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This paper is concerned with radially symmetric solutions of parabolic
gradient systems of the form

ut = −∇V (u) + ∆xu

where the space variable x and the state variable u are multidimensional,
and the potential V is coercive at infinity. For such systems, under generic
assumptions on the potential, the asymptotic behaviour of solutions stable at
infinity, that is approaching a stable spatially homogeneous equilibrium as |x|
goes to +∞, is investigated. It is proved that every such solution approaches
a pattern made of a stacked family of radially symmetric bistable fronts
travelling to infinity, and around the origin a (possibly non-homogeneous)
radially symmetric stationary solution. This behaviour is similar to that of
bistable solutions for gradient systems in one unbounded spatial dimension,
which is described in companion papers.
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1 Introduction
This paper deals with the global dynamics of radially symmetric solutions of nonlinear
parabolic systems of the form

(1.1) ũt = −∇V (ũ) + ∆xũ

where the time variable t is real, the space variable x lies in the spatial domain Rd with d
a positive integer, the function (x, t) 7→ ũ(x, t) takes its values in Rdst with dst a positive
integer, and the nonlinearity is the gradient of a scalar potential function V : Rdst → R,
which is assumed to be regular (of class C2) and coercive at infinity (see hypothesis
(Hcoerc) in subsection 2.1 on page 5).
Notation. As the previous sentence shows, the state dimension is thus denoted by dst
whereas the space dimension is simply denoted by d. The reason for this choice (and for
the absence of subscript in the notation for the space dimension) is that, by contrast with
the state dimension, the space dimension is ubiquitous in the computations throughout
the paper.

Radially symmetric solutions of system (1.1) are functions of the form

ũ(x, t) = u(r, t) , where r = |x| (the euclidean norm of x in Rd),

and (r, t) 7→ u(r, t) is defined on [0,+∞)× [0,+∞) with values in Rdst . For such functions,
system (1.1) takes the following form:

(1.2) ut = −∇V (u) + d− 1
r

ur + urr with the boundary condition ∂ru(0, t) = 0 ,

and it this last system (1.2) that will be considered in this paper.
A fundamental feature of each of systems (1.1) and (1.2) is that they can be recast,

at least formally, as gradient flows of energy functionals. If (w,w′) is a pair of vectors
of Rdst , let w · w′ and |w| =

√
w · w denote the usual Euclidean scalar product and the

usual Euclidean norm, respectively, and let us simply write w2 for |w|2.
For every function x 7→ ṽ(x) defined on Rd with values in Rdst , its energy (or Lagrangian

or action) with respect to system (1.1) is defined (at least formally) by

Ẽ [ṽ] =
∫
Rd

(1
2 |∇xṽ(x)|2 + V

(
ṽ(x)

))
dx

where

|∇xṽ(x)|2 =
d∑

i=1

dst∑
j=1

(
∂xi ṽj(x)

)2
.

Similarly, for every function r 7→ v(r) defined on [0,+∞) with values in Rdst , its energy
(or Lagrangian or action) with respect to system (1.2) is defined (at least formally) by

(1.3) E [v] =
∫ +∞

0
rd−1

(1
2vr(r)2 + V

(
v(r)

))
dr .
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Note that if ṽ : Rd → R denotes a (radially symmetric) function defined as ṽ(x) = v(|x|),
and if Sd−1 denotes the surface area of the d− 1-unit-sphere in Rd, then

(1.4) Ẽ [ṽ] = Sd−1 E [v] .

Formally, the differential of the functional E defined by (1.3) reads (skipping border
terms in the integration by parts):

dE [v] · δv =
∫ +∞

0
rd−1(vr · (δv)r + ∇V (v) · δv

)
dr

=
∫ +∞

0
rd−1

(
−vrr − d− 1

r
vr + ∇V (v)

)
· δv dr .

In other words, the (formal) gradient of this functional with respect to the L2-scalar
product with weight rd−1 on functions [0,+∞) → Rdst reads:

∇radE [v] = −vrr − d− 1
r

vr + ∇V (v) ,

thus system (1.2) can formally be rewritten under the form:

ut = −∇radE [u(·, t)] ,

and if (r, t) 7→ u(r, t) is a solution of this system, then (formally)

d

dt
E [u(·, t)] = −

∫ +∞

0
rd−1ut(r, t)2 dr ≤ 0 .

An additional and related feature of system (1.1) is that a formal gradient structure
exists not only in the laboratory frame, but also in every frame travelling at a constant
velocity, [55]. What about radially symmetric solutions of system (1.2) with respect to
the radial coordinate r? Let us see this now.

For every nonnegative quantity c, if (r, t) 7→ u(r, t) and (ρ, t) 7→ v(ρ, t) are two functions
related by

u(r, t) = v(ρ, t) for r = ct+ ρ ,

then u is a solution of (1.2) if and only if v is a solution of

(1.5) vt − c · vρ = −∇V (v) + d− 1
ct+ ρ

vρ + vρρ .

Now, for every function w : ρ 7→ w(ρ) defined on [−ct,+∞) with values in Rdst , its energy
functional with respect to system (1.5) may be defined, at least formally, as

(1.6) Ec,t[w] =
∫ +∞

−ct
(ct+ ρ)d−1ecρ

(1
2wρ(ρ)2 + V

(
w(ρ)

))
dρ .
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Formally, the differential of this functional reads (skipping border terms in the integration
by parts)

dEc,t[w] · δw =
∫ +∞

−ct
(ct+ ρ)d−1ecρ(wρ · δwρ + ∇V (w) · δw

)
dρ

=
∫ +∞

−ct
(ct+ ρ)d−1ecρ

(
−wρρ − cwρ − d− 1

ct+ ρ
wρ + ∇V (w)

)
· δw dρ .

In other words, the (formal) gradient of this functional with respect to the L2-scalar
product with weight (ct+ ρ)d−1ecρ on functions [−ct,+∞) → Rdst reads:

∇rad,cEc,t[w] = −wρρ − cwρ − d− 1
ct+ ρ

wρ + ∇V (w) ,

and system (1.5) can formally be rewritten under the form:

(1.7) vt = −∇rad,cEc,t[v(·, t)] .

Now, if (ρ, t) 7→ v(ρ, t) is a solution of system (1.5), then (formally):

(1.8) d

dt
Ec,t[v(·, t)] =

∫ +∞

−ct
(ct+ ρ)d−1ecρ

[
−vt(ρ, t)2 + c(d− 1)

ct+ ρ

(1
2v

2
ρ + V (v)

)]
dρ .

What can be seen from these calculations is that, although system (1.5) is still formally
gradient, the time derivative of the energy (1.6) involves, in addition to the standard
dissipation term −v2

t , an additional term, that can be related to the time dependence of
the L2-scalar product defining the gradient ∇rad,c, or viewed as induced by the curvature
1/r = 1/ct+ρ. Only in the limit of large radii (or large positive times, or small curvature)
is the expression of the time derivative of energy always nonnegative. In short, the picture
is not hopeless, but not as nice as it would be in space dimension 1.

This gradient structure (“asymptotic” gradient structure in the case of system (1.5))
has been known for a long time [17], but it is only more recently that it received a more
detailed attention from several authors (among which S. Heinze, C. B. Muratov, Th.
Gallay, R. Joly, and the author [20, 21, 25, 36, 52]), and that is was shown that this
structure is sufficient (in itself, that is without the use of the maximum principle) to
prove results of global convergence towards travelling fronts. These ideas have been
applied since in different contexts, to prove either global convergence or just existence
results, see for instance [1, 2, 6–12, 30, 37–39, 42–44].

Even more recently, the same ideas enabled the author ([53, 56]) to push one step
further (that is, extend to systems) the program initiated by P. C. Fife and J. McLeod
in the late seventies with the aim of describing the global asymptotic behaviour (when
space is one-dimensional) of every bistable solution, that is every solution close to stable
homogeneous equilibria at both ends of space ([17–19]). Under generic assumptions on
the potential V , these solutions approach a stacked (possibly empty) family of bistable
travelling fronts at both ends of space, and approach in between a pattern of stationary
solutions going slowly away from one another. These stacked families will be called
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terraces (see sub-subsection 2.3.4 for comments and references on this terminology and a
precise definition in the framework of this paper).

The aim of this paper is to extend to the case of radially symmetric solutions in higher
space dimensions the results (description of the global asymptotic behaviour) obtained in
[53, 56] for bistable solutions when spatial domain is one-dimensional. Thus, the solutions
that will be considered are solutions of system (1.2) that approach a stable homogeneous
equilibrium as the radius r goes to +∞ (or equivalently radially symmetric solutions
of system (1.1) that are stable at infinity, in space). The goal is to prove that, under
generic assumptions on the potential, every such solution approaches a pattern made of
a stacked family of (radially symmetric) bistable front going to infinity (a “propagating
terrace”), and around the origin a radially symmetric stationary solution (which may or
not be spatially homogeneous).

In the scalar case dst equals 1, the behaviour of solutions stable at infinity of reaction-
diffusion equations in higher space dimension is the subject of a large amount of literature.
For extinction/invasion (threshold) results in relation with the initial condition and
the reaction term see for instance [3, 13, 40, 41, 61], for local convergence and quasi-
convergence results see for instance [13, 15, 24, 31, 33, 48], and for further estimates on
the location and shape at large positive times of the level sets see for instance [24, 28, 29,
58–60]. Recently, a result of global convergence towards a radial terrace of travelling fronts
was proved by Y. Du and H. Matano [14] (without any radial symmetry assumption on
the solutions), and a rather complementary result of convergence/quasi-convergence (in
L∞

loc(Rdst ,R)) was proved by P. Poláčik [51] under very weak non-degeneracy assumptions
on the nonlinearity; see also [34, 35] for results similar to those of [14] when space is
anisotropic. The present paper extends some of those results (in particular some of the
results of [14, 51]) to the more general setting of systems, but for radially symmetric
solutions only.

The path of the proof is very similar to the one used in the spatial dimension one
case [53, 56]. It is based on a careful study of the relaxation properties of energy or L2

functionals (localized in space by adequate weight functions), both in the laboratory
frame and in frames travelling at various speeds. The differences are mainly of technical
nature due to specific features of the (reduced) system (1.2):

• the “curvature” term (d− 1)ur/r;

• the fact that space is reduced to the half-line [0,+∞) (thus is in this sense less
“spatially homogeneous” than the full real line);

• the “no invasion implies relaxation” part of the argument, which does not call upon
the radial symmetry and is therefore processed in the companion paper [55];

• the convergence behind the terrace of travelling front, which differs from the space
dimension one case both regarding the arguments and the result (roughly speaking,
again due to the curvature term).
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2 Assumptions, notation, and statement of the results
This section presents strong similarities with [53, section 2] and [56, section 2], where
more details and comments can be found.

For the remaining of the paper it will be assumed than the space dimension d is not
smaller than 2. Indeed the case d = 1 was already treated in [53, 56], and several defini-
tions, estimates, and statements will turn out to be irrelevant without this assumption
(see for instance the definition of the weight function Tρψ0 in sub-subsection 4.4.1 on
page 22).

2.1 Semi-flow and coercivity hypothesis
Let us consider the following two Banach spaces of continuous and uniformly bounded
functions equipped with the uniform norm:

X =
(
C0

b
(
Rd,Rdst

)
, ∥. . . ∥L∞(Rd,Rdst )

)
,

and Y =
(
C0

b
(
[0,+∞),Rdst

)
, ∥. . . ∥

L∞
(

[0,+∞),Rdst
)) .

System (1.1) defines a local semi-flow in X (see for instance D. B. Henry’s book [26]).
As in [53, 56], let us assume that the potential function V : Rdst → R is of class C2

and that this potential function is strictly coercive at infinity in the following sense:

lim
R→+∞

inf
|u|≥R

u · ∇V (u)
|u|2

> 0(Hcoerc)

(or in other words there exists a positive quantity ε such that the quantity u · ∇V (u) is
greater than or equal to ε |u|2 as soon as |u| is large enough).

According to this hypothesis (Hcoerc), the semi-flow of system (1.1) on X is actually
global (see Proposition 3.1 on page 15). As a consequence, considering the restriction
of this semi-flow to radially symmetric functions, it follows that system (1.2) defines a
global semi-flow on Y . Let us denote by (St)t≥0 this last semi-flow on Y .

In the following, a solution of system (1.2) will refer to a function

[0,+∞) × [0,+∞) → Rdst , (r, t) 7→ u(r, t) ,

such that the function u0 : r 7→ u(r, t = 0) (initial condition) is in Y and u(·, t) equals
(Stu0)(·) for every nonnegative time t.

2.2 Minimum points and solutions stable at infinity
2.2.1 Minimum points

Everywhere in this paper, the term “minimum point” denotes a point where a function —
namely the potential V — reaches a local or global minimum. Let M denote the set of
nondegenerate minimum points:

M = {u ∈ Rdst : ∇V (u) = 0 and D2V (u) is positive definite} .
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2.2.2 Solutions stable at infinity

Definition 2.1 (solution stable at infinity). A solution (r, t) 7→ u(r, t) of system (1.2) is
said to be stable at infinity if there exists a point m in M such that

lim sup
r→+∞

|(u(r, t) −m| → 0 as t → +∞ .

More precisely, such a solution is said to be stable close to m at infinity. A function
(initial condition) u0 in Y is said to be stable (close to m) at infinity if the solution of
system (1.2) corresponding to this initial condition is stable (close to m) at infinity.

Notation. Let
Ystab-infty(m)

denote the subset of Y made of initial conditions that are stable close to m at infinity.

2.3 Stationary solutions, travelling fronts, terraces, and asymptotic pattern
2.3.1 Radially symmetric stationary solutions

A function
ϕ : [0,+∞) → Rdst , r 7→ ϕ(r)

is a stationary solution of system (1.2) if ϕ is a solution of the differential system

(2.1) ϕ′′ + d− 1
r

ϕ′ = ∇V (ϕ) , with the boundary condition ϕ′(0) = 0 .

Notation. If m is in M, let Φ0,centre(m) denote the set of solutions of system (2.1)
approaching m at infinity. With symbols,

(2.2)
Φ0,centre(m) =

{
ϕ : [0,+∞) → Rdst : ϕ is a solution of system (2.1)
and ϕ(r) −−−−→

r→+∞
m
}
.

In this notation,

• the index “0” refers to the “zero speed” of these solutions, by contrast with the
nonzero speed of the travelling fronts considered below,

• the symbols Φ and ϕ have been chosen for homogeneity with the notation introduced
below for travelling fronts,

• and the index “centre” refers to the fact that these solutions are stationary for
system (1.2) (with the curvature term) and not for system (2.4) introduced below.

This set Φ0,centre(m) comprises the constant solution ϕ ≡ m, by contrast with the sets
introduced in the next two sub-subsections 2.3.3 and 2.4.2.

A function ϕ belonging to Φ0,centre(m) for some m in M is said to be stable at infinity.
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Definition 2.2 (energy of a stationary solution stable at infinity). If m is a point in M
and ϕ is a function in Φ0,centre(m), let us call energy of ϕ, and let us denote by E [ϕ], the
quantity

E [ϕ] =
∫ +∞

0
rd−1

(1
2ϕ

′(r)2 + V
(
ϕ(r)

)
− V (m)

)
dr .

Since ϕ(r) goes to m at an exponential rate as r goes to +∞, this integral converges.

It follows from Pokhozhaev’s identity ([4, 46]) that

(2.3) E [ϕ] = 1
d

∫ +∞

0
rd−1ϕ′(r)2 dr ,

and this shows that E [Φ] is nonnegative (and even positive if ϕ is not identically equal to
m). It turns out that the results of the companion paper [55] provide another justification
of the nonnegativity of this energy (see conclusion 1 of Proposition 5.1).
Remark. Let us denote by Sd−1 the surface area of the d− 1-unit sphere in Rd, and let
us introduce the function ϕ̃ : Rd → R defined as ϕ̃(x) = ϕ(|x|); then,

Sd−1 E [ϕ] =
∫
Rd

(1
2
∣∣∣∇ϕ̃(x)

∣∣∣2 + V
(
ϕ̃(x)

)
− V (m)

)
dx

(compare with equality (1.4) in introduction).

2.3.2 Large radius asymptotic form of the system governing radially symmetric
solutions

When the radius r goes to +∞, system (1.2) governing radially symmetric solutions takes
the following asymptotic form:

(2.4) ut = −∇V (u) + urr ,

on functions (r, t) 7→ u(r, t) defined on R × [0,+∞) (here the radius r is defined on the
whole real line), with values in Rdst .

2.3.3 Radially symmetric travelling fronts for the large radius limit

Let c be a positive quantity. A function

ϕ : R → Rdst , ρ 7→ ϕ(ρ)

is the profile of a wave travelling at the speed c for system (2.4) if the function (r, t) 7→
ϕ(r − ct) is a solution of this system, that is if ϕ is a solution of the differential system

(2.5) ϕ′′ = −cϕ′ + ∇V (ϕ) .

7



Notation. If m− and m+ are two points of M and c is a positive quantity, let Φc(m−,m+)
denote the set of nonconstant global solutions of system (2.5) connecting m− to m+.
With symbols,

Φc(m−,m+) =
{
ϕ : R → Rdst : ϕ is a nonconstant global solution of system (2.5)
and ϕ(ρ) −−−−→

ρ→−∞
m− and ϕ(ρ) −−−−→

ρ→+∞
m+

}
.

If ϕ is an element of some set Φc(m−,m+) for some positive quantity c, then it follows
from system (2.5) that

(2.6) V (m+) − V (m−) = c

∫
R
ϕ′(ξ)2 dξ ,

so that V (m−) is less than V (m+) and m− and m+ differ; in this case the function ϕ is
thus the profile of a travelling front. Since its asymptotic values m− and m+ belong to
M, this front is qualified as bistable.

2.3.4 Propagating terraces of bistable travelling fronts

Figure 2.1: Propagating terrace of (bistable) fronts (travelling to the right).

Definition 2.3 (propagating terrace of bistable travelling fronts, figure 2.1). Let mclose
and mfar be two points of M (satisfying V (mclose) ≤ V (mfar)). A function

T : R × [0,+∞) → Rdst , (r, t) 7→ T (r, t)

is called a propagating terrace of bistable fronts travelling to the right, connecting mclose
to mfar, if there exists a nonnegative integer q such that:

1. if q equals 0, then mclose = mfar and, for every real quantity r and every nonnegative
time t,

T (r, t) = mclose = mfar ;

2. if q equals 1, then there exist
• a positive quantity c1
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• and a function ϕ1 in Φc(mclose,mfar) (that is, the profile of a bistable front
travelling at the speed c1 and connecting mclose to mfar)

• and a C1-function [0,+∞) → [0,+∞), t 7→ r1(t), satisfying r′
1(t) → c1 as time

goes to +∞
such that, for every real quantity r and every nonnegative time t,

T (r, t) = ϕ1
(
r − r1(t)

)
;

3. if q is not smaller than 2, then there exists q−1 points m1, . . . ,mq−1 of M, satisfying
(if mfar is denoted by m0 and mclose by mq)

V (m0) > V (m1) > · · · > V (mq) ,

and there exist q positive quantities c1, . . . , cq satisfying:

c1 ≥ · · · ≥ cq ,

and for every integer i in {1, . . . , q}, there exist:
• a function ϕi in Φci(mi,mi−1) (that is, the profile of a bistable front travelling

at the speed ci and connecting mi to mi−1)
• and a C1-function [0,+∞) → [0,+∞), t 7→ ri(t), satisfying r′

i(t) → ci as time
goes to +∞

such that, for every integer i in {1, . . . , q − 1},

ri+1(t) − ri(t) → +∞ as t → +∞ ,

and such that, for every real quantity r and every nonnegative time t,

T (r, t) = m0 +
q∑

i=1

[
ϕi
(
r − ri(t)

)
−mi−1

]
.

Remarks. 1. Item 2 may have been omitted in this definition, since it boils down to
item 3 with q equals 1.

2. It would be interesting to investigate whether Theorem 1 (the main result of this
paper, stated below) still holds with more refined estimates on the positions of
the travelling fronts involved in Definition 2.3 above. In particular, beyond the
convergence “r′

i(t) → ci” stated in this definition, taking into account the curvature
term in the differential system (1.2) should lead to asymptotics of the form:

ri(t) = cit− d− 1
ci

log(t) + . . . ,

see for instance [14, Theorem 1.1] in the scalar case dst equals 1.
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The terminology “propagating terrace” was introduced by A. Ducrot, T. Giletti, and
H. Matano in [16] (and subsequently used by several other authors [22, 23, 33, 45, 47, 49,
50]) to denote a stacked family (a layer) of travelling fronts in a (scalar) reaction-diffusion
equation. This led the author to keep the same terminology in the present context.
This terminology is convenient to denote objects that would otherwise require a long
description. It is also used in the companion papers [53, 54, 56]. Additional comments
on this terminological choice are provided in [53].

2.3.5 Asymptotic pattern stable at infinity

Figure 2.2: Asymptotic pattern stable at infinity.

Definition 2.4 (asymptotic pattern stable at infinity, figure 2.2). Let mfar be a point of
M. A function

P : [0,+∞) × [0,+∞) → Rdst , (r, t) 7→ P(r, t)

is called an asymptotic pattern stable close to mfar at infinity if there exists:

• a point mclose in M,

• and a propagating terrace T of bistable fronts travelling to the right, connecting
mclose to mfar,

• and a stationary solution ϕ0 in Φ0,centre(mclose),

such that, for every nonnegative quantity r and for every nonnegative time t,

P(r, t) = ϕ0(r) +
(
T (r, t) −mclose

)
.

2.4 Generic hypotheses on the potential
2.4.1 Escape distance of a minimum point

Notation. For every u in Rd, let σ
(
D2V (u)

)
denote the spectrum (the set of eigenvalues)

of the Hessian matrix of V at u, and let λmin(u) denote the minimum of this spectrum:

(2.7) λmin(u) = min
(
σ
(
D2V (u)

))
.
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Definition 2.5 (Escape distance of a nondegenerate minimum point). For every m in
M, let us call Escape distance of m, and let us denote by δEsc(m), the supremum of the
set

(2.8)
{
δ ∈ [0, 1] : for all u in Rd satisfying |u−m|D ≤ δ, λmin(u) ≥ 1

2λmin(m)
}
.

Since the quantity λmin(u) varies continuously with u, this Escape distance δEsc(m) is
positive (thus in (0, 1]). In addition, for all u in Rd such that |u−m|D is not larger than
δEsc(m), the following inequality holds:

(2.9) λmin(u) ≥ 1
2λmin(m) .

Remark. This notation δEsc(m) refers to the word “distance” (and “Escape”) and should
not be mingled with the space dimension d.

2.4.2 Breakup of space translation invariance for travelling fronts

For every ordered pair (m−,m+) of points of M, every positive quantity c, and every
function ϕ in Φc(m−,m+),

sup
ρ∈R

|ϕ(ρ) −m−| > δEsc(m−) and sup
ρ∈R

|ϕ(ρ) −m+| > δEsc(m+) ,

see figure 2.3. For a proof of this standard result, see for instance [53, Lemma 7.1]. Thus,

Figure 2.3: Every function in Φc(m−,m+) escapes at least at distance δEsc(m−) of m−
and at distance δEsc(m+) of m+.

for every positive quantity c and every ordered pair (m−,m+) of points of M, let us
introduce the set of normalized bistable fronts (travelling at the speed c) connecting m−
to m+, defined as

(2.10)
Φc,norm(m−,m+) =

{
ϕ ∈ Φc(m−,m+) : |ϕ(0) −m+| = δEsc(m+) and
|ϕ(ρ) −m+| < δEsc(m+) for every positive quantity ρ

}
,

see figure 2.4.
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Figure 2.4: Normalized bistable travelling front.

2.4.3 Statement of the generic hypotheses

The results of this paper require a number of generic hypotheses on the potential V , that
will now be stated.
Notation. If m+ is a point in M and c is a positive quantity, let Φc(m+) denote the set
of bounded (thus globally defined) profiles of nonconstant waves travelling at the speed c
and “invading” the homogeneous equilibrium m+; with symbols,

Φc(m+) =
{
ϕ : R → Rd : ϕ is a nonconstant global solution of system (2.5)
and sup

ρ∈R
|ϕ(ρ)| < +∞ and ϕ(ρ) −−−−→

ρ→+∞
m+

}
,

and let

Φc,norm(m+) =
{
ϕ ∈ Φc(m+) : |ϕ(0) −m+| = δEsc(m+) and
|ϕ(ρ) −m+| < δEsc(m+) for all ρ in (0,+∞)

}
.

Here are the six generic hypotheses that will be required.

(Honly-bist) Every nonconstant bounded wave travelling at a nonzero speed and invading
a stable equilibrium (a point of M) is a bistable travelling front. With symbols,
for every m+ in M and every positive quantity c,

Φc(m+) =
⋃

m−∈M
Φc(m−,m+) ,

or equivalently Φc,norm(m+) =
⋃

m−∈M
Φc,norm(m−,m+) .

(Hdisc-c) For every m+ in M, the set:{
c in [0,+∞) : Φc(m+) ̸= ∅

}
has an empty interior.
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(Hdisc-Φ) For every point m+ in M and every positive quantity c, the set{(
ϕ(0), ϕ′(0)

)
: ϕ ∈ Φc,norm(m+)

}
is totally discontinuous — if not empty — in R2dst . That is, its connected compo-
nents are singletons. Equivalently, the set Φc,norm(m+) is totally disconnected for
the topology of compact convergence (uniform convergence on compact subsets of
R).

In these two last definitions, the subscript “disc” refers to the concept of “discontinuity”
or “discreteness”. The following hypothesis will be required to ensure that the number of
travelling fronts involved in the asymptotic behaviour of a radially symmetric solution
stable at infinity is finite:

(Hcrit-val) The set of critical values of V , that is the set{
V (u) : u ∈ Rd and ∇V (u) = 0

}
,

is finite.

The next hypothesis is the analogue of (Hdisc-Φ) for radially symmetric stationary solu-
tions.

(Hdisc-stat) For every point m in M, the set{
ϕ(0) : ϕ ∈ Φ0,centre(m)

}
is totally discontinuous in Rdst . That is, its connected components are singletons.
Equivalently, the set Φ0,centre(m) is totally disconnected for the topology of compact
convergence (uniform convergence on compact subsets of [0,+∞)).

Finally, let us us call (G) the union of these five generic hypotheses:

(Honly-bist) and (Hdisc-c) and (Hdisc-Φ) and (Hcrit-val) and (Hdisc-stat).(G)

A formal proof of the genericity of these hypotheses is provided in [27] (for (Honly-bist),
(Hdisc-c), (Hdisc-Φ), and (Hcrit-val)) and in [57] (for (Hdisc-stat)).

2.5 Main result
Theorem 1 (global asymptotic behaviour). Let V denote a function in C2(Rdst ,R)
satisfying the coercivity hypothesis (Hcoerc) and the generic hypotheses (G). Then, for
every solution stable at infinity (r, t) 7→ u(r, t) of system (1.2), there exists an asymptotic
pattern P stable at infinity such that

sup
r∈[0,+∞)

|u(r, t) − P(r, t)| → 0 as t → +∞ .
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2.6 Additional results
2.6.1 Residual asymptotic energy

Here is an additional conclusion to Theorem 1.

Proposition 2.6 (residual asymptotic energy). Assume that the assumptions of Theo-
rem 1 hold. With the notation of this theorem, if mclose and mfar denote the two points of
M such that the propagating terrace T involved in the asymptotic pattern of the solution
connects mclose to mfar, and if ϕ0 denotes the function of Φ0,centre(mclose) involved in this
asymptotic pattern, then, for every small enough positive quantity ε,∫ εt

0
rd−1

(1
2ur(r, t)2 + V

(
u(r, t)

)
− V (mclose)

)
dr → E [ϕ0] as t → +∞ .

The quantity E [ϕ0] may be called the residual asymptotic energy of the solution.

2.6.2 “Mountain pass” existence of a “ground state”

Assume that V satisfies hypothesis (Hcoerc).
Notation. If m is a point in M, let Batt(m) denote the basin of attraction (for the
semi-flow of system (1.2)) of the homogeneous equilibrium m:

Batt(m) =
{
u0 ∈ Y : (Stu0)(r) → m , uniformly with respect to r, as t → +∞

}
,

and let ∂Batt(m) denote the topological border, in Y , of Batt(m).
The following statement can be seen as the “semi-flow” version of a standard result

ensuring the existence of a “ground state” for system (2.1). Variants of this existence
result have been established in numerous references, for instance in [5] (by a direct
“shooting” method probably specific to the scalar case where dst is equal to 1), and in [4]
(by a more general variational method).

Proposition 2.7 (“mountain pass” existence of a “ground state” and attractor of the
border of the basin of attraction of a stable homogeneous equilibrium). Assume that V
satisfies hypothesis (Hcoerc) and let m be a point in M which is not a global minimum
point of V . Then the following conclusions hold.

1. There exists at least one nonconstant function in Φ0,centre(m).

2. The set ∂Batt(m) ∩ Ystab-infty(m) is nonempty.

3. For every solution (r, t) 7→ u(r, t) of system (1.2) in this set ∂Batt(m)∩Ystab-infty(m),
there exists a function ϕ in Φ0,centre(m) such that ϕ is not identically equal to m
and such that

|u(r, t) − ϕ(r)| → 0 as t → +∞ ,

uniformly with respect to r in [0,+∞).
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3 Preliminaries
As everywhere else, let us consider a function V in C2(Rdst ,R) satisfying the coercivity
hypothesis (Hcoerc).

3.1 Global existence of solutions and attracting ball for the semi-flow
Proposition 3.1 (global existence of solutions and attracting ball). For every function
u0 in Y , system (1.2) has a unique globally defined solution t 7→ Stu0 in C0([0,+∞), Y )
with initial condition u0. In addition, there exist a positive quantity Ratt,∞ (radius of
attracting ball for the L∞-norm), depending only on V , such that, for every large enough
positive time t,

∥r 7→ (Stu0)(r)∥
L∞
(

[0,+∞),Rdst
) ≤ Ratt,∞ ,

and ∥r 7→ (Stu0)(r)∥
H1

ul

(
[0,+∞),Rdst

) ≤ Ratt,1,ul .

Proof. For a proof of this rather standard result, see for instance [55, Proposition 3.1],
which provides identical conclusions for system (1.1) (without the radial symmetry
hypothesis).

In addition, system (1.2) has smoothing properties (Henry [26]). Due to these properties,
since V is of class C2, for every quantity α in the interval (0, 1), every solution t 7→ Stu0
in C0([0,+∞), Y ) actually belongs to

C0
(
(0,+∞), C2,α

b
(
[0,+∞),Rdst

))
∩ C1

(
(0,+∞), C0,α

b
(
[0,+∞),Rdst

))
,

and, for every positive quantity ε, the quantities

(3.1) sup
t≥ε

∥Stu0∥
C2,α

b

(
[0,+∞),Rdst

) and sup
t≥ε

∥∥∥∥d(Stu0)
dt

(t)
∥∥∥∥

C0,α
b

(
[0,+∞),Rdst

)
are finite.

3.2 Asymptotic compactness of solutions
The next two lemmas will be used in the proofs of Propositions 4.1 and 6.1.

Lemma 3.2 (asymptotic compactness in the infinite radius limit). For every solution
(r, t) 7→ u(r, t) of system (1.2), and for every sequence (rn, tn)n∈N in [0,+∞)2 such that
rn and tn go to +∞ as n goes to +∞, there exists a entire solution u of system (2.4) in

C0
(
R, C2

b
(
R,Rdst

))
∩ C1

(
R, C0

b
(
R,Rdst

))
,

such that, up to replacing the sequence (rn, tn)n∈N by a subsequence,

(3.2) D2,1u(rn + ·, tn + ·) → D2,1u as n → +∞ ,

uniformly on every compact subset of R2, where the symbol D2,1v stands for (v, vr, vrr, vt)
(for v equal to u or u).
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Lemma 3.3 (asymptotic compactness close to the origin). For every solution (r, t) 7→
u(r, t) of system (1.2), and for every sequence (tn)n∈N in [0,+∞) such that tn → +∞ as
n → +∞, there exists a entire solution u of system (1.2) in

C0
(
R, C2

b
(
[0,+∞),Rdst

))
∩ C1

(
R, C0

b
(
[0,+∞),Rdst

))
,

such that, up to replacing the sequence (tn)n∈N by a subsequence,

(3.3) D2,1u(xn + ·, tn + ·) → D2,1u as n → +∞ ,

uniformly on every compact subset of [0,+∞) × R

Proofs of Lemmas 3.2 and 3.3. See [32, p. 1963] or the proof of [56, Lemma 3.2].

3.3 Time derivative of (localized) energy and L2-norm of a solution
Let (r, t) 7→ u(r, t) be a solution of system (1.2) and m be a point of M. Let us assume,
in the next calculations, that t is positive, so that according to (3.1) the regularities of u
and ut ensure that all integrals converge.

3.3.1 Standing frame

Let r 7→ ψ(r) denote a function in the space W 1,1([0,+∞),R
)

(that is a function
belonging to L1([0,+∞)

)
together with its first derivative), and let us introduce the

energy (Lagrangian) and the L2-norm of the distance to m, localized by the weight
function ψ:∫ +∞

0
ψ(r)

(1
2ur(r, t)2 + V

(
u(r, t) − V (m)

))
dr and

∫ +∞

0
ψ(r)1

2
(
u(r, t) −m

)2
dr .

Let us assume that ψ(0) = 0, and, to simplify the presentation, let us assume that

m = 0Rdst and V (m) = V (0Rdst ) = 0 .

Then the time derivatives of the two integrals above read:

(3.4) d

dt

∫ +∞

0
ψ
(1

2u
2
r + V (u)

)
dr =

∫ +∞

0

[
−ψu2

t +
(d− 1

r
ψ − ψ′

)
ut · ur

]
dr ,

and

(3.5) d

dt

∫ +∞

0
ψ

1
2u

2 dr =
∫ +∞

0

[
ψ
(
−u · ∇V (u) − u2

r

)
+
(d− 1

r
ψ − ψ′

)
u · ur

]
dr .

In both expressions, the border term at r equals 0 coming from the integration by parts
vanishes since ψ(0) = 0. In both expressions again, the last term disappears on every
domain where ψ(r) is proportional to rd−1 (this corresponds to a uniform weight for the
Lebesgue measure on Rd).

More comments on these expressions are provided in [56]. The sole difference with
the one-dimensional space case treated in [56] is the “(d− 1)/r” curvature terms on the
right-hand side of these expressions. Fortunately, this additional term will not induce
many changes with respect to the arguments developed in [56], since:
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• close to the origin r = 0, the weight function ψ can be chosen proportional to rd−1,

• far away from the origin r = 0, this curvature term is just small.

3.3.2 Travelling frame

Now let us introduce nonnegative quantities c and tinit and rinit (the speed, origin of
time, and initial origin of space for the travelling frame respectively, see figure 4.8 on
page 30). For every nonnegative quantity s, let us introduce the interval:

I(s) = [−rinit − cs,+∞) ,

and, for every ρ in I(s), let

v(ρ, s) = u(r, t) where r = rinit + cs+ ρ and t = tinit + s

denote the same solution viewed in a referential travelling at the speed c. This function
(ρ, s) 7→ v(ρ, s) is a solution of the system:

vs − cvρ = −∇V (v) + d− 1
rinit + cs+ ρ

vρ + vρρ .

This time, let us assume that the weight function ψ is a function of the two variables ρ
and s, defined on the domain{

(ρ, s) ∈ R × [0,+∞) : ρ ∈ I(s)
}

and such that, for all s in [0,+∞), the function ρ 7→ ψ(ρ, s) belongs to W 2,1(I(s),R)
and the time derivative ρ 7→ ψs(ρ, s) is defined and belongs to L1(I(s),R). Again, let
us introduce the energy (Lagrangian) and the L2-norm of the solution, localized by the
weight function ψ:∫

I(s)
ψ(ρ, s)

(1
2vρ(ρ, s)2 + V

(
v(ρ, s)

))
dρ and

∫
I(s)

ψ(ρ, s)1
2v(ρ, s)2 dρ .

Let us assume in addition that, for all s in [−tinit,+∞), the functions ρ 7→ ψ(ρ, s) and
ρ 7→ ψρ(ρ, s) vanish at ρ = −rinit − cs (at the left end of its domain of definition). Then
the time derivatives of these two quantities read:

(3.6)

d

ds

∫
I(s)

ψ
(1

2v
2
ρ + V (v)

)
dρ =

∫
I(s)

[
−ψv2

s + ψs

(1
2v

2
ρ + V (v)

)
+
( d− 1
rinit + cs+ ρ

ψ + cψ − ψρ

)
vs · vρ

]
dρ ,
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and

(3.7)

d

ds

∫
I(s)

ψ
1
2v

2 dρ =
∫

I(s)

[
ψ
(
−v · ∇V (v) − v2

ρ

)
+ ψs

1
2v

2

+
( d− 1
rinit + cs+ ρ

ψ + cψ − ψρ

)
v · vρ

]
dρ

=
∫

I(s)

[
ψ
(
−v · ∇V (v) − v2

ρ

)
+ ψs

2 v2

+ 1
2(ψρρ − cψρ)v2 + (d− 1)ψ

rinit + cs+ ρ
v · vρ

]
dρ .

In these expressions again, the integration by part border terms at ρ = −rinit − cs vanish,
and some terms simplify where the quantity

(3.8) d− 1
rinit + cs+ ρ

ψ + cψ − ψρ

vanishes, that is where ψ is proportional to the expression

(rinit + cs+ ρ)d−1 exp(cρ)

(combining the Lebesgue measure and the exponential weight exp(cρ)). For the time
derivative of the L2-functional, a second expression (after integrating by parts the factor
cψ − ψρ) is given (it is actually this second expression that will turn out to be the most
appropriate for the calculations and estimates to come).

More comments on these expressions are provided in [53]. As in the laboratory
frame case, the sole difference with the one-dimensional space case treated in [53] is the
“(d − 1)/(rinit + cs + ρ)” curvature terms on the right-hand side of these expressions.
Fortunately, this additional term does not induce many changes with respect to the
arguments of [53], since:

• close to the “origin” ρ = −rinit − cs, the weight function can be chosen in such a
way that the quantity (3.8) (involving this curvature term) vanishes or remains
small,

• far away from the origin, this curvature term is just small.

3.4 Miscellanea
3.4.1 Second order estimates for the potential around a minimum point

Lemma 3.4 (second order estimates for the potential around a minimum point). For
every m in M and every u in Rdst satisfying |u−m| ≤ δEsc(m), the following estimates
hold:

V (u) − V (m) ≥ λmin(m)
4 (u−m)2 ,(3.9)

and (u−m) · ∇V u) ≥ λmin(m)
2 (u−m)2 ,(3.10)

and (u−m) · ∇V (u) ≥ V (u) − V (m) .(3.11)
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Proof. The three inequalities follow from inequality (2.9) on page 11 defining δEsc(m)
and from three variants of Taylor’s Theorem with Lagrange remainder applied to the
function f defined on [0, 1] by f(θ) = V

(
m+ θ(u−m)

)
(see [56, Lemma 3.3]).

3.4.2 Lower quadratic hulls of the potential at minimum points

As in [53, 56], let
qlow-hull = min

m∈M
inf

u∈Rdst \{m}

V (u) − V (m)
(u−m)2 ,

see figure 3.1. and let

Figure 3.1: Lower quadratic hull of the potential at a minimum point (definition of the
quantity qlow-hull).

(3.12) wen,0 = 1
max(1,−4 qlow-hull)

.

It follows from this definition that, for every m in the set M and for all u in Rdst ,

(3.13) wen,0 V (u) + 1
4(u−m)2 ≥ 0 .

4 Invasion implies convergence
4.1 Definitions and hypotheses
As everywhere else, let us consider a function V in C2(Rdst ,R) satisfying the coercivity
hypothesis (Hcoerc). Let us consider a point m in M, a function (initial condition) u0 in
Y , and the corresponding solution (r, t) 7→ u(r, t) = (Stu0)(r) defined on [0,+∞)2.

It will not be assumed that this solution is stable at infinity, but instead, as stated by
the next hypothesis (Hhom), that there exists a growing interval, travelling at a positive
speed, where the solution is close to m (the subscript “hom” in the definitions below
refers to this “homogeneous” area), see figure 4.1.
(Hhom) There exists a positive quantity chom and a C1-function

rhom : [0,+∞) → R , satisfying r′
hom(t) → chom as t → +∞ ,

such that, for every positive quantity L,

sup
ρ∈[−L,L]

∣∣u(rhom(t) + ρ, t
)

−m
∣∣ → 0 as t → +∞ .
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Figure 4.1: Illustration of hypotheses (Hhom) and (Hinv).

For every t in [0 + ∞), let us denote by rEsc(t) the supremum of the set:{
r ∈

[
0, rhom(t)

]
: |u(r, t) −m| = δEsc(m)

}
,

with the convention that rEsc(t) equals −∞ if this set is empty. In other words, rEsc(t)
is the first point at the left of rhom(t) where the solution “Escapes” at the distance rEsc
from the stable homogeneous equilibrium m. This point will be referred to the “Escape
point” (with an upper-case “E”, by contrast with another “escape point” that will be
introduced later, with a lower-case “e” and a slightly different definition). Let us consider
the upper limit of the mean speeds between 0 and t of this Escape point:

cEsc = lim sup
t→+∞

rEsc(t)
t

,

and let us make the following hypothesis, stating that the area around rhom(t) where the
solution is close to m is “invaded” from the left at a nonzero (mean) speed.

(Hinv) The quantity cEsc is positive.

4.2 Statement
The aim of section 4 is to prove the following proposition, which is the main step in the
proof of Theorem 1. The proposition is illustrated by figure 4.2.

Figure 4.2: Illustration of Proposition 4.1.
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Proposition 4.1 (invasion implies convergence). Assume that V satisfies the coercivity
hypothesis (Hcoerc) and the generic hypotheses (Honly-bist) and (Hdisc-c) and (Hdisc-Φ),
and, keeping the definitions and notation above, let us assume that for the solution under
consideration hypotheses (Hhom) and (Hinv) hold. Then the following conclusions hold.

• For t large enough positive, the function t 7→ rEsc(t) is of class C1 and

r′
Esc(t) → cEsc as t → +∞ .

• There exist:
– a point mnext in M satisfying V (mnext) < V (m),
– a profile of travelling front ϕ in ΦcEsc,norm(mnext,m),
– a C1-function [0,+∞) → R, t 7→ rhom-next(t),

such that, as time goes to +∞, the following limits hold:

rEsc(t) − rhom-next(t) → +∞ and r′
hom-next(t) → cEsc

and
sup

r∈[rhom-next(t) , rhom(t)]

∣∣u(r, t) − ϕ
(
r − rEsc(t)

)∣∣ → 0

and, for every positive quantity L,

sup
ρ∈[−L,L]

∣∣u(rhom-next(t) + ρ, t
)

−mnext
∣∣ → 0 .

4.3 Set-up for the proof, 1
Let us keep the notation and assumptions of subsection 4.1, and let us assume that the
hypotheses (Hcoerc) and (Honly-bist) and (Hdisc-c) and (Hdisc-Φ) and (Hhom) and (Hinv) of
Proposition 4.1 hold.

4.3.1 Assumptions holding up to changing the origin of time

Without loss of generality, up to changing the origin of time, it may be assumed that the
following properties hold.

• According to Proposition 3.1 on page 15 (“global existence of solutions and attracting
ball”), it may be assumed that, for all t in [0,+∞),

(4.1) sup
r∈[0,+∞)

|u(r, t)| ≤ Ratt,∞ .

• According to the bounds (3.1) on page 15, it may be assumed that

(4.2)
sup
t≥0

∥r 7→ u(r, t)∥
C2

b

(
[0,+∞),Rdst

) < +∞

and sup
t≥0

∥r 7→ ut(r, t)∥C0
b

(
[0,+∞),Rdst

) < +∞ .

• According to (Hhom), it may be assumed that, for all t in [0,+∞),

(4.3) r′
hom(t) ≥ 0 .
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4.3.2 Normalized potential and corresponding solution

For notational convenience, let us introduce the “normalized potential” V † and the
“normalized solution” u† defined as

(4.4) V †(v) = V (m+ v) − V (m) and u†(r, t) = u(r, t) −m.

Thus the origin 0Rd of Rd is to V † what m is to V , it is a nondegenerate minimum point
for V † (with V †(0Rd) = 0), and u† is a solution of system (1.2) with potential V † instead
of V ; and, for all (r, t) in [0,+∞)2,

V †(u†(r, t)
)

= V
(
u(r, t)

)
− V (m) .

It follows from inequality (3.13) satisfied by wen,0 that, for all v in Rd,

(4.5) wen,0 V
†(v) + 1

4v
2 ≥ 0 ,

and it follows from inequalities (3.9) to (3.11) that, for all v in Rd satisfying |v| ≤ δEsc(m),

v · ∇V †(v) ≥ λmin(m)
2 v2 ,(4.6)

and v · ∇V †(v) ≥ V †(v) .(4.7)

4.4 Firewall function in the laboratory frame
4.4.1 Definition

Let κ0 and rs-c denote two positive quantities, with κ0 small enough and rs-c large enough
so that

(4.8) wen,0
4
(d− 1
rs-c

+ κ0
)2

+ 1
4
(d− 1
rs-c

+ κ0
)

≤ 1
2 and d− 1

rs-c
+ κ0 ≤ λmin(m)

8

(those properties will be used to prove inequality (4.20) below). Since according to its
definition (3.12) on page 19 the quantity wen,0 is not larger than 1, these quantities may
be chosen as

(4.9) κ0 = min
(1

2 ,
λmin(m)

16
)

and

(4.10) rs-c = max
(
2(d− 1) , 16(d− 1)

λmin(m)
)
.

Let us consider the weight function ψ0 defined as

(4.11) ψ0(r) = exp(−κ0 |r|) ,
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and, for every quantity r̄ greater than or equal to rs-c, let Tr̄ψ0 denote the function
[0,+∞) → R defined as

(4.12) Tr̄ψ0(r) =

ψ0(r − r̄)
( r

rs-c

)d−1
if 0 ≤ r ≤ rs-c ,

ψ0(r − r̄) if r ≥ rs-c ,

see figure 4.3.

Figure 4.3: Graph of the weight function r 7→ Tr̄ψ0(r) used to define the firewall function
F0(r̄, t). The quantity rs-c is large, and, according to the definition of κ0, the slope is
small.

As the following computations will show, for r greater than this quantity rs-c, the
“curvature terms” that take place in the time derivatives of energy and L2 functionals
(see expressions (3.4) and (3.5) on page 16) will be small enough for the desired estimates
to hold. The subscript “s-c” thus refers to “small curvature” (or equivalently, “large
radius”).

Thus, the function Tr̄ψ0 defined above is:

• a translate of the function ψ0 far from the origin (for r greater than rs-c),

• the same translate multiplied by a factor proportional to the “Lebesgue measure”
weight rd−1 close to the origin (for r smaller than rs-c), this factor being equal to 1
at r = rs-c to ensure the continuity of the function.

One purpose of this definition is to control the last terms in the expressions (3.4)
and (3.5) for the time derivatives of the energy and L2 functionals. For all nonnegative
quantities r̄ and r with r̄ not smaller than rs-c,

d− 1
r

Tr̄ψ0(r) − Tr̄ψ
′
0(r) =



− κ0Tr̄ψ0(r) if r < rs-c ,(d− 1
r

− κ0
)
Tr̄ψ0(r) if rs-c < r < r̄ ,(d− 1

r
+ κ0

)
Tr̄ψ0(r) if r̄ < r ,

thus, in all three cases,

(4.13)
∣∣∣∣d− 1
r

Tr̄ψ0(r) − Tr̄ψ
′
0(r)

∣∣∣∣ ≤
(d− 1
rs-c

+ κ0
)
Tr̄ψ0(r) .

For all nonnegative quantities r and t, let us introduce the quantities

(4.14) E†(r, t) = 1
2u

†
r(r, t)2 + V †(u†(r, t)

)
and F †(r, t) = wen,0E

†(r, t) + 1
2u

†(r, t)2 ,
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and, for all nonnegative quantities r̄ and t with r̄ not smaller than rs-c, let us introduce
the “firewall” F0(r̄, t) defined as

(4.15) F0(r̄, t) =
∫ +∞

0
Tr̄ψ0(r)F †(r, t) dr .

4.4.2 Coercivity

Lemma 4.2 (firewall coercivity). For every nonnegative time t and nonnegative radius
r,

(4.16) F †(r, t) ≥ min
(
wen,0

2 ,
1
4

) (
u†

r(r, t)2 + u†(r, t)2) ,
so that, for every r̄ greater than or equal to rs-c,

(4.17) F0(r̄, t) ≥ min
(
wen,0

2 ,
1
4

)∫
R
Tr̄ψ0(r)

(
u†

r(r, t)2 + u†(r, t)2) dr .
Proof. Inequality (4.16) follows from inequality (4.5) on page 22 satisfied by wen,0, and
(4.17) follows from (4.16).

4.4.3 Linear decrease up to pollution

For every nonnegative time t, let us introduce the following set (the set of radii where
the solution “Escapes” at a certain distance from 0Rdst ):

(4.18) ΣEsc,0(t) =
{
r ∈ [0,+∞) :

∣∣∣u†(r, t)
∣∣∣ > δEsc(m)

}
,

Lemma 4.3 (firewall linear decrease up to pollution). There exist positive quantities
νF0 and KF0, depending only on V , such that, for all nonnegative quantities r̄ and t,

(4.19) ∂tF0(r̄, t) ≤ −νF0 F0(r̄, t) +KF0

∫
ΣEsc,0(t)

Tr̄ψ0(r) dr .

Proof. It follows from expressions (3.4) and (3.5) on page 16 for the time derivatives of
localized energy and L2-functionals that

∂tF0(r̄, t) =
∫ +∞

0

(
Tr̄ψ0

(
−wen,0 (u†

t)2 − u† · ∇V †(u†) − (u†
r)2)

+
(d− 1

r
Tr̄ψ0 − Tr̄ψ

′
0

)(
wen,0 u

†
t · u†

r + u† · u†
r

))
dr .

Thus, according to the upper bound (4.13),

∂tF0(r̄, t) ≤
∫ +∞

0
Tr̄ψ0

(
−wen,0 (u†

t)2 − u† · ∇V †(u†) − (u†
r)2

+
(
d− 1
rs-c

+ κ0

)(
wen,0

∣∣∣u†
t · u†

r

∣∣∣+ ∣∣∣u† · u†
r

∣∣∣)) dr ,
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thus, using the inequalities(
d− 1
rs-c

+ κ0

) ∣∣∣u†
t · u†

r

∣∣∣ ≤ (u†
t)2 + 1

4

(
d− 1
rs-c

+ κ0

)2
(u†

r)2 ,

and
∣∣∣u†

t · u†
r

∣∣∣ ≤ 1
4(u†

r)2 + (u†)2 ,

it follows that

∂tF0(r̄, t) ≤
∫ +∞

0
Tr̄ψ0

[(
wen,0

4
(d− 1
rs-c

+ κ0
)2

+ 1
4
(d− 1
rs-c

+ κ0
)

− 1
)

(u†
r)2

− u† · ∇V †(u†) +
(d− 1
rs-c

+ κ0
)
(u†)2

]
dr ,

and according to inequalities (4.8) satisfied by the quantities κ0 and rs-c,

(4.20) ∂tF0(r̄, t) ≤
∫ +∞

0
Tr̄ψ0

(
−1

2(u†
r)2 − u† · ∇V †(u†) + λmin(m)

8 (u†)2
)
dr .

Let νF0 be a positive quantity to be chosen below. It follows from the previous inequality
and from the definition (4.15) of F0(r̄, t) that
(4.21)

∂tF0(r̄, t) + νF0F0(r̄, t) ≤
∫ +∞

0
Tr̄ψ0

[
− 1

2(1 − νF0 wen,0)(u†
r)2 − u† · ∇V †(u†)

+ νF0wen,0V
†(u†) +

(λmin(m)
8 + νF0

2
)
(u†)2

]
dr .

In view of this inequality and inequalities (4.6) and (4.7) on page 22, let us assume that
νF0 is small enough so that

(4.22) νF0 wen,0 ≤ 1 and νF0 wen,0 ≤ 1
2 and νF0

2 ≤ λmin(m)
8 ;

the quantity νF0 may be chosen as

(4.23) νF0 = min
(

1
2wen,0

,
λmin(m)

4

)
.

Then, it follows from (4.21) and (4.22) that
(4.24)
∂tF0(r̄, t) + νF0F0(r̄, t) ≤

∫ +∞

0
Tr̄ψ0

[
−u† · ∇V †(u†) + 1

2
∣∣∣V †(u†)

∣∣∣+ λmin(m)
4 (u†)2

]
dr .

According to (4.6) and (4.7), the integrand of the integral at the right-hand side of this
inequality is nonpositive as long as r is not in ΣEsc,0(t). Therefore this inequality still
holds if the domain of integration of this integral is changed from [0,+∞) to ΣEsc,0(t).
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Besides, observe that, in terms of the “initial” potential V and solution u(r, t), the factor
of Tx̄ψ under the integral of the right-hand side of this last inequality reads

−(u−m) · ∇V (u) + 1
2
(
V (u) − V (m)

)
+ λmin(m)

4 (u−m)2 .

Thus, if KF0 denotes the maximum of this expression over all possible values for m and
u, that is the (positive) quantity
(4.25)
KF0 = max

v∈Rdst , |v|≤Ratt,∞

[
−(u−m) · ∇V (u) + 1

2 |V (u) − V (m)| + λmin(m)
4 (u−m)2

]
,

then inequality (4.19) follows from inequality (4.24) (with the domain of integration of
the integral on the right-hand side restricted to ΣEsc,0(t)). Observe that KF0 depends
only on V . This finishes the proof of Lemma 4.3.

4.5 Upper bound on the invasion speed
Let

(4.26) δesc(m) = δEsc(m)

√√√√min
(

wen,0
2 , 1

4

)
κ0 + 1 .

As the quantity δEsc(m) defined in sub-subsection 2.4.2 on page 11, this quantity δesc(m)
will provide a way to measure the vicinity of the solution u to the point m, this time in
terms of the firewall function F0. The value chosen for δesc(m) depends only on V and
ensures the validity of the following lemma.

Lemma 4.4 (escape/Escape). For all (r̄, t) in [rs-c,+∞)×[0,+∞), the following assertion
holds:

(4.27) F0(r̄, t) ≤ δesc(m)2 =⇒
∣∣∣u†(r̄, t)

∣∣∣ ≤ δEsc(m) .

Proof. Let v be a function Y , and assume in addition that v is of class C1 and that its
derivative is uniformly bounded on [0,+∞). Then, for all r̄ in [rs-c,+∞),

v(r̄)2 = Tr̄ψ0(r̄)v(r̄)2

≤
∫ +∞

r̄

∣∣∣∣ ddr (Tr̄ψ0(r)v(r)2)∣∣∣∣ dr
≤
∫ +∞

r̄

(∣∣Tr̄ψ
′
0(r)

∣∣ v(r)2 + 2Tr̄ψ0(r) v(r) · v′(r)
)
dr

≤
∫ +∞

r̄
Tr̄ψ0(r)

(
(κ0 + 1)v(r)2 + v′(r)2) dr

≤ (κ0 + 1)
∫ +∞

0
Tr̄ψ0(r)

(
v(r)2 + v′(r)2) dr .
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Thus it follows from inequality (4.17) on the coercivity of F0(·, ·) that, for all r̄ in
[rs-c,+∞) and t in [0,+∞),

u†(r̄, t)2 ≤ κ0 + 1
min

(
wen,0

2 , 1
4

)F0(r̄, t) ,

and this ensures the validity of implication (4.27) with the value of δesc(m) chosen in
definition (4.26).

Let L be a positive quantity, large enough so that

2KF0
exp(−κ0L)

κ0
≤ νF0

δesc(m)2

8 , namely L = 1
κ0

log
( 16KF0

νF0 δesc(m)2 κ0

)
(this quantity depends only on V ), let ηno-esc : R → R ∪ {+∞} (“no-escape hull”) be the
function defined as

(4.28) ηno-esc(ρ) =



+ ∞ for ρ < 0 ,
δesc(m)2

2
(
1 − ρ

2L
)

for 0 ≤ ρ ≤ L ,

δesc(m)2

4 for ρ ≥ L ,

see figure 4.4; and let cno-esc (“no-escape speed”) be a positive quantity, large enough so

Figure 4.4: Graph of the hull function ηno-esc.

that
cno-esc

δesc(m)2

4L ≥ 2KF0

κ0
, namely cno-esc = 8KF0 L

κ0 δesc(m)2

(this quantity depends only on V and m). The following lemma, illustrated by figure 4.5,
is a variant of [56, Lemma 4.6].
Lemma 4.5 (bound on invasion speed). For every ordered pair (rleft, rright) of points in
the interval [rs-c,+∞) and every nonnegative time t1, if

F0(r, t1) ≤ max
(
ηno-esc(r − rleft), ηno-esc(rright − r)

)
for all r in [rs-c,+∞) ,

then, for every time t greater than or equal to t1 and all r in [rs-c,+∞),

F0(r, t) ≤ max
(
ηno-esc

(
rleft − cno-esc (t− t1)

)
, ηno-esc

(
rright + cno-esc (t− t1) − r

))
.

Proof. See [56, Lemma 4.6].
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Figure 4.5: Illustration of Lemma 4.5; if the firewall function is below the maximum of
two mirror hulls at a certain time t0 and if these two hulls travel at opposite speeds
±cno-esc, then the firewall will remain below the maximum of those travelling hulls in the
future (note that after they cross this maximum equals +∞ thus the assertion of being
“below” is empty).

4.6 Set-up for the proof, 2: escape point and associated speeds
According to hypothesis (Hhom) and to the bounds (4.2) on the solution, it may be
assumed, up to changing the origin of time, that, for all t in [0,+∞) and for all r in
[rs-c,+∞),

(4.29)
rs-c ≤ rhom(t) − 1 ,

and F0(r, t) ≤ max
(
ηno-esc

(
r −

(
rhom(t) − 1

))
, ηno-esc

(
rhom(t) − r

))
.

As a consequence, for all t in [0,+∞), the set

Ihom(t) =
{
rℓ ∈ [rs-c, rhom(t)] : for all r in [rs-c,+∞) ,

F0(r, t) ≤ max
(
ηno-esc(r − rℓ), ηno-esc

(
rhom(t) − r

))}
is a nonempty interval (containing [rhom(t) − 1, rhom(t)]), see figure 4.6. For all t in

Figure 4.6: Interval Ihom(t) and definition of resc(t).

[0,+∞), let

(4.30) resc(t) = inf
(
Ihom(t)

)
(thus resc(t) ∈ [rs-c, rhom(t) − 1] ).
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Somehow like rEsc(t), this point represents the first point at the left of rhom(t) where
the solution u (respectively u†) “escapes” (in a sense defined by the firewall function F0
and the no-escape hull ηno-esc) at a certain distance from m (respectively from 0Rdst ) —
except if Ihom(t) is the whole interval [rs-c, rhom(t)], in this case this “escape” does not
occur. In the following, this point resc(t) will be called the “escape point” (by contrast
with the “Escape point” rEsc(t) defined before). According to the “hull inequality” (4.29)
and Lemma 4.4 (“escape/Escape”), for all t in [0,+∞),

(4.31) rEsc(t) ≤ resc(t) ≤ rhom(t) − 1 and ΣEsc,0(t) ∩ [rEsc(t), rhom(t)] = ∅ ,

and, according to hypothesis (Hhom) and to the bounds (4.2) on the solution,

(4.32) rhom(t) − resc(t) → +∞ as t → +∞ .

The big advantage of resc(·) with respect to rEsc(·) is that, according to Lemma 4.5
(“bound on invasion speed”), the growth of resc(·) is more under control. More precisely,
according to this lemma, for all nonnegative quantities t and s,

(4.33) resc(t+ s) ≤ resc(t) + cno-esc s .

For every s in [0,+∞), let us consider the “upper and lower bounds of the variations of
resc(·) over all time intervals of length s”:

Figure 4.7: Illustration of the bounds (4.34).

resc(s) = sup
t∈[0,+∞)

resc(t+ s) − resc(t) and resc(s) = inf
t∈[0,+∞)

resc(t+ s) − resc(t) ,

see figure 4.7. According to these definitions and to inequality (4.33) above, for all t and
s in [0,+∞),

(4.34) −∞ ≤ resc(s) ≤ resc(t+ s) − resc(t) ≤ resc(s) ≤ cno-esc s .
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Let us consider the four limit mean speeds:

cesc-inf = lim inf
t→+∞

resc(t)
t

and cesc-sup = lim sup
t→+∞

resc(t)
t

and
cesc-inf = lim inf

s→+∞

resc(s)
s

and cesc-sup = lim sup
s→+∞

resc(s)
s

.

The following inequalities follow from these definitions and from hypothesis (Hinv):

−∞ ≤ cesc-inf ≤ cesc-inf ≤ cesc-sup ≤ cesc-sup ≤ cno-esc and 0 < cEsc ≤ cesc-sup .

The four limit mean speeds defined just above will turn out to be equal. The proof of
this equality is based of the “relaxation scheme” set up in the next subsection.

4.7 Relaxation scheme in a travelling frame
The aim of this subsection is to set up an appropriate relaxation scheme in a travelling
frame. This means defining an appropriate localized energy and controlling the “flux”
terms occurring in the time derivative of this localized energy. The considerations made
in subsection 3.3 on page 16 will be put in practice.

4.7.1 Preliminary definitions

Let us introduce the following real quantities that will play the role of “parameters” for
the relaxation scheme below (see figure 4.8):

Figure 4.8: Space coordinate ρ and time coordinate s in the travelling frame, and
parameters tinit and rinit and c and ρcut-init.

• the “initial time” tinit of the time interval of the relaxation;

• the position rinit of the origin of the travelling frame at initial time t = tinit (in
practice it will be chosen equal to resc(tinit));

• the speed c of the travelling frame;
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• a quantity ρcut-init that will be the the position of the maximum point of the weight
function ρ 7→ χ(ρ, tinit) localizing energy at initial time t = tinit (this weight function
is defined below); the subscript “cut” refers to the fact that this weight function
displays a kind of “cut-off” on the interval between this maximum point and +∞.
Thus the maximum point is in some sense the point “where the cut-off begins”.

Let us make on these parameters the following hypotheses:

(4.35) 0 ≤ tinit and 0 < c ≤ cno-esc and 0 ≤ ρcut-init and rinit ≥ rs-c .

For all ρ in [−rinit − cs,+∞) and s in [0,+∞), let

v(ρ, s) = u†(r, t) where r = rinit + cs+ ρ and t = tinit + s .

This function satisfies the differential system

(4.36) vs − cvρ = −∇V †(v) + d− 1
rinit + cs+ ρ

vρ + vρρ .

Let κ (rate of decrease of the weight functions), ccut (speed of the cutoff point in the
travelling frame), and wen (coefficient of energy in the “firewall” function) be three
positive quantities, small enough so that

(4.37)
wen

(ccut(c+ κ)
2 +

(c+ κ+ 1
2)2

4
)

≤ 1
4 and wenccut(c+ κ) ≤ 1

4

and (ccut + κ)(c+ κ)
2 ≤ λmin(m)

16

(these conditions will be used to prove inequality (4.55) on page 40), and so that

(4.38) wen ≤ wen,0 .

These quantities may be chosen as follows (first choose κ and ccut so that the third
inequality of (4.37) be fulfilled, and then choose wen according to the first two inequalities
of (4.37) and to (4.38)):

κ = min
(√λmin(m)

32 ,
λmin(m)
32cno-esc

)
and ccut = λmin(m)

16(cno-esc + κ) ,

and wen = min
( 1

2ccut(cno-esc + κ) + (cno-esc + κ+ 1/2)2 ,
1

4ccut(cno-esc + κ) , wen,0
)
.

Conditions (4.37) and (4.38) are very similar to those stated in [53], although slightly
more stringent due to the curvature terms.
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4.7.2 Localized energy

For every nonnegative quantity s, let us introduce the intervals
Ileft(s) =

[
−rinit − cs,−rinit − cs+ rs-c

]
,

and Imain(s) =
[
−rinit − cs+ rs-c, ρcut-init + ccuts

]
,

and Iright(s) = [ρcut-init + ccuts,+∞) ,
and Itot(s) =

[
−rinit − cs,+∞

)
= Ileft(s) ∪ Imain(s) ∪ Iright(s) ,

see figure 4.9. Observe that, since according to hypotheses (4.35) the quantity rinit is

Figure 4.9: Intervals Ileft(s) and Imain(s) and Iright(s) and graphs of the weight functions
χ(y, s) and ψ(y, s).

greater than or equal to rs-c, the interval Imain(s) is nonempty. Let us introduce the
function χ(ρ, s) (weight function for the localized energy) defined as

χ(ρ, s) =


exp(cρ)

(rinit + cs+ ρ

rs-c

)d−1
if ρ ∈ Ileft(s) ,

exp(cρ) if ρ ∈ Imain(s) ,

exp
[
c(ρcut-init + ccuts) − κ

(
ρ− (ρcut-init + ccuts)

)]
if ρ ∈ Iright(s) .

For all s in [0,+∞), let us define the “energy function” E(s) by

E(s) =
∫

Itot(s)
χ(ρ, s)

(1
2vρ(ρ, s)2 + V †(v(ρ, s)

))
dρ .
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4.7.3 Time derivative of the localized energy

For every nonnegative quantity s, let

D(s) =
∫

Itot(s)
χ(ρ, s) vs(ρ, s)2 dρ .

The aim of this sub-subsection is to prove the following lemma.

Lemma 4.6 (upper bound on time derivative of energy, first version). There exist
positive quantities KE,left and KE,main, depending only on V and d, such that, for every
nonnegative quantity s, the following inequality holds:

(4.39)

E ′(s) ≤ − 1
2D(s) +KE,left exp

(
−crinit

)
+KE,main

(
exp

(
−crinit

2
)

+ 2
rinit

exp
(
c(ρcut-init + ccuts)

))
+
∫

Iright(s)
χ

(
ccut(c+ κ)

(1
2v

2
ρ + V †(v)

)
+ (1/2 + c+ κ)2

2 v2
ρ

)
dρ .

Proof. It follows from expression (3.6) on page 17 for the derivative of a localized energy
that

E ′(s) = − D(s) +
∫

Itot(s)
χs

(1
2v

2
ρ + V †(v)

)
dρ

+
∫

Itot(s)

( d− 1
rinit + cs+ ρ

χ+ cχ− χρ

)
vs · vρ dρ .

It follows from the definition of χ that, for every real quantity ρ,

χs(ρ, s) =


c(d− 1)

rinit + cs+ ρ
χ(ρ, s) if ρ ∈ Ileft(s) ,

0 if ρ ∈ Imain(s) ,
ccut(c+ κ)χ(ρ, s) if ρ ∈ Iright(s) ,

and

χρ(ρ, s) =


cχ(ρ, s) + d− 1

rinit + cs+ ρ
χ(ρ, s) if ρ ∈ Ileft(s) ,

cχ(ρ, s) if ρ ∈ Imain(s) ,
− κχ(ρ, s) if ρ ∈ Iright(s) .

thus
(4.40)

d− 1
rinit + cs+ ρ

χ(ρ, s) + cχ(ρ, s) − χρ(ρ, s) =

0 if ρ ∈ Ileft(s) ,
d− 1

rinit + cs+ ρ
χ(ρ, s) if ρ ∈ Imain(s) ,(

c+ κ+ d− 1
rinit + cs+ ρ

)
χ(ρ, s) if ρ ∈ Iright(s) .
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As a consequence,

E ′(s) = −D(s)

+
∫

Ileft(s)
χ

c(d− 1)
rinit + cs+ ρ

(1
2v

2
ρ + V †(v)

)
dρ

+
∫

Imain(s)
χ

d− 1
rinit + cs+ ρ

vs · vρ dρ

+
∫

Iright(s)
χ

(
ccut(c+ κ)

(1
2v

2
ρ + V †(v)

)
+
( d− 1
rinit + cs+ ρ

+ c+ κ
)
vs · vρ

)
dρ .

Polarizing the scalar products vs · vρ, it follows that
(4.41)

E ′(s) ≤ − 1
2D(s)

+
∫

Ileft(s)
χ

c(d− 1)
rinit + cs+ ρ

(1
2v

2
ρ + V †(v)

)
dρ

+
∫

Imain(s)
χ

1
2
( d− 1
rinit + cs+ ρ

)2
v2

ρ dρ

+
∫

Iright(s)
χ

(
ccut(c+ κ)

(1
2v

2
ρ + V †(v)

)
+ 1

2
( d− 1
rinit + cs+ ρ

+ c+ κ
)2
v2

ρ

)
dρ .

Let us make a brief comment on this inequality, in comparison with the (simpler) case
d = 1 (see [53, sub-subsection 4.7.5]).

Observe that the last term of this inequality (the integral over Iright(s)) is very similar
to the d = 1 case. As in the d = 1 case, its control will require the definition of a “firewall
function” that will be defined in the next sub-subsection 4.7.4. Thus the main novelty
with respect to the d = 1 case is the existence of the two other integrals over Ileft(s) and
Imain(s) (according to the calculations above, the integral over Ileft(s) follows from the
fact that χs(ρ, s) is positive when ρ belongs to this interval, and the integral over Imain(s)
comes from the curvature term in system (4.36)).

Unfortunately, the firewall function that will be defined in the next sub-subsection will
be of no help to control these two terms, since the weight function ψ(ρ, s) involved in its
definition will have to be chosen much smaller than χ(ρ, s) on both intervals Ileft(s) and
Imain(s). As a consequence, these two terms need to be treated separately. The aim of
the following two lemmas is to do this job, that is to provide appropriate upper bounds
for these two terms (proof Lemma 4.6 will follow afterwards). The sole required feature
of these bounds is that they should be small if the positive quantity rinit is large.

Lemma 4.7 (upper bound for curvature term on Ileft(s)). There exists a positive quantity
KE,left, depending only on V and d, such that, for every nonnegative quantity s, the
following estimate holds:

(4.42)
∫

Ileft(s)
χ

c(d− 1)
rinit + cs+ ρ

(1
2v

2
ρ + V †(v)

)
dρ ≤ KE,left exp

(
−crinit

)
.

34



Proof of Lemma 4.7. For every nonnegative quantity s and every ρ in Ileft(s),

χ(ρ, s) c(d− 1)
rinit + cs+ ρ

= c(d− 1) exp(cρ)
rs-c

(rinit + cs+ ρ

rs-c

)d−2

≤ c(d− 1) exp(cρ)
rs-c

(this inequality still holds if d = 1, however recall that for clarity the d equals 1 case was
excluded, thus d is assumed to be not smaller than 2). Thus,∫

Ileft(s)
χ

c(d− 1)
rinit + cs+ ρ

dρ ≤ d− 1
rs-c

exp
(
c(−rinit − cs+ rs-c

)
≤
(d− 1
rs-c

exp(crs-c)
)

exp(−crinit) ,

thus inequality (4.42) follows from the bound (4.35) on the speed c and the bounds (4.1)
on page 21 for the solution. Lemma 4.7 is proved.

Let us make the following additional hypothesis on the parameter rinit:

(4.43) rinit ≥ 2rs-c .

Lemma 4.8 (upper bound for curvature term on Imain(s)). There exists a positive
quantity KE,main, depending only on V and d, such that, for every nonnegative quantity
s, the following estimate holds:

(4.44)

∫
Imain(s)

χ
1
2
( d− 1
rinit + cs+ ρ

)2
v2

ρ dρ ≤

KE,main

(
exp

(
−crinit

2
)

+ 2
rinit

exp
(
c(ρcut-init + ccuts)

))
.

Proof of Lemma 4.8. Let us introduce the integral:

J =
∫

Imain(s)

χ

(rinit + cs+ ρ)2 dρ

=
∫ ρcut-init+ccuts

−rinit−cs+rs-c

exp(c ρ)
(rinit + cs+ ρ)2 dρ

= exp
(
−crinit − c2s

) ∫ rinit+ρcut-init+(c+ccut)s

rs-c

exp(c r)
r2 dr .

To bound from above this expression, the integral may be cut into two pieces, namely:

J = exp
(
−crinit − c2s

)(∫ rinit/2

rs-c

exp(c r)
r2 dr +

∫ rinit+ρcut-init+(c+ccut)s

rinit/2

exp(c r)
r2 dr

)
;

observe that according to hypothesis (4.43) the quantity rinit/2 is not smaller than rs-c.
Thus, bounding from above the two quantities exp(cr) in this expression (by replacing
the quantity r by the upper bound of the respective integration domain), it follows that

J ≤
exp

(
−crinit/2 − c2s

)
rs-c

+ 2
rinit

exp
(
c(ρcut-init + ccuts)

)
,
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and since according to its definition (4.10) on page 22 the quantity rs-c is not smaller
than 1, it follows that

J ≤ exp
(
−crinit

2
)

+ 2
rinit

exp
(
c(ρcut-init + ccuts)

)
.

Thus inequality (4.44) follows from the bounds (4.1) on page 21 for the solution.
Lemma 4.8 is proved.

End of the proof of Lemma 4.6. Observe that, according to the definition (4.10) on
page 22 of rs-c, the quantity (d − 1)/(rinit + cs + ρ) is not larger than 1/2 as soon
as ρ is in Iright(s) (actually even in Imain(s)). Thus inequality (4.39) of Lemma 4.6 follows
from inequality (4.41) and from Lemmas 4.7 and 4.8. Lemma 4.6 is proved.

4.7.4 Firewall function

A second function (the “firewall”) will now be defined, to get some control over the
last term of the right-hand side of inequality (4.41). Let us introduce the function
ψ(y, s) (weight function for the firewall function) defined as follows (for every nonnegative
quantity s and every quantity ρ in Itot(s)):

ψ(ρ, s) =

 exp
[
κ
(
ρ− (ρcut-init + ccuts)

)]
χ(ρ, s) if ρ ∈ Ileft(s) ∪ Imain(s) ,

χ(ρ, s) if ρ ∈ Iright(s) ,

see figure 4.9; and, for every nonnegative quantity s, let us define the “firewall” function
by

(4.45) F(s) =
∫

Itot(s)
ψ(ρ, s)

(
wen

(1
2vρ(ρ, s)2 + V †(v(ρ, s)

))
+ 1

2v(ρ, s)2
)
dρ .

4.7.5 Energy decrease up to firewall

Lemma 4.9 (energy decrease up to firewall). There exists a positive quantity KE,right,
depending only on V , such that for every nonnegative quantity s,

(4.46)
E ′(s) ≤ −1

2D(s) +KE,left exp
(
−crinit

)
+KE,main

(
exp

(
−crinit

2
)

+ 2
rinit

exp
(
c(ρcut-init + ccuts)

))
+KE,rightF(s) .

Proof. Let us introduce the following positive quantity (depending only on V ):

KE,right = ccut(cno-esc + κ) + (1/2 + cno-esc + κ)2

wen
.

Inequality (4.46) follows Lemma 4.6 (upper bound (4.39) on E ′(s)). For a detailed
justification, see [53, sub-subsection 4.7.6].
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4.7.6 Relaxation scheme inequality, 1

Let sfin be a nonnegative quantity (denoting the length of the time interval on which the
relaxation scheme will be applied), and let us introduce the expression:

KE,curv(r, s, c) =KE,left s exp
(
−cr

)
+KE,main s

(
exp

(
−cr

2
)

+ 2
rinit

exp
(
c(ρcut-init + ccuts)

))
.

It follows from the previous inequality that

(4.47) 1
2

∫ sfin

0
D(s) ds ≤ E(0) − E(sfin) +KE,curv(rinit, sfin, c) +KE,right

∫ sfin

0
F(s) ds .

This “relaxation scheme inequality” is the core of the arguments carried out through
this section 4 to prove Proposition 4.1. The crucial property of the “curvature term”
KE,curv(r, s, c) is that this quantity goes to 0 as r goes to +∞, uniformly with respect to
s bounded and c bounded away from 0 and +∞. The next goal is to gain some control
over the firewall function (and as a consequence over the last term of this inequality).

4.7.7 Firewall linear decrease up to pollution

For every nonnegative quantity s, let us introduce the set (the domain of space where
v(·, s) “Escapes” at distance δEsc(m) from 0Rdst ) defined as

ΣEsc(s) = {ρ ∈ Imain(s) ∪ Iright(s) : |v(ρ, s)| > δEsc(m)} .

To make the connection with definition (4.18) on page 24 of the related set ΣEsc,0(t),
observe that, for every quantity ρ in Itot(s),

ρ ∈ ΣEsc(s) ⇐⇒ rinit + cs+ ρ ∈ ΣEsc,0(tinit + s) .

The next step is the following lemma (observe the strong similarity with Lemma 4.3 on
page 24).
Lemma 4.10 (firewall linear decrease up to pollution). There exist positive quantities
νF and KF and KF ,left such that, for every nonnegative quantity s,

(4.48) F ′(s) ≤ −νFF(s) +KF

∫
ΣEsc(s)

ψ(ρ, s) dρ+KF ,left exp(−c rinit) .

The quantities νF and KF depend only on V and m, whereas KF ,left depends additionally
on d.

Proof. According to expressions (3.6) and (3.7) on page 17 and on page 18 for the time
derivatives of a localized energy and a localized L2 functional, for all s in [0,+∞),

(4.49)
F ′(s) =

∫
Itot(s)

[
ψ
(
−wenv

2
s − v · ∇V †(v) − v2

ρ

)
+ ψs

(
wen

(1
2v

2
ρ + V †(v)

)
+ 1

2v
2
)

+
( d− 1
rinit + cs+ ρ

ψ + cψ − ψρ

)
(wenvs · vρ + v · vρ)

]
dρ .
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(this makes use of the “first” version of the time derivative of the L2-functional written
in (3.7), without the additional integration by parts of cψ − ψρ). The aim of the next
calculations is to control the two last terms below this integral.

It follows from the definition of ψ that, for every nonnegative quantity s,

(4.50) ψs(ρ, s) =


(
−κccut + c(d− 1)

rinit + cs+ ρ

)
ψ(ρ, s) if ρ ∈ Ileft(s) ,

− κccutψ(ρ, s) if ρ ∈ Imain(s) ,
ccut(c+ κ)ψ(ρ, s) if ρ ∈ Iright(s) ,

and

ψρ(ρ, s) =


( d− 1
rinit + cs+ ρ

+ c+ κ
)
ψ(ρ, s) if ρ ∈ Ileft(s) ,

(c+ κ)ψ(ρ, s) if ρ ∈ Imain(s) ,
− κψ(ρ, s) if ρ ∈ Iright(s) ,

thus

(4.51)

d− 1
rinit + cs+ ρ

ψ(ρ, s)+cψ(ρ, s) − ψρ(ρ, s) =

− κψ(ρ, s) if ρ ∈ Ileft(s) ,( d− 1
rinit + cs+ ρ

− κ
)
ψ(ρ, s) if ρ ∈ Imain(s) ,( d− 1

rinit + cs+ ρ
+ c+ κ

)
ψ(ρ, s) if ρ ∈ Iright(s) .

As in the case d = 1 (see [53]), the sole problematic term in the right-hand side of
expression (4.49) (with respect to the conclusions of Lemma 4.10) is the product

(cψ − ψρ) v · vρ

on the interval Iright(s). As in [53], this term can be integrated by parts one more time
to take advantage of the smallness of ψρρ − cψρ on Iright(s). There are several ways to
proceed, since the integration by parts may be performed either only on Imain(s)∪Iright(s)
or on the whole interval Itot(s). Since the first option would create a border term at the
left of Imain(s) let us go on with the second option. Doing so, it follows from (4.49) that

(4.52)

F ′(s) =
∫

Itot(s)

[
ψ
(
−wenv

2
s − v · ∇V †(v) − v2

ρ

)
+ ψs

(
wen

(1
2v

2
ρ + V †(v)

)
+ 1

2v
2
)

+ wen
( d− 1
rinit + cs+ ρ

ψ + cψ − ψρ

)
vs · vρ + d− 1

rinit + cs+ ρ
ψv · vρ

+ ψρρ − cψρ

2 v2
]
dρ .

It follows from the expression of ψρ above that, for every nonnegative quantity s,

(4.53) ψρρ(ρ, s) − cψρ(ρ, s) ≤ θ(ρ, s) for all ρ ∈ Itot(s) ,
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where

θ(ρ, s) =


(
κ(c+ κ) + (c+ 2κ)(d− 1)

rinit + cs+ ρ
+ (d− 1)(d− 2)

(rinit + cs+ ρ)2

)
ψ(ρ, s) if ρ ∈ Ileft(s) ,

κ(c+ κ)ψ(ρ, s) if ρ ̸∈ Ileft(s) .

Indeed, ψρρ − cψρ equals θ plus two Dirac masses of negative weight (one at the junction
between Ileft(s) and Imain(s), and one at the junction between Imain(s) and Iright(s)).

Observe that for every ρ in the interval Imain(s) ∪ Iright(s), the quantity rinit + cs+ ρ
is not smaller than rs-c. As a consequence, it follows from equality (4.52) that, for every
nonnegative quantity s,
(4.54)

F ′(s) ≤
∫

Itot(s)
ψ

[
−wenv

2
s − v · ∇V †(v) − v2

ρ + ccut(c+ κ)
(
wen

(1
2v

2
ρ + V †(v)

)
+ 1

2v
2
)

+ wen
(d− 1
rs-c

+ c+ κ
)

|vs · vρ| + d− 1
rs-c

|v · vρ| + κ(c+ κ)
2 v2

]
dρ

+ Fres, left(s)

where

Fres, left(s) =
∫

Ileft(s)

d− 1
rinit + cs+ ρ

ψ

[
c

(
wen

(1
2v

2
ρ + V †(v)

)
+ 1

2v
2
)

+ v · vρ + 1
2

(
(c+ 2κ) + (d− 2)

rinit + cs+ ρ

)
v2
]
dρ .

The following lemma deals with the “residual” term Fres, left(s).

Lemma 4.11 (control on the residual integral over Ileft(s)). There exists a positive
quantity KF ,left, depending only on V and d, such that, for every nonnegative quantity s,
the following estimate holds:

Fres, left(s) ≤ KF ,left exp(−crinit) .

Proof of Lemma 4.11. Since ψ is smaller than χ on the interval Ileft(s), the proof is
identical to that of Lemma 4.7 on page 34 (observe the vanishing term in Fres, left(s) if
d = 2).

End of the proof of Lemma 4.10. Using the inequalities

(d− 1
rs-c

+ c+ κ
)

|vs · vρ| ≤ v2
s +

(
d−1
rs-c

+ c+ κ
)2

4 v2
ρ

and |v · vρ| ≤ 1
2v

2 + 1
2v

2
ρ ,
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it follows from inequality (4.54) and from Lemma 4.11 that, for every nonnegative quantity
s,

F ′(s) ≤
∫

Itot(s)
ψ

[(
−1 + wen

(ccut(c+ κ)
2 +

(c+ κ+ d−1
rs-c

)2

4
)

+ d− 1
2rs-c

)
v2

ρ

− v · ∇V †(v) + wenccut(c+ κ)
∣∣∣V †(v)

∣∣∣+ (d− 1
2rs-c

+ (ccut + κ)(c+ κ)
2

)
v2
]
dρ

+KF ,left exp(−crinit) .

Since according to the definition (4.10) on page 22 for rs-c the quantity (d − 1)/rs-c is
smaller than 1/2 and than λmin(m)/8, it follows that

F ′(s) ≤
∫

Itot(s)
ψ

[(
−1 + wen

(ccut(c+ κ)
2 +

(c+ κ+ 1
2)2

4
)

+ 1
4

)
v2

ρ

− v · ∇V †(v) + wenccut(c+ κ)
∣∣∣V †(v)

∣∣∣+ (λmin(m)
16 + (ccut + κ)(c+ κ)

2
)
v2
]
dρ

+KF ,left exp(−crinit) ,

and according to the properties (4.37) on page 31 satisfied by the quantities κ and ccut
and wen, it follows that

(4.55)
F ′(s) ≤

∫
Itot(s)

ψ
(
−1

2v
2
ρ − v · ∇V †(v) + 1

4
∣∣∣V †(v)

∣∣∣+ λmin(m)
8 v2

)
dρ

+KF ,left exp(−crinit) .

Let νF be a positive quantity to be chosen below. It follows from the previous inequality
and from the definition (4.45) of F(s) that
(4.56)

F ′(s) + νFF(s) −KF ,left exp(−crinit) ≤
∫

Itot(s)
ψ

[
−1

2(1 − νF wen)v2
ρ − v · ∇V †(v)

+
(1

4 + νFwen
) ∣∣∣V †(v)

∣∣∣+ (λmin(m)
8 + νF

2
)
v2
]
dρ .

In view of this inequality and of inequalities (4.6) and (4.7) on page 22, let us assume
that νF is small enough so that

(4.57) νF wen ≤ 1 and νF wen ≤ 1
4 and νF

2 ≤ λmin(m)
8 ;

the quantity νF may be chosen as

νF = min
( 1

4wen
,
λmin(m)

4
)
.
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Then, it follows from (4.56) and (4.57) that
(4.58)
F ′(s)+νFF(s)−KF ,left exp(−crinit) ≤

∫
Itot(s)

ψ
[
−v·∇V †(v)+1

2
∣∣∣V †(v)

∣∣∣+λmin(m)
4 v2

]
dρ .

According to (4.6) and (4.7), the integrand of the integral at the right-hand side of this
inequality is nonpositive as long as ρ is not in ΣEsc(s). Therefore this inequality still
holds if the domain of integration of this integral is changed from Itot(s) to ΣEsc(s). Thus,
introducing the quantity

KF = max
u∈Rdst , |u|≤Ratt,∞

[
−(u−m) · ∇V (u) + 1

2 |V (u) − V (m)| + λmin(m)
4 (u−m)2

]
(which is positive and depends only on V and m), inequality (4.48) follows from inequality
(4.58). Lemma 4.10 is proved.

4.7.8 Nonnegativity of the firewall

For all s in [0,+∞),

(4.59) F(s) ≥ 0 .

Indeed, in view of the property (3.13) on page 19 concerning wen,0 and since wen is not
larger than wen,0, for all s in [0,+∞) the following stronger coercivity property holds:

F(s) ≥ min
(wen

2 ,
1
4
) ∫

Itot(s)
ψ(ρ, s)

(
vρ(ρ, s)2 + v(ρ, s)2) dρ .

4.7.9 Relaxation scheme inequality, 2

For every nonnegative quantity s, let

G(s) =
∫

ΣEsc(s)
ψ(ρ, s) dρ .

Integrating inequality (4.48) between 0 and a nonnegative quantity sfin yields, since
according to (4.59) F(sfin) is nonnegative,∫ sfin

0
F(s) ds ≤ 1

νF

(
F(0) +KF

∫ sfin

0
G(s) ds+KF ,left sfin exp(−c rinit)

)
.

Thus, introducing the expression

K̃E,curv(r, s, c) = KE,curv(r, s, c) + KE,rightKF ,left sfin
νF

exp(−c rinit) ,

the “relaxation scheme” inequality (4.47) on page 37 becomes

(4.60)

1
2

∫ sfin

0
D(s) ds ≤E(0) − E(sfin) + K̃E,curv

(
rinit, sfin, c

)
+ KE,right

νF

(
F(0) +KF

∫ sfin

0
G(s) ds

)
.
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Observe that, as was the case for KE,curv(r, s, c), the “curvature term” K̃E,curv(r, s, c)
(still) goes to 0 as r goes to +∞, uniformly with respect to s bounded and c bounded
away from 0 and +∞. The next step is to gain some control over the quantity G(s).

4.7.10 Control over pollution in the time derivative of the firewall function

For every nonnegative quantity s let

ρhom(s) = rhom(tinit + s) − rinit − cs ,

and ρesc(s) = resc(tinit + s) − rinit − cs .

According to properties (4.31) on page 29 for the set ΣEsc,0(t),

ΣEsc(s) ⊂ (−∞, ρesc(s)] ∪ [ρhom(s),+∞) .

Let us introduce the quantities

Gback(s) =
∫ ρesc(s)

−rinit−cs
ψ(ρ, s) dρ and Gfront(s) =

∫ +∞

ρhom(s)
ψ(ρ, s) dρ ;

observe that, by definition — see (4.30) on page 28 — the quantity ρesc(s) is greater
than or equal to rs-c − rinit − cs, and is therefore greater than −rinit − cs. Then,

G(s) ≤ Gback(s) + Gfront(s) .

Let us make the following hypothesis (required for the next lemma to hold):

(4.61) (c+ κ)(cesc-sup − c) ≤ κccut
4

(this hypothesis is satisfied as soon as c is close enough to cesc-sup).

Lemma 4.12 (upper bounds on pollution terms in the derivative of the firewall). There
exists
a positive quantity K[u0], depending only on V and on the initial condition u0 (but not
on the parameters tinit and rinit and c and ρcut-init of the relaxation scheme) such that,
for every nonnegative quantity s,
(4.62)

Gback(s) ≤ K[u0] exp(−κ ρcut-init) exp
(

− κ ccut
2 s

)
Gfront(s) ≤ 1

κ
exp

(
(cno-esc + 1) ρcut-init

)
exp

(
(cno-esc + κ)(ccut + κ)s

)
exp

(
−κ ρhom(0)

)
.

Proof. The proof is identical to that of [53, Lemma 4.10].
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4.7.11 Relaxation scheme inequality, final

Let us introduce the quantity

KG,back[u0] = 2KE,rightKF K[u0]
νF κccut

,

and, for every nonnegative quantity s, the quantity

KG,front(s) = KE,rightKF
νF κ (cno-esc + 1)(ccut + 1) exp

(
(cno-esc + 1)(ccut + 1)s

)
.

Then, for every nonnegative quantity sfin, according to inequalities (4.62), the “relaxation
scheme” inequality (4.60) can be rewritten as

(4.63)

1
2

∫ sfin

0
D(s) ds ≤E(0) − E(sfin) + KE,right

νF
F(0) +KG,back[u0] exp(−κ ρcut-init)

+KG,front(sfin) exp
(
(cno-esc + 1) ρcut-init

)
exp

(
−κ ρhom(0)

)
+KE,curv

(
rinit, sfin, c

)
.

Recall that the “curvature term” KE,curv(r, s, c) goes to 0 as r goes to +∞, uniformly
with respect to s bounded and c bounded away from 0 and +∞. Recall by the way that
this last inequality requires the additional hypothesis (4.43) on page 35 made on the
quantity rinit (namely, rinit should not be smaller than 2rs-c).

4.8 Convergence of the mean invasion speed
The aim of this subsection is to prove the following proposition.

Proposition 4.13 (mean invasion speed). The following equalities hold:

cesc-inf = cesc-sup = cesc-sup .

Proof. Let us proceed by contradiction and assume that

cesc-inf < cesc-sup .

Then, let us take and fix a positive quantity c satisfying the following conditions:

(4.64) cesc-inf < c < cesc-sup ≤ c+ κccut
4(cno-esc + κ) and Φc(m) = ∅ .

The first condition is satisfied as soon as c is smaller than and close enough to cesc-sup, thus
existence of a quantity c satisfying the two conditions follows from hypothesis (Hdisc-c).

The contradiction will follow from the relaxation scheme set up in subsection 4.7. The
main ingredient is: since the set Φc(m) is empty, some dissipation must occur permanently
around the escape point in a referential travelling at the speed c. This is stated by the
following lemma.
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Lemma 4.14 (nonzero dissipation in the absence of travelling front). There exist positive
quantities L and εdissip such that, for every t in [0,+∞), if the quantity resc(t) is greater
than or equal to L, then the following inequality holds:∥∥ρ 7→ ut

(
resc(t) + ρ, t

)
+ cur

(
resc(t) + ρ, t

)∥∥
L2([−L,L],Rdst ) ≥ εdissip .

Proof of Lemma 4.14. Let us proceed by contradiction and assume that the converse is
true. Then, for every positive integer n, there exists tn in [0,+∞) such that the quantity
resc(tn) is greater than or equal to n and such that

(4.65)
∥∥ρ 7→ ut

(
resc(tn) + ρ, tn

)
+ cur

(
resc(tn) + ρ, tn

)∥∥
L2([−p,p],Rdst ) ≤ 1

n
.

By compactness (Lemma 3.2), up to replacing the sequence (tn)n∈N by a subsequence,
there exists an entire solution u of system (2.4) in

C0
(
R, C2

b
(
R,Rdst

))
∩ C1

(
R, C0

b
(
R,Rdst

))
,

such that, with the notation of (3.2),

D2,1u(resc(tn) + ·, tn + ·) → D2,1u as n → +∞ ,

uniformly on every compact subset of R2. According to inequality (4.65), the function
ρ 7→ ut(ρ, 0) + cur(ρ, 0) vanishes identically, so that the function ρ 7→ u(ρ, 0) is a solution
of system (2.5) governing the profiles of waves travelling at the speed c for system (2.4).
According to the properties of the escape point (4.31) and (4.32) on page 29,

sup
ρ∈[0,+∞)

|ϕ(ρ) −m| ≤ δEsc(m) ,

thus it follows from [53, Lemma 7.1] that ϕ(ρ) goes to m as ρ goes to +∞. On the other
hand, according to the bound (4.1) on the solution, |ϕ(·)| is bounded (by Ratt,∞), and
since Φc(m) is empty, it follows from [53, Lemma 7.1] that ϕ(·) is identically equal to m,
a contradiction with the definition of resc(·).

The remaining of the proof of Proposition 4.13 is identical to that of [53, Proposi-
tion 4.11], therefore it will not be reproduced here.

According to Proposition 4.13, the three quantities cesc-inf and cesc-sup and cesc-sup are
equal; let

cesc

denote their common value.

4.9 Further control on the escape point
Proposition 4.15 (mean invasion speed, further control). The following equality holds:

cesc-inf = cesc .

Proof. The proof is identical to that of [53, Proposition 4.17].
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4.10 Dissipation approaches zero at regularly spaced times
For every t in [1,+∞), the following set{

ε in (0,+∞) :
∫ +1/ε

−1/ε

(
ut
(
resc(t) + ρ, t

)
+ cescur

(
resc(t) + ρ, t

))2
dρ ≤ ε

}

is (according to the bounds (4.1) on page 21 for the solution) a nonempty interval (which
by the way is unbounded from above). Let

δdissip(t)

denote the infimum of this interval. This quantity measures to what extent the solution is,
at time t and around the escape point resc(t), close to be stationary in a frame travelling
at the speed cesc. The next goal is to prove that

δdissip(t) → 0 as t → +∞ .

Proposition 4.16 below can be viewed as a first step towards this goal.

Proposition 4.16 (regular occurrence of small dissipation). For every positive quantity
ε, there exists a positive quantity T (ε) such that, for every t in [0,+∞),

inf
t′∈[t,t+T (ε)]

δdissip(t′) ≤ ε .

Proof. The proof is identical to that of [53, Proposition 4.19].

4.11 Relaxation
Proposition 4.17 (relaxation). The following assertion holds:

δdissip(t) → 0 as t → +∞ .

Proof. The proof is identical to that of [53, Proposition 4.21].

4.12 Convergence
The end of the proof of Proposition 4.1 on page 21 (“invasion implies convergence”) is
a straightforward consequence of Proposition 4.17, and is identical to the case of space
dimension one treated in [53, subsection 4.12 and subsection 4.13]. As mentioned above,
the definition of the quantity δdissip(t) is slightly different from that of [53], however since
this quantity goes to 0 as time goes to +∞, limits of the profiles of the solution around
the escape point resc(t) must (still with this new definition of δdissip(t)) necessarily be
solutions of system (2.5) satisfied by the profiles of travelling fronts. Thus all arguments
remain the same, and details will not be reproduced here. Proposition 4.1 is proved.
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5 No invasion implies relaxation
5.1 Definitions and hypotheses
As everywhere else, let us consider a function V in C2(Rdst ,R) satisfying the coercivity
hypothesis (Hcoerc). As in section 4, let us consider a point m in M and a solution
(r, t) 7→ u(r, t) of system (1.2), and let us make the following hypothesis (which is identical
to the one made in subsection 4.1):
(Hhom) There exists a positive quantity chom and a C1-function

rhom : [0,+∞) → R , satisfying r′
hom(t) → chom as t → +∞ ,

such that, for every positive quantity L,

sup
ρ∈[−L,L]

∣∣u(rhom(t) + ρ, t
)

−m
∣∣ → 0 as t → +∞ .

Let us define the function t 7→ rEsc(t) and the quantity cEsc exactly as in subsection 4.1.
By contrast with subsection 4.1 and the hypothesis (Hinv) made there, let us introduce
the following (converse) hypothesis.
(Hno-inv) The quantity cEsc is nonpositive.

5.2 Statement and proof
Proposition 5.1 (no invasion implies relaxation). Assume that V satisfies the coercivity
hypothesis (Hcoerc) and, keeping the definitions and notation above, let us assume that
the solution under consideration satisfies hypotheses (Hhom) and (Hno-inv). Then the
following conclusions hold.

1. There exists a nonnegative quantity Eres-asympt[u] (“residual asymptotic energy”)
such that, for every quantity c in the interval (0, chom),∫ ct

0
rd−1

(1
2ur(r, t)2 + V

(
u(r, t)

)
− V (m)

)
dr → Eres-asympt[u] as t → +∞ .

2. The quantity
sup

r∈[0,rhom(t)]
|ut(r, t)|

goes to 0 as time goes to +∞.

3. For every quantity c in the interval (0, chom), the function

t 7→
∫ ct

0
rd−1ut(r, t)2 dr

is integrable on a neighbourhood of +∞.
Proof. [55, Theorem 2] states the same conclusions as Proposition 5.1 but in a broader
setting, that is for solutions of system (1.1) without the hypothesis of radial symmetry.
The reader is therefore referred to the proof provided in this reference.
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6 Relaxation implies convergence
6.1 Statement
As everywhere else, let us consider a function V in C2(Rdst ,R) satisfying the coercivity
hypothesis (Hcoerc). As in the previous section, let us consider a point m in M and a
solution (r, t) 7→ u(r, t) of system (1.2), and let us assume again that the same hypotheses
(Hhom) and (Hno-inv) hold. Thus the conclusions of Proposition 5.1 hold. Let us keep all
the notation introduced in the previous section, and let us make the following additional
(generic) assumption.

(Hdisc-stat-m) The set {
ϕ(0) : ϕ ∈ Φ0,centre(m)

}
is totally discontinuous in Rdst . That is, its connected components are singletons.
Equivalently, the set Φ0,centre(m) is totally disconnected for the topology of compact
convergence (uniform convergence on compact subsets of [0,+∞)).

Note that hypothesis (Hdisc-stat) stated in sub-subsection 2.4.3 is identical except that it
concerns all elements of M instead of the single point m as in (Hdisc-stat-m). The aim of
this section is to prove the additional conclusion provided by the following proposition.

Proposition 6.1 (relaxation implies convergence). The following conclusions hold.

1. There exists a stationary solution ϕ in Φ0,centre(m) such that

(6.1) sup
r∈[0,rhom(t)]

|u(r, t) − ϕ(r)| → 0 as t → +∞ .

2. The residual asymptotic energy Eres-asympt[u] of the solution is equal to the energy
E [ϕ] of this stationary solution.

6.2 Properties of the Escape radius
Recall that, for every nonnegative time t, the escape radius rEsc(t) is, according to its
definition (see subsection 4.1), either equal to −∞ or nonnegative.

6.2.1 Transversality

Lemma 6.2 (transversality at Escape radius). There exists a positive time tEsc-transv
and a positive quantity εEsc-transv such that, for every time t greater than or equal to
tEsc-transv, if rEsc(t) is not equal to −∞, then

(6.2)
(
u
(
rEsc(t), t

)
−m

)
· ur

(
rEsc(t), t

)
≤ −εEsc-transv .
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Proof. Let us proceed by contradiction and assume that there exists a sequence (tn)n∈N
such that tn goes to +∞ as n goes to +∞ and such that, for every positive integer n,

(6.3) −∞ < rEsc(tn) and
(
u
(
rEsc(tn), tn

)
−m

)
· ur

(
rEsc(tn), tn

)
≥ − 1

n
.

Up to extracting a subsequence from the sequence (tn)n∈N, it may be assumed that one
among the following two assertions holds:

1. rEsc(tn) goes to +∞ as t goes to +∞;

2. there exists a nonnegative (finite) quantity rEsc-∞ such that rEsc(tn) goes to rEsc-∞
as t goes to +∞.

If assertion 1 holds, then, according to Lemma 3.2 and to conclusion 1 of Proposition 5.1,
up to extracting again a subsequence from the sequence (tn)n∈N, it may be assumed that
the functions ρ 7→ u

(
rEsc(tn) + ρ, tn

)
converge, uniformly on every compact subset of R,

towards a C2-function ϕ : R → Rdst satisfying the system

(6.4) ϕ′′ = ∇V (ϕ) ;

If assertion 2 holds, then, according to Lemma 3.3 and to conclusion 1 of Proposition 5.1,
up to extracting again a subsequence from the sequence (tn)n∈N, the functions r 7→ u(r, tn)
converge, uniformly on every compact subset of the interval [0,+∞), towards a C2-function
ϕ̂ such that the function

ϕ : [−rEsc-∞,+∞) → Rdst , ρ 7→ ϕ̂(rEsc-∞ + ρ)

satisfies the system

(6.5) ϕ′′ + d− 1
ρ+ rEsc-∞

ϕ′ = ∇V (ϕ) with the boundary condition ϕ′(−rEsc-∞) = 0 ;

In both cases, it follows from assumptions (Hhom) and (Hno-inv) and from the definition
of rEsc(t) that

sup
ρ∈[0,+∞)

|ϕ(ρ)| ≤ δEsc(m) ,

and it follows from assumption (6.3) that

(6.6)
(
ϕ(0) −m

)
· ϕ′(0) ≥ 0 .

In both cases, Lemma 8.1 on page 64 applies to the function ϕ, and inequality (6.6)
conflicts conclusion 2 of this lemma, a contradiction. Lemma 6.2 is proved.
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6.2.2 Finiteness/infiniteness of Escape radius

Corollary 6.3. One of the following two (mutually exclusive) alternatives occurs:

1. for every time t greater than or equal to tEsc-transv, the quantity rEsc(t) equals −∞,

2. (or) for every time t greater than or equal to tEsc-transv, the quantity rEsc(t) is
positive.

In addition, if the second alternative occurs, then the function t 7→ rEsc(t) is of class C1

on the interval [tEsc-transv,+∞) and

(6.7) r′
Esc(t) → 0 as t → +∞ .

Proof. Let us introduce the function

f : [0,+∞) × [0,+∞) → R , (r, t) 7→ 1
2
((
u(r, t) −m

)2 − δEsc(m)2
)
.

According to the smoothness properties of the solution recalled in subsection 3.1, this
function f is of class C1 on [0,+∞) × (0,+∞). For every (r, t) in [0,+∞) × [0,+∞), if
rEsc(t) is not equal to −∞ then it is nonnegative and f

(
rEsc(t), t

)
vanishes. If in addition

t is greater than or equal to the (positive) quantity tEsc-transv defined in Lemma 6.2, then,
according to inequality (6.2),

(6.8) ∂rf
(
rEsc(t), t

)
=
(
u
(
rEsc(t), t

)
−m

)
· ur

(
rEsc(t), t

)
≤ −εEsc-transv < 0 .

In this case, since according to the border condition in system (1.2) the quantity ur(0, t)
vanishes, the quantity rEsc(t) is necessarily positive. Let us introduce the set

T =
{
t ∈ [tEsc-transv,+∞) : rEsc(t) > −∞

}
.

It follows from inequality (6.8), from the fact that rEsc(t) is positive if t is in T , and
from the Implicit Function Theorem that T is open in [tEsc-transv,+∞). And it follows
from the definition of rEsc(t) that this set is closed in [tEsc-transv,+∞). As a consequence,
the set T is either empty or equal to [tEsc-transv,+∞), and this proves the alternative
(the first assertion of the lemma).

If T equals [tEsc-transv,+∞), then it again follows from the Implicit Function Theorem
that t 7→ rEsc(t) is of class C1, and for every time t in this interval,

r′
Esc(t) = −

∂tf
(
rEsc(t), t

)
∂rf

(
rEsc(t), t

) = −

(
u
(
rEsc(t), t

)
−m

)
· ut
(
rEsc(t), t

)
(
u
(
rEsc(t), t

)
−m

)
· ur

(
rEsc(t), t

) .
According to conclusion 2 of Proposition 5.1, the numerator of this expression goes to
0 as time goes to +∞, while according to inequality (6.8) the absolute value of the
denominator remains not smaller than εEsc-transv; it follows that r′

Esc(t) goes to 0 as time
goes to +∞. Corollary 6.3 is proved.
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6.2.3 Infiniteness alternative for the Escape radius

Lemma 6.4 (infiniteness alternative for the Escape radius). Assume that the first
alternative of Corollary 6.3 occurs (that is, rEsc(t) equals −∞ for every time t greater
than or equal to tEsc-transv). Then,

sup
r∈[0,rhom(t)]

|u(r, t) −m| → 0 as t → +∞ .

Proof. Let us proceed by contradiction and assume that the converse holds. Then there
exists a positive quantity ε and a sequence (tn, rn)n∈N in R2 such that tn goes to +∞ as
t goes to +∞ and, for every nonnegative integer n,

tn ≥ tEsc-transv and rn ∈
[
0, rhom(tn)

]
and |u(rn, tn) −m| ≥ ε .

Up to extracting a subsequence, it may be assumed that one among the following two
assertions holds:

1. rn goes to +∞ as t goes to +∞;

2. there exists a nonnegative quantity r∞ such that rn goes to r∞ as n goes to +∞.

If assertion 1 holds, then, according to Lemma 3.2 and to conclusion 1 of Proposition 5.1,
up to extracting again a subsequence, it may be assumed that the functions ρ 7→
u(rn + ρ, tn) converge, uniformly on every compact subset of R, towards a C2-function
ϕ : R → Rdst satisfying system (6.4), and satisfying

sup
ρ∈R

|ϕ(ρ) −m| ≤ δEsc(m) and |ϕ(0) −m| ≥ ε , thus ϕ ̸≡ m,

a contradiction with conclusion 4 of Lemma 8.1.
If assertion 2 holds, then, according to Lemma 3.3 and to conclusion 1 of Proposition 5.1,

up to extracting again a subsequence, it may be assumed that the functions r 7→ u(r, tn)
converge, uniformly on every compact subset of the interval [0,+∞), towards a C2-function
ϕ̂ such that the function

ϕ : [−r∞,+∞) → Rdst , ρ 7→ ϕ̂(r∞ + ρ)

satisfies system (6.5), and satisfies

sup
ρ∈[−r∞,+∞)

|ϕ(ρ) −m| ≤ δEsc(m) and |ϕ(0) −m| ≥ ε , thus ϕ ̸≡ m,

again a contradiction with conclusion 4 of Lemma 8.1.

6.2.4 Non divergence towards infinity in the finiteness alternative for the Escape
radius

If the first alternative of Corollary 6.3 occurs, then it follows from Lemma 6.4 that the
conclusion of Proposition 6.1 holds. The following proposition is the main step towards
completing the proof of Proposition 6.1 when the second alternative of Corollary 6.3
occurs.
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Proposition 6.5 (non divergence towards infinity for the Escape radius). Assume that
the second alternative of Corollary 6.3 occurs, that is rEsc(t) is positive for all t in
[tEsc-transv,+∞). Then the following inequality holds:

lim inf
t→+∞

rEsc(t) < +∞ .

Proof. Let us proceed by contradiction and assume that

(6.9) rEsc(t) → +∞ as t → +∞ .

Let t be a time greater than or equal to tEsc-transv. Proceeding as in the proof of
Pokhozhaev’s identity (see for instance [4]), the equality obtained by integrating over
space the scalar product of system (1.2) by rdur (that is, by rur times the factor rd−1

induced by the Lebesgue measure on Rd) will be considered. The domain of integration
will be the interval

[
0, 2rEsc(t)

]
. To simplify the writing, let us denote by R the quantity

2rEsc(t). This leads to the following three integrals:

I1(t) =
∫ R

0
rdur(r, t) · ut(r, t) ,

and I2(t) = −
∫ R

0
rdur(r, t) · ∇V

(
u(r, t)

)
dr ,

and I3(t) =
∫ R

0
rdur(r, t) ·

(
d− 1
r

ur(r, t) + urr(r, t)
)
dr .

According to system (1.2),

(6.10) I1(t) = I2(t) + I3(t) .

Let us introduce the “normalized” potential V ‡ defined as

V ‡(v) = V (v) − V (m) ,

and let us introduce the additional notation:

(6.11)
K(t) =

∫ R

0
rd−1 1

2ur(r, t)2 dr , and V(t) =
∫ R

0
rd−1V ‡(u(r, t)

)
dr ,

and Ẽ(t) = K(t) + V(t) , and D̃(t) =
∫ R

0
rd−1ut(r, t)2 dr ,

and
H‡(t) = 1

2u(R, t)2 − V ‡(u(R, t)
)
.

Observe that K(t) and V(t) respectively denote the kinetic part and the potential part
of the energy Ẽ(t) and D̃(t) denotes its dissipation, while the expression of H‡(t) is the
(normalized) Hamiltonian of the system governing stationary solutions of system (1.2) in
the large radius limit (in the notation Ẽ(t) and D̃(t), the “tilde” is here only to avoid
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any confusion with the quantities E(t) and D(t) introduced in subsection 4.7). All this
notation naturally leads to rephrase equality (6.10), as the following calculation shows:

I2(t) = −
∫ R

0
rd∂rV

‡(u(r, t)
)
dr

= −RdV ‡(u(R, t)
)

+
∫ R

0
∂r(rd)V ‡(u(r, t)

)
dr

= −RdV ‡(u(R, t)
)

+ d× V(t) ,

and
I3(t) =

∫ R

0

(
(d− 1)rd−1ur(r, t)2 + rdur(r, t) · urr(r, t)

)
dr

= 2(d− 1)K(t) +
∫ R

0
rd∂r

(
ur(r, t)2

2

)
dr

= 2(d− 1)K(t) +Rdur(R, t)2

2 − dK(t)

= (d− 2)K(t) +Rdur(R, t)2

2 .

Thus it follows from equality (6.10) that

(6.12) d× Ẽ(t) − 2 K(t) +RdH‡(t) =
∫ R

0
rdur(r, t) · ut(r, t) dr .

Observe that the first two terms of the left-hand side of this equality correspond to
Pokhozhaev’s identity (2.3). According to Cauchy–Schwarz inequality,

(6.13)

∣∣∣∣∣
∫ R

0
rdur(r, t) · ut(r, t) dr

∣∣∣∣∣
2

≤ 2K(t)
∫ R

0
rd+1ut(r, t)2 dr

≤ 2K(t)R2 D̃(t) .

It follows from equality (6.12) and inequality (6.13) that

D̃(t) ≥ 1
2R2K(t)

∣∣∣2 K(t) − d× Ẽ(t) −RdH‡(t)
∣∣∣2

= K(t)
R2

∣∣∣∣∣1 − d× Ẽ(t)
2K(t) − RdH‡(t)

2K(t)

∣∣∣∣∣
2

,

provided that K(t) is positive, which is true at least for t positive large enough according
to Lemma 6.7 below. Substituting the notation R with its value 2rEsc(t), this last
inequality reads:

(6.14) D̃(t) ≥ K(t)
4rEsc(t)2

∣∣∣∣∣∣1 − d× Ẽ(t)
2K(t) −

(
2rEsc(t)

)d
H‡(t)

2K(t)

∣∣∣∣∣∣
2

.

A contradiction will follow from this inequality and the following four lemmas.
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Lemma 6.6. The function t 7→ D̃(t) is integrable on the interval [tEsc-transv,+∞).

Proof of Lemma 6.6. This statement follows from conclusion 3 of Proposition 5.1.

Lemma 6.7. The following inequality hold:

(6.15) lim inf
t→+∞

K(t)
rEsc(t)

> 0 .

Proof of Lemma 6.7. It is sufficient to prove the following inequality, which is stronger
than inequality (6.15) since d is not smaller than 2:

(6.16) lim inf
t→+∞

K(t)
rEsc(t)d−1 > 0 .

To prove this stronger inequality (6.16), let us proceed by contradiction and assume that
there exists a sequence (tn)n∈N of times greater than or equal to tEsc-transv and going to
+∞ as n goes to +∞, such that

(6.17) K(tn)
rEsc(tn)d−1 → 0 as t → +∞ .

Observe that, for every large enough positive integer n, according to the assumption (6.9)
and to the definition (6.11) of K(·),

K(tn)
rEsc(tn)d−1 ≥ 1

rEsc(tn)d−1

∫ rEsc(tn)+1

rEsc(tn)−1
rd−1 1

2ur(r, tn)2 dr

≥
(
rEsc(tn) − 1

)d−1

2rEsc(tn)d−1

∫ rEsc(tn)+1

rEsc(tn)−1
ur(r, tn)2 dr ,

thus it follows from assumption (6.17) that∫ rEsc(tn)+1

rEsc(tn)−1
ur(r, tn)2 dr → 0 as t → +∞ ,

and as a consequence, it follows from the bounds (3.1) on the solution that

ur
(
rEsc(tn), tn

)
→ 0 as t → +∞ ,

a contradiction with inequality (6.8). Lemma 6.7 is proved.

Note that according to assumption (6.9), it follows from this inequality (6.15) that
K(t) goes to +∞ as t goes to +∞.

Lemma 6.8. The following inequality holds:

(6.18) lim sup
t→+∞

Ẽ(t) < +∞ .
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Proof of Lemma 6.8. For every quantity c in the interval (0, chom), the quantity 2rEsc(t)
is less than ct as soon as t is large enough positive, and in this case it follows from the
definition of rEsc(t) that the integrand

1
2ur(r, t)2 + V

(
u(r, t)

)
− V (m)

of the energy is nonnegative for r in the interval
[
2rEsc(t), ct

]
. Thus inequality (6.18)

follows from conclusion 1 of Proposition 5.1.

Lemma 6.9. The following limit holds:

(6.19) rEsc(t)dH‡(t) → 0 as t → +∞ .

Proof of Lemma 6.9. Let us call upon the notation rs-c and ψ0(·) and F0(·, ·) introduced
in sub-subsection 4.4.1. Let t1 denote a time greater than or equal to tEsc-transv and
large enough so that, for every time t greater than or equal to t1, the quantity 2rEsc(t) is
greater than rs-c. For every time t greater than or equal to t1, let

F1(t) = F0
(
2rEsc(t), t

)
.

Then, for t greater than or equal to t1,

F ′
1(t) = ∂tF0

(
2rEsc(t), t

)
+ 2 r′

Esc(t)∂rF0
(
2rEsc(t), t

)
.

For every quantity r greater than or equal to rs-c, according to the definitions of ψ0(·)
and Trψ0(·), ∣∣∂r

(
Trψ0

)
(r)
∣∣ = κ0Trψ0(r)

(except at the two points rs-c and r where this partial derivative is not defined). It follows
that

|∂rF0(r, t)| ≤ κ0F0(r, t) .

As a consequence, it follows from inequality (4.19) of Lemma 4.3 that, for every time t
greater than or equal to t1, with the notation of Lemma 4.3,

(6.20) F ′
1(t) ≤

(
−νF0 + 2κ0r

′
Esc(t)

)
F1(t) +KF0

∫
ΣEsc,0(t)

T2rEsc(t)ψ0(r) dr .

Up to replacing the time t1 by larger positive quantity, it may be assumed that, for every
time t greater than or equal to t1,

2κ0r
′
Esc(t) ≤ νF0

4 and 3rEsc(t) ≤ rhom(t) ,

so that, still for t greater than or equal to t1,

ΣEsc,0(t) ⊂ [0, rEsc(t)] ∪ [3rEsc(t),+∞) ,
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thus ∫
ΣEsc,0(t)

T2rEsc(t)ψ0(r) dr ≤ 2
κ0

exp
(
−κ0rEsc(t)

)
,

so that it follows from inequality (6.20) that

(6.21) F ′
1(t) ≤ −3νF0

4 F1(t) + 2KF0

κ0
exp

(
−κ0rEsc(t)

)
.

For every time t greater than or equal to t1, let

G1(t) = rEsc(t)dF1(t) ,

so that

(6.22) G′
1(t) = rEsc(t)d

(
F ′

1(t) + d
r′

Esc(t)
rEsc(t)

F1(t)
)
.

Up to replacing the time t1 by a larger positive quantity, it may be assumed that, for t
greater than or equal to t1,

d
r′

Esc(t)
rEsc(t)

≤ νF0

4 ,

so that, introducing the function φ : [t1,+∞) → R defined as

φ(t) = 2KF0

κ0
rEsc(t)d exp

(
−κ0rEsc(t)

)
,

it follows from (6.21) and (6.22) that

G′
1(t) ≤ −νF0

2 G1(t) + φ(t) ,

and since φ(t) goes to 0 as t goes to +∞, the same is true for G1(t). Thus

rEsc(t)dF1(t) → 0 as t → +∞ .

Proceeding as in the proof of Lemma 4.4, it follows that

sup
r∈
[
2rEsc(t)−1,2rEsc(t)+1

] rEsc(t)d(u(r, t) −m
)2 → 0 as t → +∞ ,

so that, according to the bounds (3.1) on the solution,

rEsc(t)d
((
u
(
2rEsc(t), t

)
−m

)2
+ ur

(
2rEsc(t), t

)2) → 0 as t → +∞ ,

and inequality (6.19) follows. Lemma 6.9 is proved.
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End of the proof of Proposition 6.5. It follows from inequalities (6.14), (6.15) and (6.18)
and from the limit (6.19) that

lim inf
t→+∞

rEsc(t)2

K(t) D(t) ≥ 1
4 ,

so that, according to inequality (6.15),

lim inf
t→+∞

rEsc(t)D(t) > 0 thus lim inf
t→+∞

tD(t) > 0 ,

a contradiction with the integrability of t 7→ D(t) stated in Lemma 6.6. Proposition 6.5
is proved.

6.3 Convergence
Proof of conclusion 1 of Proposition 6.1. If the first alternative of Corollary 6.3 occurs
then the conclusion of Proposition 6.1 follows from Lemma 6.4. Thus it remains to deal
with the second alternative, that is the case where rEsc(t) is finite for t greater than or
equal to tEsc-transv.

In this case, according to Proposition 6.5, there exists a sequence (tn)n∈N of positive
times going to +∞ such that, for every nonnegative integer n, the quantity rEsc(tn)
is finite (and positive according to conclusion 2 of Corollary 6.3) and smaller than a
positive quantity which does not depend on n. Up to extracting a subsequence, it may
be assumed that there exists a nonnegative quantity rEsc-∞ such that rEsc(tn) goes to
rEsc-∞ as t goes to +∞, and up to extracting again a subsequence, it may be assumed,
according to Lemma 3.3 and to conclusion 1 of Proposition 5.1, that the functions
r 7→ u(r, tn) converge, uniformly on every compact subset of the interval [0,+∞), towards
a C2-function ϕ satisfying system (2.1) (including the boundary condition at the left end,
that is ϕ′(0) vanishes). In addition, according to the definition of rEsc(·), the following
property holds for ϕ:

(6.23) |ϕ(rEsc-∞) −m| = δEsc(m) and r ≥ rEsc-∞ =⇒ |ϕ(r) −m| ≤ δEsc(m) ,

so that, according to Lemma 8.1 applied to the function [−rEsc-∞,+∞) → Rdst , ρ 7→
ϕ(rEsc-∞ + ρ),

(6.24) r > rEsc-∞ =⇒ |ϕ(r) −m| < δEsc(m) ,

and the function ϕ actually belongs to the set Φ0,centre(m) (defined in (2.2)) of stationary
solutions approaching m at infinity. For every quantity t greater than or equal to
tEsc-transv, let us introduce the quantity

δ(t) = max
(
|u(0, t) − ϕ(0)| , |rEsc(t) − rEsc-∞|

)
.

According to the regularity of the solution (see subsection 3.1) and to Corollary 6.3, this
quantity δ(t) depends continuously on t; and according to what precedes,

(6.25) δ(tn) → 0 as n → +∞ .

The following lemma is the main step towards completing the proof of Proposition 6.1.

56



Lemma 6.10 (convergence of rEsc(t) and of the solution at r equal to 0). The quantity
δ(t) goes to 0 as t goes to +∞.

Proof. Let us proceed by contradiction and assume that the converse holds. Then there
exists a positive quantity ε such that

(6.26) lim sup
t→+∞

δ(t) > ε .

According to hypothesis (Hdisc-stat-m) and up to replacing ε by a smaller positive quantity,
it may be assumed that, for every function φ in the set Φ0,centre(m) \ {ϕ},

(6.27) |φ(0) − ϕ(0)| > ε .

Besides, according to the limit (6.25), it may be assumed, up to dropping enough terms
at the beginning of the sequence (tn)n∈N, that for every nonnegative integer n,

(6.28) δ(tn) < ε .

For every n in N, it follows from assumption (6.26) that the set{
t ∈ [tn,+∞) : δ(t) ≥ ε

}
is nonempty. Let t̃n denote the infimum of this set. It follows from inequality (6.28) and
from the continuity of the function t 7→ δ(t) that

(6.29) δ(t̃n) = ε .

In addition t̃n goes to +∞ as n goes to +∞. Thus, up to extracting again a subsequence,
it may be assumed that there exists a nonnegative quantity r̃Esc-∞ such that rEsc(t′n)
goes to r̃Esc-∞ as n goes to +∞; and, up to extracting again a subsequence, according
to Lemma 3.3 and to conclusion 1 of Proposition 5.1, it may be assumed that the
functions r 7→ u(r, t̃n) converge, uniformly on every compact subset of [0,+∞), towards
a C2-function ϕ̃ satisfying system (2.1) (including the boundary condition at the left end
of [0,+∞)). In addition, according to the definition of rEsc(·), the same properties as
(6.23) and (6.24) must hold for ϕ̃:

(6.30)
∣∣∣ϕ̃(r̃Esc-∞) −m

∣∣∣ = δEsc(m) and r > r̃Esc-∞ =⇒
∣∣∣ϕ̃(r) −m

∣∣∣ < δEsc(m) ,

so that, according to Lemma 8.1 applied to the function [−r̃Esc-∞,+∞) → Rdst , ρ 7→
ϕ̃(r̃Esc-∞ + ρ), the function ϕ̃ must again belong to the set Φ0,centre(m). Then, it follows
from (6.27) and (6.29) that ϕ̃ is actually the same function as ϕ. Thus it follows from
the definition of δ(·) and from (6.29) that, for every large enough positive integer n,∣∣rEsc(t̃n) − rEsc-∞

∣∣ = ε so that |r̃Esc-∞ − rEsc-∞| = ε ,

and so that r̃Esc-∞ differs from rEsc-∞, a contradiction with properties (6.23), (6.24)
and (6.30). Lemma 6.10 is proved.
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End of the proof of conclusion 1 of Proposition 6.1. It follows from Lemma 6.10 that,
for every positive quantity L,

sup
r∈[0,L]

|u(r, t) − ϕ(r)| → 0 as t → +∞ .

Since in addition rEsc(t) converges towards the finite quantity rEsc-∞ at t goes to +∞, it
follows (proceeding as in the proof of Lemma 6.4), that the stronger limit (6.1) actually
holds. Conclusion 1 of Proposition 6.1 is proved.

Proof of conclusion 2 of Proposition 6.1. To complete the proof of Proposition 6.1, it
remains to prove that the residual asymptotic energy Eres-asympt[u] of the solution equals
E [ϕ]. The arguments are similar to those of [56, subsection 9.2], and the notation
introduced below is similar to the one of this reference.

Let us assume that the second alternative of Corollary 6.3 occurs, and let us call upon
the notation V † introduced in (4.4) and the notation E†(r, t) and F †(r, t) introduced in
(4.14). For every nonnegative quantity r, let us introduce the quantity Eϕ(r) defined as

Eϕ(r) = 1
2ϕ

′(r)2 + V ‡(ϕ(r)
)

= 1
2ϕ

′(r)2 + V †(ϕ(r) −m
)
.

The same construction as in [56, subsection 9.2] provides, for some time t0 large enough
positive, a C1-function rext : [t0,+∞) → [0,+∞) such that the following limits hold as t
goes to +∞:

(6.31) rext(t) → +∞ and r′
ext(t) → 0 and

∫ rEsc(t)+rext(t)

0
rd−1(E†(r, t) −Eϕ(r)

)
dr → 0 .

Let

(6.32) b(t) = rEsc(t) + rext(t) ,

see figure 6.1. Since b(t) goes to +∞ as t goes to +∞, it follows from the previous limit

Figure 6.1: Illustration of the notation for the proof of conclusion 2 of Proposition 6.1.
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that

(6.33)
∫ b(t)

0
rd−1E†(r, t) dr → E[ϕ] as t → +∞ .

Let ε denote a small positive quantity to be chosen below (the value of ε is provided in
(6.38) and depends only on ϕ). According to conclusion 1 of Proposition 5.1,

(6.34)
∫ εt

0
rd−1E†(r, t) dr → Eres-asympt[u] as t → +∞ .

As a consequence, conclusion 2 of Proposition 6.1 is a consequence of the following
lemma.

Lemma 6.11 (the energy over the interval [b(t), εt] goes to 0). The following limit holds:

(6.35)
∫ εt

b(t)
rd−1E†(r, t) dr → 0 as t → +∞ .

Proof of Lemma 6.11. According to the limits (6.7) and (6.31), b′(t) goes to 0 as t goes
to +∞. Thus there exists a time t′0 greater than or equal to t0 such that, for every time
t greater than or equal to t′0, the quantity b(t) is smaller than εt. Let us call upon the
notation κ0 and Trψ0(r) and F0(r, t) and ΣEsc,0(t) and νF0 and KF0 introduced in (4.9),
(4.12), (4.15), (4.23) and (4.25) (for the minimum point m considered here), and let us
introduce the functions rgap and G, defined on [0, 1] × [t′0,+∞) with values in [0,+∞),
defined as

(6.36) rgap(θ, t) = (1 − θ)b(t) + θεt and G(θ, t) = F0
(
rgap(θ, t), t

)
,

see figure 6.1. For every (θ, t) in [0, 1] × [t0,+∞),

∂tG(θ, t) = ∂rF0
(
rgap(θ, t), t

)
∂trgap(θ, t) + ∂tF0

(
rgap(θ, t), t

)
.

According to inequality (4.19) of Lemma 4.3,

∂tF0
(
rgap(θ, t), t

)
≤ −νF0F0

(
rgap(θ, t), t

)
+KF0

∫
ΣEsc,0(t)

Trgap(θ,t)ψ0(r) dr

≤ −νF0F0
(
rgap(θ, t), t

)
+ 2KF0

κ0
exp

(
−κ0d(θ, t)

)
,

where d(θ, t) denotes the distance between rgap(θ, t) and the set ΣEsc,0(t) in R. Let us
assume that ε is smaller than chom/2 and, up to increasing t′0, let us assume that, for
every time t greater than or equal to t′0, the quantity rhom(t) is not smaller than 2εt.
Then, for every time t greater than or equal to t′0,

(6.37) d(θ, t) = rgap(θ, t) − rEsc(t) ,

see figure 6.1, and it follows from the previous inequality that

∂tF0
(
rgap(θ, t), t

)
≤ −νF0F0

(
rgap(θ, t), t

)
+ 2KF0

κ0
exp

(
−κ0d(θ, t)

)
.
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Besides, according to the definition (4.12) of the weight function Trψ0(·),∣∣∂rF0
(
rgap(θ, t), t

)∣∣ ≤ κ0F0
(
rgap(θ, t), t

)
It follows that, for every time t greater than or equal to t′0,

∂tG(θ, t) ≤ −(νF0 − εκ0)G(θ, t) + 2KF0

κ0
exp

(
−κ0d(θ, t)

)
,

so that if the quantity ε is chosen as

(6.38) ε = min
(
chom

2 ,
νF0

16κ0

)
,

then the previous inequality yields

(6.39) ∂tG(θ, t) ≤ −νF0

2 G(θ, t) + 2KF0

κ0
exp

(
−κ0d(θ, t)

)
.

The factor 16 in the denominator of the second quantity defining ε will be useful for the
next lemma, which, together with the forthcoming corollary, will complete the proof of
Lemma 6.11.

Lemma 6.12 (upper bound on G(θ, t) for t large positive). There exists a time t′′0 greater
than or equal to t′0 such that, for every θ in [0, 1] and every time t greater than or equal
to t′′0,

(6.40) G(θ, t) ≤ 8KF0

κ0νF0
exp

(
−κ0d(θ, t)

)
.

Proof of Lemma 6.12. Let us introduce the function H(·, ·) defined as

(6.41) H(θ, t) = G(θ, t) − 8KF0

κ0νF0
exp

(
−κ0d(θ, t)

)
.

It follows from inequality (6.39) that, for every θ in [0, 1] and for every time t greater
than or equal to t′0,

∂tH(θ, t) ≤ −νF0

2 G(θ, t) + 2KF0

κ0
exp

(
−κ0d(θ, t)

)
+ 8KF0

νF0
∂td(θ, t) exp

(
−κ0d(θ, t)

)
≤ −νF0

2 G(θ, t) + 2KF0

κ0
exp

(
−κ0d(θ, t)

) (
1 + 4κ0

νF0
∂td(θ, t)

)
≤ −νF0

2 H(θ, t) − 2KF0

κ0
exp

(
−κ0d(θ, t)

) (
1 − 4κ0

νF0
∂td(θ, t)

)
.

According to the definitions (6.32), (6.36) and (6.37) of b(t) and rgap(t) and d(θ, t),

d(θ, t) = (1−θ)rext(t)+θ
(
εt−rEsc(t)

)
, so that ∂td(θ, t) = (1−θ)r′

ext(t)+θ
(
ε−r′

Esc(t)
)
.
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Since r′
ext(t) and r′

Esc(t) go to 0 as t goes to +∞, there exists a time t′′′0 greater than or
equal to t′0 such that, if t is greater than or equal to t′′′0 , then

∂td(θ, t) ≤ 2ε , thus 4κ0
νF0

∂td(θ, t) ≤ 1
2 ,

and as a consequence,

∂tH(θ, t) ≤ −νF0

2 H(θ, t) − KF0

κ0
exp

(
−κ0d(θ, t)

)
≤ −νF0

2 H(θ, t) − KF0

κ0
exp

(
−κ0d(θ, t′′′0 )

)
exp

(
−2εκ0(t− t′′′0 )

)
.

Let us introduce the function J (·, ·) defined as

J (θ, t) = H(θ, t) exp
(
2εκ0(t− t′′′0 )

)
.

Then, if t is greater than or equal to t′′′0 ,

∂tJ (θ, t) ≤
((

−νF0

2 + 2εκ0

)
H(θ, t) − KF0

κ0
exp

(
−κ0d(θ, t′′′0 )

)
exp

(
−2εκ0(t− t′′′0 )

))
× exp

(
2εκ0(t− t′′′0 )

)
≤ −νF0

4 J (θ, t) − KF0

κ0
exp

(
−κ0d(θ, t′′′0 )

)
≤ −νF0

4 J (θ, t) − KF0

κ0
exp

(
−κ0d(1, t′′′0 )

)
.

This last inequality shows that J (θ, t) must eventually become negative (and remain
negative afterwards) as time increases. More precisely, since according to the bounds
(3.1) on the solution the quantity G(θ, t′′′0 ) is bounded uniformly with respect to θ, the
same is true for the quantity J (θ, t′′′0 ). As a consequence, there must exist a time t′′0
greater than or equal to t′′′0 such that, for every θ in [0, 1] and every time t greater than
or equal to t′′0,

J (θ, t) ≤ 0 , so that H(θ, t) ≤ 0 ,

and in view of the definition (6.41) of H(θ, t), inequality (6.40) follows. Lemma 6.12 is
proved.

For every time t greater than or equal to t′0, let us write

I(t) =
∫ εt

b(t)
rd−1F0(r, t) dr .

Corollary 6.13 (I(t) goes to 0). The quantity I(t) goes to 0 as t goes to +∞.
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Proof of Corollary 6.13. For every time t greater than or equal to t′′0, it follows from
inequality (6.40) of Lemma 6.12 that, for every r in

[
b(t), εt

]
,

F0(r, t) ≤ 8KF0

κ0νF0
exp

(
−κ0

(
r − rEsc(t)

))
so that

I(t) ≤ 8KF0

κ0νF0
exp

(
κ0rEsc(t)

) ∫ εt

b(t)
rd−1 exp(−κ0r) dr

≤ 8KF0

κ0νF0
exp

(
κ0rEsc(t)

) 1
κd

0

∫ +∞

κ0b(t)
rd−1e−r dr

≤ 8KF0

κ0νF0
exp

(
κ0rEsc(t)

)(d− 1)!
κd

0
exp

(
−κ0b(t)

)
ed−1

(
κ0b(t)

)
,

where ed−1(·) denotes the exponential sum function defined as

ed−1(τ) =
d−1∑
k=0

τk

k! .

Since according to Lemma 6.10 the quantity rEsc(t) converges as t goes to +∞, and since
b(t) goes to +∞ as t goes to +∞, the intended limit follows.

End of the proof of Lemma 6.11. Let us assume that t is positive large enough so that

(6.42) b(t) − 1 ≥ rs-c and b(t) + 1 ≤ εt− 1 .

Then, according to the nonnegativity of F †(r, t) (inequality (4.16)), for every r in [b(t), εt],

F0(r, t) ≥
∫ r+1

r−1
Trψ0(r)F †(r, t) dr ,

so that, according to the definition (4.11) of ψ0 and the first of the conditions (6.42),

F0(r, t) ≥ e−κ0

∫ r+1

r−1
F †(r, t) dr ,

so that

I(t) ≥ e−κ0

∫ εt

b(t)
rd−1

(∫ r+1

r−1
F †(r, t) dr

)
dr

≥ e−κ0

(
b(t)

b(t) − 1

)d−1 ∫ εt

b(t)

(∫ r+1

r−1
rd−1F †(r, t) dr

)
dr

= e−κ0

(
b(t)

b(t) − 1

)d−1 ∫ εt

b(t)
rd−1F †(r, t)

∫ min
(

r+1,ε(t)
)

max
(

r−1,b(t)
) dr

 dr .

The quantity

min
(
r + 1, ε(t)

)
− max

(
r − 1, b(t)

)
= 2 + min

(
r, ε(t) − 1

)
− max

(
r, b(t) + 1

)
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is equal to 
1 + r − b(t) if b(t) + 1 ≤ r ≤ εt− 1 ,

2 if b(t) + 1 ≤ r ≤ εt− 1 ,
1 + εt− r if εt− 1 ≤ r ≤ εt ,

and is therefore never less than 1. It follows that

(6.43) I(t) ≥ e−κ0

(
b(t)

b(t) − 1

)d−1 ∫ εt

b(t)
rd−1F †(r, t) dr .

On the other hand, since the interval
[
b(t), εt

]
does not intersect the set ΣEsc,0(t), the

following inequalities hold:

(6.44)
∫ εt

b(t)
rd−1F †(r, t) dr ≥

∫ εt

b(t)
rd−1E†(r, t) dr ≥ 0 :

The intended limit (6.35) follows from Corollary 6.13 and inequalities (6.43) and (6.44).
Lemma 6.11 is proved.

End of the proof of conclusion 2 of Proposition 6.1. In view of the limits (6.33) and
(6.34),conclusion 2 of Proposition 6.1 follows from Lemma 6.11 and is therefore proved.
Since conclusion 1 of Proposition 6.1 was proved in subsection 6.3, the proof of Proposi-
tion 6.1 is complete.

7 Proofs of Theorem 1 and Propositions 2.6 and 2.7
Proof of Theorem 1. Convergence towards the propagating terrace of bistable travelling
fronts follows from Proposition 4.1, and the convergence towards a stationary solution
behind these fronts follows from Proposition 6.1. The proof is the same as that of [53,
Theorem 1] (see section 6 of this reference), thus details will not be reproduced here.

Proof of Proposition 2.6. This statement follows from conclusion 1 of Proposition 5.1
and from Proposition 6.1.

Proof of Proposition 2.7. The proof is very similar to the proof of [56, Corollary 10.2
and Corollary 10.4], see subsection 10.4 of this reference for details. The proof relies
mainly on the upper semi-continuity of the asymptotic energy which is proved (in the
broader setting of system (1.1) without the radial symmetry hypothesis) in [55] (see
Proposition 2.9 of this reference).
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8 Spatial asymptotics for stationary solutions stable at the right
end of space

Lemma 8.1 (spatial asymptotics for stationary solutions stable at the right end of
space). Let m be a point of M, let ρleft-end be a quantity in {−∞} ∪ (−∞, 0], let

I =
{

[ρleft-end,+∞) if ρleft-end ∈ (−∞, 0] ,
(−∞,+∞) if ρleft-end = −∞ ,

and let ϕ : I → Rdst, ρ 7→ ϕ(ρ) denote a function which is a solution:

(8.1)
of system ϕ′′ + d− 1

ρ− ρleft-end
ϕ′ = ∇V (ϕ)

with the boundary condition ϕ′(ρleft-end) = 0 if ρleft-end ∈ (−∞, 0] ,
and of system ϕ′′ = ∇V (ϕ) if ρleft-end = −∞ .

Assume that

(8.2) |ϕ(ρ) −m| ≤ δEsc(m) for every ρ in [0,+∞) and ϕ ̸≡ m.

Then the following conclusions hold.

1. Both quantities |ϕ(ρ) −m| and |ϕ′(ρ)| go to 0 as ρ goes to +∞.

2. For every ρ in [0,+∞), the scalar product
(
ϕ(ρ) −m

)
· ϕ′(ρ) is negative.

3. For every ρ in [0,+∞), the quantity |ϕ(ρ) −m| is smaller than δEsc(m).

4. The supremum supρ∈I |ϕ(ρ) −m| is larger than δEsc(m).

Proof. If ρleft-end equals −∞, then all conclusions follow from [53, Lemma 7.1]. Thus it
may be assumed that ρleft-end is in (−∞, 0]. Observe that the interval [0,+∞) is included
in the interval I where the function ϕ is defined. For every ρ in I, let us introduce the
quantities

(8.3) Q(ρ) = 1
2
(
ϕ(ρ) −m

)2 and H(ρ) = 1
2ϕ

′(ρ)2 − V
(
ϕ(ρ)

)
.

Then, for all ρ in I, it follows from system (8.1) that,

Q′(ρ) =
(
ϕ(ρ) −m

)
· ϕ′(ρ) ,

and Q′′(ρ) = ϕ′(ρ)2 +
(
ϕ(ρ) −m

)
· ∇V

(
ϕ(ρ)

)
− d− 1
ρ− ρleft-end

(
ϕ(ρ) −m

)
· ϕ′(ρ) ,

and thus, if ρ is nonnegative, it follows from assumption (8.2) and from inequality (3.10)
that

(8.4) Q′′(ρ) ≥ ϕ′(ρ)2 + λmin(m)
2

(
ϕ(ρ) −m

)2 − d− 1
ρ− ρleft-end

(
ϕ(ρ) −m

)
· ϕ′(ρ) .
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Let us introduce the quantity

ρ0 = ρleft-end + (d− 1)
√

2
λmin(m) .

For every ρ greater than or equal to ρ0,∣∣∣∣ d− 1
ρ− ρleft-end

(
ϕ(ρ) −m

)
· ϕ′(ρ)

∣∣∣∣ ≤ 1
2ϕ

′(ρ)2 + 1
2

(
d− 1

ρ− ρleft-end

)2 (
ϕ(ρ) −m

)2
≤ 1

2ϕ
′(ρ)2 + λmin(m)

4
(
ϕ(ρ) −m

)2
,

so that, for every ρ greater than or equal to max(0, ρ0), it follows from (8.4) that

(8.5) Q′′(ρ) ≥ 1
2ϕ

′(ρ)2 + λmin(m)
4

(
ϕ(ρ) −m

)2
.

On the other hand, it again follows from system (8.1) that, for all ρ in I,

(8.6) H ′(ρ) = − d− 1
ρ− ρleft-end

ϕ′(ρ)2 ,

thus the function H(·) is non-increasing and thus bounded from above on I, and it follows
from assumption (8.2) that V

(
ϕ(·)

)
is bounded on [0,+∞). According to the expression

(8.3) of H(·), it follows that ϕ′(·) is bounded on [0,+∞), so that Q′(·) is bounded on
I. Since according to inequality (8.5) the function Q′(·) is non-decreasing (and even
strictly increasing since ϕ is not identically equal to m) on

[
max(0, ρ0),+∞

)
, it follows

that Q′(ρ) must converge towards a finite limit as ρ goes to +∞; and thus it follows from
inequality (8.5) that both functions ϕ′(·)2 and Q(·) are square-integrable on I. Since
Q′(·) is bounded, it follows that Q(ρ) must converge towards 0 as ρ goes to +∞. Thus
ϕ(ρ) goes to m as ρ goes to +∞, and as a consequence V

(
ϕ(ρ)

)
goes to V (m) as ρ goes

to +∞. Thus, since the function H(·) must converge to a finite limit at +∞, it follows
that ϕ′(ρ)2 must also go to a finite limit when ρ goes to +∞. Since ϕ′(·)2 is integrable
on I, its limit at +∞ must be 0. Assertion 1 is proved.

It follows from assertion 1 that Q′(·) converges towards 0 at +∞, thus since this
function is strictly increasing on

[
max(0, ρ0),+∞

)
, it follows that Q′(ρ) is negative for all

ρ in this interval. To prove assertion 2, let us proceed by contradiction and assume that
Q′(·) takes a nonnegative value somewhere in I. Then ρ0 must be larger than ρleft-end,
and Q′(·) must takes a nonnegative value somewhere in [ρleft-end, ρ0). Let

ρ1 = max{ρ ∈ [ρleft-end, ρ0) : Q′(ρ) ≥ 0} .

Then Q′(·) is negative on (ρ1,+∞) and it follows from (8.4) that Q′′(·) is positive on
this interval, thus Q′(·) is strictly increasing on this interval, and it follows that Q′(ρ1) is
negative, a contradiction with the definition of ρ1. Assertion 2 is proved, and assertion
3 follows from assertion 2. Since according to the boundary condition (8.1) the scalar
product

(
ϕ(ρleft-end) −m

)
·ϕ′(ρleft-end) must be equal to 0, it follows from assertion 2 that

ρleft-end cannot be equal to 0, or equivalently that assumption (8.2) cannot hold up to
ρleft-end, and this proves assertion 4. Lemma 8.1 is proved.

65



Acknowledgements

I am indebted to Thierry Gallay and Romain Joly for their help and interest through
numerous fruitful discussions.

References
[1] N. D. Alikakos, G. Fusco, and P. Smyrnelis. Elliptic Systems of Phase Transi-

tion Type. Vol. 91. Progress in Nonlinear Differential Equations and Their Applica-
tions. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-9
0572-3 (cit. on p. 3).

[2] N. D. Alikakos and N. I. Katzourakis. “Heteroclinic travelling waves of gradient
diffusion systems”. In: Trans. Am. Math. Soc. 363.03 (2011), pp. 1365–1365. doi:
10.1090/S0002-9947-2010-04987-6. arXiv: 0712.2800 (cit. on p. 3).

[3] D. G. Aronson and H. F. Weinberger. “Multidimensional nonlinear diffusion
arising in population genetics”. In: Adv. Math. (N. Y). 30.1 (1978), pp. 33–76. doi:
10.1016/0001-8708(78)90130-5 (cit. on p. 4).

[4] H. Berestycki and P. L. Lions. “Nonlinear scalar field equations, I existence
of a ground state”. In: Arch. Ration. Mech. Anal. 82.4 (1983), pp. 313–345. doi:
10.1007/BF00250555 (cit. on pp. 7, 14, 51).

[5] H. Berestycki, P. L. Lions, and L. A. Peletier. “An ODE Approach to the
Existence of Positive Solutions for Semilinear Problems in RN ”. In: Indiana Univ.
Math. J. (1981), pp. 141–157 (cit. on p. 14).

[6] J. Bouhours and T. Giletti. “Extinction and spreading of a species under the
joint influence of climate change and a weak Allee effect: a two-patch model”. In:
arXiv (2016), pp. 1–33. arXiv: 1601.06589 (cit. on p. 3).

[7] J. Bouhours and T. Giletti. “Spreading and Vanishing for a Monostable Reaction
– Diffusion Equation with Forced Speed”. In: J. Dyn. Differ. Equations (2018). doi:
10.1007/s10884-018-9643-5 (cit. on p. 3).

[8] J. Bouhours and G. Nadin. “A variational approach to reaction-diffusion equations
with forced speed in dimension 1”. In: Discret. Contin. Dyn. Syst. - A 35.5 (2015),
pp. 1843–1872. doi: 10.3934/dcds.2015.35.1843. arXiv: 1310.3689 (cit. on
p. 3).

[9] G. Chapuisat. “Existence and nonexistence of curved front solution of a biological
equation”. In: J. Differ. Equ. 236.1 (2007), pp. 237–279. doi: 10.1016/j.jde.200
7.01.021 (cit. on p. 3).

[10] G. Chapuisat and R. Joly. “Asymptotic profiles for a travelling front solution of
a biological equation”. In: Math. Model. Methods Appl. Sci. 21.10 (2011), pp. 2155–
2177. doi: 10.1142/S0218202511005696. arXiv: 1005.1729 (cit. on p. 3).

66

https://doi.org/10.1007/978-3-319-90572-3
https://doi.org/10.1007/978-3-319-90572-3
https://doi.org/10.1090/S0002-9947-2010-04987-6
https://arxiv.org/abs/0712.2800
https://doi.org/10.1016/0001-8708(78)90130-5
https://doi.org/10.1007/BF00250555
https://arxiv.org/abs/1601.06589
https://doi.org/10.1007/s10884-018-9643-5
https://doi.org/10.3934/dcds.2015.35.1843
https://arxiv.org/abs/1310.3689
https://doi.org/10.1016/j.jde.2007.01.021
https://doi.org/10.1016/j.jde.2007.01.021
https://doi.org/10.1142/S0218202511005696
https://arxiv.org/abs/1005.1729


[11] C.-N. Chen and V. Coti Zelati. “Traveling wave solutions to the Allen–Cahn
equation”. In: Ann. l’Institut Henri Poincaré C, Anal. non linéaire 39 (2022),
pp. 905–926. doi: 10.4171/aihpc/23. arXiv: 2003.08248 (cit. on p. 3).

[12] C. C. Chen, H. Y. Chien, and C. C. Huang. “A variational approach to three-
phase traveling waves for a gradient system”. In: Discret. Contin. Dyn. Syst. Ser.
A 41.10 (2021), pp. 4737–4765. doi: 10.3934/dcds.2021055 (cit. on p. 3).

[13] Y. Du and H. Matano. “Convergence and sharp thresholds for propagation in
nonlinear diffusion problems”. In: J. Eur. Math. Soc. 12.2 (2010), pp. 279–312. doi:
10.4171/JEMS/198 (cit. on p. 4).

[14] Y. Du and H. Matano. “Radial terrace solutions and propagation profile of
multistable reaction-diffusion equations over RN ”. In: arXiv (2020), pp. 4–21.
arXiv: 1711.00952 (cit. on pp. 4, 9).

[15] Y. Du and P. Polacik. “Locally uniform convergence to an equilibrium for
nonlinear parabolic equations on RN ”. In: Indiana Univ. Math. J. 64.3 (2015),
pp. 787–824. doi: 10.1512/iumj.2015.64.5535 (cit. on p. 4).

[16] A. Ducrot, T. Giletti, and H. Matano. “Existence and convergence to a
propagating terrace in one-dimensional reaction-diffusion equations”. In: Trans.
Am. Math. Soc. 366.10 (2014), pp. 5541–5566. doi: 10.1090/S0002-9947-2014-0
6105-9. arXiv: 1203.6206 (cit. on p. 10).

[17] P. C. Fife and J. B. McLeod. “The approach of solutions of nonlinear diffusion
equations to travelling front solutions”. In: Arch. Ration. Mech. Anal. 65.4 (1977),
pp. 335–361. doi: 10.1007/BF00250432 (cit. on p. 3).

[18] P. C. Fife and J. B. McLeod. “A phase plane discussion of convergence to
travelling fronts for nonlinear diffusion”. In: Arch. Ration. Mech. Anal. 75.4 (1981),
pp. 281–314. doi: 10.1007/BF00256381 (cit. on p. 3).

[19] P. Fife. “Long time behavior of solutions of bistable nonlinear diffusion equations”.
In: Arch. Ration. Mech. Anal. 70.1 (1979), pp. 31–36. doi: 10.1007/BF00276380
(cit. on p. 3).

[20] T. Gallay and R. Joly. “Global stability of travelling fronts for a damped wave
equation with bistable nonlinearity”. In: Ann. Sci. l’École Norm. Supérieure 42.1
(2009), pp. 103–140. doi: 10.24033/asens.2091. arXiv: 0710.0794 (cit. on p. 3).

[21] T. Gallay and E. Risler. “A variational proof of global stability for bistable
travelling waves”. In: Differ. Integr. Equations 20.8 (2007), pp. 901–926. arXiv:
math/0612684 (cit. on p. 3).

[22] T. Giletti and H. Matano. “Existence and uniqueness of propagating terraces”.
In: Commun. Contemp. Math. 22.06 (2020), p. 1950055. doi: 10.1142/S02191997
1950055X (cit. on p. 10).

[23] T. Giletti and L. Rossi. “Pulsating solutions for multidimensional bistable
and multistable equations”. In: Math. Ann. 378.3-4 (2020), pp. 1555–1611. doi:
10.1007/s00208-019-01919-z. arXiv: 1901.07256 (cit. on p. 10).

67

https://doi.org/10.4171/aihpc/23
https://arxiv.org/abs/2003.08248
https://doi.org/10.3934/dcds.2021055
https://doi.org/10.4171/JEMS/198
https://arxiv.org/abs/1711.00952
https://doi.org/10.1512/iumj.2015.64.5535
https://doi.org/10.1090/S0002-9947-2014-06105-9
https://doi.org/10.1090/S0002-9947-2014-06105-9
https://arxiv.org/abs/1203.6206
https://doi.org/10.1007/BF00250432
https://doi.org/10.1007/BF00256381
https://doi.org/10.1007/BF00276380
https://doi.org/10.24033/asens.2091
https://arxiv.org/abs/0710.0794
https://arxiv.org/abs/math/0612684
https://doi.org/10.1142/S021919971950055X
https://doi.org/10.1142/S021919971950055X
https://doi.org/10.1007/s00208-019-01919-z
https://arxiv.org/abs/1901.07256


[24] F. Hamel and L. Rossi. “Spreading speeds and one-dimensional symmetry for
reaction-diffusion equations”. In: arXiv (2021), pp. 1–88. arXiv: 2105.08344 (cit. on
p. 4).

[25] S. Heinze. A variational approach to travelling waves. Tech. rep. Leipzig: Technical
Report 85, Max Planck Institute for Mathematical Sciences, 2001 (cit. on p. 3).

[26] D. B. Henry. Geometric Theory of Semilinear Parabolic Equations. Vol. 840.
Lecture Notes in Mathematics. Berlin, New-York: Springer Berlin Heidelberg, 1981.
doi: 10.1007/BFb0089647 (cit. on pp. 5, 15).

[27] R. Joly and E. Risler. “Generic transversality of travelling fronts, standing fronts,
and standing pulses for parabolic gradient systems”. In: arXiv (2023), pp. 1–69.
arXiv: 2301.02095 (cit. on p. 13).

[28] C. K. R. T. Jones. “Asymptotic behavior of a reaction-diffusion equation in
higher space dimensions”. In: Rocky Mt. J. Math. 13.2 (1983), pp. 355–364. doi:
10.1216/RMJ-1983-13-2-355 (cit. on p. 4).

[29] C. K. R. T. Jones. “Spherically symmetric solutions of a reaction-diffusion equa-
tion”. In: J. Differ. Equ. 49.1 (1983), pp. 142–169. doi: 10.1016/0022-0396(83)9
0023-2 (cit. on p. 4).

[30] C. Luo. “Global stability of travelling fronts for a damped wave equation”. In: J.
Math. Anal. Appl. 399 (2013), pp. 260–278. doi: 10.1016/j.jmaa.2012.05.089
(cit. on p. 3).

[31] H. Matano and P. Poláčik. “Dynamics of nonnegative solutions of one-
dimensional reaction–diffusion equations with localized initial data. Part I: A
general quasiconvergence theorem and its consequences”. In: Commun. Partial
Differ. Equations 41.5 (2016), pp. 785–811. doi: 10.1080/03605302.2016.1156697
(cit. on p. 4).

[32] H. Matano and P. Poláčik. “An entire solution of a bistable parabolic equation
on R with two colliding pulses”. In: J. Funct. Anal. 272.5 (2017), pp. 1956–1979.
doi: 10.1016/j.jfa.2016.11.006 (cit. on p. 16).

[33] H. Matano and P. Poláčik. “Dynamics of nonnegative solutions of one-
dimensional reaction-diffusion equations with localized initial data. Part II: Generic
nonlinearities”. In: Commun. Partial Differ. Equations 45.6 (2020), pp. 483–524.
doi: 10.1080/03605302.2019.1700273 (cit. on pp. 4, 10).

[34] H. Matano, Y. Mori, and M. Nara. “Asymptotic behavior of spreading fronts in
the anisotropic Allen–Cahn equation on Rn”. In: Ann. l’Institut Henri Poincaré C,
Anal. non linéaire 36.3 (2019), pp. 585–626. doi: 10.1016/j.anihpc.2018.07.003
(cit. on p. 4).

[35] H. Matsuzawa and M. Nara. “Asymptotic behavior of spreading fronts in an
anisotropic multi-stable equation on RN ”. In: Discret. Contin. Dyn. Syst. C (2022),
pp. 1–34. doi: 10.3934/dcds.2022069 (cit. on p. 4).

68

https://arxiv.org/abs/2105.08344
https://doi.org/10.1007/BFb0089647
https://arxiv.org/abs/2301.02095
https://doi.org/10.1216/RMJ-1983-13-2-355
https://doi.org/10.1016/0022-0396(83)90023-2
https://doi.org/10.1016/0022-0396(83)90023-2
https://doi.org/10.1016/j.jmaa.2012.05.089
https://doi.org/10.1080/03605302.2016.1156697
https://doi.org/10.1016/j.jfa.2016.11.006
https://doi.org/10.1080/03605302.2019.1700273
https://doi.org/10.1016/j.anihpc.2018.07.003
https://doi.org/10.3934/dcds.2022069


[36] C. B. Muratov. “A global variational structure and propagation of disturbances
in reaction-diffusion systems of gradient type”. In: Discret. Contin. Dyn. Syst. -
Ser. B 4.4 (2004), pp. 867–892. doi: 10.3934/dcdsb.2004.4.867 (cit. on p. 3).

[37] C. B. Muratov and M. Novaga. “Front propagation in infinite cylinders. I.
A variational approach”. In: Commun. Math. Sci. 6.4 (2008), pp. 799–826. doi:
10.4310/CMS.2008.v6.n4.a1 (cit. on p. 3).

[38] C. B. Muratov and M. Novaga. “Front propagation in infinite cylinders. II.
The sharp reaction zone limit”. In: Calc. Var. Partial Differ. Equ. 31.4 (2008),
pp. 521–547. doi: 10.1007/s00526-007-0125-6 (cit. on p. 3).

[39] C. B. Muratov and M. Novaga. “Global exponential convergence to variational
traveling waves in cylinders”. In: SIAM J. Math. Anal. 44.1 (2012), pp. 293–315.
doi: 10.1137/110833269. arXiv: 1105.1190 (cit. on p. 3).

[40] C. B. Muratov and X. Zhong. “Threshold phenomena for symmetric decreasing
solutions of reaction-diffusion equations”. In: Nonlinear Differ. Equations Appl.
NoDEA 20.4 (2013), pp. 1519–1552. doi: 10.1007/s00030-013-0220-7. arXiv:
1203.4623 (cit. on p. 4).

[41] C. B. Muratov and X. Zhong. “Threshold phenomena for symmetric-decreasing
radial solutions of reaction-diffusion equations”. In: Discret. Contin. Dyn. Syst.
Ser. A 37.2 (2017), pp. 915–944. doi: 10.3934/dcds.2017038. arXiv: 1506.09146
(cit. on p. 4).

[42] R. Oliver-Bonafoux. “Heteroclinic traveling waves of 1D parabolic systems with
degenerate stable states”. In: arXiv (2021), pp. 1–37. arXiv: 2111.12546 (cit. on
p. 3).

[43] R. Oliver-Bonafoux. “Heteroclinic traveling waves of 2D parabolic Allen-Cahn
systems”. In: arXiv (2021), pp. 1–67. arXiv: 2106.09441 (cit. on p. 3).

[44] R. Oliver-Bonafoux and E. Risler. “Global convergence towards pushed trav-
elling fronts for parabolic gradient systems”. 2023 (cit. on p. 3).

[45] A. Pauthier, J. D. M. Rademacher, and D. Ulbrich. “Weak and Strong
Interaction of Excitation Kinks in Scalar Parabolic Equations”. In: J. Dyn. Differ.
Equations (2021). doi: 10.1007/s10884-021-10040-2 (cit. on p. 10).

[46] S. I. Pokhozhaev. “On the eigenfunctions of the equation ∆u+ λf(u) = 0”. In:
Dokl. Akad. Nauk SSSR 165 (1965), pp. 36–39 (cit. on p. 7).

[47] P. Poláčik. “Propagating terraces in a proof of the Gibbons conjecture and related
results”. In: J. Fixed Point Theory Appl. (2016), pp. 1–21. doi: 10.1007/s11784-
016-0343-7 (cit. on p. 10).

[48] P. Poláčik. “Convergence and Quasiconvergence Properties of Solutions of
Parabolic Equations on the Real Line: An Overview”. In: Patterns Dyn. Ed. by
P. Gurevich, J. Hell, B. Sandstede, and A. Scheel. Springer, Cham, 2017,
pp. 172–183. doi: 10.1007/978-3-319-64173-7_11 (cit. on p. 4).

69

https://doi.org/10.3934/dcdsb.2004.4.867
https://doi.org/10.4310/CMS.2008.v6.n4.a1
https://doi.org/10.1007/s00526-007-0125-6
https://doi.org/10.1137/110833269
https://arxiv.org/abs/1105.1190
https://doi.org/10.1007/s00030-013-0220-7
https://arxiv.org/abs/1203.4623
https://doi.org/10.3934/dcds.2017038
https://arxiv.org/abs/1506.09146
https://arxiv.org/abs/2111.12546
https://arxiv.org/abs/2106.09441
https://doi.org/10.1007/s10884-021-10040-2
https://doi.org/10.1007/s11784-016-0343-7
https://doi.org/10.1007/s11784-016-0343-7
https://doi.org/10.1007/978-3-319-64173-7_11


[49] P. Poláčik. “Planar Propagating Terraces and the Asymptotic One-dimensional
Symmetry of Solutions of Semilinear Parabolic Equations”. In: SIAM J. Math. Anal.
49.5 (2017), pp. 3716–3740. doi: 10.1137/16M1100745. arXiv: arXiv:1302.5877
(cit. on p. 10).

[50] P. Poláčik. “Propagating Terraces and the Dynamics of Front-Like Solutions of
Reaction-Diffusion Equations on R”. In: Mem. Am. Math. Soc. 264.1278 (2020),
pp. 1–100. doi: 10.1090/memo/1278 (cit. on p. 10).

[51] P. Poláčik. “On bounded radial solutions of parabolic equations on RN : Quasi-
convergence for initial data with a stable limit at infinity (preprint)”. 2023 (cit. on
p. 4).

[52] E. Risler. “Global convergence toward traveling fronts in nonlinear parabolic
systems with a gradient structure”. In: Ann. l’Institut Henri Poincare. Ann. Anal.
Non Lineaire/Nonlinear Anal. 25.2 (2008), pp. 381–424. doi: 10.1016/j.anihpc
.2006.12.005 (cit. on p. 3).

[53] E. Risler. “Global behaviour of bistable solutions for gradient systems in one
unbounded spatial dimension”. In: arXiv (2022), pp. 1–91. arXiv: 1604.02002
(cit. on pp. 3–5, 10, 11, 18, 19, 31, 34, 36, 38, 42, 44, 45, 63, 64).

[54] E. Risler. “Global behaviour of bistable solutions for hyperbolic gradient systems
in one unbounded spatial dimension”. In: arXiv (2022), pp. 1–75. arXiv: 1703.01221
(cit. on p. 10).

[55] E. Risler. “Global behaviour of solutions stable at infinity for gradient systems in
higher space dimension: the no invasion case”. In: arXiv (2022), pp. 1–60. arXiv:
2206.06288 (cit. on pp. 2, 4, 7, 15, 46, 63).

[56] E. Risler. “Global relaxation of bistable solutions for gradient systems in one
unbounded spatial dimension”. In: arXiv (2022), pp. 1–69. arXiv: 1604.00804
(cit. on pp. 3–5, 10, 16, 19, 27, 58, 63).

[57] E. Risler. “Generic transversality of radially symmetric stationary solutions stable
at infinity for parabolic gradient systems”. In: arXiv (2023), pp. 1–26. arXiv:
2301.02605 (cit. on p. 13).

[58] J.-M. Roquejoffre and V. Roussier-Michon. “Sharp large time behaviour
in N -dimensional reaction-diffusion equations of bistable type”. In: arXiv (2021),
pp. 1–15. arXiv: 2101.07333 (cit. on p. 4).

[59] V. Roussier-Michon. “Stability of radially symmetric travelling waves in reac-
tion–diffusion equations”. In: Ann. l’Institut Henri Poincare Non Linear Anal. 21.3
(2004), pp. 341–379. doi: 10.1016/j.anihpc.2003.04.002 (cit. on p. 4).

[60] K. Uchiyama. “Asymptotic behavior of solutions of reaction-diffusion equations
with varying drift coefficients”. In: Arch. Ration. Mech. Anal. 90.4 (1985), pp. 291–
311. doi: 10.1007/BF00276293 (cit. on p. 4).

70

https://doi.org/10.1137/16M1100745
https://arxiv.org/abs/arXiv:1302.5877
https://doi.org/10.1090/memo/1278
https://doi.org/10.1016/j.anihpc.2006.12.005
https://doi.org/10.1016/j.anihpc.2006.12.005
https://arxiv.org/abs/1604.02002
https://arxiv.org/abs/1703.01221
https://arxiv.org/abs/2206.06288
https://arxiv.org/abs/1604.00804
https://arxiv.org/abs/2301.02605
https://arxiv.org/abs/2101.07333
https://doi.org/10.1016/j.anihpc.2003.04.002
https://doi.org/10.1007/BF00276293


[61] A. Zlatoš. “Sharp transition between extinction and propagation of reaction”. In: J.
Am. Math. Soc. 19.1 (2005), pp. 251–263. doi: 10.1090/S0894-0347-05-00504-7.
arXiv: 0504333 [math] (cit. on p. 4).

Emmanuel Risler
Université de Lyon, INSA de Lyon, CNRS UMR 5208, Institut Camille Jordan,
F-69621 Villeurbanne, France.
emmanuel.risler@insa-lyon.fr

71

https://doi.org/10.1090/S0894-0347-05-00504-7
https://arxiv.org/abs/0504333
mailto:emmanuel.risler@insa-lyon.fr 

	Introduction
	Assumptions, notation, and statement of the results
	Semi-flow and coercivity hypothesis
	Minimum points and solutions stable at infinity
	Minimum points
	Solutions stable at infinity

	Stationary solutions, travelling fronts, terraces, and asymptotic pattern
	Radially symmetric stationary solutions
	Large radius asymptotic form of the system governing radially symmetric solutions
	Radially symmetric travelling fronts for the large radius limit
	Propagating terraces of bistable travelling fronts
	Asymptotic pattern stable at infinity

	Generic hypotheses on the potential
	Escape distance of a minimum point
	Breakup of space translation invariance for travelling fronts
	Statement of the generic hypotheses

	Main result
	Additional results
	Residual asymptotic energy
	``Mountain pass'' existence of a ``ground state''


	Preliminaries
	Global existence of solutions and attracting ball for the semi-flow
	Asymptotic compactness of solutions
	Time derivative of (localized) energy and L2-norm of a solution
	Standing frame
	Travelling frame

	Miscellanea
	Second order estimates for the potential around a minimum point
	Lower quadratic hulls of the potential at minimum points


	Invasion implies convergence
	Definitions and hypotheses
	Statement
	Set-up for the proof, 1
	Assumptions holding up to changing the origin of time
	Normalized potential and corresponding solution

	Firewall function in the laboratory frame
	Definition
	Coercivity
	Linear decrease up to pollution

	Upper bound on the invasion speed
	Set-up for the proof, 2: escape point and associated speeds
	Relaxation scheme in a travelling frame
	Preliminary definitions
	Localized energy
	Time derivative of the localized energy
	Firewall function
	Energy decrease up to firewall
	Relaxation scheme inequality, 1
	Firewall linear decrease up to pollution
	Nonnegativity of the firewall
	Relaxation scheme inequality, 2
	Control over pollution in the time derivative of the firewall function
	Relaxation scheme inequality, final

	Convergence of the mean invasion speed
	Further control on the escape point
	Dissipation approaches zero at regularly spaced times
	Relaxation
	Convergence

	No invasion implies relaxation
	Definitions and hypotheses
	Statement and proof

	Relaxation implies convergence
	Statement
	Properties of the Escape radius
	Transversality
	Finiteness/infiniteness of Escape radius
	Infiniteness alternative for the Escape radius
	Non divergence towards infinity in the finiteness alternative for the Escape radius

	Convergence

	Proofs of Theorem 1 and Propositions 2.6 and 2.7
	Spatial asymptotics for stationary solutions stable at the right end of space

