ωt dτ dω,

for a causal function φ. We have

Gs(r, t; ξ) = L(
δ(τ − r/cs)

4πr
),

and therefore,

L∗Gs(r, t) = L∗L(
δ(τ − r/cs)

4πr
),

where L∗ is the L2(0,+∞)-adjoint of L.
Consider for simplicity the Voigt model. Then, M̂(ω) = −

√
−1ω and hence,

Ks(ω) = ω

√
1 +
√
−1νs
c2s

ω ≈ ω +
√
−1νs
2c2s

ω2,

under the smallness condition (2). The operator L can then be approximated by

L̃φ(t) =
1

2π

∫
R

∫ +∞

0

As(ω)φ(τ)e
− νs

2c2s
ω2τ

e
√
−1ω(τ−t) dτ dω.

Since ∫
R
e
− νs

2c2s
ω2τ

e
√
−1ω(τ−t) dω =

√
2πcs√
νsτ

e−
c2s(τ−t)

2

2νsτ ,

and
√
−1
∫

R
ωe
− νs

2c2s
ω2τ

e
√
−1ω(τ−t) dω = −

√
2πcs√
νsτ

∂

∂t
e−

c2s(τ−t)
2

2νsτ ,

it follows that

L̃φ(t) =
∫ +∞

0

t

τ
φ(τ)

cs√
2πνsτ

e−
c2s(τ−t)

2

2νsτ dτ. (31)

Analogously,

L̃∗φ(t) =
∫ +∞

0

τ

t
φ(τ)

cs√
2πνst

e−
c2s(τ−t)

2

2νst dτ. (32)

Since the phase in (32) is quadratic and νs is small then by consequence of the
stationary phase theorem A.1, we have following result:

Theorem 4.1 (Approximation of operator L)

L̃∗φ = φ+
νs
2c2s

∂tt(tφ) + o

(
νs
c2s

)
, L̃φ = φ+

νs
2c2s

t∂ttφ+ o

(
νs
c2s

)
, (33)

and therefore

L̃∗L̃φ = φ+
νs
c2s
∂t(t∂tφ) + o

(
νs
c2s

)
, (34)

and,

(L∗L̃)−1φ = φ− νs
c2s
∂t(t∂tφ) + o

(
νs
c2s

)
. (35)
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Proof.

1. Proof of approximation (33):
Let us first consider the case of operator L∗. We have

L̃∗φ(t) =
∫ +∞

0

τ

t
φ(τ)

cs√
2πνst

e−
c2s(τ−t)

2

2νst dτ =
1
t
√
ε

(∫ +∞

0

ψ(τ)eif(τ)/ε

)
,

with, f(τ) = iπ(τ − t)2, ε = 2πνst
c2s

and ψ(τ) = τφ(τ). Remark that the phase
f satisfies at τ = t , f(t) = 0, f ′(t) = 0, f ′′(t) = 2iπ 6= 0. Moreover, we have

eif(t)/ε
(
ε−1f ′′(t)/2iπ

)−1/2 =
√
ε

gt(τ) = f(τ)− f(t)− 1
2f
′′(t)(τ − t)2 = 0

L1ψ(t) = L1
1ψ(t) = −1

2i f
′′(t)−1ψ

′′
(t) = 1

4π (tφ)′′.

Thus, Theorem A.1 implies that∣∣∣∣L̃∗φ(t)−
(
φ(t) +

νs
2c2s

(tφ)′′
)∣∣∣∣ ≤ C

t
ε3/2

∑
α≤4

sup |(tφ)(α)|.

The case of the operator L̃ is very similar. Note that

L̃φ(t) =
∫ +∞

0

t

τ
φ(τ)

cs√
2πνsτ

e−
c2s(τ−t)

2

2νsτ dτ =
t√
ε

(∫ +∞

0

ψ(τ)eif(τ)/ε

)
,

with f(τ) = iπ (τ−t)2
τ , ε = νs

2πc2s
and ψ(τ) = φ(τ)τ−

3
2 . It follows that

f ′(τ) = iπ

(
1− t2

τ2

)
, f ′′(τ) = 2iπ

t2

τ3
, f ′′(t) = 2iπ

1
t
,

and the function gt(τ) is equal to

gt(τ) = iπ
(τ − t)2

τ
− iπ (τ − t)2

t
= iπ

(t− τ)3

τt
.

We deduce that{
(gtψ)(4)(t) =

(
g
(4)
t (t)ψ(t) + 4g(3)

t (t)ψ′(t)
)

= iπ
(

24
t3 ψ(t)− 24

t2 ψ
′(t)
)

(g2
tψ)(6)(t) = (g2

t )(6)(t)ψ(t) = −π2 6!
t4ψ(t),

and then,
L1

1ψ = −1
i

(
1
2 (f ′′(t))−1ψ′′(t)

)
= 1

4π t
(
φ̃√
t

)′′
= 1

4π

(√
tφ̃′′(t)− φ̃′(t)√

t
+ 3

4
φ̃
t3/2

)
L2

1ψ = 1
8if
′′(t)−2

(
g
(4)
t (s)ψ(s) + 4g(3)

t (t)ψ′(t)
)

= 1
4π

(
3
(
φ̃(t)√
t

)′
− 3 φ̃(t)

t3/2

)
= 1

4π

(
3 φ̃
′(t)√
t
− 9

2
φ̃(t)
t3/2

)
L3

1ψ = −1
232!3!if

′′(t)−3(g2
t )(6)(t)ψ(s) = 1

4π

(
15
4
φ̃(t)
t3/2

)
,

where φ̃(τ) = φ(τ)/τ . Therefore, we have

L1ψ = L1
1ψ + L2

1ψ + L3
1ψ

=
1

4π

(
√
tφ̃′′(t) + (3− 1)

φ̃′(t)√
t

+
(

3
4
− 9

2
+

15
4

)
φ̃(t)
t3/2

)
=

1
4π
√
t

(
tφ̃(t)

)′′
=

1
4π
√
t
φ′′(t),

and again Theorem A.1 shows that∣∣∣∣L̃φ(t)−
(
φ(t) +

νs
2c2s

tφ′′(t)
)∣∣∣∣ ≤ Ctε3/2 ∑

α≤4

sup |ψ(α)(t)|.
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2. Proof of approximation (34):
Approximation (34) is evident and directly comes from (33).

3. Proof of approximation (35):
Note that ψ = (L∗L̃)−1φ satisfies (L∗L̃)ψ = φ. As νs

c2s
<< 1, we introduce the

following asymptotic development of ψ,

ψ =
∞∑
i=0

(
νs
c2s

)i
ψi.

From (34), it holds

ψ0 +
(
νs
c2s

)
((tψ′0)′ + ψ1) + o

(
νs
c2s

)
= φ,

and
ψ0 = φ, and ψ1 = −∂t(t∂tψ0) = −∂t(t∂tφ),

and finally

(L∗L̃)−1φ = φ− νs
c2s
∂t(t∂tφ) + o

(
νs
c2s

)
.

4.2 Imaging procedure

From the previous section, it follows that the ideal Green function, δ(τ − r/cs)/(4πr),
can be approximately reconstructed from the viscous Green function, Gs(r, t; ξ), by
either solving the ODE

φ+
νs
c2s
∂t(t∂tφ) = L∗Gs(r, t; ξ),

with φ = 0, t� 0 or just making the approximation

δ(τ − r/cs)/(4πr) ≈ L∗Gs(r, t; ξ)−
νs
c2s
∂t(t∂tL∗Gs(r, t; ξ)).

Once the ideal Green function δ(τ − r/cs)/(4πr) is reconstructed, one can find
its source ξ using a time-reversal, a Kirchhoff or a backpropagation algorithm. See
[2, 3, 4, 5].

Using the asymptotic formalism developed in [5, 6, 7], one can also find the
shear modulus of the anomaly using the ideal near-field measurements which can
be reconstructed from the near-field measurements in the viscous medium. The
asymptotic formalism reduces the anomaly imaging problem to the detection of the
location and the reconstruction of a certain polarizability tensor in the far-field and
separates the scales in the near-field.

5 Numerical Illustrations

5.1 Profile of the Green function

In this section, we illustrate the profile of the Green function for different values of
the power law exponent γ. We choose parameters of simulation as in the work of
Bercoff et al. [9]: we take ρ = 1000, cs = 1, cp = 40, ηp = 0.

In figure 2, we plot the first component G11 observed at the point A = 1√
2
(r, r, 0)

(see first image in figure 1) with r = 0.015 for three different pair of values for γ

10
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Figure 1:

and ηs. We can see that the attenuation behavior varies with respect to different
choices of power law exponent γ. Moreover, we can clearly distinguish the three
different terms of the Green function; i.e. Gsij , G

p
ij and Gpsij .

In figure 3, we plot the first component G11 of the green function, evaluated on
the plane P =

{
x ∈ R3;x3 = r/2

}
(see second image in figure 1), and at time t = r.

As expected, we get a diffusion of the wavefront with the increasing values of the
power law exponent γ and depending on the choice of νs.

5.2 Approximation of attenuation operator L

Consider the limiting case when λ → +∞ with γ = 2. We take ρ = 1000, cs = 1
and a concentrated force F of the form F = −T (t)δ(x)e1 where the time profile
of the pulse, T , is a Gaussian with central frequency ω0 and bandwidth ρ. Denote
by ~uideal(x, t) the ideal response without attenuation and by ~uνs(x, t), the response
associate to the attenuation coefficient νs. Following section 4.1, we have

~uνs ' L(~uideal).

In figure 4, we plot the first components of t → ~uideal(A, t), t → ~uνs(A, t) and
t → L(~uideal(A, t)) for different values of ω0 whith ηs = 0.02. As expected, the
function t → ~uνs(A, t) and t → L(~uideal(A, t)) are very similar which means that
the operator L describes the effect of attenuation quite well.

Finally, in figure 5, we plot in logarithmic scale the error of approximation

νs
c2s
→ ‖Lφ−

(
φ+

νs
2c2s

tφ′′
)
‖∞,

where φ(t) is the first component of ~uideal(x, t), computed at the point x = A with
ω0 = ρ. As expected, it clearly appears an approximation of order 2.

6 Conclusion

In this paper, we have computed the Green function in a visco-elastic medium obey-
ing a frequency power-law. For the Voigt model, which corresponds to a quadratic
frequency loss, we have used the stationary phase theorem A.1 to reconstruct the
ideal Green function from the viscous one by solving an ODE. Once the ideal Green
function is reconstructed, one can find its source ξ using the algorithms in [2, 3, 4, 5]
such as time reversal, back-propagation, and Kirchhoff Imaging. For more general
power-law media, one can recover the ideal Green function from the viscous one by
inverting a fractional differential operator. This would be the subject of a forth-
coming paper.
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Figure 2: Temporal response t → G11(A, t, 0) to a spatiotemporal delta function
using a purely elastic Green’s function (red line) and a viscous Green’s function
(blue line): First line : ηs = 0.02, Second line : ηs = 0.2 ; (left to right) γ = 1.75,
γ = 2, γ = 2.25.
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Figure 3: 2D spatial response x → G11(x, t, 0) on the plan P to a spatiotempo-
ral delta function with (up to down): a purely elastic Green’s function, a viscous
Green’s function with (γ = 1.75, ηs = 0.2) and (γ = 2, ηs = 0.2). Left to right :
t = 0.0075, t = 0.0112 and t = 0.015
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Figure 5: Approximation of operator L : Error νs
c2s
→ ‖Lφ −

(
φ+ νs

2c2s
tφ′′
)
‖∞ in

logarithmic scale in the case when φ(t) = u1,ideal(A, t) with ω0 = ρ.

A Stationary Phase method

The proof of the following theorem is established in [12, Theorem 7.7.1].

Theorem A.1 (Stationary Phase) Let K ⊂ [0,∞) be a compact set, X an open
neighborhoud of K and k a positive integer. If ψ ∈ C2k

0 (K), f ∈ C3k+1(X) and
Im(f) ≥ 0 in X, Im(f(t0)) = 0, f ′(t0) = 0, f ′′(t0) 6= 0, f ′ 6= 0 in K \ {t0} then
for ε > 0∣∣∣∣∣∣
∫
K

ψ(t)eif(t)/εdx− eif(t0)/ε (λf ′′(t0)/2πi)−1/2
∑
j<k

εjLjψ

∣∣∣∣∣∣ ≤ Cεk
∑
α≤2k

sup |ψ(α)(x)|.

Here C is bounded when f stays in a bounded set in C3k+1(X) and |t − t0|/|f ′(t)|
has a uniform bound. With,

gt0(t) = f(t)− f(t0)− 1
2
f ′′(t0)(t− t0)2,

which vanishes up to third order at t0, we have

Ljψ =
∑

ν−µ=j

∑
2ν≥3µ

i−j
2−ν

ν!µ!
(−1)νf ′′(t0)−ν(gµt0ψ)(2ν)(t0).

2
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Note that L1 can be expressed as the sum L1ψ = L1
1ψ + L2

1ψ + L3
1ψ, where Lj1 is

respectively associate to the pair (νj , µj) = (1, 0), (2, 1), (3, 2) and is identified to
L1

1ψ = −1
2i f
′′(t0)−1ψ(2)(t0),

L2
1ψ = 1

222!if
′′(t0)−2(gt0u)(4)(t0) = 1

8if
′′(t0)−2

(
g
(4)
t0 (t0)ψ(t0) + 4g(3)

t0 (t0)ψ′(t0)
)
,

L3
1ψ = −1

232!3!if
′′(t0)−3(g2

t0ψ)(6)(t0) = −1
232!3!if

′′(t0)−3(g2
t0)(6)(t0)ψ(t0).
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