FICHE TD 5 - VARIÉTÉS

Exercice 1. Soient M et M' deux variétés différentielles de dimension n et n' (de classe C^r avec $r \in \mathbb{N}$ ou $r = \infty$). Montrer que $M \times M'$ est une variété différentielle de dimension n + n' (de classe C^r).

Exercice 2. (1) Le cercle unité \mathbb{S}^1 est une variété lisse car c'est une sous-variété lisse de \mathbb{R}^2 . Montrer que les deux cartes

$$\pi_N: U_N = \mathbb{S}^1 \setminus \{(0,1)\} \to \mathbb{R}, \ (p_1, p_2) \mapsto x = \frac{p_1}{1 - p_2}$$

 $\pi_S: U_S = \mathbb{S}^1 \setminus \{(0,-1)\} \to \mathbb{R}, \ (p_1, p_2) \mapsto y = \frac{p_1}{1 + p_2}$

forment un atlas pour sa structure différentielle.

- (2) Donner un atlas de cartes locales pour le cylindre $\mathbb{S}^1 \times \mathbb{R}$.
- (3) Donner un atlas de cartes locales pour le tore $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$, puis montrer qu'il est difféomorphe au tore de révolution

$$\mathbb{T}^2_{rev} = \left\{ f(\varphi,\theta) = R^{Oz}_{\varphi} \gamma(\theta) \mid \gamma(\theta) = \left(2 + \cos\theta, 0, \sin\theta\right), \ \varphi, \theta \in \left[0, 2\pi\right[\right\}$$

qui est une sous-variété de \mathbb{R}^3 .

Exercice 3. Une variété différentielle de dimension n est un espace topologique localement homéomorphe à des ouverts de \mathbb{R}^n (par les cartes locales), avec structure différentielle définie par les changements de cartes. Donner un exemple de variété différentielle qui n'est pas une sous-variété, c'est-à-dire que la structure différentielle n'est pas celle de l'espace ambient.

Exercice 4. Soient M et M' deux variétés C^r -différentielles de dimension n et n' (avec $r \in \mathbb{N}$ ou $r = \infty$). On rappelle qu'une application $f: M \to M'$ est **de classe** C^r si pour tout $p \in M$ il existe une carte locale (U, φ) de M autour de p et une carte locale (U', φ') de M' autour de f(p) telles que $\varphi' \circ f \circ \varphi^{-1} : \varphi(U) \subset \mathbb{R}^n \to \varphi'(U') \subset \mathbb{R}^{n'}$ est de classe C^r .

Montrer que si f est C^r avec un choix de cartes locales alors elle l'est par rapport à tout autre choix de cartes locales.

Exercice 5. Soit \mathbb{S}^n la sphère unité de \mathbb{R}^{n+1} avec la topologie induite.

(1) Soient N = (0, ..., 1) le pôle nord, S = (0, ..., -1) le pôle sud et $E = \{(y_1, ..., y_{n+1}) \in \mathbb{R}^{n+1} \mid y_{n+1} = 0\} \cong \mathbb{R}^n$ l'hyperplan de \mathbb{R}^{n+1} contenant l'équateur. On appelle **projections stéreographiques** du pôle nord et du pôle sud sur E les deux applications

$$\pi_N: \mathbb{S}^n \setminus \{N\} \to E, \ p \mapsto \pi_N(p) = \text{point de la droite passant par } N \text{ et } p \text{ appartenant à } E$$

 $\pi_S: \mathbb{S}^n \setminus \{S\} \to E, \ p \mapsto \pi_S(p) = \text{point de la droite passant par } S \text{ et } p \text{ appartenant à } E.$

Montrer que la sphère \mathbb{S}^n est une variété différentielle lisse avec deux cartes locales données par les projections stéréographiques π_N et π_S .

(2) Montrer que l'inclusion canonique $i: \mathbb{S}^n \to \mathbb{R}^{n+1}$ est lisse. Montrer que si M est une variété C^r différentielle, une application $f: M \to \mathbb{S}^n$ est de classe C^r si et seulement si $i \circ f$ l'est. Déduire
qu'il existe une inclusion lisse de \mathbb{S}^p dans \mathbb{S}^{p+n} pour tout $p \ge 1$.

1

Exercice 6. Soit M une variété différentielle de dimension n et soit G un groupe discret qui agit sur M par difféomorphismes, avec une action **libre** (i.e. sans points fixes) et **propre** (i.e. pour tous compacts $K_1, K_2 \subset M$ l'ensemble $\{g \in G \mid gK_1 \cap K_2\}$ est fini). Notons $[x] = \{gx \in M \mid g \in G\}$ l'**orbite** de $x \in M$ par l'action de G et $M/G = \{[x] \mid x \in M\}$ l'**espace des orbites**.

Montrer que M/G est une variété de dimension n et que la projection $\pi:M\to M/G$ est un difféomorphisme local.

Exercice 7. (1) Montrer que \mathbb{S}^1 est difféomorphe au quotient \mathbb{R}/\mathbb{Z} , où \mathbb{Z} agit sur \mathbb{R} par l'action $T_n(t) = t + n$, pour tout $n \in \mathbb{Z}$ et $t \in \mathbb{R}$.

- (2) On peut définir la **bande de Möbius** comme le quotient $(\mathbb{S}^1 \times] \frac{1}{2}, \frac{1}{2}[)/\mathbb{Z}$, où \mathbb{Z} agit sur le cylindre $\mathbb{S}^1 \times] \frac{1}{2}, \frac{1}{2}[$ par l'action $T_m([t], u) = ([t + \frac{m}{2}], (-1)^m u)$, pour tout $m \in \mathbb{Z}$, $[t] \in \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ et $u \in] \frac{1}{2}, \frac{1}{2}[$. Montrer que la bande de Möbius est une variété lisse.
- (3) On peut aussi définir la bande de Möbius comme la sous-variété de \mathbb{R}^3 donnée par (fermeture de) paramétrisation :

$$M = \left\{ f(\theta, u) = \alpha(\theta) + \frac{u}{2} \beta(\theta) \mid \theta \in [0, 2\pi], \ u \in \left] -\frac{1}{2}, \frac{1}{2} \right[\right\}$$

οù

$$\alpha(\theta) = (\cos \theta, \sin \theta, 0)$$

$$\beta(\theta) = (\cos(\theta/2)\cos \theta, \cos(\theta/2)\sin \theta, \sin(\theta/2)).$$

Dessiner M puis montrer qu'elle est difféomorphe à la bande de Möbius $(\mathbb{S}^1 \times]-\frac{1}{2},\frac{1}{2}[)/\mathbb{Z}$.