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We consider a class of non-linear parabolic or hyperbolic partial differential
equations on unbounded domains. These equations can be viewed as spatial exten-
sions of dissipative oscillators in a potential. We prove that the basins of attraction
of the homogeneous stationary solutions corresponding to local minima of the
potential are open, and we describe the asymptotic behavior of a class of solutions
which belong to the borders of these basins. We also study the basin of attraction
of a homogeneous stationary solution corresponding to a global minimum of the
potential. � 2000 Academic Press

1. INTRODUCTION

1. This paper is concerned with the asymptotic behavior as t � +� of
solutions u(x, t) of the non-linear parabolic equation

ut+V $(u)=uxx , x # ]&�; +�[, (1)

or of the non-linear hyperbolic equation

utt+&(u) ut+V $(u)=uxx , x # ]&�; +�[, (2)

where the potential V and the damping & are smooth (C�) functions
R � R, and & takes only strictly positive values (Eq. (1) is in some sense a
limit, when & � +�, of (2); it is therefore natural to consider these two
equations simultaneously).

These partial differential equations can be viewed as ``spatial extensions''
of the differential equations

ut+V $(u)=0 (3)
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and

utt+&(u) ut+V $(u)=0. (4)

All these equations are dissipative; namely, for Eqs. (1) and (2) one can
write, at least formally, the following decreases of energies: in the parabolic
case,

�t | \u2
x

2
+V(u)+ dx=&| u2

t dx, (5)

and in the hyperbolic case,

�t | \u2
x

2
+

u2
t

2
+V(u)+ dx=&| &(u) u2

t dx. (6)

The consequence of this dissipativeness is that the dynamics of these partial
differential equations is not truly infinite-dimensional (high-frequency
Fourier modes are damped) and therefore there is some hope to under-
stand it completely.

A natural approach is to try to establish ``correspondence rules'' between
the dynamics of the differential equations (for which we have a complete
understanding) and that of the partial differential equations. The present
work is a attempt to provide some results in this spirit: we will show that
to local minima of the potential V correspond attractive fixed points for
Eqs. (1) and (2) (as is the case for the differential Eqs. (3) and (4)) and we
will try to describe the asymptotic dynamics of (part of) the points which
belong to the borders of the basins of attraction of these attractive fixed
points.

The results presented here were at the origin motivated by the work [1]
of Argentina et al. There these authors studied the transition between
annihilation and reflection at the collision of two bistable fronts, for the
damped sine-Gordon equation with a torque,

utt+&ut+sin u&0=uxx (7)

(the damping &>0 and the torque 0<0<1 being constants). They
showed the existence of a critical damping &c>0 such that, for &>&c , the
fronts annihilate each other, for &<&c , they reflect, and for &=&c , the solu-
tion displays an intermediate behavior, and converges towards a solution
which they called ``nucleation solution'' (meaning that it is the solution
through which one can ``nucleate'' the next local minimum of the poten-
tial). The present paper originated from efforts towards a rigorous justifica-
tion (still in progress) of this behavior. Roughly speaking, we will show
here that this ``nucleation solution'' is in some sense the natural attractor
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of the border of the basin of attraction corresponding to a local minimum
of the potential.

Of course the methods will rely strongly on the expressions (5) and (6)
which enable to consider Eqs. (1) and (2) at least formally as gradient-like
systems. Nevertheless, as we want to be able to consider front-like solu-
tions, we will have to work with infinite extensions (the space-variable x
will belong to R) and uniformly local functional spaces (containing all
uniformly bounded and uniformly sufficiently smooth functions); although
natural, this framework yields certain difficulties due to the fact that the
energy is in general not finite.

2. Let \: R � R be a weight function (\ is of class C�, has compact
support, takes only non-negative values, and is not identically zero); for
x, y in R, write Tx \( y)=\( y&x), and for k # N, let H k

ul(R) be the set of
functions u in H k

loc(R) such that

&u&H k
ul

(R)=sup
x # R

&Tx \u&H k(R)<�

(different choices of \ give rise to equivalent norms on the same space
H k

ul(R)). Let

X=H 1
ul(R); Y=H 1

ul(R)_L2
ul(R),

and write & } } } &X=& } } } &H 1
ul

(R) and & } } } &Y=& } } } &H1
ul

(R)_L2
ul

(R) .
The following results about existence, uniqueness, and properties of

solutions are standard (see for instance [15, 3]).

Parabolic case. For any u0 in X, Eq. (1) has a unique solution
u # C0([0; Tmax[, X ) satisfying u(0)=u0 , defined on a maximal time
interval [0; Tmax[, 0<Tmax�+�; if Tmax<+�, then &u(t)&X � +�
when t � Tmax ; for any k # N, u | ]0; Tmax[ actually belongs to C�(]0; Tmax[,
H k

ul(R)); finally, times of existence are locally bounded from below, and
solutions depend locally Lipschitz-continuously on initial conditions.

Let Pt (u0)=u(t), 0�t<Tmax denote the solution of (1) with initial
condition u0 .

Hyperbolic case. For any U0=(u0 , v0) # Y, Eq. (2) has a unique
(mild) solution U # C0(]&T $max , Tmax[, Y ) satisfying U(0)=U0 , defined
on a maximal time interval ]&T $max , Tmax[, 0<Tmax , T $max�+�; if Tmax

(resp. T $max) <+�, then &U(t)&Y � +� when t � Tmax (resp. when
t � &T $max); writing U(t)=(u(t), v(t)), we have u # C 0(]&T $max , Tmax[,
H 1

ul(R)) & C1(]&T $max , Tmax[, L2
ul(R)) and du

dt =v; for any &T $max<t<Tmax

and for any interval [a; b] of R, u(t) |[a; b] and v(t) |[a; b] actually only
depend on the restriction of the initial condition on the interval
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[a&|t|; b+|t|] (initial data propagate at a speed less or equal to one);
finally, times of existence are locally bounded from below, and solutions
depend locally Lipschitz-continuously on initial conditions.

Let Ht (U0)=U(t), &T $max<t<Tmax denote the solution of (2) with
initial condition U0 .

Global existence results require certain hypotheses on the behavior of V
and & at infinity (for instance V(u)>&C(1+|u| 2) and &(u)>C &1, for a
constant C>0) which we don't want to make here. Also, local (similarly
global) existence results can be obtained in both cases for more general
(less regular) initial conditions, but then the use of the energy functionals
we shall use later becomes certainly more delicate.

3. We now make, for the rest of the paper, the following hypothesis :

0 is a strict local minimum of V (8)

(in other words there exists =>0 such that, for u # ]&=; 0[ _ ]0; =[,
V(u)>V(0)); we have V $(0)=0 and we will suppose (without loss of
generality) that V(0)=0. The point u(x)#0 of X (resp. (u(x), v(x))#(0, 0)
of Y ) defines a (homogeneous) stationary solution of the parabolic
equation (1) (resp. the hyperbolic equation (2)).

Notation. Write

B0, par=[u # X | &Pt (u)&X � 0 when t � +�],

B0, hyp=[U # Y | &Ht (U )&Y � (0, 0) when t � +�],

and denote by �B0, par (resp. �B0, hyp) the border of B0, par (resp. of B0, hyp)
for the topology induced by & } } } &X (resp. by & } } } &Y).

Proposition 1. Suppose that there exists =>0 such that, for
u # ]&=; =["[0], V $(u) u>0; then, B0, par is open in X for & } } } &X .
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Suppose moreover that one of the two following hypotheses is satisfied :

v V"(0)>0;

v the damping & is constant (it does not depend on u);

then B0, hyp is open in Y for & } } } &Y .

Of course, one would like to prove that B0, hyp is open even when
V"(0)=0 and the damping & is non-constant, but for technical reasons, we
have not been able to obtain this result.

4. The main goal of this paper is to try to describe the asymptotic
dynamics of certain solutions which belong to �B0, par or �B0, hyp . We will
use the decreases of energy functionals in order to prove that these
solutions converge locally to stationary solutions; in both cases (Eq. (1) or
(2)) stationary solutions u(x) obey the equation

u"=V $(u), (9)

which represents a conservative oscillator in the potential &V; of par-
ticular interest for us will be the energy-0 hypersurface in the phase space
R2=[(u, u$)] of this equation. Here are examples of the possible shapes of
this energy hypersurface for various potentials V.

In order to state precise results, we will have to introduce some
notations related to this hypersurface; let

v N=[u # R | V(u)<0];

v u+=inf N & R+ if this set is non empty, +� otherwise;

v u&=sup N & R& if this set is non empty, &� otherwise;

v Z=[u # ]u& ; u+[ s.t. V(u)=0];
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the set Z contains 0 and, for any u # Z, we have V $(u)=0 and V"(u)�0.
We will make the following hypotheses :

the set Z is a discrete subset of R, (10)

if u+(resp. u&) is finite, then V $(u+)<0 (resp. V $(u&)>0) (11)

(these hypotheses are not very restrictive: (10) is always satisfied if the
potential is real-analytic, and (11) is generic; however, they could probably
be released with a bit of additional work).

Denote by S the hypersurface of energy 0 in the phase space R2 for
Eq. (9); the set S is the union of trajectories of solutions of this equation;
let Sb be the subset of S which is the union of those of these trajectories
which are bounded in R2, and let Sb, 0 be the connected component
containing (0, 0) of Sb . The set Sb, 0 is the union of:

v [(u, 0) | u # Z];

v if Z is not reduced to [0], for each pair of consecutive points of Z,
the trajectories of two solutions, heteroclinic to these two points (these two
trajectories are symmetric with respect to the u-axis);

v if u+<+�, the trajectory of a solution homoclinic to max(Z);

v if u&>&�, the trajectory of a solution homoclinic to min(Z)

(Sb, 0 is reduced to [(0, 0)] if and only if 0 is a strict global minimum of V ).
Let H be the set of functions u(x), x # R which are (homoclinic or

heteroclinic) non-constant solutions of the stationary Eq. (9), whose trajec-
tories in the phase space belong to Sb, 0 , and which are normalized with
respect to translation invariance (for instance the following way : if h # H
is a heteroclinic solution between ui and uj , one requires that h(0)=
(ui+uj )�2, and if it is a homoclinic solution, one requires that h be even).
Remark that, if 0 is not a global minimum of V, H is generically reduced
to one or two homoclinic solutions. For instance, in the case of the
dampted sine-Gordon equation with torque (7), the set H corresponding to
a local minimum of the potential is reduced to one homoclinic solution; it
is this solution which was called in [1] ``nucleation solution''.

We are now in position to define the possible asymptotic behaviors for
solutions in the border of B0, par or B0, hyp . Let %: R � R be a C� cut-off
function satisfying %(x)=0 for x�&1 and %(x)=1 for x�1.

Definition. Let A be the set of functions u # C0([0; +�[, H 1
ul(R))

such that there exists n # N, n�1, h1 , ..., hn in H, and functions x1 , ..., xn in
C1([0; +�[, R), satisfying x$j (t) � 0 when t � +� for j=1, ..., n, with the
following properties:
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v u(t)(x)=h1(x&x1) for x # ]&�; x1].

v u(t)(x)=hn(x&xn) for x # [xn ; +�[.

v if n�2, for j=1, ..., n&1,

�� xj+1(t)&x j (t) is not smaller than 2 and converges to +� when
t � +�.

�� limx � +� h j (x)=limx � &� hj+1(x).

�� u(t)(x)=(1&%(x&(xj+xj+1 )�2)) hj (x&xj)+%(x&(xj+xj+1 )�2)
hj+1(x&x j+1) for x # [x j ; x j+1].

Thus A is the set of functions which asymptotically look like the pasting
of a finite number of homoclinic or heteroclinic solutions of the 0-energy
hypersurface which move slowly away the ones from the others.

5. We can now state our main results.

Theorem 1. Suppose that V satisfies (8), (10), (11), and that V"(0)>0;
then, for any u # X, if :

v u # �B0, par ,

v writing l+=lim sup |x| � +� u(x) and l&=lim inf |x| � +� u(x), we
have: if l+>0, then V $(v)>0 for any v # ]0; l+] and if l&<0, then
V $(v)<0 for any v # [l& ; 0[,

v there exists =>0 such that, for any v # X satisfying &v&u&X<=,
&Pt v&L�(R) is bounded independently of v and of t�0,

then there exists u~ # A such that &Pt (u)&u~ (t)&X � 0 when t � +�.

Theorem 2. Suppose that V satisfies (8), (10), (11), and that V"(0)>0;
then, for any U=(u, v) # Y, if:

v U # �B0, hyp ,

v lim sup |x0| � +� �R Tx0
\(u2+u2

x+v2) dx<= (Tx\ was defined earlier
in number 2), where =>0 is a small constant (depending on V, &, and \),

v writing Ht (U )=(u(t), v(t)), &u(t)&L�(R) is bounded independent of
t�0,

then there exists u~ # A such that &Ht (U )&(u~ (t), 0)&Y � 0 when t � +�.

In the two following theorems, we get rid of the hypothesis V"(0)>0,
but, on the other hand, we only deal with solutions which are of finite
energy and which admit small energy perturbations in B0, par or B0, hyp .

353DIFFERENTIAL EQUATIONS IN A POTENTIAL



Theorem 3. Suppose that V satisfies (8), (10), (11); then, for any u # X, if :

v u # �B0, par and for any :>0, there exists v # B0, par such that
&v&u&H 1(R)<:,

v |u(x)| � 0 when |x| � +� and �R((u2
x �2)+V(u)) dx<+�,

v &Ptu&L�(R) is bounded independently of t�0,

then there exists u~ # A such that &Pt (u)&u~ (t)&X � 0 when t � +�.

Theorem 4. Suppose that V satisfies (8), (10), (11); then, for any
U=(u, v) # Y, if:

v U # �B0, hyp and for any :>0, there exists W # B0, hyp such that
&W&U&H 1(R)_L2(R)<:,

v |u(x)| � 0 when |x| � +� and �R ((u2
t �2)+(u2

x�)2)+V(u))
dx<+�,

v writing Ht (U )=(u(t), v(t)), &u(t)&L�(R) is bounded independently of
t�0,

then there exists u~ # A such that &Ht (U )&(u~ (t), 0)&Y � 0 when t � +�.

The method to prove these results is roughly the following. The fact that
the solution we consider is accumulated by solutions which converge to 0
implies that its energy always remains non-negative. On the other hand, by
(5), (6), energy decreases at a rate proportional to &ut&L2(R) ; this enables
to prove that, roughly speaking, ut converges to 0 (indeed, when the energy
is infinite, we will use finiteness of a certain localized energy), and in view
of Eqs. (1) and (2), this implies local convergence to stationary solutions.
The more precise asymptotic behavior will be obtained by continuity
(homotopy) arguments in the phase space of Eq. (9) (this part will be
common to the parabolic and the hyperbolic cases).

A result very close to Theorem 1 was obtained by Fife in [11] (see also
[10]); there he obtained even more precise results on the global dynamics
of the parabolic Eq. (1), but for a less general (bistable) potential; some of
our arguments are directly inspired by those of [11, Sect. 3.1.2]; however,
the arguments used in [11] to obtain the precise asymptotic behavior
corresponding to our results rely strongly on the maximum principle for
parabolic equations, and thus do not extend to the hyperbolic case
(contrarily to our arguments, see Sect. 4.1).

Other results in the same spirit, both for the parabolic and the
hyperbolic equation, were obtained by Feireisl (see [7, 8]), Feireisl and
Petzeltova� [9], including the situation where the dimension d in the space
variable x is more than one (in this case, the object corresponding to a
solution homoclinic to 0 for Eq. (9) is called a ``ground state'' for the
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elliptic stationary solution); these authors used finiteness of energy and a
concentration-compactness principle to prove local convergence to ground
state solutions for subsequences of times converging to infinity; in the case
d=1 however, our results are more general and more precise.

It is likely that Theorems 1 and 2 remain true without the assumption
V"(0)>0, but we were not able to prove this. Also, we were not able to
get rid of the assumption about the bound in L�(R) on the solution. On
the other hand, there are several situations where such a bound can be
proved, either by using maximum principles (see Section 2) or by energy
estimates; for instance we will prove the following result.

Proposition 2. (1) Suppose there exists a constant C>0 such that, for
u>C, V $(u)>0, and for u<&C, V $(u)<0; then, the semi-flow (Pt)t�0

associated to Eq. (1) on X is globally defined (one has a global existence
result), and admits an attractive ball in X=H 1

ul(R).

(2) Suppose there exists a constant C>0 such that C&1<&( } )<C,
and, for |u|>C, C&1<V"(u)<C; then, the flow (Ht)t # R associated to
Eq. (2) on Y is globally defined, and admits an attractive ball in
Y=H 1

ul(R)_L2
ul(R).

The conclusions of this proposition imply uniform asymptotic bounds in
L�(R) for the solutions.

Finally, we consider the case of a global minimum.

Theorem 5. Suppose that 0 is a strict global minimum (i.e. V(v)>0 for
v{0) and that lim inf |v| � +� V(v)>0; then,

(1) for any u # X, write l+=lim sup |x| � +� u(x) and l&=lim inf |x| � +�

u(x); suppose that the following holds:

v if l+>0, then for any v # ]0; l+], V $(v)>0

v if l&<0, then for any v # [l& ; 0[, V $(v)<0

then &Pt (u)&X � 0 when t � +�.

(2) for any U=(u, v) # Y, if one of the two following conditions holds:

(a) �R ((v2�2)+(u2
x �2)+V(u)) dx<+�,

(b) V"(0)>0 and lim sup |x0| � +� �R Tx0
\(u2+u2

x+v2) dx<=,
where =>0 is a small constant (depending on V, &, and \),

then &Ht (U )&Y � (0, 0) when t � +�.
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It is likely that this theorem remains true without assuming that the
global minimum 0 is strict (i.e., just assuming that V(u)�0 for any u # R),
without the assumptions on lim infv � \� V(v), and finally, for the second
part (case (b)), without the assumption V"(0)>0.

6. These results (Theorems 1 to 4) raise questions about the dynamics
of the ``metastable patterns'' in the set A describing the possible asymptotic
shapes of the solutions considered. The dynamics of metastable patterns
(``multi-kinks,'' which we called: pasting of ``heteroclinic solutions between
local minima at the same depth'') has been precisely investigated by Carr
and Pego (on a finite interval, see [2], and see [6] for the extension of
their method to the real line); these authors characterized accurately the
dynamics by a simple potential model. It is natural to wonder whether
their method applies to the patterns which appear in the set A. The main
difference (regardless the fact that they considered only the parabolic case)
is that the patterns in A can be (locally), codimension-one unstable (when
solutions homoclinic to a local minimum occur).

Results in this direction could enable to eliminate a priori certain pat-
terns in the definition of the set A of ``possible asymptotic patterns'',
precisely all those whose prescribed dynamics would be in contradiction
with the fact that the distance between two stationary solutions appearing
consecutively in a pattern must tend to +� (see the definition of A).
Actually, even for the particular problem considered in [1] (transition
between annihilation and reflection at the collision of two fronts for
Eq. (7)) we were not able to prove that the solution converges towards one
nucleation solution (but only towards a ``pasting'' of a finite number of
nucleation solutions)).

7. To finish this introduction, let us rapidly review some points where,
from our point of view, certain statements should be improved, or certain
hypotheses should be weakened.

In Proposition 1, in the hyperbolic case, one should get rid of the
hypothesis V"(0)>0 or &( } ) constant. This is related to the maximum
principle for hyperbolic equations (see Sect. 2.2), which we were not able to
use when &( } ) is non-constant. In Theorems 1 and 2, one should get rid of
the hypothesis V"(0)>0, and, in Theorems 1, 2, 3, 4, one should get rid
of hypothesis (11) on V( } ). This requires a better understanding of the
propagation of energy in space. Recent ideas of Slijepcevic (see [14]) could
be helpful. One should be more precise, as explained in the previous
paragraph, on the possible asymptotic behaviors of the considered solu-
tions (i.e. one should provide a more restrictive definition of the set A).
Finally, in the hyperbolic case, Proposition 2 and Theorem 5 should be
improved (in Theorem 5, b), one should get rid of the hypothesis
V"(0)>0).
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8. The paper is organized as follows. In Section 2, we use maximum
principles and energy functionals to prove Propositions 1 and 2. In Sec-
tion 3, we prove that the solutions considered converge locally towards
stationary solutions (Sect. 3.1 for the parabolic equation and Sect. 3.2 for
the hyperbolic equation). We complete the proof of the main results
(precise asymptotic behavior) in Section 4.1, and we prove Theorem 5 in
Section 4.2.

2. ENERGY ESTIMATES AND MAXIMUM PRINCIPLES

Notation. Throughout the rest of the paper, integrals � } } } without
more specifications will always mean �R } } } dx. Solutions of Eqs. (1) and (2)
will be in general introduced directly as functions u(x, t) or u( } , t) of the
two variables x and t, rather than as functions of t with values in the space
X or Y.

2.1. The Parabolic Equation

Functions from the space X=H 1
ul(R) in general do not have a finite

energy; we will thus use localized energy functionals (this method was
extensively used by Collet in [4]).

Consider a solution u( } , t) of Eq. (1) on a maximal interval [0; Tmax[.
For any smooth function . such that . and .$ belong to L1(R) & L�(R),
we have

�t | . \u2
x

2
+V(u)+=&| .u2

t &| .$utux ,

�t | .
u2

2
=&| .(u2

x+V $(u) u)&| .$uux

(these equalities are obtained by multiplying Eq. (1) respectively by .ut

and .u and integrating on R).
Let , be any smooth function in L1(R) & L�(R) satisfying |,$(x)|�,(x),

x # R (for instance we could take ,(x)= 1
1+x2). Take =>0 to be chosen

later and x0 # R; write ,=(x)=,(=x), Tx0
,=(x)=,=(x&x0), and let . be the

function Tx0
,= ; remark that |.$(x)|�=.(x).

Define the function E� par(x, t) by E� par=u2�2+u2
x�2+V(u). The two

equalities above yield

�t| .E� par� &| . \\1&
=
2+ u2

t +(1&=) u2
x+\V $(u) u&

=
2

u2++ . (12)
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An important tool for the study of Eq. (1) is the well-known maximum
principle (see [16]); the following statement is taken from [5].

Proposition 3. Suppose that u1 and u2 are bounded continuous functions
in (x1 ; x2)_[0; t0] for some t0>0, the quantities x1 and x2 being finite or
infinite. Suppose that

�t u1+V $(u1)&�2
x u1��tu2+V $(u2)&�2

x u2

and

u1(x, 0)�u2(x, 0), x # R;

if x i , i=1, 2 is finite, assume furthermore

u1(xi , t)�u2(xi , t), t # [0; t0];

then, for any t # [0; t0],

u1(x, t)�u2(x, t), x # R.

In the rest of this paper, we will call super-solutions (resp. sub-solutions)
for Eq. (1) functions u(x, t) satisfying �t u+V $(u)&�2

xu�0 (resp. �0).

Proof of Proposition 2 for the parabolic equation. Let u( } , t) be any
solution of (1) on a maximal interval [0; Tmax[. By hypothesis, there exists
a constant C>0 such that V $(v)<0 for v� &C and V $(v)>0 for v�C.
Thus, by the maximum principle stated above, we have Tmax=+�, and,
for any t�0, &u( } , t)&L�(R)�max(C, &u( } , 0)&L�(R)); moreover, there exists
{>0 (depending on u( } , } )) such that, for t>{, &u( } , t)&L�(R)�C.

For ==1�2, inequality (12) yields

�t| .E� par�&| . \u2
x

2
+V $(u) u&

u2

4 + .

There exists a constant C1>0 such that, for u # [&C; C], &(V $(u) u& u2

4 )
�C1&(V(u)+ u2

2 ); thus, for t>{,

�t | .E� par� &| .E� par+C1 | ..

Recall that .=Tx0
,= . This inequality shows that supx0 # R � Tx0

,= E� par even-
tually becomes smaller than 1+C1 � .. Thus, as &u( } , t)&L�(R) is bounded,
an analogous bound holds for supx0 # R � Tx0

,=u2
x , and Proposition 2

follows. K
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Proof of Proposition 1 for the parabolic equation. Let u( } , t) be a
solution of Eq. (1) on a maximal interval [0; Tmax[. By the maximum prin-
ciple stated above, and by the fact that V $(v) v>0 for v{0 small, if
&u( } , 0)&X is sufficiently small, then &u( } , t)&L�(R) � 0 when t � +�.

If V"(0)>0, (12) forces exponential convergence to 0 for &u( } , t)&X , and
the result follows.

If V"(0)=0, (12) yields

�t | .E� par�&(1&=) | .u2
x+

=
2 | .u2,

and thus (for say ==1�2),

�t | .E� par�&| .E� par+| .(u2+V(u)).

Denote by � the function t [ � .E� par and by % the function t [
� .(u2+V(u)). By the variation of the constant formula, we have, for any
t>0 and s>0,

�(t+s)�e&s%(t)+|
s

0
e&(s&r)%(t+r) dr.

As %(t) � 0 when t � +�, we have �(t) � 0 when t � +�, and the result
follows. K

2.2. The Hyperbolic Equation

Write V (u)=�u
0 &(v) dv, u # R.

We proceed like in the parabolic case. Consider a solution u( } , t) of
Eq. (2) on a maximal time interval ]&T $max ; Tmax[. For any smooth
function . such that . and .$ belong to L1(R) & L�(R), the functions

t [ | . \u2
t

2
+

u2
x

2
+V(u)+ and t [ | .(uut+V (u) u)

are of class C1, and we have

�t | . \u2
t

2
+

u2
x

2
+V(u)+=&| .&(u) u2

t &| .$ut ux

and

�t | .(uut+V (u) u)=| .(&u2
x+u2

t +V (u) ut&V $(u) u)&| .$uux
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(these equalities are obtained by multiplying Eq. (2) respectively by .ut

and .u and integrating on R).
As in Section 2.1, we suppose that .=Tx0

,= , =>0, x0 # R. Take any
#>0, and write

E� hyp=
u2

t

2
+

u2
x

2
+V(u)+#(uut+V (u) u).

The preceding equalities yield

�t | .E� hyp�&| . \(&(u)&#&
=
2+ u2

t +\# \1&
=
2+&

=
2+ u2

x

&#V (u) ut+# \V $(u) u&
=
2

u2++ . (13)

Proof of Proposition 2 for the hyperbolic equation. Let u( } , t) be any
solution of Eq. (2) on a maximal time interval ]&T $max ; Tmax[. In the
following estimates, C1 , C2 , ... denote (large) positive constants which are
independent of u( , ).

According to the hypotheses, we have C &1
1 �&( } )�C1 and, for any

v # R, V $(v) v�C &1
1 v2&C1 . Thus we have

#V (u) ut�C &1
1

u2
t

2
+C1

#2V (u)2

2
�C &1

1

u2
t

2
+C 3

1

#2u2

2
.

According to (13), we thus have, for # and = sufficiently small (# depending
on C1 , and = depending on C1 and #),

�t | .E� hyp�&
1

C2
| .(u2

t +u2
x+u2)+#C1 | ., (14)

where C2 depends on the choice of #. On the other hand, the hypotheses
show that

E� hyp�C3(1+u2
t +u2

x+u2).

Thus &(u2
t +u2

x+u2)�1&C &1
3 E� hyp and (14) yields

�t | .E� hyp�&
1

C4
| .E� hyp+C4 , (15)
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which shows that supx0 # R � Tx0
,=E� hyp eventually becomes smaller than

1+C 2
4 . Finally, according to the hypotheses, we have (for # sufficiently

small, depending on C1)

E� hyp�
1

C5

(u2
t +u2

x+u2)&C5

and the result follows. K

Proof of Proposition 1 for the hyperbolic equation when V"(0)>0.
Consider a solution u( } , t) of Eq. (2) on a maximal time interval
]&T $max ; Tmax[. At a time t0 where &u( } , t0)&L�(R) is sufficiently small, we
have, for # sufficiently small,

C&1(u2
t +u2

x+u2)�E� hyp�C(u2
t +u2

x+u2), (16)

and, according to (13) (for # and = sufficiently small, = depending on #),

�t | .E� hyp�&
1
C | .(u2

t +u2
x+u2)�&

1
C2 | .E� hyp , (17)

where C is a positive constant.
Now, suppose that &(u( } , 0), ut ( } , 0))&Y is small; then, at t=0, supx0 # R

� Tx0
,=E� hyp is small, and &u( } , 0)&L�(R) is small. As long as &u( } , t)&L�(R)

remains small, inequality (17) holds and shows that supx0 # R � Tx0
,=E� hyp

decreases (in particular it remains small); but, in turn, the smallness of this
supremum implies, by (16), that &u( } , t)&L�(R) is small. This shows that
&u( } , t)&L�(R) remains small for all t>0, and inequality (17) shows that
supx0 # R � Tx0

,=E� hyp converges exponentially to 0, uniformly with respect to
x0 . According to (16), the same is true for &(u( } , t), ut ( } , t))&Y . K

Proof of Proposition 1 for the hyperbolic equation when V"(0)=0 and the
damping & is constant. This proof will require the use of a maximum
principle for hyperbolic equations. First, we state a general result.

Proposition 4. Consider Eq. (2) with a constant and strictly positive
damping &:

utt+&ut+V $(u)=uxx; (18)

suppose that V" is bounded from above and that

&2

4
�sup V"; (19)
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then, for any pair u1( } , t) and u2( } , t) of smooth (classical ) solutions of (18)
on the triangle T=T(x0 , t0)=[(x, t) # R2 | |x&x0 |�t0&t], x0 # R, t0>0,
if

v u1(x, 0)�u2(x, 0), x # [x0&t0 ; x0+t0]

v u1, t (x, 0)�u2, t (x, 0)+ &
2 (u2(x, 0)&u1(x, 0)), x # [x0&t0 ; x0+t0]

then, for any (x, t) # T, we have

u1(x, t)�u2(x, t).

Similar results for more general (mild ) solutions can be deduced via density
arguments.

This result has been pointed out to me by Th. Gallay (it is stated in a
more general form in [13]); for completeness, we give a proof of it.

Proof. If v(x, t) is a smooth function defined on the triangle T=T(x, t)
/T(x0 , t0), we have the famous Ansatz (see [16])

v(x, t)= 1
2 (v(x&t, 0)+v(x+t, 0))+ 1

2 |
I

vt dx+ 1
2 ||

T
(vtt&vxx) dx dt (20)

where I denotes the segment between (x&t, 0) and (x+t, 0). On the other
hand, if u(x, t) is a smooth solution of (18), the change of variables
v(x, t)=e(&�2) tu(x, t) yields

vtt&vxx=
&2

4
v&e(&�2) tV $(e&(&�2) tv). (21)

Let u1(x, t) and u2(x, t) be two smooth solutions of (18) on T(x0 , t0).
Write vi (x, t)=e(&�2) tui (x, t), i=1, 2, and 2v=v2&v1 , 2u=u2&u1 .
Equation (21) yields, if 2v�0,

2vtt&2vxx�\&2

4
&sup V"+ 2v.
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Thus, by (20), if 2v�0 on T, we have

2v(x, t)�
1
2

(2u(x&t, 0)+2u(x+t, 0))+
1
2 |

I \2ut+
&
2

2u+ dx

+
1
2 \

&2

4
&sup V"+ ||

T
2v dx dt, (22)

which proves the proposition. K

We are now in position to prove Proposition 1 for the hyperbolic
equation when V"(0)=0 and the damping & is constant.

Let u( } , t) be a solution of (2) on a maximal interval ]&T $max ; Tmax[,
and suppose that &(u( } , 0) ut ( } , 0))&Y�:, where :>0 has to be chosen
later. The first step is to prove that, if : is sufficiently small, then
&u( } , t)&L� � 0 when t � +�. As the function x [ ut (x, t) is a priori not
regular (it belongs to L2

ul(R)), we will not be able to apply directly the
proposition above, but we will use inequality (22), which remains true for
mild solutions (in the space Y ) of Eq. (2).

By hypothesis, there exists w0>0 such that, for any v # [&w0 ; 0[,
V $(v)<0 and for any v # ]0; w0], V $(v)>0; furthermore, as V"(0)=0, we
can choose w0 small enough so that, for any v # [&w0 ; w0], &2

4 �V"(v). Let
u� (t) (resp. u

�
(t)) be the solution of utt+&ut+V $(u)=0 with initial condition

u� (0)=w0 and u� $(0)=0 (resp. u
�
(0)=&w0 and u

�
$(0)=0); then, u� (t) (resp.

u
�
(t)) converges to 0 when t � +�.
Write 2u� (x, t)=u� (t)&u(x, t), 2u

�
(x, t)=u(x, t)&u

�
(x, t), x # R, t�0,

and write 2v� =e(&�2) t2u� , 2v
�
=e(&�2) t2u

�
. Fix x # R and t�0, and consider

the triangle T=T(x, t) defined above. Suppose that : is sufficiently small
such that 2u� ( } , 0)�w0 �2 and 2u

�
( } , 0)�w0 �2. Then, if 2v� �0 on the

triangle T, inequality (22) yields

2v� (x, t)�
1
2

(2u� (x&t, 0)+2u� (x+t, 0))

+
1
2 |

x+t

x&t \2u� t ( y, 0)+
&
2

2u� ( y, 0)+ dy,

and thus

2v� (x, t)�
w0

2
+

&w0

4
t&

1
2 |

x+t

x&t
ut ( y, 0) dy

�
w0

2
+

&w0

4
t&

1
2

- 2t \|
x+t

x&t
u2

t ( y, 0) dy+
1�2

.
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We see that, for : sufficiently small, the term 1
2 - 2t (�x+t

x&t u2
t ( y, 0) dy)1�2

is dominated, for t�1, by the term w0
2 , and, for t>1, by the term &w0

4 t. This
shows that 2v� ( } , .) remains non-negative for all positive times. The same is
true for 2v

�
( } , } ) by a similar argument. All this shows that &u( } , t)&L� � 0

when t � +�.
Now, we see from the expression of E� hyp that, for # sufficiently small and

for &u( } , t)&L�(R) sufficiently small, we have

C&1(u2
t +u2

x+u2)�E� hyp�(u2
t +u2

x+u2),

and we deduce from (13) that, for # and = sufficiently small,

�t | .E� hyp�&C&1 | .(u2
t +u2

x)+| .u2,

where C is a positive constant (depending on the choice of #). As we know
that &u( } , t)&L�(R) � 0 when t � +�, the variation of the constant formula
yields (as in Sect. 2.1) � .E� hyp � 0 when t � +�, and the result
follows. K

3. LOCAL CONVERGENCE TOWARDS STATIONARY SOLUTIONS

Denote by \ any smooth function with compact support, non-negative
values, satisfying \(0)>0. The aim of this section is to prove the following
result.

Proposition 5. Consider a function u(x, t), x # R, t�0, with one of the
two following hypotheses :

1. u(x, t)=Pt (u0)(x), x # R, t�0, where the potential V and the initial
condition u0 # X satisfy the assumptions of Theorems 1 or 3.

2. (u(x, t), ut (x, t))=Ht (U0)(x), x # R, t�0, where the potential V
and the initial condition U0 # Y satisfy the assumptions of Theorems 2 or 4.

Write E(x, t)=u2
x �2+V(u) in case 1 above, and E(x, t)=u2

t �2+u2
x �2

+V(u) in case 2. Then, the following assertions hold.

(1) In the finite energy case (hypotheses of Theorem 3 or 4), for any
t�0, lim |x| � +� � Tx \(u2

x+u2)=0, � E(x, t) dx converges to a non-negative
limit when t � +�, and the function t [ � u2

t is integrable on R+ .
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In the infinite energy case (hypotheses of Theorem 1 or 2), there exists a
function L: R+ � R*+ , L(t) � +� when t � +�, such that limt � +�

sup |x| >L(t) � Tx \(u2
x+u2)=0, �L(t)

&L(t) E(x, t) dx converges to a non-negative
limit when t � +�, and the function t [ �L(t)

&L(t) u2
t is integrable on R+ .

(2) &ut &L2
ul (R) converges to 0 when t � +�.

(3) For any l>0 and =>0, there exists T=T(=, l )>0 such that, for
any x0 # R and t�T, there exists a stationary solution ustat : R � R of
Eq. (9) satisfying

&u( } , t)&ustat( } )&H 1([x0&l; x0+l ])�=.

The proof of this proposition will be slightly different in the parabolic
and in the hyperbolic case: we will take advantage, in the parabolic case,
of the regularizing properties of the equation, and in the hyperbolic case,
of the finite speed of propagation.

3.1. Parabolic Equation

The arguments in the two following sections are close to the ones of Fife
in [11]. Estimates on u will be obtained using the maximum principle. For
the estimates on derivatives (for instance Lemma 2), we will use localized
energy estimates, but more general a priori estimates (for instance issued
from [12]) could be used.

3.1.1. Finite energy. Suppose u( } , t)=Pt (u0), t�0, where V and u0

satisfy the hypotheses of Theorem 3.
We claim that, for any t�0,

lim
|x| � +�

|u(x, t)|=0 and lim
|x| � +� | Tx \ u2

x=0. (23)

Indeed, suppose that the converse is true and denote by t0 the infimum of
the set of positive times t for which (23) does not hold. By continuity of the
trajectory Pt (u0) in H 1

ul(R), (23) holds for t=t0 . Take t1>t0 such that (23)
does not hold at t=t1 . Again by continuity of the trajectory, the limit
lim sup |x| � +� |u(x, t1)| is arbitrarily small if t1 is chosen sufficiently close
to t0 . If this limit is sufficiently small, then, in view of the shape of the
potential V (hypothesis (8)), we get that the energy � E(x, t) dx is infinite
at t=t1 , which is impossible (the energy is finite at t=0 and decreases
afterwards by (5)).

The following Ansatz for Eq. (1),

v( } , t)=et�xxv0+|
t

0
e(t&s) �xx(&V $(v( } , s))) ds,
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shows by Gronwall's lemma that the solutions depend locally Lipschitz-
continuously, in the norm H 1(R), on the initial conditions. As the initial
condition u0 is accumulated in H 1(R) by solutions which converge to 0 as
t � +�, and thus whose energy remains finite and non-negative for all
time, this implies that the energy of Pt (u0) is actually non-negative for all
time, and thus converges to a non-negative limit when t � +�.

By (5), the function t [ � u2
t is integrable on R+ , which completes the

proof of assertion 1.
Thus, ut roughly speaking converges to 0. We will establish this precisely.
Differentiating (1) yields (for t>0)

utt=&V"(u) ut+uxxt , (24)

and thus,

�t |
u2

t

2
=&| V"(u) u2

t &| u2
xt�M | u2

t , (25)

where M=max |u|�C |V"(u)|, C denoting the a priori bound on &u( } , t)&L�(R) .
This shows that � u2

t converges to 0 when t � +�, and proves assertion 2.
On the other hand, (25) also shows that � u2

xt is integrable. Now,
multiplying (24) by utt yields

�t |
u2

xt

2
=&| u2

tt&| V"(u) ut utt�&| u2
tt+| \V"(u)2

4
u2

t +u2
tt+�

M 2

4 | u2
t

which shows that � u2
xt converges to 0, and thus that &ut&L�(R) converges to

0, when t � +�.
Now, suppose that t is large ; the preceding assertion shows that Eq. (1)

can be seen as a perturbation of stationary Eq. (9) by a small forcing ut .
By continuity of the solutions of ordinary differential equations with
respect to perturbation of the equation, this shows that u(x, t) can be
locally approximated for the C1-norm (and thus for the H 1-norm) by
solutions of the stationary equation.

On the other hand, we know, according to the remark before Section 3.1,
that &ux&L2

ul
(R) is bounded independently of t. Besides, Eq. (1) itself shows

that &uxx( } , t)&L�(R) is bounded for t large, thus so is &ux( } , t)&L�(R) . Thus,
the points (u(x, t), ux(x, t)), which correspond to initial conditions for the
differential equation argument stated above, belong to a bounded subset of
R2. Thus, a compactness argument shows that the approximation by station-
ary solutions becomes uniformly precise on arbitrarily large intervals when
t � +�. This proves assertion 3 and completes the proof of Proposition 5. K

3.1.2. Infinite energy. Suppose u( } , t)=Pt (u0), t�0, where V and u0

satisfy the hypotheses of Theorem 1. Write l+=lim sup |x| � +� u0(x) and
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l&=lim inf |x| � +� u0(x). By hypothesis, if l+>0 then V $(w)>0 for
w # ]0; l+] and if l&<0 then V $(w)<0 for w # [l& ; 0[.

In this paragraph, C0 , C1 , ... (resp. $1 , $2 , ...) denote large (resp. small)
positive constants which depend only on u( } , } ).

The first step is to control the behavior for x large of the solution u and
of solutions v with initial conditions close to u0 . Take l $+>max(0, l+) such
that V $(w)>0 for w # ]0; l $+] and l $&<min(0, l&) such that V $(w)<0 for
w # [l $& ; 0[ (as V"(0)>0, this is always possible).

Take any v0 close to u0 in X. Suppose that &v0&u0 &X is small enough
so that, on one hand, lim sup |x| � +� v0(x)<l $+ and lim inf |x| � +� v0(x)>
l $& , and, on the other hand (according to the hypotheses of Theorem 1),
&Pt (v0)&L�(R) is bounded by a constant C0 (in particular, Pt (v0) is defined
for any t # R+). Write v( } , t)=Pt (v0), t # R+ .

Lemma 1. There exist positive constants C1 , C2 , c, $1 such that

|v(x, t)|�C1e&|x|+ct+C2 e&$1t, x # R, t�0.

Proof. Let v� (x, t)=C1 e&x+ct+l $+ e&$1t. We will prove that one can
choose the constants C1 , c, $1 such that v(x, t)�v� (x, t), x # R, t�0. Up to
exchanging v � &v and x � &x, this will prove the lemma.

Write P(x, t)=v� t+V $(v� )&v� xx . We want that P(x, t)�0, i.e. that v� be a
super-solution. We have

P(x, t)=(c&1) C1 e&x+ct+V $(v� )&$1 l $+e&$1t.

We suppose that c>1. Let l"+>l $+ such that V $(w)>0 for w # ]0; l"+]. As
V"(0)>0, there exists :>0 such that, for w # ]0; l"+], V $(w)�:w.

Let us distinguish two cases. If v� �l"+ , then we have

P(x, t)�:v� &$1 l $+e&$1 t�(:&$1) l $+e&$1t.

Let us choose $1=: ; then P(x, t)�0 in this case.
If on the other hand v� >l"+ , then we have

P(x, t)�v� \(c&1)
C1 e&x+ct

v�
+

V $(v� )
v�

&$1+ ,

and C1e&x+ct�v� �1&l $+ �l"+>0. Up to modifying V(w) for large values of
|w| (larger than C0 , so that v( } , t) remains a solution of (1)), we can
suppose that w [ V $(w)

w is bounded from below on R+ ; thus we can choose
c sufficiently large so that the inequality above yields P(x, t)�0.
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Then v� is a super-solution for (1). Finally, we can choose C1 large
enough so that v0( } )�v� ( } , 0), and the conclusion follows by the maximum
principle (Proposition 3). K

Fix any c$>c.

Lemma 2. There exist constants C3>0 and $2>0 such that

sup
|x|>c$t

| Tx \(v2
t +v2

x+v2)�C3e&$2t, t�0.

Proof. First, remark that, up to exchanging x � &x, it is sufficient to
prove the inequality for positive x. We will use exponential cutoff functions
(the exponential decrease of the cutoff functions will yield the exponential
decrease stated in the lemma). Let #: R � R be a smooth function satisfying
#(x)>0, |#$(x)|�#(x) for any x # R, and #(x)=e&|x| for |x|�1.

Take any =>0 and x0>0, and define the function .=.=, x0 , c$ by .(x, t)
=#(=(x&x0&c$t)). The point is that all the following estimates will be
uniform with respect to x0>0. For = sufficiently small (depending on c$),
we have the following variant of (12),

�t | . \v2
x

2
+

v2

2
+V(v)+�&| . \v2

t \1&
=
2++v2

x \1&=&
=c$
2 ++R(x, t)+ ,

where R(x, t)=V $(v) v&(=+=c$) v2

2 &=c$ |V(v)|.
Take and fix any c" satisfying c$>c">c. We have the trivial decomposition

| .R=|
[&c"t; c"t]

.R+|
R"[&c"t; c"t]

.R.

According to the previous lemma, for |x|�c"t and t sufficiently large
(depending on c"&c, C1 , C2 , $1), the quantity |v(x, t)| is small, and thus,
as V"(0)>0, we have, for = sufficiently small, R(x, t)�C &1

4 (V(v)+ v2

2 ).
On the other hand, for |x|�c"t and t sufficiently large, we have |.(x, t)|

=e&= |x&x0&c$t|�e&=(c$&c") t. Thus, as |v(x, t)| is bounded, the term
�[&c"t; c"t] .R goes exponentially to 0. Finally we obtain, for = sufficiently
small,

�t | . \v2
x

2
+

v2

2
+V(v)+�C5e&$3t&| .

v2
t

2
&C &1

5 | . \v2
x

2
+

v2

2
+V(v)+ .

(26)
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On the other hand, we have

�t | .v2
t =| .tv2

t +2 | .vt (&V"(v) vt+vxxt),

and, arguing as in the previous paragraph, we get

�t | .v2
t �C6 | .v2

t . (27)

Combining (26) and (27), we obtain that � .(v2
x �2+v2�2+V(v)) and � .v2

t

converge exponentially to 0 when t � +�, the rate of convergence being
uniform with respect to x0>0. According to the bounds on |v( } , } )|, the
result follows. K

We have

�t |
c$t

&c$t \
v2

x

2
+V(v)+=&|

c$t

&c$t
v2

t +_v2
x

2
+V(v)+vxvt&

c$t

&c$t
, t�0.

Thus, according to the preceding lemma,

�t |
c$t

&c$t \
v2

x

2
+V(v)+�&|

c$t

&c$t
v2

t +C7 e&$2t, t�0. (28)

We are now in position to argue as in the finite energy case. By hypothesis,
u0 is in the border of B0, par , thus we can suppose that v # B0, par . In this
case, &v( } , t)&H 1

ul
(R) converges to 0 when t � +� and thus (as V"(0)�0

around 0)

lim inf
t � +� |

c$t

&c$t \
v2

x

2
+V(v)+�0

(actually, there is convergence towards 0, but we will not need this).
Inequality (28) then shows that

|
c$t

&c$t \
v2

x

2
+V(v)+�&

C7

$2

e&$2 t, t�0.

By continuity when v0 is chosen arbitrarily close to u0 , the same estimate
holds for u( } , t), and we obtain

lim inf
t � +� |

c$t

&c$t \
u2

x

2
+V(u)+�0.

Now, inequality (28) applies to u( } , t) and shows that �c$t
&c$t (u2

x �2+V(u))
(being ``almost decreasing'') converges to a nonnegative limit when
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t � +�. This inequality also shows that the function t [ � 'u2
t is

integrable with respect to t on R+ , and this completes the proof of
assertion 1 of Proposition 5.

Let % be a smooth function satisfying 0�%�1, %(x)=1 for x�0,
%(x)=e&x for x�1, and |%$(x)|�%(x), x # R. Define the function '(x, t),
x # R, t�0 by '(x, t)=%(x&c$t) for x�0, and '(x, t)=%(&x&c$t) for
x�0. The function t [ � 'u2

t is integrable with respect to t on R+ . Arguing
as in Section 3.1.1, we get

�t | 'u2
t �C8 | 'u2

t &| 'u2
xt (29)

and

�t | 'u2
xt�C9 | 'u2

xt . (30)

Inequality (29) shows that � 'u2
t converges to 0 when t � +� ; together

with the preceding lemma, this proves assertion 2. This inequality also
shows that the function t [ � 'u2

xt is integrable on R+ , and (30) shows that
it converges to 0. We thus obtain lim supt � +� sup |x|�c$t |ut (x, t)|=0.
Local convergence to stationary solutions (assertion 3) follows like in
paragraph 3.1.1. K

3.2. Hyperbolic Equation

3.2.1. Finite energy. Suppose (u( } , t), ut ( } , t))=Ht (U0), t�0, where V
and U0 satisfy the hypotheses of Theorem 4.

The fact that the energy � E(x, t) dx is bounded from above and the
continuity of the trajectory Ht (U0) in H 1

ul(R)_L2
ul(R) imply that, for any

t�0, we have lim |x| � +� |u(x, t)|=0 and lim |x| � +� � Tx \ u2
x=0 (the

argument is the same as in Sect. 3.1.1).
Write

A=\ 0
�xx

0
1+ .

The following Ansatz for Eq. (2):

(u( } , t), ut ( } , t))=etAU0+|
t

0
e(t&s) A(0, &&(u( } , s)) ut ( } , s)&V $(u( } , s))) ds,

(31)

shows that the solutions depend locally Lipschitz-continuously, in the
norm H 1(R)_L2(R), on the initial conditions (apply Gronwall's lemma).
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As U0 is accumulated in H 1(R)_L2(R) by solutions which converge to
(0, 0), and thus whose energy remains finite and non-negative for all times,
this implies that the energy of Ht (U0) is actually strictly positive for all
time, and thus converges to a non-negative limit when t � +�. Then, by
(6), the function t [ � u2

t is integrable on R+ , which proves assertion 1 of
Proposition 5.

For any t2>t1>0, we have

&u( } , t2)&u( } , t1)&2
L2(R)�(t2&t1) |

t2

t1
\| u2

t (x, s) dx+ ds. (32)

Thus the left-hand side of this inequality converges to 0 when t1 � +�
and t2&t1 remains bounded. This will enable us, despite the absence of
regularization, to prove local convergence towards stationary solutions. We
will first prove this convergence for a norm weaker than & } } } &H 1

ul
(R) , and

we will recover the convergence for & } } } &H 1
ul

(R) in a second step.

Lemma 3. Take any $ satisfying 1
2>$>0. For any =>0 and l>0, there

exists T=T(=, l) such that, for any t�T and x0 # R, &ut ( } , t)&H &$([x0&l; x0+l])

<= and there exists a stationary solution ustat of Eq. (9) such that
&u( } , t)&ustat( } )&H 1&$([x0&l; x0+l])<=.

Proof. Suppose the converse, i.e. that there exists =>0 and l>0 such
that, for any n # N, there exists tn�n and xn # R such that, either
&ut ( } , t)&H &$([x0&l; x0+l])�=, or, for any stationary solution ustat of Eq. (9),
&un( } , tn)&ustat( } )&H 1&$([xn&l; xn+l])�=.

Up to extracting a subsequence, we can suppose that the functions
x [ un(xn+x, tn) (resp. x [ �tun(xn+x, tn)) converge on [&l; l] to a
function u� # H 1([&l; l]) for the H 1&$([&l; l])-norm (resp. to a function
v� # L2([&l; l]) for the H &$([&l; l])-norm).

Write u~ n(x, t)=u(xn+x, tn+t), �tu~ n(x, t)=�tu(xn+x, tn+t) and for
any x # [&l; l] and 0�t�min(|x+l |, |l&x| ), denote by T(x, t) the
triangle [( y, s) | | y&x|�t&s]. The following Ansatz (see [16] or
Proposition 4) holds:

u~ n(x, t)= 1
2 (u~ n(x&t, 0)+u~ n(x+t, 0))+ 1

2 |
x+t

x&t
�tu~ n( y, 0) dy

+ 1
2 ||

T(x, t)
l(&&(u~ n( y, s)) �tu~ n( y, s)&V $(u~ n( y, s))) dy ds.

On the other hand, by local existence results, there exists t$>0 and a
function w # C 0([(x, t) # T(0, l ) | t�t$]), satisfying the Ansatz:
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w(x, t)= 1
2 (u�(x&t)+u�(x+t))+ 1

2 |
x+t

x&t
v�( y) dy

+ 1
2 ||

T(x, t)
(&V $(w( y, s))) dy ds. (33)

We deduce from these expressions of u~ n and w that

|w(x, t)&u~ n(x, t)|�:n+ 1
2 ||

T(x, t)
|V $(w( y, s))&V $(u~ n( y, s))| dy ds,

where :n � 0 when n � +� (indeed, as $< 1
2 , u~ n � u� uniformly on

[&l; l]). By Gronwall's lemma, this implies that w is actually defined on
T(0, l ) and that sup(x, t) # T(0, l ) |w(x, t)&u~ n(x, t)| converges to 0 when
n � +�.

Now, the fact that u~ n is ``almost constant with respect to t'' (inequality
(32)) shows that, for any 0<t<l, w( } , t)&w( } , 0) is arbitrarily small in
L2([&(l&t); l&t]), and thus actually vanishes identically. Then, (33)
shows that v�( } )=0 in L2([&l; l]) and that, for any x # ]&l; l[,
=&2(u�(x&=)+u�(x+=)&2u�(x)) converges to &V $(u�(x)) when = � 0.
Thus u� is actually of class C2 and is a solution of the stationary Eq. (9),
which yields a contradiction. K

Lemma 4. The preceding lemma holds with $=0.

Proof. Fix 1
2>$>0 and take any =>0 and l>0 (we will prove the

assertion of the lemma for = and l ). Take =$>0 and {>0 to be chosen later,
and write l $=l+{. By the preceding lemma, for any t0>T(=$, l $)+{ and
x0 # R, there exists a stationary solution ustat such that &u( } , t0&{)&
ustat( } )&H 1&$([x0&l $; x0+l $])<=$ and &ut ( } , .t0&{)&H &$([x0&l $; x0+l $])<=$. For
t�t0&{ and x # R, write 2U(t)(x)=(u(x, t)&ustat(x), ut (x, t)).
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Fix any &0>0 and write

A� =\
0 1

+ .
&

&2
0

4
+�xx &&0

Then we have

etA� =e&(&0 �2) t \
1 0

+ etA, t # R.
&

&
2

1

As etA defines, for any t # R, an isometry of H 1(R)_L2(R), this shows that
the norm of etA� , viewed as a (bounded) operator on H 1(R)_L2(R),
converges exponentially to 0 when t � +�.

For t>0, we have

2U(t0&{+t)=etA� 2U(t0&{)

+|
t

0
e(t&s) A� (0, &(&(u( } , t0&{+s))&&0) ut ( } , t0&{+s)

+
&2

0

4
(u( } , t0&{+s)&ustat( } ))

&(V $(u( } , t0&{+s))&V $(ustat( } )))) ds.

By hypothesis, &u(t, } )&L�(R) is bounded independently of t�0. Thus,
Proposition 2 shows that &(u(t, } ), ut (t, } ))&H1

ul(R)_L2
ul(R) is bounded inde-

pendently of t�0. Thus, according to the finite propagation property, we
can choose { sufficiently large (independently of u( } , } )) so that

&e{A� 2U(t0)&H 1([x0&l; x0+l])_L2([x0&l; x0+l])<
=
2

.

Then, the finite propagation property and the fact that t [ � u2
t is

integrable on R+ show that, for t0 sufficiently large and for =$ sufficiently
small (depending on the previous choice of {),

&2U(t0)&H1([x0&l; x0+l])_L2([x0&l; x0+l])<=,

which completes the proof. K

This proves assertions 2 and 3 of Proposition 5.

3.2.2. Infinite energy. Suppose (u( } , t), ut ( } , t))=Ht (U0), t�0, where
V and U0 satisfy the hypotheses of Theorem 2.
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As in the parabolic case, we will have to control the behavior of solutions
with initial conditions close to U0 , for x large. By hypothesis, lim sup |x| � +�

� Tx \(u( y, 0)2+ux( y, 0)2+ut ( y, 0)2) dy<=, where =>0 has to be chosen.
Take any V0 # Y with &V0&U0&Y small, and suppose that Ht (V0) is

defined for any t # R+ (actually, we will only need to consider the cases
where V0 # B0, hyp or V0=U0). Write Ht (V0)=(v( } , t), vt ( } , t)), t�0.

For = and &V0&U0&Y sufficiently small, Proposition 1 and the finite
propagation property show that there exists x0>0 such that

lim
t � +�

sup
|x1|>x0+t

| Tx1
\(v2+v2

x+v2
t )=0,

and this convergence is exponential (see the Proof of Proposition 1). Now,
we proceed like in Section 3.1.2. Let % be a smooth function satisfying
0�%�1, %(x)=1 for x�0, %(x)=0 for x�1, and define the function
'(x, t), x # R, t�0, by '(x, t)=%(x&x0&t) for x�0, and '(x, t)=
%(&x&x0&t) for x�0. Then, for t large, we obtain

�t | ' \v2
t

2
+

v2
x

2
+V(v)+�e&$t&| '&(v) v2

t ,

where $>0 is independent of V0 . Now, arguing like in the parabolic case
(Section 3.1.2), we obtain that �x0+t

&x0&t (u2
t �2+u2

x �2+V(u)) converges to a
non-negative limit and that t [ �x0+t

&x0&t u2
t is integrable with respect to t on

R+ (assertion 1). The proofs of assertion 2 and 3 (i.e. &ut &L2
ul

(R) � 0 when
t � +� and u( } , } ) converges locally towards stationary solutions) are the
same as in the finite-energy case of the preceding paragraph 3.2.1. K

4. GLOBAL SHAPE AT LARGE TIME

4.1. End of the Proof of Theorems 1�4

We consider a function u(x, t), x # R, t�0, and we suppose that the
hypotheses of Proposition 5 are satisfied, i.e. u is a solution of Eq. (1) or
(2), and the initial condition and the potential V satisfy the hypotheses of
one of the Theorems 1, 2, 3, 4. To complete the proof of these theorems,
we have to show that, for large t, the solution is actually close (in X or in
Y ) to a function in A.

Write W( } )=&V( } ). Stationary solutions v(x) of Eq. (1) or (2) are
solutions of Eq. (9), which represents a conservative order 2 oscillator in
the potential &V=W, and which we can rewrite

v"=&W $(v). (35)
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Recall (see the introduction) that Sb, 0 denotes the connected component
containing (0, 0) of the set Sb , which is the union of those trajectories
�x # R [(v(x), v$(x))] of energy-0 solutions of Eq. (35) which are bounded
in R2.

Let S� b, 0 denote the union of Sb, 0 and of the bounded connected
components of R2"Sb, 0 .

Lemma 5. Assertion 3 of Proposition 5 (approximation by stationary
solutions) holds with the supplementary assertion that the stationary solutions
ustat which approximate u have trajectories in R2 which belong to S� b, 0 .

Proof. Up to changing the potential V(v) for large values of v (so that
t [ u( } , t) be still a solution of Eq. (1) or (2)), we can suppose that u& and
u+ are finite (i.e. that V( } ) takes strictly negative values somewhere at the
left and at the right of 0).

By Sard's theorem, there exist a& , b& , a+ , b+ in R satisfying (see the
picture) :

v u&<b&<a&<0<a+<b+<u+;

v V(b&)=V(a&)>0, V $(b&)>0, V $(a&)<0, and for v # ]b&; a&[,
V(v)>V(a&);

v V(a+)=V(b+)>0, V $(a+)>0, V $(b+)<0, and for v # ]a+; b+[,
V(v)>V(a+).

The solution of Eq. (35) passing through (a+ , 0) and (b+, 0) (resp.
through (a& , 0) and (b& , 0)) is periodic; denote by {+ (resp. {&) its
period. If v is a solution of Eq. (35) satisfying, say, v(x0)=a+ , then:
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v if v$(x0)�0, then there exists x1>x0 such that, for any
x # [x0 ; x1], a+�v(x)�b+ , and v(x1)=b+ ; furthermore, x1&x0�{+ �2;

v if v$(x0)�0, then there exists x1<x0 such that, for any
x # [x1 ; x0], a+�v(x)�b+ , and v(x1)=b+ ; furthermore, x0&x1�{+ �2.

Of course, a symmetric assertion holds if v(x0)=a& instead of v(x0)=a+ .
Let m(t)=sup[m # N | there exist y1< } } } < ym such that, for each

i # [1, ..., m&1], either u( yi , t)=a& and u( yi+1 , t)=a+ , or u( y i , t)=a+

and u( yi+1 , t)=a&].
Remark that m(t) is finite for all t�0, since |u(x, t)| is small when x is

large and &ux&L2
ul

(R) is bounded.

Lemma 6. For t sufficiently large, m(t) is constant.

Proof. We will show that, for t sufficiently large, the map t [ m(t) is
continuous, and this will prove the lemma.

Upper-semi-continuity is a direct consequence of the definition of m(t),
of the continuity of u( } , t) in H 1

ul(R) with respect to t, and of the fact that
u(x, t) is small when x is large.

To prove the lower semi-continuity, the argument consists in showing
that, for each yi such that u( yi , t) takes the value a+ (resp. a&), it takes
in a neighborhood values larger than a+ (resp. smaller than a&). The
reason is that, according to the remark above, this is true for solutions of
Eq. (35).

Let us show this precisely. Take a parameter T>0 to be chosen later,
take any time t larger than T, and take y1< } } } < ym(t) satisfying the asser-
tion in the definition of m(t). In the following, we will denote by =j (T ),
j=1, 2, ... functions depending only on T and on the solution u( } , } ) we are
considering, and satisfying =j (T ) � 0 when T � +�.

Take i # [1, ..., m(t)] and suppose for instance that u( yi , t)=a+ .
According to assertion 3 of Proposition 5, there exists a stationary solution
ustat such that &u( } , t)&ustat &H1([ yi&{+ , yi+{+])<=1(T ); in particular,
|a+&ustat( yi)|<=2(T ). Let u~ stat( } ) be the solution of Eq. (35) satisfying
u~ stat( yi)=a+ and u~ $stat( yi)=u$stat( yi); by continuous dependence of the
solutions of (35) with respect to initial conditions, we have &u( } , t)&
u~ stat( } )&H 1([ yi&{+ ; yi+{+])<=3(T ).

Besides, according to what we mentioned above after introducing
a& , b& , a+ , b+ , we know that there exists y$i satisfying | y$i& y i |<{+ �2
and such that u~ stat( y$i)=b+ and for any y in the interval between yi and y$i ,
b+�u~ stat( y)�a+ . This yields u( y$i , t)�b+&=4(T ) and for any y in the
interval between yi and y$i , u( y, t)�a+&=4(T).
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For indices k for which u( yk , t)=a& , we proceed the same way, and we
obtain a point y$k with u( y$k , t)�b&+=5(t). We can see that, if T is
sufficiently large, the points y$1 , ..., y$m(t) constructed this way satisfy
y$1< } } } < y$m(t) ; the lower semi-continuity of t [ m(t) follows. K

Continuation of proof of Lemma 5. Let :>0 be a small parameter to
be chosen later. By definition of u& , u+ , and Sard's theorem, there exists
v& # ]u&&:; u&[ and v+ # ]u+ ; u++:[ such that

W(v&)=W(v+)>0, W $(v&)<0, W $(v+)>0,

and

W(v\)>W(v) for v # ]v& ; v+[.

Denote by vstat the periodic solution of Eq. (35) with initial conditions
vstat(0)=v& , v$stat(0)=0; this solution is periodic, its trajectory in the phase
space R2 is a Jordan curve J which contains (v& , 0) and (v+ , 0); its energy
is equal to W(v\), and thus J & Sb, 0=< (see previous figure). Denote by
J� the union of J and of the bounded connected component of R2"J.

Claim 1. Sb, 0 /J� "J.
By connectedness and energy arguments, we have Sb, 0 /[u& ; u+]_R

and J/[v& ; v+]_R. Thus, we can change the potential W outside of
[v& ; v+] without modifying Sb, 0 and J, in order to have: for any v>v+ ,
W $(v)>0 (and thus W(v)>W(v\)) and for any v<v& , W $(v)<0 (and
thus W(v)>W(v\)); furthermore, we can suppose that W(v) � +� when
|v| � +�. Under these conditions, J is exactly the set of points (x, y) # R2

for which the energy y2

2 +W(x) is equal to W(v\)>0. Thus, any con-
tinuous path connecting Sb, 0 to infinity in R2 must cross J, and claim 1
follows.

Claim 2. S� b, 0 /J� "J.
Indeed, the set J _ (R2"J� ) is connected and does not intersect Sb, 0 . Thus

a bounded connected component B of R2"Sb, 0 cannot intersect J _ (R2"J� )
(or thus it would be unbounded), and thus always belongs to J� "J.

Claim 3. J/Neighb(S� b, 0 , =(:)), where =(:) � 0 when : � 0.
This claim follows from the fact that the value of the energy on J is close

to 0 if : is close to 0.

Now, the idea of the following argument is that, if Lemma 5 was false,
then there would exist large values of t for which the function x [ (u(x, t),
ut (x, t)) remains close to the function x [ (vstat(x), v$stat(x)), (i.e. to the
trajectory J ), on a large interval. This is incompatible with the fact that, for
t large, m(t) is constant, and in particular bounded.
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Suppose Lemma 5 is false. Then, there exists =0>0 and l0>0 such that,
for any T>0, there exists {>T and x0 # R such that, for any solution ustat

of (35) whose trajectory in R2 belongs to S� b, 0 ,

&u( } , {)&ustat( } )&H 1([x0&l0 ; x0+l0])>=0 . (36)

Fix such =0 and l0 . Let T>0 to be chosen later, and let { and x0 (depending
on T ) be as in the preceding sentence.

Let ;>0 and L>1 to be chosen later. According to assertion 3 of
Proposition 5, we can suppose that T is sufficiently large (depending on ;
and L) so that, for any z # R, there exists a solution ustat of (35) satisfying

&u( } , {)&ustat( } )&H 1([z&L; z+L])<;. (37)

For k # N, denote by ustat, k the solution of (35) satisfying inequality (37)
for z=x0+k. Let

1= .
k # N

.
x # [x0+k; x0+k+1]

[(ustat, k (x), u$stat, k (x))]/R2.

Because L>1, this set is =1(;)-connected (this means that Neighb(1, =1(;))
is connected) with =1(;) � 0 when ; � 0. Suppose L�l0 ; then, if ; is
sufficiently small and if J is close enough to S� b, 0 (i.e. : is small enough,
depending on =0), inequalities (36) and (37) show that the trajectory of
ustat, 0 belongs to R2"J� . On the other hand, according to assertion 1 of
Proposition 5, for k large, the trajectory of ustat, k is close to (0, 0), in
particular belongs to J� . This shows that the set 1 contains points =1(;)-
close to J; in particular, there exists k0 # N such that

&u( } , {)&vstat( } )&H1([x0+k0&L; x0+k0+L])<=2(;),

with =2(;) � 0 when ; � 0 (recall that the trajectory in R2 of vstat is J ).
This last approximation shows that, for ; sufficiently small and L suf-

ficiently large, m({) is arbitrarily large. This contradicts Lemma 6, and the
result follows. K

Corollary 1. For t sufficiently large, we have, for all x # R, �x+1
x&1

V(u(x, t)) dx�0.

Proof. Suppose the converse, i.e. for any p # N, there exists tp>p and
xp # R such that �xp+1

xp&1 V(u(x, tp)) dx<0. Then, for any p # N, there exists
yp # [xp&1; xp+1] such that u( yp , tp)<u& or u( yp , tp)>u+ (indeed, on
[u& ; u+] we have V( } )�0). Suppose for instance that u( yp , tp)<u& .
Then, the previous lemma shows that u( yp , tp) is actually close to u& ;
thus, if we denote by ustat, & the solution of (35) with initial condition

378 EMMANUEL RISLER



(u& , 0) at t=0, we can see that &u( } , tp)&ustat, &( } & yp)&H 1([xp&1; xp+1])<
=1( p), with =1( p) � 0 when p � +�; this yields

|
xp& yp+1

xp& yp&1
V(ustat, &) dx<=2( p)

(with =2( p) � 0 when p � +�), which is impossible, because this integral
is bounded from below by a strictly positive constant which does not
depend on p (remark that this last assertion would be false without the
hypothesis (11)). K

Corollary 2. Assertion 3 of Proposition 5 (approximation by stationary
solutions) holds with the supplementary assertion that the stationary solutions
ustat which approximate u have trajectories in R2 which belong to Sb, 0 .

Proof. Suppose the converse is true. Then there are arbitrarily large
values of t for which the function x [ V(u(x, t)) is larger than a fixed
strictly positive constant : on arbitrarily large intervals. Thus, in view of
Corollary 1, the integral � E(x, t) dx takes arbitrarily large values, which is
impossible if we are in the finite energy case. Suppose we are in the infinite
energy case. Then, as limt � +� sup |x| >L(t) � Tx\(u2

x+u2)=0 (assertion 1 of
Proposition 5), the intervals on which V(u(x, t))�: must belong (for t
large enough) almost entirely to [&L(t); L(t)] ; this shows that
�L(t)

&L(t) E(x, t) dx takes arbitrarily large values, which is in contradiction
with the fact that this last integral converges when t � +� (assertion 1 of
Proposition 5). K

We can now easily complete the proofs of Theorems 1, 2, 3, 4. We know
that, for large t, the function u( } , t) can be locally approximated by station-
ary solutions whose trajectories belong to Sb, 0 . More precisely, we deduce
from assertion 3 of Proposition 5 that, for t sufficiently large, there exists
n(t) # N such that, if n(t)=0, then u( } , t) is close to 0 in H 1

ul(R) ; if n(t)�1,
then there exist non-constant functions h (t)

1 , ..., h (t)
n(t) in H (H was defined in

introduction) and points y1(t), ..., yn(t)(t) in R such that, if n(t)=1, then
u( } , t) is H 1

ul -close to h (t)
1 ( } & y1(t)) on R, and if n(t)�2, then u( } , t) is

H 1
ul -close to

v h (t)
1 ( } & y1(t)) on ]&�; ( y1(t)+ y2(t))�2];

v h (t)
n(t)( } & yn(t)(t)) on [( yn(t)&1(t)+ yn(t)(t))�2; +�[;

v h (t)
j ( } & y j (t)) on [( yj&1(t)+ yj (t))�2; ( yj (t)+ yj+1(t))�2] for

2� j�n(t)&1;

and, for each j # [1, ..., n(t)&1], yj+1(t)& yj (t) is large.
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The continuity of u( } , t) in H 1
ul(R) with respect to t shows that (for t

sufficiently large) n(t), and, if n(t)�1, the family h (t)
1 , ..., h (t)

n(t) are actually
independent of t (denote by n and by h1 , ..., hn these objects for t large). As
by hypothesis u( } , t) does not converge to 0, n(t) cannot be equal to 0.

The fact that the local approximation by stationary solutions becomes
more and more accurate on arbitrarily large intervals when t � +� shows
that, if n�2, for j=1, ..., n&1, yj+1(t)& y j (t) � +� when t � +�.

For j # [1, ..., n], write

Fj (x, t)=|
x+1

x&1
(u(z, t)&hj (z&x)) h$j (z&x) dz.

Remark that each function Fj ( } , } ) is C1, satisfies Fj ( y j (t), t)&0, and, for
y not too far from yj (t),

|
y+1

y&1
hj$

2 (z& y) dz>0.

Thus, the implicit function theorem shows that, for t sufficiently large and
for any j # [1, ..., n], there exists a unique xj (t)&yj (t) such that
Fj (xj (t), t)=0 ; moreover, the map t [ x j (t) is C1 and x$j (t) � 0 when
t � +�. Finally, the properties of approximation of u( } , t) by the
functions hj stated above remain true with the yj ( } ) replaced by the xj ( } ).

The proof of Theorems 1, 2, 3, 4 is complete.

4.2. Proof of Theorem 5

Roughly speaking, the same arguments as for the proofs of Theorems 1,
2, 3, 4 enable to prove Theorem 5 (the slight difference is that the a priori
estimate on &u( } , t)&L�(R) is not in the hypotheses any more) ; nevertheless,
in the parabolic case (assertion 1), we will provide a more direct proof
based on the maximum principle.

4.2.1. Parabolic equation. We prove assertion 1 of Theorem 5.
Let u( } , t), t�0 be a solution of Eq. (1) with initial condition u(x, 0)=

u0(x). Write l+=lim sup |x| � +� u0(x), l&=lim inf |x| � +� u0(x), and
suppose that l+ , l& , and V satisfy the hypotheses of assertion 1 of
Theorem 5.

Lemma 7. We have

lim
t � +�

lim sup
|x| � +�

|u(x, t)|=0.

380 EMMANUEL RISLER



Proof. The proof is somehow similar to that of Lemma 1. Take any
=>0; we are going to prove that lim supt � +� lim supx � &� |u(x, t)|�=.
Up to exchanging u W &u and x W &x, this will prove the lemma.

Let c>0 to be chosen later, and let l $+ be a real number satisfying
l $+>l+ and V $( } )>0 on ]0; l $+]. Let , denote the solution of the differen-
tial equation

,"=V $(,)+c,$

with initial condition ,(0)=l $+ and ,$(0)=0.

Claim. If c is sufficiently large, then ,$( } )>0 on [0; +�[ and
,(x) � +� when x � +�.

The claim clearly holds if V $( } )>0 on [0; +�[. If V $( } ) changes sign
on [0; +�[, then let v+=inf[v>0 | V $(v)=0]. Then V $( } )>0 on
[l $+ ; v+], thus there exists a smallest x>0 such that ,(x)=v+, and ,$(x)
is positive and arbitrarily large if c is sufficiently large. As V( } )�0, the
claim follows by an energy argument.

We suppose that c is sufficiently large so that the previous claim holds.
Let :>0 and x0>0 to be chosen later. Up to diminishing =, we suppose
that =<l $+ . Write

�(x, t)==+(l $+&=)(e&:t+(1&e&:t) ex),

and define the function v� ( } , } ) by

v� (x, t)=,(x+x0+ct) if x� &x0&ct,

v� (x, t)=�(x+x0+ct, t) if x� &x0&ct.
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Let P(x, t)=v� t+V $(v� )&v� xx. We want that P(x, t)�0, i.e. that v� be a
supersolution. For x>&x0&ct, according to the definition of ,, we have
P(x, t)=0. For x< &x0&ct, we have

P(x, t)=(l $+&=)(&:e&:t+ex+x0+ct((c&1)(1&e&:t)+:e&:t))+V $(v� ),

and, as =�v� �l $+ , we have V $(v� )�;v� , where ; is a positive constant. We
suppose that c>1 and we choose :=;�(l $+&=). Then P(x, t)�0.

Finally, for x=&x0&ct, v� is not differentiable but v� xx is ``infinitely
negative''; thus P(x, t) is ``infinitely positive'', and, finally, v� is a supersolution.

Now, we can choose x0 sufficiently large so that v� (x, 0)�u(x, 0). Then,
for any t�0, we have v� (x, t)�u(x, t), and the result follows. K

Again, take =>0 arbitrarily small. We are going to prove that

lim sup
t � +�

sup
x # R

u(x, t)�=.

Up to changing u W &u, this will imply that supx # R |u(x, t)| � 0 when
t � +�, and, by the same arguments as for the proof of Proposition 1,
that &u( } , t)&X � 0 when t � +�.

According to the hypotheses, if = is sufficiently small, we have V $(=)>0,
V(v)>V(=) for v>=, and lim infv � +�V(v)>V(=). Let w0( } ) be the
solution of w"&V $(w) (i.e. of the stationary Eq. (9)) with initial condition
w0(0)== and w$0(0)=0. By an energy argument, we have w$0(x)>0 for
x>0 and w0(x) � +� when x � +� (indeed, for x�1, w$0(x) is
bounded from below by a strictly positive constant).

Define the function ,0( } ) by: ,0(x)== for x�0, and ,0(x)=w0(x) for
x�0. According to the preceding lemma, there exists T>0 such that
lim sup |x| � +� |u(x, t)|<=�2. Then, for x1>0 sufficiently large, we have

u(x, T)<,0(x+x1) and u(x, T )<,0(&x+x1), x # R.

As (x, t) [ ,0(x+x1) and (x, t) [ ,0(&x+x1) define supersolutions for
Eq. (1), this shows that &u( } , t)&L�(R) is bounded independently of t�0.

Now let c1>0 to be chosen later, and let w1( } ) be the solution of the
differential equation

w"+c1w$&V $(w)=0

with initial condition w1(0)== and w$1(0)=0. As &u( } , t)&L�(R) is bounded
independently of t�0, we can change the shape of the potential V( } )
without changing the solution u( } , } ). In particular, we can make the
hypothesis that V $(v)>0 for v>0 sufficiently large. With this hypothesis,
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we can choose c1 sufficiently small so that w$1( } )>0 for x>0 and
w1(x) � +� when x � +�.

Define the function ,1( } ) by: ,1(x)== for x�0 and ,1(x)=w1(x) for
x�0. For x2>0 sufficiently large, we have

u(x, T )<,1(x+x2) and u(x, T )<,1(&x+x2), x # R.

As (x, t) [ ,1(x+x1&c1(t&T )) and (x, t) [ ,0(&x+x2&c1(t&T ))
define supersolutions for Eq. (1), this shows the desired result. K

4.2.2. Hyperbolic equation. We prove assertion 2 of Theorem 5. Con-
sider a solution u( } , t), t�0 of Eq. (2).

(a) Suppose first that u( } , 0) satisfies hypothesis (a) (see Theorem 5),
i.e. the energy is finite at t=0. The energy decreases with time; as V( } )�0,
it always remains non-negative, thus it converges to a non-negative limit,
and the function t [ � u2

t is integrable on R+ . On the other hand, finiteness
of the energy and the fact that lim inf |v| � +� V(v)>0 imply that
&u( } , t)&L�(R) is bounded independently of t�0. Thus, by the same
arguments as in Section 3.2.1, we obtain that, for t large, the functions
x [ u(x, t) are locally uniformly approximated by stationary solutions of
Eq. (2). But all stationary solutions, except the solution u#0, have an
infinite energy. As the energy of our solution is finite, the result follows. K

(b) Now, suppose that hypothesis (b) is satisfied, i.e. V"(0)>0 and
lim sup |x| � +� � Tx \(u2+u2

x+u2
t )<= at t=0, where = is a constant to be

chosen. By the same arguments as in Section 3.2.2, we obtain that, if = is
sufficiently small and for x0 sufficiently large,

lim
t � +�

sup
|x|>x0+t

| Tx \(u2+u2
x+u2

t )=0,

and the convergence is exponential. Proceeding as in Section 3.2.2, we
deduce from this and from the hypothesis V( } )�0 that �x0+t

x0&t (u2
t �2+

u2
x �2+V(u)) converges to a non-negative limit when t � +�. Again, this

implies that &u( } , t)&L�(R) is bounded independently of t�0. The remaining
arguments are the same as in (a) above. K
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