Rappellons que si $\gamma:[a,b] \longrightarrow \mathbb{R}^2$ est une courbe fermée du plan, parametrée par $\gamma(t)=(x(t),y(t))=\rho(t)e^{i\varphi(t)}$ avec $\gamma(a)=\gamma(b)$, et ne passant pas par O=(0,0), on appelle

- $-\text{ nombre de tours de }\gamma\text{ par rapport à }O:\quad N(\gamma,O):=\frac{1}{2\pi}\int_a^b\frac{xy'-yx'}{x^2+y^2}dt=\frac{1}{2\pi}\big(\theta(b)-\theta(a)\big)\in\mathbb{Z}\,;$
- indice de rotation de γ : $Ind(\gamma) := N(\gamma', O) = \frac{1}{2\pi} \int_{a}^{b} \frac{x'y'' y'x''}{x'^2 + y'^2} dt = -\frac{1}{2\pi} \int_{a}^{b} k_{\gamma}^{alg}(t) |\gamma'(t)| dt$.

Hypothèse: dans les exercices suivants sur le nombre de tours et l'indice, supposons que $\gamma:[a,b]\to\mathbb{R}^2$ soit une courbe C^1 fermée, avec $\gamma(a)=\gamma(b)$, et ne passant pas par O=(0,0).

Exercice 1 1. Montrer que le nombre de tours de γ par rapport à O est donné par

$$N(\gamma,O) = \frac{1}{2\pi} \int_a^b \frac{\gamma(t) \wedge \gamma'(t)}{|\gamma(t)|^2} \ dt.$$

2. Interprétation complexe. En identifiant $\mathbb{R}^2 = \mathbb{C}$, on considère γ comme une courbe à valeurs complexes. Montrer que

$$N(\gamma, O) = \frac{1}{2\pi i} \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt.$$

Demontrer la formule de Cauchy suivante :

Théorème de Cauchy. Soit $f: D \longrightarrow \mathbb{C}$ une fonction holomorphe, $a \in D$ et $\gamma: \mathbb{S}^1 \longrightarrow D \setminus \{a\}$ une courbe fermée dans D, ne passant pas par a et homotope à un point. Alors

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} \ dz = f(a) \ N(\gamma, a).$$

Exercice 2 1. Montrer que $N(-\gamma, O) = N(\gamma, O)$.

2. Montrer que le nombre de tours d'une courbe γ de \mathbb{R}^2 par rapport à l'origine O = (0,0) ne change pas si on fait varier γ de manière continue sans passer par O.

Plus précisement, soit $\gamma:[a,b]\times[0,1]\longrightarrow\mathbb{R}^2$ une application continue que l'on interprète comme famille continue de courbes $\gamma_u:[a,b]\longrightarrow\mathbb{R}^2$ pour tout $u\in[0,1]:\gamma_u(t)=\gamma(t,u)$. Supposons que $\gamma_u(t)\neq O=(0,0)$ pour tout $u\in[0,1]$ et tout $t\in[a,b]$, et supposons que $\gamma_u(a)=\gamma_u(b)$ pour tout $u\in[0,1]$. Montrer que $N(\gamma_1,O)=N(\gamma_0,O)$.

Exercice 3 1. Soit $\gamma(t) = (x(t), y(t))$ une courbe plane C^1 fermée, ne passant pas par (0,0). Supposons que γ intersecte le demi-axe y=0, x>0 un nombre fini de fois, et que sa tangente en tout point d'intersection soit differente de la droite y=0 (autrement dit, si y(t)=0 alors $y'(t)\neq 0$).

Soit n_+ (resp. n_-) le nombre d'intersection où y'(t) > 0 (resp. y'(t) < 0). Montrer que $N(\gamma, O) = n_+ - n_-$.

2. Calculer l'indice de la courbe $\gamma(t) = (\sin 2t, \cos 3t)$ avec $t \in [0, 2\pi]$.

Exercise 4 1. Soient $\alpha, \beta : [a, b] \longrightarrow \mathbb{R}^2$ deux courbes C^1 telles que $\alpha(a) = \alpha(b)$ et $\beta(a) = \beta(b)$.

- (a) Supposons qu'il existe un $c \in \mathbb{R}$ tel que l'angle compri entre $\alpha(t)$ et $\beta(t)$ ne soit jamais égal à $c \mod(2\pi)$. Montrer que $N(\alpha, O) = N(\beta, O)$.
- (b) Supposons que $|\beta(t)| < |\alpha(t)|$ pour tout $t \in [a, b]$. Montrer que $N(\alpha + \beta, O) = N(\alpha, O)$.
- 2. Pour tout $n \in \mathbb{N}$, soit $\gamma_n(t) = (2\cos t + \cos(nt), 2\sin t + \sin(nt))$, avec $0 \le t \le 2\pi$.
 - (a) Dessiner la courbe γ_4 .
 - (b) Calculer le nombre de tours de γ_n par rapport au point (0,0).
 - (c) Calculer l'indice de γ_n .