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Abstract

This paper is concerned with the motion of a time dependent hypersur-
face ∂Ω(t) in R

d that evolves with a normal velocity

Vn = κ −
 

∂Ω(t)

κ dσ,

where κ is the mean curvature of ∂Ω(t), and
�

I
stands for 1

|I|

�
I
. Phase field

approximation of this motion leads to the nonlocal Allen–Cahn equation

∂tu = ∆u − 1

ǫ2
W ′(u) +

1

ǫ2

 
Q

W ′(u) dx,

where Q is an open box of R
d containing ∂Ω(t) for all t. We propose a

modified version of this equation:

∂tu = ∆u − 1

ǫ2
W ′(u) +

1

ǫ2

√

2W (u)

(�
Q

√

2W (u)dx

)−1 �
Q

W ′(u) dx,

and we show that it has better volume preserving properties than the clas-
sical one, even in the presence of an additional forcing term g.

1 Introduction and motivation

In the last decades, a lot of work has been devoted to motions of interfaces, and
particularly to motion by mean curvature. Applications concern image processing
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(denoising, segmentation), material sciences (motion of grain boundaries in alloys,
crystal growth), biology (modelling of vesicles and blood cells).

In this paper, we are interested in phase field equations as an approximation
to motion by mean curvature with a forcing term and a volume constraint.

For t in [0, T ], let Ω(t) denote the evolution by mean curvature with a forcing
term of a smooth bounded domain Ω0 in R

d. More precisely, the normal velocity
Vn, with normal n pointing towards the exterior of Ω(t), is given at a point x of
∂Ω(t) by

Vn = κ + g, (1)

where κ denotes the mean curvature at x, with the convention that κ is negative
if the set is convex, and where g = g(x, t) is a given smooth forcing term. In this
work, we only consider smooth motions, which are well-defined if T is sufficiently
small [2]. Singularities may develop in finite time, however, and one may need to
consider evolutions in the sense of viscosity solutions [3, 8].

The evolution of Ω(t) is closely related to the minimization of the following
energy:

J(Ω) =

�
∂Ω

1 dσ −
�

Ω
g dx.

Indeed, one can view (1) as a first order optimality condition for this energy. The
functional J can be approximated by a Ginzburg–Landau energy [10, 9]:

Jǫ(u) =

�
Rd

(

ǫ

2
|∇u|2 +

1

ǫ
W (u)

)

dx − cW

�
Rd

gu dx,

where ǫ is a small parameter, W a double well potential with wells at 0 and 1,
for example W (s) = 1

2s2(1 − s)2, and where

cW =

� 1

0

√

2W (s) ds.

Modica and Mortola [10, 9] have shown the Γ-convergence of Jǫ to cW J in L1(Rd)
in the absence of forcing terms (see also [4]). The extension of these results
to motions with bounded forcing terms is straightforward. The corresponding
Allen–Cahn equation [1], obtained as the gradient flow of Jǫ, reads

∂tu = ∆u − 1

ǫ2
W ′(u) +

1

ǫ
cW g. (2)

This equation is usually solved in a fixed box Q of R
d, which contains the motion

Ω(t) for all t in [0, T ]. Existence, uniqueness and a comparison principle have
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been established for this equation (see for example chapters 14 and 15 in [2]). To
this equation, one usually associates the profile

q = arg min

{�
R

(

1

2
γ′2 + W (γ)

)

ds ; γ ∈ V

}

,

where V is the space of functions in H1
loc(R) that satisfies γ(−∞) = 1, γ(+∞) =

0, γ(0) = 1
2 . For t in [0, T ], the motion Ω(t) can be approximated by that of

Ωǫ(t) =

{

x ∈ R
d ; uǫ(x, t) ≥ 1

2

}

,

where uǫ solves (2) with the initial condition

uǫ(x, 0) = q

(

d(x,Ω0)

ǫ

)

.

Here d(x,Ω) denotes the signed distance of a point x to the set Ω. The conver-
gence of ∂Ωǫ(t) to ∂Ω(t) has been proved for smooth motions [7, 5] and in the
general case without fattening [3, 8]. The rate of convergence has been proven to
be O(ǫ2|log ǫ|2). Actually, a formal asymptotic expansion shows that uǫ behaves
like

uǫ(x, t) = q

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ ǫg(x, t)η

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ O(ǫ2), (3)

where η is defined as the solution in H2
loc(R), with polynomial growth, of

{

η′′ − W ′′(q)η = −cW + q′,

η(0) = 0.
(4)

When g = 1, the modified profile s 7→ qǫ(s) = q(s) + ǫη(s) (see figure 1) can be
evaluated at s = ±∞, where it takes the respective values

ǫ
cW

W ′′(1)
and 1 + ǫ

cW

W ′′(0)
.

These values correspond to the positions of the wells of a modified double well
potential Wǫ,g, defined by W ′

ǫ,g = W ′ − ǫcW g and Wǫ,g(0) = 0.
Our main interest is the numerical simulation of interfaces ∂Ω(t) evolving

from ∂Ω0 with normal velocity given by

Vn = κ + g −
 

∂Ω(t)
(κ + g) dσ. (5)

3



-0.2

0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

q

η

Figure 1: Profile of the function s 7→ q(s) + ǫη(s) when W (s) = 1
2s2(1 − s)2.

In this case, it is easy to see that the volume of Ω(t),

|Ω(t)| =

�
Ω(t)

1 dx,

remains constant in time. For instance, using the results in [12], one may check
that the shape derivative of the volume is zero. The usual strategy to approximate
(5) is based on the remark that the mass�

Rd

uǫ dx

is a good approximation of the volume |Ω(t)|. One can then add to the Allen–
Cahn equation an extra forcing term λ(t), independent of x, in order to impose
the conservation of mass. This leads to the following equation:

∂tu = ∆u − 1

ǫ2

(

W ′(u) − ǫcW g
)

+
1

ǫ
cW λ.

The forcing term λ can be viewed as a Lagrange multiplier associated to the
volume constraint. It can be determined by integrating the equation over Q,
which gives

λ =
ǫ

cW

 
Q

1

ǫ2

(

W ′(u) − ǫcW g
)

dx.

In the case where g = 0, the previous equation reduces to

∂tu = ∆u − 1

ǫ2
W ′(u) +

 
Q

1

ǫ2
W ′(u) dx, (6)

which is the classical Allen–Cahn conserved equation (see [11] and [6]). Formally,
one can think of this equation as an approximation to motion by mean curvature
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with a modified forcing term gǫ(t), independent of x and given by

gǫ =
ǫ

cW

 
Q

1

ǫ2
W ′(u) dx.

In view of expansion (3), one expects solutions of (6) to behave like

uǫ(x, t) = q

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ ǫgǫ(t)η

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ O(ǫ2).

By integration over Q, one sees that (see proposition 1 further)�
Q

uǫ dx = |Ωǫ(t)| + ǫgǫ

�
Q

η

(

d
(

x,Ωǫ(t)
)

ǫ

)

dx + O(ǫ2).

As the mass of uǫ is conserved, as gǫ = O(1), and as�
Q

η

(

d
(

x,Ωǫ(t)
)

ǫ

)

dx = O(1),

given the values of η at ±∞, one expects that

|Ωǫ(t)| = |Ω0| + O(ǫ)

only. This is not satisfactory for many applications, where loss of volume during
numerical computations strongly affects the dynamics.

The aim of this work is to propose another phase field model that has better
volume conservation properties than the conserved Allen–Cahn equation. The
paper is organised as follow:

In section 2, we introduce the following phase field approximation for mean
curvature flow with a forcing term:

∂tu = ∆u − 1

ǫ2

(

W ′(u) − ǫ
√

2W (u)g
)

. (7)

It can be seen as the gradient flow of

J̃ǫ(u) =

�
Rd

(

ǫ

2
|∇u|2 +

1

ǫ
W (u)

)

dx −
�
Rd

G(u)g dx,

with

G(s) =

� s

0

√

2W (t) dt.

We first explain via a formal asymptotic analysis why solutions of (7) are expected
to take the form

uǫ(x, t) = q

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ O(ǫ2). (8)
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Then, following an argument due to [5], we rigorously prove the convergence of
this phase field equation to the motion (1).

In section 3, we consider the evolution Ω(t) of a smooth bounded domain Ω0

according to

Vn = κ + g −
 

∂Ω
(κ + g) dσ.

Let uǫ be a solution of

∂tu = ∆u − 1

ǫ2

(

W ′(u) − ǫ
√

2W (u)g
)

+
1

ǫ2

√

2W (u)�
Rd

√

2W (u) dx

�
Rd

(

W ′(u) − ǫ
√

2W (u)g
)

dx. (9)

We show that if uǫ behaves like in expansion (8), then for all t in [0, T ],

|Ω0| =

�
Rd

uǫ(x, 0) dx + O(ǫ2)

=

�
Rd

uǫ(x, t) dx + O(ǫ2)

= |Ωǫ(t)| + O(ǫ2),

while the solutions of (2) may only conserve volume up to order ǫ.
In section 4, we present numerical evidence for the above claims, which show

that the modified phase field model (9) has indeed better volume preservation
properties.

2 A modified reaction–diffusion equation for mean

curvature flow with a forcing term

Let ∂Ω(t) denote an evolving hypersurface of codimension 1 in R
d, with velocity

law Vn = κ + g. This motion can be interpreted as the energy gradient of

J(Ω) =

�
∂Ω

1 ds −
�

Ω
g dx.

Let W be a bounded double well potential. In this whole section, we will
for convenience use a potential with wells at −1 and 1, for example W (s) =
min{1

2 (1 − s2)2,M}, where M is a given positive constant. Our strategy is to

introduce a modified Ginzburg–Landau energy J̃ǫ defined on L1(Rd) by

J̃ǫ(u) =











�
Rd

(

ǫ

2
|∇u|2 +

1

ǫ
W (u)

)

dx −
�
Rd

G(u)g dx if u ∈ H1(Rd),

+∞ otherwise,
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with

G(s) =

� s

0

√

2W (t) dt.

The function G is Lipschizt continuous. For g in L∞(Rd), the term u 7→�
Rd G(u)g dx acts as a continuous perturbation in the L1(Rd) topology of the

classical Modica–Mortola energy. The stability of Γ-convergence with respect
to continuous perturbations allows us to extend the Modica–Mortola result to
the case at hand, and show that J̃ǫ Γ-converges to cW J . The gradient flow of J̃ǫ

should then provide a mean to approximate the motion of ∂Ω(t) via the resolution
of the reaction–diffusion equation (7).

Remark 1. In the simplest case where g = 1, equations (2) and (7) can be
expressed as Allen–Cahn equations with particular double well potentials respec-
tively equal to W1,ǫ(s) = W (s) + ǫcW s, and W2,ǫ(s) = W (s) + ǫG(s). These
two potentials are related through the position and height of their wells, which
are asymptotically equal as ǫ → 0. This explains why we expect that (2) and (7)
converge to the same motion.

2.1 Formal asymptotics for the modified Allen–Cahn equation

We denote by uǫ the solution of equation (7):

∂tu = ∆u − 1

ǫ2
W ′(u) +

1

ǫ

√

2W (u)g,

with initial condition

u(x, 0) = q

(

d(x,Ω0)

ǫ

)

.

Our aim is to propose an asymptotic analysis of uǫ in the simplest two-dimensional
radial case. Using polar coordinates (r, θ), we consider a forcing term g which
does not depend on θ: g = g(r, t). The initial set Ω0 is taken as a disk of radius
1:

Ω0 = {(r, θ) ∈ [0,+∞) × [0, 2π) ; r ≤ 1} .

Let Ω(t) be the mean curvature flow evolving from Ω0 according to the law
Vn = κ + g. It is well known that in this case, Ω(t) remains a circle for all t
(recall that the forcing term g is supposed to be radial). We will denote by R(t)
the radius of Ω(t), solution of the following ODE:

R′ +
1

R
= g(R, t),

with initial condition R(0) = 1. In this simple case, the solution uǫ is also radial
and depends only on r. It satisfies

∂tuǫ −
1

r
∂r(r∂ruǫ) +

1

ǫ2
W ′(uǫ) −

1

ǫ

√

2W (uǫ)g = 0.
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As uǫ is radial, every of its level sets is circular, and we denote by Rǫ(t) the radius
of {uǫ(r, t) = 1

2}. We thus have Rǫ(0) = 1 and uǫ(Rǫ, t) = 1
2 . We introduce the

classical stretched variable y = r−Rǫ

ǫ
(see [5]), and we define Uǫ by

Uǫ(y, t) = uǫ(Rǫ + ǫy, t).

This new function Uǫ satisfies

∂tUǫ −
1

ǫ
R′

ǫ∂yUǫ −
1

ǫr
∂yUǫ −

1

ǫ2
∂yyUǫ +

1

ǫ2
W ′(Uǫ) −

1

ǫ

√

2W (Uǫ)g = 0. (10)

We now consider asymptotic developments of Uǫ and Rǫ as follow:

Uǫ(y, t) =

+∞
∑

i=0

ǫiUi(y, t), Rǫ(t) =

+∞
∑

i=0

ǫiRi(t),

with U0(0, t) = 1
2 , R0(0) = R(0), and Ui(0, t) = 0, Ri(0) = 0 for all i ≥ 1. We

have

1

r
=

(

ǫy +
+∞
∑

i=0

ǫiRi

)−1

=
1

R0
− ǫ

y + R1

R0
2 + O(ǫ2),

W ′(Uǫ) = W ′(U0) + ǫW ′′(U0)U1 + ǫ2
(

W ′′′(U0)U1 + W ′′(U0)U2

)

+ O(ǫ3),

√

2W (Uǫ) =
√

2W (U0) + ǫ
W ′(U0)

√

2W (U0)
U1 + O(ǫ2),

g(r, t) = g

(

ǫy +

+∞
∑

i=0

ǫiRi, t

)

= g(R0, t) + ǫ∂rg(R0, t)(y + R1) + O(ǫ2).

Using these equalities, (10) rewrites

0 =
1

ǫ2

(

∂yyU0 − W ′(U0)
)

+
1

ǫ

(

∂yyU1 − W ′′(U0)U1 + ∂yU0

(

R′
0 +

1

R0

)

+
√

2W (U0)g(R0, t)

)

− ∂tU0 + R′
1∂yU0 + R′

0∂yU1 + ∂yyU2 +
1

R0
∂yU1 −

y + R1

R0
2 ∂yU0

+ g(R0, t)
W ′(U0)

√

2W (U0)
U1 + ∂rg(R0, t)(y + R1)

√

2W (U0)

− W ′′′(U0)U1 − W ′′(U0)U2

+ O(ǫ).

(11)

Following powers of ǫ, we will now identify each term to zero.
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Terms in ǫ−2. The first term U0 satisfies ∂yyU0 = W ′(U0) with initial condition
U0(0, t) = 1

2 for all t in [0, T ]. It can thus be identified to the profile q:

∀y ∈ R, ∀t ∈ [0, T ], U0(y, t) = q(y).

Terms in ǫ−1. Knowing by definition of the profile that q′ = −
√

2W (q), it
follows from U0(., t) = q(.) that ∂yU0 = −

√

2W (U0). Equation (11) then gives

∂yyU1 − W ′′(U0)U1 = −∂yU0

(

R′
0 +

1

R0
− g(R0, t)

)

.

Multiplying this equality by ∂yU0 and integrating over R, we get
(

R′
0 +

1

R0
− g(R0, t)

) �
R

(∂yU0)
2 dy = −

�
R

(

∂yyU1 − W ′′(U0)U1

)

∂yU0 dy

= −
�
R

∂y

(

∂yyU0 − W ′(U0)
)

U1 dy

= 0.

As
�
R

(∂yU0)
2 dy is strictly positive, we get the following equation on R0:

R′
0 +

1

R0
= g(R0, t),

with initial condition R0(0) = R(0). Hence R0 can be identified to R since they
both satisfy the same ODE with the same initial datum. It follows from (11) that
U1 is solution of

∂yyU1 − W ′′(U0)U1 = 0.

We then know (see section 3 in [5]) that there exists α(t) ∈ R such that U1(., t) =
α(t)q′(.). Indeed, the kernel of the operator A : H1(R) → H−1(R) defined by
Aζ = ζ ′′ −W ′′(q)ζ can be identified to span(q′). Using U1(0, t) = 0, we conclude
that α(t) = 0 for all t, so that

∀y ∈ R, ∀t ∈ [0, T ], U1(y, t) = 0.

Terms in ǫ0. Using U1 = 0 and ∂tU0 = 0, we get from (11) that

∂yyU2 − W ′′(U0)U2 = ∂yU0

(

y + R1

R0
2 − R′

1 + ∂rg(R0, t)(y + R1)

)

.

Multiplying by ∂yU0 and integrating over R, we have

(

R′
1 −

R1

R0
2 − ∂rg(R0, t)R1

)�
R

(∂yU0)
2 dy

= −
�
R

(

∂yyU2 − W ′′(U0)U2

)

∂yU0 dy +

(

1

R0
2 + ∂rg(R0, t)

) �
R

y(∂yU0)
2 dy.

9



The first term in the right member vanishes as previously for U1. The second
term also vanishes since ∂yU0(., t) = q′(.) is even with our choice of W . We
deduce that R1 is solution of

R′
1 =

(

1

R0
2 + ∂rg(R0, t)

)

R1,

with initial condition R1(0) = 0. Hence R1(t) = 0 for all t in [0, T ]. Finally, U2

is obtained as the solution of

∂yyU2 − W ′′(U0)U2 = y∂yU0

(

1

R0
2 + ∂rg(R0, t)

)

.

Introducing the solution ξ in H1(R) of

ξ′′(y) − W ′′
(

q(y)
)

ξ(y) = yq′(y)

with ξ(0) = 0, we can express U2:

∀y ∈ R, ∀t ∈ [0, T ], U2(y, t) = ξ(y)

(

1

R0
2 + ∂rg(R0, t)

)

.

We finally conclude from this formal asymptotic analysis that uǫ, solution of
(7), is expected of the form

uǫ(x, t) = q

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ ǫ2

(

1

R0
2 +∂rg(R0, t)

)

ξ

(

d
(

x,Ωǫ(t)
)

ǫ

)

+O(ǫ3), (12)

where Ωǫ(t) converge to Ω(t) in O(ǫ2).

2.2 Proof of convergence for the modified phase field model

In this section, we closely follow the work of [5] to prove the following theorem:

Theorem 1. Let Ω(t) be a regular mean curvature flow with a forcing term g
that satisfies

g(., t) ∈ W 3,∞(Rd), ∂tg ∈ W 1,∞
(

R
d × (0, T )

)

. (13)

Given ǫ > 0, let uǫ be solution of (7):

∂tu = ∆u − 1

ǫ2
W ′(u) +

1

ǫ

√

2W (u)g,

and let ∂Ωǫ(t) =
{

x ∈ R
d ; uǫ(x, t) = 1

2

}

. Assume that the potential W is given
by W (s) = 1

2(1 − s2)2. Then there exist ǫ0 > 0 and a constant C depending only
on T such that for all ǫ in (0, ǫ0], the following estimate holds:

∀t ∈ [0, T ], ∂Ωǫ(t) ⊆
{

x ∈ R
d ; dist

(

x, ∂Ω(t)
)

≤ Cǫ2|log ǫ|2
}

. (14)
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Notations and assumptions. Let T > 0. For all t in [0, T ], let Ω(t) be a mean
curvature flow with a forcing term g that satisfies (13). In the sequel, we will for
convenience identify the signed distance to Ω(t) to a function d : R

d × [0, T ] → R

defined by

d(x, t) = d
(

x,Ω(t)
)

=











dist
(

x,Ω(t)
)

if x ∈ R
d \ Ω(t),

0 if x ∈ ∂Ω(t),

− dist
(

x,Ω(t)
)

if x ∈ Ω(t).

We assume that ∂Ω(t) is smooth enough so that d satisfies

d, ∂td, ∂t∂xxd ∈ C0(Λ̄), (15)

where Λ̄ is a tubular neighborhood of ∂Ω(t). We assume that ∂Ω(t) is oriented by
the outward normal vector n defined at a point x of ∂Ω(t) by n(x, t) = ∇d(x, t).
We denote by κ1, . . . , κd−1 the principal curvatures of ∂Ω(t), and we set

κ(x, t) =

d−1
∑

i=1

κi(x, t), h(x, t) =

d−1
∑

i=1

κ2
i (x, t).

We choose κ to be negative for convex balls. The evolution of ∂Ω(t) is defined
by Vn(x, t) = κ(x, t) + g(x, t) for all (x, t) in ∂Ω(t) × [0, T ], where Vn denote the
normal velocity.

Given D > 0, we define a tubular neighborhood Λ(t) of ∂Ω(t) by

Λ(t) =
{

x ∈ R
d ; |d(x, t)| ≤ D

}

, (16)

and we set
Λ =

⋃

t∈[0,T ]

Λ(t) × {t}.

If D is sufficiently small, one can associate to any point (x, t) of Λ a unique
projection s(x, t) on ∂Ω(t) such that

dist
(

s(x, t), x
)

= |d(x, t)|.

For any scalar or vector function f defined on ∂Ω(t), we denote by f̄ its extension
on Λ, defined by f̄(x, t) = f

(

s(x, t), t
)

. If f is real-valued, then we clearly have
∇d · ∇f̄ = 0 on Λ. It follows from (15) that

‖h̄‖L∞(Λ), ‖∂th̄‖L∞(Λ), ‖∇h̄‖L∞(Λ), ‖∆h̄‖L∞(Λ) < +∞. (17)
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Moreover, geometric properties of the distance function d imply

∆d(x, t) =
d−1
∑

i=1

−κ̄i(x, t)

1 − d(x, t)κ̄i(x, t)
= −κ̄(x, t) − d(x, t)h̄(x, t) + O

(

d(x, t)2
)

,

∂td(x, t) = −V̄n(x, t) = −κ̄(x, t) − ḡ(x, t).

These estimates show that the motion of ∂Ω(t) can be described by an equation
on d inside the whole Λ (see [2]):

∀(x, t) ∈ Λ, ∂td(x, t) − ∆d(x, t) = −ḡ(x, t) + d(x, t)h̄(x, t) + O
(

d(x, t)2
)

. (18)

We denote by q the profile function associated with the double well potential
W :

q = arg min
ζ

{�
R

(

1

2
ζ ′

2
+ W (ζ)

)

ds ; ζ ∈ H1
loc(R), lim

x→±∞
ζ = ∓1, ζ(0) = 0

}

.

The Euler equation for this problem writes q′′ = W ′(q). More precisely, as W is
smooth, q is strictly decreasing and we have q′ = −

√

2W (q). If W is defined by
W (s) = 1

2(1 − s2)2, q is given by q(s) = − tanh(s). In this case, there exists a
positive constant C such that |q − 1| ≤ −Cq′.

Let ξ in H2(R) be solution of equation

ξ′′(s) − W ′′
(

q(s)
)

ξ(s) = sq′(s) (19)

with initial condition ξ(0) = 0. Existence and uniqueness results for this equation
may be found in section 3 of [5], along with the following estimate:

|ξ(s)|, |ξ′(s)| ≤ −C(1 + s2)q′(s). (20)

Comparison lemma. Our proof of convergence relies on the following lemma:

Lemma 1. Let ǫ > 0, and let u and v in L2
(

0, T ;H2(Rd)
)

∩ H1
(

0, T ;L2(Rd)
)

be such that

∂tu − ∆u +
1

ǫ2
W ′(u) − 1

ǫ

√

2W (u)g ≥ ∂tv − ∆v +
1

ǫ2
W ′(v) − 1

ǫ

√

2W (v)g (21)

in R
d × (0, T ), and u(x, 0) ≥ v(x, 0) for x in R

d. Then u ≥ v in R
d × (0, T ).

Proof. Let e = max(v − u, 0). Multiplying (21) by e and integrating over R
d, we

get

d

dt
‖e(., t)‖2

L2(Rd) ≤
2

ǫ2

〈

W ′(u) − W ′(v) , e
〉

L2(Rd)

− 2

ǫ

〈(

√

2W (u) −
√

2W (v)
)

g , e
〉

L2(Rd)

≤ 2

ǫ2

〈

W ′
g,ǫ(u) − W ′

g,ǫ(v) , e
〉

L2(Rd)
,

12



where Wg,ǫ is defined by

W ′
g,ǫ(s) = W ′(s) − ǫ

√

2W (s)g, W (0) = 0.

The idea is then to decompose W ′
g,ǫ under the form

W ′
g,ǫ = W ′

g,ǫ,L + W ′
g,ǫ,I,

where W ′
g,ǫ,L is Lipschitz continuous on R, and W ′

g,ǫ,I is nondecreasing. More

precisely, when W (s) = 1
2(1 − s2)2, we can use

W ′
g,ǫ,L(s) = W ′

g,ǫ(s)χ[−1,1](s) and W ′
g,ǫ,I(s) = W ′

g,ǫ(s)
(

1 − χ[−1,1](s)
)

,

which satisfy the previous assumption if ‖g‖L∞ ≤ 2
ǫ
. Then, noticing that e(x, 0) =

0 by assumption, we obtain

‖e(., t)‖2
L2(Rd) ≤

2

ǫ2

� t

0

∣

∣

∣

∣

〈

W ′
g,ǫ(u) − W ′

g,ǫ(v) , e(., τ)
〉

L2(Rd)

∣

∣

∣

∣

dτ

≤ 2

ǫ2
sup

x∈Rd

{

lip(W ′
g,ǫ,L)

}

� t

0
‖e(., τ)‖2

L2(Rd) dτ.

Note that the sup is bounded just as ‖g‖L∞ . Gronwall’s lemma implies that for
almost every t in (0, T ), ‖e(., t)‖L2(Rd) = 0, and e = 0 almost everywhere in

R
d × (0, T ).

Construction of a subsolution. Using our previous asymptotic expansion of
uǫ, we now build a subsolution to problem (7). Let δ ≥ 3 be a fixed integer. For
all ǫ > 0, we set sǫ = δ|log ǫ|. Since q(s) = − tanh(s), we have

q(sǫ) = −1 +
2ǫ2δ

1 + ǫ2δ
= −1 + O(ǫ2δ), q′(sǫ) = −

(

1 − q(sǫ)
2
)

= O(ǫ2δ),

and it follows from (20) that

|ξ(sǫ)| = O(ǫ2δ|log ǫ|2), |ξ′(sǫ)| = O(ǫ2δ |log ǫ|2).

We define two auxiliary functions qǫ and ξǫ by

qǫ(s) =























q(s) if 0 ≤ s ≤ sǫ,

Pq(s) if sǫ ≤ s ≤ 2sǫ,

−1 if s > 2sǫ,

−qǫ(−s) if s < 0,

13



and

ξǫ(s) =























ξ(s) if 0 ≤ s ≤ sǫ,

Pξ(s) if sǫ ≤ s ≤ 2sǫ,

0 if s > 2sǫ,

−ξǫ(−s) if s < 0,

where Pq and Pξ are polynomials of degree 3 defined in such a way that qǫ and
ξǫ are in C1(R). It follows that

‖Pq + 1‖L∞(Iǫ) + sǫ‖P ′
q‖L∞(Iǫ) + s2

ǫ‖P ′′
q ‖L∞(Iǫ) ≤ C

(

|q(sǫ) + 1| + sǫ|q′(sǫ)|
)

,

‖Pξ‖L∞(Iǫ) + sǫ‖P ′
ξ‖L∞(Iǫ) + s2

ǫ‖P ′′
ξ ‖L∞(Iǫ) ≤ C

(

|q(sǫ)| + sǫ|q′(sǫ)|
)

,

with Iǫ = [sǫ, 2sǫ]. Then we easily check that

‖qǫ − q‖L∞(R) = o(ǫ2δ−1), ‖ξǫ − ξ‖L∞(R) = o(ǫ2δ−1),

together with

q′′ǫ − W ′(qǫ) = o(ǫ2δ−1), q′ǫ +
√

2W (qǫ) = o(ǫ2δ−1), (22)

and
ξ′′ǫ − W ′′(qǫ)ξǫ − sq′ǫ = o(ǫ2δ−1).

For ǫ > 0, we introduce the modified distance function d−ǫ defined by:

∀(x, t) ∈ R
d × [0, T ], d−ǫ (x, t) = d(x, t) + c1(t)ǫ

2|log ǫ|2,

where c1 is a positive continuous function, independent of ǫ, that will be deter-
mined later. For t in [0, T ], we introduce the sets

Λ−
ǫ (t) =

{

x ∈ R
d ; |d−ǫ (x, t)| < 2δǫ|log ǫ|

}

and
Λ−

ǫ =
⋃

t∈[0,T ]

Λ−
ǫ (t) × {t}.

It is then possible to find ǫ0 > 0 depending only on δ, c1, D, such that

∀ǫ ≤ ǫ0, ∀t ∈ [0, T ], Λ−
ǫ (t) ⊂ Λ(t), (23)

where Λ(t) is the tubular neighborhood defined in (16). In particular, we see that

∀(x, t) ∈ Λ−
ǫ , d(x, t) = O(ǫ|log ǫ|).
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Noticing that ∇d−ǫ = ∇d and ∇d−ǫ · ∇h̄ = 0 in Λ−
ǫ , it follows from (18) that

∂td
−
ǫ − ∆d−ǫ = ∂td − ∆d + c′1ǫ

2|log ǫ|2

= −ḡ + d−ǫ h̄ + (c′1 − c1h̄)ǫ2|log ǫ|2 + O(ǫ2|log ǫ|2). (24)

Setting y = d−ǫ
ǫ

, we define v−ǫ on R
d × [0, T ] by

v−ǫ =











qǫ(y) + ǫ2(h̄ + ∇d · ∇g)ξǫ(y) − c2ǫ
3|log ǫ|2 in Λ−

ǫ ,

−1 − c2ǫ
3|log ǫ|2 in {d−ǫ ≥ 2δǫ|log ǫ|},

+1 − c2ǫ
3|log ǫ|2 in {d−ǫ ≤ −2δǫ|log ǫ|},

where c2 is a constant independent of ǫ that we will be determined later. In view of
(15), we easily check that v−ǫ belongs to L2

(

0, T ;H1
loc(R

d)
)

∩H1
(

0, T ;L2
loc(R

d)
)

.
Our goal is to show that v−ǫ is a subsolution of (7).

Let uǫ be solution of (7). We will first prove that

∀x ∈ R
d, v−ǫ (x, 0) ≤ uǫ(x, 0). (25)

To this end, we introduce wǫ defined by

wǫ = q(y) + ǫ2(h̄ + ∇d · ∇g)ξ(y) − c2

2
ǫ3|log ǫ|2,

and we note that when ǫ is sufficiently small,

vǫ(x, 0) ≤ wǫ(x, 0) − c2

2
ǫ3|log ǫ|2 + o(ǫ2δ−1)

≤ wǫ(x, 0),

so that (25) follows from showing that

wǫ(x, 0) − uǫ(x, 0) = q
(

y(x, 0)
)

− q

(

d(x, 0)

ǫ

)

+ ǫ2
(

h̄(x, 0) + ∇d(x, 0) · ∇g(x, 0)
)

ξ
(

y(x, 0)
)

− c2

2
ǫ3|log ǫ|2

is non-positive. We define for convenience

I1 = q
(

y(x, 0)
)

− q

(

d(x, 0)

ǫ

)

,

I2 = ǫ2
(

h̄(x, 0) + ∇d(x, 0) · ∇g(x, 0)
)

ξ
(

y(x, 0)
)

.

The following lemma is proved in section 6 of [5] (recall that q′ is negative).
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Lemma 2. Let z = d(x,0)
ǫ

, and let y = d−ǫ (x,0)
ǫ

= z + c1(0)ǫ|log ǫ|2. Then for ǫ
sufficiently small,

2q′(y) ≤ q′(s) ≤ 1

2
q′(y)

for all s in [z, y].

This lemma implies that

I1 = q

(

d−ǫ (x, 0)

ǫ

)

− q

(

d−ǫ (x, 0) − c1(0)ǫ
2|log ǫ|2

ǫ

)

≤ 1

2
q′

(

d−ǫ (x, 0)

ǫ

)

c1(0)ǫ|log ǫ|2,

and using (19), it follows that

I2 ≤ −Kcǫ2
(

1 + y(x, 0)2
)

q′
(

y(x, 0)
)

,

where K = ‖h(., 0)‖L∞(Λ(0)) + ‖∇g(., 0)‖L∞(Rd). We then distinguish two cases.

If |y| > |log ǫ|, then (1 + y2)|q′(y)| < O(ǫ2|log ǫ|2) and I2 is controlled by the
negative term − c2

2 ǫ3|log ǫ|2, so that

wǫ(x, 0) − uǫ(x, 0) = I1 + I2 −
c2

2
ǫ3|log ǫ|2

≤ I2 −
c2

2
ǫ3|log ǫ|2

≤ O(ǫ4|log ǫ|2) − c2

2
ǫ3|log ǫ|2.

If |y| < |log ǫ|, then I2 is controlled by I1, and

wǫ(x, 0) − uǫ(x, 0) = I1 + I2 −
c2

2
ǫ3|log ǫ|2

≤ q′
(

d−ǫ (x, 0)

ǫ

)(

1

2
c1(0)ǫ|log ǫ|2 − O(ǫ2|log ǫ|2)

)

.

Thus, choosing c1(0) and c2 sufficiently large, we get the desired estimate (25).
Let us now check that

∂tv
−
ǫ − ∆v−ǫ +

1

ǫ2
W ′(v−ǫ ) − 1

ǫ

√

2W (v−ǫ )g ≤ 0 (26)

in R
d × (0, T ).

16



Case 1: (x, t) ∈ Λ−
ǫ . In this case, (17) implies that

∂tv
−
ǫ =

1

ǫ
q′ǫ(y)∂td

−
ǫ + ǫ2

(

∂t(h̄ + ∇d · ∇g)
)

ξǫ(y) + ǫ(h̄ + ∇d · ∇g)ξ′ǫ(y)∂td
−
ǫ ,

∇v−ǫ =
1

ǫ
q′ǫ(y)∇d−ǫ + ǫ2

(

∇(h̄ + ∇d · ∇g)
)

ξǫ(y) + ǫ(h̄ + ∇d · ∇g)ξ′ǫ(y)∇d−ǫ ,

∆v−ǫ =
1

ǫ2
q′′ǫ (y) +

1

ǫ
q′ǫ(y)∆d−ǫ + (h̄ + ∇d · ∇g)ξ′′ǫ (y) + O(ǫ).

Using these equalities with (24), we get

∂tv
−
ǫ − ∆v−ǫ = − 1

ǫ2
q′′ǫ (y) +

1

ǫ
q′ǫ(y)(∂td

−
ǫ − ∆d−ǫ ) − (h̄ + ∇d · ∇g)ξ′′ǫ (y) + O(ǫ)

= − 1

ǫ2
q′′ǫ (y) +

1

ǫ
q′ǫ(y)

(

−ḡ + ǫyh̄ − ǫ2|log ǫ|2(c1h̄ − c′1)
)

− (h̄ + ∇d · ∇g)ξ′′ǫ (y) + O(ǫ|log ǫ|2)

=
1

ǫ2
q′′ǫ (y) − 1

ǫ
q′ǫ(y)ḡ +

(

q′ǫ(y)yh̄ − (h̄ + ∇d · ∇g)ξ′′ǫ (y)
)

− ǫ|log ǫ|2
(

q′ǫ(y)(c1h̄ − c′1)
)

+ O(ǫ|log ǫ|2).

Since (x, t) is in Λ−
ǫ , we obtain the following estimates on the terms of order 0 in

(26):

g(x, t) = g
(

s(x, t) + d∇d, t
)

= ḡ + d∇d · ∇̄g + O(d2)

= ḡ + ǫy∇d−ǫ · ∇̄g − c1ǫ
2|log ǫ|2∇d−ǫ · ∇̄g + O(ǫ2|log ǫ|2),

1

ǫ2
W ′(v−ǫ ) =

1

ǫ2
W ′(qǫ) + W ′′(qǫ)(h̄ + ∇d · ∇g)ξǫ − W ′′(qǫ)c2ǫ|log ǫ|2 + O(ǫ),

1

ǫ

√

2W (vǫ)g =
1

ǫ

√

2W (qǫ)g + O(ǫ)

=
1

ǫ

√

2W (qǫ)
(

ḡ + ǫy∇dǫ · ∇̄g − c1ǫ
2|log ǫ|2∇d−ǫ · ∇̄g

)

+ O(ǫ|log ǫ|2)

= −1

ǫ
q′ǫ

(

ḡ + ǫy∇d−ǫ · ∇̄g − c1ǫ
2|log ǫ|2∇d−ǫ · ∇̄g

)

+ O(ǫ|log ǫ|2)

= −1

ǫ
q′ǫ

(

ḡ + ǫy∇d−ǫ · ∇g − c1ǫ
2|log ǫ|2∇d · ∇̄g

)

+ O(ǫ|log ǫ|2).

Here, we used (22) and the fact that for (x, t) in Λ−
ǫ ,

yq′ǫ∇d · (∇g − ∇̄g) = O(ǫ|log ǫ|).
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Summing the previous equalities, we obtain

∂tvǫ − ∆vǫ +
1

ǫ2
W ′(vǫ) −

1

ǫ

√

2W (vǫ)g = I1 + I2 + I3 + I4 + O(ǫ|log ǫ|2),

with

I1 = − 1

ǫ2

(

q′′ǫ (y) − W ′
(

qǫ(y)
)

)

= o(ǫ2δ−3),

I2 =
1

ǫ
q′ǫ(ḡ − ḡ) = 0,

I3 = −(h̄ + ∇d · ∇g)
(

ξ′′ǫ (y) − W ′′(qǫ)ξǫ − yq′ǫ

)

= o(ǫ2δ−3),

I4 = ǫ|log ǫ|2
(

−q′ǫ(c1h̄ − c′1 + c1∇d · ∇̄g) − c2W
′′(qǫ)

)

.

We now determine the function c1 and the constant c2 so that I4 is sufficiently
negative to compensate the term of order ǫ|log ǫ|2. Letting K = ‖h‖L∞(∂Ω) +
‖∇g‖L∞(Rd×(0,T )), we set

c1(t) = c exp
(

(1 + K)t
)

,

so that
−ǫ|log ǫ|2q′ǫ

(

c1h̄ − c′1 + ∇d · ∇̄gc1

)

≤ c1ǫ|log ǫ|2q′ǫ.

We thus have

I4 ≤ −ǫ|log ǫ|2c2

(

−c1

c2
q′ǫ + W ′′(qǫ)

)

.

Noticing that −c3q
′
ǫ + W ′′(qǫ) is uniformly positive for c3 large enough, we can

choose c and c2 such that

∂tv
−
ǫ − ∆v−ǫ +

1

ǫ

(

W ′(v−ǫ ) − g

√

2W (v−ǫ )
)

≤ 0

in Λ−
ǫ .

Case 2: (x, t) /∈ Λ−
ǫ . Here, the function v−ǫ is given by vǫ = ±1 − c2ǫ

3|log ǫ|2,
which implies ∂tv

−
ǫ = 0, ∆v−ǫ = 0,

1

ǫ2
W ′(v−ǫ ) =

1

ǫ2

(

W ′(±1) − W ′′(±1)c2ǫ
3|log ǫ|2 + O(ǫ3)

)

= −W ′′(±1)c2ǫ|log ǫ|2 + O(ǫ),

1

ǫ

√

2W (v−ǫ )g =
1

ǫ

(
√

2W (±1)g − (
√

2W )′(±1)gc2ǫ
3|log ǫ|2 + O(ǫ3)

)

= O(ǫ2|log ǫ|2).
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Noticing that W ′′(±1) > 0 and choosing c2 large enough guarantees that in
R

d \ Λ−
ǫ ,

∂tv
−
ǫ − ∆v−ǫ +

1

ǫ

(

W ′(v−ǫ ) − g

√

2W (v−ǫ )
)

≤ 0.

To conclude, we apply the comparison principle of lemma 1 and discover

∀(x, t) ∈ R
d × [0, T ], v−ǫ (x, t) ≤ uǫ(x, t).

A similar argument can be applied to

v+
ǫ =











qǫ(y) + ǫ2(h̄ −∇d · ∇g)ξǫ(y) + c2ǫ
3|log ǫ|2 in Λ+

ǫ ,

−1 + c2ǫ
3|log ǫ|2 in {d+

ǫ ≥ 2δǫ|log ǫ|},
+1 + c2ǫ

3|log ǫ|2 in {d+
ǫ ≤ −2δǫ|log ǫ|},

with y = d+
ǫ

ǫ
and

d+
ǫ (x, t) = d(x, t) − c1(t)ǫ

2|log ǫ|2,
to show that v+

ǫ is a supersolution to (7):

∀(x, t) ∈ R
d × [0, T ], v+

ǫ (x, t) ≥ uǫ(x, t).

Proof of the theorem.

Proof of theorem 1. We choose ǫ0 so that (23) holds. Let t in [0, T ] and x in
∂Ωǫ(t) be given. We first show that x is in Λ(t). Indeed, uǫ(x, t) = 0 and

v−ǫ (x, t) ≤ uǫ(x, t) = 0 ≤ v+
ǫ (x, t). (27)

Assume that x 6∈ Λ(t). As Λ±
ǫ (t) ⊆ Λ(t), we have x 6∈ Λ±

ǫ (t), and thus, for ǫ
sufficiently small, we deduce that v−ǫ (x, t) and v+

ǫ (x, t) have the same sign. This
contradicts (27), and we conclude that x ∈ Λ(t). We then notice that

v−ǫ (x, t) = qǫ

(

d−ǫ (x, t)

ǫ

)

+ O(ǫ2) ≤ 0

because
ǫ2(h̄ −∇d · ∇g)ξǫ(y) = O(ǫ2),

and hence

qǫ

(

d−ǫ (x, t)

ǫ

)

≤ O(ǫ2).

As q′(0) = −1, we get that
d−ǫ (x, t)

ǫ
≥ O(ǫ2),
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which shows that d(x, t) ≥ O(ǫ2|log ǫ|2). In a similar way, noticing that

v+
ǫ (x, t) = qǫ

(

d+
ǫ (x, t)

ǫ

)

+ O(ǫ2) ≥ 0,

we get that
d+

ǫ (x, t)

ǫ
≤ O(ǫ2),

and d(x, t) ≤ O(ǫ2|log ǫ|2). We conclude that

|d(x, t)| ≤ O(ǫ2|log ǫ|2),

and (14) is proved.

3 Application to mean curvature flow with conserva-

tion of the volume

In this section, we compare two phase field models for the approximation of
motion by mean curvature with conservation of the volume:

Vn = κ −
 

∂Ω(t)
κdσ. (28)

As explained in the introduction, this motion is usually approximated by the
following phase field equation (see [6]):

∂tu = ∆u − 1

ǫ2
W ′(u) +

1

ǫ2

 
Q

W ′(u) dx. (29)

The last term in this equation can be understood as a Lagrange multiplier for
the mass constraint

d

dt

�
Q

u dx = 0.

(Note that in this section, the potential W we consider has its wells at 0 and 1.)
In the sequel, we compare this equation to

∂tu = ∆u − 1

ǫ2
W ′(u) +

1

ǫ2

√

2W (u)�
Rd

√

2W (u) dx

�
Rd

W ′(u) dx. (30)

derived along the same lines as (7). The form of the last term is again related
to conservation of mass, since the volume average of the right-hand side is easily
seen to vanish.
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There is no general proof of convergence of solutions of (29) and (30) to the
motion (28). However, (29) is commonly used in computations. The numerical
experiments presented further show that (30) conserves volume with a higher
degree of accuracy than (29). Our aim in this section is to try so substantiate
this claim, although our arguments are formal.

In both cases, the last term could be interpreted as a forcing term, by setting

gǫ(t) =
1

ǫcW

 
Q

W ′(u) dx

in the first model and

g̃ǫ(t) =
1

ǫ

�
Rd W ′(u) dx�

Rd

√

2W (u) dx

in the second. Formally, one recovers the expressions of (2) and (7). However
the forcing terms here depend on the solutions of (29) and (30). Assuming that
one can generalize the results of section 2.1 (notwithstanding this dependence of
gǫ and g̃ǫ), we expect solutions uǫ and ũǫ of (29) and (30) to have the following
asymptotic behavior:

uǫ(x, t) = q

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ ǫgǫ(t)η

(

d
(

x,Ωǫ(t)
)

ǫ

)

+ O(ǫ2), (31)

ũǫ(x, t) = q

(

d
(

x, Ω̃ǫ(t)
)

ǫ

)

+ ǫ2h(x, t)ξ

(

d
(

x, Ω̃ǫ(t)
)

ǫ

)

+ O(ǫ3), (32)

where Ωǫ(t) (resp. Ω̃ǫ(t)) denotes the set contained inside the level line {uǫ(x, t) =
1
2} (resp. {ũǫ(x, t) = 1

2}), and q, η, ξ are the profiles defined in (3), (4) and
(19). We note that these profiles only depend on the choice of the potential W .
Following (12), we see that as g̃ǫ does not depend on x, only h appears in the
term of order 2 of ũǫ.

We first establish the connection between the mass
�
Q

uǫ dx (respectively�
Q

ũǫ dx) and the volume |Ωǫ(t)| (respectively |Ω̃ǫ(t)|).

Proposition 1. Let E be a regular bounded domain of R
d, and let

vǫ(x) = q

(

d(x,E)

ǫ

)

.

Assume that q is symmetric, i.e. q(s) = 1−q(−s), and that q decays exponentially
to 0 as s → +∞. Then

|E| =

�
Rd

vǫ dx + O(ǫ2).
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Proof. Using the co-area formula,�
Rd

vǫ dx =

�
Rd

q

(

d(x,E)

ǫ

)

dx

=

�
R

h(s)q

(

s

ǫ

)

ds

=

� 0

−∞
h(s) ds +

� 0

−∞
h(s)

(

q

(

s

ǫ

)

− 1

)

ds +

� +∞

0
h(s)q

(

s

ǫ

)

ds

= |E| −
� +∞

0
h(−s)q

(

s

ǫ

)

ds +

� +∞

0
h(s)q

(

s

ǫ

)

ds

= |E| +
� +∞

0

(

h(s) − h(−s)
)

q

(

s

ǫ

)

ds

= |E| + ǫ

� +∞

0

(

h(sǫ) − h(−sǫ)
)

q(s) ds

where h(s) = |Dχ{d(x,E)≤s}|(Rd) is the perimeter of the level line s of the signed
distance function to E. Since E is smooth, one can estimate h(sǫ) − h(−sǫ) =
2sǫh′(0) + O(s2ǫ2) for s in (0, |log ǫ|). Furthermore, since q is exponentially de-
creasing to 0 as s → +∞, all the moments

�
s>0 snq(s) ds are finite. Thus, we can

estimate

∣

∣

∣

∣

� |log ǫ|

0

(

h(sǫ) − h(−sǫ)
)

q(s) ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

� |log ǫ|

0

(

2sǫh′(0) + Cs2ǫ2
)

q(s) ds

∣

∣

∣

∣

= O(ǫ).

Moreover, since h(s) ∼ sd−1 as s → +∞, and since h is bounded on (−∞, 0), it
is easy to check that� +∞

|log ǫ|
h(sǫ)q(s) ds ≤ Cǫd−1

� +∞

|log ǫ|
sd−1q(s) ds = O(ǫd−1),� +∞

|log ǫ|
h(−sǫ)q(s) ds ≤ C

� +∞

|log ǫ|
q(s) ds = O(ǫ).

It follows that �
Rd

vǫ dx = |E| + O(ǫ2).

The result of proposition 1 still holds on a fixed bounded set Q that strictly
contains E when ǫ is sufficiently small. This again is a consequence of the expo-
nential decay of q. Recalling the asymptotic form of uǫ, it follows from the above
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proposition that, for the classical model (29),�
Q

uǫ dx =

�
Q

q

(

d
(

x,Ωǫ(t)
)

ǫ

)

dx + ǫgǫ

�
Q

η

(

d
(

x,Ωǫ(t)
)

ǫ

)

dx + O(ǫ2).

In general, the term of order ǫ does not vanish, since

lim
s→±∞

η(s) =
cW

W ′′(0)
6= 0

when q is symmetric, and so�
Q

uǫ dx = |Ωǫ(t)| + O(ǫ).

This explains why we cannot expect the model (29) to converge to the motion
(28) with a better rate than O(ǫ). As for the model (30), we have�

Q

ũǫ dx =

�
Q

q

(

d
(

x, Ω̃ǫ(t)
)

ǫ

)

dx + ǫ2

�
Q

hξ

(

d
(

x, Ω̃ǫ(t)
)

ǫ

)

dx + O(ǫ3),

that is �
Q

ũǫ dx = |Ω̃ǫ(t)| + O(ǫ2),

which presents a higher degree of accuracy on volume conservation.
We proved in the last section that solutions of (7) converge as ǫ → 0 to motion

by mean curvature with a forcing term (1). Formally, the phase field equation
(30) can be rewritten

∂tu = ∆u − 1

ǫ2

(

W ′(u) − ǫ
√

2W (u)g̃ǫ

)

.

The following property shows that, under the assumption (32), g̃ǫ converges to�
∂Ωǫ

κdσ, which is formally consistent to the limiting motion (1).

Proposition 2. Let E be a regular bounded domain of R
d, and let

vǫ(x) = q

(

d(x,E)

ǫ

)

.

Assume that q is symmetric, i.e. q(s) = 1−q(−s), and that q decays exponentially
to 0 as s → +∞. Then�

Rd g
√

2W (vǫ) dx�
Rd

√

2W (vǫ) dx
=

 
∂E

g dσ + O(ǫ2),

1

ǫ

�
Rd W ′(vǫ) dx�

Rd

√

2W (vǫ) dx
= −

 
∂E

κdσ + O(ǫ2).
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Proof. To prove the first equality, recall that q satisfies
√

2W (q) = −q′, and that
q′ is even. Let h : R → R be a continuous function, differentiable at s = 0,
which grows polynomially in s. Since

�
R

q′(s) ds = −1, arguing as in the proof
of proposition 1, it follows that

1

ǫ

�
R

√

2W

(

q

(

s

ǫ

))

h(s) ds = −
�
R

1

ǫ
q′

(

s

ǫ

)

h(s) ds

= −
�
R

q′(s)h(sǫ) ds

= −
� +∞

0

(

h(sǫ) + h(−sǫ)
)

q′(s) ds

= −
� 3|log ǫ|

0

(

h(sǫ) + h(−sǫ)
)

q′(s) ds + O(ǫ2)

= −
� 3|log ǫ|

0

(

2h(0) + Cs2ǫ2
)

q′(s) ds + O(ǫ2)

= h(0) + O(ǫ2).

Next, the co-area formula yields

1

ǫ

�
Rd

g
√

2W (vǫ) dx =
1

ǫ

�
R

(�
d(x,E)=s

g dσ

)

√

2W

(

q

(

s

ǫ

))

ds.

Since E is smooth, and since the forcing term g is bounded, the function

h : s 7→
�

d(x,E)=s

g dσ

is continuous, differentiable at s = 0 and has polynomial growth at infinity:
h(s) ∼ sd−1 when s → +∞. We can then apply the previous estimate to obtain

1

ǫ

�
Rd

g
√

2W (vǫ) dx =

�
d(x,E)=0

g dσ + O(ǫ2) =

�
∂E

g dσ + O(ǫ2).

We notice that the same argument with g = 1 leads to

1

ǫ

�
Rd

√

2W (vǫ) dx =

�
d(x,E)=0

dσ + O(ǫ2) = |∂E| + O(ǫ2),

so that combined with the previous equality, we obtain�
Rd g

√

2W (vǫ) dx�
Rd

√

2W (vǫ) dx
=

 
∂E

g dσ + O(ǫ2).
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Let us now prove the second equality. Recall that

vǫ = q

(

d(x,E)

ǫ

)

,

∇vǫ =
1

ǫ
q′

(

d(x,E)

ǫ

)

∇d(x,E),

∆vǫ =
1

ǫ2
q′′

(

d(x,E)

ǫ

)

+
1

ǫ
q′

(

d(x,E)

ǫ

)

∆d(x,E).

As q′′ = W ′(q), it follows that

1

ǫ2

�
Rd

W ′(vǫ) dx =

�
Rd

(

1

ǫ2
W ′(vǫ) − ∆vǫ

)

dx

= −
�
Rd

1

ǫ
q′

(

d(x,E)

ǫ

)

∆d(x,E) dx

=

�
R

(�
d(x,E)=s

∆d(x,E) dσ

)

1

ǫ
q′

(

s

ǫ

)

ds.

The function

s 7→ h(s) =

�
d(x,E)=s

∆d(x,E) dσ

is not continuous on R, but it is constant on a sufficiently small neighborhood
of 0 (depending only on the topology of E) and grows polynomially like sd−1.
Arguing as in the first part of the proof, we obtain

1

ǫ2

�
Rd

W ′(vǫ) dx = h(0) + O(ǫ2) = −
�

∂E

κdσ + O(ǫ2),

and
1

ǫ

�
Rd W ′(vǫ) dx�

Rd

√

2W (vǫ) dx
= −

 
∂E

κdσ + O(ǫ2),

which completes the proof.

Remark 2. The first correcting term ξ vanishes at infinity in the expansion of
ũǫ, and so would higher order terms. If we assume that (32) holds, a more careful
analysis based on proposition 2 would show that

1

ǫ

�
Rd W ′(ũǫ) dx�

Rd

√

2W (ũǫ) dx
= −

 
∂Ω̃ǫ

κdσ + O(ǫ2).

This heuristically justifies the use of (30) as an approximation to the motion
(28).
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Remark 3. We can generalize our previous argument to the case of interfaces
moving with normal velocity

Vn = κ + g −
 

∂Ω
(κ + g) dσ. (33)

The usual phase field approximation of such motions is based on the equation

∂tu = ∆u − 1

ǫ2

(

W ′(u) − ǫcW g

)

+
1

ǫ2

 
Q

(

W ′(u) − ǫcW g

)

dx, (34)

where the last term can be understood as a Lagrange multiplier. As explained
above, one cannot expect that this model should converge to the motion (33) with
a better rate than O(ǫ). Generalizing our previous analysis, we may instead con-
sider the following modified phase field model, which should improve the accuracy:

∂tu = ∆u − 1

ǫ2

(

W ′(u) − ǫg
√

2W (u)

)

+
1

ǫ2

√

2W (u)�
Rd

√

2W (u) dx

�
Rd

(

W ′(u) − ǫg
√

2W (u)

)

dx. (35)

4 Numerical method and simulations

In this section, we describe the numerical method we use for solving










∂tu = ∆u − 1

ǫ2
F (u) x ∈ Q ⊂ R

d, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Q,

(36)

where F takes one of the following forms:

W ′
ǫ,g(u) = W ′(u) − ǫcW g,

W̃ ′
ǫ,g(u) = W ′(u) − ǫg

√

2W (u),

W ′
ǫ,g,vol(u) = W ′(u) − ǫcW g −

 
Q

(

W ′(u) − ǫcW g

)

dx,

W̃ ′
ǫ,g,vol(u) = W ′(u) − ǫg

√

2W (u)

−
√

2W (u)�
Q

√

2W (u) dx

�
Q

(

W ′(u) − ǫg
√

2W (u)

)

dx.

The first form corresponds to the Allen–Cahn equation with a forcing term g. The
second form corresponds to the modified approximation introduced in section 2.
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Forms 3 and 4 are the respective forms when the volume is conserved (see (34)
and (35)). We assume that

u0 = q

(

d(x, ∂Ω0)

ǫ

)

,

where Ω0 is a smooth bounded set of R
d strictly contained in the fixed box

Q = [−1
2 , 1

2 ]
d
, with d = 2 or 3. We assume also that during the evolution the sets

Ωǫ(t) remain within Q, so that we may impose periodic boundary conditions on
∂Q to the solutions of (36).

4.1 Numerical scheme

Equation (36) is numerically approximated via a splitting method between the
diffusion and reaction terms. We take advantage of the periodicity to treat the
diffusion part of the operator in the Fourier space. More precisely, the value
uǫ(x, tn) at time tn = t0 + n∆t is approximated by

uP
ǫ (x, tn) =

∑

max
1≤k≤d

|pk|≤P

uǫ,p(tn) exp(2iπp · x).

In a first step, we set

uP
ǫ

(

x, tn +
1

2

)

=
∑

max
1≤k≤d

|pk|≤P

uǫ,p

(

tn +
1

2

)

exp(2iπp · x),

with

uǫ,p

(

tn +
1

2

)

= uǫ,p(tn) exp(−4π2∆t|p|2).

We then add the reaction term:

uP
ǫ (x, tn + 1) = uP

ǫ

(

tn +
1

2

)

− ∆t

ǫ2
F

(

uP
ǫ

(

tn +
1

2

))

.

In practice, the first step is performed via a fast Fourier transform, with a com-
putational cost of O(P d log P ). The corresponding numerical scheme turns out to
be L∞-stable for the standard Allen–Cahn equation with no forcing term, under
the condition

δt ≤ Mǫ2,

where M =
(

supt∈[0,1] W
′′(t)

)−1
. It can be shown that this condition is also

sufficient for the modified potential W̃ǫ,g. We impose this constraint in the fol-
lowing computations for all the choices of F . We use the double well potential
W (s) = 1

2s2(1 − s)2, and P represents the number of Fourier modes in each
dimension.
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4.2 Numerical tests

Convergence test with no forcing term. This test illustrates the conver-
gence of our numerical scheme when we consider the equation

∂tu = ∆u − 1

ǫ2
W ′(u),

with no forcing term, nor volume conservation. The initial set Ω0 is taken as
a circle of radius R0 = 0.25. It should evolve as a circle, with radius R(t) =
√

R0
2 − 2t, that decreases to a point at the extinction time text = 1

2R2
0. Figure

2 represents Ω(t) at different times, for the choice of parameters P = 28, ∆t =
1/P 2 and ǫ = 2/P . Figure 3 shows the error between calculated and theoretical
extinction times for different values of ǫ, in logarithmic scale. The error behaves
like O(ǫ2|log ǫ|2) as expected. This indicates that, with this choice of parameters,
the error due to our numerical scheme is negligible compared to the ‘modeling’
error due to the approximation of the motion by the phase field equation.
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−0.5

−0.4
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0.0305328

Figure 2: Mean curvature flow of a circle: level set {uǫ(x, t) = 1
2} for different

times.

Convergence test with a constant forcing term. Here we compare the two
phase field models (2) and (7) as approximations to the motion (1). Theoretically,
both give an approximation order of O(ǫ2|log ǫ|2). We compare the numerical
solutions in the simple case where the forcing term is a constant: g = Cg. The
initial condition Ω0 is a circle of radius R0. During the evolution, Ω(t) also
remains circular, and its radius R satisfies

dR

dt
= − 1

R
+ Cg.
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Figure 3: Mean curvature flow of a circle: error on the extinction time for different
values of ǫ (logarithmic scale).

Assuming that Cg < 1/R0, Ω(t) decreases to a point, with extinction at the time

text = − 1

Cg

(

1

Cg
ln(1 − CgR0) + R0

)

.

We represent on figure 4 the error on the extinction time for different values of
ǫ, in logarithmic scale. We choose Cg = 2 and Cg = −2 respectively. Both
models give comparable results, and as expected by the theory, we again observe
a O(ǫ2|log ǫ|2) error.
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Figure 4: Mean curvature flow of a circle with a constant forcing term Cg: error
on the extinction time for different values of ǫ (logarithmic scale). Left: Cg = 2.
Right: Cg = −2.

Conservation of the volume with no forcing term. Here the initial con-
figuration Ω0 is the union of two disjoints circles of respective radii r0 and R0,
with r0 < R0. As it evolves by conserved mean curvature flow (28), Ω remains
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the union of two circles, with radii r and R solutions of














dr

dt
= −1

r
+

2

r + R
,

dR

dt
= − 1

R
+

2

r + R
.

It is easy to check that the smallest circle decreases and disappears at extinction
time

text = −r0R0

2
+

R2
0 + r2

0

4
ln

(

1 +
2r0R0

(R0 − r0)2

)

.

Meanwhile, the radius of the initially larger circle grows to a maximal value

R∗ =
√

r2
0 + R2

0

at extinction time. We presents results for r0 = 0.1, R0 = 0.15, text = 0.0133,
and for the choice of numerical parameters P = 28, ∆t = 2−16. The evolution
of r and R is plotted on figure 5 for both models (29) and (30) and for different
choices of ǫ:. Figure 6 depicts the error on extinction time in logarithmic scale.
The graph clearly shows that the error on extinction time is of order ǫ for the
classical model, while it scales like ǫ2 for the modified model (30).
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Figure 5: Conserved mean curvature flow of two disjoint circles: evolution of the
radii against time, for different values of ǫ. Left: classical model (29). Right:
modified model (30).

Conservation of the volume with a non-zero forcing term. Volume losses
may become important when approximating forced mean curvature motion with
the classical phase field model (29). The purpose of this test is to illustrate this
point. We choose g to be an isotropic forcing term: g(x) = cg cos(8π|x|). The
initial configuration Ω0 is the circle of radius R0 = 0.25 centered at 0. It should
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Figure 6: Conserved mean curvature flow of two disjoint circles: error on the
extinction time against ǫ for the two models (29) and (30).

remain stationary (i.e. Ω(t) = Ω0 for all t) whatever the value of the constant cg.
Figure 7 represents the computed evolutions using respectively (34) and (35). The
numerical parameters are P = 28, ǫ = 2/P and ∆t = 1/P 2. Clearly, the value of
cg has a significant impact on the results when using (34). Comparatively, the
choice of cg as a negligible impact on the evolutions computed with (35). This
confirms the arguments developed in section 3.
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Figure 7: Conserved mean curvature flow of a circle with an additional isotropic
forcing term g(x) = cg cos(8π|x|): stationary shape for different choices of cg.
Left: classical model (34). Right: modified model (35).

An example in 3D. Here we illustrate the benefits of our approach on a
classical three-dimensional example: the evolution of a torus with conservation
of the volume and no additional forcing term. This example provides a good
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test case: because of the high values taken by the mean curvature, standard
approaches may fail to reproduce the motion correctly. One also need to handle
the topological change when we move from a toric shape to a spherical one.

We clearly observe on figure 8 that the classical model (34) leads to significant
volume losses compared to our modified model (35). We plot on figure 9 the
volume against time for both approaches. The volume error goes up to 30% for
the classical model, whereas it is always strictly below 5% for ours. We notice
that, in both cases, the error decreases in the second part of the evolution. Indeed,
it is clear that the numerical error is maximal when the average mean curvature
is maximal; when the topological change occurs, the average mean curvature
instantly jumps to a smaller value, as the points where the mean curvature is the
highest just disappear from the surface.

Figure 8: Evolution of a torus by mean curvature flow with conservation of the
volume. First line: classical model (29). Second line: modified model (30).
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Figure 9: Torus example: volume against time for both models (29) and (30).
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5 Conclusion

We introduced in this article a modified phase field model for the approximation
of mean curvature flow with a forcing term. We rigorously proved its convergence
with the same order as the classical Allen–Cahn equation: O(ǫ2|log ǫ|2).

We formally derived this model to the case of conserved mean curvature
flow. We observed numerically an O(ǫ2) error for the conservation of the vol-
ume, whereas the classical conserved Allen–Cahn equation just showed an O(ǫ)
error in our simulations.
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