Math I Analyse

Feuille 1 : manipulation des nombres réels

1 Inégalités, puissances, valeur absolue

Exercice 1. Soient deux nombres réels a et b vérifiant : -1 < a < 4 et -3 < b < -1. Donner un encadrement de a - b et de a/b.

Exercice 2. Montrer, pour tous réels positifs x et y et tout entier naturel non nul n la formule :

$$\sqrt[n]{x+y} \le \sqrt[n]{x} + \sqrt[n]{y}$$

Exercice 3. Soient x_1, \ldots, x_n des réels compris entre 0 et 1. Montrer que :

$$\prod_{i=1}^{n} (1 - x_i) \ge 1 - \sum_{i=1}^{n} x_i$$

Exercice 4. Soient x, y et z des nombres réels. Montrer que l'on a $x^2 + y^2 \ge 2xy$. En déduire l'inégalité

$$x^2 + y^2 + z^2 \ge xy + yz + zx$$

Montrer que l'on a $(x+y)^2 \ge 4xy$. En déduire que si x, y et z sont positifs ou nuls, alors on a

$$(x+y)(y+z)(z+x) \ge 8xyz$$

Exercice 5. Soit x un nombre réel. Démontrer que pour tout $n \geq 2$, n entier :

$$[x > -1, x \neq 0] \Rightarrow [(1+x)^n > 1 + nx].$$

Exercice 6. Soit A une partie de \mathbb{R} . A-t-on équivalence entre les deux propositions suivantes?

- $\exists \alpha > 0 \quad \forall x \in A \quad x \ge \alpha$
- $\bullet \ \, \forall x \in A \quad x>0$

Exercice 7. Pour toutes les fonctions f suivantes, tracer l'allure des courbes de f, |f|, $f_+ = \max(f, 0)$ et $f_- = -\min(f, 0)$.

$$f(x) = x^3 - 3x$$
, $f(x) = \cos(x)$, $f(x) = \ln(2x + 1)$, $f(x) = \exp(-3x - 6)$.

Exercice 8. Soient x et y deux réels. Montrer que l'on a :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$

Trouver une formule du même type pour $\max(x, y, z)$.

Exercice 9. Soit $x \in \mathbb{R}$. Montrer que : $(\forall \epsilon > 0 \quad |x| \le \epsilon) \Rightarrow (x = 0)$.

2 Partie entière

Pour un nombre réel x, on notera E(x) sa partie entière et [x] sa partie fractionnaire.

Exercice 10. Tracer l'allure des courbes des fonctions suivantes.

$$E(x)$$
, $E\left(\frac{1}{x}\right)$, $E(x^2)$, $E(\sin(x))$, $[x]$.

Exercice 11. Montrer pour tout réel x l'égalité :

$$E\left(\frac{x}{2}\right) + E\left(\frac{x+1}{2}\right) = E\left(x\right)$$

Exercice 12. 1. Montrer que $\forall (x,y) \in \mathbb{R}^2$, $E(x) + E(y) \leq E(x+y) \leq E(x) + E(y) + 1$.

- 2. $\forall (x,n) \in \mathbb{R} \times \mathbb{Z}, \ E(x+n) = E(x) + n.$
- 3. Montrer que $\forall n \in \mathbb{N} \{0\}, \ \forall x \in \mathbb{R}, \ E(x) = E\left(\frac{E(n\,x)}{n}\right)$.
- 4. Déterminer $\lim E(x)$ et $\lim [x]$ lorsque x tend vers -1_+ et lorsque x tend vers -1_- . Ces fonctions ont-elles une limite lorsque x tend vers -1?

3 Entiers, rationnels et réels

Exercice 13. 1. Rappeler la définition d'un groupe.

- 2. Chercher des exemples de sous-groupes de $(\mathbb{Z}, +)$.
- 3. Trouver tous les sous-groupes de $(\mathbb{Z}, +)$.

Exercice 14. Soient n et m deux entiers naturels, avec m non nul. On note q le quotient et r le reste de la division euclidienne de n par m, de sorte que n=q.m+r, avec $0 \le r < m$ (ce qui a un sens puisque $m \ne 0$). Si $x=\frac{n}{m}$, montrer que q=E(x) et $\frac{r}{m}=[x]$.

Exercice 15. Soient $r \in \mathbb{Q}$ et $x \in \mathbb{R} \setminus \mathbb{Q}$.

- 1. Montrer que $r + x \notin \mathbb{Q}$.
- 2. Montrer que, si $r \neq 0$, $r x \notin \mathbb{Q}$.

Exercice 16. 1. Soient $x, y \in \mathbb{Q}^+$, tels que \sqrt{x} ou $\sqrt{y} \notin \mathbb{Q}$. Montrer que $\sqrt{x} + \sqrt{y} \notin \mathbb{Q}$.

2. En déduire que $\sqrt{2} + \sqrt{3} + \sqrt{5} \notin \mathbb{O}$.

Exercice 17. Dire si les énoncés suivants sont vrais ou faux :

- 1. $(x \in \mathbb{Q}, y \in \mathbb{Q}) \Rightarrow (x + y \in \mathbb{Q})$
- 2. $(x \in \mathbb{R} \setminus \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}) \Rightarrow (x + y \in \mathbb{R} \setminus \mathbb{Q})$
- 3. $(\forall x \in \mathbb{R} \setminus \mathbb{Q}) (\forall y \in \mathbb{R} \setminus \mathbb{Q}) x < y \Rightarrow \exists z \in \mathbb{Q} \mid x < z < y$
- 4. $(\forall x \in \mathbb{R} \setminus \mathbb{Q}) (\forall y \in \mathbb{R} \setminus \mathbb{Q}) x < y \Rightarrow \exists z \in \mathbb{R} \setminus \mathbb{Q} \mid x < z < y$
- 5. $\forall n \in \mathbb{N}, n \geq 3(n \text{ impair } \Rightarrow \sqrt{n} \in \mathbb{R} \setminus \mathbb{Q})$

Exercice 18. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante vérifiant :

$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x+y) = f(x) + f(y)$.

On veut montrer que f est une homothétie, *i.e.* il existe un réel λ tel que, pour tout réel x, $f(x) = \lambda x$. Pour cela, montrer que

- 1. $\forall n \in \mathbb{N} , f(n) = n f(1) \text{ et } f(-n) = -n f(1).$
- 2. $\forall x \in \mathbb{Q}$, f(q) = q f(1).
- 3. Conclure.