- D. Albritton, T. Barker, C. Prange:
"Localized smoothing and concentration for the Navier-Stokes equations in the half space"
J. Funct. Anal., 284 (2023), n. 1, Paper n. 109729
- D. Albritton, T. Barker, C. Prange:
"Epsilon regularity for the Navier-Stokes equations via weak-strong uniqueness"
J. Math. Fluid Mech. (special issue in the memory of Olga Ladyzhenskaya), 25 (2023), n. 3, Paper n. 49
- F. Ancona, R. Bianchini, C. Perrin:
"Hard congestion limit of the p-system in the BV setting"
ESAIM Proc. Surveys, 72 (2023), 41-63
- T. Barker, P. Fernández Dalgo, C. Prange:
"Blow-up of dynamically restricted critical norms near a potential Navier-Stokes singularity"
Math. Ann., accepted for publication, 2023
- T. Barker, C. Prange:
"From concentration to quantitative regularity: a short survey of recent developments for the Navier-Stokes equations"
Vietnam J. Math. (special issue dedicated to Carlos Kenig's 70th birthday), accepted for publication, 2023
- T. Barker, C. Prange, J. Tan:
"On symmetry breaking for the Navier-Stokes equations"
Comm. Math. Phys., accepted for publication, 2023
- M. Bravin:
"On the existence of weak solutions for the 2D incompressible Euler equations with in-out flow and source and sink points"
J. Math. Fluid Mech., 24 (2022), n. 4, Paper n. 105
- M. Bravin, F. Fanelli:
"Fast rotating non-homogeneous fluids in thin domains and the Ekman pumping effect"
J. Math. Fluid Mech., 25 (2023), n. 4, Paper n. 83
- D. Bresch, C. Burtea:
"Extension of the Hoff solutions framework to cover compressible Navier-Stokes equations with possible anisotropic viscous tensor"
Indiana Univ. Math. J., 72 (2023), n. 5, 2145-2189
- C. Burtea, T. Crin-Barat, J. Tan:
"Relaxation limit for a damped one-velocity Baer-Nunziato model to a Kapila model"
Math. Models Methods Appl. Sci., 33 (2023), n. 4, 687-753
- C. Burtea, S. Gavrilyuk, C. Perrin:
"Hamilton's principle of stationary action in multiphase flow modeling"
Panor. Synthèses, 61, Société Mathématique de France, Paris, 2024
- C. Burtea, B. Haspot:
"Vanishing capillarity limit of the Navier-Stokes-Korteweg system in one dimension with degenerate viscosity coefficient and discontinuous initial density"
SIAM J. Math. Anal., 54 (2022), n. 2, 1428-1469
- C. Burtea, N. Meunier, C. Mouhot:
"Concentration in an advection-diffusion model with diffusion coefficient depending on the past trajectory"
Discrete Contin. Dyn. Syst., 44 (2024), n. 12, 3649-3668
- N. Chaudhuri, M. A. Mehmood, C. Perrin, E. Zatorska:
"Duality solutions to the hard-congestion model for the dissipative Aw-Rascle system"
Comm. Partial Differential Equations, accepted for publication (2024)
- N. Chaudhuri, L. Navoret, C. Perrin, E. Zatorska:
"Hard congestion limit in a dissipative Aw-Rascle system"
Nonlinearity, 37 (2024), n. 4, Paper n. 045018
- D. Cobb:
"Bounded solutions in incompressible hydrodynamics"
J. Funct. Anal., 286 (2024), n. 5, Paper n. 110290
- D. Cobb:
"Remarks on Chemin's space of homogeneous distributions"
Math. Nachr., 297 (2024), n. 3, 895-913
- D. Cobb, F. Fanelli:
"Simmetry breaking in ideal magnetohydrodynamics: the role of the velocity"
J. Elliptic Parabol. Equ., 7 (2021), n. 2, 273-295
- F. Colombini, D. Del Santo, F. Fanelli:
"Well-posedness results for hyperbolic operators with coefficients rapidly oscillating in time"
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), accepted for publication, 2023
- O. Cuvillier, F. Fanelli, E. Salguero:
"Well-posedness of the Kolmogorov two-equation model of turbulence in optimal Sobolev spaces"
J. Evol. Equ., 23 (2023), n. 4, Paper n. 68
- A.-L. Dalibard, G. Lopez Ruiz, C. Perrin:
"Traveling waves for the porous medium equation in the incompressible limit: asymptotic behavior and nonlinear stability"
Indiana Univ. Math. J., 73 (2024), n. 2, 581-643
- A.-L. Dalibard, C. Perrin:
"Partially congested propagation fronts in one-dimensional Navier-Stokes equations"
J. Elliptic Parabol. Equ., 7 (2021), n. 2, 491-507
- A.-L. Dalibard, C. Perrin:
"Local and global well-posedness of one-dimensional free-congested equations"
Ann. H. Lebesgue, 7 (2024), 1175-1243.
- D. Del Santo, F. Fanelli, G. Sbaiz, A. Wróblewska-Kamińska:
"On the influence of gravity in the dynamics of geophysical flows"
Math. Eng., 5 (2023), n. 1, Paper n. 008
- F. Fanelli:
"Incompressible and fast rotation limit for barotropic Navier-Stokes equations at large Mach numbers"
Phys. D, 428 (2021), Paper n. 133049
- F. Fanelli, E. Feireisl:
"Thermally driven fluid convection in the incompressible limit regime"
Pure Appl. Anal., 6 (2024), n. 3, 835-858
- F. Fanelli, E. Feireisl, M. Hofmanová:
"Ergodic theory for energetically open compressible fluid flows"
Phys. D, 423 (2021), Paper n. 132914
- F. Fanelli, R. Granero-Belinchón:
"Finite time blow-up for some parabolic systems arising in turbulence theory"
Z. Angew. Math. Phys., 73 (2022), n. 5, Paper n. 180
- F. Fanelli, R. Granero-Belinchón:
"Well-posedness and singularity formation for the Kolmogorov two-equation model of turbulence in 1-D"
J. Dynam. Differential Equations, accepted for publication (2023)
- F. Fanelli, R. Granero-Belinchón, S. Scrobogna:
"Well-posedness theory for non-homogeneous incompressible fluids with odd viscosity"
J. Math. Pures Appl. (9), 187 (2024), 58-137
- F. Fanelli, A. F. Vasseur:
"Effective velocity and L∞-based well-posedness for incompressible fluids with odd viscosity"
SIAM J. Math. Anal., accepted for publication (2024)
- F. Fanelli, E. Zatorska:
"Low Mach number limit for degenerate Navier-Stokes equations in presence of strong stratification"
Comm. Math. Phys., 400 (2023), n. 3, 1463-1506
- M. Higaki, C. Prange, J. Zhuge:
"Large-scale regularity for the stationary Navier-Stokes equations over non-Lipschitz boundaries"
Anal. PDE, accepted for publication, 2021
- R. M. Höfer, C. Prange, F. Sueur:
"Motion of several slender rigid filaments in a Stokes flow"
J. Éc. polytech. Math., 9 (2022), 327-380
- L. Kosloff, G. Sbaiz:
"Fast rotation and inviscid limits for the SQG equation with general ill-prepared initial data"
NoDEA Nonlinear Differential Equations Appl., 31 (2024), n. 4, Paper n. 49
- B. Melinand:
"Dispersive estimates for nonhomogeneous radial phases: an application to weakly dispersive equations and water wave models"
J. Funct. Anal., 286 (2024), n. 1, Paper n. 110204
- C. Perrin, K. Saleh:
"Numerical staggered schemes for the free-congested Navier-Stokes equations"
SIAM J. Numer. Anal., 60 (2022), n. 4, 1824-1852
- G. Sbaiz:
"Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations"
J. Math. Anal. Appl., 512 (2022), n. 1, Paper n. 126140
|