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Abstract
Equations governing the shape of a static axisymmetric capillary surface can
be viewed as a dynamical system. This point of view enables us to recover
the existence of pendent drops having arbitrarily many bumps and to depict
the asymptotic shape of long drops (displaying a large number of bumps). We
also recover the existence of a singular pendent drop of infinite length, as a
limit of pendent drops of large length. Finally we provide a classification of all
solutions according to their dynamical behaviour.

Mathematics Subject Classification: 34A34, 34C27, 34C29, 76B45, 76D45

1. Introduction

Since the inauguration of the mathematical theory of meniscus equilibria by Laplace [10] and
Young [15], most of the quantitative work on the subject has been devoted to the numerical
calculation of meniscus profiles. Lord Kelvin [9] produced a number of profiles of pendent
drops using a geometrical construction which is essentially a first-order graphical integration
method applied to a second-order equation. He calculated a remarkable particular solution
of a parametric form of the pendent drop shape equation which may possess several bumps.
As proved by Pitts [13], these drops are unstable under weak perturbations (we refer to the
constant volume—not the constant pressure—instability): only drops having one bump and
one neck and a volume not exceeding a certain maximal volume are stable (see figure 1).

From a more mathematical point of view, there exists a considerable body of literature on
the subject (for an extensive list of references, see [6]). A number of major contributions
are due to Concus and Finn. In [3, 4], they proved the existence of a singular solution,
corresponding to an axisymmetric drop of infinite length, together with partial results towards
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Figure 1. Numerical solution of the set of ODEs showing the repartition of multi-bump drops
depending on the initial conditions. The dashed line corresponds to unstable drops (with respect
to the constant volume instability).

its uniqueness, and in [5] they proved the existence of solutions corresponding to axisymmetric
drops having an arbitrarily large number of bumps. Further contributions were made by Bidaut-
Veron [1, 2] and by Finn [7], in extending previous results to more general gravity fields, and
obtaining the singular solution as a limit of regular solutions when the length goes to infinity.
Finally, the full proof of the uniqueness of this singular solution was recently obtained by
Nickolov [12].

In this paper, we shall attack this old problem from a new point of view. We shall
view the equations governing the shape of an axisymmetric capillary surface as a three-
dimensional autonomous differential equation, and study its dynamical properties. Using
classical dynamical system techniques (stable and unstable manifolds, Lyapunov functions,
asymptotics, perturbation of integrable systems and averaging of perturbations), we shall
recover the existence of pendent drops of any length, and give a precise description of their
asymptotic shape when the length becomes large. We shall also recover Concus and Finn’s
result of existence of a singular solution corresponding to a pendent drop of infinite length, and
the connection to pendent drops of large lengths. Finally, we shall provide a systematic study
of the dynamical properties of this differential equation. By doing so, we hope to shed new
light on a classical problem which received so much attention from earlier authors. A short
proof of the uniqueness of the singular drop of infinite length was recently obtained by the
second author [14], by the same dynamical approach.
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2. Preliminaries

2.1. Setup

We consider a static capillary surface in R
3, i.e. an interface at equilibrium between two fluids

of different densities. At any point of the surface, the difference �P between the pressures on
each side has to be balanced by the surface tension, which is proportional to the mean curvature
of the surface. Namely we have

�P = �χ, (1)

where � is the surface tension coefficient and χ denotes the mean curvature (with respect to
an adequate orientation of the surface). Let ρ > 0 denote the difference between the densities
of the two fluids (we shall refer to the phase of largest density as the ‘liquid phase’). We have

�P(z) = �P(z = 0) + ρgz,

where g denotes the gravitation (the positive direction of the vertical coordinate z is chosen
downward). For convenience, we shall choose the origin of z in such a way that �P(z) = ρgz.
Now, up to changing the length unit, we can suppose that � = ρg, thus equation (1) reads

z = χ. (2)

In this paper, we shall consider the case where the capillary surface is axisymmetric (with
respect to the z-axis). In this case equation (2) becomes

z = −dθ

ds
+

cos θ

r
,

where the variables r , θ , z, and s are defined in figure 2 (the sign of θ is chosen according to
the orientation opposite to the usual trigonometric orientation). By definition of r , θ , z, and s,
we have dr = sin θ ds and dz = − cos θ ds. Thus we obtain the following three-dimensional
autonomous differential equation:

dr

ds
= sin θ,

dθ

ds
= cos θ

r
− z,

dz

ds
= − cos θ, (3)

the arc-length variable s playing the role of the time (taking the vertical coordinate z as the time,
one would obtain a two-dimensional non-autonomous differential equation). Our strategy is
to study this equation from a dynamical systems point of view.

Figure 2. Definition of the variables r, θ, z, and s.
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2.2. Preliminary remarks

In order to get rid of the singularity at {r = 0}, we can perform the change of time ds = r du.
Equation (3) becomes

dr

du
= r sin θ,

dθ

du
= cos θ − rz,

dz

du
= −r cos θ. (4)

The plane {r = 0} is now invariant by the flow, and equation (4) has the following symmetries:

θ → θ + 2π,

r → −r, θ → π − θ,

z → −z, θ → π − θ.

In particular, it is sufficient to study this equation in the domain {r � 0}.
The set of equilibrium points of this equation is{

(r, θ, z)
∣∣ r = 0, θ = ±π

2
[2π ], z ∈ R

}
(it is included in the invariant plane {r = 0}). The spectrum at each of these equilibrium
points is {−1, 0, 1} (computations will be carried out in the following). Thus each of these
equilibrium points has a one-dimensional stable manifolds and a one-dimensional unstable
manifold (the z-direction is neutral). These stable and unstable manifolds play an important
role: they correspond to profiles with a top (resp. a tip) at the height z of the equilibrium. The
dynamics in the neighbourhood of the plane {r = 0} is shown in figure 3.

Equation (4) admits interesting asymptotic forms in the two limits z → +∞ and r → +∞,
which are studied below. The study of these two limits is a useful preliminary for the
understanding of the dynamics of the full equation (4) (which will appear as a ‘mixture’
of the dynamics in these two limits).

Figure 3. Dynamics of equation (4) in a neighbourhood of the invariant plane {r=0} (the picture
is for z = 1).
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2.3. Asymptotics when z → ∞
When z → ∞, the pressure goes to infinity, but above all it becomes asymptotically constant.
Thus, after an appropriate rescaling, the limit when z → ∞ corresponds to the constant
pressure field case. The expression of dθ/ds in equation (3) suggests the following change of
variables:

R = zr, dt = z(s)ds, Z = z2

2
.

Then equation (3) becomes

dR

dt
= sin θ − R

2Z
cos θ,

dθ

dt
= cos θ

R
− 1,

dZ

dt
= − cos θ. (5)

This change of variables has a natural geometrical interpretation: it corresponds to making, at
height z in figure 2, a blowup of factor z (both in the directions of r and z), the new variable
t corresponding to the new curvilinear abscissa after this blowup. However, we shall mostly
use the set of variables (R, θ, z, dt).

Asymptotically, when Z → +∞, equation (5) reads as

dR

dt
= sin θ,

dθ

dt
= cos θ

R
− 1,

dZ

dt
= − cos θ. (6)

This last equation corresponds to the constant pressure field case (the equation governing
(R, θ) does not depend on Z any more). It admits the following conserved quantity:

H(R, θ) = R

(
cos θ − R

2

)
.

We have dt = z ds = R du. If we perform the change of time dt = R du, equation (6) gives

dR

du
= R sin θ,

dθ

du
= cos θ − R, (7)

which is nothing but the Hamiltonian equation derived from H(., .) and the usual symplectic
form (−dθ, dR) of R

2.
Thus equation (5) can be viewed as a perturbation of the asymptotic integrable equation (6)

(the perturbation becoming small when Z becomes large). This point of view will be used
extensively in the following.

Let us briefly describe the phase portrait of equation (7), which is drawn in figure 4 (more
precise computations and justifications follow in the next sections). It has the symmetries
θ → θ + 2π , (θ, u) → (−θ, −u), and (R, θ) �→ (−R, π − θ). The equilibria are elliptic
equilibria at (R, θ) = (1, 2kπ) and (−1, (2k + 1)π) and saddle equilibria at (0, kπ), k ∈ Z.
The level curve {H(R, θ) = 0} = {R = 0} ∪ {R = 2 cos θ} is made of the stable and unstable
manifolds of the saddle equilibria. This level curve is the boundary of bounded invariant
domains in which the trajectories are closed curves, among which the domain

D =
{
(R, θ)

∣∣ − π

2
< θ <

π

2
and 0 < R < 2 cos θ

}
.

Inside D, we have 0 < H(R, θ) � 1/2, trajectories are level sets of H|D, and, except for the
elliptic equilibrium (1, 0), they are closed curves. The maximal value 1/2 is reached at the
point (1, 0). The profiles in the (R, Z)-plane corresponding to some solutions of this equation
are shown in figure 5.

The profile corresponding to the heteroclinic solution connecting the equilibria (R, θ) =
(0, ±(π/2) [2π ]) (along which H = 0, R = 2 cos θ ) is nothing but a sphere (of radius 2),
as one can easily check. The elliptic equilibrium (R, θ) = (1, 0 [2π ]) corresponds to a
straight vertical cylinder, and periodic solutions inside the domain D (i.e. 0 < H < 1/2)
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Figure 4. Phase portrait of equation (6).

Figure 5. Numerical computations of profiles corresponding to solutions of equation (7) (compare
with figure 17 of [5] and figures of chapter 4 of [6]). The arrows along the profiles correspond to
the sense of increasing u (the liquid phase is lying at the ‘left’ of the profiles with respect to the
orientation given by these arrows). The border of the domain D is drawn in black.

give oscillatory profiles, for which z is monotonic (therefore, displaying no self-intersection).
Outside D (i.e. for H < 0), θ varies monotonically; therefore the profiles display infinitely
many self-intersections.

2.4. Asymptotics when r → ∞
In the limit r → ±∞, the expressions of dθ/ds and dz/ds become

dθ

ds
= −z,

dz

ds
= − cos θ, (8)
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Figure 6. Numerical computations of profiles corresponding to solutions of equation (8). The
arrows along the profiles correspond to the sense of increasing s (the liquid phase is lying at the
‘left’ of the profiles with respect to the orientation given by these arrows).

and rotational invariance converges to translational invariance. Thus the solutions of
equation (8) correspond to capillary surfaces which are invariant under translations (in the
direction orthogonal to the (r, z)-plane). Equation (8) yields the second-order equation
d2θ/ds2 = cos θ , i.e. a conservative oscillator in the potential −sin θ (the usual pendulum
without damping). The energy

E(θ, z) = − sin θ +
z2

2

is a conserved quantity for equation (8).
Some profiles given by the solutions of this equation are shown in figure 6, for various

values of E. The elliptic (resp. hyperbolic) equilibrium at E = −1 (resp. E = +1) corresponds
to a plane horizontal interface at z = 0, the liquid phase being above (resp. below) the interface.
Small oscillations around the elliptic equilibrium give a slightly oscillating interface (with
an intrinsic wavelength), the liquid phase being above the interface. Profiles corresponding
to solutions homoclinic to the hyperbolic equilibrium −(π/2)[2π ] display a single self-
intersection, while for nearby solutions an infinity of self-intersections occur. If E > 1,
then θ varies monotonically and the profiles display an infinity of self-intersections.

2.5. Structure induced by the asymptotically conserved quantities

One can expect that the dynamics of equation (4) reflects both limits z → ∞ and r → ∞. It
will appear in the rest of this paper that this dynamics can be understood as a ‘mixture’ of the
dynamics in these two limits. The conserved quantities H and E appearing in these two limits
will play a crucial role. Using these quantities, we can already make the important following
remarks.
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Figure 7. Numerical computations of the trajectory corresponding to a finite pendent drop (with
z̄ > 0), respectively in the (R = zr, θ)-, (θ, z)-, and (r, z)-planes (in the (R, θ)-plane, only some
part of the trajectory, before the first time where z = 0, is drawn). In each figure the black point
corresponds to the tip of the drop (i.e. r = 0, θ = π/2, z = z̄), and the arrow along the trajectory
indicates the sense of increasing u. The (R, θ)-plane illustrates the fact that the domain D is
positively invariant. The (θ, z)-plane illustrates the decrease of the Lyapunov function E, and the
convergence towards (θ, z) = (π/2, 0) when u → +∞.

If u �→ (r, θ, z) is a solution of equation (4), let us still denote by H the map u �→ H(zr, θ)

and by E the map u �→ E(θ, z). Then we have, along the solution,

dH

du
= r2 cos θ(zr − cos θ),

dE

du
= − cos2 θ. (9)

Thus, on the one hand, the following holds:

r �= 0 z �= 0 and H = 0 ⇒ dH

du
> 0 (10)

(in other words, unless z = 0, the domain where H > 0 is positively invariant), and, on the
other hand, E is a (decreasing) Lyapunov function for equation (4) (see figure 7).

3. Statement of the main results and organization of the paper

3.1. Preliminaries

Our main objective is to study the shape of pendent drops of finite length. The following
proposition states that for any height z̄ there exists exactly one solution corresponding to a
drop having its tip at height z̄. It also gives a few properties of this solution, illustrated in
figure 7. We postpone its proof to section 7.

Proposition 1. For any z̄ > 0, there exists a unique solution u �→ (r, θ, z) of equation (4) such
that r > 0 and (r, θ, z) → (0, π/2, z̄) when u → −∞ (uniqueness is up to time translation).
It has the following properties:

• this solution eventually crosses the plane {z = 0}, and, if u0 denotes the time where the
first crossing occurs (i.e. z(u0) = 0 and z(u) > 0 for u < u0), then, for u < u0, we have
(zr, θ) ∈ D (and therefore H(zr, θ) > 0, −π/2 < θ < π/2, and z′(u) < 0);

• we have (r, θ, z) → (+∞, π/2, 0) when u → +∞.

This solution will be referred to in the following as ‘the solution corresponding to a pendent
drop of finite length z̄’.
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3.2. Asymptotics when z → ∞
According to the previous proposition, solutions corresponding to pendent drops of (large)
finite height lie in the domain D before the first time where z vanishes. Inside this domain and
for z large, they remain on bounded time intervals close to those of the asymptotic equation (6).
They are thus almost periodic, and this almost periodicity explains the existence of the ‘bumps’
in the shape of the profiles.

Let us still denote by H the function (r, θ, z) �→ H(rz, θ), and by H(u) the values of this
function along a solution of (4). We will estimate for z large the variations of the quantities H

and z during one ‘period’ (i.e. one ‘bump’). They read at first order as

δH = I (H)

z2
and δz = −J (H)

z
,

where I (·) and J (·) are defined as certain integrals computed along the periodic trajectories of
the asymptotic differential equation (6). This suggests that the variations of H with z should
be related to the solutions of the averaged differential equation

dH

dz
= −1

z

I (H)

J (H)
. (11)

We will see that the quantities I and J are positive. We will show that the averaged differential
equation (11) admits a unique (‘universal’) solution z �→ η(z) defined on ]0; 1[ and having a
continuous extension satisfying η(0) = 1/2 and η(1) = 0, and that any other solution can be
deduced from η by a linear change of time.

Take any z̄ > 0 and consider the solution u �→ (r, θ, z) corresponding to a pendent drop
of length z̄. According to proposition 1, the part of the trajectory before the first crossing with
the plane {z = 0} can be parametrized by z, it is the graph of a map z �→ (rz̄(z), θz̄(z)), defined
on [0; z̄]. Let z �→ Hz̄(z) denote the map corresponding to the values of H along the same
part of the trajectory. Let us define the function hz̄, by

hz̄(κ) = Hz̄(κz̄), κ ∈ [0; 1].

Our main result is the following.

Theorem 1. The function hz̄ converges towards η when z̄ → +∞, uniformly on any compact
subset of ]0; 1]. More precisely, for any ε > 0, the following estimate holds:

sup
ε<κ<1

|hz̄(κ) − η(κ)| <
C

z̄
,

where C > 0 is a constant which depends only on ε.

This result explains the global shape of the drop in terms of level sets of the function H

in the domain D and of the universal function η (see figure 8): if we zoom by a factor κz̄ on
the profile of the drop at height κz̄, the resulting picture converges when z̄ → +∞, and the
asymptotic picture is given by the periodic solution of equation (6) (constant pressure field
case) corresponding to the level curve {H = η(κ)}.

3.3. Pendent and singular drops

We shall recover Concus and Finn’s result [3, 4] of existence of a singular solution
corresponding to a drop of infinite length.

Theorem 2. There exists a solution u �→ (r, θ, z) of equation (4) satisfying z → +∞ when
u → −∞. Moreover, any such solution satisfies rz → 1 when u → −∞.
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Figure 8. Shape of drops of very large length.

This singular solution is actually unique. This was proved recently by Nickolov [12].
A short proof of this uniqueness (via the same dynamical systems approach) was recently
obtained by the second author [14].

Following Finn, we shall investigate the connection between finite drops of large lengths
and the drop of infinite length, and recover Finn’s result ([7], see also [5]) that profiles of
pendent drops converge, when their length goes to +∞, towards the profile of the infinite drop.
For this purpose, for any z̄ > 0, consider the map z �→ (rz̄(z), θz̄(z)) defined in the previous
paragraph. The point (rz̄(0), θz̄(0)) corresponds to the ‘first intersection’ (of the profile of
the pendent drop of length z̄) with the horizontal plane {z = 0}. It defines a (canonical)
smooth map:

ι : ]0; ∞[ → R
∗
+ ×

]
−π

2
; π

2

[
, z̄ �→ (rz̄(0), θz̄(0))

(indeed, since H > 0 for any z ∈ ]0; z̄[, we must have θz̄(0) ∈ ]−π/2; π/2[). This map ι is
injective.

As is the case for drops of finite lengths, the singular solution corresponding to the drop
of infinite length eventually intersects the plane {z = 0}, and the part of the trajectory before
this first intersection can be parametrized by a map z �→ (r∞(z), θ∞(z)), defined on [0; +∞[
(with −π/2 < θ∞(z) < π/2).

We shall prove the following result (it assumes as known the uniqueness of the
infinite drop).
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Figure 9. Numerical computation of the set ι(]0; +∞[) (in the (r, θ)-plane). The arrow along the
curve corresponds to the sense of increasing z̄. We can see that this set ι(]0; +∞[) is a submanifold
(no self-intersection) and that ι(z̄) converges when z̄ → 0 and z̄ → +∞ (actually, the convergence
when z̄ → +∞ is so slow that the end of the spiral appears as a black splash; therefore, only the
set ι(]0; z̄[) for some z̄ large positive is drawn).

Theorem 3. The set ι(]0; +∞[) is bounded and defines a submanifold of R
2 (it does not

accumulate on itself), and we have

ι(z̄) = (rz̄(0), θz̄(0)) → (r∞(0), θ∞(0)) when z̄ → +∞;
ι(z̄) →

(
r0,

π

2

)
when z̄ → 0 (for a certain r0 > 0).

As a consequence of the limit ι(z̄) → (r∞(0), θ∞(0)) when z̄ → +∞ and of the continuity
of the solutions of a differential equation with respect to the initial conditions, this theorem
yields the following corollary.

Corollary 1. The maps z �→ (rz̄(z), θz̄(z)) converge towards the map z �→ (r∞(z), θ∞(z))

when z̄ → +∞, uniformly on any compact subset of [0; +∞[ (for any Ck-topology).

A numerical computation of the set ι(]0; +∞[) is shown in figure 9. In this figure one can see
that this set resembles a trajectory of a solution of a planar differential equation, converging
towards a focus (or a centre) when z̄ → +∞ (we have no mathematical explanation of this
behaviour).

3.4. Asymptotics when r → ∞
Finally we shall study the shape of pendent drops when u → +∞, or equivalently when
r → +∞. Take any z̄ > 0 and let u �→ (r, θ, z) denote the solution corresponding to a
pendent drop of length z̄. We know from proposition 1 that (r, θ, z) → (+∞, π/2, 0) when
u → +∞. Using the time variable s, we see that du/ds → 1 when s → +∞, and that θ(s)

and z(s) are asymptotically governed by the dynamics of the conservative oscillator (8) (the
pendulum) around the elliptic equilibrium (θ = π/2, z = 0) (see figure 7). For r large enough
(or equivalently for u large enough), r varies monotonically with u (or s), and θ and z can be
viewed as functions of r . The following result provides more precision.
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Theorem 4.

(a) The set U = {u ∈ R|z(u) = 0} is infinite and discrete, namely we have U = {uj |j ∈ N},
with, for any j ∈ N, uj < uj+1, z < 0 on ]u2j ; u2j+1[ and z > 0 on ]u2j+1; u2j+2[.

(b) Let us write rj = r(uj ). Then rj+1 − rj → π when j → +∞.

(c) The rate of convergence towards 0 of |(θ−π/2, z)| is that of r−1/2. More precisely, there
exists a constant K > 0 (depending on the solution) such that, if we write

α = θ−π/2

K
√

r
and ζ = z

K
√

r
,

then the maps r �→ (α(r2j + r), ζ(r2j + r)) converge towards the map r �→
(− cos r, − sin r), when j → +∞, uniformly on any compact subset of R.

In other words, if we consider the profile of the solution in the (r, z)-plane, and if we make on
this profile, at abscissa r , a zoom of factor 1/

√
r in the vertical direction z, then the resulting

picture consists, asymptotically when r → +∞, of regular oscillations.

3.5. Organization of the paper

Section 4 is devoted to the proof of theorem 1. In section 4.1, we briefly comment and
give a quantitative estimate on the dynamics of the asymptotic differential equation (6) in
the domain D. Computations of δH and δz during one ‘period’ (up to the first order in
1/z) are carried out in section 4.2. In section 4.3, we provide semi-explicit formulae for
I and J , in particular we prove their positiveness. Averaged differential equation (11) is
studied in section 4.4, and finally theorem 1 is proved in section 4.5. Theorems 2 and 3 are
proved in section 5. The proof essentially relies on the estimates of section 4 on δH and δz.
Theorem 4 is proved in section 6, by a classical perturbation method. Proposition 1 is proved in
section 7. Actually, we state in this section a much more complete result (theorem 5) providing a
classification of the solutions of equation (4) according to their asymptotic dynamical behaviour
(when u → ±∞).

Some supplementary remarks and results are collected in section 8. In section 8.1, we
provide an asymptotic expansion up to any order of the profile at the tip of a pendent drop
or at the top of a sessile drop. In section 8.2, we compute the asymptotic shape of a pendent
drop whose height converges to 0 (this computation is necessary for the proof of assertion 1 in
theorem 3). We briefly comment on the local shape of long drops in section 8.3. In section 8.4,
we discuss the problem of the existence of self-intersections for the profiles in the (r, z)-plane
of the solutions. We show that for a pendent drop whose length is either very small or very
large, the whole profile displays no self-intersection.

Although we concentrated on the physically relevant case of a drop in R
3 (its boundary

is a two-dimensional surface), it is very likely that all our results extend mutatis mutandis to
higher dimensions. In section 8.5, we briefly indicate what the main computations become in
higher dimensions.

4. Asymptotics when z → ∞

The aim of this section is to prove theorem 1. For this purpose, we shall have to estimate the
variations of H and z during one ‘oscillation’, along the solutions of equation (4), for z large
and H > 0. The main difficulty is to get some uniformity in these estimates, up to the level set
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{H = 0} (the border of the domain D). We found it more convenient to use the set of variables
(R, θ, z, t), thus the differential equation takes the form:

dR

dt
= sin θ − R

z2
cos θ,

dθ

dt
= cos θ

R
− 1,

dz

dt
= −1

z
cos θ (12)

and the limit when z → +∞ reads as
dR

dt
= sin θ,

dθ

dt
= cos θ

R
− 1. (13)

4.1. Estimates on the asymptotic flow in the domain D

The aim of this section is to provide some information on the dynamics of the asymptotic
differential equation (13) in the domain D. Here are some elementary observations: for
(R, θ) ∈ D, we have 0 < H(R, θ) � 1/2 and H(R, θ) = 1/2 ⇔ (R, θ) = (1, 0). The
point (1, 0) is the only critical point of H(., .) and the only equilibrium point of the differential
equation (13) in D. The matrix of the linearization at the point (1, 0) of this differential
equation reads as(

0 1
−1 0

)
(14)

(this point is thus an ‘elliptic’ point).
It is not difficult to prove by hand that all the solutions of (13) which lie inside the invariant

domain D are periodic (except the constant solution at (1, 0)); however, the computations below
(required for the next sections) will provide a formal proof of this fact. The phase space of
equation (13) is represented in figure 10.

For (x, y) ∈ R
2 \ {(0, 0)}, we shall denote by arg(x, y) the argument (in R/2πZ) of the

complex number x + iy.
Recall that D = {(R, θ) | −π/2 < θ < π/2 and 0 < R < 2 cos θ}, let C =

{(R, θ) | −π/2 < θ < π/2 and R = 2 cos θ}, and let E = (D∪C)\{(1, 0)}. For (R, θ) ∈ E , let

α(R, θ) = arg

(
sin θ,

cos θ

R
− 1

)
− arg(R − 1, θ).

Figure 10. Phase space of equation (13).
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Lemma 1. There exists ε1 > 0 such that, for any (R, θ) ∈ E , we have α(R, θ) ∈
[−π + ε1; −ε1] mod 2π .

Proof. Take any (R, θ) ∈ E and denote by� the wedge product (R−1, θ)∧(sin θ, cos θ/R−1).
We have

−� = θ sin θ +
R − 1

R
(R − cos θ).

According to this expression, if R � 1, or if R � cos θ , then −� > 0 (indeed the two terms are
non-negative, and they cannot vanish at the same time). If, on the other hand, cos θ < R < 1,
then we can write

−� = (θ sin θ + R − 1) − R − 1

R
cos θ

and thus

−� � θ sin θ + R − 1 � sin2 θ + R − 1 = R − cos2 θ � R − cos θ > 0.

This proves that, for any (R, θ) ∈ E , α(R, θ) ∈ ]−π; 0[ mod 2π .
The function (R, θ) �→ α(R, θ) is continuous on E . Moreover, according to (14), it

converges towards −π/2 when (R, θ) → (0, 0). Thus, in order to complete the proof of the
lemma, it suffices to show that α(R, θ) cannot become arbitrarily close to 0 or π when R → 0.

If R → 0 and θ does not converge towards ±π/2, then arg(sin θ, cos θ/R − 1) → π/2
and the accumulation points of arg(R − 1, θ) belong to [π − arctan(π/2); π + arctan(π/2)];
therefore, the accumulation points of α(R, θ) belong to [−π/2 − arctan(π/2); −π/2 +
arctan(π/2)] ⊂ ]−π; 0[.

On the other hand, ifR → 0 and, say, θ → π/2, then arg(R−1, θ) → π−arctan(π/2) and
the accumulation points of arg(sin θ, cos θ/R − 1) belong to [arctan(−1/2); π/2]; therefore,
the accumulation points of α(R, θ) belong to [arctan(−1/2)−π + arctan(π/2); −π/2 +
arctan(π/2)] ⊂ ]−π; 0[, and the proof follows. �

We deduce from this lemma and from (14) the following corollary.

Corollary 2. There exists ε2 > 0 such that, if t �→ (R(t), θ(t)) is any solution in D of the
differential equation (13), and if (R(t), θ(t)) �≡ (1, 0), then, for any t ∈ R,

d

dt
arg(R − 1, θ)(t) < −ε2.

Finally, as R �→ H(R, 0) = R − R2/2 is strictly increasing on [0; 1], we obtain the following
corollary.

Corollary 3. All solutions t �→ (R(t), θ(t)) of the differential equation (13) in D (except
the constant solution (1, 0)) are periodic, and the periods are bounded from above and from
below by positive constants. There is a one-to-one correspondence between these (periodic)
solutions and the values in ]0; 1/2[ taken by H(., .) on their trajectories.

Notation. For a ∈ ]0; 1/2[, if t �→ (R(t), θ(t)) denotes the solution of equation (13) in D on
which H(., .) takes the value a (this solution is unique up to time translation and periodic), let
us write

I (a) =
∫

R cos θ(R − cos θ) dt, J (a) =
∫

cos θ dt,

these integrals being taken over one period of the solution.
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4.2. Variation of H and z during one oscillation

The following lemma is the main technical step of this paper. Consider any smooth map
ϕ : R

2 → R, satisfying ϕ(0, ±π/2) = 0.

Lemma 2. For any z0 > 0 sufficiently large, and for any (R0, θ0) ∈ D satisfying

|(R0 − 1, θ0)| � 1

z0

(| · · · | denotes the Euclidean norm in R
2), if t �→ (R(t), θ(t), z(t)) denotes the solution

of the differential equation (12) with initial condition (R0, θ0, z0) at time t = 0, and if
t �→ (R̄(t), θ̄ (t)) denotes the solution of the asymptotic differential equation (13) with initial
condition (R0, θ0) at time t = 0 (let us denote by T̄ its period), then the following holds:

(a) there is a unique T > 0 such that the map α : t �→ arg(R(t)−1, θ(t)) is strictly decreasing
on [0, T ] and satisfies α(t) �= α(0) if t ∈ ]0; T [ and α(T ) = α(0) (in R/2πZ);

(b) we have ∣∣∣∣
∫ T

0
ϕ(R(t), θ(t)) dt −

∫ T̄

0
ϕ(R̄(s), θ̄ (s)) ds

∣∣∣∣ � C

z0
,

where C is a positive constant depending only on ϕ.

Proof. According to the expression of dz/dt in (12), we have, for z0 large enough, and
for t ∈ [0; 4π/ε2], z(t) > 0 and (R(t), θ(t)) ∈ D (the constant ε2 is the one introduced in
corollary 2). Moreover, since the differential equation (12) is a perturbation of order 1/z2

0 of the
asymptotic differential equation (13), and according to corollary 2 and to the expression (14)
of the linearization at (1, 0) of this asymptotic differential equation, we see that, for z0 large
enough, we have, for any t ∈ [0; 4π/ε2],

|(R(t), θ(t))| >
1

2z0
and

d

dt
arg(R − 1, θ)(t) < −ε2

2
.

This proves the first assertion of the lemma.
Let us denote by � the term on the left-hand side of the inequality of the second assertion.

Let us fix ε > 0 small (for instance ε = 1/100) and let us distinguish three cases depending
on H(R0, θ0).

First case (ε < H(R0, θ0) < 1/2 − ε). In this case, because differential equation (12) is a
perturbation of order 1/z2

0 of the asymptotic differential equation (13), we have

|(R(t) − R̄(t), θ(t) − θ̄ (t))| � C

z2
0

, t ∈ [0; T ], (15)

and |T − T̄ | � C/z2
0, where C is a positive constant depending on ε. We thus get the estimate

� � C/z2
0 (which is stronger than the one stated in the lemma).

Second case (H(R0, θ0) � 1/2 − ε). In this case, (15) still holds, but because (R − 1, θ) can
be of the order of 1/z0, we only have |T − T̄ | � C/z0 ; anyway, this gives the inequality stated
in the lemma.

Third case (H(R0, θ0) � 1/2 − ε). This is the most intricate case, because of the singularity
at {R = 0} of the differential equations (12) and (13), and because of the points (0, ±π/2),
where ∇H vanishes. Nevertheless, this case will be required in the following; thus, we have
to treat it.
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Let α0 = − arg(R0 − 1, θ0). For any α ∈ [α0; α0 + 2π [, there exists a unique t ∈ [0; T [
and a unique s ∈ [0; T̄ [ such that −α = arg(R(t) − 1, θ(t)) = arg(R̄(s) − 1, θ̄ (s)). This
defines one-to-one correspondences between variables t , s, and θ , and, according to the
implicit function theorem, smooth diffeomorphisms between the intervals [0; T [, [0; T̄ [, and
[α0; α0 + 2π [; these can be extended to smooth diffeomorphisms between neighbourhoods of
[0; T ], [0; T̄ ], and [α0; α0 + 2π ] in R.

According to (9), we have dH/dt = R cos θ(R − cos θ)/z2; thus dH/dt is of the order
of 1/z2

0. As a consequence, we have

|H(R(t), θ(t)) − H(R̄(s), θ̄ (s))| � C

z2
0

, t ∈ [0; T ], s ∈ [0T̄ ].

Write α± = arg(−1, ±π/2), and let I± = [α± − 1/z0; α± + 1/z0] (in R/2πZ).

Claim. For any α ∈ R/2πZ \ (I+ ∪ I−), we have

|(R(t (α)) − R̄(s(α)), θ(t (α)) − θ̄ (s(α)))| � C

z0
,

where C is a positive constant.
Indeed, according to lemma 1, we have

|H(R(t (α)), θ(t (α))) − H(R̄(s(α)), θ̄ (s(α)))|
� m|sinε1| |(R(t (α)) − R̄(s(α)), θ(t (α)) − θ̄ (s(α)))|

(ε1 is the constant introduced in lemma 1), with

m = min |∇H(R, θ)| � C

z0

(because we have excluded I− and I+), and the claim follows.
We have � � �1 + �2, with

�1 =
∣∣∣∣
∫ α0+2π

α0

(ϕ(R(t (α)), θ(t (α))) − ϕ(R̄(s(α)), θ̄ (s(α))))
dt

dα
dα

∣∣∣∣,

�2 =
∣∣∣∣
∫ α0+2π

α0

ϕ(R̄(s(α)), θ̄ (s(α)))

(
dt

dα
− ds

dα

)
dα

∣∣∣∣.
By definition of α, we have

ds

dα
= |(R̄ − 1, θ̄ )|2

(sin θ̄ , cos θ̄/R̄ − 1) ∧ (R̄ − 1, θ̄ )
,

dt

dα
= |(R − 1, θ)|2

(sin θ − (R/z2) cos θ, cos θ/R − 1) ∧ (R − 1, θ)
.

According to lemma 1, the denominators in these two expressions are bounded from below by
positive constants. According to the claim above, this yields �1 � C/z0, for some constant
C > 0 (depending on the Lipschitz constant of ϕ).

It remains to estimate �2. We have to be careful with the terms cos θ/R and cos θ̄/R̄,
occurring in the expressions of dt/dα and ds/dα, since these terms are unbounded for R or R̄

close to 0. Remark that the denominators, in the expressions of dt/dα and ds/dα, are of the
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order of 1 + | cos θ/R| and (resp.) 1 + | cos θ̄/R̄|. Therefore, we can write∣∣∣∣
(

dt

dα
− ds

dα

)
(α)

∣∣∣∣ �
∣∣∣∣
[
|(R − 1, θ)|2

(
sin θ̄ ,

cos θ̄

R̄
− 1

)
∧ (R̄ − 1, θ̄ )

−|(R̄ − 1, θ̄ )|2
(

sin θ − R

z2
cos θ,

cos θ

R
− 1

)
∧ (R − 1, θ)

]

×
[(

1 +

∣∣∣∣cos θ

R

∣∣∣∣
) (

1 +

∣∣∣∣cos θ̄

R̄

∣∣∣∣
)]−1 ∣∣∣∣.

According to the claim above, for α �∈ I− ∪ I+, we have∣∣∣∣
(

dt

dα
− ds

dα

)
(α)

∣∣∣∣ � C

z0
+

|cos θ̄/R̄ − cos θ/R|
(1 + |cos θ/R|)(1 + |cos θ̄/R̄|) .

The last term in this inequality reads

1

R̄ + | cos θ̄ |
|R(cos θ̄ − cos θ) + cos θ(R − R̄)|

R + | cos θ | � 1

R̄ + | cos θ̄ |
C

z0

(still for α �∈ I− ∪ I+), where C is a positive constant. Finally, the hypothesis that
ϕ(0, ±π/2) = 0 (which was not used up to now) shows that the quantity |ϕ(R̄, R̄)|/
(R̄ + | cos θ̄ |) is bounded. This yields the desired estimate �2 � C/z0, and finishes the
proof. �

Corollary 4. With the same notation, we have∣∣∣∣H(R(T ), θ(T )) − H(R0, θ0) − 1

z2
0

I (H(R0, θ0))

∣∣∣∣ � C

z3
0

,

∣∣∣∣z(T ) − z(0) +
1

z0
J (H(R0, θ0))

∣∣∣∣ � C

z2
0

,

where C is a positive constant.

Proof. We have

H(R(T ), θ(T )) − H(R0, θ0) =
∫ T

0

1

z2
R cos θ(R − cos θ) dt;

thus, according to the expression of dz/dt in (12),

H(R(T ), θ(T )) − H(R0, θ0) = 1

z2
0

∫ T

0
R cos θ(R − cos θ) dt + O

(
1

z4
0

)
,

and the first inequality follows from the previous lemma applied to the function ϕ(R, θ) =
R cos θ(R − cos θ). The proof of the second inequality is similar. �

4.3. Study of the functions I (·) and J (·)
Given a smooth function ψ : R

2 → R, let us consider the integral

K(a) =
∫

ψ(R, cos θ) dt,

where a ∈ ]0; 1/2[, t �→ (R(t)θ(t)) denotes the solution of equation (13) corresponding to the
value a for H(., .) (this solution is unique up to time translation and periodic), and the integral
is taken over one period.
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The identity H(R, θ) = a yields R = cos θ ± √
cos2 θ − 2a. We have K(a) =

2(K2 − K1), where

Ki =
∫ 0

arccos
√

2a

ψ(Ri, cos θ)
dt

dθ
dθ

and

Ri = cos θ + εi

√
cos2 θ − 2a, ε1 = −1 and ε2 = +1.

The change of variable u = cos θ yields

Ki =
∫ 1

√
2a

ψ(Ri, u)
dt

du
du;

thus, according to the expression of dθ/dt ,

Ki =
∫ 1

√
2a

ψ(Ri, u)
Ri

(Ri − u)
√

1 − u2
du.

As Ri − u = εi

√
u2 − 2a, we find

K(a) = 2
∫ 1

√
2a

ψ(R2, u)R2 + ψ(R1, u)R1√
u2 − 2a

√
1 − u2

du.

In particular,

I (a) = 2
∫ 1

√
2a

u(R2
2 − R2

1)√
1 − u2

du = 8
∫ 1

√
2a

u2
√

u2 − 2a√
1 − u2

du

and

J (a) = 2
∫ 1

√
2a

u(R1 + R2)√
u2 − 2a

√
1 − u2

du = 4
∫ 1

√
2a

u2

√
u2 − 2a

√
1 − u2

du.

Let us make the change of variables: [
√

2a; 1] → [0; 1], u �→ v, with u2 − 2a = (1 − 2a)v2,
and thus u du = (1 − 2a)v dv. We obtain

I (a) = 8
∫ 1

0

√
2a + (1 − 2a)v2(1 − 2a)v2

√
1 − v2

dv,

J (a) = 4
∫ 1

0

√
2a + (1 − 2a)v2

√
1 − v2

dv.

These expressions show that I (·) and J (·) are smooth on ]0; 1/2[ and admit continuous
extensions to the closed interval [0; 1/2] (let us keep the same notation for these continuous
extensions). Elementary computations give

I (·) > 0 and J (.) > 0 on
]
0; 1

2

[
,

I (0) = 16
3 , I

(
1
2

) = 0, J (0) = 4, J
(

1
2

) = 2π.

We have

d

da

√
2a + (1 − 2a)v2 = 1 − v2√

2a + (1 − 2a)v2
,
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Figure 11. Numerical computations of the graphs of I (·) and J (·) with the slope of I (·) when a

tends to 0 and 0.5. The inset plot shows J ′(·) and its limits at a = 0 and a = 0.5.

and thus,

I ′(a) = −16
∫ 1

0

√
2a + (1 − 2a)v2 v2

√
1 − v2

dv + 8
∫ 1

0

√
1 − v2(1 − 2a)v2√
2a + (1 − 2a)v2

dv,

J ′(a) = 4
∫ 1

0

√
1 − v2√

2a + (1 − 2a)v2
dv. (16)

Elementary computations and considerations give

I ′(a) → −8 when a → 0, I ′(a) → −4π when a → 1
2 ,

J ′(·) > 0 and J ′′(·) < 0 on
]
0; 1

2

[
,

J ′(a) → +∞ when a → 0, J ′(a) → π when a → 1
2 .

Numerical computations of the graphs of I (·) and J (·) are shown in figure 11.

4.4. Averaged differential equation for H

Corollary 4 indicates that the behaviour of the quantity H(·) along the solutions of the
differential equation (12) should be related to the following ‘averaged’ differential equation:

da

dz
= −1

z

I (a)

J (a)
, a ∈ [

0; 1
2

]
. (17)

This section is devoted to the study of the solutions of this equation.
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According to the computations of the previous section, the functions I (·) and J (·)
are locally (but unfortunately not uniformly) Lipschitz on ]0; 1/2]. This ensures existence
and uniqueness of solutions to the differential equation (17) on the domain (z, a) ∈
]0; ∞[ × ]0; 1/2[. These solutions are all equivalent up to linear transforms of z; indeed,
if z �→ a(z) is a solution, then, for any λ > 0, z �→ a(λz) is also a solution.

Lemma 3. For any z0 > 0 and a0 ∈ ]0; 1/2[, the solution z �→ a(z) with initial condition
a(z0) = a0 is defined on a maximal time interval of the form ]0; zmax[, with 0 < zmax < +∞,
and satisfies

a(z) → 0 when z → z−
max and a(z) → 1

2 when z → 0+.

Proof. Let ]zmin; zmax[ denote the maximal interval of existence of the solution (with
0 � zmin < zmax � +∞). The function a(·) is decreasing on this interval; thus it admits
a limit a− (resp. a+) when z → z+

min (resp. when z → z−
max), with 0 � a+ < a− � 1/2.

Because I (a+) > 0, and because the function z �→ 1/z is not integrable in a neighbourhood
of +∞, we see that, necessarily, we have zmax < +∞ and a+ = 0.

On the other hand, as I (1/2) = 0, and because of the Lipschitz properties of I (·) and
J (·) in a left-hand neighbourhood of 1/2, we see that we cannot have zmin > 0 (or else we
would have a− = 1/2) and this would be in contradiction with the uniqueness of solutions of a
differential equation, when a Lipschitz condition is fulfilled. Thus zmin = 0. Now, because the
function z �→ 1/z is not integrable in a right-hand neighbourhood of 0, we see that, necessarily,
a− = 1/2. �

Let z �→ η(z) denote the unique solution of the differential equation (17) for which ]0; 1[
is the maximal interval of existence; according to the previous lemma, the function η admits a
continuous extension (still denoted by η) to the closed interval [0; 1], defined by η(0) = 1/2
and η(1) = 0. We have

η′(z) = −1

z

I

J
, η′′(z) = 1

z2

I

J

(
1 +

I ′J − IJ ′

J 2

)
,

which shows, according to the previous computations, that η′(·) < 0 on ]0; 1[, and that

η′(z) → − 4
3 and η′′(z) → −∞ when z → 1−.

For z close to 0, the change of variable ϕ = 1/2 − δ (δ > 0 small) gives (according to the
previous computations)

δ′ = 1

z

I (1/2 − δ)

J (1/2 − δ)
∼ 2δ

z
,

which shows that δ/z2 → 1 when z → 0. This shows that first and second right-hand
derivatives of η can be defined at z = 0, by

η′(0) = 0 and η′′(0) = −2.

A numerical computation of the graph of η(.) is shown in figure 12.

4.5. Global shape of long drops

Take any z̄ > 0 and, for z ∈ [0; z̄], let us consider the quantities rz̄(z), θz̄(z), and Hz̄(z),
as defined in section 3.2. As in section 3.2, we define the function hz̄ : ]0; 1] → [0; 1/2],
by : hz̄(κ) = Hz̄(κz̄), κ ∈ ]0; 1].

In the following, since z̄ is fixed, we shall omit the indices z̄, and simply write r(z), θ(z),
H(z), and h(κ) for these quantities. Let R(z) = zr(z).
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Figure 12. Numerical computation of the graph of η(·), the slope when z → 0 is represented by
the dashed line.

Proof of theorem 1. Take any ε > 0, ε < 1. Let

x = inf
{
x ∈

]ε

2
; 1

] ∣∣∣ for any y ∈ [x; 1], h(y) < η
(ε

2

)}
(remark that η(ε/2) < 1/2). According to lemma 2, for z̄ large enough, there is a unique
integer n and unique points z0 = z̄ > z1 > · · · > zn−1 > xz̄ � zn > 0 such that, for any
z ∈ [zn; z̄], we have

arg(R(z) − 1, θ(z)) = arg
(
−1,

π

2

)
⇔ there is i ∈ {0, . . . , n} such that z = zi .

For z̄ large enough, we can apply the estimates of corollary 4. They give, for any i ∈
{0, . . . , n − 1},∣∣∣∣H(zi+1) − H(zi) − 1

z2
i

I (H(zi))

∣∣∣∣ � C

z̄3
,

∣∣∣∣zi+1 − zi +
1

zi

J (H(zi))

∣∣∣∣ � C

z̄2
,

where C > 0 is a constant depending only on ε (for i = 0, these estimates hold by passing to
the limit in corollary 4).

For i ∈ {0, . . . , n}, let us write xi = zi/z̄. Then the two previous estimates can be
rewritten as follows:∣∣∣∣h(xi+1) − h(xi) − 1

z̄2x2
i

I (h(xi))

∣∣∣∣ � C

z̄3
,

∣∣∣∣xi+1 − xi +
1

z̄2xi

J (h(xi))

∣∣∣∣ � C

z̄3
,

and finally we obtain∣∣∣∣h(xi+1) − h(xi)

xi+1 − xi

+
1

xi

I (h(xi))

J (h(xi))

∣∣∣∣ � C

z̄
. (18)
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Consider the function h̃ : [xn; 1] → [0; 1/2[ defined by

h̃(x) = h(xi) +
h(xi+1) − h(xi)

xi+1 − xi

(x − xi), x ∈ [xi+1; xi], i ∈ {0, . . . , n − 1}

(it is continuous, affine by pieces, and coincides with h on {x0, . . . , xn}). For any i ∈
{0, . . . , n − 1} and x ∈ ]xi+1; xi[, we can write

|h̃′(x) − η′(x)| � C

z̄
+ A1 + A2,

where

A1 =
∣∣∣∣ 1

xi

I (h(xi))

J (h(xi))
− 1

x

I (h(x))

J (h(x))

∣∣∣∣ , A2 = 1

x

∣∣∣∣ I (h(x))

J (h(x))
− I (η(x))

J (η(x))

∣∣∣∣ .
Recall that J (·) is not uniformly Lipschitzian on [0; 1/2]. Nevertheless, proceeding as in the
proof of lemma 2, one gets∣∣∣∣ I (h(xi))

J (h(xi))
− I (h(x))

J (h(x))

∣∣∣∣ � C

z̄
,

(where C is a positive constant depending only on ε). As, on the other hand, |x − xi | � C/z̄2,
this yields A1 � C/z̄.

To estimate A2, we have to take into account the fact that J ′(a) → ∞ when a → 0.
According to the expression (16), we have, for a small enough,

J ′(a) � 4
∫ 1

0

dv√
2a + v2/2

= 4
√

2
∫ 1/

√
4a

0

dw√
1 + w2

= 4
√

2 argsh
1√
4a

∼ 4
√

2 log
1√
a
.

In particular, the function a �→ J ′(a) is integrable on ]0; 1/2].
According to the computations of sections 4.3 and 4.4, we know that η(x) � (1 − x)/C,

x ∈ [0; 1/2]. On the other hand, (18) shows that |f̃ ′(x)| is bounded away from 0 for x close
to 1; thus, we have h̃(x) � (1 − x)/C. Together with the facts that I ′(·) is bounded and J ′(·)
is integrable, this gives

A2 � ψ(x)

x
|h̃(x) − η(x)|,

where ψ denotes a certain positive integrable function on ]0; 1/2] (independent of ε). Finally,
we obtain

|f̃ ′(x) − η′(x)| � C

z̄
+

ψ(x)

x
|h̃(x) − η(x)|.

Let g(x) = |h̃(x) − η(x)|, x ∈ [xn; 1]. At any point x ∈ [xn; 1]\{x0, . . . , xn} such that
g(x) �= 0, this function is derivable and satisfies

|g′(x)| � C

z̄
+

ψ(x)

x
g(x).

Integrating this differential inequation on [xn; 1], we obtain, for any x ∈ [x; 1],

|h̃(x) − η(x)| � C

z̄
,

for a certain constant C > 0 depending on ε (recall that x � ε/2). Since |f̃ − f | � C/z̄2,
the same estimate holds for |h(x) − η(x)|. Finally, we see by definition of x that, for z̄ large
enough, we have x < ε, and this finishes the proof. �
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5. Pendent and singular drops

The aim of this section is to prove theorems 2 and 3. The proofs are mainly based on the
estimates of the previous section.

5.1. Flow with respect to z in the domain H > 0

For any z > 0, let

Dz = {(r, θ) ∈ R
2|(zr, θ) ∈ D},

and, for any a ∈ [0; 1/2[, let

Dz,a = {(r, θ) ∈ Dz|H(zr, θ) > a}.
Finally, let D0 = ]0; +∞[ × ]−π/2; π/2[.

For z0 � 0 and (r0, θ0) ∈ Dz0 , let us consider the solution u �→ (r, θ, z) of equation (4) with
initial condition (r0, θ0, z0) at time u = 0. Let ]u−; u+[ denote the largest interval containing
0 on which H(rz, θ) > 0. Then we have u+ < +∞, u− � −∞, z(u+) = 0, and, for any
u ∈ ]u−; u+[, z(u) > 0 and dz/du(u) < 0 (for more detailed justifications, see section 7). Let
zmax � +∞ denote the limit of z(u) when u → u−. Then, for any z1 ∈ ]0; zmax[, let us write
�z1

z0
(r0, θ0) = (r(u1), θ(u1)), where u1 is the unique point of ]u−; u+[ such that z(u1) = z1.

This defines a map �z1
z0

: Dz0 → Dz1 (the flow with respect to the variable z), which is defined
on the whole domain Dz0 if z1 � z0, and only on a subset of it if z1 � z0.

Lemma 4. For any a ∈ ]0; 1/2[, there exists � > 0 such that, for any z0 � �, one can find
� > 0 such that the following inclusion holds:

�
z0
z0+�(Dz0+�) ⊂ Dz0,a.

Proof. Take any a ∈ ]0; 1/2[ and z0 > 0, and (r0, θ0) ∈ Dz0\Dz0,a . For any z ∈ ]0; zmax[ (with
the above notation), let us write (r(z), θ(z)) = �z

z0
(r0, θ0) and R(z) = zr(z). According to

lemma 2, if z0 is sufficiently large (depending ona), then one can define uniquelyn ∈ N
∗∪{+∞}

(which will turn out to be necessarily finite) and, writing N = {i ∈ N
∗|i < n}, a family (zi)i∈N

of points of ]z0; zmax[ satisfying

• zi−1 < zi for any i ∈ N ;
• for any z ∈ ]z0; zmax[,

arg(R(z) − 1, θ(z)) = arg(R0 − 1, θ0) ⇔ there is i ∈ N such that z = zi .

Let us write h(z) = H(R(z), θ(z)), z ∈ ]0; zmax[. Estimates of corollary 4 read, for any
i ∈ N ∣∣∣∣h(zi) − h(zi−1) +

1

z2
i

I (h(zi))

∣∣∣∣ <
C

z3
i

,

∣∣∣∣zi − zi−1 − 1

zi

J (h(zi))

∣∣∣∣ <
C

z2
i

,

where C is a positive constant depending on a. Let z∞ = supi∈N∪{0} zi (the set N could be

empty), and consider the function h̃ : [z0; z∞[ → ]0; 1/2], defined by

h̃(z) = h(zi−1) +
h(zi) − h(zi−1)

zi − zi−1
(z − zi−1), z ∈ [zi−1; zi], i ∈ N .
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This function is continuous, affine on any interval [zi−1; zi], and the estimates above yield∣∣∣∣f̃ ′(z) +
1

zi

I (h(zi))

J (h(zi))

∣∣∣∣ <
C

z2
i

, z ∈ [zi−1; zi], i ∈ N .

Since zi − zi−1 is of the order of 1/z2
i , this yields f̃ ′(z) < −1/Cz, z ∈ [z0; z∞[, for a certain

constant C > 0 depending on a.
Since h̃(z0) < 1/2 and h̃(zi) > 0 for any i ∈ N , this implies z∞ < Cz0, for some constant

C > 1 depending on a (and the set N is actually finite). Finally, zmax − z∞ < 4π/ε2 if z0 is
large enough, which completes the proof. �

5.2. Proof of theorems 2 and 3

To begin with, we shall not assume as known the uniqueness of the infinite drop, and we shall
prove the following assertions:

1. we have ι(z̄) → (r0, π/2) when z̄ → 0, for a certain r0 > 0;
2. the set ι(]0; +∞[) is bounded and defines a submanifold of R

2 (it does not accumulate on
itself);

3. for any point (r0, θ0) belonging to the (non-empty) compact set

ι∞ =
⋂
z̄>0

ι([z̄; +∞[),

the solution of equation (4) with initial condition (r0, θ0, 0) corresponds to a drop of
infinite length (it satisfies z → +∞ when u → −∞).

Assertion 1 is a direct consequence of proposition 3 of section 8.2 (asymptotics when
z → 0).

Proof of assertion 2. To prove that ι(]0; +∞[) is bounded, we shall apply lemma 4. Let
�1 denote the constant � given by this lemma, corresponding to say a = 1/4, and let �1

denote the constant � given by this lemma, corresponding to a = 1/4, � = �1, and z0 = �1.
Then, according to this lemma, we have ι(]z0 + �1; +∞[) ⊂ �0

z0
(Dz0,1/4). Since Dz0,1/4 is

relatively compact in Dz0 , and since �0
z0

: Dz0 → D0 is continuous, this show that the set
ι(]z0 + �1; +∞[) is relatively compact in D0, therefore bounded. Thus, since ι(z) converges
when z → 0, the set ι(]0; +∞[) is bounded.

For any 0 � z < z̄, let us write ιz(z̄) = (rz̄(z), θz̄(z)) (we use the notation of section 3.2).
Let us prove that the set ι(]0; +∞[) is a submanifold of D0, i.e. that it does not accumulate

on itself. Let us proceed by contradiction and suppose that the converse is true. Then there exists
z∞ > 0 and a sequence zn → +∞ such that ι(zn) → ι(z∞) when n → +∞. Keeping the above
notation, we can suppose that z0 > z∞. For n large enough, we have zn > z0 + �1; therefore
ιz∞(zn) belongs to the set �z∞

z0
(Dz0,1/4), which is relatively compact in Dz∞ . Up to extracting

a subsequence, one can suppose that the points ιz∞(zn) converge, when n → +∞, towards
a point y∞ ∈ Dz∞ . Then, by continuity of the map �0

z∞ , the points ι(zn) = �0
z∞(ιz∞(zn))

converge towards �0
z∞(y∞) when n → +∞. As a consequence we have ι(z∞) = �0

z∞(y∞),
which is impossible, thus a contradiction. This finishes the proof of assertion 2. �

Proof of assertion 3. Take any (r∞, θ∞) ∈ ι∞, and let u �→ (r, θ, z) denote the solution
of equation (4) with initial condition (r∞, θ∞, 0) at time u = 0. We have H(0) = 0 and
dH/du(0) < 0, thus H(u) > 0 for u < 0 close to 0.
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Claim (for any u < 0, we have H(u) > 0). Let us suppose that the converse is true, and let
u− = sup{u < 0|H(u) = 0}. Then dz/du < 0 on ]u−; 0]; thus, z(u−) > 0. According to
(10), this yields dH/du(u−) > 0; therefore, H(u) < 0 for u < u− close to u−. This is in
contradiction with the fact that (r∞, θ∞) is the limit of a sequence of initial conditions such
that the corresponding solutions satisfy H > 0 on ]−∞; 0[ (continuity of the solutions of a
differential equation with respect to initial conditions). The claim is proved. As a consequence,
we have z(u) > 0 and dz/du(u) < 0 for all u < 0.

Claim (we have z(u) → +∞ when u → −∞). If the converse was true, then z(u) would have
a finite limit z̄ when u → −∞, and as a consequence we would have (r∞, θ∞) = ι(z̄), which
is in contradiction with assertion 2. Assertion 3 is proved. �
Now we wil prove theorems 2 and 3. It immediately follows from lemma 4 that, if a solution
corresponding to an infinite drop exists, then it necessarily satisfies (R, θ) → (1, 0) when
u → −∞. Thus, since the set ι∞ = ⋂

z̄>0 ι([z̄; +∞[) is non-empty, theorem 2 follows from
assertion 3.

If moreover we assume the uniqueness of the drop of infinite length, then we can say that
the set ι∞ is a singleton, and theorem 3 immediately follows from assertions 1, 2 and 3. �

6. Asymptotics when r → ∞

The aim of this section is to prove theorem 4.
We consider a solution u �→ (r, θ, z) of equation (4), whose trajectory lies in the invariant

subspace {r > 0}, and satisfying (r, θ, z) → (+∞, π/2, 0) when u → +∞. Since ds = r du,
we have s → +∞ when u → +∞. Let us write θ = π/2 + β. We have β → 0 and r → +∞
when s → +∞. Equation (3) becomes

dr

ds
= cos β,

dβ

ds
= −z − sin β

r
,

dz

ds
= sin β,

which yields

d

ds

(
β

z

)
=

(
0 −1
1 0

) (
β

z

)
+ O(|β|3) + O

( |β|
r

)
.

Let us suppose that we are not in the particular explicit case (β, z) ≡ (0, 0). Thus, z = 0
yields β �= 0[π ] and thus dz/ds �= 0. As a consequence, the set S = {s ∈ R | z(s) = 0} is
infinite and discrete, and the sign of dz/ds is alternatively positive and negative at successive
points of S. Take any s0 ∈ S (say such that dz/ds(s0) < 0), and let s0 < s1 < s2 < · · ·
denote the points of S ∩ [s0; +∞[. We have sj+1 − sj → π when j → +∞. Moreover we
have E(s0) < 1; thus, for any s � s0, we have E(s) < 1; thus, β(s) �= π [2π ], and actually
β(s) ∈ ]−π; π [.

Let F = E + 1; we have

F = (1 − cos β) +
z2

2
,

dE

ds
= − sin2 β

r
.

For j ∈ N, let us write rj , βj , Fj for r(sj ), β(sj ), F(sj ) (we have β2j < 0 and β2j+1 > 0).
We have F2j ∼ β2

2j and, for j large positive,

F2j+2 − F2j = − 1

r2j

Ij + O
(

1

r2
2j

)
, Ij =

∫ s2j+2

s2j

sin2 β ds.

For s ∈ R, let us write (β, z) = |(β, z)|(− cos α, − sin α). We have
dα

ds
= (β, z) ∧ (dβ/ds, dz/ds)

|(β, z)|2 = 1

β2 + z2

(
z2 + β sin β +

z sin β

r

)
= 1 + O(r−1

2j ) + O(F2j ).
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Thus

Ij =
∫ 2π

0
sin2 β

ds

dα
dα =

(∫ 2π

0
β2 dα

)
(1 + O(r−1

2j ) + O(F2j ))

= 2πF2j (1 + O(r−1
2j ) + O(F2j )).

Finally we obtain

F2j+2 − F2j

F2j

∼ −2π

r2j

∼ −1

j
,

and thus

log F2j ∼ − log j ∼ − log r2j .

For s large enough, we have dr/ds > 0 (actually dr/ds � 1); thus we can view F as a function
of r . The last estimate shows that log F ∼ − log r for s large.

Now we have

1

rF

d(rF )

ds
= 1

rF
(F cos β − sin2 β) = 1

rF

(
z2 − β2

2
+ O(β4)

)
.

For s ∈ [s2j ; s2j+2], the quantity |1/(r(s)F (s)) − 1/(r(s2j )F (s2j ))| is of the order of r−1+o(1).
Thus, proceeding as above, we see that the quantity∫ s2j+2

s2j

1

rF

d(rF )

ds
ds

is of the order of r−2+o(1) (the main contribution vanishes in the mean). This shows that log(rF )

has a limit when s → +∞. Thus log(
√

r|(β, z)|) has a limit when s → +∞, and theorem 4
follows.

7. Classification of the solutions

The aim of this section is to list the possible behaviour, when u → ±∞, of the solutions of
equation (4), and to give a classification according to this behaviour (proposition 1 will follow
from these results). Let us mention that the results in this section do not depend on the ones
of sections 4–6, but only on two ingredients which were given in section 2.5: the fact that the
domain where H > 0 is positively invariant unless z = 0 (assertion (10)), and the fact that E

is a (decreasing) Lyapunov function for equation (4).

7.1. Statement of the classification results

For any solution u �→ (r, θ, z) of equation (4), the expression for dr/du shows that the quantity
|r(u)| cannot blow up in finite time (neither in the past nor in the future); according to the
expression of dz/du, the same holds for |z(u)|, and thus for |θ(u)|. Thus the flow of equation (4)
is defined globally in time.

The dynamics on the invariant plane {r = 0} is simple: z is constant and θ varies
monotonically from −(π/2) [2π ] to (π/2) [2π ] or from (3π/2) [2π ] to (π/2) [2π ]. Apart
from this plane, the possible behaviour can be split into five categories, which are listed by the
following theorem (illustrated by figure 13). We tried to find simple meaningful denominations
for these categories. As is usual in dynamical systems, we use the letter α (resp. ω) to refer to
the behaviour when u → −∞ (resp. when u → +∞).
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Theorem 5.

(a) For any z̄ ∈ R and k ∈ Z, there exists a unique solution u �→ (r, θ, z) of equation (4)
(uniqueness is up to translation of u), lying in the invariant subspace {r > 0}, and
satisfying (r, θ, z) → (0, π/2 + 2kπ, z̄) when u → −∞. These solutions satisfy
(r, θ, z) → (+∞, π/2+2kπ, 0) when u → +∞ (with the same integer k). These solutions
will be called ‘of type α-bounded’.

(b) For any z̄ ∈ R and k ∈ Z, there exists a unique solution u �→ (r, θ, z) of equation (4)
(uniqueness is up to translation of u), lying in the invariant subspace {r > 0}, and
satisfying (r, θ, z) → (0, −π/2 + 2kπ, z̄) when u → +∞. If z̄ = 0, then we have
(θ, z) ≡ (−π/2 + 2kπ, 0). If z̄ > 0 (resp. z̄ < 0), then these solutions satisfy
(θ, z) → (+∞, +∞) (resp. (θ, z) → (−∞, −∞)) when u → −∞. These solutions
will be called ‘of type ω-bounded’.

(c) Any solution u �→ (r, θ, z) of equation (4) lying in the invariant subspace {r > 0} and
which does not belong to the two classes described above belongs to one of the three
following (mutually exclusive) classes.

1. There exists k ∈ Z such that (r, θ, z) → (0, 2kπ, +∞) or (r, θ, z) →
(0, (2k + 1)π, −∞) when u → −∞, and such that (r, θ, z) → (+∞, π/2 + 2kπ, 0)

when u → +∞ (with the same integer k). These solutions will be called ‘of type
α-singular’.

2. We have (θ, z) → (+∞, +∞) or (θ, z) → (−∞, −∞) when u → −∞, and there
exists k ∈ Z such that (r, θ, z) → (+∞, π/2 + 2kπ, 0) when u → +∞. These
solutions will be called ‘of type α-θ -infinite’.

3. We have r → +∞ when u → −∞, and there exists k ∈ Z such that (θ, z) converges
in mean towards the set {(−π/2 + 2kπ, 0), (−π/2 + (2k + 1)π, 0)} when u → −∞.
These solutions will be called ‘of type α-r-infinite’.

The following proposition provides further precisions.
Then, according to the previous theorem, the sign of z(u) is constant for u sufficiently

large and negative, and, according to the symmetry (θ, z) → (π − θ, −z), we can suppose
without loss of generality that this sign is positive. Then the following proposition holds.

Proposition 2. Let u �→ (r, θ, z) denote a solution of equation (4), lying in the invariant
subspace {r > 0}, which is not of type α-r-infinite, and which is not one of the particular
explicit solutions satisfying (θ, z) ≡ ((π/2)[π ], 0). We suppose (without loss of generality)
that z > 0 for u large and negative. Then the following holds.

(a) If the solution is of type α-bounded or α-singular, then its trajectory eventually crosses
the plane {z = 0}. If u0 denotes the time where the first crossing occurs (i.e. z(u0) = 0
and z(u) > 0 for u < u0), then, for u < u0, we have

z > 0
dz

du
< 0 and H > 0.

(b) If the solution is of type ω-bounded, then, for any u ∈ R, we have z > 0, H < 0 and
dθ/du < 0 (thus θ decreases from +∞ to −π/2 + 2kπ ).

(c) If the solution is of type α-θ -infinite, then there exists u0 ∈ R such that, for any u < u0, we
have z > 0, H < 0 and dθ/du < 0 (thus θ is a decreasing function of u for u sufficiently
large and negative).

Numerical simulations of solutions belonging to each of the types enumerated in theorem 5
are shown in figure 13. Let us briefly comment on this figure and the above results.
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Figure 13. Profiles corresponding to the various dynamical behaviour distinguished by theorem 5
(compare figure 17 of [5] and figures in chapter 4 of [6]). The arrows along the profiles correspond
to the sense of increasing u (the liquid phase is lying at the ‘left’ of the profiles with respect to the
orientation given by these arrows). Profile A represents a finite pendent drop (type α-bounded)
with z̄ > 0 (profile B is the limit case z̄ = 0); profile C represents a sessile drop (type ω-bounded)
with z̄ > 0 (profile D is the limit case z̄ = 0); profile E represents the singular drop of infinite
length; profiles F and G correspond, respectively, to the ‘α-θ -infinite’ and ‘α-r-infinite’ cases.

Solutions of type α-bounded with z̄ � 0 correspond to pendent drops of finite length (the
case z̄ < 0 is physically less relevant, since in this case the liquid phase lies above the capillary
surface, and the pressure is negative at the top of this surface at height z̄).

Solutions of type ω-bounded with z̄ � 0 correspond to sessile drops (again, the case
z̄ < 0 is physically less relevant). The asymptotics θ → −∞ and z → +∞ when u → −∞
(provided that z̄ > 0) show that the profile in the (r, z)-plane of such a solution displays an
infinity of self-intersections. But the part of the solution corresponding to u larger than some
u0 gives the surface of a sessile drop under suitable boundary conditions (say a sessile drop
lying on a horizontal surface).

Solutions of type α-singular correspond to pendent drops having an infinite length. As
discussed in section 3.3, there is exactly one solution of this type.

The two remaining classes of solutions (solutions of types α-θ -infinite and α-r-infinite)
seem to be physically less relevant (although pieces of the corresponding profiles may
appear as possible interfaces under suitable boundary conditions). As for solutions of type
ω-bounded, the profile in the (r, z)-plane of a solution of type α-θ -infinite displays an infinity
of self-intersections.

7.2. Stable and unstable manifolds of equilibria

Equilibrium points of equation (4) are the points of the set {(r, θ, z)|r = 0,
θ = ±(π/2)[2π ], z ∈ R}. At each equilibrium point of the form (0, (π/2)[2π ], z)
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(resp. (0, −(π/2)[2π ], z)), the matrix of the linearization of (4) reads
 1 0 0

−z −1 0
0 0 0





resp.


−1 0 0

−z 1 0
0 0 0





 .

These two matrices have the same eigenvalues (1, −1, 0). According to the centre manifold
theorem [8], any equilibrium has a one-dimensional stable (resp. unstable) manifold. The
eigendirections of these matrices are given by the following eigenvectors: for the first matrix,
(1, −z/2, 0), (0, 1, 0) and (0, 0, 1), and for the second matrix, (0, 1, 0), (1, z/2, 0) and
(0, 0, 1). Thus the stable (resp. unstable) manifolds of equilibria of the form (0, (π/2)[2π ], z)
(resp. (0, −(π/2)[2π ], z)) lie in the invariant plane {r = 0} (see figure 3). For any equilibrium
of the form (0, (π/2)[2π ], z) (resp. (0, −(π/2)[2π ], z)), there exists a unique (up to translation
of u) solution lying in the invariant subspace {r > 0} and converging towards this equilibrium
when u → −∞ (resp. when u → +∞).

7.3. Behaviour when u → +∞
Let us consider any solution u �→ (r, θ, z) of equation (4), lying in the invariant subspace
{r > 0}, and let us discuss its asymptotic behaviour in relation to the Lyapunov function E.
The following lemma describes the two possible types of behaviour when u → +∞.

Lemma 5. One of the two following (mutually exclusive) cases occurs:

• ‘ω-bounded’—there exists z̄ ∈ R such that (r, θ, z) → (0, −(π/2)[2π ], z̄) when
u → +∞;

• ‘ω-r-infinite’—we have (r, θ, z) → (+∞, (π/2)[2π ], 0) when u → +∞.

Proof. Since E is decreasing and bounded from below, it must converge towards a limit E+∞,
and |z(u)| is bounded when u → +∞. Let us distinguish three cases.

Case 1 (r(u) is bounded when u → +∞). In this case, |dθ/du| is bounded when u → +∞;
thus, the expression for dE/du shows that cos θ → 0, and thus that θ → ±(π/2)[2π ]. Since
r is bounded, the expression for dr/du shows that actually θ → −(π/2)[2π ]. Thus r → 0
when u → +∞ and the rate of convergence is exponential. Then expression of dz/du shows
that z(u) has a limit when u → +∞. Thus the solution lies in the stable manifold of an
equilibrium of the form (0, −(π/2)[2π ], z̄) (this gives the ‘ω-bounded’ case).

Case 2 (r(u) is unbounded but does not diverge to +∞ when u → +∞). In this case there
exists r0 > 0 and a sequence (un)n∈N, un → +∞ when n → +∞, such that r(un) = r0. Since
|(dθ/du)(un)| is bounded, the expression for dE/du shows that cos θ(un) → 0, and thus that
θ(un) → ±(π/2)[2π ], when n → +∞. Moreover, we can suppose that (dr/du)(u2n) � 0
and that (dr/du)(u2n+1) � 0, which yields θ(u2n) → +π/2 [2π ] and θ(u2n+1) → −π/2 [2π ]
when n → +∞. Moreover we must have |(dθ/du)(un)| → 0, and thus z(un) → 0 when
n → +∞. This shows that E(u2n) → −1 and that E(u2n+1) → +1 when n → +∞, which is
impossible since E decreases with u. Thus, this case cannot occur.

Case 3 (r(u) → +∞ when u → +∞). To treat this case we shall use the variable s instead
of u. Since ds = r du, we see that s → +∞ when u → +∞. Expressions in (3) for dθ/ds and
dz/ds are small perturbations of the integrable equation (8) (the equation of the pendulum).
We have

dE

ds
= −cos2 θ

r
.
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Since r grows at most linearly with s when s → +∞, we see (on the phase space of
equation (8)) that the only possible values for E+∞ are ±1 (indeed, for the other values of
E+∞, the corresponding solutions of the asymptotic equation (8) are periodic, and the mean
over one period of cos2 θ is non-zero). We cannot have E+∞ = +1, or else θ would converge
(at least in mean) towards −(π/2) [2π ]; thus, r would converge towards 0. Thus E+∞ = −1,
and thus θ → (π/2) [2π ] and z → 0 when u → +∞ (we are in the case ‘ω-r-infinite’). The
lemma is proved. �

7.4. Behaviour when u → −∞
The next lemma describes the four possible types of behaviour when u → −∞.

Lemma 6. One of the four following (mutually exclusive) cases occurs:

• ‘α-bounded’—there exists z̄ ∈ R such that (r, θ, z) → (0, (π/2)[2π ], z̄) when u → −∞;
• ‘α-r-infinite’—we have r → +∞ when u → −∞, and there exists k ∈ Z such that

(θ, z) converges in mean towards the set {(−π/2 + 2kπ, 0), (−π/2 + (2k + 1)π, 0)} when
u → −∞;

• ‘α-singular’—we have (r, z) → (0, +∞) when u → −∞ and there exists k ∈ Z such
that θ ∈ ]−π/2 + 2kπ; π/2 + 2kπ [ for u large enough;

• ‘α-θ -infinite’—we have (z, θ) → (+∞, +∞) when u → −∞, and, for u large enough,
we have dθ/du < 0.

Proof. Let us denote by E−∞ the limit (in R ∪ {−∞}) of E when u → −∞, and let us
distinguish two cases.

Case A (E−∞ > −∞). In this case the situation resembles the one treated in the proof of the
previous lemma, and we shall again distinguish among three cases.

Case A1 (r(u) is bounded when u → −∞). In this case, arguing as above, we see that
cos θ → 0, thus θ → ±π/2, and the fact that r(u) is bounded yields θ → +π/2 when
u → −∞. Thus r(u) → 0, the rate of convergence is exponential, and z has a limit when
u → −∞. Thus the solution lies in the unstable manifold of an equilibrium of the form
(0, (π/2)[2π ], z̄), and we are in the case ‘α-bounded’.

Case A2 (r(u) is unbounded but does not diverge to +∞ when u → −∞). The same arguments
as in the proof of the previous lemma show that this case cannot occur.

Case A3 (r(u) → +∞ when u → −∞). Again, we shall use in this case the variable s instead
of u. We have s → −∞ when u → −∞. Arguing as above, we see that E−∞ necessarily
equals ±1, and, since r(u) → +∞, that E−∞ = +1. This shows that (θ, z) converges in
mean towards (−(π/2)[2π ], 0). Moreover, since E decreases, we have either E ≡ 1 (this
corresponds to the particular solution (θ, z) ≡ (−(π/2)[2π ], 0)) or E(u) < 1 for all u ∈ R.
In this last case, we see that there exists k ∈ Z such that θ(u) is confined to the interval
]−π/2 + 2kπ; −π/2 + 2(k + 1)π [ (it converges in mean towards the boundary of this interval).
This corresponds to the case ‘α-r-infinite’.

Let us mention that, in this case, it may happen that (θ, z) actually converges towards a
certain limit (−π/2+2kπ, 0), and it may also happen that (θ, z) ‘oscillates’ indefinitely between
the two points (−π/2 + 2kπ, 0) and (−π/2 + 2(k + 1)π, 0), when u → −∞ (approaching the
heteroclinic cycle connecting these two equilibria in the phase space of equation (8)).
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Case B (E−∞ = −∞). In this case we have z → ±∞ when u → −∞, and, according to
the symmetry (θ, z) �→ (π − θ, −z), we can suppose without loss of generality that z → +∞
when u → −∞.

To treat this case, we shall use the quantity H , which is asymptotically invariant when
z → ±∞. Recall (assertion (10)) that

H = 0 r �= 0 and z �= 0 ⇒ dH

du
> 0. (19)

Going back to our solution, there exists u0 ∈ R such that z(u) > 0 for any u < u0. The
previous remark leads us to distinguish the two following cases.

Case B1 (for any u < u0, we have H(u) > 0). This yields (for u < u0) cos θ > zr/2 > 0;
thus, θ ∈ ]−π/2; π/2[ [2π ], and the map u �→ z(u) is strictly decreasing on ]−∞; u0[. Since
z(u) → +∞, we necessarily have r(u) → 0 when u → −∞. Thus we are in the case
‘α-singular’ (in this case, we also have θ → 0 [2π ] when u → −∞, but this will be proved
only in section 5).

Case B2 (there exists u1 < u0 such that H(u1) � 0). In this case, (19) shows that, for
any u < u1, we have H(u) < 0. Thus (for u < u1), we have cos θ < zr/2, and thus
dθ/du < 0. We claim that θ(u) → +∞ when u → −∞. To prove this claim, let us proceed
by contradiction and suppose that θ(u) converges towards a finite limit θ∞ when u → −∞.
Then, since z → +∞ when u → −∞, we must have cos θ∞ � 0. On the other hand, we must
have sin θ∞ � 0, or else r(u) would converge towards 0 at an exponential rate; thus, z(u) would
have a finite limit when u → −∞, thus a contradiction. But we must also have sin θ∞ � 0, or
else r(u) would diverge to +∞, and dθ/du would diverge to −∞, which is impossible. Thus
we necessarily have θ∞ = 0 [2π ]; since cos θ < zr/2, we have dθ/du < −cos θ , which is
impossible; the claim is proved, we are thus in the case ‘α-θ -infinite’. �

7.5. Classification

We still consider a solution u �→ (r, θ, z) of equation (4), lying in the invariant subspace
{r > 0}. Not all combinations of the ω-behaviour listed in lemma 5 and the α-behaviour listed
in lemma 6 are possible, as the following lemma shows.

Lemma 7. If the behaviour when u → +∞ is of type ω-bounded, then either we are in the
particular explicit case (θ, z) ≡ (−(π/2)[2π ], 0), or the behaviour when u → −∞ is of type
α-θ -infinite.

Proof. Suppose that the behaviour when u → +∞ of the solution is of type ω-bounded. Then
we have E+∞ � 1. If E+∞ = 1, then z̄ = limu→+∞ z(u) = 0, and the solution is one of the
particular explicit solutions satisfying (θ, z) ≡ (−(π/2)[2π ], 0).

Let us suppose that E+∞ > 1. As a consequence E(u) > 1 (and thus z(u) �= 0) for any
u ∈ R; thus, the sign of z(u) is the same for all u ∈ R. Without loss of generality, we can
suppose that z(u) > 0 for all u ∈ R.

Now, since the stable manifold is tangent to the stable direction at the point (0, −π/2+2kπ ,
z̄) (the limit when u → +∞), we must have (θ(u)+π/2−2kπ)/r(u) → z̄/2 when u → +∞.
Thus cos θ ∼ z̄r/2, and thus, according to (9), dH/du ∼ z̄2r4/4 when u → +∞; in
particular dH/du > 0 for u large positive. Thus, since H → 0 when u → +∞, we see
that H < 0 for u large enough, and, since z(u) never vanishes, according to (19), H < 0 for
any u ∈ R.
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If the behaviour when u → −∞ of the solution were of type α-bounded, then we would
have (r, θ, z) → (0, π/2, z) when u → −∞, for a certain z � 0, and actually z > 0 (or else we
would be in the particular explicit case (θ, z) ≡ ((π/2)[2π ], 0)). Then, because the unstable
manifold is tangent to the unstable direction at the point (0, (π/2)[2π ], z), we would have
(proceeding as above) dH/du > 0 for u large and negative, and since we would also have
limu→−∞ H = 0, this would force H > 0 for u large and negative, which is in contradiction
with the assertion above.

Thus the behaviour when u → −∞ of the solution cannot be of type α-bounded. Also,
it cannot be that of type α-r-infinite, or else we would have E(u) � 1 for any u ∈ R, which is
impossible. Since H(u) < 0 for any u ∈ R, it cannot be of type α-singular. It is thus of type
α-θ -infinite, and the lemma is proved. �

As a consequence, any solution whose behaviour when u → −∞ is not of type α-θ -infinite
necessarily satisfies: (r, θ, z) → (+∞, (π/2)[2π ], 0) when u → +∞ (ω-r-infinite type).
This finishes proving the main assertions of theorem 5 (the only assertion that remains to be
proved is that, for solutions of type α-singular, θ → 0 when u → −∞; it will be proved in
section 5).

7.6. Proof of proposition 2

Let us consider a solution u �→ (r, θ, z) as in proposition 2, i.e. lying in the invariant subspace
{r > 0}, which is not of type α-r-infinite, which does not satisfy (θ, z) ≡ ((π/2)[π ], 0), and
such that z(u) > 0 for u large and negative.

If this solution is of type ω-bounded, then we have seen in the proof of lemma 7 that
z > 0 and H < 0 (and thus dθ/du < 0) for any u ∈ R, and this proves assertion 2 of the
proposition. If this solution is of type α-θ -infinite, then assertion 3 of the proposition follows
from the proof of lemma 6 (we are in the case B2).

It remains to prove assertion 1. Suppose the solution is of type α-bounded or α-singular.
We know that (r, θ, z) → (+∞, (π/2)[2π ], 0) when u → +∞, and that we never have
(θ, z) ≡ ((π/2)[2π ], 0). The equation governing (θ, z) is a small perturbation of the integrable
system (8), in the neighbourhood of an elliptic point, and this makes the trajectory cross the
plane {z = 0} an infinity of times (the precise asymptotics is described by theorem 4).

Thus there exists u0 ∈ R such that z(u0) = 0 and z(u) > 0 for u < u0, and we can
suppose without loss of generality (up to a translation in the variable u) that u0 = 0. Then
according to (19), if H(u1) > 0 for some u1 < 0, then H(u) > 0 for any u ∈ [u1; 0[. If
the solution is of type α-singular, then we have H(u) > 0 on ]−∞; 0[. If the solution is of
type α-bounded, then, we have seen in the proof of lemma 7 that H(u) > 0 for u large and
negative, thus H(u) > 0 on ]−∞; 0[. In both cases, H > 0 yields cos θ > 0 and dz/du > 0
for u ∈ ]−∞; 0[, which proves assertion 1. �

8. Miscellaneous

8.1. Shape at the tip of pendent drops and at the top of sessile drops

There is a large body of literature on asymptotic expansions in capillarity (see, e.g., [11]).
For the sake of completeness, we rapidly recall below how to compute up to any order the
asymptotic expansion of the profile of a pendent drop at its tip or of a sessile drop at its top.
For the singular drop of infinite length, an asymptotic expansion of z in powers of r (when
r → 0, z → +∞) was given by Concus and Finn [3] (for an asymptotic expansion of r in
powers of z−1 see [14]).
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Tip of a pendent drop. Let us consider a solution u �→ (r, θ, z) of equation (4), lying in the
invariant subspace {r > 0}, and satisfying (r, θ, z) → (0, π/2, z̄) when u → −∞ with z̄ > 0
(pendent drop of finite length).

Close to the equilibrium (0, π/2, z̄) (corresponding to the tip of the drop), the unstable
manifold of this equilibrium (containing the trajectory of the solution we are considering) can
be parametrized by the variable r; this defines smooth functions r �→ z(r) and r �→ θ(r) on a
neighbourhood of 0. According to equation (3), these functions satisfy

dθ

dr
= cot θ

r
− z

sin θ
,

dz

dr
= − cot θ. (20)

Let us write θ = π/2 − β. Equation (20) becomes

dβ

dr
= − tan β

r
+

z

cos β
, (21i)

dz

dr
= − tan β. (21ii)

Let

+∞∑
k=0

βkr
k and

+∞∑
k=0

zkr
k

denote the asymptotic expansions of the functions r �→ z(r) and r �→ β(r) at r = 0. We
have β0 = 0 and z0 = z̄. These asymptotic expansions are determined by equations (21i)
and (21ii), and can be computed by induction.

At order 0, equation (21i) yields β1 = z̄/2 and equation (21ii) yields z1 = 0. At order 1,
equation (21i) yields β2 = 0 and equation (21ii) yields z2 = −z̄/4. Let us suppose that
β1, . . . , βk and z1, . . . , zk have been computed this way. Then βk+1 (resp. zk+1) is uniquely
determined by equation (21i) (resp. equation (21ii)) at order k.

In particular, we have

z(r) = z̄ − z̄

4
r2 + O(r3)

(the curvature radius of the profile at r = 0 equals 2z̄). This is in coherence with the observation
made in the introduction that the the shape of the drop close to its tip converges, when z̄ → +∞,
and after a blowup of factor z̄, towards a sphere of radius 2.

Top of a sessile drop. Let us suppose that the solution u �→ (r, θ, z) corresponds to a sessile
drop, and that (r, θ, z) converges towards (0, −π/2, z̄) when u → +∞, with z̄ > 0. Again,
we can locally parametrize by r the stable manifold of the equilibrium (0, −π/2, z̄). Writing
θ = −π/2 + β, equation (20) becomes

dβ

dr
= − tan θ

r
+

z

cos β
,

dz

dr
= tan β.

Again, the asymptotic expansions in r of β and z are uniquely determined by these equations,
and can be computed by induction. This time we find

z(r) = z̄ +
z̄

4
r2 + O(r3).
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8.2. Asymptotic shape of pendent drops when the height converges to 0

For any z̄ ∈ R, there exists a unique (up to translation of u) solution u �→ (r, θ, z) of
equation (4), lying in the invariant subspace {r > 0}, and satisfying (r, θ, z) → (0, π/2, z̄)

when u → −∞. The aim of this section is to study the asymptotic shape of this solution when
z̄ → 0.

For this solution we have E(u) → −1+ z̄2/2 when u → −∞. We suppose that z̄ is small.
Then, since E cannot be smaller than −1, we see that E(u) is close to −1 for all u ∈ R, and
as a consequence (θ, z) � (π/2, 0) for all u ∈ R. Thus we have dr/du > 0 for all u ∈ R,
and the trajectory of our solution can be parametrized by r . Let r �→ (θz̄(r), zz̄(r)) denote the
function [0; +∞[ → R

2 whose graph is this trajectory.
Let us write z̄ = ε, θ = π/2 + εβ, and z = εζ . Equation (4) gives

dr

du
= r cos(εβ),

dβ

du
= −rζ − sin(εβ)

ε
,

dζ

du
= r

sin(εβ)

ε
. (22)

This system converges, when ε → 0, towards the system

dr

du
= r,

dβ

du
= −rζ − β,

dζ

du
= rβ. (23)

The set of equilibrium points of the limit system (23) is the set {(r, β, ζ )|r = β = 0}. At any
point of this set, the matrix of the linearization of the system reads

 1 0 0
−ζ −1 0

0 0 0


 .

The eigenvalues of this matrix are (−1, 0, 1). Thus, according to the centre-stable manifold
theorem [8], any equilibrium point has a one-dimensional stable and a one-dimensional
unstable manifold. The unstable direction is given by the vector (1, −ζ/2, 0); it is transverse
to the invariant plane {r = 0}, and since dr/du �= 0 outside this plane, the unstable manifold
of any equilibrium point can be parametrized by r .

Let r �→ (β1(r), ζ1(r)) denote the function whose graph is the unstable manifold of the
equilibrium point (0, 0, 1) for the system (23). The following proposition gives the desired
asymptotics.

Proposition 3. The maps r �→ ((θz̄(r)−π/2)/z̄, zz̄(r)/z̄) converge towards the map r �→
(β1(r), ζ1(r)) when z̄ → 0, uniformly on any compact subset of [0; +∞[ (convergence holds
for any Ck-topology).

Proof. Adding the equation dε/du = 0 to the system (22), we obtain a smooth differential
equation on R

4. Each point of the plane {r = 0, β = 0} is an equilibrium point, having a
one-dimensional stable (resp. unstable manifold), for this differential equation. The quantity
ε is constant along any solution, and, for ε small enough, the unstable manifold of these
equilibrium points can be parametrized by r . Viewed as functions of r , they depend smoothly
(for the topology of uniform convergence over compact subsets of R) on the equilibrium
point to which they are attached (this follows from the centre-unstable manifold, [8]). The
proposition follows. �

8.3. Local shape of long drops

According to theorem 1, if we consider the profile of a pendent drop of height z̄, and if we
zoom by a factor κz̄ (with 0 < κ � 1) on a point of this profile situated at height z = κz̄,
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then the resulting picture converges, when z̄ → +∞, towards the profile corresponding to the
periodic solution of equation (6) on the level set {H = η(κ)}. See the introduction for pictures
displaying various such profiles, for different values of H .

8.4. The problem of self-intersections

We do not know if the profiles in the (r, z)-plane of finite pendent drops may display self-
intersections. What we can say is that, if we consider the profile of a finite pendent drop, and if
we cut this profile into two parts, corresponding to the parts of the trajectory before (resp. after)
the first intersection with the plane {z = 0}, then each of these two parts, taken separately,
does not display any self-intersection. Indeed, according to the results of section 7, the first
part of the profile can be parametrized by z, while the second part can be parametrized by r .

It was proved by Concus and Finn [5] (see also Bidaut-Veron’s paper [1]), that the profile of
the (unique) singular infinite drop displays no self-intersection (more precisely the entire profile
can be parametrized by r). We were not able to recover this result by the ‘dynamical systems’
approach. Nevertheless, using this result and the remark above, one can easily prove that the
profiles of finite drops of sufficiently large length (z̄ large) also display no self-intersection
(we leave the details to the reader). On the other hand, we saw in section 8.2 that the profiles of
pendent drops of sufficiently small length (z̄ small) can be entirely parametrized by r , therefore
again display no self-intersection.

8.5. Higher-dimensional case

In this section we briefly mention what the main definitions and computations stated before
become in higher dimension. It is very likely that all previous results extend, up to these minor
modifications, to the higher-dimensional case.

We consider an axisymmetric capillary hypersurface in R
n+1, with n � 2 (the physical

case treated in the previous sections corresponds to n = 2). We define the variables r , θ , z,

and s as in section 2.1 (this time we have r =
√

x2
1 + · · · + x2

n , where (x1, . . . , xn) denote the
‘horizontal’ coordinates). We still have dr = sin θ ds and dz = cos θ ds. The balance between
pressure and surface tension reads

�P = �

(
−dθ

ds
+ (n − 1)

cos θ

r

)
.

We have �P(z) = �P(z = 0) + ρgz, and an adequate choice of the origin of z and of the
length scale leads to �P(z) = �z and to the system

dr

ds
= sin θ,

dθ

ds
= (n − 1)

(
cos θ

r
− z

)
,

dz

ds
= − cos θ.

The change of time ds = r du gives
dr

du
= r sin θ,

dθ

du
= (n − 1)(cos θ − rz),

dz

du
= −r cos θ. (24)

Equilibrium points of this equation are the points (r, θ, z) satisfying r = 0 and θ =
±(π/2) [2π ]. Each of these points has a one-dimensional stable (resp. unstable) manifold.
When r → ±∞, expressions governing dθ/ds and dz/ds converge towards

dθ

ds
= −(n − 1)z,

dz

ds
= − cos θ,

which yields the second-order equation

d2θ

(n − 1)2ds2
= cos θ

n − 1
;
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thus the quantity

E = z2

2
− sin θ

n − 1
is asymptotically conserved when r → ±∞. Along a solution of equation (24), we have

dE

du
= − cos2 θ.

The change of variable and time R = zr and dt = z ds gives
dR

dt
= sin θ − R

z2
cos θ,

dθ

dt
= (n − 1)

(
cos θ

R
− 1

)
,

dz

dt
= −cos θ

z
.

The asymptotic differential equation (when z → +∞) governing R and θ reads
dR

dt
= sin θ,

dθ

dt
= (n − 1)

(
cos θ

R
− 1

)
(25)

and admits the conserved quantity

H(R, θ) = Rn−1

(
cos θ − n − 1

n
R

)
.

Let us still denote by H the function (r, θ, z) �→ H(zr, θ), and by H(u) its values along a
solution u �→ (r, θ, z) of equation (24). Then we have

H = (zr)n−1

(
cos θ − n − 1

n
zr

)
and

dH

du
= (n − 1)rnzn−2 cos θ(zr − cos θ).

In particular,

r > 0 z > 0 and H = 0 ⇒ dH

du
> 0.

Let

D =
{
(R, θ)|−π

2
< θ <

π

2
and 0 < R <

n

n − 1
cos θ

}
.

For (R, θ) ∈ D, we have 0 < H(R, θ) < 1/n and H(R, θ) = 1/n ⇔ (R, θ) = (1, 0). The
point (1, 0) is the only critical point of H(., .) and the only equilibrium point of the differential
equation (25) in D. The matrix of the linearization at the point (1, 0) of this differential
equation reads (

0 1
−(n − 1) 0

)
(this point is thus an ‘elliptic’ point).

All solutions of equation (25) in D are periodic (except the fixed point (1, 0)) and they are
parametrized by the value in ]0; 1/n[ taken by H(., .) on their trajectories. For a ∈ ]0; 1/n[,
let us write

In(a) =
∫

(n − 1)Rn cos θ(R − cos θ) dt, Jn(a) =
∫

cos θ dt,

where the integrals are taken over one period of the periodic solution of (25) corresponding to
the value a for H(., .). One finds that

In(a) = 2
∫ 1

(na)1/n

(Rn
2 − Rn

1 )u√
1 − u2

du,

where R1 < R2 denote the two roots of the equation Rn−1(u − ((n − 1)/n)R) = a. This
equation shows that In(a) > 0 for any a ∈ ]0; 1/n[. The averaged differential equation for H

reads
dH

dt
= −1

z

In(H)

Jn(H)
.
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