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PROOF OF A PARTITION IDENTITY CONJECTURED BY
LASSALLE

THERESIA EISENKOLBL

ABSTRACT. We prove a partition identity conjectured by Lassalle (Adv. in Appl.
Math. 21 (1998), 457-472).

The purpose of this note is to prove the theorem below which was conjectured by
Lassalle [[l, ff]. In order to state the theorem, we introduce the following notations. Let
(a), =ala+1)---(a+n—1). For a partition u of n let the length /(1) be the number
of the parts of x, m; the number of parts 4, z, = [[;5, i™@m;(u)! and <ﬁf> the number
of ways to choose r different cells from the diagram of the partition p taking at least
one cell from each row. Then the following theorem holds for n > 1.

Theorem 1.
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Proof. We first observe that H2>1 i) = HZ( I),LLZ and that — Z;L ; is the number of
compositions of n which are permutations of the parts of . Let us denote this number
by C(u). After division by s! the left-hand side can be rewritten as
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For the composition p, <ﬁf> counts the ways of choosing r points in the diagram of the

composition. If we choose r; points from part u;, there are Hi’:1 (‘;‘) possible choices.
Summing over all possible compositions r = ry + - - - 4+ r;, where every part is > 1 gives

("). Thus we get for the left-hand side of ([l)
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It is easy to see that (“;:il) (‘:::11) = (=1)~! (;f__ll) (ﬁ:::j) Now we can evaluate the

sum over the p; by repeated application of the Chu-Vandermonde summation formula:
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Thus, we get for the left-hand side of ([)
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The factor <n+5_1) = <n+5_1) can be taken outside of all the sums. By comparison of
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(M) and (B), we see that it remains to prove
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This can be done by using generating functions. We multiply both sides of the equation
by ®" and sum over all r > 0. The right-hand side can be evaluated by the binomial
theorem and gives
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For the left-hand side we need the power series expansion of the logarithm and the
equation
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which can be derived from the binomial theorem. So the generating function corre-

sponding to the left-hand side of ([]) evaluates as follows:
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This is equal to (H]), so the theorem is proved. O
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