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Abstract. We give a variational proof of global stability for bistable
travelling waves of scalar reaction-diffusion equations on the real line.
In particular, we recover some of the classical results by P. Fife and
J.B. McLeod (1977) without any use of the maximum principle. The
method that is illustrated here in the simplest possible setting has been
successfully applied to more general parabolic or hyperbolic gradient-like
systems.

1. INTRODUCTION

The purpose of this work is to revisit the stability theory for travelling
waves of reaction-diffusion systems on the real line. We are mainly inter-
ested in global stability results, which assert that, for a wide class of initial
data with a specified behavior at infinity, the solutions approach for large
times a travelling wave with nonzero velocity. In the case of scalar reaction-
diffusion equations, such properties have been established by Kolmogorov,
Petrovski and Piskunov [11], by Kanel [9, 10], and by Fife & McLeod [4, 5]
under various assumptions on the nonlinearity. The proofs of all these re-
sults use a priori estimates and comparison theorems based on the parabolic
maximum principle. Therefore they cannot be extended to general reaction-
diffusion systems nor to scalar equations of a different type, such as damped
hyperbolic equations or higher-order parabolic equations, for which no max-
imum principle is available. However, these methods have been successfully
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applied to monotone reaction-diffusion systems [15, 18], as well as to scalar
equations on infinite cylinders [14, 16].

Recently, a different approach to the global stability of bistable travelling
waves has been developped by the second author [13]. The new method is
of variational nature and is therefore restricted to systems which admit a
gradient structure, but it does not make any use of the maximum principle
and is therefore potentially applicable to a wide class of problems. The goal
of this paper is to explain how this method works in the simplest possible
case, namely the scalar parabolic equation

U = Uz — F' (1) | (1.1)

where u = u(x,t) € R, x € R, and ¢t > 0. We shall thus recover the main
result of Fife and McLeod [4] under slightly different assumptions on the
nonlinearity F, with a completely different proof. The present article can
also serve as an introduction to the more elaborate work [13], where the
method is developed in its full generality and applied to the important case
of gradient reaction-diffusion systems of the form u; = uz, — VV(u), with
u € R" and V : R® — R. A further application of our techniques is given
in [7], where the global stability of travelling waves is established for the
damped hyperbolic equation auy + ur = g, — F'(u), with a > 0.

We thus consider the scalar parabolic equation (1.1), which models the
propagation of fronts in chemical reactions [2], in combustion theory [9, 10],
and in population dynamics [1, 6]. We suppose that the “potential” F': R —
R is a smooth, coercive function with a unique global minimum and at least
one additional local minimum. More precisely, we assume that F € C?(R)
satisfies

lim inf wF” (u) > 0. (1.2)

|u|—o0
In particular, F(u) — 400 as |u| — co. We also assume that F' reaches its
global minimum at v = 1:

F(1)=-A<0, F((1)=0, F'(1)>0, (1.3)

and has in addition a local minimum at u = 0:
F)=F'(0)=0, F"(0)=p8>0. (1.4)
Finally, we suppose that all the other critical values of I are positive, namely
{uER:F’(u) =0, F(u) SO} ={0;1}. (1.5)

A typical potential satisfying the above requirements is represented in Fig-
ure 1.
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Fig. 1: The simplest example of a nonlinearity F satisfying assumptions (1.2)—(1.5).

Under assumptions (1.3)—-(1.5), it is well-known that equation (1.1) has
a family of travelling waves of the form wu(z,t) = h(z — c4t) connecting the
stable equilibria v = 1 and u = 0 [1]. More precisely, there exists a unique
speed ¢, > 0 such that the boundary-value problem

W'(y) + e (y) — F'(h(y)) =0, yeRr,
{ M) =1, h(roo)=0. (1.6)

has a solution h : R — (0,1), in which case the profile h itself is unique up
to a translation. Moreover, h € C3(R), h/(y) < 0 for all y € R, and h(y)
converges exponentially to its limits as y — +oc.

This family of travelling waves plays a major role in the dynamics of
equation (1.1), as is shown by the following global convergence result:

Theorem 1.1. Let F' € C*(R) satisfy assumptions (1.2)—(1.5). Then there
exist § > 0 and v > 0 such that, for all initial data uy € C°(R) with
limsup |ug(z) — 1| <6, limsup |up(z)| <4, (1.7)
r——00 r——+00
equation (1.1) has a unique global bounded solution satisfying u(x,0) = ugp(z)
for all x € R. In addition, there exists xog € R such that

—l/t)

sup |u(z,t) — h(x — ext — x0)| = O(e ,  ast— +oo. (1.8)

zeR

Theorem 1.1 was first proved by Fife and McLeod [4, 5] under the ad-
ditional assumption that 0 < wug(z) < 1 for all x € R. In that case
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u(z,t) € [0,1] for all x € R and all £ > 0 by the maximum principle, so
that the coercivity assumption (1.2) is not needed. As is mentioned in [3],
the results of [4] can be extended to arbitrary initial data satisfying (1.7)
provided that wF”'(u) > 0 for all u ¢ [0, 1], a condition that is more restrictive
than (1.2) in the sense that F' is not allowed to have critical points outside
the interval [0, 1]. The simplest case considered in [4] is when F' has exactly
one critical point in the open interval (0,1), a situation in which condition
(1.5) is clearly met. However, Fife and McLeod also study the case where
F' has three critical points in the open interval, including a local minimum
at u = u, € (0,1). In this situation there exists a travelling-wave solution
of (1.1) with speed ¢; > 0 connecting u = 1 to u = u,, and also a travelling
wave with speed co € R connecting u = u, to u = 0. If ¢; > o, which is
always the case if (1.5) holds, there exists ¢, € (0,1) such that (1.6) has a
solution h : R — (0, 1), and the conclusion of Theorem 1.1 is still valid. If
c1 < cg, there exists no travelling wave connecting v = 1 to u = 0, and the
solution of (1.1) with initial data satisfying (1.7) converges as ¢ — oo to a
superposition of two travelling waves [4].

Theorem 1.1 is a particular case of the general results obtained in [13]; see
Theorem 4 in Section 9.6 of that reference. Therefore, there is no need to give
here a complete proof. Instead we shall prove the convergence result (1.8)
under the additional assumption that the initial data ug(z) decay rapidly to
zero as © — +oo. It is intuitively clear that the precise behavior of ug(x)
near x = +o0o should not play an important role, because the equilibrium
u = 0 ahead of the front is stable (this is in sharp contrast with the case
of a monostable front invading an unstable equilibrium, where the behavior
ahead of the front is of crucial importance). However, this restriction allows
us to shortcut many technicalities and to give a much simpler proof in which
the essence of the argument can be easily understood.

Our approach is based on the fact that equation (1.1) possesses (at least
formally) a gradient structure, not only in the laboratory frame but also
in any frame moving to the right with a positive velocity. To see this, we
introduce the following notation. If u(z,t) is a solution of (1.1), we define
for any ¢ > 0

v(y,t) =u(y +ct,t) , orequivalently w(x,t) =v(x — ct,t). (1.9)
Setting y = = — ¢t we see that the new function v(y,t) satisfies

Vg = Vyy + cvy — F'(v). (1.10)
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We now introduce the energy functional

Ecfv] = /}Recy<%v§ + F(v)) dy , (1.11)
and the corresponding energy dissipation functional
D.[v] = /Recy (vyy + cvy — F’(v))2 dy. (1.12)
We also denote by H!(R) the Banach space
HAR) = {v e L®(R) : ¥/ € H'R)} (1.13)
equipped with the norm [[v||z1 = [[v][ze + HGCy/2’U||H1. Note that any v €

HL(R) decays to zero faster than e~¥/2 as y — +o0. Since F(v) ~ (v?/2
as v — 0 by (1.4), it follows that E.[v] < oo for all v € H}(R). Conversely,
any v € L®(R) such that v(y) — 0 as y — +oo belongs to H.(R) as soon
as E[v] < oo.

If v(y, ) is a solution of (1.10) with initial data vy € HX(R), then v(-,t) €

H}(R) for all ¢t > 0 and a direct calculation shows that

d

dt
In other words, the energy &. is a Lyapunov function of system (1.10) in
H!(R). This observation is of course not new: in their original proof, Fife
and McLeod [4] already used a suitable truncation of the functional &, for the
particular value ¢ = ¢, to show that the solution v(y, t) of (1.10) approaches a
travelling wave for a sequence of times. However, the fact that equation (1.1)
has a whole family of (nonequivalent) Lyapunov functions has not been fully
exploited until recently. The only reference we know where the implications
of this rich Lyapunov structure are really discussed is a recent paper by
Muratov [12], which contains a lot of interesting observations and a few
general results concerning a wider class of systems than equation (1.1), but
fails to prove the convergence to travelling waves. The goal of the present
article is to show that, in the simple case of equation (1.1), the gradient
structure alone is sufficient to establish convergence, at least if we restrict
ourselves to solutions which decay to zero rapidly enough as © — 400 so
that the energy functionals are properly defined.

The main difficulty of this purely variational approach is that we do not
have good a priori estimates on the solution v(y,t) = u(y+ct, t) in a moving
frame with speed ¢ > 0. First of all, it is not clear a priori that the energy
Ec[v(+,t)] is bounded from below (this will not be the case typically if ¢ is

Eu( )] = —Deu( )] <0, t>0. (1.14)
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too small), and without this information it is difficult to really exploit the
dissipation relation (1.14). Next, if we have a lower bound on &.[v(-,1)],
we can deduce from (1.14) that the solution v(y,t) converges uniformly on
compact sets, at least for a sequence of times, towards a stationary solution
of (1.10), but we cannot exclude a priori that this limit is just the trivial
equilibrium v = 0 (this will be the case typically if ¢ is too large). To
overcome these difficulties, the main idea is to track the position of the front
interface in the following way. We fix positive constants 3 and (5 such that
1 < F"(0) < B2, and we choose € > 0 small enough so that

B < F"(u) < By, forall ue[—2¢,2¢]. (1.15)
Given a continuous solution of (1.1) satisfying the boundary conditions

lim w(z,t)=1, 11141_1 u(z,t)=0, t>0, (1.16)

we define the invasion point z(t) as the first point starting from the right
where the solution u(z,t) leaves an e-neighborhood of the equilibrium u = 0:

z(t) = max{ac eR:|u(x,t)| > E}. (1.17)

In view of (1.16), it is clear that —oco < Z(t) < oo for all ¢ > 0, and that
lu(z(t),t)| = e. A quantity similar to Z(¢) was also introduced in [12], where
it is called the “leading edge.”

The strategy of the proof is to show that the solution u(x,t) converges
uniformly on compact sets around the invasion point Z(t) towards a suitable
translate of the travelling wave (1.6). Using only the gradient structure, we
can prove the following result:

Proposition 1.2. Let F € C*(R) satisfy assumptions (1.2)—(1.5). If ug €
HX(R) for some sufficiently large ¢ > 0 and ug — 1 € H*(R_), then the
solution u(z,t) of equation (1.1) with initial data ug satisfies, for all L > 0,

sup  |u(z(t) + z,t) — he(z)| — 0, (1.18)
z€[—L,400) §—00
where T(t) is the invasion point (1.17) and h. is the travelling wave (1.6)
normalized so that h-(0) = e. Moreover, the map t — z(t) is C' for t
sufficiently large and T'(t) — ¢ as t — oo.

As is explained above, the assumption uy € H!(R) is needed in order to
use the energy functional £, without truncating the unbounded exponential
factor e®’. The proof will show that it is sufficient to take here ¢ > /2A /¢,
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where A is defined in (1.3) and ¢ in (1.15). On the other hand, the assump-
tion ug — 1 € H'(R_) is just a convenient way to guarantee that the first
condition in (1.16) is satisfied, but with minor modifications we can treat the
more general case where |ug(x) — 1] is assumed to be small for large = < 0,
as in (1.7).

The local convergence established in Proposition 1.2 is the key step in
proof of Theorem 1.1. Once (1.18) is known, it remains to show that the
solution u(x,t) converges uniformly to 1 in the region far behind the invasion
point Z(t). Such a “repair” is certainly expected because u = 1 is the point
where the potential F' reaches its global minimum. A convenient way to
prove this is to use a truncated version of the functional

Elu] = /R(%ui + F(u)) da (1.19)

where F(u) = F(u) — F(1) > 0. In this way, we can show that the solution
u(x,t) approaches uniformly on R a travelling wave (at least for a sequence
of times), and using in addition the local stability results established in [17]
we obtain (1.8). We thus have

Corollary 1.3. Under the assumptions of Proposition 1.2, there exist xg € R
and v > 0 such that (1.8) holds.

We conclude this introduction with a few comments on the scope of our
method. First, it is clear that the assumptions (1.2)—(1.5) are not the weakest
ones under which Proposition 1.2 holds. A careful examination of the proof
reveals that the only hypotheses that we really use are the following:

H1: For all bounded initial data ug, equation (1.1) has a (unique) global
bounded solution. This is certainly true if (1.2) holds, but it is suffi-
cient to assume, for instance, that F'(u) — 400 as |u| — oo, or that
uF'(u) > 0 whenever |u| is sufficiently large.

H2: F(0) = F'(0) =0, and there exists £ > 0 such that F"(u) > 0 for all
u € [—¢,¢e]. This is automatically true if (1.4) holds, but u = 0 need
not be a strict local minimum of F'. In particular, Proposition 1.2
holds for the nonlinearities of combustion type considered in [9, 10].

H3: There exists a unique ¢ > 0 such that the differential equation vy, +
cvy — F'(v) = 0 has a bounded solution satisfying |v(0)] = ¢, |v(y)| <
e forally >0, and v(y) — 0 as y — +o0; furthermore, this solution
is unique. Under assumptions (1.3)—(1.5), we have ¢ = ¢, and v = h,.
In general, we can assume without loss of generality that v is positive
and converges to 1 as y — —oo, so that F(1) < 0 and F'(1) = 0. It
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also follows that F'(u) > 0 for all v < 0 and that F' has no critical
point u, < 1 with F'(uy) < 0.

On the other hand, to prove that the solution of (1.1) given by Proposi-
tion 1.2 converges uniformly on R to a travelling wave we need the additional
assumption:

H4: There exists ¢’ > 0 such that the only bounded solution of the differ-
ential equation Uz, — F'(u) = 0 with |u(0) — 1] < &’ is uw = 1. This
requires that F' attains its global minimum at v = 1, and nowhere
else.

Finally, if we want the convergence to be exponential in time as in (1.8), we
need to assume that F”(1) > 0.

Another comment concerns the variational structure of equation (1.1).
Due to the exponential weight e®, it is clear that the energy functional &, is
not translation invariant. In fact, for any v € H!(R) and any ¢ € R, we have
the relation E.[v(- — £)] = e““&.[v]. This implies that the infimum of &.[v] is
either 0 or —oco. Under our assumptions on F', the transition between both
regimes occurs precisely at the critical speed c, for which travelling waves
exist:

inf E.Jv] =

veEHL(R)

0 if ¢>cy,
—o0 if ¢ < .

Indeed, as was observed by Muratov [12], for any ¢ < ¢, + /2 + 4F"(0) we
have the identity

cEufh] = (c - ) / eVH (y)* dy |

R
where h is the solution of (1.6). This shows in particular that E.[h] < 0
when ¢ < ¢,; hence, inf £, = —oc in that case. The fact that £ > 0 when

¢ > ¢4 is not obvious a priori, and will be established in the course of the
proof of Proposition 1.2; see Corollary 4.3. Note also that &, [h] = 0, so that
inf€, =miné&,, =0.

The rest of the paper is organized as follows. In Section 2, we establish the
basic inequalities relating the energy &, the dissipation D., and the invasion
point. Using these relations, we prove in Section 3 that the average speed of
the invasion point Z(¢) has a limit ¢, > 0 as t — oco. The core of the paper
is Section 4, where we show that ¢, = ¢, and prove Proposition 1.2. The
proof of Corollary 1.3 is then performed in the final Section 5.

Acknowledgments. The authors are indebted to S. Heinze, R. Joly, and
C.B. Muratov for fruitful discussions.
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2. PRELIMINARY ESTIMATES

As the potential F' is smooth and coercive, it is well-known that the
Cauchy problem for the semilinear equation (1.1) is globally well-posed in
the space of bounded functions; see e.g. [8]. Due to parabolic regularization,
the solutions are smooth for ¢ > 0 and satisfy (1.1) in the classical sense.
Under assumption (1.2), one can also show that our system has a bounded
absorbing set in the following sense:

Lemma 2.1. There exists a constant B > 0 depending only on F such
that, for all initial data ug € L*°(R), the (unique) solution u(z,t) of (1.1)
satisfies, for all sufficiently large t > 0,

sup(\u(x,m gz, )] + |um(x,t)|) < B. (2.1)
z€R

Moreover, u(-,t) is bounded in H{ (R) for some s >5/2 and all t > 1.

The uniform bound on |u(zx,t)| follows easily from the maximum princi-
ple, but it can also be established using localized energy estimates; see [13,
Section 9.1]. The bounds on the derivatives are then obtained in a standard
way using parabolic regularization.

From now on, we suppose that ug € HZ, (R) for some ¢g > 0 (which will
be specified later) and that ug — 1 € H*(R_). Then the solution of (1.1)
with initial data ug satisfies u(-,t) € H} (R) and u(-,t) — 1 € H'(R_) for all
t > 0, because u = 0 and u = 1 are (stable) equilibria of (1.1). In particular,
the boundary conditions (1.16) hold for all times, so that one can define the
invasion point Z(t) by (1.17). Also, since we are interested in the long-time
behavior of u(z,t), we can assume without loss of generality that estimate
(2.1) is valid for all ¢t > 0.

As is explained in the introduction, we shall use the energy functionals &,
(for various values of ¢ > 0) to prove that the solution u(z,t) converges to a
travelling wave h locally around the invasion point Z(¢). A technical problem
we shall encounter is that the invasion point, as defined in (1.17), need not
be a continuous function of time and can therefore jump back and forth in
an uncontrolled way. It is possible to avoid this difficulty using a more clever
definition than (1.17) (see [13]), but we follow here another approach and
just introduce a second invasion point defined by

X(t) = max{:p eR:|u(z,t)| > 25}. (2.2)
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Clearly, —oo < X (t) < Z(t) < 4oc for all t > 0. The important point is that
information on z at a given time provides an upper bound on X at later
times:

Lemma 2.2. There exists Ty > 0 and Cy > 0 such that, for all tg > 0, one
has

X(t) < &(tg) + Cy  for all t € [to,to + Tp)- (2.3)

Proof. Fix ¢ty > 0. The solution of (1.1) satisfies

t
w(t) = S(t —to)u(te) — | St —s)F'(u(s))ds = uy(t) + ua(t), t > to,
to
where S(t) = €% is the heat semigroup. Take K > 0 such that |F'(u)| < K
whenever |u| < B, where B is as in (2.1). Then |Jua(t)| re~ < K(t —tp). On
the other hand, by definition of Z, we have |u(x,to)| < ¢ if x > Z(tp) and
lu(z,to)] < B if x < Z(tp). Using the explicit form of the heat kernel, we
deduce that

€T — :f‘(to) )
< T w)

where erfe(z) = (2/y/7) [[Fe —2* dz. We first choose Tj) > 0 such that KTy <
g/2, and then Cy > 0 such that Berfc(Cy//4Ty) < e. Then, for all t €
[to, to + To] and all > Z(t9) + Cp we have |u(x,t)| < 2¢, which implies that
X (t) < Z(tg) + Co. O

We now derive the basic estimates on the energy (1.11) and the energy
dissipation (1.12) which will be used throughout the proof. Given ¢ € (0, ¢p),
we define v(y,t) = u(y + ct,t) as in (1.9), and we set

E.(t) = Efv(-t)], De(t) =Defo(-,t)], t=>0. (2.4)

B
lui(z,t)| /e i t0>|u y,to)|dy < e+ 5erfc<

Of course, v(y,t) depends also on the speed parameter ¢, but to simplify the
notation this dependence will not be indicated explicitly. We also denote by
Je(t) and Y,(t) the invasion points in the moving frame:

Pe(t) = Z(t) — ct Y.(t) = X(t) —ct . (2.5)

By construction, [v(y.(t),t)| = € and [v(y, t)| < e fory > g.(t), and |v(y, t)| <
2e for y > Y.(t). Remark that, by (1.15), the following inequalities hold
whenever |v| < 2e:

ﬁl v? < F(v) < @qﬂ . B <uF'(v) < Bov?, By < F'(v) < Ba. (2.6)
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Lower bound on E.: Using (1.11), (2.6), and the fact that F'(u) > —A for
all u € R, we find

m = [ (.t + Fow ) a

—0o0

+ /y:(;) ecy<%v;(y,t) + F(v(y,t))) dy (2.7)

. 2V

Y

gC(t) o 1
> [ ey [ (Gt + B dy
c(t)
To estimate the last integral in (2.7) we recall that v(g.(t),t)? = €2, so that
eUe(t)c2 — —/ Oy (ecyUQ(y,t)> dy
Ye(t)

—— [ e (200000, (0.0) + 2(0.0)) .
Fe(t)

Given d > —c¢, we have [2vv,| < (¢+d)v* + (c+d)~'vy; hence,

c+d

c

(Telt) 22 S/ ecy( 1 vZ(y,t)+d02(?Jat>) dy. (2.8)
Fe(t)

If we choose d such that d(c + d) = (1 and insert the resulting inequality
into (2.7), we obtain

_ A 1
E.(t) > eVet) (_Z + H€2), where 0 < k < Z(C +V/c+45). (2.9)

This estimate shows in particular that the energy E.(t) is bounded from
below as long as the invasion point g.(¢) is bounded from above. Moreover,
the lower bound is close to zero if g.(t) is large and negative.

Variation of D.: It follows from (1.10) and (1.12) that

Du(t) = /R Vo2 (y, ) dy.

Differentiating this relation with respect to ¢ and integrating by parts, we
find

1
§Dé(t) = /6cy(vtvtt)(yvt) dy:/ecyvt(vtyy+cvtyF”(”)Ut)dy
R R

= —/ecyvfy(y,t) dy—/ecyF”(v(y,t))v?(y,t)dy.
R R
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Take C7 > 0 such that F”(u) > —C}/2 whenever |u| < B, where B is as in
(2.1). Then the above relation shows that
DL(t) < CiD.(t), t=>0. (2.10)

This differential inequality implies that, if D, € L*(R.), then D.(t) — 0 as
t — 00. Since E(t) = —D.(t) by (1.14), this will be the case as soon as E,
is bounded from below.

Lower bound on D.: Using (1.12) again and integrating by parts, we find
Dot) = / eV (v, + cvy — F'(0))(y, ) dy
R

_ / e (o3, + 2P (W)l + F'(0)) (1) dy.
R

We split the integration domain into (—oo, Y.(t)) and (Ye(t),+oc0). Using
(2.1), (2.6) and the lower bound F”(v) > —C1/2, we obtain
C\B* 5 >
De(t) 2 =0 4 / eV (02, (4,6) + 28103y, £) + BR%(y,1) ) dy.
Ye(t)

Observe that, for any yy € R,

[e’¢) C2 o} 00 02 00
/ ecyvs dy > —/ eYv?dy and / Vo2 dy > —/ e“Yo? dy.
4 Yy 4 Yy
Yo Yo Yo Yo
(2.11)
Indeed the first inequality is just (2.8) with ¢ = 0, d = —¢/2, and y.(t)
replaced by 1o, and the second inequality is similar. Thus, for any d > 0 we
have

2 _
D.(t) > _GB e (2.12)
&

“ S _d)e? 2 ATy o
+ /Yc(t) e {(251 + 1 d)vy + (ﬁl + T )v (y,1) dy.
In an analogous way we find

B = [ Nz (3300) + Fluly,1))) dy

—00

Y.

K Ye(t) /OO L, B2 o
< = etYe cy = M2
< et ,(t)e (2vy(y7t)+ 5 ¥ (yﬂf)) dy ,

> 1
+ / » ecy(§v§(y,t) + F(o(y, t))) dy (2.13)

c
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where K = (B%/2) + K’ and K’ = sup{F(u)||u| < B}. If we now combine
(2.12) and (2.13), and choose the particular value d = B2 — (B2 — 31)?/(B2 +
c/4) > 0, we arrive at

C _
Do(t) > vEo(t) — Z2e¥® >0, (2.14)
c
where @ 2
1(c +4ﬁl 2
O<y< ———— d Co,=CB K.
S 2 02 + 4,82 ) all 2 1 +fy
Inequality (2.14) means that, if the invasion point Y.(t) is large and neg-
ative, the energy dissipation D, = —F! is essentially proportional to the

energy itself. This gives a differential inequality for E.(t) which, in view of
Lemma 2.2, can be integrated as follows:

T: _
Bolt) < e (1) + 20l |y e (1o 1o+ T (2.15)
C

Remark 2.3. The constants Cy, C7 and Tj introduced in this section depend
only on the potential F'. In particular, they are independent of the solution
u(z,t) and of the speed parameter c. Similarly, if we choose k = v/(1/2 and
v = 232/, then the constants x,~y and Cy depend only on F.

3. EXISTENCE OF THE INVASION SPEED

As in the previous section, we suppose that u(z,t) is a solution of (1.1)
with initial data ug satisfying the assumptions of Proposition 1.2. We also
assume that the bounds (2.1) hold for all ¢ > 0. If Z(¢) denotes the invasion
point (1.17), we define

T(t T(t
c_ = liminf () , ¢y = limsup & (3.1)
l—0o0 t t—o0 t
Our first result shows that the solution u(z,t) invades the stable equilibrium
u = 0 at a positive, but finite, speed.

Proposition 3.1. One has c— > 0 and ¢4 < 0.

Proof. The proof relies on the lower bound (2.9). Assume that the initial
data ug belong to H. (R) for some ¢ > V2A/e, where A = —F(1) and ¢
is as in (1.15). Using (2.9) with ¢ = ¢y and k = ¢/2, we find that E.(t) >
e () for some o > 0. Since E,(t) < E,(0) for all t > 0, it follows that
Je(t) = z(t) — ct is bounded from above; hence,

Ye(t)

¢y = c+limsup —= < ¢ < o0.
t—00 t
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On the other hand, since up — 1 € H(R_) and F(1) = —A < 0, it is easy
to verify that E.(0) = & [ug] ~ —A/c as ¢ — 0. Thus if we take ¢ > 0
sufficiently small so that E.(0) < 0, it follows from (2.9) that 0 > E.(0) >
E.(t) > (=A/c)e¥®) for all t > 0. This implies that 7.(t) = Z(t) — ct is
bounded from below; hence,

c_ = ¢+ liminf ge(t)

t—o00 t

>c> 0.

This concludes the proof. ]
We next prove that the average invasion speed Z(t)/t converges to a limit
as t — oo.

Proposition 3.2. One has c_ =c4.

Proof. We argue by contradiction. Assume that c_ < ¢, and choose time
sequences {ty, tnen and {t), }nen such that ¢, — oo, t}, — oo and
— / —
) )

t;l n—oo t, n—oo

Cy.

Due to Lemma 2.1, upon extracting a subsequence we can assume that
u(Z(t,) + 2,tn) converges in HE _(R) to some limit we(z). More precisely,
for any L > 0,

u(Z(ty) + 2, tn) — weo(z) in H?*([-L,L]),
u(Z(ty) + 2z, tp) — Weo(z) in LZ([—L,L]) ,

where wo € HZ (R)NL®(R) and s € L®(R) satisfy e = Wl — F (woo).
Moreover, by definition of the invasion point, we have |ws(0)| = €.

Now, we fix any ¢ € (c_,c4), and we observe that the invasion point
Ue(t) = Z(t) — ct satisfies g.(t),) — —oc and g.(t,) — 400 as n — oo. Using
first the lower bound (2.9), we find

A o
) > —Zeeltn) 0 (3.2)
cC n— o0

hence (since E,. is non-increasing), E.(t) > 0 for all t > 0. As El(t) =
—D,(t), we deduce that

E.(t

n

/ T Du(t)dt < B,(0) < oo, (3.3)
0

and using in addition (2.10) we conclude that D.(t) — 0 as t — oo.
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Next, we observe that, for all n € N,

D.(t,) = /Recyv?(y,tn)dy:ecgc(t")/Reczvf(yc(tn)Jrz,tn)dz

_ ecie(ta) / € (uy + cup 2 (E(t) + 2, 1) dz. (3.4)
R

Since D.(t,) — 0 as n — oo, the last integral in (3.4) converges to zero as
n — 00; hence, the limits ws, and e, satisfy e + cwl, = 0. Incidentally,
this means that w/, + cwl, — F'(we) = 0; ie., weo is a travelling-wave
solution of (1.1) with speed ¢. Now the crucial point is that ¢ € (c—,c4)
is arbitrary. Obviously, the relation s + cwl, = 0 can be satisfied for
two different values of ¢ only if w/ = 0, i.e., if wy is identically constant.
But then we must have F'(ws) = 0, which is impossible in view of (2.6)
since |weo| = €. This contradicts the assumption ¢_ < ¢4 and concludes the
proof. O

Remark 3.3. Another way to obtain a contradiction in the proof of Propo-
sition 3.2, which works even if u = 0 is not a strict local minimum of F' (see
hypothesis H2 in the introduction), is to observe that the limiting function
Woo(%) converges to zero as z — +oo. Indeed, proceeding as in (2.7) and
(3.4), and using (2.11), we find for all n € N

Ec(tn> — eCyc(tn)/

[ (%uQ F(w)) (@(t) + 2 1) 2

_ o0 1 A
> ecyc(t”)/o ecz<§u:20 + %tﬂ) (Z(tn) + 2, tn)dz — Eecyc(t”) (3.5)

/

_ S A
> ecyﬂ(t”)% / ecz(ufc + u2)(j(tn) + z,ty)dz — —ecyc(t”),
0 c

where £’ = min{1, (c2+431)(c*+4)71}. As E.(t,) < E.(0) and ¥.(t,) — +00
as n — 0o, we have by Fatou’s lemma

/OO e (whe (2)? + woeo(2)?) d2
0

n—o00 CKR

DR > cz(, 2 2\ (= 24
< liminf e (ug +u)(Z(tn) + 2,1p) dz < — < oc.
0

Thus we € H(R), and in particular ws(2) — 0 as z — +oco. This is clearly
/

impossible if w., = 0 and |ws(0)| = €.
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4. LOCAL CONVERGENCE TO A TRAVELLING WAVE

This section is devoted to the proof of Proposition 1.2. Using the same
notation as in the previous sections, we first prove that the solution u(z,t)
of (1.1) converges for a sequence of times towards a travelling wave, locally
in space around the invasion point. On this occasion we identify the invasion
speed given by Proposition 3.2 with the unique speed ¢, for which travelling
waves exist.

Proposition 4.1. Let coo = c— = cy. There exists a sequence t,, — oo such
that, for all L > 0,
L
/ €% (U + Cootiy)2(Z(tn) + 2,t,) dz —— 0. (4.1)
L n—00

Proof. Since the left-hand side of (4.1) is a nondecreasing function of L, it
is sufficient to prove that, for any L > 0, there exists a sequence ¢, — o0
such that (4.1) holds. We argue by contradiction and assume that there
exist L > 0 and 0 > 0 such that

L
/ €% (uy + Cootiy)X(Z(t) + 2,t)dz > 8, (4.2)
—L
for all sufficiently large ¢. In fact, upon changing the origin of time, we
can assume that (4.2) holds for all ¢ > 0. In analogy with (2.5), we denote
y(t) = Z(t) — coot. Two situations may occur:
Case 1: There exists a time sequence t, — oo such that {y(t,)}nen is
bounded from below. Without loss of generality we can assume that ¢, >
tn + 1 and y(t,) > 1 for all n € N (the second condition is easily achieved
by translating the origin).

Let K > 0 be such that E.(0) < K for all ¢ € [coo, ¢p], Where ¢y > ¢ is
as in the proof of Proposition 3.1. Take ¢ € (¢, ¢o) sufficiently close to coo
so that

L
eleeo)l <9 and  (c— coo)QBz/ e>*dz < % , (4.3)
-L
where B is asin (2.1). Let g.(t) = Z(t) —ct = y(t) — (c—co)t. Since y(t,) > 1
for all n € N, it is clear that the cardinality of the set
Se={neN:g.(t,) >0} ={neN:gy(t,) > (¢ — coo)tn}

becomes arbitrarily large as ¢ — co; see Figure 2. On the other hand,
Je(tn) — —o0 as n — oo, and this implies (as in the proof of Proposition 3.2)
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by

gty U

y(ts)

Fig. 2: If there exists a sequence t, — oo such that g(¢,) is bounded from below, a
contradiction is obtained by considering the dissipation of the energy E. in a moving
frame with speed ¢ > coo (c close to ¢xo). If §(tn) > 1 for all n € N, the set S. consisting

of all n such that §(tn) > (¢ — coo)tn increases as ¢ — Coo, and card(Sc) — oo.

that E.(t) > 0 for all ¢t > 0. But for all n € S., we have by (3.4), (4.2) and
(4.3)

Du(ty) = efFelta) / € (ug + cup)2(F(th) + 2, ) dz
R

L
> / e (ug + cug)*(Z(tn) + 2,tn) dz > g ;
iy

because e > fe®* for |z| < L and (u + cuy)? > (w4 cootiz)? — (¢ —
Coo)2B%. Moreover, it follows from (2.10) that D.(t) > D.(t,)e~ ¢ for all
t € [ty — 1,t,]; hence,

tn 5
E.(ty—1) — Ex(tn) = De(t)dt > ge—Cl , neES,.
tn—1

If we choose ¢ close enough to ¢ so that card(S.) > 8KeC1/§, we obtain a
contradiction with the fact that E.(¢) is positive, nonincreasing, and E.(0) <
K.



918 THIERRY GALLAY AND EMMANUEL RISLER

~

Fig. 3: If §(t) — —oo a contradiction is obtained by considering the dissipation of the
energy E., in a moving frame with speed ¢, < ¢ on the time interval [0, ¢,], where
J(tn) = (¢n — Coo)tn. We choose T' > 1 and then n large enough so that (ceo — cn)T < 1.

Case 2: y(t) — —oo ast — oo. In this case, there exists a sequence t,, — oo
such that

y(tn) < (s)+1, forallneN; (4.4)

W 0
0oty
see Figure 3. Indeed, the function p(t) = inf{y(s)|0 < s < t} is nonincreasing
and p(t) — —oo as t — oo. For each n € N, we choose t,, € [0,n] such that
y(tn) < p(n) + 1. Then p(n) < u(t,); hence, (4.4) holds.

Given some (large) n € N, we take ¢, < coo such that (¢, —coo)tn = y(tn),
or equivalently g, (t,) = 0. Since ¢, — coo as n — 00, we can assume that
Cn > Coo/2 and

o 5
eleemen)l <9 (o — cn)QBz/ ec>*dz < 4 (4.5)
-L

If t € [0,t,], we have by (4.4)
Ye, (t) = Y(t) + (oo — cn)t > Y(tn) — 1+ (coo — cn)t = (en — Coo)(tn — 1) — 1.

Using (4.2) and (4.5), and proceeding as in the previous case, we obtain

D, (t) = ®n¥en(®) / €% (ug + cpug) 2 (Z(t) + 2,t) dz
R
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L
> eenl(en=coo)(tn=t)—1) / €% (us + cpug)X(Z(tn) + 2, t,) dz
L

> ecoo((cn_COO)(tn_t)_l)é'
- 8 ?
hence, for all T' < t,,,
tn (S
D, (t) dt > Tec((en—ce)T=1) (4.6)
tn—T 8
On the other hand, there exists K > 0 such that E., (0) < K for all n, and
since g, (t,) = 0 we know from (2.9) that E., (t,) > —A/c,. Thus
fn A 2A
D ()dt = E, (0) = E. (to) <K+ — < K +——=. (4.7
If we now choose T' > 0 large enough so that Te™2¢=§ > 8K + 16A/cso, and
then n € N large enough so that ¢, > T and (coo — ¢,,)T < 1, we obtain the
desired contradiction by comparing (4.6) and (4.7). O

Corollary 4.2. One has c— = c4 = ¢4, and there exists a sequence t, — 00
such that, for all L > 0,

sup |u(Z(tn) + 2, tn) — he(z)] — 0.
z€[—L,L] e
Proof. We argue as in the proof of Proposition 3.2. If {t,},en is the se-
quence given by Proposition 4.1, we know that (upon extracting a subse-
quence) u(Z(t,)+ 2, t,) converges in HZ (R) to a limit wa(z) which satisfies

wh(2) + coowly (2) — Fl(wee(2)) =0, z€R.

Moreover, |weo(z)| < € for all z > 0, |ws(z)] < B for all z < 0, and
|weo(0)] = €. Arguing as in Remark 3.3, one can also show that ws(2) — 0 as
z — 400. These properties together imply that co, = ¢4 and that we, = h;
see hypothesis H3 in the introduction. O

Corollary 4.3. For all ¢ > ¢, and all w € HX(R), one has
1

Ec[w] = / ecg”(—w’(a:)2 + F(w(:c))) dz > 0.
R 2

Proof. Assume first that w € H),(R) for all ¢ > 0, and that w—1 € H*(R_).
If u(x,t) is the solution of (1.1) with initial data u(z,0) = w(z), we know
from Proposition 3.2 and Corollary 4.2 that the invasion point Z(¢) defined
by (1.17) satisfies Z(t)/t — ¢ as t — oo. Thus, for any ¢ > ¢, the quantity
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Je(t) = Z(t) — ct converges to —oo as t — 00, so that E.(t) > 0 for all t > 0.
In particular, E.(0) = & [w] > 0. Letting ¢ — ¢,, we also obtain &, [w] > 0.
Assume now that ¢ > ¢, and that w € HL(R). For any n > 1 we define

wa(@) = w(z)x(@—n) + (1 — w())x(@+n+l), z€R,

where x € C*(R), x(z) = 1 for x < 0 and x(z) = 0 for z > 1. Clearly
wy(x) = w(x) for x € [—n,n|, whereas wy,(x) = 0 for x > n+1 and w,(x) =1
for < —n — 1. Thus w, € HL(R) for all ¢ > 0 and w,, — 1 € H'(R_),
so that & Jw,] > 0 for all n € N by the preceding argument. Moreover, it
is straightforward to verify that £.Jwy,] — &:[w] as n — oo, hence E.[w] >
0. U

Equipped with these results, we are now able to prove that the solution
u(x,t) converges for all times towards a travelling wave, locally in space
around the invasion point.

Proposition 4.4. For all L > 0 we have

L
/ e (uy + couy)?(Z(t) 4 2, 1) dz P 0. (4.8)
L — 00

Proof. We argue by contradiction and assume that there exist L > 0, 9 > 0,
and a sequence t, — oo such that

L
/ €% (up + catig)?(T(tn) + 2,tp)dz > 6, (4.9)
~L

for all n € N. Let y(t) = Z(t) — cit. If the sequence {y(t,)}nen has a
subsequence that is bounded from below, then we easily get a contradiction
as in the proof of Proposition 4.1 (case 1). So it remains to consider the
case where y(t,) — —oo, which requires a new argument. Without loss of
generality, we can suppose that t,+1 > t, + Tp for all € N, where Ty > 0 is
as in Lemma 2.2, and that g(t,) < —n — 1. Upon extracting a subsequence,
we can also assume that u(Z(t,)+ z, t,,) converges in HZ, (R) towards a limit
Woo(2).

Given some (large) n € N, we take ¢, < ¢, such that y(t,) = (¢ — ¢)tn;
see Figure 4. Since ¢, — ¢, as n — 0o, we can assume that ¢, > ¢,/2. Let
Yen (1) = G(t) + (cx — cn)t, so that g, (t,) = 0. For each k = 0,1,...,n we
have by (2.15)

CoT; _
E., (tps1) < Ee, (tp + To) < e "B, (tg) + =220 gen(en (tr)+Co)

Cn
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Fig. 4: If §(tn) — —oo a contradiction is obtained by considering the dissipation of the
energy E., in a moving frame with speed ¢, < c. on the time interval [0, ¢,], where

(tn) = (cn — cx)tn.

hence,

cnCo
B (1) < e MO B, (t9) + T 37 o0 togentien i) (4.10)
7=1

We now define k(n) as the largest integer k£ € N such that
(e — ca)t; < 1+% , forall j=0,1,... k.

Since ¢, — ¢4, it is clear that k(n) — oo as n — oo. Moreover, k(n) < n as
(cx — cn)tn = —y(tn) > n+ 1 by assumption. For k = k(n) and j < k, we
have
Yen (tr—j) = §(th—z) + (cx = cn)th—y < —(k = 35)/2;
hence, it follows from (4.10) that
CzToec"CO
Cn

where v* = min(y7p, ¢« /4). Taking the limit n — oo and using the fact that
E.,(0) is uniformly bounded, we conclude that

Ee,(tn) < Ee, (ty(n)) < e "OE,, (0) + k(n)e 7 W=D

I

limsup E,, (t,) < 0.

n—oo
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Now, since ¥, (t,) = 0 by our choice of ¢,, we have

B, (1) = /R e(%uQ () (2(tn) + 2. 8) d |

hence, taking the limit n — oo and using Fatou’s lemma we obtain

n—oo

Eo. [Woo] = /R ec*z(%wéo(z)Z + F(woo(z))> dz < liminf E, (t,) < 0.

In particular, ws € HZ (R); hence, it follows from Corollary 4.3 that &, [we]
= 0. On the other hand, in view of (4.9), we have

Defun] = [ e (wle)+ eule(s) = Flu(2) s

> /L e? (wé’o(z) + cawl (2) — F’(woo(z)))2 dz

—00
L
= lim e (ug + o) (Z(ty) + 2,t,) dz > 6.
n—oo J_
Thus, if u(x,t) is the solution of (1.1) with initial data u(z,0) = we(z),
then E., (0) = &, [weo] = 0 and E;, (0) = —De, [wee] < —0; hence, E, (t) <0
for all t > 0. This contradicts the conclusion of Corollary 4.3. U

It is now a straightforward task to conclude the proof of Proposition 1.2.
Using Proposition 4.4 and proceeding as in Corollary 4.2, we see that u(z(t)+
2,t) converges to Weo(2) = he(2) in H2([~L, L]) for any L > 0. On the other
hand, arguing as in (3.5), we find for any ¢ € (0, ¢),

: > cz(,,2 2\ (= 24
hmsup/ e (uy +u”)(2(t) + 2,t)dz < — < o0,
t—o00 0 CKR

This implies in particular that u(Z(t) + z,t) converges to zero as z — 400
uniformly in ¢ > 0; hence, u(Z(t) + z,t) converges as t — 0o to h.(z) uni-
formly for all z € [-L,400). This proves (1.18).

It remains to verify that the map t — Z(t) is C! for large ¢t and satisfies
' (t) — ¢y as t — oo. Using (1.18), (2.1), and an interpolation argument,
we find for any L > 0,

sup |ug(Z(t) + 2,t) — hl(z)| — 0.
ZE[—L,L] t—o0

As h.(0) < 0, this implies in particular that u,(Z(t),t) is bounded away
from zero for ¢ sufficiently large. Since u(Z(t),t) = ¢ for ¢ large, the implicit
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function theorem then asserts that z(t) is differentiable with

ug(Z(t), 1)

T'(t) = @00 for all sufficiently large ¢ > 0.
On the other hand, supy,<p, [ut(Z(t)+2,1) + cxuy (Z(t)+2,t)| — 0 as t — oo
by (2.1) and (4.8); hence, T'(t) — ¢« as t — oo. O

5. REPAIR BEHIND THE FRONT

This final section is devoted to the proof of Corollary 1.3. We follow
closely the arguments given in [13, Section 9.6], with a few simplifications.

Let u(x,t) be a solution of (1.1) with initial data ug satisfying the assump-
tions of Proposition 1.2. According to (1.18), we can find a time sequence
t, — oo such that t,11 > t, +n+1 for all n € N, and

1
sup  |uw(Z(t) + z,t) — he(z)] < ——, forall t > t,. (5.1)
2€[—2n,+00) n+1
Let 6 : R — [0,1] be a smooth, nondecreasing function satisfying 6(z) = 0
for x < 0 and O(x) = 1 for z > 1. We define a map z : [0,+00) — R by
imposing, for all n € N,

#(t) = &(t) —n — e(

It is clear that Z(t) —n — 1 < &(t) < z(t) —n for all t € [t,, tn4+1]. Moreover,
there exists 7' > 0 such that Z(t) is differentiable for ¢t > T, with #'(t) <
' (t) < cy+ 1 forall t > T. For later use we observe that, for any L > 0,

t—t
771) , forallt € [ty, tnt1].
tn+1 - tn

sup_ (Ju(@(t) + 2.8) = 1|+ un(2(8) + 2,0 ) — 0. (5.2)
z€[—L,L]
Indeed, since Z(t) = Z(t) — n for t € [ty,tn+1], the estimate on |u — 1| is a
consequence of (5.1) and of the fact that h.(z) — 1 as z — —oo. The result
for |ug| then follows from the a priori bound (2.1) by interpolation.
We next consider the truncated energy function

/¢xt 2(x,t) + F(u(z, )))dx,

where F(u) = F(u) — F(1) > 0 and
(2.1) = 1 it z<z(t),
ol t) = M= if x> a(t).
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Since u(-,t) —1 € HY(R_) and u(-,t) € H'(R,), it is clear that E(t) is well-
defined and finite for all ¢ > 0. Moreover, E(t) is differentiable for ¢ > T,
and a direct calculation shows that

/qﬁxtut (x,t) dx—i—/ gbxt A’ )( u? + F(u ))—i—umut}dx
<——/¢xtut(x t)dx—l—(c*—{—l)/ e (uZ + F(u))(&(t) + z,t) dz.

0
In view of (2.1) and (5.2), the last integral in the right-hand side converges
to zero as t — oo. Since E(t) > 0 for all ¢ > 0, it follows that there exists a
time sequence ¢, — oo such that

/q[)x tug (x,t)) de — 0. (5.3)
Now, we claim that
sup  |u(w,t)) -1 — 0. (5.4)
x€(—00,%(t)] n—eo

Indeed, if this is not the case, there exist a positive constant €', a subsequence
{t!}nen of {t), }nen, and a sequence {zp}neny C R such that z, < #(t))
and |u(x,,tl) — 1| = & for all n € N. Without loss of generality, we can
assume that ¢/ > 0 is sufficiently small so that the only bounded solution
of the differential equation wy, — F'(w) = 0 with |w(0) — 1| <& is w = 1;
see hypothesis H4 in the introduction. In view of (5.2), it is clear that
xn — &(t)) — —oo as n — oo. On the other hand, upon extracting a
subsequence, we can assume that, for all L > 0,

u(zn + 2,t1) — weo(2) in H*([-L,L)),
n—oo

wion + 2, 8) — tino(2) i (=L, I]) |
n—oo

where ws, € H2(R) N L¥(R) and s € L¥(R) satisfy e (2) = w (2) —
F'(woo(2)). However, it follows from (5.3) that w. = 0; hence, wy is a
bounded solution of the differential equation w/, — F’'(ws) = 0 that satisfies
|weo(0) — 1| = £’. This contradicts the assumption above on €’; hence, (5.4)
must hold.
Finally, if we combine (5.1) and (5.4), we obtain

sup |u(Z(t],) + 2, ) — he(z)| — 0.

z€R n—oeo
In other words, the solution u(x,t) approaches uniformly on R a translate of
the travelling wave h. for a sequence of times ¢/, — oo. On the other hand,
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the classical results of Sattinger [17] show that, if assumptions (1.3) and (1.4)
are satisfied, the travelling wave h is asymptotically stable with shift in the
space L>(R). In other words, equation (1.8) holds for any solution of (1.1)
which is sufficiently close (uniformly on R) to a translate of h. This is the
case for u(-,t)) if n is sufficiently large; hence, Corollary 1.3 is proved. [

1]
2]

3]
[4]

[5]
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(1]

(12]

(13]
(14]
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