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We prove the uniqueness of the in�nite length axisymmetric solution to
the capillary equation. We observe that capillary equation can be viewed, at
large depth, as a perturbation of an integrable two-dimensional di�erential
system. Uniqueness is then proved by an elementary perturbation argument.

1 Introduction

An orientable hypersurface is said to satisfy a prescribed mean curvature equation if the
mean curvature at each point of the hypersurface is prescribed by a scalar �eld. When
this scalar �eld is proportional to the �vertical� coordinate, this equation is commonly
referred as the capillary equation, since it is satis�ed by a static interface between two
liquid phases of di�erent densities, where the capillary force (proportional to the mean
curvature) has to balance the di�erence of pressures (which, up to a change of the origin,
is proportional to this vertical coordinate).
Let n be an integer not smaller than 2, and let (x1, . . . , xn, z) denote the coordi-

nates in Rn+1 (the �vertical� coordinate will be z). A hypersurface of Rn+1 is axisym-
metric with respect to the z-axis if, at every point of the hypersurface, the distance
r =

√
x21 + · · ·+ x2n to the z-axis is a function of z. Let us introduce the angle θ as

displayed on �gure 1 (namely, satisfying dr/dz = tan θ). Then, at every point of this
axisymmetric hypersurface, the capillary equation reads:

(1) (n− 1)
cos θ

r
+ cos θ

dθ

dz
= κz ,
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where κ is a �xed real quantity. Let us assume without loss of generality that κ is positive
(the vertical coordinate z increases �downwards�). When n equals 2 equation (1) governs
the shape of an axisymmetric liquid pendent drop in R3.
Up to a change of scale (in both r and z), we can choose whatever positive value for

κ. Let us make the convenient choice κ = n − 1; indeed, with this choice, equation (1)
can be rewritten as the following two-dimensional di�erential system:

(2)

 dr/dz = − tan θ

dθ/dz = (n− 1)
( z

cos θ
− 1

r

) where r > 0 and θ ∈
(
−π
2
,
π

2

)
.

Figure 1: De�nition of angle θ.

Drops of �nite length correspond to solutions of the axisymmetric capillary equation (1)
� or equivalently system (2) � that do not exist for z larger than a certain value zmax

(the height at the tip of the drop) where r(z) vanishes. In this paper we are interested
in solutions that are de�ned up to +∞ in z, namely drops of in�nite length. The main
result is the following.

Theorem 1. There exists a unique solution z 7→ (r, θ) of system (2) that is de�ned on

(0,+∞); it satis�es:

r(z) ∼ 1/z and θ(z)→ 0 when z → +∞ .

Historically, the problem goes back to P.-S. Laplace [8], T. Young [12], and Lord
Kelvin [11]. From a modern mathematical point of view, the main contributions are due
to P. Concus and R. Finn. In [3, 4] (see also Finn's book [7]) they proved the existence
of solutions corresponding to drops of every prescribed �nite length, and studied their
shapes. In [5], they proved the existence of a solution under the form of a function z of
the radius r, for which z(r) approaches +∞ when r approaches 0, thus corresponding to
a drop of in�nite length, and computed its asymptotic expansion when r approaches 0.
In [6] they achieved a �rst step towards its uniqueness, by proving uniqueness among all
singular solutions asymptotically su�ciently close to that asymptotic expansion. Further
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steps towards uniqueness were achieved by M.-F. Bidaut-Véron ([1, 2]), who proved
uniqueness under a weaker explicit criterion on the closeness to the asymptotic expansion.
Finally, the full proof of the uniqueness was achieved by R. Nickolov ([9]) who proved that
the Bidaut-Véron uniqueness criterion is actually satis�ed by every singular solution.
In [10], C. Riera and the author proposed to view and study system (2) as a dynamical

system. This point of view, which surprisingly enough does not seem to have been
adopted before, turned out to be fruitful: classical dynamical systems techniques led us
to describe the dynamics of all solutions, and to recover in a simple way many results
on the shape of pendent drops of �nite length, together with the existence of (at least)
one singular solution corresponding to a drop of in�nite length. The aim of the present
paper is to provide, by the same approach, a short, elementary, and self-contained proof
of its uniqueness.

2 Rescaling and statement of main result

Expression of dθ/dz in system (2) suggests the following change of variables:

(r, z) 7→ (R,Z) =
(
zr,

z2

2

)
,

which corresponds to a blow-up of factor z at depth z, both in the directions of r and z,
see �gures 1 and 3. Rewritten using (R,Z) variables, system (2) becomes:

(3)


dR/dZ = − tan θ +

R

2Z

dθ/dZ = (n− 1)
( 1

cos θ
− 1

R

) where Z > 0 , R > 0 , θ ∈
(
−π
2
,
π

2

)
,

which asymptotically reduces, when Z approaches +∞, to the two-dimensional au-
tonomous di�erential system

(4)

 dR/dZ = − tan θ

dθ/dZ = (n− 1)
( 1

cos θ
− 1

R

)
for which the quantity

H(R, θ) = Rn−1
(
cos θ − n− 1

n
R
)

is conserved (see �gure 2). Indeed,

(5)

{
∂RH = (n− 1)Rn−2(cos θ −R)
∂θH = −Rn−1 sin θ

thus


dR/dZ =

1

Rn−1 cos θ
∂θH

dθ/dZ = − 1

Rn−1 cos θ
∂RH

which shows that, up to a scale change in Z, system (4) is nothing but the Hamiltonian
system deriving from H(., .) by the usual symplectic form on R2.
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Figure 2: Phase portrait of system (4) (the time variable is t with dZ = − cos θ dt, instead
of Z) in the case n = 2.

The phase portrait of the autonomous system (4) is shown (in the case n equals 2) on
�gure 2. It admits an elliptic equilibrium at (1, 0) and no other equilibrium in (0,+∞)×
(−π/2, π/2). The Hessian matrix of H at (1, 0) reads:(

−(n− 1) 0
0 −1

)
This matrix being negative de�nite, the point (1, 0) is a strict local maximum point of
H. You could actually check that this point is also the strict global maximum point of
H on [0,+∞)× (−π, π).
As was extensively studied by Riera and the author in [10], the e�ect of the additional

�perturbation� term R/(2Z) in the expression of dR/dZ in the �full� (non-autonomous)
system (3) is to take the solution away from the maximum point (1, 0) of H(., .) when
Z increases (in other words, to decrease the value of H(R, θ) along the solution). See
�gure 3. Using this repulsive e�ect of the perturbation term, the following existence
result was proved in [10] (once repulsion is quanti�ed, it follows from an elementary
argument, namely Cantor's intersection theorem). This result is almost identical to the
existence result established by Concus and Finn in [5, 6].

Theorem 2. There exists (at least) one solution Z 7→
(
R(Z), θ(Z)

)
of system (3) that

is de�ned on (0,+∞), and every such solution satis�es:(
R(Z), θ(Z)

)
→ (1, 0) when Z → +∞ .

3 Sketch of the proof

As can be expected as this stage, the proof of uniqueness of the singular solution relies
on the same �repulsion� e�ect displayed on �gure 3. We shall assume that two distinct
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Figure 3: Left: pendent drop with four nodes, drawn by John Perry, a collaborator of
Lord Kelvin, and reproduced from [11, p. 34]. Center and right: numerical
computation (reproduced from [10, p. 1850]) of the pro�le of a (�nite) pendent
drop (with six nodes, in the case n = 2) and corresponding behaviour in the
(R, θ)-plane. The tip of the drop corresponds to the �nal point (π/2, 0) of the
trajectory in the (R, θ)-plane.
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singular solutions exist, then we shall prove by an elementary perturbation argument that
the resulting e�ect of the �additional� term R/(2Z) in the �full� system (3) is to increase
the distance between those two solutions, at least for Z su�ciently large, a contradiction
with the fact that both must converge to (1, 0) when Z approaches +∞.
The sole obstacle to overcome is that the perturbation argument requires an a priori

estimate on singular solutions slightly more precise than: �
(
R(Z), θ(Z)

)
approaches (1, 0)

when Z approaches +∞�. What will be required is the following �st order approximation:

(6)


R(Z) = 1 + oZ→+∞

( 1

Z

)
θ(Z) =

Z

2
+ oZ→+∞

( 1

Z

)
The remaining of the paper is organized as follows. In section 4 we shall describe the

(unique) formal singular solution (as an asymptotic expansion in powers of 1/Z), and
observe that it matches �rst order expansion (6). In section 5 we shall carry on the main
perturbation argument and, assuming that (6) holds, we shall prove uniqueness of the
singular solution. In section 6, the very same argument will be used to prove (6) �
by the way we shall actually prove that the singular solution matches the asymptotic
expansion of section 4 up to every order.

4 Formal singular solution (asymptotic expansion)

In the following proposition, a formal solution means an expansion of the form (7) below
such that, when it is injected in system (3) where the terms tan θ and cos θ are replaced
by their expansions in power series of θ, then the two equations of system (3) hold at
every order in Z−1.

Proposition 1. System (3) admits a unique formal solution of the form

(7)


R(Z) =

∑
k∈N

Rk
Zk

θ(Z) =
∑
k∈N

θk
Zk

with (Rk, θk) ∈ R2 and R0 > 0 and − π

2
< θ0 <

π

2
.

Moreover,

• expansion
∑

k∈NRk/Z
k is even with respect to Z (that is Rk = 0 if k is odd);

• expansion
∑

k∈N θk/Z
k is odd with respect to Z (that is θk = 0 if k is even);

Proof. Replacing in system (3) the quantities R(Z) and θ(Z) by their formal expan-
sions (7) gives:∑

k≥2
−(k − 1)Rk−1

Zk
= − tan

(∑
k≥0

θk
Zk

)
+
∑
k≥1

Rk−1
2Zk

,(8)

∑
k≥2
−(k − 1)θk−1

Zk
= (n− 1)

(
1

cos
(∑

k≥0 θk/Z
k
) − 1∑

k≥0Rk/Z
k

)
.(9)
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Thus,

• at order k = 0, equality (8) yields θ0 = 0 and equality (9) yields R0 = 1;

• at order k = 1, equality (8) yields θ1 = 1/2 and equality (9) yields R0 = 0.

More generally, at every order k in N,

• equality (8) provides an expression of θk depending on R0, . . . , Rk−1 and θ0, . . . ,
θk−1;

• equality (9) provides an expression of Rk depending on R0, . . . , Rk−1 and θ0, . . . ,
θk−1.

This proves the uniqueness of the expansion (7) satisfying system (3).
Now assume that this expansion of R(Z) is even up to order k− 1 and this expansion

of θ(Z) is odd up to some order k − 1. Then,

• if k is even then the expression of θk provided by equality (8) equals zero; this
follows from the facts that Rk−1 = 0 and that tangent function is odd;

• if k is odd then the expression of Rk provided by equality (9) equals zero; this
follows from the facts that θk−1 = 0 and that cosine function is even.

Thus expansion of R(Z) (θ(Z)) remains even (respectively, odd) up to order k. This
completes the proof.

5 Perturbation argument

Let
Z 7→

(
R(Z), θ(Z)

)
and Z 7→

(
R̃(Z), θ̃(Z)

)
denote two singular solutions of system (3) (that is, de�ned up to +∞ in Z); according
to Theorem 2, both must approach (1, 0) when Z approaches +∞). Let us write:

ρ(Z) = R̃(Z)−R(Z) ,
ϕ(Z) = θ̃(Z)− θ(Z) .

Since the two solutions share the same limit when Z approaches +∞, it follows that:(
ρ(Z), ϕ(Z)

)
→ (0, 0) when Z → +∞ .

To enforce the contradiction argument sketched in section 3, we would like to show that,
if these two solutions di�er, then the distance between them � that is, the size of the
pair

(
ρ(Z), ϕ(Z)

)
� increases with Z. Since (1, 0) is a strict local maximum point of H,

a possible approach for that is to show that the function

h(Z) = H
(
1 + ρ(Z), ϕ(Z)

)
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decreases with Z. Basically,

(10)
dh

dZ
= ∂RH

(
1 + ρ(Z), ϕ(Z)

)
· dρ
dZ

+ ∂θH
(
1 + ρ(Z), ϕ(Z)

)
· dϕ
dZ

.

From expressions (5) of ∂RH and ∂θH, it follows that:

∂RH
(
1 + ρ(Z), ϕ(Z)

)
= (n− 1)(1 + ρ)n−2(cosϕ− 1− ρ)

= −(n− 1)
(
ρ+ oZ→+∞

(
|(ρ, ϕ)|

))
,(11)

∂θH
(
1 + ρ(Z), ϕ(Z)

)
= −(1 + ρ)n−1 sinϕ

= −
(
ϕ+ oZ→+∞

(
|(ρ, ϕ)|

))
(12)

with the notation
|(ρ, ϕ)| =

√
ρ2 + ϕ2 .

Let us de�ne functions ερ(Z) and εϕ(Z) by:
dρ/dZ = − tanϕ+ ερ

dϕ/dZ = (n− 1)
( 1

cosϕ
− 1

1 + ρ

)
+ εϕ

The quantities ερ(Z) and εϕ(Z) thus measure the discards in dρ/dZ and dϕ/dZ with
respect to what these two derivatives would be if the pair

(
1+ρ(Z), ϕ(Z)

)
was (exactly)

governed by the asymptotic di�erential system (4). Since H(., .) is a conserved quantity
for this system, expression (10) of dh/dZ then reduces to

dh

dZ
= ∂RH · ερ + ∂θH · εϕ

and, substituting expansions (11) and (12) of ∂RH and ∂θH in this expression, it follows
that

(13)
dh

dZ
= −(n− 1)

(
ρ+ oZ→+∞

(
|(ρ, ϕ)|

))
· ερ −

(
ϕ+ oZ→+∞

(
|(ρ, ϕ)|

))
· εϕ, .

This leads us to compute the quantities ερ(Z) and εϕ(Z). It follows from system (3) that

ερ = − (tan θ̃ − tan θ) +
ρ

2Z
+ tanϕ

=
ρ

2Z
− tanϕ tan θ tan(θ + ϕ) ,

εϕ = (n− 1)

(( 1

cos(θ + ϕ)
− 1

cos θ

)
−
( 1

cosϕ
− 1
)
+
(
− 1

R+ ρ
+

1

R

)
+
( 1

1 + ρ
− 1
))

= (n− 1)

(
sinϕ sin θ

cos θ cos(θ + ϕ)

+
1− cosϕ

cos(θ + ϕ)

(
(1− cos θ) +

sinϕ sin θ

cosϕ

)
+ ρ(1−R) 1 +R+ ρ

R(R+ ρ)(1 + ρ)

)
.
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At �rst glance these expressions look a bit intricate, but if we make the additional
hypothesis (6), that is if we assume that

R(Z) = 1 + oZ→+∞

( 1

Z

)
,

θ(Z) =
1

2Z
+ oZ→+∞

( 1

Z

)
,

then expressions of ερ and εϕ above yield:

ερ(Z) =
ρ

2Z
+
oZ→+∞

(
|(ρ, ϕ)|

)
Z

,

εϕ(Z) = (n− 1)
ϕ

2Z
+
oZ→+∞

(
|(ρ, ϕ)|

)
Z

.

Expansion (13) of dh/dZ thus becomes

dh

dZ
= −(n− 1)

ρ2 + ϕ2

2Z

(
1 + oZ→+∞(1)

)
,

and as a consequence, for all Z su�ciently large,

(14)
dh

dZ
≤ 0.

On the other hand, since
(
ρ(Z), ϕ(Z)

)
approaches (0, 0) when Z approaches +∞, it

follows that:
h(Z)→ H(1, 0) when Z → +∞ .

Since (1, 0) is a strict local maximum point ofH, this shows, together with inequality (14),
that, for all Z su�ciently large, h(Z) = H(1, 0), in other words:(

ρ(Z), ϕ(Z)
)
= (0, 0) .

The two singular solutions (R, θ) and (R̃, θ̃) are thus equal. This proves the desired
uniqueness under hypothesis (6).
To complete the proof of Theorem 1, the sole remaining thing to prove is that hypoth-

esis (6) holds for every singular solution.

6 Matching with asymptotic expansion

The following proposition states that every singular solution coincides, up to every order,
with the formal singular solution de�ned in Proposition 1.

Proposition 2. For every solution Z 7→
(
R̃(Z), θ̃(Z)

)
of system (3), de�ned on (0,+∞),

and for all k in N, the following expansions hold:

R̃(Z) =
k∑
j=0

Rj
Zj

+ oZ→+∞

( 1

Zk

)
,

θ̃(Z) =
k∑
j=0

θj
Zj

+ oZ→+∞

( 1

Zk

)
.
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Proof. Let Z 7→
(
R̃(Z), θ̃(Z)

)
denote a solution of of system (3) de�ned on (0,+∞).

According to Theorem 2, the pair
(
R̃(Z), θ̃(Z)

)
approaches (1, 0) when Z approaches

+∞. Since R0 = 1 and θ0 = 0, this proves the desired result for k = 0.
Now take k in N∗ and let us consider the following two functions of Z:

R(Z) =
k∑
j=0

Rj
Zj

and θ(Z) =
k∑
j=0

θj
Zj

(note that these two functions depend on the choice of k). Then, the de�nitions of the
coe�cients Rj and θj in the proof of Proposition 1 show that the following estimates
hold:

(15)


dR/dZ = − tan θ +

R

2Z
+OZ→+∞

( 1

Zk+1

)
dθ/dZ = (n− 1)

( 1

cos θ
− 1

R

)
+OZ→+∞

( 1

Zk+1

)
Moreover, since k ≥ 1, hypothesis (6) holds for (R, θ):

R(Z) = 1 + oZ→+∞

( 1

Z

)
,

θ(Z) =
1

2Z
+ oZ→+∞

( 1

Z

)
.

To complete the proof, we will apply exactly the same approach (and adopt the same
notation) as in section 5, the only di�erence being the remaining terms O(1/Zk+1) on
the right-hand side of system (15) above. Let us write:

ρ(Z) = R̃(Z)−R(Z) ,
ϕ(Z) = θ̃(Z)− θ(Z) ,
h(Z) = H

(
1 + ρ(Z), ϕ(Z)

)
.

Expansions (11) and (12) of ∂RH and ∂θH hold unchanged. Let use de�ne functions
ερ(Z) and εϕ(Z) by: 

dρ/dZ = − tanϕ+ ερ

dϕ/dZ = (n− 1)
( 1

cosϕ
− 1

1 + ρ

)
+ εϕ

Expressions of ερ and εϕ are identical to those of section 5, except the fact that they
comprise additional terms O(1/Zk+1). Thus,

ερ =
ρ

2Z
+
oZ→+∞

(
|(ρ, ϕ)|

)
Z

+OZ→+∞

( 1

Zk+1

)
,

εϕ = (n− 1)
ϕ

2Z
+
oZ→+∞

(
|(ρ, ϕ)|

)
Z

+OZ→+∞

( 1

Zk+1

)
,
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and it follows from unchanged expansion (13) that:

dh

dZ
= −(n− 1)

ρ2 + ϕ2

2Z

(
1 + oZ→+∞(1)

)
+OZ→+∞

( |(ρ, ϕ)|
Zk+1

)
= −(n− 1)

|(ρ, ϕ)|
2Z

(
|(ρ, ϕ)|

(
1 + oZ→+∞(1)

)
+OZ→+∞

( 1

Zk

))
.(16)

We are going to deduce from this last estimate that

|(ρ, ϕ)| = OZ→+∞

( 1

Zk

)
.

Indeed, according to expression (16) of dh/dZ, there exist positive quantities C1 and Z0

such that, for all Z superior or equal to Z0,∣∣(ρ(Z), ϕ(Z))∣∣ ≥ C1

Zk
=⇒ dh

dZ
≤ 0.

Besides, since (1, 0) is a strict local maximum point of H, since the Hessian matrix of
H at (0, 1) is negative de�nite, and since H(1, 0) equals 1/n, the quantities |(ρ, ϕ)| and√

1/n− h(Z) do not di�er, if Z is large, by more than a �xed multiplicative factor. As
a consequence, there exists a positive quantity C2 such that, for all Z greater than or
equal to Z0, √

1

n
− h(Z) ≥ C2

Zk
=⇒ dh

dZ
(Z) ≤ 0 ,

in other words:

(17) h(Z) ≤ 1

n
−
(C2

Zk

)2
=⇒ dh

dZ
(Z) ≤ 0 .

But since h(Z) approaches 1/n when Z approaches +∞, the left-hand inequality of
implication (17) can actually not occur if Z ≥ Z0. Indeed, by contradiction, if there
existed a quantity Z1 superior or equal to Z0 such that

h(Z1) ≤
1

n
−
( C2

Z1k

)2
,

then according to implication (17), it would follow that, for all Z superior or equal to
Z1,

h(Z) ≤ 1

n
−
(C2

Zk1

)2
≤ 1

n
−
(C2

Zk

)2
,

a contradiction with the fact that h(Z) approaches 1/n when Z approaches +∞.
We thus proved that, for all Z su�ciently large,

h(Z) ≥ 1/n− C2
2/Z

2k
1 or equivalently

√
1/n− h(Z) ≤ C2/Z

k ,

and this �nally yields the desired estimate:

|(ρ, ϕ)| = OZ→+∞

( 1

Zk

)
.

Since the positive integer k was arbitrary, this �nishes the proof of Proposition 2.
In view of the comments in section 5, proof of Theorem 1 is complete.
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