FICHE TD 4 - ESPACES TANGENTS ET EXTREMA LIÉS

Exercice 1. Soit $\mathbb{S}^1 \subset \mathbb{R}^2$ le cercle unitaire. Montrer que le *n*-tore

$$T^n := \underbrace{\mathbb{S}^1 \times \cdots \times \mathbb{S}^1}_{n}$$

est une sous-variété lisse de dimension n de \mathbb{R}^{2n} .

Exercice 2. Soit $S \subset \mathbb{R}^n$ une sous-variété de dimension k. L'espace tangent à S en un point $p \in S$ est l'ensemble des vecteurs tangents en p aux courbes de S passant par p, i.e. l'ensemble

$$T_pS = \{v \in \mathbb{R}^n \mid \exists \text{ courbe paramétrée } \gamma:] - \varepsilon, \varepsilon[\to S \text{ avec } \gamma(0) = p \text{ et } \gamma'(0) = v \}.$$

(1) Supposons que localement, autour de p, la sous-variété S soit donné par une paramétrisation locale f, c'est-à-dire qu'il existe un voisinage ouvert $U \subset \mathbb{R}^n$ de p, un ouvert $V \subset \mathbb{R}^k$ et un plongement $f: V \to U$ de classe C^1 tel que $f(V) = S \cap U$. Montrer que

$$T_p S = \operatorname{Im} df_x,$$

où $x = f^{-1}(p) \in V$. Déduire que T_pS est un espace vectoriel de dimension k.

(2) Supposons que localement, autour de p, la sous-variété S soit le lieu des zéros d'une application F, c'est-à-dire qu'il existe un voisinage ouvert $U \subset \mathbb{R}^n$ de p et une application $F: U \to \mathbb{R}^{n-k}$ de classe C^1 qui a 0 comme valeur regulière et telle que $F^{-1}(0) = S \cap U$. Montrer que

$$T_p S = \ker dF_p.$$

Exercice 3. Soit $S \subset \mathbb{R}^n$ une sous-variété de dimension k. Le fibré tangent de S est l'ensemble de tous les vecteurs tangents à S, i.e. l'ensemble

$$TS = \{(p, v) \in \mathbb{R}^n \times \mathbb{R}^n \mid p \in S, \ v \in T_pS\}.$$

Montrer que si $S = F^{-1}(0)$ est le lieu des zéros d'une submersion $F : \mathbb{R}^n \to \mathbb{R}^{n-k}$, alors TS est une sous-variété de dimension 2k de \mathbb{R}^{2n} .

Exercice 4. Soient $\mathbb{S}^2 \subset \mathbb{R}^3$ la sphère unité et SO(3) le groupe spécial orthogonal.

(1) Soit $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 . Montrer que, pour tout i = 1, 2, 3, l'application

$$SO(3) \to \mathbb{S}^2, \ A \mapsto Ae_i$$

est bien définie et lisse, puis montrer que $\{Ae_1, Ae_2, Ae_3\}$ est une base orthonormale de \mathbb{R}^3 .

(2) Le fibré unitaire tangent de \mathbb{S}^2 est le sous-ensemble des vecteurs tangent à S^2 qui ont longueur 1, i.e. l'ensemble

$$S(T\mathbb{S}^2) = \{(p, v) \in T\mathbb{S}^2 \mid ||v|| = 1\}.$$

1

Montrer que $S(T\mathbb{S}^2)$ est une sous-variété lisse de dimension 3 dans \mathbb{R}^6 .

(3) Montrer que $S(T\mathbb{S}^2)$ est difféomorphe à SO(3).

Exercice 5. Soient $S \subset \mathbb{R}^n$ une sous-variété C^1 de dimension k et $g: S \to \mathbb{R}$ une fonction.

- (1) La fonction g est **de classe** C^1 si autour de tout point $p \in S$ il existe une paramétrisation locale $f: V \subset \mathbb{R}^k \to U \subset \mathbb{R}^n$ de S de classe C^1 et telle que la composée $g \circ f: V \to \mathbb{R}$ est de classe C^1 . Montrer que localement (autour de tout point p), si g est de classe C^1 par rapport à une paramétrisation locale alors elle l'est par rapport à toute paramétrisation locale.
- (2) Un point $p \in S$ est un **point critique de** g s'il existe une paramétrisation locale $f: V \to U$ de S autour de p tel que tous les dérivées partielles de $g \circ f$ s'annullent en $x = f^{-1}(p)$. Montrer que si p est un point critique de g par rapport à une paramétrisation locale, alors il l'est par rapport à toute paramétrisation locale.
- (3) Montrer que $p \in S$ est un point critique de g si et seulement si la différentielle $dg_p : \mathbb{R}^n \to \mathbb{R}$ s'annulle sur T_pS .

Exercice 6. Déterminer le minimum et/ou maximum sur la sphère \mathbb{S}^2 des fonctions $g: \mathbb{R}^3 \to \mathbb{R}$ suivantes :

1)
$$g(x, y, z) = x + \frac{1}{2}y^2 + \frac{1}{3}z^3$$

2)
$$g(x, y, z) = x + y^2 + z^3$$

3)
$$g(x, y, z) = \operatorname{dist}((x, y, z), (1, 2, 3))^{2} = (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}.$$