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Chapter 1

Introduction

Quantum field theory is an important theory in physics, with a wide range
of applications and an impressive agreement with experiment. Despite this
success, the mathematical foundations of this theory are still under investiga-
tion and many fundamental questions remain open. The rapid development
of the field makes it difficult to find textbooks which are up to date with all
the recent advances, especially if one looks for a mathematically rigorous ap-
proach. It is a common misconception that working in with QFT necessarily
implies doing something “not-well defined”, while in fact most of the formal
manipulations presented in the physics literature can be made completely
rigorous.

For me quantum field theory is a beautiful bizarre world full of won-
ders suspended somewhere in between mathematics and physics. It charms
physicists by providing results that agree with experiments with incredible
precision. It lures mathematicians seeking to explore the land of QFT and
get a closer look at beautiful mathematical structures that inhabit it. And
yet, after more than 50 years of research, we do not fully understand what
QFT really is and what wonders it is hiding from us deep in its conceptual
roots.

As both a physicist and a mathematician I am fascinated by the richness
of structures that one can encounter in the QFT land and from my first
visit I have decided that I do not want to leave it ever again. So what is
this book about? Well, maybe first I should explain what it isn’t about. . . It
is far from being a complete account of what has been done in the QFT
research (this would have taken multiple volumes!). It also doesn’t touch the
problem of non-perturbative construction of models of interacting quantum
field theories, which at the moment remains open.

You can think of this book as a mathematician’s diary from a journey
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8 CHAPTER 1. INTRODUCTION

into an exotic land. As opposed to some other textbooks on the subject
I will not use the excuse that “physicists often do something which is not
well defined”, so as mathematicians we don’t need to bother and just turn
around for a while, until it’s over. Instead, I will jump straight into the
lion’s den and will try to make mathematical sense of perturbative QFT all
the way from the initial definition of the model to the interpretation of the
results. This is not always easy and sometimes I will have to bring into the
story results from several fields of mathematics at once. I hope this will
not discourage you from exploration of the QFT wonderland. After all, its
beauty lies in the fact that it is so diverse and full of surprises... So, come
along! Our journey starts here.



Chapter 2

Algebraic approach to
quantum theory

2.1 Algebraic quantum mechanics

Before entering the realm of quantum theory of fields, let’s have a look
at something simpler and better understood, namely quantum mechanics
(QM). To prepare the ground for what follows, we will present an abstract
formulation of QM and discuss how does it relate to the more standard
Dirac-von Neumann axioms [Dir30, vN32]. The exposition presented in this
chapter is based on [BF09b, Mor13, Fre13, Str08].

2.1.1 Observables and states

Let us start with recalling some basic definitions from functional analysis.
For more information on operator algebras see [RS80, BR87, BR97, Kad83].

Definition 2.1. An algebra A over the field K = R or C is a vector a K-
vector space with an operation · : A × A → A called the product with the
following properties:

1. (A ·B) · C = A · (B · C) , ∀A,B,C ∈ A (associativity),

2. A · (B + C) = A ·B +A · C, (B + C) ·A = B ·A+ C ·A,
α(A ·B) = (αA) ·B = A · (αB), for all A,B,C ∈ A, α ∈ K (distribu-
tivity).

We will usually denote the algebra product · simply by juxtaposition, i.e.
A ·B ≡ AB.

9



10 CHAPTER 2. ALGEBRAIC APPROACH TO QUANTUM THEORY

Definition 2.2. An algebra A is said to have a unit (i.e. A is unital) if
there exists an element 1 ∈ A such that 1A = A1 = A, for all A ∈ A.

Definition 2.3. An involutive complex algebra A is an algebra over the field
of complex numbers, together with a map, ∗ : A → A, called an involution.
The image of an element A of A under the involution is written A∗. Involu-
tion is required to have the following properties:

1. for all A,B ∈ A: (A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗,

2. for every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,

3. for all A ∈ A: (A∗)∗ = A.

Up to now all the properties we have considered are purely algebraic. In
order to quantify the notion of distance between the elements of the algebra
we need some topology. This can be introduced for example by means of a
norm.

Definition 2.4. A complex normed space is a vector space X over C,
equipped with a map ‖.‖ : X→ R, which satisfies:

1. ‖λA‖ = |λ|‖A‖ (scaling),

2. ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality also called subadditivity),

3. If ‖A‖ = 0, then A is the zero vector (separates points).

If A is equipped with a norm, we can ask for the continuity of the al-
gebraic relations with respect to the norm topology and for some notion of
completeness. This leads to the following definitions.

Definition 2.5. A normed algebra A is a normed vector space whose norm
‖.‖ satisfies

‖AB‖ ≤ ‖A‖‖B‖ .

If A is unital, then it is a normed unital algebra if in addition ‖1‖ = 1.

Definition 2.6. A Banach space is a normed vector space equipped with the
norm-induced topology, which is complete with respect to this topology. A
Banach (unital) algebra is a Banach space and a normed (unital) algebra
with respect to the same norm.

A particularly important class of Banach algebras with involution is dis-
tinguished by the C∗-property. We will see in this chapter that such algebras
can be used to describe spaces of observables in quantum systems.
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Definition 2.7. A C∗-algebra is a Banach involutive algebra (Banach al-
gebra with involution satisfying ‖A∗‖ = ‖A‖), such that the norm has the
C∗-property:

‖A∗A‖ = ‖A‖‖A∗‖, ∀A ∈ A .

How come that such a mathematical structure is suitable for quantum
physics? First note that in order to describe a physical system we need to
specify a collection of physical quantities, which we want to measure (we
call them observables) and a collection of states in which the system can be
prepared. Now we want to deduce what kind of mathematical structure is
suitable to describe observable and states. Operationally, each observable
corresponds to some measurement apparatus, which measures given proper-
ties of the system. An example of such an apparatus is a particle detector
localized in some region of space. Next, one considers operations that can
be performed on observables. Scaling of the measurement apparatus cor-
responds to multiplying the corresponding observable A by a real number.
One can also consider other functions of the observables, for example An is
interpreted as measuring the observable A and taking the n-th power of the
result.

Now we discuss the notion of states. We need to assume that we are able
to repeat experiments, so that we can measure given observable repeatedly in
the same state (i.e. for the same preparation of the system). This statistical
interpretation presupposes that each experiment comes with a protocol that
allows to obtain the same initial condition each time it is repeated. Under
this assumption, a state ω associates to an observable A a real number
ω(A) obtained by averaging the results of measurements of A for the system
prepared to be in the state ω. It is natural to assume that ω(λA) = λω(A)
for λ ∈ R+ (scaling), as well as ω(An) = (ω(A))n. Let 1 be the observable,
which always takes value 1. For such observable we require that ω(1) = 1.
One can also deduce the positivity of states from the fact that the average
of positive numbers is positive, so ω(A2) ≥ 0.

If we assume that physical properties of observables can be measured
only by looking at expectation values in various states of the system, it is
natural to identify the observables, which give the same expectation values in
all the states. Let now A be the space of equivalence classes of observables,
where A ∼ B if ω(A) = ω(B) for all states ω of the system. A notion of
a norm can be introduced by assigning to each observable A ∈ A a finite
positive number defined by

‖A‖ .= sup
ω
|ω(A)|
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The operational properties of states imply that ‖λA‖ = |λ|‖A‖ for λ ∈ R and
‖A‖ = 0 implies that A = 0 (states separate observables). It also folllows
that ‖A2‖ = ‖A‖2, so we are getting close to the notion of a C∗-algebra.
What is still missing is the linear structure on A and the product. Let us
start with the linear structure. Operationally “A+B” has to satisfy

ω(A+B) = ω(A) + ω(B) ,

for all states of the system. It is, however, not clear if an element “A + B”
exists in A, so one needs to embed the initial space of observables in a larger
structure in such a way that states will remain to be positive linear func-
tionals on this enlarged space. This leads to the notion of Jordan algebras
[Jor33, JvNW34] and finally C∗-algebras, introduced in [Gel43] and discussed
in [Seg47a, Seg47b] in the context of quantum mechanics.

We can summarize the basic axioms in the algebraic approach to QM as
follows:

1. A physical system is defined by its unital C∗-algebra A.

2. States are identified with positive, normalized linear functionals on A,
i.e. ω(A∗A) ≥ 0 for all A ∈ A and ω(1) = 1.

Note that on a unital C∗ algebra a positive, normalized linear functional is
automatically continuous with respect to the topology induced by the C∗-
norm. More generally, we can define states also on involutive topological
algebras.

Definition 2.8. A state on an involutive algebra A is a linear functional ω,
such that:

ω(A∗A) ≥ 0, ω(1) = 1 .

Observables are self-adjoint elements of A and possible measurement re-
sults for an observable A are characterized by its spectrum σ(A). We recall
that an element A of a C∗-algebra is called self-adjoint if A∗ = A.

Definition 2.9. The spectrum spec(A) of A ∈ A is the set of all λ ∈ C such
that A− λ1 has no inverse in A.

A standard result from functional analysis states that a spectrum of self-
adjoint element is a subset of the real line and this agrees with the physical
intuition, as outcomes of measurements have to be real.
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2.1.2 Hilbert space representations

Having defined the abstract setup we can proceed to a more concrete descrip-
tion that provides a way to recover the Dirac-von Neumann axioms. The
crucial observation is that abstract elements of an involutive algebra A can
be realized as operators on some Hilbert space by a choice of a representation.
First let us recall the definition of a Hilbert space.

Definition 2.10. Let H be a complex vector space. A map 〈., .〉 : H×H→ C
is a Hermitian inner product if

1. 〈u, v〉 = 〈u, v〉, ∀u, v ∈ H,

2. 〈u, αv + βw〉 = α 〈u, v〉+ β 〈u,w〉 (linear in the second argument),

3. 〈v, v〉 ≥ 0 where the case of equality holds precisely when v = 0 (positive
definite).

Properties 1 and 2 imply that 〈., .〉 is antilinear in the first argument.
One can define a norm on a Hilbert space H by setting

‖v‖ .=
√
〈v, v〉 .

Definition 2.11. A Hilbert space H is a complex vector space with a Her-
mitian inner product 〈., .〉 such that the norm induced by this product makes
H into a Banach space.

In physics separable Hilbert spaces play an important role.

Definition 2.12. A Hilbert space is separable if it admits a countable dense
subset.

In fact a Hilbert space is separable if it is either finite dimensional or has
a countable basis. We are now ready to define the notion of linear operators,
which is important in the context of C∗-algebras and physical observables.

Definition 2.13. An operator A on a Hilbert space H is a linear map from
a subspace D ⊂ H into H. In particular, if D = H and A satisfies ||A|| .=
sup||x||=1{||Ax||} <∞, it is called bounded.

An important class of bounded operators is provided by the unitary ones.

Definition 2.14. A bounded linear operator U : H→ H on a Hilbert space
H is called a unitary operator if it satisfies U∗U = UU∗ = 1.
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Note that the space B(H) of bounded linear operators on a Hilbert space
H forms a C∗-algebra. We will see later on that one can argue the other
way and realize any abstract C∗-algebra as the algebra of bounded operators
on some H. If A is a bounded operator on a Hilbert space then the self-
adjointness is the same as hermiticity, i.e. is the condition that A∗ = A. In
general this is not sufficient.

Definition 2.15. An operator A on a Hilbert space H with a dense domain
D(A) ⊂ H is called symmetric if for any vectors u, v ∈ D(A) we have
〈u,Av〉 = 〈Au, v〉. This implies that D(A) ⊆ D(A∗). A symmetric operator
A is self-adjoint if in addition D(A∗) ⊂ D(A).

Definition 2.16. Let A be an operator on a Hilbert space H with a dense
domain D(A) ⊂ H. A self-adjoint operator A′ is called a self-adjoint
extension of A if D(A) ⊆ D(A) and if Av = Av for any v ∈ D(A).

A is called essentially self-adjoint if it admits a unique self-adjoint extension.

Abstract elements of an involutive algebra A are realized as operators on
some Hilbert space by a choice of a representation.

Definition 2.17. A representation of an involutive unital algebra A is a
unital ∗-homomorphism π into the algebra of linear operators on a dense
subspace D of a Hilbert space H. In particular, a representation of a
C∗-algebra A is a unital ∗-homomorphism π : A→ B(H).

A representation π is called faithfull if Kerπ = {0}. It is called irreducible
if there are no non-trivial subspaces invariant under π(A).

Definition 2.18. Two representations (π1,H1) and (π2,H2) of a C∗-algebra
A are called unitarily equivalent, if Uπ1(A) = π2(A)U holds for all A ∈ A
with some unitary map U : H1 → H2.

In Dirac-von Neumann axioms, one postulates that physical observables
are self-adjoint operators acting on a Hilbert space. The connection between
the algebraic formulation and the Hilbert space picture is provided by means
of the famous GNS (Gelfand-Naimark-Segal) theorem.

Theorem 2.1. Let ω be a state on the involutive unital algebra A. Then
there exists a representation π of the algebra by linear operators on a dense
subspace D of some Hilbert space H and a unit vector Ω ∈ D, such that

ω(A) = (Ω, π(A)Ω) ,
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and D = {π(A)Ω, A ∈ A}.

Proof. First we introduce a scalar product A on the algebra using the state
ω:

〈A,B〉 .= ω(A∗B) .

Linearity for the right and antilinearity for the left argument are easy to
prove. Hermiticity 〈A,B〉 = 〈B,A〉 follows from the positivity of ω and
the fact that we can write A∗B and B∗A as linear combinations of positive
elements:

2(A∗B +B∗A) = (A+B)∗(A+B)− (A−B)∗(A−B) ,

2(A∗B −B∗A) = −i(A+ iB)∗(A+ iB) + i(A− iB)∗(A− iB) .

From the positivity of ω also follows that the scalar product is positive
semidefinite, i.e. 〈A,A〉 ≥ 0 for all A ∈ A. We now study the set

N
.
= {A ∈ A|ω(A∗A) = 0} .

We show thatN is a left ideal of A. Because of the Cauchy-Schwarz inequality
N is a subspace of A. The same inequality implies that for A ∈ N and B ∈ A
we obtain

ω((BA)∗BA) = ω(A∗B∗BA) = 〈B∗BA,A〉 ≤
√
〈B∗BA,B∗BA〉

√
〈A,A〉 = 0 ,

hence BA ∈ N. Let us define D as the quotient A/N. Clearly, the scalar
product is positive definite on D and we complete it to obtain a Hilbert space
H. The representation π is induced by the operation of left multiplication
on A, i.e.

π(A)(B + N)
.
= AB + N ,

and we set Ω = 1+N. If A is a C*-algebra, one can show that the operators
π(A) are bounded, hence admitting unique continuous extensions to bounded
operators on H.

We now show that the construction is unique up to unitary equivalence.
Let (π′,D′,H′,Ω′) be another quadruple satisfying the conditions of the
theorem. Then we define an operator U : D→ D′ by

Uπ(A)Ω
.
= π′(A)Ω′.

U is well defined, since π(A)Ω = 0 if and only if ω(A∗A) = 0, but then
also π′(A)Ω′ = 0. Moreover U preserves the scalar product and is invertible,
hence it has a unique extension to a unitary operator from H to H′. It
follows that π and π′ are unitarily equivalent.
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The representation π is in general not irreducible, i.e. there may exist
a nontrivial closed invariant subspace. In this case, the state ω is not pure,
which means that it is a convex combination of other states,

ω = λω1 + (1− λ)ω2 , 0 < λ < 1 , ω1 6= ω2 .

We have seen that the algebraic formulation of QM allows to characterize
a physical system purely in terms of its observable C∗-algebra A and states
on it. The Hilbert space representations can be then obtained from states by
means of the GNS theorem. One can also obtain the probabilistic interpreta-
tion of QM as follows. Given an observable A and a state ω on a C*-algebra
A we reconstruct the full probability distribution µA,ω of measured values of
A in the state ω from its moments, i.e. the expectation values of powers of
A, ∫

λndµA,ω(λ) = ω(An) .

We can now apply these methods to some simple physical situations. The
first example is related to the cannonical commutation relations.

Example 2.1. Let L be a real vector space with a symplectic form σ, i.e. a
bilinear form σ on L which is antisymmetric,

σ(x, y) = −σ(y, x) ,

and nondegenerate,

σ(x, y) = 0 ∀ y ∈ L implies x = 0 .

We consider the unital *-algebra W(L, σ) over C generated by abstract sym-
bols W (x) (the Weyl generators), satisfying the relation

W (x)W (y) = eiσ(x,y)W (x+ y) .

The involution is defined by

W (x)∗ = W (−x)

and the unit is 1 = W (0).
We define the norm on W(L, σ) by

||
n∑
i=1

λiW (xi)||1 =

n∑
i=1

|λi| .

This norm satisfies the condition ||AB||1 ≤ ||A||1||B||1 of an algebra norm.
Moreover, the involution is isometric, ||A∗||1 = ||A||1 and we obtain an
involutive normed algebra W(L, σ).
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After [Mor13] we recall known facts about the existence of the unique
C∗-norm on W(L, σ).

Proposition 2.1. The following hold true:

1. There exists a norm ‖.‖0 on W(L, σ) satisfying the C∗-property,

2. In a C∗-norm, Weyl generators are unitaries, i.e. satisfy

W (x)∗W (x) = 1 = W (x)W (x)∗

for all x ∈ L.

3. If we set

‖A‖c
.
= sup{‖A‖0 , such that ‖.‖0 : W(L, σ)→ [0,∞) is a C∗-norm} ,

then ‖.‖c is a C∗-norm.

4. Let W(L, σ) be the completion of W(L, σ) with respect to ‖.‖c, then
W(L, σ) is a C∗-algebra, associated to (L, σ) uniquely up to isomor-
phism.

5. W(L, σ) is simple, i.e. there are no non-trivial closed, *-invariant two-
sided ideals.

Proof. For proof see [BGP07] as well as [Mor13]. To see that the supremum
defining ‖.‖c is finite, note that generators W (x) are unitaries with respect
to every C∗-norm, so if A =

∑
i aiW (xi), then ‖A‖ ≤

∑
i |ai| = ‖A‖1, which

provides the upper bound for the supremum.

Let’s consider a particular example of a symplectic space (L, σ), which
realizes cannonical commutation relations for a free quantum particle in d
dimensional space. In this case L = R2d and we write elements of L in the
form x = (α,β), where α = (α1, . . . , αd),β = (β1, . . . , βd) ∈ Rd. We define

σ
(
(α,β), (α′,β′)

)
= −1

2
~(α · β′ −α′ · β) ,

where · is the scalar product on Rd. If the generators of the resulting Weyl
C∗-algebra W(L, σ) are represented by operators on a Hilbert space in such
a way that they depend strongly continuously1 on the parameters α,β, then

1A net {Tα} of operators on a Hilbert space H converges strongly to an operator T if
and only if ||Tαx− Tx|| → 0 for all x ∈ H.
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such a representation is called regular. It was proven by von Neumann that
all the regular reducible representations of the resulting Wayl algebra are
unitary equivalent. Another theorem important in this context is due to
Stone [Sto30]:

Theorem 2.2. Let (Ut)t∈R be a strongly continuous one-parameter unitary
group. Then there exists a unique (not necessarily bounded) self-adjoint op-
erator A such that

Ut = eitA , ∀t ∈ R .
Conversely, if A is a (not necessarily bounded) self-adjoint operator on a
Hilbert space H, then the one-parameter family (Ut)t∈R of unitary operators
defined by means of the Spectral Theorem for Self-Adjoint Operators (see for
example chapter 9 [Mor13]) as

t 7→ Ut := eitA

is strongly continuous.

For W(L, σ) this implies that there exist self-adjoint generators
q1, . . . , qd, p1, . . . , pd of 1-parameter groups of unitary operators

W (0, . . . , αk, . . . , 0) = eiαkp
k
, W (0, . . . , βk, . . . , 0) = eiβkq

k
,

We denote p .
= (p1, . . . , pd), q .

= (q1, . . . , pq). Generators p and q satisfy the
canonical commutation relations

[qk, pj ] = δkj , [qk, qj ] = 0 , [pk, pj ] = 0

and one can write an arbitrary generator W (α, β) in the form

W (α,β) = e−
i~α·β

2 eiα·peiβ·q = e
i~α·β

2 eiβ·qeiα·p .

The Schrödinger representation of this Weyl algebra is defined on the Hilbert
space of square intebrable functions L2(Rd) with

(π(W (α,β))Φ) (X) = e
i~α·β

2 eiβ·XΦ(X + ~α) , (2.1)

for Φ ∈ L2(Rd). As mentioned before, all the regular irreducible representa-
tions are unitary equivalent to this one. If one does not require continuity
there are many more representations. In quantum field theory the uniqueness
results do not apply, and one has to deal with a huge class of inequivalent
representations. Note that the construction of the Weyl algebra makes sense
also for L infinite dimensional, so can be applied in the context of field theory.

A particularly interesting class of states on W(L, σ) is provided by quasi-
free states.
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Definition 2.19. A state ω on W(L, σ) is called quasi-free if there exists
η : L× L→ R, a symmetric form such that

ω (W (x)) = e−
1
2
η(x,x) .

The form η is then called covariance of the quasi-free state ω.

The following theorem provides a way to easily find quasi-free states.

Theorem 2.3. Let η : L× L→ R be a symmetric form. The following are
equivalent:

1. ηC + i
2σC ≥ 0 on LC, the complexification of L, where ηC, σC : LC ×

LC → C are canonical sesquilinear extensions of η, σ.

2. |σ(x1, x2)| ≤ 2
√
η(x1, x1)

√
η(x2, x2), for all x1, x2 ∈ L.

3. There exists a quasi-free state ωµ on W(L, σ) with covariance η.

Proof. For proof see for example [AS71, DG13a]

This result holds also if L is infinite dimensional and will be used later
in section 5.3. We define a complex scalar product on the complex vector
space LC by

〈x, y〉 = ηC(x, y) +
i

2
σC(x, y) . (2.2)

The GNS Hilbert space representation corresponding to ωµ turns out to be
the bosonic Fock space:

H =

∞⊕
n=0

(H⊗n1 )symm ; H1 = LC/Ker(〈., .〉)

The state ωµ is pure (i.e. the associated GNS representation is irreducible)
if and only if the map L → LC/Ker(〈., .〉) is surjective. The latter holds if
and only if and only if the pair (2η, σ) is Kähler.

Definition 2.20. A pair (2η, σ) consisting of a symmetric form 2η and
symplectic form σ on L is called Kähler if the ranges of the two coincide
Ran(2η) = Ran(2σ), 2η is positive definite and J .

= σ−12η satisfies J2 = −1
(i.e. J is an anti-involution).

If (2η, σ) is Kähler, then the quadruple (L, 2η, σ, J) is a Kähler space.
We will come back to this structure in the context of QFT in section 5.3.
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2.1.3 Dynamics and the interaction picture

If we want to model a physical system which evolves with time, we need
to introduce the notion of dynamics. A very detailed discussion of quantum
dynamics can be found in [BR87, BR97]. Here we only sketch the main ideas.
Let A be a C∗-algebra of observables and let At ∈ A be some observable
corresponding to the measurement apparatus A at time t 2. We postulate
that the algebra of observables A doesn’t change with time, so the assignment
t 7→ At can be described by a 1-paramter group of automorphisms αt, such
that At = αt(A) and we assume that αt is strongly continuous.

For a given state ω we consider the family of states that are related to
it by time-translations and it is natural to require some stability properties
from the GNS-associated representation πω. If πω is irreducible, this stability
requirement is realized as the condition that αt has to be implemented by
some unitary operator U(t), i.e.

πω(αt(A)) = U(t)−1πω(A)U(t), ∀A ∈ A . (2.3)

Now we apply Stone’s theorem 2.2 to deduce the existence of a self-adjoint
generator H, called the Hamiltonian and we write

U(t) = e−itH ∀t ∈ R .

By differentiating (2.3) we obtain the known evolution equation in the
Heisenberg picture,

d

dt
A(t) = i[H,A(t)] , (2.4)

where we have put A(t) = U(t)∗AU(t) and we have omitted the symbol πω.
To get the Schrödinger picture, we consider ψ ∈ D(H) a Hilbert space vector
in the domain of essential selfadjointness (see definition 2.16) of H, an define
ψS(t)

.
= U(t)ψ. We can now rewrite (2.4) in the form

i
d

dt
ψS(t) = HψS(t) . (2.5)

This is the time-evolution in the Schrödinger picture. If we want to construct
a model of a quantum dynamical system, we usually start with a Hamiltonian
H ∈ Hπ and solve (2.5) for some initial data ψS(0), within the domainD(H).
A solution to the initial value problem defines then the propagator U(t, 0),
i.e.

ψS(t) = U(t, 0)ψS(0) .

2As sharp localization is physically impossible, operationally we can think of At as the
average over some interval [t− ε, t+ ε] centered at t, for a fixed value of ε > 0.
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Note that the main difference between (2.4) and (2.5) is that in the
Heisenberg picture states remain stationary and operators evolve with time,
while in the Schrödinger picture it’s the other way round. Often solving the
initial value problem of the form (2.5) is very difficult and it is convenient
to split the Hamiltonian into two terms

H = H0 +Hint ,

where the propagator forH0 can be found relatively easily and we try to solve
the problem perturbatively. This point of view is something in between the
Heisenberg and the Schrödinger picture and we call it the interaction picture.
Hint is then called the interaction Hamiltonian. Let U0

.
= e−itH0 . In the

interaction picture the states are represented by

ψI(t) = U∗0ψS(t) = eitH0ψS(t) = eitH0e−itHψ ,

where ψS is a state in the Schrödinger piucture and ψ is a state in the
Heisenberg picture. Observables of the interaction picture evolve according
to

A(t) = U0(t)∗ASU0(t) ,

where AS denotes the Schrödinger picture observable. In particular

Hint = U0(t)∗HintU0(t)

for the interaction Hamiltonian Hint. Now the evolution equation (2.5) im-
plies that

i
d

dt
ψI = Hint ψI . (2.6)

Given initial data ψI(t0), we want to find the solution to this equations in
terms of a propagator UI(t, t0), so that

ψI(t) = UI(t, t0)ψI(t0) .

By definition we have

UI(t, t0) = eitH0e−i(t−t0)He−it0H0 ,

and from (2.6) follows that the propagator has to satisfy

i
d

dt
UI(t, t0) = Hint(t)UI(t, t0) , UI(t0, t0) = 1 . (2.7)



22 CHAPTER 2. ALGEBRAIC APPROACH TO QUANTUM THEORY

A formal solution to the above equation is then given by the Dyson series

UI(t, t0) = 1− i
∫ t

t0

Hint(t1)dt1 −
∫ t

t0

∫ t2

t0

Hint(t2)Hint(t1)dt1dt2 + · · ·+ =

= 1 +
∞∑
n=1

(−i)n
∫
· · ·
∫

t0<t1<···<tn<t

Hint(tn) . . . Hint(t1)dt1 . . . dtn . (2.8)

We can simplify the notation by introducing the time-ordering operator T
defined on operators A(t) and B(t) by

T (A(t)B(t′)) =

{
A(t)B(t′) , if t < t′

B(t′)A(t) , if t′ < t
. (2.9)

We can now rewrite the formula (2.8) as a time-ordered exponential, i.e.

UI(t, t0) = 1+T

[ ∞∑
n=1

(−i)n

n!

(∫ t

t0

Hint(t
′)dt′

)n]
= T

[
exp

(
−i
∫ t

t0

Hint(t
′)dt′

)]
.

(2.10)
We define the Møller operators S± as the strong limits of UI(t, t0) as t0
approaches ±∞, as long as these limits exists.

S±
.
= s -lim

t→±∞
UI(0, t) .

The scattering operator S (the S-matrix) is then defined by

S
.
= S∗+S− . (2.11)

We will use these ideas later on, in section 6.1 to construct perturbatively
QFT models.

2.2 Causality

After introducing basic notion from quantum mechanics, the next step to-
wards quantum field theory leads through spacetime geometry. Historically,
QFT was conceived as a framework, which allows to combine quantum me-
chanics with special relativity. The latter is based on concepts such as
Minkowski spacetime and causality. In fact, the algebraic approach to QFT
can be generalized beyond the Minkowski spacetime and one can apply it to
construct models on a wide class of Lorenzian manifolds. In this section we
will review some basic concepts from Lorentzian geometry that are relevant
for our framework.
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Definition 2.21. A spacetime is a pair M = (M, g), where M is a smooth
(4-dimensional) manifold (we assume it to be Hausdorff, paracompact, con-
nected) and g is a smooth Lorentzian metric, i.e. a smooth tensor field
g ∈ Γ(T ∗M ⊗ T ∗M), s.t. for every p ∈ M , gp is a symmetric non-
degenerate bilinear form. We require the metric g to be of the Lorentz signa-
ture (+,−,−,−).

Remark 2.1. Let us make a few remarks concerning the above definition:

1. The assumption for a manifold to be Hausdorff means that points can
be separated (for every pair of points x, y, there exists a neighbourhood
U of x and a neighbourhood V of y such that U and V are disjoint
(U ∩ V = ∅)). In general topology one can drop this assumption and
an example of a non-Hausdorff manifold is a line with two origins, i.e.
the quotient space of two copies of the real line R× {a} and R× {b},
with the equivalence relation (x, a) ∼ (x, b) if x 6= 0.

2. The paracompactness is needed as a sufficient condition for the exis-
tence of partitions of unity. It means that for every open cover (Uα)α∈A,
there exists a refinement3 (Vβ)β∈B that is locally finite, i.e. each x ∈M
has a neighborhood that intersects only finitely many sets of (Vβ)β∈B.

3. We assumed also that M is connected, i.e. it cannot be represented as
a disjoint union of two or more non-empty set. Later on we will see
that in a more general context one has to drop this assumption and
consider manifolds that are not connected.

Definition 2.22. A spacetime M is said to be orientable if there exists a
differential form of maximal degree (a volume form), which does not vanish
anywhere. We say that M is time-orientable if there exists a smooth vector
field u on M such that for every p ∈M , g(u, u) > 0 holds.

We will always assume that our spacetimes are orientable and time-
orientable. We fix the orientation and choose the time-orientation by se-
lecting a specific vector field u with the above property.

Example 2.2. A standard example is the 4 dimensional Minkowski space-
time M, which is R4 with the diagonal metric η = diag(1,−1,−1,−1).

An important feature of the Lorentzian signature, which distinguishes it
from the Euclidean signature, is that it allows to introduce some important
classes of smooth curves.

3An open cover (Vβ)β∈B is a refinement of an open cover (Uα)α∈A, if ∀β ∈ B, ∃α such
that Vβ ⊆ Uα.
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Definition 2.23. Let γ : R ⊃ I → M be a smooth curve in M , for I an
interval in R and let γ̇ be the vector tangent to the curve. We say that γ is

• timelike, if g(γ̇, γ̇) > 0,

• spacelike, if g(γ̇, γ̇) < 0,

• lighlike (null), if g(γ̇, γ̇) = 0,

• causal, if g(γ̇, γ̇) ≥ 0.

The classification of curves defined above is referred to as the causal
structure. The presence of time orientation allows for a further refinement
of this classification.

Definition 2.24. Given the global timelike vectorfield u (the time orienta-
tion) on M , a causal curve γ is called future-directed if g(u, γ̇) > 0 all along
γ. It is past-directed if g(u, γ̇) < 0.

Using the causal structure one can distinguish points of spacetime which
are in the future or in the past of a given point p ∈M.

Definition 2.25. Let p ∈M be a point in a time-oriented spacetime.

i) J±(p) is defined to be the set of all points in M which can be connected
to x by a future(+)/past(−)-directed causal curve γ : I → M so that
x = γ(inf I).

ii) The set J+(p) is called the causal future and J−(p) the causal past of
p. The boundaries ∂J±(p) of these regions are called respectively: the
future/past lightcone.

iii) The future (past) of a subset B ⊂M is defined by

J±(B) =
⋃
p∈B

J±(p) .

The physical importance of the structures presented above becomes clear
in the context of general relativity (GR). One of the postulates of GR states
that massive particles can move only on time-like curves and light travels
following null curves, i.e. nothing travels faster than light. Consequently, one
of the fundamental principles of physics, the principle of causality, states that
an event happening at point p can be influenced only by events in J−(p) and
that the consequences of this event can influence only the events in J+(p).
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Definition 2.26. Two subsets O1 and O2 in M are called causally separated
(or spacetime separated) if they cannot be connected by a causal curve, i.e.
if for all x ∈ O1, J±(x) has empty intersection with O2.

Another important definition is that of the causal complement of a given
region O.

Definition 2.27. O⊥ is defined as the causal complement of O, i.e. the
largest open set in M which is causally separated from O.

It follows from the principle of causality that events happening at space-
like separated points cannot influence each other. In classical physics this
property is realized as a consequence of some properties of normally hyper-
bolic partial differential equations. In section 2.3 we will see how these ideas
can be implemented into the framework of quantum theory.

Example 2.3. Consider the Minkowski spacetime M = (R4, η). Clearly this
is an affine space. The set of points which are causally separated from the
given point P ∈M is called the lighcone with apex P . It is easy to verify that
a point Q ∈M

• lies on the lightcone with apex P if and only if the vector
−−→
PQ is lightlike,

• is in the future (past) of P if and only if the vector
−−→
PQ is time-like

and its 0-th component is positive (negative),

• is spacelike to P if and only if
−−→
PQ is spacelike.

These concepts are illustrated at the diagram 2.1.

Definition 2.28. Motivated by the example 2.3 we introduce the following
notation:

• V + ⊂ R4 is defined the subset of R4 consisting of vectors v that satisfy
η(v, v) ≥ 0 and v0 > 0. We call V + the closed future lightcone.

• V −
.
= {v ∈ R4|η(v, v) ≥ 0, v0 ≤ 0} is called the closed past lightcone.

These definitions can also be applied to subsets of tangent and cotangent
spaces TxM and T ∗xM , as these space can be mapped to R4 with the use of
appropriate charts.
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Figure 2.1: A lightcone in Minkowski spacetime.

Not all Lorentzian spacetimes are equally convenient for constructing
quantum field theory models. For example, several conceptual and technical
problems appear when we consider spacetimes with closed time-like curves.
To exclude such situations, we will restrict ourselves to spacetimes that are
globally hyperbolic.

Definition 2.29 (after [BS03]). A spacetime is called globally hyperbolic if
it does not contain closed causal curves and if for any two points x and y the
set J+(x) ∩ J−(y) is compact.

It was shown in [BS03] have many important properties and to under-
stand them better it is important to introduce some further definitions.

Definition 2.30. A causal curve is future inextendible if there is no p ∈
M such that:

∀U ⊂Mopen neighborhoods of p, ∃t′ s.t. γ(t) ∈ U∀t > t′ .

Definition 2.31. A Cauchy hypersurface in M is a smooth subspace of
M such that every inextendible causal curve intersects it exactly once.

The significance of Cauchy hypersurfaces lies in the fact that one can use
them to formulate the initial value problem for partial differential equations
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and for some classes of such equations this problem has a unique solution.
The fundamental theorem relating different equivalent notions of global hy-
perbolicity has been proven in [BS03].

Theorem 2.4 (after [BS03]). The following definitions of global hyperbolicty
of a Lorentzian manifold M are equivalent:

• M does not contain closed causal curves and for any two points x and
y the set J+(x) ∩ J−(y) is compact.

• M contain a Cauchy surface.

• M admits a foliation by Cauchy surfaces.

2.3 Haag-Kastler axioms

In section 2.1 we have introduced some fundamental notions of quantum the-
ory as states and observables. Now we want to make these compatible with
the ideas of special and general relativity, reviewed in section 2.2, where the
causal structure plays an important role. The main conceptual difficulty is
to find a way to implement the idea that “nothing travels faster than light”
in such a way that it doesn’t contradict the existence of quantum correla-
tions the theory. The groundbreaking idea of Rudolf Haag was to combine
these notion using the principle of locality (Nahwirkungsprincip). In his
framework, locality is the feature of observables, while states might exhibit
correlations, i.e. they carry global information. One defines a QFT model
by assigning to each bounded region O ⊂ M of the Minkowski spacetimes
the C∗-algebra of observables A(O) that can be measured in this region.
The notion of subsystem is realized by the requirement that if O ⊂ O′, then
A(O) ⊂ A(O′). This condition is called isotony and it guarantees that one
doesn’t lose observables when considering a larger region of spacetime. The
complete set of axioms for algebraic quantum field theory (AQFT) can be
found in [HK64, Haa93, Ara99]; we will recall them briefly in this section. We
say that a net of C∗-algebras O 7→ A(O) satisfies the Haag-Kastler axioms
(also called Araki-Haag-Kastler axioms) if the following hold:

• Isotony. For O ⊂ O′ we have A(O) ⊂ A(O′). The inductive limit of
local algebras A(O) defines the quasilocal algebra A

.
=
⋃
O

A(O) (the bar

means taking the completion in the norm topology).

• Locality (Einstein causality). Algebras associated to spacelike sep-
arated regions commute: if O1 is spacelike separated from O2, then
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[A,B] = 0, ∀A ∈ A(O1), B ∈ A(O2), where the commutator is taken
in A. This expresses the “independence” of physical systems associated
to regions O1 and O2.

• Covariance. The Minkowski spacetime has a large group of isome-
tries, namely the connected component of the Poincaré group. We
require that there exists a family of isomorphisms αO

L : A(O)→ A(LO)
for Poincaré transformations L, such that for O1 ⊂ O2 the restriction
of αO2

L to A(O1) coincides with αO1
L and αLOL′ ◦ αO

L = αO
L′L.

• Time slice axiom: The algebra of a neighborhood of a Cauchy surface
of a given region coincides with the algebra of the full region. Physically
this correspond to a well-posedness of an initial value problem, i.e. we
need to determine our observables in some small time interval (t0 −
ε, t0 + ε) to reconstruct the full algebra.

• Spectrum condition. Physically this condition is interpreted as the
positivity of energy. One assumes that there exist a compatible family
of faithful representations πO of A(O) on a fixed Hilbert space (i.e.
the restriction of πO2 to A(O1) coincides with πO1 for O1 ⊂ O2) such
that translations are unitarily implemented, i.e. there is a unitary
representation U of the translation group satisfying

U(a)πO(A)U(a)−1 = πO+a(αa(A)) , A ∈ A(O),

and such that the joint spectrum of the generators Pµ of translations
eiaP = U(a), aP =

∑3
µ=0 a

µPµ, is contained in the closed future light-
cone: σ(P ) ⊂ V +.

All these axioms, apart from the spectrum condition, can be generalized
to QFT’s on general globally hyperbolic spacetimes. We will discuss this in
more detail in the next section. There are many important conceptual results
that have been proven in the AQFT framework. The first major success
was the development of the Haag-Ruelle scattering theory [Haa58, Rue62],
which provided an explanation why quantum field theory yields a theory of
interacting particles. It is, however, an open question, whether all states
in the vacuum representation admit a particle interpretation (the problem
of asymptotic completeness). For recent works on that topic see [DT11,
DG14b, DG14a] Another remarkable result of AQFT is the Reeh-Schlieder
Theorem [Haa93, RS61], see [BS14] for a recent discussion. Another known
result achieved with the AQFT methods is the analysis of the superselection
structure of QFT models [DHR71, DHR74]. Despite all this insight into
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A(O2)

O2 O1

A(O1)⊃

⊃

Figure 2.2: Diagram representing inclusion of spacetime regions and corre-
sponding C∗-algebras.

the general structure of QFT, there remains the difficulty with constructing
4 dimensional interacting models that fulfil the Haag-Kastler axioms. For
models in 2 dimensions see [Lec08, Tan12, BT13, Ala13, BC13] and references
therein.

2.4 pAQFT axioms

In this book we explore the possibility to drop some of the assumptions of the
Haag-Kastler framework, in order to allow for models that exist only in the
formal, perturbative sense. The resulting framework is called perturbative
Algebraic Quantum Field Theory (pAQFT). The generalization of the HK
axioms to the perturbative context has been developed in a series of papers
[DF01a, DF02, DF04, DF07, DF01b, BD08, Boa00, DB01, BDF09, Rej11b].
The generalization of the HK framework to curved spacetime has been for
a long time, an independent development. Some important early constri-
butions include [Kay78, Dim80, KW91, Dim92]. Later these two gener-
alizations met as the pAQFT on curved spacetimes after a seminal series
of papers [BFK96, BF97, BF00, BFV03, HW01, HW02a, HW02b, HW05].
Abelian gauge theories were later treated in [DF98], while the Yang-Mills
theories are the subject of [Hol08]. At the same time the mathematical
foundations of pAQFT became better understood, mainly with the use of
the functional approach, which is also the approach we take in this book. In
[FR12b, FR12a, Rej11a] this framework has been used to add the Batalin-
Vilkovisky (BV) formalism in the pAQFT toolbox, which allows to treat very
general theories possessing local symmetries, including the bosonic string
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[BRZ14] and effective quantum gravity [BFR13].

2.4.1 Functional analytic preliminaries

On the functional anlytic side, we leave the realm of Banach spaces and
allow for structures that have more complicated topologies. This involves
some technical complications, but gives more flexibility in terms of model
building. The most general class of topological vector spaces, which we will
use is the class of locally convex ones.

Definition 2.32. A topological vector space X is called a locally convex
vector space ( lcvs) if there is a local base B whose members are convex.

Here by a local base we mean a collection B, of neighborhoods of 0 such that
every neighborhood of 0 contains a member of B. The open sets of X are
then precisely those that are unions of translates of members of B.

There is another way to characterize locally convex vector spaces, which
allows us to make a connection with normed spaces, introduced in definition
2.4. Instead of having one norm that characterizes the topology, we have a
family of seminorms. A seminorm differs from a norm by not fulfilling the
property 3 in definition 2.4. More precisely:

Definition 2.33. A seminorm on a vector space X is a real-valued function
p on X such that:

1. p(x+ y) < p(x) + p(y) for all x, y ∈ X.

2. p(λx) = |λ|p(x) for all x ∈ X and all scalars λ ∈ K.

We see that a seminorm already provides us with a lot of information,
but it doesn’t separate points. However, it is possible that a certain family
of seminorms is already separating.

Definition 2.34. A family P of seminorms on X is said to be separating
if to each x 6= 0 corresponds at least one p ∈P with p(x) 6= 0.

We can see that a separating family of seminorms already allows us to
distinguish two elements of X. From the following theorem it becomes clear
why a locally convex vector space is a useful concept.

Theorem 2.5. With each separating family of seminorms on X we can
associate a locally convex topology τ on X and vice versa: every locally convex
topology is generated by some family of separating seminorms.
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Proof. See [Rud91].

In the pAQFT framework a lcvs is usually the best one can expect.
Unfortunately it doesn’t share many nice properties of a Banach space, but
there are some distinguish classes of lcvs, which are relatively well behaving
and good for defining calculus on them. The “nicest” ones are Fréchet spaces.
They are distinguished by the fact that their topology can be described in
terms of a metric.

Theorem 2.6. A locally convex vector space X = (X, τ) is metrizable if and
only if τ can be defined by P = {pn : n ∈ N} a countable separating family
of seminorms on X. One can equip X with a metric which is compatible
with τ and which provides a family of convex balls.

Proof. See [Köt69, Rud91].

A lcvs from theorem 2.6 can be equipped with the metric:

d(x, y) :=
∑
∈N

2−n
pn(x− y)

1 + pn(x− y)
(2.12)

This metric is compatible with τ but in general it doesn’t provide convex
balls (see the discussion in [Rud91] after theorem 1.24 and exercise 18).
Nevertheless it is good to know that you have a metric that can actually be
written down in a closed form.

Definition 2.35. If X is complete with respect to the metric from theorem
2.6 it is a Fréchet space.

Usually a Fréchet space topology is defined explicitly by providing a
countable separating family of seminorms.

To end this section we remark on one more important aspect of lcvs,
namely the definition of tensor products. In quantum theory tensor products
are used to model systems that constitute of independent subsystems. This
is closely related to the notion causality and we will come back to this issue
in section 2.5.

Definition 2.36. Let E and F be locally convex vector spaces and let ⊗ : E×
F → E⊗F be the canonical map into the corresponding tensor product. The
finest topology on E⊗F which makes ⊗ continuous is called the projective
tensor topology or the π-topology. The space E ⊗ F equipped with this
topology is denoted by E ⊗π F and its completion by E⊗̂πF .
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It can be shown that the topology π is locally convex. Another possible
topology on E ⊗ F is the so called injective tensor topology. Its definition
is a little bit more involved. In some sense it is the weakest well behaving
topology one can put on E ⊗ F , while the projective tensor topology is the
strongest.

The idea behind the injective topology is to define it via the topology on
the space of continuous linear mappings L(E′γ , F ).

Definition 2.37. We equip E′ with the finest locally convex topology γ that
coincides with the weak one on equicontinuous4 sets. One can identify E⊗F
with a subspace of L(E′γ , F ). Next we equip L(E′γ , F ) with a topology of
uniform convergence on equicontinuous compact sets in E′. We denote the
resulting topological space by EεF . It is called the ε-product of E and F . The
corresponding topology induced on E ⊗ F is called the ε-topology and E ⊗ F
equipped with it is the injective tensor product E ⊗ε F . The corresponding
completion is denoted by E⊗̂εF

This topology is better behaving if we want to consider for example
vector valued distributions and was used (in a slightly modified version) by
L. Schwartz in [Sch57, Sch58]. Inequivalent notions of tensor products on
lcvs can possibly create a problem, but there is a large class of spaces, where
these notions coincide. These are the nuclear locally convex topological
vector spaces, studied by A. Grothendieck in [Gro55].

2.4.2 Axioms

In this section we introduce the generalization of the Haag-Kastler axioms
which is the foundation of pAQFT. It is in fact convenient to extend the
pAQFT framework also to classical field theory, to keep a uniform language.

Definition 2.38. A classical field theory model on a spacetime M is a net
of locally convex topological Poisson ∗-algebras with sequentially continuous
operations

O 7→ P(O) ,

4A set A of continuous functions between two topological spaces E and F is equicon-
tinuous at the points x0 ∈ E and y0 ∈ F if for any open set O around y, there are
neighborhoods U of x0 and V of y0 such that for every f ∈ A, if the intersection of f(U)
and V is nonempty, then f(U) ⊆ O. One says that A is equicontinuous if it is equicontin-
uous for all points x0 ∈ E, y0 ∈ F . The notion of equicontinuity becomes more intuitive,
if we choose E and F to be metric spaces. The family A is equicontinuous at a point x
if for every ε > 0, there exists a δ > 0 such that d(f(x0), f(x)) < ε for all f ∈ A and all
x such that d(x0, x) < δ. In other words we require all member of the familiy A to be
continuous and to have equal variation over a given neighbourhood.
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where O ⊂ M are bounded, simply-connected regions. The global algebra is
obtained as the inductive limit

P(M)
.
= lim

O⊂M
P(O) .

We require that the Locality holds, i.e. if O1 is spacelike separated from O2,
then

bA,Bc = 0 ,

∀A ∈ P(O1), B ∈ P(O2), where the Poisson bracket b, c is taken in P.

In chapter 4 we show how to construct models of classical field theories
in agreement with the above definition. In chapters 5-8 we will show how to
quantize such classical models perturbatively. The resulting structure is not
a net of C∗ algebras, due to the perturbative character of the construction.
Nevertheless, many of the features of the Haag-Kastler net are still present.

Definition 2.39. A perturbative algebraic quantum field theory (pAQFT)
model on a spacetime M is a net of topological ∗-algebras with sequentially
continuous operations

O 7→ A(O) ,

where O ⊂ M are bounded, simply-connected regions. The global algebra is
obtained as the inductive limit

A(M)
.
= lim

O⊂M
A(O) ,

and we require Locality.

The remaining Haag-Kastler axioms, apart from the Spectrum Condition,
can be easily translated to a pAQFT context.

Definition 2.40. Further axioms:

1. A classical/quantum field theory model on a globally hyperbolic space-
time M satisfies the Time-slice axiom if the algebra of a neighborhood
of a Cauchy surface of a given region coincides with the algebra of the
full region.

2. If the underlying spacetime M has a non-trivial group of symmetries
G, we say that a model is covariant on M, if there exists a family of
isomorphisms αO

g : A(O) → A(gO) for g ∈ G, such that for O1 ⊂ O2

the restriction of αO2
g to A(O1) coincides with αO1

g and αgOg′ ◦α
O
g = αO

g′g.
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The spectrum condition cannot be meaningfully defined on an arbitrary
globally hyperbolic spacetime, as it relies on the action of translations, which
is special feature of M. We will replace this condition with a requirement we
impose on preferred states on our net of algebras. These preferred states are
called Hadamard states and they realize the idea of a positivity of energy.
We discuss them in detail in section 5.1.

2.5 Locally covariant quantum field theory

In the previous section we have recalled the Haag-Kastler axioms and re-
viewed the generlization of these axioms to the situation where we drop
some of the regularity conditions on the topology of local algebras and we
drop the restriction to Minkowski spacetime, allowing for general globally
hyperbolic backgrounds. We can go a step further and see what happens
if replace the embeddings of bounded regions O into a fixed spacetime M

with arbitrary embeddings between pairs of globally hyperbolic spacetimes
N and M. We formalize this idea by introducing the notion of an admissible
embedding.

Definition 2.41. We call an embedding χ : M→ N of a globally hyperbolic
manifold M into another one N admissible if it is an isometry, it preserves
the metric, orientations, the causal structure. The property of preserving
the causal structure is defined as follows: let χ : M → N, for any causal
curve γ : [a, b] → N , if γ(a), γ(b) ∈ χ(M) then for all t ∈]a, b[ we have:
γ(t) ∈ χ(M) .

The generalization of AQFT which discuss in this section is called Locally
Covariant Quantum Field Theory (LCQFT). For a recent extensive review
of the area, see [FV15].

As in the original AQFT framework, we assign algebras of observables
to globally hyperbolic spacetimes and we also want to require that for each
such admissible embedding there exists an injective homomorphism

αχ : A(M)→ A(N) (2.13)

of the corresponding algebras of observables assigned to them, moreover if
χ1 : M → N and χ2 : N → L are embeddings as above then we require the
covariance relation

αχ2◦χ1 = αχ2 ◦ αχ1 . (2.14)
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Such an assignment A of algebras to spacetimes and algebra-morphisms to
embeddings can be interpreted in the language of category theory as a co-
variant functor between two categories: the category Loc which is an ap-
propriate sub category of the category whose objects are globally hyperbolic
spacetimes and arrows are the admissible embeddings; and the category Obs
of topological ∗-algebras. The precise choice of the category Loc depends
on the kind of objects we want to study. If the physical theory we consider
is sensitive to some topological (hence non-local) features of the underlying
manifold, one first restricts the class of objects considered and then stud-
ies possible extensions. The detailed analysis of such topological effects has
been provided in [BSS14]. In this section we will present the framework in
the simplest version, suitable for the study of scalar fields, as introduced in
[BFV03]. First we recall some basic notions of category theory, which are
relevant for LCQFT.

Definition 2.42. A category C consists of:

• a class of objects Obj(C),

• a class of morphisms (arrows) hom(C), such that each f ∈ hom(C)
has a unique source object and target object (both are elements of
Obj(C)). For a fixed a, b ∈ Obj(C), we denote by hom(a, b) the set of
morphisms with a as a source and b as a target,

• a binary associative operation ◦ : hom(a, b) × hom(b, c) → hom(a, c),
f, g 7→ f ◦ g, called composition of morphisms,

• the identity morphism idc for each c ∈ Obj(C).

Definition 2.43. Let C, D be categories. A covariant functor F assigns to
each object c ∈ C and object F(c) of D and to each morphism f ∈ hom(C),
a morphism F(f) ∈ hom(D) in such a way that the following two conditions
hold:

• F(idc) = idF(c) for every object c ∈ C.

• F(g ◦ f) = F(g) ◦ F(f) for all morphisms f : a→ b and g : b→ c.

Definition 2.44. Let F and G be functors between categories C and D, then
a natural transformation η from F to G associates to every object a ∈ C a
morphism Hom(D) 3 ηa : F(a) → G(a), such that for every morphism
C 3 f : a→ b we have:

ηb ◦ F(f) = G(f) ◦ ηa .

We denote the family of natural transformation between F and G by Nat(F,G).
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For more details on categories and functors, see [ML78]. In LCQFT
applied to scalar fields we adopt the following definitions of categories Loc
and Obs.

Definition 2.45. The category Loc is a category where objects are globally
hyperbolic, oriented time-oriented spacetimes and morphisms are admissible
embeddings (see definition 2.41).

Remark 2.2. Note that Loc is a large category, i.e. its class of objects
Obj(Loc) is not a small set. It was shown in [Few07] that one can improve
the situation with the use of Whitney embedding theorem, which states that
every smooth manifold of dimension d may be embedded as a smooth sub-
manifold of R2d+1. Hence the collection of isomorphism equivalence classes
in Obj(Loc) may be identified with a subset of the power set of R2d+1, so it
is a small set. This makes Loc essentially small.

Definition 2.46. Depending on the context, we have the following choices
for the category of observables.

i) In the non-perturbative setting: Obs is the category with unital C∗-
algebras as objects and injective unit-preserving ∗-homomorphisms as
arrows.

ii) In classical theory: Obsc is the category with locally convex topologi-
cal Poisson algebras as objects and injective Poisson homomorphism as
arrows.

iii) In the perturbative setting: Obsp is the category with locally convex
topological unital ∗-algebras as objects and injective unit-preserving ∗-
homomorphisms as arrows.

We are now ready to give a definition of a classical/quantum field theory
model in the LCQFT setting.

Definition 2.47. In the LCQFT framework, a model is a functor A from
Loc to . . .

i) . . .Obs for a non-perturbative locally covariant QFT model,

ii) . . .Obsc for a locally covariant classical field theory model,

iii) . . .Obsp for a perturbative locally covariant QFT model.

If we don’t want to specify the context, we write Loc∗. Moreover, we often
use the notation αχ ≡ Aχ, where χ ∈ Hom(Loc).



2.5. LCQFT 37

Another useful category is the category of locally convex topological vec-
tor spaces.

Definition 2.48. Define Vec to be the category whose objects are locally
convex topological vector spaces ( lcvs) and whose morphisms are injective
homomorphisms of lcvs.

The requirement that A is a covariant functor already generalizes the
Haag-Kastler axioms of Isotony and Covariance. We can impose further
requirements:

• Einstein causality: let χi : Mi → M, i = 1, 2 be morphisms of Loc
such that χ1(M1) is causally disjoint from χ2(M2), then we require
that:

[αχ1(A(M1)), αχ2(A(M2))] = {0} ,

• Time-slice axiom: let χ : N → M, if χ(N) contains a neighborhood
of a Cauchy surface Σ ⊂M , then αχ is an isomorphism.

The Einstein causality requirement reflects the commutativity of ob-
servables localized in spacelike separated regions. From the point of view
of category theory, this property is encoded in the tensor structure of the
functor A. In order to make this statement precise, we need to equip our
categories Loc and Obs∗ with tensor structures (for a precise definition of
a tensor category, see [ML78]).

Definition 2.49. We call a category C strictly monoidal (tensor category) if
there exists a bifunctor ⊗ : C×C→ C which is associative, i.e. ⊗(⊗×1) =
⊗(1×⊗) and there exists an object e which is a left and right unit for ⊗.

The category of globally hyperbolic manifolds Loc can be extended to a
monoidal category Loc⊗, if we extend the class of objects with finite disjoint
unions of elements of Obj(Loc),

M = M1 t . . . tMk ,

where Mi ∈ Obj(Loc). Morphisms of Loc⊗ are isometric embeddings,
preserving orientations and causality. More precisely, they are maps χ :
M1 t . . .tMk →M such that each component satisfies the requirements for
a morphism of Loc and additionally all images are spacelike to each other,
i.e., χ(Mi) ⊥ χ(Mj), for i 6= j. Loc⊗ has the disjoint union as a tensor prod-
uct, and the empty set as unit object. It is a monoidal category and, using
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the results of [JS93], it is tensor equivalent to a strict monoidal category,
which we will denote by the same symbol Loc⊗.

On the level of C*-algebras the choice of a tensor structure is less obvious,
since, in general, the algebraic tensor product A1�A2 of two C∗-algebras can
be completed to a C∗-algebra with respect to many non-equivalent tensor
norms. The choice of an appropriate norm has to be based on some further
physical indications. This problem was discussed in [BFIR14], where it is
shown that a physically justified tensor norm is the minimal C∗-norm ‖.‖min
defined by

‖A‖min
.
= sup{‖(π1 ⊗ π2)(A)‖B(H1⊗H2)} , A ∈ A1 ⊗ A2 ,

where π1 and π2 run through all representations of A1 and of A2 on Hilbert
spaces H1, H2 respectively. B denotes the algebra of bounded operators.
If we choose π1 and π2 to be faithful, then the supremum is achieved, i.e.
‖A‖min = ‖(π1 ⊗ π2)(A)‖B(H1⊗H2). The completion of the algebraic tensor
product A1 � A2 with respect to the minimal norm ‖A‖min is denoted by
A1 ⊗

min
A2. It was shown in [BFIR14] that, under some technical assumptions,

a functor A : Loc → Obs satisfies the axiom of Einstein causality if and
only if it can be extended to a tensor functor A⊗ : Loc⊗ → Obs⊗, which
means that

A⊗ (M1 tM2) = A⊗(M1)⊗min A
⊗(M2) , (2.15)

A⊗(χ⊗ χ′) = A⊗(χ)⊗ A⊗(χ′) , (2.16)
A⊗(∅) = C . (2.17)

In the perturbative setting, we also face the same problem with extend-
ing Obsp to a tensor category, as there are many possibilities to chose a
tensor product. The most natural choices are the injective tensor product
(definition 2.37) and the projective tensor product (definition 2.36). A way
out it to restrict Obs to the category of nuclear topological algebras, where
these two notions coincide.

Let us now discuss the time slice axiom. We use it to describe the
evolution between different Cauchy surfaces. Firstly, we associate to each
Cauchy surface Σ the inverse limit

A(Σ) =
←

lim
N⊃Σ

A(N) . (2.18)

We denote by ιMN the inclusion of a subset N in M and by αMN
.
= AιMN ,

the corresponding morphism in hom(Obs). Elements of the inverse limit
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(2.18) are sequences A = (AN )LA⊃N⊃Σ with αKN (AN ) = AK , K ⊂ LA,
with the equivalence relation

A ∼ B if ∃ L ⊂ LA ∩ LB such that AN = BN for all N ⊂ L . (2.19)

We define the embedding of the algebra A(Σ) into A(M) by

αMΣ(A) = αMN (AN ) for some (and hence all) Σ ⊂ N ⊂ LA . (2.20)

From the time slice axiom follows that each homomorphism αMN is an iso-
morphism. Hence αMΣ is also an isomorphism, and we obtain the propagator
between two Cauchy surfaces Σ1 and Σ2 by

αMΣ1Σ2
= α−1

MΣ1
◦ αMΣ2 . (2.21)

This construction resembles constructions in topological field theory [Seg].
The next important notion in LCQFT is that of a local quantum field.

In the Haag-Kastler framework on Minkowski space an essential ingredient
was the translation symmetry. This symmetry allowed the comparison of
observables in different regions of spacetime. This is not possible in the
general covariant framework we describe here, because on generic spacetime
the isometry group might be trivial. It follows that there is a’priori no
natural way to say what does it mean to have the same observable in a
different region. We need to introduce some extra labels for the observables,
which make such a comparison possible. This is where locally covariant
quantum field come into the game. We can think of them as operator-valued
distributions assigned to all the objects of Loc in a coherent way. Before
we give the precise definition, we need to make clear what we mean by test
function spaces

Definition 2.50. Let D denote the functor from Loc to Vec which asso-
ciates to every spacetime M its space of compactly supported C∞-functions,

D(M) = D(M)
.
= C∞c (M,R) , (2.22)

and to every embedding χ : M → N of spacetimes the pushforward of test
functions f ∈ D(M)

Dχ ≡ χ∗ , χ∗f(x) =

{
f(χ−1(x)) , x ∈ χ(M)

0 , else . (2.23)

Note that D is a covariant functor and its target category contains also
the category of topological algebras which is the target category for A. We
are now ready to state the definition of a locally covariant quantum field.



40 CHAPTER 2. ALGEBRAIC APPROACH TO QUANTUM THEORY

Definition 2.51. A locally covariant quantum/classical field Φ is defined as
a natural transformation from the functor D of test function spaces to the
functor A of field theory composed with the forgetful functor from Obs∗ to
Vec.

More concretely, Φ is defined by a family of morphisms ΦM : D(M) →
A(M), M ∈ Obj(Loc) such that

Aχ ◦ ΦM = ΦN ◦Dχ (2.24)

The category theory language, which is used to formulate the axioms
of LCQFT in not only a convenient way to phrase known results,but also
leads to new insights. For example, one can use it to formulate what does
it mean to have the same physics in all spacetimes. This property, called
SPASS, is a property of the QFT functor and it has been extensively studied
in [FV11a, FV11b]. Further study of structures appearing in LCQFT lead
recently to construction of new theories by using symmetries of the QFT
functor [Few13].

The next step in the LCQFT research is the proper understanding of
the structures of gauge theories, where the topological features lead to new
difficulties [DL12, SDH14, BSS14]. It would be desirable to obtain for lo-
cal symmetries a framework similar to the DHR analysis done for global
symmetries [DHR71, DHR74]. Another possible extension of the LCQFT
framework is to replace Loc with the category of framed manifolds. This
idea has been used in [FV15] to prove the locally covariant version of the
PCT theorem.



Chapter 3

Kinematical structure

In the framework of perturbative algebraic quantum field theory (pAQFT)
we start with the classical theory, which is subsequently quantized. We work
in the Lagrangian framework, but there are some modifications that we need
to make to deal with the infinite dimensional character of field theory. In
this chapter we give an overview of mathematical structures that will be
needed later on to construct models of classical and quantum field theories.
Since we do not fix the dynamics yet, the content of this chapter describes
the kinematical structure of our model. Readers familiar with some of the
concepts we introduce here can skip corresponding sections.

3.1 The space of field configurations

We start with a globally hyperbolic spacetime M = (M, g) (see definition
2.21). The next step is to define the space of field configurations. This
specifies what kind of objects our model describes (e.g. scalar fields, Dirac
fields, gauge fields, etc.). In the simplest situation the configuration space E

is a vector space.

Definition 3.1. The configuration space E on the fixed spacetime M =
(M, g) is realized as the space of smooth sections Γ(E) of some vector bun-
dle E π−→ M over M . Let V be the finite dimensional vector space which
constitutes the fibre of E. We assume that there exists a bilinear pairing
〈., .〉E : V × V → R. This pairing also defines an isomorphism between V
and its dual V ′.

Example 3.1. Examples of configuration spaces for commonly used theories:

• for the real scalar field: E = C∞(M,R),

41
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• for the Yang-Mills theories (see chapter 7) with the trivial principal
bundle: E = Ω1(M, g), where g is a Lie algebra of a compact Lie
group,

• for effective quantum gravity (see chapter 8): E = Γ((T ∗M)2⊗).

Let us now comment on the differentiable structure on E. A natural way
to introduce a smooth structure on E is to equip it first with the standard
Fréchet topology (as defined below) and use this topology to define functional
derivatives on E.

Definition 3.2. Let Ω ⊂ Rn be an open subset and C∞(Ω,R) the space of
smooth functions on it. We equip this space with a Fréchet topology generated
by the family of seminorms:

pK,m(ϕ) = sup
x∈K
|α|≤m

|∂αϕ(x)| , (3.1)

where α ∈ NN is a multiindex and K ⊂ Ω is a compact set. This is just the
topology of uniform convergence on compact sets, of all the derivatives.

The definition above can be applied to define a Fréchet topology on
C∞(M,R) with the use of coordinate charts, as M is locally R4. It also
generalizes easily to the vector-valued case E = Γ(E

π−→M). We will always
assume that E is equipped with this Fréchet topology.

Next we introduce a natural topology on the space of compactly sup-
ported functions D(M)

.
= C∞c (M,R). This topology is locally convex, but is

not Fréchet.

Definition 3.3. Let D(Ω)
.
= C∞c (Ω,R), Ω ⊂ R. The fundamental system of

seminorms on D(Ω) is given by:

p{m},{ε},a(ϕ) = sup
ν

(
sup
|x|≥ν,
|p|≤mν

∣∣Dpϕa(x)
∣∣/εν) , (3.2)

where {m} is an increasing sequence of positive numbers going to +∞ and
{ε} is a decreasing one tending to 0.

The generalization of the above topology to the vector-valued case Ec
.
=

Γc(E
π−→M) is straightforward.

Remark 3.1. We can also consider situations in which the configuration
space E is not a vector space, but still can be made into an infinite dimen-
sional affine manifold in the sense of [Mic84]. It happens for example with
the space of all Lorentzian metrics or the space of gauge connections, but we
this is beyond the scope of this book.
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3.2 Functionals on the configuration space

We model classical and quantum observables as smooth functions on E. Intu-
itively, a classical measurement assigns a real number to a field configuration.
The smoothness condition is a regularity requirement which we need in our
formalism in order to introduce various algebraic structures on the space of
functionals. The main feature of the functional approach, which we advocate
in this book, is that both the classical and quantum theory are defined in
terms of the same set of functionals and differ by algebraic structures on this
set. The classical theory is defined in term of a Poisson bracket, while the
quantum theory in terms of a non-commutative product. We will construct
these structures for the scalar field in chapters 4-6, but first we need to de-
fine the underlying space of functionals, which is the main subject of the
present section. Having the quantization in mind, we work from the start
with complex-valued functionals.

For functions on E, the smoothness is understood in the sense of Bastiani
calculus [Bas64, Ham82, Mil84, Nee06], i.e.

Definition 3.4 (after [Nee06]). Let X and Y be topological vector spaces,
U ⊆ X an open set and f : U → Y a map. The derivative of f at x ∈ U in
the direction of h ∈ X is defined as〈

f (1)(x), h
〉
.
= lim

t→0

1

t
(f(x+ th)− f(x)) (3.3)

whenever the limit exists. The function f is called differentiable at x if〈
f (1)(x), h

〉
exists for all h ∈ X. It is called continuously differentiable if it

is differentiable at all points of U and f (1) : U ×X→ Y, (x, h) 7→ df(x)(h) is
a continuous map. It is called a C1-map if it is continuous and continuously
differentiable. Higher derivatives are defined by〈

f (k)(x), v1 ⊗ · · · ⊗ vk
〉
.
=

∂k

∂t1 . . . ∂tk
f(x+ t1v1 + · · ·+ tkvk)

∣∣∣∣
t1=···=tk=0

,

(3.4)
and f is Ck if f (k) is jointly continuous as a map U × Xk.

This notion of differentiability is also referred to as Michal-Bastiani dif-
ferentiability, since the definition of differentiability at a point is equivalent
to the one proposed by Michal [Mic38, Mic40]. However, Bastiani differen-
tiability on an open set is a stronger notion.

We apply this to define derivatives of C-valued functionals F on E. By
definition F (1)(ϕ), if it exists, is an element of the complexified dual space
E′C

.
= E′ ⊗ C. More generally, we have the following result.
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Proposition 3.1. Let F : E→ C be a Bastiani smooth functional, then

i) F (n)(ϕ) is a linear continuous map from En to C,

ii) F (n)(ϕ) induces a continuous map on the completed projective tensor
product E⊗̂πk ∼= Γ(E�n →Mn), where � is the exterior tensor products
of vector bundles, defined below in 3.6. Here we denote the map on E⊗̂πk

by the same symbol as the original differential, i.e F (n)(ϕ).

Proof. Property i) follows directly from the definition of continuous differ-
entiability. For ii) it is crucial that E is a Fréchet space. For the proof of the
claim, see for example [Trè06].

Definition 3.5. Let E1
π1−→ M1, E2

π2−→ M2 be two vector bundles over M1

andM2 with fibers V1, V2 respectively. The exterior tensor product E1�E2 is
defined as the vector bundle overM1×M2, whose fiber over (x, y) ∈M1×M2

is V1x ⊗ V2y.

This definition has to be contrasted with the definition of the ordinary
tensor product of vector bundles.

Definition 3.6. The tensor product of vector bundles E1
π1−→M , E2

π2−→M
is a vector bundle overM , denoted by E1⊗E2 whose fiber over a point x ∈M
is the tensor product of vector spaces E1x ⊗ E2x.

It is clear from the discussion above that in order to understand better
the behavior of functional derivatives of smooth functionals on E we need to
bring some notions from the theory of distributions into our framework.

Definition 3.7. The space of distributions on Ω ⊂ R is defined to be the
dual D ′(Ω) of D(Ω) with respect to the topology given in the definition 3.3.

Equivalently, given a linear map L on D(Ω) we can decide if it is a
distribution by checking one of the equivalent conditions given in the theorem
below [Trè06, Rud91, Hör03].

Theorem 3.1. A linear map u on D(Ω) is a distribution if it satisfies the
following equivalent conditions:

1. To every compact subset K of Ω there exists an integer m and a con-
stant C > 0 such that for all ϕ ∈ D with support contained in K it
holds:

|u(ϕ)| ≤ C max
p≤k

sup
x∈Ω
|∂pϕ(x)| .
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We call ||u||Ck(Ω)
.
= maxp≤k supx∈Ω |∂pϕ(x)| the Ck-norm and if the

same integer k can be used in all K for a given distribution u, then we
say that u is of order k.

2. If a sequence of test functions {ϕk}, as well as all their derivatives con-
verge uniformly to 0 and if all the test functions ϕk have their supports
contained in a compact subset K ⊂ Ω independent of the index k, then
u(ϕk)→ 0.

Proof. See for example [Hör03].

The regularity of a distribution can be characterized in terms of the falloff
conditions for its Fourier transform.

Theorem 3.2. A distribution u ∈ E ′(Ω) is smooth if and only if for every
N there is a constant CN such that:

|û(k)| ≤ CN (1 + |k|)−N ,

where û denotes the Fourier transform of u.

Proof. See for example [Hör03].

Definition 3.8. The singular support of a distribution u is the complement
of the largest open set on which u is smooth.

If a distribution has a nonempty singular support we can give a further
characterization of its singularity structure by specifying the direction in
which it is singular. This is exactly the purpose of the definition of a wave
front set.

Definition 3.9. For a distribution u ∈ D ′(Ω) the wavefront set WF(u) is
the complement in Ω × Rn \ {0} of the set of points (x, k0) ∈ Ω × Rn \ {0}
such that there exist

• a function f ∈ D(Ω) with f(x) = 1,

• an open conic neighborhood C of k0, with

sup
k∈C

(1 + |k|)N |f̂ · u(k)| <∞ ∀N ∈ N0 .

On a manifold M the definition of the Fourier transform depends on
the choice of a chart, but the property of strong decay in some direction
(characterized now by a point (x, k), k 6= 0 of the cotangent bundle T ∗M)
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turns out to be independent of this choice. Therefore the wave front (WF)
set of a distribution on a manifold M is a well defined closed conical subset
of the cotangent bundle (with the zero section removed).

The wavefront sets provide a simple criterion for the existence of point-
wise products of distributions. Before we give it, we prove a more general
result concerning the pullback. Here we follow closely [BF09a, Hör03]. Let
α : Ω → Ω̃ be a smooth map between Ω ⊂ Rm and Ω̃ ⊂ Rn. We define the
normal set Nα of the map α as:

Nα
.
= {(α(x), η) ∈ Ω̃× Rn|((dαx)T (η) = 0} ,

where (dαx)T is the transposition of the differential of α at x.

Theorem 3.3. Let Γ be a closed cone in Ω̃ × (Rn{0}) and α : Ω → Ω̃ as
above, such that Nα ∩ Γ = ∅. Then the pullback of functions α∗ : E (Ω) →
E (Ω̃) has a unique, sequentially continuous extension to a sequentially con-
tinuous map D ′Γ(Ω̃)→ D ′(Ω), where D ′Γ(Ω̃) denotes the space of distributions
with WF sets contained in Γ.

Proof. For proof see [BF09a, Hör03].

Using this theorem we can define the pointwise product of two distribu-
tions t, s on an n-dimensional manifoldM as a pullback by the diagonal map
D : M →M ×M if the pointwise sum of their wave front sets

WF(t) + WF(s) = {(x, k + k′)|(x, k) ∈WF(t), (x, k′) ∈WF(s)} ,

does not intersect the zero section of Ṫ ∗M (see theorem 8.2.10 of [?]). To see
that this is the right criterion, note that the set of normals of the diagonal
map D : x 7→ (x, x) is given by ND = {(x, x, k,−k)|x ∈ M,k ∈ T ∗M}. The
product ts is then defined by: ts = D∗(t⊗ s) and if one of t, s is compactly
supported, then so is ts and we define the contraction by 〈t, s〉 .

= t̂s(0).
Another way of seeing that the construction works is to look at the Fourier
transformed version. For t, s ∈ E (Ω) we have

〈ts, fg〉 =
1

(2π)n

∫
t̂f(k)ŝg(−k)dk , (3.5)

where f, g ∈ D(Ω) are chosen with sufficiently small support. We will now
give a brief argument for why the integral above converges. Note that if
k 6= 0, then either t̂f is fast-decaying in a conical neighborhood around k
or ŝg is fast-decaying in a conical neighborhood around −k, while the other
factor is polynomially bounded.
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Motivated by the criterion above we can distinguish certain important
classes of functionals by analyzing the WF set properties of their derivatives.
Before we move to that task, there is one more concept we need to introduce
first. Following the spirit of AQFT we would like to define some notion of
localization (on spacetime) of functonals we consider. More precisely, later
on we will construct algebraic structures associated to bounded regions ofM ,
so we need to be able to decide if a given observable (modeled as a smooth
functional) belongs to a given region or not. We achieve this by introducing
the notion of the spacetime support.

Definition 3.10. Let F be a map from X = Γ(E →M) to Y, where E is a
vector bundle over M and Y is a set. The spacetime support of F is defined
by

supp F
.
= {x ∈M |∀ neighborhoods U of x ∃ϕ,ψ ∈ X, supp ψ ⊂ U , (3.6)

such that F (ϕ+ ψ) 6= F (ϕ)} .

Here we rely on the fact that Γ(E → M) is equipped with a linear
structure, but the concept of spacetime support generalizes to the case where
X is a space of sections of an arbitrary bundle over M [BFR13]. Note that
if F is linear and X = C∞c (Ω,R), where Ω ⊂ Rn, then definition 3.10 reduces
to the standard definition of the support of a distribution on Ω.

Definition 3.11. Let u ∈ D ′(Ω). The support suppu of a distribution
u ∈ D ′(Ω) is the smallest closed set O such that u|Ω\O = 0. In other words:

suppu
.
= {x ∈ Ω| ∀U open neigh. of x, U ⊂ Ω ∃ϕ ∈ D(Ω), suppϕ ⊂ U, s.t. <u, ϕ>6= 0} .

An even closer relation between the distributional support and the space-
time support of a functional can be seen in the following result [BDLGR15]:

suppF =
⋃
ϕ∈E

supp(F (1)(ϕ)) .

The concept of spacetime support applies also to functions of several argu-
ments.

Definition 3.12. Let F be a map on the product X ≡ Γ(E1 → M) × · · · ×
Γ(Ek → M) taking values in a set Y. Then the spacetime support of F is
defined as

supp F
.
= {x ∈M |∀ neighborhoods U of x ∃ϕ = (ϕ1, . . . ϕk) ∈ X

and ψ ∈ Γ(Ei →M) for some i ∈ {1, . . . , k}, supp ψ ⊂ U ,
(3.7)

such that F (ϕ1, . . . , ϕi + ψ, . . . , ϕk) 6= F (ϕ)} .
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We have already seen that functional derivatives of Bastiani smooth func-
tionals on E are compactly supported distributions. Further restrictions on
regularity and support of distributions appearing as functional derivatives
are obtained for local functionals.

Definition 3.13. A functional F ∈ C∞(E,C) is called local (an element of
Floc) if for each ϕ ∈ E there exists k ∈ N such that

F (ϕ) =

∫
M
α(jkx(ϕ)) , (3.8)

where jkx(ϕ) is the k-th jet prolongation of ϕ and α is a density-valued func-
tion on the jet bundle.

Remark 3.2. If F is local then F (n)(ϕ) is a distribution supported on the
thin diagonal

Dn
.
= {(x1, . . . , xn) ∈Mn, x1 = · · · = xn} .

We equip the space Floc of local functionals on the configuration space
with the pointwise product using the prescription

(F ·G)(ϕ)
.
= F (ϕ)G(ϕ) , (3.9)

where ϕ ∈ E. Floc is not closed under this product, but we can consider
instead the space F of multilocal functionals, which is defined as the algebraic
closure of Floc under the product (3.9). We can also introduce the involution
operator ∗ on F using the complex conjugation, i.e.

F ∗(ϕ)
.
= F (ϕ) .

This way we obtain a commutative ∗-algebra. The self-adjoint elements
of this algebra are functionals that satisfy F ∗ = F , i.e. these are the real-
valued functionals. We will see later on that we can identify such self-adjoint
elements with classical observables.

Local and multilocal functionals satisfy some important regularity prop-
erties. Firstly, for local functionals the wavefront set of F (n)(ϕ) is orthogonal
to TDn, the tangent bundle of the thin diagonal. In particular, F (1)(ϕ) has
empty wavefront set, so is smooth for each fixed ϕ ∈ E. The latter is true
also for for multilocal functionals, i.e. F ∈ F. Note that using the invari-
ant volume form µg we can therefore identify F (1)(ϕ) with an element of
E∗C

.
= ΓC

c(E
∗ →M), where E∗ is the dual bundle of E.
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Actually, one can characterize locality in an abstract way, using Bastiani
smoothness and WF set properties as well as support properties of the first
and the second derivative. This result has been proven in [BDLGR15], based
on the ideas of [BFR12].

Theorem 3.4. Let U be an open subset of E (M)
.
= C∞(M,R) and F : U →

R be smooth in the sense of Bastiani. Assume that

1. F is additive and compactly supported in K ⊂M .

2. For every ϕ ∈ U , the differential F (1)(ϕ) of F at ϕ has empty WF set
and the induced map F (1) : U → D(M) is Bastiani smooth.

3. For every ϕ ∈ U , the distribution F (2)(ϕ) ∈ E ′(M2) induced by
the second derivative of F is supported on the diagonal D2 and
WF(F (2)(ϕ)) ⊥ TD2).

Then, for every ϕ ∈ U , there is a neighborhood V of the origin, an integer
k and a smooth real-valued function f on the k-jet bundle Jk(M) such that
F (ϕ+ψ) =

∫
M f(jkxψ)dx for every ψ ∈ V , where jkxψ is the k-jet of ψ at x.

3.3 Fermionic field configurations

Up to now we have considered the configuration spaces that were ordinary
infinite dimensional manifolds. Now we will consider a situation, where
the configuration space is graded. Physically this becomes relevant when
we want to describe Fermionic field configurations, like for example matter
fields in QED (Dirac fields). Here we will use the term “Fermionic” in the
sense of “anticommuting”, rather than “non-integer spin”. The later context is
related to the spin-statistic theorem [SW00], which, however, doesn’t apply
to auxiliary, non-physical field variables like ghosts and antighosts that will
be introduced in chapter 7.

There are several ways to define graded manifolds geometrically and in
the infinite dimensional context, the approach proposed by [Sac08] seems
to be the most appropriate. Here, however, we are not interested in the
structure of graded manifolds themselves, but we take the algebraic point of
view and focus on their rings of polynomial functions. As in earlier chapters
we denote by E the space of sections of some vector bundle E π−→ M (this
could be for example the Dirac bundle describing the electrons in QED). Let
E′ be its strong dual (i.e. topological dual space equipped with the topology
of uniform convergence on bounded sets of E). We want to give meaning to
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the notion of odd E, i.e. E[1], where the number in square brackets denotes
the degree shift. Like elsewhere in this book, we take the algebraic viewpoint
and characterize this space in terms of its ring of functions O(E[1]). We call
the latter the space of antisymmetric functionals on E. Before we can make
this notion precise we quote a known result from [Buc72].

Theorem 3.5. Let X, Y be two Fréchet spaces, one of which has the aprox-
imation property. Then

i) X′⊗̂πY′ ∼= (X⊗̂εY)′,

ii) X′⊗̂εY′ ∼= (X⊗̂πY)′,

where all the duals are meant as the strong duals.

Proof. See [Buc72].

We can now prove the following useful result concerning tensor products
of E and its strong dual.

Proposition 3.2. Γ′(E�n → Mn), the strong dual of Γ(E�n → Mn) is
isomorphic to Γ′(E)⊗̂πn

Proof. Since Γ(E) is Fréchet and has the approximation property (see
[Jar12]), we have (Γ(E)⊗̂πn)′ ∼= Γ′(E)⊗̂εn. From the nuclearity of Γ′(E) fol-
lows that the later can be identified with Γ′(E)⊗̂πn. As Γ(E)⊗̂πn ∼= Γ(E�n →
Mn), we obtain

Γ′(E�n →Mn) ∼= Γ′(E)⊗̂πn .

The following definitions make precise the notion of antisymmetric func-
tionals.

Definition 3.14. Let E π−→M be a vector bundle with fiber V .

i) We define Γ′a(E
�n →Mn) as the completion of Γ′(E) ∧ · · · ∧ Γ′(E)︸ ︷︷ ︸

n

with

respect to the topology of Γ′(E)⊗̂πn. The subscript “a” stands for anti-
symmetry.

ii) Analogously, Γ′s(E
�n →Mn) is the completion of the symmetric tensor

product Γ′(E)⊗s · · · ⊗s Γ′(E)︸ ︷︷ ︸
n

.
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iii) This generalizes also to more complicated statistics. The comple-
tion of Γ′(E) ∧ · · · ∧ Γ′(E)︸ ︷︷ ︸

p

⊗Γ′(E)⊗s · · · ⊗s Γ′(E)︸ ︷︷ ︸
q

will be denoted by

Γ′p|q(E
�n → Mn), where n = p + q. In general we can consider labels

which are arbitrary finite sequences of the type p1|p2|p3| . . . |pk, where
integers in boldface indicate the antisymmetric factors and the remaining
indices correspond to totally symmetric factors.

Definition 3.15. We define O(E[1]), the space of odd (antisymmetric) func-
tionals on E as

A
.
=

∞∏
k=0

Ak .
=

∞∏
k=0

Γ′a(E
�k →Mk)⊗ C ,

where the notation Γ′a is clarified in definition 3.14.

The elements of A are called here the antisymmetric functionals, written
as (possibly infinite) sequences: T = (Tk)k∈N, where the components Tk ∈ Ak

are referred to as homogeneous functionals. It is convenient to introduce a
notation for such functionals, which is commonly used in physics

Definition 3.16. Let E = Γ(E → M) with fiber V . Choose a basis on the
fiber labelled by the index set I. For α ∈ I, x ∈ M , define Φα

x ∈ E′ as the
evaluation functional

Φα
x(ϕ)

.
= ϕα(x) .

Formally, we can write elements of T ∈ Ak in terms of integral kernels

T (u1 ⊗ · · · ⊗ uk) =

=
∑

α1,...,αk

∫
T (x1, . . . , xk)α1,...,αku1(x1)α1 . . . uk(xk)

αkdµ(x1) . . . dµ(xk) .

We can write this also in terms of evaluation functionals defined in 3.16 as

T =
∑

α1,...,αk

∫
T (x1, . . . , xk)α1,...,αkΦα1

x1
. . .Φαk

xk
dµ(x1) . . . dµ(xk) .

Using this notation we are able to translate some formal expression used in
the physics literature into our framework. The key point is that in physics
one usually identifies Φα

x ’s with some abstract Grassmann-valued functions.
We refrain from that interpretation, since we want to avoid dealing with
infinitely many Grassmann parameters. Instead we treat Φα

x ’s as honest,
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real-valued functionals. This viewpoint on functionals of Fermionic fields
has been proposed in [Rej11b].

The generalization of the definition 3.15 to the graded case is straight-
forward.

Definition 3.17. Define O(E0 ⊕ E1[1]⊕ E2[2]) as C∞(E0,A) , where

A
.
=

∞∏
k=0
p+q=k

Γ′p|q(E
�p
1 � E�q

2 →Mk)⊗ C .

Adding further terms to E0 ⊕ E1[1] ⊕ E2[2] is reflected by adding further
factors in p|q, where odd degrees contribute antisymmetric tensor powers
and even degrees contribute symmetric tensor powers.

We also introduce the notation

Ok(E0 ⊕ E1[1]⊕ E2[2])
.
= C∞(E0,A

k) ,

where Ak .
=
⊕

p+q=k Γ′p|q(E
�p
1 � E�q

2 →Mk)⊗ C.

Remark 3.3. For the future reference, we make a distinction between O(E)
and O(E[0]). The former is always understood as the space of smooth func-
tionals, while the latter is the space of (potentially infinite) series in sym-
metric tensor products, without any notion of convergence. We will need
this distinction in section 7, where we will need formal objects of the type
O(E[0]).

Next we introduce the notion of a derivative of a graded functional.

Definition 3.18. Let F ∈ Ak, u ∈ E⊗k−1, h ∈ E.

i) The left derivative of F at u in the direction of h is defined by〈
δlF

δϕ
(u), h

〉
.
=F (h ∧ u), k > 0

δlF

δϕ
=0 F ∈ A0 .

We extend this definition to A by linearity.
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ii) Analogously, the right derivative of F at u in the direction of h is defined
by 〈

δrF

δϕ
(u), h

〉
.
=F (u ∧ h), k > 0

δrF

δϕ
=0 F ∈ A0 .

Clearly, for F ∈ A,
〈
δlF
δϕ (.), h

〉
is an element of A and we can think of

δlF
δϕ as a distribution (i.e. continuous linear map) on E with values in the
graded algebra A. This point of view has been adapted in [Rej11b]. We
equip the space of such distributions with the strong topology (the topology
of uniform convergence on bounded sets) and use the notation Lb(E,A). The
theory of distribution taking values in general locally convex vector space has
been developed in [Sch57, Sch58]. One can define the notions of convolution,
Fourier transform and WF set for such objects. We also have the analogue
of the theorem 3.3. The following definitions allow to distinguish important
classes of graded functionals. For the simplicity of notation we spell out
explicitly only the case where the configuration space is E0 ⊕ E1[1].

Definition 3.19. The support of graded functional F ∈ C∞(E0,A
k) is de-

fined by ∑
ϕ∈E0,u∈E⊗̂πk1

supp

(
δF

δϕ0
(ϕ;u)

)
∪

∑
ϕ∈E0,u∈E⊗̂πk−1

1

supp

(
δlF (ϕ)

δϕ1
(u)

)
,

where δ
δϕ0

denotes the usual Bastiani derivative with respect to the variable
in E0, while δ

δϕ1
is the graded derivative on A, defined in 3.18. The definition

of support generalizes to the case of E0⊕E1[i1]⊕ . . .EN [iN ] by adding further
terms in the sum.

Definition 3.20. A graded functional F ∈ C∞(E0,A
k) is called local (an

element of C∞loc(E0,A
k)) if it is compactly supported and for each ϕ ∈ E there

exists k ∈ N such that

F (ϕ;h1, . . . , hk) =

∫
M
α(ji0x (ϕ), ji1x (h1), . . . , jikx (hk)) , (3.10)

where ϕ ∈ E0, h1, . . . , hk ∈ E1 and α is a density-valued function on the jet
bundle. We denote

Oloc(E0 ⊕ E1[1])
.
=
∞∏
k=0

C∞loc(E0,A
k) .
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Definition 3.21. We equip O(E0 ⊕ E1[1]) with the antisymmetric product:

〈(F ∧G)(ϕ);h1, . . . , hp+q〉
.
=

1

p!q!

∑
σ∈Sp+q

sgn(σ)
〈
F (ϕ);hσ(1), . . . , hσ(p)

〉 〈
G(ϕ);hσ(p+1), . . . , hσ(p+q)

〉
,

(3.11)

where F and G are of degree p and q respectively, ϕ ∈ E0 and hi ∈ E1.

Definition 3.22. We define Oml(E0 ⊕ E1[1]) as the algebraic completion of
O(E0 ⊕ E1[1]) with respect to the graded product ∧.

By definition, we can differentiate elements of O(E0⊕E1[1]) as functionals
on E0. The n-th derivative of F ∈ O(E0,A) at point ϕ ∈ E0 will be denoted
by F (n)(ϕ) or δF

δϕ0
(ϕ), to distinguish it from the graded derivative δF (ϕ)

δϕ1
on

A.
The following result allows to characterize derivatives of compactly sup-

ported functionals.

Proposition 3.3. Let F ∈ Ok(E0 ⊕ E1[1])
.
= C∞(E0,A

k) be compactly sup-
ported, then the n-the derivative of F satisfies

F (n)(ϕ) ∈ Γ′
C
(E�n

0 � E�k
1 →Mk+n) ∼= (E′0)⊗̂πn⊗̂π(E′1)⊗̂πk ⊗ C ,

for all ϕ ∈ E0.

Proof. We start with F (1). By definition F (1)(ϕ) is a continuous linear map
from E0 to (E′1)⊗̂πk⊗C, so is a vector-valued distribution in Lb(E0, (E

′
1)⊗̂πk)⊗

C. Since E0 is a Montel space, the bounded sets are the same as equicon-
tinuous sets, so Lb(E0, (E

′
1)⊗̂πk) is identified with Lε(E0, (E

′
1)⊗̂πk), the space

with the topology of uniform convergence on equicontinuous sets. The latter
is then isomorphic to E′0⊗̂ε(E′1)⊗̂πk, since both arguments are complete and
have the approximation property. Next we use the fact that E′0 and (E′1)⊗̂πk

are nuclear, to conclude that the injective product can be replaced with the
projective product. Finally, we use the Buchwalter’s theorem 3.5 to conclude
that

F (1)(ϕ) ∈ (E′0)⊗̂π(E′1)⊗̂πk ⊗ C ∼= Γ′
C
(E0 � E�k

1 →Mk+1) ,

for all ϕ ∈ E0. By iterating this procedure we obtain the result for all n.

In analogy to the bosonic case, we can conclude that for a local local
functioanal F ∈ Okloc(E0 ⊕ E1[1]), the WF set of F (n)(ϕ) ∈ Γ′(E�n

0 �E�k
1 →

Mk+n) is orthogonal to TDk+n, the tangent bundle of the thin diagonal.
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3.4 Vector fields

In this section we define some important geometrical structures on E. Firstly,
note that we can view E (in a trivial way) as an infinite dimensional manifold
modeled on a locally convex topological vector space (a Fréchet space in this
case). For a precise definition of infinite dimensional manifolds see [KM97,
Nee06]. The tangent space to E is then given by

TE = E× E ,

and smooth vector fields are smooth sections

Γ(TE) ∼= C∞(E,E) .

As in the finite dimensional situation, vector fields on E form a Lie algebra,
where the Lie bracket is given by the commutator [., .].

We can also define differential forms on E, but here the definition is a
bit more tricky than with the vector fields. In [Nee06] one uses the following
definition

Definition 3.23. Let X be a differentiable manifold and V a locally convex
topological vector space, then a V -valued p-form on X is a function which
associates to each x ∈ X a p - linear alternating map ωx = ω(x) : Tx(M)p →
V such that in local coordinates the map (x, v1, . . . , vp) 7→ ωx(v1, . . . , vp) is
smooth.

It follows from proposition 3.1 that derivatives of Bastiani smooth func-
tionals are n-forms in the above sense. However, later on we will need objects
more general than these, so it is better to modify the concepts of vector fields
and forms already at this point.

We are interested in the complexification of Γ(TE), i.e. in ΓC(TE). This
space can be identified with C∞(E,EC). As we did with the functionals, we
want to require vector fields to be compactly supported in some sense. There
are two possibilities here; we can view X as an element of C∞(E,EC) or as a
derivation on C∞(E,R). The notion of support which we invoke here takes
both these aspects into account. In the first, we restrict ourselves to vector
fields that are elements of C∞(E,EC

c). We define the support as follows.

Definition 3.24. Let X ∈ C∞(E,EC
c) be a vector field. We define

supp X =
∑
ϕ∈E

supp(X(1)(ϕ)) ∪
∑
ϕ∈E

supp(X(ϕ)) (3.12)



56 CHAPTER 3. KINEMATICAL STRUCTURE

We restrict ourselves to vector fields that are compactly supported. Note
that this implies that in particular they need to induce elements of C∞(E,EC

c).
The first part of the formula (3.12) refers to the support of X, as a function
on E. The second term is the support of X seen as a derivation. Next we
define locality.

Definition 3.25. Let Vloc ⊂ ΓC(TE) denote the space of compactly supported
complexified vector fields X that can be written in the form

X(ϕ)(x) = X̃(jkx(ϕ)) ≡ Xx(ϕ) ,

where k ∈ N and X̃ is some Ec-valued function on the jet bundle. Such vector
fields are called local.

Note that elements of Vloc are derivations of Floc and Vloc is a Lie subal-
gebra (over C) of ΓC(TE), where the Lie bracket is given by the commutator
of vector fields. Note, however, that it is not an F-submodule of ΓC(TE). In
the next step we define multivector fields. We will use here a definition which
differs from the standard one used in the literature, but is more natural in
our context. Let us start with some motivation. Firstly, we want to be able
to insert a differential F (1) of a local functional into a local bi-vector field
and the result should be an element of Vloc. Secondly, we want antisym-
metry, some smoothness conditions and the compact support requirement.
The locality implies that we have to consider objects more general than just
elements of C∞(E,EC

c ∧EC
c), which would be the standard notion of the space

of bi-vector fields on an infinite dimensional manifold. Instead, we use the
framework introduced in section 3.3 and view the complexified multivector
fields as O(T ∗[1]E), where T ∗[1]E is the odd cotangent bundle of E, i.e.

T ∗[1]E
.
= E⊕ E∗[1] ,

where E∗ .= Γ(E∗ →M). The notion of functions on a graded space has been
clarified in definition 3.17. Among all elements of O(T ∗[1]E) we distinguish
the local ones.

Definition 3.26. The space of local multivector fields is defined as Oloc(E⊕
E∗[1]) in the sense of definition 3.20.

In particular, we identify Vloc with O1
loc(E⊕E∗[1]). Note that the notion

of the support of a vector field which we have introduced in definition 3.12 is
now just a special case of 3.19. The space of local multivector fields defined
this way is closed under insertion of differentials F (1) of local functionals, as
required.

In the next step we introduce multilocal multivector fields.
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Definition 3.27. The space of multilocal multivector fields ΛV is defined as
Oml(E⊕ E∗[1]), in the sense of 3.22. We also denote V

.
= O1

ml(E⊕ E∗[1]).

Remark 3.4. Note that V is just the algebraic completion of Vloc as a
F-module and a Lie subalgebra (over C) of ΓC(TE). Elements of V are
derivations of F.

At this point it is convenient to introduce some notation. The action of
a vector field X ∈ V on a functional F ∈ F can be written as

(∂XF )(ϕ) =
〈
F (1)(ϕ), X(ϕ)

〉
.

As F (1)(ϕ) is represented be a certain integration measure formally written
as δF

δϕ(x) , we can use the notation

(∂XF )(ϕ) =

∫
M
Xx(ϕ)

δF

δϕ(x)
,

which motivates the following:

X =

∫
M
Xx

δ

δϕ(x)
.

This notation is analogous to the one used commonly in the finite dimensional
case, i.e. v =

∑N
i=1 v

i∂i, where v ∈ Γ(TRN ). In the physics literature this
formal notation is commonly used, but one replaces δ

δϕ(x) with a formal
generator ϕ‡(x) called the antifield, i.e.

X(ϕ,ϕ‡) =

∫
M
Xx(ϕ)ϕ‡(x)

This way, vector fields of our approach can be identified with functions of
ϕ and ϕ‡ present in other approaches. Similarly, we write k-vector fields
Y ∈

∧k V in the form

Y (ϕ) =

∫
M
Y (ϕ)(x1, . . . , xk)

δ

δϕ(x1)
. . .

δ

δϕ(xk)
,

where all the indices of the fiber V ∗ have been suppressed and
Y (ϕ)(x1, . . . , xk) is a distributional kernel with antisymmetry properties re-
flecting definition 3.14. If Y is local, then this distribution is supported on
the thin diagonal. In the antifield notation we express Y as

Y (ϕ,ϕ‡) =

∫
M
Y (ϕ)(x1, . . . , xk)ϕ

‡(x1) . . . ϕ‡(xk) .
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This notation is actually not as formal as it seems, if we interpret ϕ‡(x) as
an evaluation functional, i.e. ϕ‡α(x)(v)

.
= vα(x), where v ∈ E∗. We can then

understand the above formula as a definition of an antisymmetric k-form on
E∗ 〈

Y (ϕ,ϕ‡); v1, . . . , vk

〉
=

∫
M
Y (ϕ)(x1, . . . , xk)v(x1) . . . v(xk) ,

where we have suppressed all the indices of the fiber V ∗ and we do not
need to antisymmetrize, as Y (ϕ)(x1, . . . , xk) is already antisymmetric. This
agrees with the formal notation introduced in section 3.3.

3.5 Functorial interpretation

All the constructions we have performed can be done covariantly across all
the spacetimes, so we can reformulate them in the category theory language.

Definition 3.28. The configuration space functor is a contravariant functor
E from Loc to Vec, such that for all M ∈ Obj(Loc), E(M) is a configuration
space according to the definition 3.1.

Let us consider some examples

Example 3.2. For the theory of scalar fields, the configuration space functor
E is a contravariant functor from Loc to Vec, defined by

E(M) = C∞(M,R) ,

Eχ = χ∗ ,

where M = (M, g) ∈ Obj(Loc) and for a morphism χ ∈ Hom(M,N) we
have the pullback χ∗ : E(N)→ E(M) defined by

χ∗ϕ
.
= ϕ ◦ χ ,

where ϕ ∈ E(N)

This definition generalizes in a straightforward way to the case where
E(M) is defined as the space of k-forms on M , since the pullback is still
well defined. For k-vectors we use the metric g to obtain k-forms, so we can
define pullbacks of arbitrary tensor fields.

Example 3.3. For effective quantum gravity we set

E(M) = Γ((T ∗M)⊗2) ,

Eχ = χ∗ ,
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where
(χ∗h)(u, v)

.
= h ◦ χ(Tχ(u), Tχ(v)) ,

where χ : M→ N, u, v ∈ Γ(TM), h ∈ E(N) and ·Tχ is the tangent map.

The generalization to forms taking values in a fixed vector space is also
straightforward.

Example 3.4. For Yang-Mills theories with a trivial bundle we set

E(M) = Ω1(M, g) ,

Eχ = χ∗ ,

where
(χ∗A)(u)

.
= h ◦ χ(Tχ(u)) ,

where χ : M→ N, u ∈ Γ(TM), A ∈ E(N).

Given E, the spaces of local and multilocal functionals are assigned to
spacetimes in a functorial way.

Proposition 3.4. The space of local functionals is a functor Floc : Loc →
Vec, so is the space of multilocal functionals F : Loc→ Vec.

Proof. We set Floc(M)
.
= Floc(M) and F(M)

.
= F(M) for the objects and

Flocχ(F )(ϕ)
.
= F (Eχϕ), Fχ(G)(ϕ)

.
= F (Eχϕ) for the morphisms, where

χ ∈ Hom(M,N), F ∈ Floc(M), G ∈ F(M) and χ ∈ E(N).

The space of configurations is in a natural way a contravariant functor,
but the space of compactly supported configurations can be assigned to a
spacetime in a covariant way. As an example, consider the space of test
functions in the definition 2.50. This motivates the following definition

Definition 3.29. The space of compactly supported configurations Ec is a
covariant functor from Loc to Vec, which acts on the objects as Ec(M) =
Ec(M).

The vector field on E which we consider are maps from E to Ec, so they
transform covariantly.

Proposition 3.5. Given E and Ec, the space of multi-local vector fields is a
functor V : Loc→ Vec, the same holds for local vector fields.

Proof. We set V(M)
.
= V(M) and Vχ(X)

.
= Ecχ ◦ X ◦ Eχ, where χ ∈

Hom(M,N), X ∈ V(M). The same for local vector fields.
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Chapter 4

Classical theory

Having defined the essential kinematical structure we are now ready to intro-
duce the dynamics. To this end we will use a generalization of the Lagrange
formalism.

4.1 Dynamics

We start with introducing some definitions.

Definition 4.1. A generalized Lagrangian on a fixed spacetime M = (M, g)
is a map L : D(M)→ Floc such that

i) L(f + g+h) = L(f + g)−L(g) +L(g+h) for f, g, h ∈ D with supp f ∩
supp h = ∅ (Additivity).

ii) supp(L(f)) ⊆ supp(f) (Support).

iii) Let G be the isometry group of the spacetime M (for the Minkowski
spacetime we set G to be the proper ortochronous Poincaré group P

↑
+.).

We require that L(f)(g∗ϕ) = L(g∗f)(ϕ) for every g ∈ G (Covariance).

Proposition 4.1. Let L be a generalized Lagrangian. The additivity of L in
the test function implies that:

i) L(f) is an additive functional on E.

ii) For any fixed test function f ∈ D , L(f) can be written as a finite sum
of additive functionals of arbitrarily small space-time support.

Proof. See [BFR12].
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Definition 4.1 formalizes the idea that the generalized Lagrangian asso-
ciates to a test function f the local functional L(f) obtained by integrating
f with the Lagrangian density L(x)[ϕ] that depends locally on the field
configuration ϕ. Introducing the cutoff function f is necessary because the
manifold M , being globally hyperbolic, is non-compact. Moreover, it is not
possible to restrict ourselves to compactly supported configurations ϕ, since
later on we will have to impose equations of motion that are normally hy-
perbolic and non-trivial solutions to such equations cannot be compactly
supported. Let us consider some examples.

Example 4.1. Examples of generalized Lagrangians:

i) Free scalar field:

L0(f)[ϕ] =
1

2

∫
M

(
∇νϕ∇νϕ−m2ϕ2

)
fdµg , (4.1)

where dµg is the invariant measure on M induced by the metric g, ∇ is
the covariant derivative, and we use the Einstein summation convention
for the indices, so ∇νϕ∇ν ≡

∑3
ν=0∇νϕ∇νϕ.

ii) Interaction term in the ϕ4 theory:

LI(f)[ϕ] =

∫
M

1

4!
ϕ4fdµg .

iii) Yang-Mills Lagrangian:

LYM(f)(A) = −1

2

∫
M
f tr(F ∧ ∗F ) ,

where A ∈ Ω1(M, g), F = dA+ 1
2 [A,A] and ∗ is the Hodge operator.

iv) Einstein-Hilbert Lagrangian:

LEH(f)[h]
.
=

∫
R[g + h]f dµg+h ,

where h ∈ Γ((T ∗M)⊗2).

The cutoff function f is only an auxiliary tool, which allows to formulate
the problem in the mathematically rigorous way, but it has no physical mean-
ing. Therefore, the crucial structures in our classical model cannot depend
on the choice of f . This is achieved by means of the following definition:
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Definition 4.2. The Euler-Lagrange derivative of L is a map S′ : E → E′c
defined by 〈

S′(ϕ), h
〉 .

=
〈
L(f)(1)[ϕ], h

〉
,

where h ∈ Ec and f ∈ D is chosen in such a way that f ≡ 1 on supph.

Since L(f) is a local functional, S′ doesn’t depend on the choice of f .
Moreover, S′ would not change if we add to L a generalized Lagrangian
that is supported in the region where f is not constant. Therefore, the
dynamical structure is not encoded in L’s, but rather in equivalence classes
of generalized Lagrangians. This leads to the following definition:

Definition 4.3. An action S[L] is an equivalence class of Lagangians under
the following equivalencen relation [BDF09]:

L1 ∼ L2 iff supp((L1 − L2)(f)) ⊂ supp df . (4.2)

Remark 4.1. For convenience we write S instead of S[L], when it’s clear
from which Lagrangian the given action comes from. For example, the action
corresponding to a Lagrangian denoted by L0 will be written as S0 rather
than S[L0].

Physical meaning of (4.2) is to identify Lagrangians that “differ by a
total divergence”. Note that two Lagrangians equivalent under the relation
(4.2) induce the same Euler-Lagrange derivative, so dynamics is a structure
coming from actions rather than Lagrangians. We are now ready to introduce
the equations of motion eom’s.

Definition 4.4. The equation of motion (eom) corresponding to the action
S is

S′(ϕ) ≡ 0 , (4.3)

understood as a condition on ϕ ∈ E.

The space of solutions to (4.3) will be denoted by ES and it is a subman-
ifold of E. Physically, classical observables should be modeled as multilocal
functionals on ES . Let us denote the space of such functionals by FS . Note
that it can be characterized as the quotient

FS = F/IS ,

where IS is the ideal of F consisting of functionals that vanish on ES .
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Definition 4.5. The second variational derivative S′′ of the action S is
defined by 〈

S′′(ϕ), h1 ⊗ h2

〉 .
=
〈
L(2)(f)(ϕ), h1 ⊗ h2

〉
,

where f ≡ 1 on supp h1 and supp h2.

By definition S′′ is a linear map

S′′ : E→ L(Ec,Ec;R) .

From the locality of the Lagrangian follows that in fact S′′(ϕ) can be ex-
tended to a linear map on Ec × E and the Schwarz kernel theorem (see
chapter 5 of [?]) implies that this induces a continuous linear operator
PS(ϕ) : E → E∗. For details concerning the proofs of these statements,
see [BDLGR15]. One also shows that PS is map V → V∗, so geometrically
it can be interpreted as a symmetric covariant 2-tensor. Note that if S is
quadratic then PS(ϕ) ≡ P is the same for all ϕ and S′(ϕ) = Pϕ. This is
the case for the free scalar field described by th Lagrangian L0 from example
4.1, where P = � +m2.

The crucial assumption in the pAQFT approach is that PS(ϕ) is a nor-
mally hyperbolic operator. We recall that an operator on E is normally
hyperbolic if its principal symbol is of the metric type, i.e. it is given by

σPS(ϕ)(ξ, ξ) = g(ξ, ξ)idEx ,

for all ξ ∈ T ∗xM and all x ∈M . Here idEx denotes the identity on the fiber.
For more details on normally hyperbolic operators see [BGP07]. In the same
reference it is also shown that for such operators there exist unique retarded
and advanced Green’s functions (fundamental solutions) ∆R

S (ϕ), ∆A
S (ϕ) :

E∗c → E defined by the requirements

PS(ϕ) ◦∆
R/A
S = idE∗c ,

∆
R/A
S ◦ PS(ϕ)

∣∣
Ec

= idEc ,

and the support properties

supp ∆A(f) ⊂ J+(supp f) ,

supp ∆R(f) ⊂ J−(supp f) ,

where f ∈ E∗c . Note that, by the Schwarz kernel theorem, these operators can
be written in terms of their integral kernels, which then satisfy appropriate
support properties and

∆R
S (y, x) = ∆A

S (x, y) . (4.4)
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Let us define the causal propagator as

∆S(ϕ)
.
= ∆A

S (ϕ)−∆R
S (ϕ) . (4.5)

Due to (4.4) the causal propagator is antisymmetric, i.e. its integral kernel
satisfies

∆S(ϕ)(y, x) = −∆S(ϕ)(x, y) .

4.2 Natural Lagrangians

There is an elegant way to describe generalized Lagrangians using the lan-
guage of category theory.

Definition 4.6. A natural Lagrangian L is a natural transformations be-
tween the functor D and Floc, such that for all M ∈ Obj(Loc) we have:

i) LM(f + g + h) = LM(f + g)− LM(g) + LM(g + h) for f, g, h ∈ D with
supp f ∩ supp h = ∅ (Additivity).

ii) supp(LM(f)) ⊆ supp(f) (Support).

Note that L is fixed by a family of maps LM : D(M)→ Floc(M) satisfying
the covariance condition

LM(f)(Eχ(ϕ)) = LN(Dχf)(ϕ) , (4.6)

where χ ∈ Hom(M,N), f ∈ D(M), ϕ ∈ E(N). The following result shows
the relation between natural Lagrangians and generalized Lagrangians intro-
duced earlier in this chapter.

Proposition 4.2. Let L be a natural Lagrangian from definition 4.6, then
for each M ∈ Obj(Loc), LM is a generalized Lagrangian in the sense of
definition 4.1.

Proof. Since the additivity and support conditions are included in the defini-
tion, it suffices to show covariance under isometries of the spacetime. This,
however, follows from the general local covariance of L, expressed by the
condition (4.6).

Example 4.2. All the Lagrangians from example 4.1 give rise to natural
Lagrangians.

In the following we will always assume that our generalized Lagrangians
arise in this way.
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4.3 Homological characterization of the solution
space

We have already introduced the space of multilocal functionals on the space
ES of solutions to eom’s as the quotient FS = F/IS . Now we look for a nice
homological interpretation of this quotient. Since ES is the zero locus of S′,
it is natural to use at this point the derived critical locus construction.

Note that if X ∈ V is a multilocal vector field, then the multilocal func-
tional 〈S′, X〉, obtained by contracting this vector field with the one-form
S′, obviously vanishes on ES . Let us define a map δS : V→ F by

δS
.
=
〈
S′, .

〉
.

Clearly, δS(V) ⊂ IS . n general the opposite inclusion can hold only locally,
since the structure of the global solution space of nonlinear PDE’s can be
veryt complicated. Since our ultimate goal is the quantum theory, we will
avoid these complications by defining, from now on, IS as δS(V).

Definition 4.7. The ideal IS ⊂ F is defined as δS(V) and we call it “the ideal
generated by the equations of the motion”. The space of on-shell functionals
is defined as

FS
.
= F/IS .

Since QFT models are often constructed by means of some quantization
procedure from classical field theory models, the space of solutions to classical
eom’s is bound to appear. However, in the approach to pAQFT which we
advocate in this book, we use FS rather than ES , so it is natural to give up
the traditional point of view on the space of solutions. This allows now for a
natural algebraic interpretation of FS as the 0-th homology of the following
complex:

. . . →
∧2 V

δS−→ V
δS−→ F → 0

2 1 0
, (4.7)

where δS is extended to the exterior algebra
∧
V by requiring the graded

Leibniz rule with respect to the exterior product ∧ and by continuity.
Let us now discuss H1 (

∧
V, δS). The kernel of δS : V→ F (here denoted

by ker δS
∣∣
1→0

) consists of those vector fields X which satisfy

∂XS(ϕ)
.
=
〈
S′(ϕ), X(ϕ)

〉
= 0 , ∀ϕ ∈ E .

Geometrically, these vector fields correspond to directions in the configura-
tion space in which the action S is constant. In this sense, we interpret them
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as symmetries of the action. Among all the symmetries we can distinguish
those which are of the form δSZ for some Z ∈

∧2 V. In order to understand
the meaning of such symmetries, let us consider a bivector field of the form
Z = X ∧ Y for some X,Y ∈ V. We have

δS (X ∧ Y ) = (δSX)Y − (δSY )X .

Note that the vector field obtained this way vanishes identically on ES . For
this reason, such symmetries are called in physics literature trivial symme-
tries. As a result, one interprets

H1

(∧
V, δS

)
.
=

ker δS
∣∣
1→0

Im δS
∣∣
2→1

(4.8)

as the space of non-trivial local symmetries. Theories that don’t posses non-
trivial local symmetries include the scalar field theory with a polynomial
interaction (e.g. ϕ4). One of the simplest examples of a theory with non-
trivial H1 (

∧
V, δS) is QED. Also Yang-Mills theories and gravity fall into

this category. We will discuss these in more detail in sections 7 and 8. A
simple criterion to decide that the theory has no non-trivial local symmetries
has been provided in [FR12b].

Proposition 4.3. The action S possesses no non-trivial symmetries if the
linearised equation of motion

PS(ϕ)ψ = 0

doesn’t have any non-trivial compactly supported solutions ψ for all ϕ ∈ E.

Proof. See the discussion at the end of section 2 in [FR12b].

To end this section, we will introduce one more algebraic structure on∧
V. As noted before, V is a Lie subalgebra of Γ(TE), where the bracket is

just the commutator of vector fields. Now, using the graded Leibniz rule and
continuity, one can extend this structure to the Schouten bracket {, ., } on∧
V fixed uniquely by the following properties:

1. {X,F} .= ∂XF , for F ∈ F and X ∈ V,

2. {X,Y } .= [X,Y ], for X,Y ∈ V,

3. {., .} fulfills the graded Leibniz rule.
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In physics literature this structure is called the antibracket, where it is usu-
ally expressed with the use of the antifields notation introduced in section
3.4. Recall that X ∈

∧
V is a smooth functional on E × (E∗C)k, so can be

differentiated both with respect to ϕ ∈ E and vi ∈ E∗C, i = 1, . . . , k. We
denote the n-the derivative with respect to ϕ by δnX

δϕn and the left derivative
of X in the direction of v ∈ E∗C is defined as〈

δlX

δϕ‡
(ϕ), v

〉
.
= 〈X(ϕ); v, .〉 ,

where ιv is the insertion of v from the left into the antisymmetric k-linear
map X(ϕ). Similarly, we define the right derivative as〈

δrX

δϕ‡
(ϕ), v

〉
.
= 〈X(ϕ); ., v〉 ,

Using this notation we write

{X,Y }(ϕ)
.
=

〈
δ

δϕ
X(ϕ),

δl
δϕ‡

Y (ϕ)

〉
−
〈
δr
δϕ‡

X(ϕ),
δl
δϕ
Y (ϕ)

〉
.

This expression is well defined, since the first derivatives of a multilocal vec-
tor field with respect to both ϕ and ϕ‡ are, by definition, smooth compactly
supported sections.

Note that the BV differential δS is locally generated by the bracket in
the sense that

δSX = {S,X} .= {L(f), X} ,

where f ≡ 1 on the support of X and L is the Lagrangian defining the
theory.

4.4 The net of topological Poisson algabras

In this section we show how construct a causal net of topological Poisson
algebras in the sense of 2.38. First we introduce a Poisson bracket on an
appropriate space of functionals and next we equip this space of functionals
with a topology that makes this bracket sequentially continuous.

4.4.1 The Peierls bracket and microcausal functionals

We equip F with a Poisson bracket called the Peierls bracket [Pei52]. It
was shown in [FR14] that this bracket is equivalent to the canonical bracket
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commonly used in classical mechanics, if the latter exists. The advantage
of using the Peierls bracket is that it can be defined completely withing the
Lagrangian formalism, without the need to pass to the Hamiltonian. This
is important for example in cases when the Hamiltonian vanishes. Another
advantage of the Peierls bracket is that it is defined in a completely covariant
way, so it doesn’t require to introduce a foliation ofM with Cauchy surfaces.

Definition 4.8. Let F,G ∈ F. Then the Peierls bracket is defined by

bF,Gc (ϕ)
.
=
〈
F (1)(ϕ),∆C

S(ϕ)G(1)(ϕ)
〉
, (4.9)

where ∆C
S(ϕ) denotes the natural extension of ∆S(ϕ) to a map on EC

c with
values in EC.

Remark 4.2. For the simplicity of notation we will write ∆S(ϕ) instead of
∆C
S(ϕ), when it is clear from the context that we mean the extension to the

complex-valued sections. We will do the same also for other bilinear forms
like for example ∆A(ϕ) and ∆R(ϕ).

The bracket defined in 4.8 is antysymmetric (by the antisymmetry of
∆S(ϕ)), bilinear and satisfies the Jacobi identity [Jak09]. Since F (1)(ϕ)
and G(1)(ϕ) are smooth, it is clear that b., .c is well defined on multilocal
functionals. However, F is closed under this bracket. The natural question
to ask is how to extend the domain of definition of b., .c, so that the resulting
space is closed under this bracket. To answer this question, it is useful to
look at the WF set of ∆S(ϕ).

WF(∆S(ϕ)) = {(x, k;x′,−k′) ∈ Ṫ ∗M2|(x, k) ∼ (x′, k′)} ,

where the equivalence relation ∼ means that there exists a null geodesic strip
such that both (x, k) and (x′, k′) belong to it. Recall that a null geodesic
strip is a curve in T ∗M of the form (γ(λ), k(λ)), λ ∈ I ⊂ R, where γ(λ) is a
null geodesic parametrized by λ and k(λ) is given by k(λ) = g(γ̇(λ), ·). The
form of the WF set of ∆S(ϕ) follows from the theorem on the propagation
of singularities together with the initial conditions and the antisymmetry of
∆S(ϕ). (See [Rad96] for a details).

We can now use Hörmander’s criterion 3.3 to determine a class of distri-
bution that can be point-wise multiplied with ∆S(ϕ) and hence the condition
that has to be satisfied by the differentials F (1)(ϕ) and G(1)(ϕ) in (4.9). This
leads to the following definition
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Definition 4.9. A functional F ∈ C∞(E,R) is called microcausal if it is
compactly supported and satisfies

WF(F (n)(ϕ)) ⊂ Ξn, ∀n ∈ N, ∀ϕ ∈ E , (4.10)

where Ξn is an open cone defined as

Ξn
.
= T ∗Mn \ {(x1, . . . , xn; k1, . . . , kn)|(k1, . . . , kn) ∈ (V

n
+ ∪ V

n
−)(x1,...,xn)} ,

(4.11)
where (V ±)x is the closed future/past lightcone understood as a conic subset
of T ∗xM .

In [BFR13] it is additionally required that the first derivative F (1)(ϕ) is
smooth for all ϕ ∈ E and ϕ 7→ F (1)(ϕ) is smooth as a map E→ EC. We will
call functionals satisfying this additional property strongly microcausal.
We denote the space of microcausal functionals by Fµc and the space of the
strongly microcausal ones by Fsµc.

At this point it is convenient to introduce a notation for spaces of distri-
butions with WF sets contained in open and closed cones.

Definition 4.10. Let D ′Γ(Mn) denote the space of distributions whose WF
sets are contained in a closed cone Γ ⊂ Ṫ ∗Mn. Similarly, E ′Λ(Mn) denotes
the space of distributions whose WF sets are contained in an open cone Λ ⊂
Ṫ ∗Mn.

We can now rephrase definition 4.9 by saying that n-th derivatives of
elements of Fµc are distributions belonging to the corresponding spaces
E ′Ξn(Mn). The generalization of the definition 4.9 to the graded case is
straightforward. We spell out the definition for O(E0 ⊕ E1[1])

Definition 4.11. Let F ∈ Ok(E0 ⊕ E1[1]). We say that F is microcausal,
i.e. an element of Oµc(E0 ⊕ E1[1]) if it is compactly supported and

F (n)(ϕ) ∈ E ′Ξn+k
(Mn+k) ,

for all ϕ ∈ E0, n ∈ N.

F is said to be strongly microcausal if in addition

i) F (ϕ, u) has an empty WF set for all ϕ ∈ E0, u ∈ E
⊗̂πk−1
1 and the map

(ϕ, u) 7→ F (ϕ, u) is smooth as a map from E0 × E
⊗̂πk−1
1 to EC

1,

ii) F (1)(ϕ, u) has an empty WF set for all ϕ ∈ E0, u ∈ E
⊗̂πk
1 and the map

(ϕ, u) 7→ F (n)(ϕ, u) is smooth as a map from E0 × E
⊗̂πk
1 to EC

0.
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The following proposition is crucial for the construction of the local net
of Poisson algebras.

Proposition 4.4. (Fsµc, b., .c) is closed under the bracket and is a Poisson
algebra. If ∆S doesn’t depend on ϕ, then also (Fµc, b., .c) is a Poisson algebra.

Proof. See [BFR12, BFR13]

Remark 4.3. The stronger version of microcausality is needed if ∆S de-
pends on ϕ, because otherwise the proof of the Jacobi identity given in
[Jak09] would fail. Alternatively, following Dabrowski [Dab14b], one can use
a more refined definition microcausalty – called operadic microcausality –
that involves the notion of dual WF sets. We will give more details on that
in section 4.4.2

If the discussion applies to all the notion of micorcausality introduced
above, we use the notation F∗µc.

4.4.2 Topologies on the space of microcausal functionals

We come now to the important problem of introducing on F∗µc a topology
that will be appropriate for construction models of classical and quantum
theories in the sense of definitions 2.38 and 2.39. We have already seen that
the regularity of smooth functionals is governed by the regularity of their
derivatives. The latter is measured using the notion of a WF set. Clearly we
need a topology that controls all these regularity properties. In the light of
the discussion from section 2.5 it would be desirable to use a topology that
is nuclear. Other useful properties are completeness and being bornological.
At the moment there is no definite consensus in the literature as to which
choice is the most natural, so we will review the proposals which are most
relevant for the scope of this book.

The basic idea is to introduce a topology on the space E ′Ξn(Mn) of distri-
butions with WF sets contained within the open cone Ξn defined by (4.11)
and use this topology to control the regularity of derivatives of functionals.
At this point there are several possibilities. The simplest one is to invoke the
topology of pointwise convergence of all the functional derivatives [BDF09],
but the resulting space is not complete, so it might be better to use some
weak notion of uniform convergence instead (see [Dab14b]).

We start with reviewing the proposal made by [BDF09], where the au-
thors equip D ′Γ(Mn) the locally convex topology proposed by Duistermat
[Dui96]. For simplicity we state the definition for Rn, but it generalizes to
manifolds in a straightforward way with the use of local charts.
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Definition 4.12. We define τH on D ′Γ(Rn) as the locally convex topology
given by the following systems of seminorms:

i) All the seminorms on D ′(Rn) for the weak topology: ||u||f = |〈u, f〉| for
all f ∈ D(Rn).

ii) The seminorms of the form

||u||m,V,χ = sup
k∈V

(1 + |k|)m|ûχ(k)|,

where m ≥ 0, χ ∈ D(Rn), and V ∈ Rn is a closed cone with suppχ ×
V ∩ Γ = ∅.

This is also called the Hörmander topology, since the seminorms ii) of
the definition above were already present in [Hör71], where they were used to
define a pseudo-topology rather than topology. In [BDH14] it had be shown
that it defines in fact a bornology. In short, bornology is a family of bounded
sets, just as a topology is a family of open sets. More precisely:

Definition 4.13. A bornology on a set X is a family B of subsets of X
(called the bounded (sub)sets of X) such that:

i) every one-element subset of X belongs to B,

ii) if A ∈ B and B ⊂ A then B ∈ B,

iii) if A and B are in B then A ∪B ∈ B.

In [BDH14] it is proven that the convergence in the bornological sense
(Mackey convergence) in DΓ(Rn) is the same as the convergence in the sense
of the Hörmander pseudotopology.

Proposition 4.5 (after [BDH14]). A sequence uj in D ′Γ converges to u in
the sense of Hörmander iff it Mackey-converges to u for the bornology of D ′Γ.

Proof. See proposition 3.1 of [BDH14].

There are several indications that the notion of bornology is more nat-
ural for the applications in physics than the notion of topology. Another
argument is that the family of smooth curves in a topological vector space is
determined by the by the bornology rather than topology. In the convenient
setting of global analysis [KM97] a map is smooth if it maps smooth curves
into smooth curves. This is a very elegant and robust notion of smoothness
and allows to do geometry on infinite dimensional manifolds of the type that
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appear commonly in physics. In [Mey04] it is pointed out that bornolog-
ical vector spaces are also very useful in non-commutative geometry and
representation theory. At the moment the formalism of bornological vector
spaces hasn’t been full embraced by mathematical physicists studying QFT,
so we refrain from formulating everything in these terms here as well. Nev-
ertheless, it seems tempting to explore the consequences of taking a purely
bornological viewpoint on the foundations of QFT in the future.

Let us come back to the main problem of the present section. For the
definition of a topology on microcausal functionals we still need to make one
more step. The topology defined above was meant for distributions with
WF sets contained in a closed cone. However, in the definition 4.9 one uses
open cones instead. It was proposed in [BDF09] to introduce a topology on
E ′Ξn(Mn) as the inductive limit topology over a countable family of spaces
(D ′C(Mn), τH) with closed cones contained in ΞN . The proof has been spelled
out in detail in [BFR12, Lemma 4.0.18]. By a slight abuse of notation, we
denote the resulting topological spaces by (E ′Ξn(Mn), τH).

Remark 4.4. It is crucial, that the inductive limit in the definition of
(E ′Ξn(Mn), τH) is countable, since this allows to conclude that (E ′Ξn(Mn), τH)
is nuclear.

In [BDF09] (E ′Ξn(Mn), τH) is used to define a topology on Fµc.

Definition 4.14. Equip Fµc with the topology τBDF defined as the initial
topology with respect to all the maps

Fµc → (E ′Ξn(Mn), τH) ,

F 7→ F (n)(ϕ) ,

where n ∈ N, ϕ ∈ E.

Definition 4.15. To obtain a topology on Fsµc, we replace in 4.14 E ′Ξ1
(M)

with D(M), equipped with its standard topology.

The topology τBDF is nuclear, but is not complete and it has been argued
in [DB14] that from the functional analytic viewpoint this is not the most
optimal choice. In [Sch57] it is argued that the spaces of distributions most
optimal for applications are the normal spaces of distributions

Definition 4.16. A Hausdorff locally convex space X is said to be a normal
space of distributions if there are continuous injective linear maps i : D(Ω) ↪→
X and j : X ↪→ D ′(Ω), where D ′(Ω) is equipped with its strong topology, such
that:
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i) The image of i is dense in X,

ii) for any f and g in D(Ω), 〈j ◦ i(f), g〉 =
∫

Ω f(x)g(x)dx.

The motivation for using normal spaces of distributions is that they have
a better behaviour under duality, in particular, the dual space can also be
equipped with a normal topology. In order to make D ′Γ(Rn) into a normal
space of distributions one needs to refine its topology. It was shown in [DB14]
that this can be done simply by replacing in 4.12 the seminorms of the weak
topology with the seminorms of the strong topology.

Definition 4.17 (following [DB14]). We define τN on D ′Γ(Rn) as the locally
convex topology given by the following systems of seminorms:

i) All the seminorms on D ′(Rn) for the strong topology: pB(u) =
supf∈B |〈u, f〉|, where B runs over the bounded sets of D(Ω).

ii) The seminorms ||u||m,V,χ, where m ≥ 0, χ ∈ D(Rn), and V ∈ Rn is a
closed cone with suppχ× V ∩ Γ = ∅.

With this choice of topologies one obtains a duality between D ′Γ(Mn)
and E ′Γ(Mn).

Proposition 4.6 (following [DB14]). The dual of D ′Γ(Mn) for its normal
topology τN is E ′Γ(Mn).

Proof. See Proposition 7 in [DB14].

The space E ′Γ(Mn) can be equipped with an inductive limit topology
similar to the one proposed in [BDF09] and spelled out in [BFR12]. It was
shown in [DB14] that this topology is equivalent to the strong topology
coming from the duality with D ′Γ(Mn). In the same reference it was also
proven that both E ′Γ(Mn) and D ′Γ(Mn) are nuclear and that D ′Γ(Mn) is
complete. The latter property unfortunately doesn’t hold for E ′Γ(Mn), which
was the motivation for further study, done in [Dab14a].

Definition 4.18. Let τBDH denote the topology on the space of (strongly) mi-
crocausal functionals by replacing in definition 4.14 the Hörmander topology
τH with the normal topology τN .

This topology has much better functional properties than τBDF , but is
not complete.

In order to obtain a complete topological space one needs to modify
the definition of the space of microcausal functionals as well. The idea in
[Dab14a] is to control not only the WF set of distributions but also the dual
WF set defined as follows.
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Definition 4.19 (after [Dab14a]). Let u ∈ D ′(Ω, Ω ⊂ Rn. The dual WF set
is defined as DWF (u) = ∪s>0,WFs(u), i.e the union of Sobolev Hs-wave
front sets.

A point (x, k0) /∈ WFs(u) means that there is a neighborhood U of x and a
conic neighborhood C of k0 such that for any f ∈ D(U)

(1 + |k|2)s/2f̂u ∈ L2(C) .

Note that if the Hs-wave front set of a distribution u is empty, it means
that u is of Sobolev type s, just like the distribution with the empty WF set
is smooth.

The notion of the DWF set introduced above allows for an explicit char-
acterisation of the completion of E ′Λ(Mn). It was shown in [Dab14a] that
the completion of (E ′Λ(Mn), τn) is the space of distributions in E ′ with DWF
sets contained in Λ.

In order to obtain a space of functionals with nice functionala analytic
properties, in [Dab14b] the following modifications are made, with respect
to the ansatz of [BDF09]:

1. In the definition 4.9, view derivatives F (n)(ϕ) not as distributions in
D ′(Mn), but rather as linear maps between spaces of distributions with
control on both the WF set and DWF set,

2. Use a topology on the space of distributions with control on both the
WF set and the DWF set, which is complete, nuclear and bornological
(the latter means essentialy that it is compatible with the bornology),

3. Replace the pointwise convergence of all the derivatives with the uni-
form convergence on images of compact subsets of R under smooth
curves (this is a natural choice from the point of view of the conve-
nient setting [KM97]).

The resulting space of functionals is called the space of operadically micro-
causal functionals, denoted by Foµc and we will denote the topology on this
space by τD. It has been shown in [Dab14b] that (Foµc, τD) is complete,
nuclear and bornological.

4.4.3 The classical causal net

We are now ready to construct a classical field theory model in the sense of
definition 2.38. The only missing ingredient is localization, but this can be
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easily introduced in our case, using the notion of the spacetime support of a
functional. We obtain the following result

Proposition 4.7. We define the classical field theory model on a spacetime
M = (M, g) with the configuration space E = Γ(E

π−→M) and the generalized
Lagrangian L as the net

O 7→ (Fsµc, τBDH , b., .cS) .

The involution is the pointwise complex conjugation of complex-valued func-
tionals and self-adjoint elements are those functionals, which take values in
R.

Proof. The proof has been outlined in [BDF09] and [BFR13]. The main
idea is to reduce the problem to the problem involving basic operation on
distribution. The fact that b., .c is well defined on the space of strongly
microcausal functionals and that Fsµc is stable under this bracket follow from
the WF set properties of derivatives of microcausal functionals and of ∆+

S (ϕ).
The only missing step, not commented on in [BDF09] and [BFR13], is the
(sequential) continuity. We will fill this gap here. For simplicity of notation,
we spell out the proof for the example of the scalar field, i.e. E = E . First
we note that with the initial topology we are using it is sufficient to show
the continuity pointwise in ϕ, so it reduces to the continuity of operations
on distributions of the form

(f, g) 7→ 〈f,∆Sg〉 ,

where f, g ∈ E ′Ξ1
(M). This in turn is reduced to proving the sequential

continuity of the tensor product and the sequential continuity of the dis-
tributional pullback. In the closed cone case these two results are well
known (see [CP81, p. 511] and [Hör03, 8.2.4] respectively). For the open
cone, we will use the strategy proposed by [Dab15], based on the results of
[BDH14, DB14, Dab14a, Dab14b].

We start with the sequential continuity of the tensor product. It was
proven in [DB14, Prop. 28] that E ′Ξn(Mn) is a barelled space, so, following
[Trè06, Th. 41.2] we conclude that the separate continuity implies hypocon-
tninuity1 thus sequential continuity. By the definition of the inductive limit,
the separate continuity follows from the separate continuity in the closed
cone case, which has been proven in [BDH14]. Another way to see it is to

1Hypocontinuity of a bilinear map is a notion stronger than sequential continuity on
the product space, but is weaker than the joint continuity
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use the fact that for linear maps Hörmander’s sequential continuity implies
boundedness, hence continuity between the bornologifications. It was shown
in [Dab14a, Prop. 33] that the inductive limit topology on E ′Ξn(Mn) is also
an inductive limit of bornologifications, hence it is itself bornological.

As for the continuity of the pull-back, see [Dab14a, Prop. 36].

Remark 4.5. In fact the argument presented above proves something
stronger than sequential continuity, namely the hypocontinuity of the prod-
uct. This result would not be possible for τH replacing τN , as shown by
counterexamples provided in [BDH14]. Therefore, to show the joint sequen-
tial continuity of the bracket with the topology τBDF one needs to use a
different, indirect argument (work in progress).

A major improvement of the above result has been obtained recently in
[Dab14b].

Proposition 4.8 (after [Dab14b]). (Foµc, τD) equipped with the Peierls
bracket b, c is a complete, nuclear and bornological topological Poisson al-
gebra with hypocontinuous operations.

Proof. See [Dab14b].
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Chapter 5

Deformation quantization

The reformulation of classical theory done in section 3 served as a preparation
for constructing QFT models. The framework which we are going to use
is deformation quantization combined with causal perturbation theory. To
quantize a given theory described by the action S we first need to split S into
a free part S0 (at most quadratic in field configurations) and the interaction
term SI . Then, we quantize the theory defined by S0, using deformation
quantization based on a Moyal-type formula and in the final step we will re-
introduce the interaction using causal perturbation theory. This last step will
be discussed in chapter 6, while the present chapter deals with deformation
quantization.

The idea of deformation quantization goes back to Bayen, Flato, Frons-
dal, Lichnerowicz and Sternheimer [BFF+78a, BFF+78b] and the first at-
tempt to use these structures in quantum field theory is due to Dito [Dit90].
Based on these ideas Brunetti, Dütsch, and Fredenhagen developed a formal-
ism, which we present here [DF01a, DF01b, BDF09]. At the moment this
quantization method is known to work only perturbatively, but the ultimate
aim is to obtain some converegence results as well. As for the deformation
quantization part, this is already possible in some examples like the free
scalar fields. The interacting theory is a bigger challenge, but at least some
weak converegence in the coupling constant seems to be within reach in the
nearest future.

5.1 Star products

In this chapter we will focus on quantizing theories where no local symmetries
are present. We will also restrict ourselves to even (bosonic) field configu-

79
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rations, to avoid extra complication with the signs. Let E = Γ(E → M) be
the configuration space and S an arbitrary action that doesn’t possess non-
trivial local symmetries and for which S′′(ϕ) induces a normally hyperbolic
operator for every ϕ ∈ E. In the first step we first split S = S0 + SI , where
S0 is at most quadratic. This can be done by means of Taylor expansion
around any field configuration ϕ0, i.e.

L(f)(ϕ) = L(f)(ϕ0)+
〈
L(f)(1)(ϕ0), ϕ

〉
+

1

2

〈
L(f)(2)(ϕ0), ϕ⊗ ϕ

〉
︸ ︷︷ ︸

L0(f)

+Rest term ,

The constant term can be neglected, as it doesn’t affect the dynamics. Note
that if we choose ϕ0 to be a solution to the equations of motion (i.e. S′(ϕ0) =
0), then 〈

L(f)(1)(ϕ0), ϕ+ ψ
〉

=
〈
L(f)(1)(ϕ0), ϕ

〉
,

if ψ ∈ Ec is supported in the region, where f = const. Hence
supp

〈
L(f)(1)(ϕ0).

〉
⊂ supp(df) and by means of the equivalence relation

(4.2) we conclude that in such a situation S0 contains only the quadratic
term. Otherwise, S0 has both a quadratic and a linear term. For simplic-
ity, we will consider here only the situation where ϕ0 is a solution, so S0 is
quadratic and we denote the linear operator induced by S′′0 by P .

Starting from the Poisson algebra (Fµc, b., .cS0
), a formal deformation

quantization means constructing an associative algebra (Fµc[[~]], ?), where
the product ? is expressed as

F ? G =

∞∑
n=0

~nBn(F,G) , (5.1)

in terms of some differential (in the sense of calculus on E) operators Bn
such that

B0(F,G) = F ·G ,
B1(F,G)−B1(G,F ) = i~ bF,GcS0

.

Note that the second condition corresponds to Dirac’s idea that in order
to quantize a classical theory one should “replace canonical brackets with
commutators”. Including terms of higher order in ~ is necessary to avoid the
Groenewald-van Hove no-go theorem, which states that (also in the finite
dimensional case) a Dirac type quantization prescription is not possible in
the strict sense [Gro46, VH51].
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More precisely (see [?]), let h be the Lie algebra spanned by the canon-
ical coordinate and momenta functions q1, . . . , qN , p1, . . . , pN and 1, with
the canonical Poisson bracket {., .}can. This algebra is a Lie subalgebra of
g
.
= (Pol(T ∗RN ), {., .}can) (polynomials on the phase space). According to

the Groenewald-van Hove Theorem, there exists no faithful irreducible rep-
resentation of h by operators on a dense domain of some Hilbert space which
can be extended to a representation of g. As a result, one cannot have a
Dirac quantization map Q from g to the space of operators on some Hilbert
space H, such that

[Q(f),Q(g)] = i~Q({f, g}) . (5.2)

There is, however a way out. Deformation quantization [BFF+78a,
BFF+78b] allows to avoid this no-go result, by weakening the condition (5.2)
to

[Q(f),Q(g)] = Q([f, g]?) = i~Q({f, g}) + O(~2) .

A stronger notion than formal deformation quantization is strict deformation
quantization. In this case, instead of constructing a space of formal power
series, one aims at constructing a C∗-algebra. This fits well with the algebraic
framework for quantum theory described in section 2.3. The notion of strict
deformation quantization has been introduced in [Rie94]. For a review on
the current status of the subject refer to [Rie98], see also [Haw08, BMS94].

As for the formal deformation quantization, the most significant recent
result is the one of Kontsevich, who has proven in [Kon03] the existence of
formal deformation quantization for arbitrary Poisson manifolds. Unfortu-
nately this cannot be applied directly in field theory, as the configuration
space E is infinite dimensional. However, if S0 is at most quadratic, there
exists an explicit formula for the star product and we will focus on this
construction for the rest of the present chapter.

To understand the algebraic structure, it is helpful to put the functional
analytic subtitles aside for the time being. To this end, we will start with a
class of functionals which is much smaller than Fµc and exhibits some nice
regularity properties.

Definition 5.1. A functional F ∈ C∞(E,C) is called regular if for all ϕ ∈ E

and n ∈ N the WF set of F (n)(ϕ) (seen as a distribution in Γ′C(E�n →Mn)
by means of the Proposition 3.1) is empty. Equivalently this means that we
can identify

F (n)(ϕ) ∈ ΓC
c((E

∗)�n →Mn) .

The space of regular functionals is denoted by Freg.
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We are now ready to introduce the star product. We define

(F ? G)(ϕ)
.
=
∞∑
n=0

~n

n!

〈
F (n)(ϕ),

(
i
2∆S0

)⊗n
G(n)(ϕ)

〉
, (5.3)

for F,G ∈ Freg.

Example 5.1 (Weyl algebra). For the free scalar field we have E =
C∞(M,R) and the Lagrangian is given by 4.1i). Consider regular functionals
of the form

Ff (ϕ) =

∫
M
f(x)ϕ(x)d4x ≡

∫
fϕdµ , where f ∈ D .

We define W(f)
.
= exp(iFf ) and verify that〈
(W(f))(1)(ϕ), h

〉
=

d

dλ
ei

∫
f(ϕ+λh)dµ

∣∣
λ=0

=

=

(
i

∫
fh dµ

)
W(f)(ϕ).

Hence 〈
(W(f))(n)(ϕ), h⊗n

〉
=

(
i

∫
fh dµg

)n
W(f)(ϕ)

and we obtain the following formula for the star product:

W(f) ?W(f̃) =
∞∑
n=0

(
i~
2

)n (−1)n

n!

(∫
∆S(x, y)f̃(y)f(x)dµg(x)dµg(y)

)n
W(f + f̃)

= e−
i~
2

∆S(f,f̃)W(f + f̃), (5.4)

which reproduces the Weyl relations from example 2.1, with the difference that
now we are dealing with a bilinear form which is Poisson, but not symplectic
(has a non-trivial kernel).

In the next step we extend the star product to the space of microcausal
functionals. To prepare for this task we take another look at the singularity
structure of the distribution ∆S0 . Note that the WF set of this distribution
is composed of two parts: one with k ∈ (V +)x and another with k ∈ (V −)x,
where V ± is (the dual of) the closed future/past lightcone. As shown in
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[Rad96], one can decompose ∆S0 into two distributions with WF sets corre-
sponding to these two components

i
2∆S0 = ∆+

S0
−H , (5.5)

where the WF set of ∆+
S0

is

WF(∆+
S0

) = {(x, k;x,−k′) ∈ Ṫ ∗M2|(x, k) ∼ (x′, k′), k ∈ (V +)x} , (H 0)

and in addition the following properties hold:

(H 1) ∆S0 = 2Im(∆+
S0

)

(H 2) ∆+
S0

is a distributional bisolution to the field equation, i.e.〈
∆+
S0

;Pf, g
〉

= 0 and
〈

∆+
S0

; f, Pg
〉

= 0 for all f, g ∈ EC
c .

(H 3) ∆+
S0

is of positive type, meaning that
〈

∆+
S0
, f̄ ⊗ f

〉
≥ 0, where f̄ is

the complex conjugation of f ∈ EC
c .

Example 5.2. On Minkowski spacetime it is natural to choose ∆+
S0

as the
Wightman 2-point function, given by

∆+
S0

(x, y) =

∫
d3p

e−iω(p)(x0−y0)+ip(x−y)

2ω(p)
,

with ω(p) =
√
|p|2 +m2. For this choice we will use the notation ∆+

S0
=

i
2∆S0 + ∆1.

On general globally hyperbolic spacetimes a decomposition (5.5) with prop-
erties (H 0)–(H 3) always exists but is not unique. If H and H ′ corresponds
to two different choices of the split (5.5), then their difference H − H ′ is
a smooth symmetric bisolution to the field equations (a smooth symmetric
function with Px(H − H ′)(x, y) = Py(H − H ′)(x, y) = 0). Physically, the
split of the causal propagator into ∆+

S0
and H is interpreted as “taking the

positive frequency part” of the propagator. In flat spacetime this corresponds
to the spectrum condition, which is one of the Haag-Kastler axioms listed in
section 2.3.

The WF set of ∆+
S has better properties than the WF set on ∆S . If we

now replace i
2∆S with ∆+

S in (5.3), then the new product, denoted by ?H can
be extended from Freg to Fµc [BDF09]. On Freg[[~]] the two star products ?
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and ?H are isomorphic. To see this, consider a map αH : Freg[[~]]→ Freg[[~]]
given by

αH
.
= e

~
2
〈H, δ

2

δϕ2 〉 . (5.6)

It is easy to check that

F ?H G = αH
(
(α−1

H F ) ? (α−1
H G)

)
, F,G ∈ Freg . (5.7)

We say that αH provides a gauge transformation between ? and ?H .

Definition 5.2. A gauge transformation is a map F 7→ F +
∑

~≥1 ~nDn(f),
where each Dn is a differential operator. If there exists a gauge transforma-
tion relating two star products ? and ?′, then they define the same deforma-
tion quantization.

In the case of αH , Dn = 1
n!

〈
1
2(H −H ′), δ2

δϕ2

〉n
. Physically, we can iden-

tify the transition between ? and ?H with normal ordering, so passing to
the ?H-product is the algebraic version of Wick’s theorem. Note that the
codomain of αH : Freg → Freg is sequentially dense in a larger space Fµc

(with respect to the topology τBDF described in section 4.4.2, definition 4.14)
and we can also build a corresponding (sequential) completion α−1

H (Fµc) of
the domain. This amounts to extending Freg with all elements of the form
limn→∞ α

−1
H (Fn), where (Fn) is a convergent sequence in Fµc. This motivates

the following definition

Definition 5.3. The quantum algebra of the free theory A is defined as the
extension of Freg[[~]] by limits limn→∞ α

−1
H (Fn), where (Fn) is a convergent

sequence in Fµc. A is equipped with the star product defined by

A ? B = α−1
H (αH(A) ?H αH(B)) .

We introduce an involution on A by setting

A∗
.
= α−1

H (αH(A)) ,

where bar denotes the complex conjugation of a functional. The support of
A ∈ A is defined by

suppA
.
= suppαH(A) .

Remark 5.1. Note that (A, ?) as an abstract unital involutive topological
algebra is unique up to an isomorphism, since different choices of H are
related by

F ?H′ G = α−1
H−H′ (αH−H′(F ) ?H αH−H′(G)) ,
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and H −H ′ is a smooth function, so αH−H′ is an ismorphism. This isomor-
phism doesn’t change the support of a functional, so the notion of support
introduced in definition 5.3 is also independent of the choice of H.

Remark 5.2. We can also characterize A as the space of families (FH),
labeled by possible choices of H, where FH ∈ AH .

= (Fµc[[~]], ?H) fulfill the
relations

FH′ = αH′−HFH ,

and the product is defined by

(F ? G)H = FH ?H GH .

We think of A as the abstract algebra of obsertvables, while the choice
of αH corresponds to a choice of realization of A as an algebra of formal
power series with coefficients in some space of functionals. Although we
are primarly interested in the abstract structure, the concrete realization
is important if we want to make some computations. The diagram below
summarizes the algebraic structures introduced so far.

(Freg, ?)
αH−−−−→ (Freg, ?H)

dense

y∩ dense

y∩
A

α−1
H←−−−− (Fµc, ?H)

We use the notion of support defined for the elements of A to build a net of
involutive topological algebras.

Proposition 5.1. We obtain a free quantum theory field theory model in the
sense of definition 2.39 on a spacetime M = (M, g) with the configuration
space E = Γ(E

π−→M) and the generalized Lagrangian L as the net

O 7→ (A(O), ?, ∗) ,

where A(O) is generated by elements with support contained in O. This net
satisfies also the axiom of covariance and the time-slice axiom.

Proof. The properties of covariance and causality are clear from the con-
struction. The time-slice axiom has been proven in [CF08].

The construction is fully covariant, so the assignment of unital ∗-algabras
to spacetime defined above induces a functor from Loc to Obsp.
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Proposition 5.2. A locally covariant QFT model in the sense of definition
2.51 is obtained by assigning A(M) to objects of Loc and for morphisms
χ ∈ Hom(M,N), Aχ is defined with the use of the pullback of functionals, as
in proposition 3.4.

Let us now discuss the existence of states. One obtains a family of states
on A by setting

ωH,ϕ(F )
.
= αH(F )(ϕ) = FH(ϕ) ,

where ϕ ∈ ES . This is well defined, since FH is a functional in Fµc, hence
the evaluation at a field configuration ϕ makes sense.

Example 5.3. We continue with the example of the free scalar field. We
define Ã as the subalgebra of A generated by the Weyl generators W(f)

.
=

exp(iFf ). Note that〈
H,

δ2

δϕ2

〉(
i

∫
fϕdµ

)n
= − n!

(n− 2)!
H(f, f)

(
i

∫
fϕdµ

)n−2

.

Hence
αH (W(f)) = e−

~
2
H(f,f)W(f) .

It follows now that
ωH,0 (W(f)) = e−

~
2
H(f,f) ,

so ωH,0 is a quasi-free state with covariance H (compare with the definition
2.19).

5.2 The star product on the space of multivector
fields

In the classical theory we have defined “going on-shell” as taking the quo-
tient of the algebra of classical observables by the ideal IS generated by the
equations of motion. Now we want to do something similar in the quantum
theory.

Definition 5.4. The equations of motion ideal IHS0
of AH is defined as the

?H-ideal of AH generated by elements of the form 〈S′0, X〉, where X ∈ Vloc.
The ideal IS0 is then defined by the requirement that F ∈ IS0 if and only if
FH ∈ IHS0

for all H.
The on-shell quantum algebra of the free theory is then understood as the

quotient
AS0

.
= A/IS0 .
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Remark 5.3. Note that AS0 can be characterized as the space of families
F = (FH), where

FH ∈ AH
S0

.
= AH/IHS0

.

The definition used here suggests that we can express it also in terms
of the differential δS0 , as defined in section 4.3. The star product ? can
be easily extended to the space

∧
V of vector fields, if one replaces the

pointwise product in (5.3) with the graded product ∧. Before we give the
explicit formula for ?H of two multivector fields, it is convenient to intro-
duce some notation. From the definition of smoothness for multilocal vector
fields and by proposition 3.1, we know that δnX

δϕn (ϕ) induces an element of
Γ′C(E�n� (E∗)�k →Mn+k). We can now generalize the class of multivector
fields of interest by allowing for maps X such that δnX

δϕn (ϕ) (understood as a
distributional section) satisfies a condition analogous to (6.25).

Definition 5.5. The space
∧k Vµc of microcausal k-vector fields is identified

with Oµc(T
∗[1]E).

Using this definition, we can now introduce the star product of multivec-
tor fields:

〈(X ?H Y )(ϕ); v1, . . . , vp+q〉
.
=

∞∑
n=0

~n

n!p!q!

∑
σ∈Sp+q

〈〈
δnX
δϕn (ϕ); vσ(1), . . . , vσ(p)

〉
, (∆+

S0
)⊗n

〈
δnY
δϕn (ϕ); vσ(p+1), . . . , vσ(p+q)

〉〉
,

where X,Y ∈
∧
Vµc are of degree p and q respectively. In the 0-th order,

the star product gives just the wedge product of two multivector fields. In
the first order, one obtains the extension of b., .c to

∧
Vµc.

We can now characterize the ideal A0 by means of the differential δS0 , as
we did in classical theory. First we note that since ∆+

S0
is a distributional

bisolution for the operator P , we have

δS0(X ?H Y ) = (δS0X) ?H Y + (−1)|X|X ?H (δS0Y ) ,

for X,Y ∈
∧
Vµc, i.e. δS0 is a derivation with respect to the product ?H . In

particular we can write AH
S0

as

AH
S0

=
Ker δS0 �Fµc

Im δS0 �Vµc

Note that in our case Ker δS0 �Fµc= (Fµc, ?H), but we will see later on that
this is no longer the case in gauge theories (chapter 7).
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Example 5.4. Consider the algebra Ã from example 5.3. Let ĨS0

.
= IS0 ∩ Ã.

Note that S′0(ϕ) = Pϕ = (� + m2)ϕ, and using integration by parts, we
conclude that F(�+m2)f (ϕ) = 〈S′0, f〉. It is then easy to verify that ĨS0 is
generated by the elements

W((� +m2)f)− 1 , f ∈ D (5.8)

We denote Ã/ĨS0 by ÃS0. This algebra is then (algebraically) isomorphic to
the Weyl algebra W(L, σ), with L = D/PD and σ = ∆S. States of the form
ωH,0 are well defined on ÃS0 , as H is a bisolution for the operator P .

5.3 Kähler structure

Objects introduced in the previous section have interpretation in terms of
a Kähler structure, as in definition 2.20. H is a symmetric, non-degenerate
bilinear form on L = D/PD , ∆S is the symplectic structure and ∆+

S =
i
2∆S +H is a Hermitian 2-form on LC, as in formula (2.2).

We have seen in example 5.3 that H is the covariance of a quasi-free
state ωH,0 on ÃS0 . If this state is pure, then the pair (∆S , 2H) is Kähler.
In general one can always use ∆S and H to define an anti-involution J , but
∆S ◦ J = 2H holds only in the case of pure ωH,0.

Let us now recall briefly the construction of J .n We will essentially follow
[DG13b]. First note that since H is a covariance of a quasi-free state, we
know from theorem (2.3) that

|∆S(f1, f2)| ≤ 2
√
H(f1, f2)

√
H(f1, f2) , ∀f1, f2 ∈ L . (5.9)

We complete L with the product (., .)H
.
= 〈., H.〉 to a real Hilbert space H

and the inequality (5.9) implies that ∆S is a bilinear form on H with norm
less or equal 2. Therefore, there exists an operator A ∈ B(H) with ||A|| ≤ 1
such that

〈f1,∆Sf2〉 = 2(f1, Af2)H

If the kernel of A is trivial, then we take the polar decomposition A = −J |A|
and J satisfies J2 = −1. More generally, as in the proof of theorem 17.12 of
[DG13b], we define Lsg

.
= KerA and Lreg

.
= L⊥sg. Then we set Areg

.
= A �Lreg

and construct the polar decomposition Areg = −Jreg|Areg|. If the dimension
of Lsg is even or infinite (which is the case in the situation we are interested
in), then there exist an orthogonal anti-involution Jsg on Lsg and we set
J = Jreg ⊕ Jsg. J constructed this way defines an almost-complex structure
on L.
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We define the holomorphic and anti-holomorphic subspaces of LC as

Z
.
= {(f − iJf)|f ∈ L} ,

Z
.
= {(f + iJf)|f ∈ L} ,

respectively. Projections onto these subspaces are defined as 1Z = 1
2(1−iJC)

and 1Z = 1
2(1 + iJC)

If ωH,0 is pure then the quadruple (L, 2H,∆S , J) is a Kähler structure.
We decompose ∆+

S in the holomorphic basis ton obtain〈
1Zf1,∆

+
S (1Zf2)

〉
=
〈
f1,∆

+
S f2

〉
,

where f1, f2 ∈ LC and remaining components vanish. As a result, ∆+
S is

represented in the holomorphic basis as(
0 0

∆+
S 0

)
,

so it acts only on the holomorphic part of the first argument and the anti-
holomorphic part of the second argument.
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Chapter 6

Interaction and
renormalization of the scalar
field theory

6.1 Outline of the approach

In the previous chapter we have covered the quantization of free theories
(quadratic actions), now is the time to introduce the interactions. This is
were we have to start working perturbatively. The ultimate goal of AQFT
is to be able to construct interacting models in 4 spacetime dimensions non-
perturbatively, but at the moment no such models are known. The perturba-
tive approach, on the other hand, has proven to be successful in describing
many phenomena in particle physics, so it is worthwhile to try to under-
stand its mathematical foundations. It turns out that a careful analysis of
the problem and employing some tools from functional analysis allows to
avoid dealing with not well defined “divergent” expressions, as is often done
in physics textbooks.

We will follow the ideas on renormalization develpped by [BP57, BS59,
Hep66, EG73, ?, Ste71]. The approach is motivated by the interaction pic-
ture of quantum mechanics, as outlined in section 2.1.3. We begin with a
heuristic argument and then we will show how to make it rigorous. Let H0

be the free Hamiltonian and let Ht,I = −
∫
K :LI(0,x): dσt be the interaction

Hamiltonian, where :LI : is the normal-ordered Lagrangian density (the pre-
cise definition of normal-ordering will be introduced later in this chapter),
constructed from the classical quantity LI(x) and K is some compact subset
of a Cauchy surface Σ.

91
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We would like to use the Dyson formula (2.10) for the interacting time
evolution operator UI(t, s), so formally we write

UI(t, s) = 1 +
∞∑
n=1

in

n!

∫
([s,t]×R3)n

T (:LI(x1): . . . :LI(xn):)d4nx ,

where
x 7→ LI(x) = eiH0x0

:LI(0,x): e−iH0x0

is an operator-valued function and T denotes time-ordering. Heuristically,
one would use the unitary map defined above to obtain interacting fields as

ϕI(x) = U(x0, s)−1ϕ(x)U(x0, s) = U(t, s)−1U(t, x0)ϕ(x)U(x0, s) , (6.1)

where s < x0 < t.
There are, however, serious problems with this idea. The first obvious

difficulty is the fact that typical Lagrangian densities like :LI(x): = :ϕ(x)4:
can not be restricted to a Cauchy surface Σ0 as operator-valued distributions
(they are too singular). This is the source of the so called UV problem. More-
over, having the sharp cutoff function in the Lagrangian and Hamiltonian
(integrating with the characteristic function of K × [s, t] leads to additional
divergences, called the Stückelberg divergences. Finally there is the problem
with taking tha adiabatic limit, as the integral of the Lagrangian density
over x does not exist, if Σ is non-compact. Last but not least, the overall
sum might not converge.

Fortunately all these problems, apart from the last one, can be easily
dealt with by a slight modification of the above ansatz. First, to avoid
the Stückelberg divergences, we replace the sharp cutoffs with smooth test
functions. Next, we solve the UV problem by using causal perturbation
theory in the sense of Epstein and Glaser [EG73], where the interaction
is switched on only in a compact region of spacetime. Finally, we take
the adiabatic limit algebraically, as a certain inductive limit on the level of
interacting observable algebras.

6.2 Scatering matrix and time ordered products

The modifications of the Dyson formula ansatz described at the end of the
previous section lead to the definition of the formal S-matrix as

S(g) = 1 +

∞∑
n=1

in

n!

∫
g(x1) . . . g(xn)T (:LI(x1): . . . :LI(xn):) ,



6.2. SCATERING MATRIX AND TIME ORDERED PRODUCTS 93

where g is a test density. Compare this formula with (2.11). In order to
make this formula mathematically rigorous, first we need to make sense of
the normal ordering operation :LI(x):, and then we have to define the time-
ordered products of :LI(xi):. Finally, in order to make sense of the formula
(6.1) for the interacting field we interpret it as a definition of a distribution,
rather than a function. Hence, for a test density f we obtain∫
f(x)ϕI(x) = S(g)−1

∞∑
n=0

in

n!

∫
f(x)g(x1) . . . g(xn)Tϕ(x)LI(x1) . . .LI(xn) =

=
d

dλ
S(g)−1S(g, λf)

∣∣
λ=0

, (6.2)

where S(g, f) is the formal S-matrix with the Lagrangian density gLI + fϕ.
This is the so called Bogoliubov’s formula [BS59].

6.2.1 Wick products

Let us start our construction with defining the Wick-ordered quantities
:LI(x):. In our framework normal (Wick) ordering is a prescription how
to identify classical quantities with their quantum counterparts. More pre-
cisely, it is a map T1 : Floc → A, T1

.
= α−1

H ◦ TH1 , where TH1 : Floc → AH .
Note that both classical and quantum observables are understood as (for-
mal power series in) microcausal functionals, so the easiest way is define the
normal ordering is to set TH1 = id and hence

:F :
.
= T1F = α−1

H (F ) , F ∈ Floc . (6.3)

Example 6.1 (Algebraic Wick’s theorem). Wick’s theorem plays important
role in physics, so we will show here how it follows from our algebraic defi-
nition of normal ordering. Consider the model of free scalar fields. Let

Fn(ϕ) =

∫
ϕ(x)ϕ(y)gn(y − x)f(x)dµ(x)dµ(y) ,

where f ∈ D and gn is a sequence of smooth compactly supported functions
that converges to which converges to the Dirac delta distribution δ(x− y) in
the topology τH defined in 4.12. By applying α−1

H to the sequence (Fn), we
obtain a sequence

α−1
H Fn =

∫
(ϕ(x)ϕ(y)gn(y − x)f(x)− ~H(x, y)gn(y − x)f(x))dµ(x)dµ(y) ,
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The limit of this sequence is identified with the normally ordered expression∫
:ϕ(x)2: f(x)dµ(x), i.e.:

T1F =

∫
:ϕ2: fdµ = lim

n→∞

∫
(ϕ(x)ϕ(y)−~H(x, y))gn(y−x)f(x)dµ(x)dµ(y) .

Not that the right-hand side cannot be interpreted as a functional on the
configuration space, but is just a formal expression representing an abstract
element of the extension of Freg, as defined in 5.3. We write this expression
in a short-hand notation as a coinciding point limit:

:ϕ(x)2: = lim
y→x

(ϕ(x)ϕ(y)− ~H(x, y)) .

This shows that transforming with α−1
H corresponds formally to the subtrac-

tion of ~H(x, y).
Now, to recover Wick’s theorem, consider a product of two Wick squares

:ϕ(x)2: :ϕ(y)2:. Note that in our setting this has to be understood as the ?-
product of two elements of A. Using the α−1

H prescription we identify this
product as(

α−1
H

∫
ϕ2f1dµ

)
?

(
α−1
H

∫
ϕ2f2dµ

)
= α−1

H

((∫
ϕ2f1dµ

)
?H

(∫
ϕ2f2dµ

))
=

α−1
H

(∫
ϕ2f1dµ

∫
ϕ2f2dµ+ 4~

〈
f1ϕ,∆

+
S0

(f2ϕ)
〉

+

+
~2

2

∫
(∆+

S0
(x, y))2f1(x)f2(y)dµ(x)dµ(y)

)
.

Omitting the test functions we obtain

:ϕ(x)2: :ϕ(y)2: = :ϕ(x)2ϕ(y)2: +4 :ϕ(x)ϕ(y): ~∆+
S0

(x, y) + 2
(
~∆+

S0
(x, y)

)2
,

which is a familiar form of Wick’s theorem applied to :ϕ(x)2: :ϕ(y)2:.

6.2.2 Localy covariant Wick products

The normal ordering prescription (6.3) is not the most optimal one, if we
work on curved spacetime. This is because we would like to define the normal
ordering on all the globally hyperbolic spacetimes in a coherent way and the
choice of H across different spacetimes cannot be made covariantly. More
precisely, we want to lift T1 to the level of locally covariant fields in the sense
of definition 2.51.
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Definition 6.1. Let T1M be the Wick-ordering prescription on spactime
M ∈ Obj(Loc). Given a natural transformation Φ : D → Floc we say
that (T1M)M∈Obj(Loc) is covariant if the family T1M ◦ ΦM defines a natural
transformation from D to A.

We will now discuss the existence of such a family of Wick-ordering pre-
scriptions and the remaining renormalization freedom.

Even though Hadamard states on different spacetimes cannot be chosen
in a coherent way, it turns out that this is possible for a family of Hadamard
parametrices. The difference between ∆+

S0
, a 2-point function of a Hadamard

state, and a paramterix is that the latter is a bi-solution of the linearized
equations of motion only up to smooth terms. Due to the covariance condi-
tion, it is more appropriate to define the normal ordering by a prescription
where only the singular part of H enters into α−1

H . We realize this idea by
setting

T1MF
.
= α−1

H (αwF ) = α−1
H−wF ,

where F ∈ Floc and where w is the smooth part of the Hadamard 2-point
function. In other words, we set TH1 ≡ αw. To understand what is w, we
need to recall some facts about the singularity structure of 2-point functions
Hadamard states. We follow here closely [KW91] and a recent review [FR14].

Be begin with introducing some notation. Let t : M → R be a time
function (smooth function with a timelike and future directed gradient field)
and let

σε(x, y)
.
= σ(x, y) + 2iε(t(x)− t(y)) + ε2 ,

where σ(x, y) is half of the square geodesic distance between x and y, i.e.

σ(x, y)
.
=

1

2
g(exp−1

x (y), exp−1
x (y)) .

Definition 6.2. We say that a bi-distribution W on M is of local Hadamard
form if, for every x0 ∈ M , there exists a geodesically convex neighbourhood
V of x0 such that, for every integer N , W (x, y) on V × V can be written in
the form

W = lim
ε↓0

(
u

σε
+

N∑
n=0

σnvn log
(σε
λ2

)
+ wN

)
= W sing

N + wN , (6.4)

where u, vn ∈ C∞(M2,R), n = 0, . . . , N are solutions of the so-called trans-
port equations and are uniquely determined by the local geometry, λ is a free
parameter with the dimension of inverse length and wN is an 2N + 1 times
continuously differentiable real-valued function.
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We define now
αwF

.
= lim

N→∞
αwNF , (6.5)

for F ∈ Floc. This limit makes sense, because the series converges after
finitely many steps. It is crucial that in this formula F is local, since the
limit of wN is well defined only in a geodesically convex neighborhood of the
diagonal in M ×M . Since functional derivatives of a local functional are
supported on the diagonal, αwNF has a well-defined limit. For details see
[HW02a]. Note that with in our definition T1M is fixed up to the choice of the
energy scale λ in definition 6.4. One can, however allow additional freedom,
staying consistent with the requirements of locality, covariance and some
regularity properties. Such possibility has been investigated in [HW02a],
where it was shown that for the scalar field T1M is fixed up to two paramters.
The choice of these paramters is then treated as additional renormalization
freedom.

6.2.3 Time-ordered products

After giving sense to normally ordered expressions we want now to define
their time-ordered products. In the first step we consider only regular func-
tionals, to understand the algebraic structure. We want to define the time
ordered product ·T as a binary operation on Freg[[~]], which satisfies the
condition (2.9), i.e.

F ·T G =

{
F ? G if suppG ≺ suppF ,
G ? F if suppF ≺ suppG ,

(6.6)

where the relation “≺” means “not later than” i.e. there exists a Cauchy
surface which separates suppG and suppF and in the first case suppF is in
the future of this surface and in the second case it’s in the past. We postulate

F ·T G =
∞∑
n=0

~nBn(F,G) , (6.7)

for some functional differential operators Bn. Now let F = 〈., f〉 and G =
〈., g〉 be two linear functionals with f, g ∈ Γc(E

∗ → M). Then condition
(6.6) implies

B0(FG) + ~B1(F,G) =

{
FG+ i

2~ 〈f,∆S0g〉 if supp g ≺ supp f ,
FG+ i

2~ 〈g,∆S0f〉 if supp f ≺ supp g ,

This suggests to set B0(F,G) = FG for all F,G ∈ Freg. To analyze the first
order condition in more detail, we note that ∆S0 = ∆A

S0
− ∆R

S0
and from



6.2. SCATERING MATRIX AND TIME ORDERED PRODUCTS 97

the support properties of the advanced and retarded Green functions follows
that in the example above

B1(F,G) =

{
i
2

〈
f,∆A

S0
g
〉

if supp g ≺ supp f ,
i
2

〈
f,∆R

S0
g
〉

if supp f ≺ supp g ,

Now, since B1 has to be a differential operator, the condition above fixes its
coefficients by the first order derivatives up to diagonal, i.e.

B1 = m2 ◦
〈
t,
δ

δϕ
⊗ δ

δϕ

〉
+ higher derivatives ,

where mn is the poitwise multiplication operator, i.e. mn(F1, . . . , Fn)(ϕ)
.
=

F1(ϕ) · · · · · Fn(ϕ) and t is a distribution in Γ′c((E
∗)�2 →M2) with a kernel

satisfying

t(x, y) =

{
i
2∆S0(x, y) = i

2∆A
S0

(x, y) if y ≺ x ,
− i

2∆S0(x, y) = i
2∆R

S0
(x, y) if x ≺ y .

It turns out that a consistent choice is provided by t = i∆D
S0
, where ∆D

S0

.
=

1
2(∆R

S0
+∆A

S0
) is the Dirac propagator. Using the higher order conditions and

requiring associativity leads to the following formula for the time-ordering
product:

F ·T G .
= m2 ◦ e

i~
〈

∆D
S0
, δ
δϕ
⊗ δ
δϕ

〉
(F ⊗G) = (6.8)

=
∞∑
n=0

~n

n!

〈
F (n),

(
i∆D

S0

)⊗n
G(n)

〉
,

where F,G ∈ Freg. The product defined this way in contrast to ? is com-
mutative, since ∆D

S0
is symmetric. It is also isomorphic to the point-wise

product by means of

F ·T G = T
(
T−1F · T−1G

)
, (6.9)

where

T = e
i~
〈

∆D
S0
, δ

2

δϕ2

〉
, (6.10)

or more precisely

(TF )(ϕ)
.
=

∞∑
n=0

~n

n!

〈
(i∆D

S0
)⊗n, F (2n)(ϕ)

〉
.
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The linear operator T defined above is interpreted as a map which goes from
the classical world to the quantum world, i.e.

(Freg, ·)
classical

T−→ (Areg, ?, ·T)

quantum
,

where Areg ⊂ A is the range of T. Note that on the quantum side there are
two products, the non-commutative ? and commutative ·T .

Using the time-ordered product we express the formal S-matrix S :
Freg[[~]]→ Freg[[~]] as the time-ordered exponential

S(V )
.
= e

iV/~
T = T

(
eT
−1iV/~) , (6.11)

so S is a map from the quantum algebra A to itself. Interacting fields are
obtained by means of the Bogoliubov formula, which reads

RV (F ) = −i~ d

dλ
(S(V )?−1 ? S(V + λF ))|λ=0 =

=
(
e
iV/~
T

)?−1

?
(
e
iV/~
T ·T F

)
. (6.12)

We understand RV (F ) as the interacting observable corresponding to F . We
define the interacting star product by

F ?V G
.
= R−1

V (RV F ? RVG) .

The interacting theory for regular functionals is the algebra (Freg, ?V ) and
RV acts as the intertwining map between the free quantum theory and the
interacting quantum theory, i.e.

(Freg, ·)
classical

T−→
(Areg, ?, ·T)

free
quantum

R−1
V−−→

(Areg, ?V )
interacting
quantum

. (6.13)

The formula (6.9) for the time-ordered product make sense if we restrict
ourselves to regular functionals. This is, however, not enough, since typical
interactions appearing in particle physics are local and non-linear (hence not
regular). In the first attempt to fix the problem we pass to a different star
product, which amounts to replacing ∆S0 by ∆+

S0
and ∆D

S0
by the Feynman

propagator ∆F
S0

= i∆D
S0

+H, so we obtain now

(Freg, ·)
classical

TH−−→ (Areg, ?H , ·TH )
α−1
H−−→

(Areg, ?, ·T)
free

quantum

R−1
V−−→

(Areg, ?V )
interacting
quantum

,
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where TH
.
= e

i~〈∆F
S0
, δ

2

δψ2 〉, so T = α−1
H ◦ TH . Unfortunately this modifica-

tion is not sufficient to extend the time-ordered products to arbitrary local
functionals. The difficulty which we have to face is the fact that the WF
set of ∆F

S0
at 0 behaves like the WF set of the Dirac delta (i.e. contains all

non-zero covectors), hence the tensor powers of ∆F
S0

cannot be contracted
with derivatives of local functionals.

The non-trivial extension problem which we want to solve is what physics
literature refers to as the renormalization problem. A mathematically rigor-
ous solution to this problem has been proposed by Epstein and Glaser in the
seminal paper [EG73] from 1973 and it makes use of the causal structure of
the spacetime. Here we will use a similar approach.

First we extent the linear operator TH to Floc by setting TH = αw, where
αw is defined by (6.5). On Minkowski spacetime we can also set T = id. The
subspace TH(Floc) ⊂ AH is denoted by AH

loc. Recall that A
H ≡ (Fµc[[~]], ?H).

We define a map from local functionals into the quantum algebra T : Floc →
A by setting T

.
= α−1

H ◦ TH and denote its image by Aloc.

Definition 6.3. Denote by (Floc)
⊗n
pds the subspace of (Floc)

⊗n spanned by
F1 ⊗ · · · ⊗ Fn, where F1, . . . , Fn ∈ Floc have pairwise disjoint supports.

Definition 6.4. On (Floc)
⊗n
pds we define the n-fold time-ordered product as a

map THn : (Floc)
⊗n
pds → AH given by

THn (F1, . . . , Fn)
.
= F1·TH . . . ·THFn.

Let F1⊗ · · ·⊗Fn ∈ (Floc)
⊗n
pds such that the supports suppFi, i = 1, . . . , k

of the first k entries do not intersect the past of the supports suppFj , j =
k+ 1, . . . , n of the last n−k entries. From the definition of the time-ordered
product follows that in this case

THn (F1 ⊗ · · · ⊗ Fn) = THk (F1 ⊗ · · · ⊗ Fk) ?H THn−k(Fk+1 ⊗ · · · ⊗ Fn) , (6.14)

This property is called the causal factorisation property. It is a crucial fea-
ture which we want to require also from the extended n-fold time-ordered
products. This motivates the following, axiomatic definition.

Definition 6.5. Renormalized time-ordered products are multilinear maps
THn : F⊗nloc → AH, n ∈ N, satisfying:

(T 1) Causal factorisation property

THn (F1 ⊗ · · · ⊗ Fn) = THk (F1 ⊗ · · · ⊗ Fk) ?H THn−k(Fk+1 ⊗ · · · ⊗ Fn)
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if the supports suppFi, i = 1, . . . , k of the first k entries do not
intersect the past of the supports suppFj, j = k+ 1, . . . , n of the last
n− k entries.

(T 2) Starting element: TH0 = 1, TH1 = id1.

(T 3) Symmetry: For a purely bosonic theory THn s are symmetric in their
arguments. If the fermions are present, THn s are graded-symmetric.

(T 4) Field independence: THn (F1, . . . , Fn), as a functional on E, depends
on ϕ only via the functional derivatives of F1, . . . , Fn, i.e.

δ

δϕ
THn (F1, . . . , Fn) =

n∑
i=1

THn

(
F1, . . . ,

δFi
δϕ

, . . . , Fn

)

(T 5) ϕ-Locality: THn (F1, . . . , Fn) = THn (F
[N ]
1 , . . . , F

[N ]
n ) + O(~N ), where

F
[N ]
i is the Taylor series expansion of the functional Fi up to the
N -th order.

Remark 6.1. Note that the property (T 5) allows one to reduce the prob-
lem of constructing the time-ordered products of local functionals to the
construction of the time-ordered products of polynomials. Property (T 4)
is crucial to show that the construction reduces to extensions of numerical
distributions.

Given the family of maps {THn }n∈N, we candefine time ordered products
of Wick-ordered quantities and the finally the S-matrix.

Definition 6.6. We define Tn : A⊗nloc → A as

Tn
.
= α−1

H ◦ THn ◦ α⊗nH ,

and the renormalized S-matrix, which is a map S : Aloc → A, is given by

S(V )
.
=

∞∑
n=0

in

~nn!Tn(V ⊗n) ,

where V ∈ Aloc.
1One can leave some freedom in the definition of TH

1 which can be then used to absorb
the renormalization ambiguity in defining T. See [HW05] for an exemple of a situation
where this extra freedom turns out to be useful.
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We want the S-matrix defined this way to be unitary, i.e. we require that

S(−V )∗ ? S(V ) = 1 ,

for a real-valued V . This condition can be translated into an additional
axiom for the time-ordered product:

(T 6) Unitarity: Let F1, . . . ,Fn be real-valued, then (THn )∗ = T̄Hn , where
T̄Hn is the anti-time-ordered product defined by

T̄Hn (F1 ⊗ · · · ⊗ Fn) =
∑
P∈Pn

(−1)n+|P |
?H∏
I∈P

TH|I|

(⊗
i∈I

Fi

)
,

where Pn denoted the set of partitions of {1, . . . , n} and
∏?H
I∈P means

taking the ?H product of factors labaled by I.

The final consideration is to ensure that the time-ordered products are
covariant, i.e. they are defined on all the spacetimes in a coherent way. We
adapt a definition analogous to 6.1.

Definition 6.7. Let TnM be the n-fold time-ordered product on spactime
M ∈ Obj(Loc). Given locally covariant quantum fields

:Φi: ≡ TMΦi ∈ Nat(D,Aloc) , i = 1, . . . n ,

we say that (TnM)M∈Obj(Loc) is covariant if the family

TnM ◦ (:Φ1:M, . . . :Φn:M)

defines a natural transformation in Nat(Dn,A).

Finding the right notion of covariance for time-ordered products was
a very important step in indertsanding quantum field theory on curved
spacetime. The idea goes back to Fredenhagen [Fre00] and was developed
in a collaboration with R. Brunetti, S. Hollands, R. Verch and R. Wald
[HW01, Ver01, BFV03]. The requirement of covariance can be translated
into another axiom for THn ’s.

(T 7) Covariance: Tn
.
= α−1

H ◦ THn ◦ α⊗nH is covariant in the sense of defi-
nition 6.7, i.e. α−1

H ◦ THn ◦ α⊗nw maps an n-tuple of classical fields in
Nat(D,Floc) to a quantum field in Nat(Dn,A).
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Using the inductive method of [EG73], generalized to curved spacetimes
by [BF00, HW01, HW02a], one shows that a family of maps satisfying ax-
ioms (T 1)-(T 7) exists and the non-uniqueness of the construction is fully
absorbed into adding multilinear maps ZHn : F⊗nloc → Floc[[~]], i.e.

T̃Hn(F1, . . . , Fn) = THn (F1, . . . , Fn) + ZHn (F1, . . . , Fn) , (6.15)

where {THn }n∈N and {T̃Hn}n∈N are two choices of families of n-fold time-
ordered products that coincide up to order n − 1. A detailed argument for
the existence of time-ordered products is given in sections 6.5.

The causal factorisation property for time-ordered products implies that
the S-matrix satisfies Bogoliubov’s factorization relation

S(V1 + V2 + V3) = S(V1 + V2)S(V2)−1S(V2 + V3) (6.16)

if the support of V1 does not intersect the past of the support of V3.

Definition 6.8. We define the renormalized map T : F → A by T .
=
⊕

n α
−1
H ◦

THn ◦ αw ◦m−1, where m−1 : F → S•F
(0)
loc is the inverse of the multiplication,

as defined in [FR12a] and F
(0)
loc is the space of local functionals that vanish

at 0.

Using T we conclude that the renormalized time-ordered product ·T is
a binary operation defined on the domain DT

.
= T(F). Analogously to the

diagram (6.13), we obtain

(F, ·)
classical

T−→
(A, ?, ·T)

free
quantum

R−1
V−−→

(A, ?V )
interacting
quantum

, (6.17)

with the caveat that ·T is well defined on DT ⊂ A.

6.3 Renormalization group

In this section we discuss in detail the ambiguity arising in defining Tn’s.
In physics this is known as the renormalization ambiguity and is related to
the notion of the renormalization group. First note that the ambiguities ZHn
appearing in formula (6.15) give rise to maps Zn : A⊗nloc → Aloc defined by

Zn
.
= α−1

H ◦ ZHn ◦ α⊗nH .
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Next we define a map Z : Aloc → Aloc by summing up all the Zn’s relating
two chosen prescriptions to define the time-ordered products, i.e.

Z(V )
.
=
∞∑
n=0

1

n!
Zn(V ⊗n) , V ∈ Aloc .

For any two choices of the families (Tn)n∈N, the corresponding map Z, which
relates them, has the following properties:

(Z 1) Z(0) = 0,

(Z 2) Z(1)(0) = id,

(Z 3) Z = id + O(~),

(Z 4) Z(F +G+H) = Z(F +G) + Z(G+H)− Z(G), if supp F ∩ supp G,

(Z 5) δZ
δϕ = 0.

The group of formal diffeomorphisms of Aloc[[~]] that fulfill (Z 1) – (Z 5)
is called the Stückelberg-Petermann renormalization group R. The relation
between the formal S-matrices and the elements of R is provided by the
main theorem of renormalization. This theorem, originally formulated in an
unpublished preprint by Stora and Popineau [PS82], was later generalized
and improved, in particular by Pinter [Pin01]. Its final version, which relies
heavily on a proof of Stora’s “Action Ward Identity” [DF04, DF07], was
obtained in [HW02b, DF04] and was then further analyzed in [BDF09].

Theorem 6.1. Let S and Ŝ be two formal S-matrices, built from time ordered
products satisfying the axioms (T 1)– (T 7). Then there exists Z ∈ R such
that

Ŝ = S ◦ Z , (6.18)

where Z ∈ R. Conversely, if S is an S-matrix satisfying the axioms (T 1) –
(T 7) and Z ∈ R then also Ŝ defined by (6.18) fulfills the axioms.

Proof. For proof see [DF04, BDF09].

The abstract notion of the renormalization group can be made more con-
crete when we consider a specific model. This is done by fixing a natural
Lagrangian (see definition 4.6) LI ∈ Nat(D,Floc), which defines the interac-
tion term of the theory. Since we defined the Wick-ordering in a covariant
way (in the sense of defintiontion ??), the normally-ordered quantity :LI :
is a natrural transforation ∈ Nat(D,Aloc). For a fixed spacetime M the
map :LI :M : D → Aloc satisfies additivity, the support property and
covariance from definition 4.1. This motivates the following definition.
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Definition 6.9. A quantum Lagrangian on a fixed spacetime M = (M, g) is
a map L : D(M)→ Floc such that

i) L(f + g+h) = L(f + g)−L(g) +L(g+h) for f, g, h ∈ D with supp f ∩
supp h = ∅ (Additivity).

ii) supp(L(f)) ⊆ supp(f) (Support).

iii) Let G be the isometry group of the spacetime M (for the Minkowski
spacetime we set G to be the proper ortochronous Poincaré group P

↑
+.).

We require that L(f)(α∗ϕ) = L(α∗f)(ϕ) for every α ∈ G (Covariance).

In a given pQFT model we are interested in computing expectation values
of such quantum Lagrangians Li, i = 1, . . . , N in a given state ω. The
following result is crucial for our framework.

Theorem 6.2 (Proposition 6.2. of [BDF09]). The space L of quantum
Lagrangians is invariant under the renormalization group R.

Proof. For the details of the proof see [BDF09]. Note that the additivity
property for the transformed Lagrangians is a direct consequence of the
property (Z 4) of the renormalization group.

It is convenient to choose the state ω as a quasi-free state of the form
ωH,0. On the Minkowski spacetime there is a distinguished choice of H as
∆1, so that ∆+

S0
= i

2∆S0 + ∆1 is the Wightman 2-point function, as in
example 5.2. In this case ω∆1,0 is just the usual vacuum expectation value
that can be compared with the standard physics literature.

We are now ready to give an abstract definition of a theory.

Definition 6.10. A theory in pQFT on a spacetime M is defined by fixing
the space E of field configurations and a complex vector space Φ of quantum
Lagrangians, which is closed under the action of the renormalization group
R. A theory defined by (E,Φ) is called power-counting renormalizable if
Φ is finite-dimensional (as a vector space).

6.4 Interacting local nets

In this section we show how to construct a perturbative model of the in-
teracting quantum theory, in the sense of definition 2.39. We follow closely
the construction proposed in [FR15]. We start with the vector space Φ of
quantum Lagrangians of a power-counting renormalizable theory. Let N be
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the vector space dimension of Φ. We define DN to be the space of com-
pactly supported functions on M with values in RN . We choose a basis in Φ
consisting of quantum Lagrangians L1, . . . , LN in such a way that L0 = LI
is the interaction term of the theory. The remaining quantum Lagrangians
correspond to other quantities we wish to model (e.g. conserved currents)
and to terms that appear after applying maps Z ∈ R on the interaction term
and these quantities.

For a fixed f = (f1, . . . , fN ) ∈ DN we construct the S-matrices cor-
responding to L1(f1), . . . , LN (fN ) and their linear combinations, using the
Epstein-Glaser renormalization. This allows to define a map from DN to A
by means of

f 7→ S(f)
.
= S

(
N∑
i=1

Li(f
i)

)
(6.19)

This way we obtain a family of unitaries {S(f)|f ∈ DN} with S(0) = 0, which
generate a *-subalgebra AΦ of A and satisfy for f, g, h ∈ D Bogoliubov’s
factorization relation

S(f + g + h) = S(f + g)S(g)−1S(g + h) (6.20)

if the past J− of supph does not intersect supp f (or, equivalently, if the
future J+ of supp f does not intersect supph).

Proposition 6.1. Assigning to bounded simply-connected regions O ⊂ M

subalgebras AΦ(O) ⊂ AΦ generated by {S(f)| supp f ⊂ O} defines a Local,
Covariant net in the sense of definition 2.39.

Proof. The isotony condition, needed for the assignment O 7→ AΦ(O) to be a
net, is straightforward to verify. All the structures used in constructing this
net are covariant, so O 7→ AΦ(O) is covariant in the sense of the definition
2.39. The Locality axiom follows from the fact that for functions f, g with
spacelike separated supports

supp f ∩ J±(supp g) = ∅ (6.21)

and hence
S(f)S(g) = S(f + g) = S(g)S(f) . (6.22)

The net {AΦ(O)} is not yet the interacting net we are looking for. How-
ever, it turns out that there is another way to assign subalgebras of AΦ to
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bounded regions of spacetime, which takes the interaction into account. Let
us come back to the heuristic Bogoliubov formula (6.2) and its mathemati-
cally rigorous version (6.12). Note that the intertwining operatos RV , which
relates the free and interacting theory is written as the derivative of the rel-
ative S-matrix S(V )?−1 ? S(V + λF ). Here V ≡ L0(g0) = LI(g

0) for a test
function g0 ∈ D and we choose F = Li(f

i), for some i ∈ {1, . . . , N} and
f i ∈ D , so we can express the relative S-matrix using the elements of AΦ

and we obtain a map

f 7→ Sg(f)
.
= S(g)−1S(g + f) (6.23)

where f, g ∈ DN and g = (g0, 0, . . . , 0). S(g) as well as S(f + g) are defined
by means of (6.19). We can now prove a crucial result concerning the relative
S-matrices.

Proposition 6.2 (after [FR15]). All the maps Sg labelled by different choices
of g (or more precisely g0), satisfy Bogoliubov’s factorisation relation (6.20).

Proof. We follow the proof given in [FR15]. Let f, h ∈ DN such that supp f
does not intersect J−(supph). Let g, g′ ∈ DN . Then

Sg(f + g′ + h) = S(g)−1S(f + (g + g′) + h)

= S(g)−1S(f + (g + g′))S(g + g′)−1S((g + g′) + h)

= Sg(f + g′)Sg(g
′)−1 S(g)−1S(g)︸ ︷︷ ︸

=1

Sg(g
′ + h) . �

Remark 6.2. Note that we have constructed things in such a way that
S(g + λf) = S(LI(g

0 + λf0) +
∑N

i=1 Li(λf
i)), so the derivative of Sg(λf)

with respect to λ is just the retarded field

RLI(g0)

(
d

dλ
LI(g

0 + λf0)
∣∣
λ=0

+
N∑
i=1

d

dλ
Li(λf

i)
∣∣
λ=0

)
,

and if all the quantum Lagrangians Li are linear in the test function, this
reduces to

RLI(g0)

(
N∑
i=0

Li(λf
i)

)
.

We interpret Sg(f) as the generating function for retarded observable
described by

∑N
i=1 Li(f

i), under the influence of the interaction LI(g0). We
are now ready to define the interacting net of observables.
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Definition 6.11. The interacting quantum net AΦ,g corresponding to the
theory Φ is defined by assigning to bounded simply-connected regions O the
local algebras AΦ,g(O) which are generated by the relative S-matrices Sg(f)
with supp f ⊂ O.

Note that the algebras AΦ,g are subalgebras of AΦ but the net defined
by 6.11 differs from the net 5.3. This is a very subtle point, since one could
suspect that building interacting fields out of free fields should imply that
the resulting theories are identical. Note, however, that in the algebraic
approach physical information is contained not only in the global algebra,
but also in the net structure, i.e. in the way we assign the elements of this
algebra to bounded regions of spacetime. The next proposition shows that
elements of AΦ,g(O) can be interpreted as retarded observables,

Proposition 6.3 (after [FR15]). The relative S-matrix has the following
properties:

1. Sg(f) depends only on the behavior of g in the past of supp f .

2. Sg(f) depends on the behavior of g outside of the future of supp f via
a (formal) unitary transformation which does not depend on f .

Proof. i) Let g and g′ be such that supp(g− g′)∩ J−(supp f) = ∅, i.e. they
differ in the regions outside the past of supp f . This implies

Sg(f) = S(g)−1S((g − g′) + g′ + f) =

= S(g)−1S((g − g′) + g′)S(g′)−1S(g′ + f) = Sg′(f) .

ii) For supp(g − g′) ∩ J+(supp f) = ∅ we have

Sg(f) = S(g)−1S(f + g′ + (g − g′)) =

= S(g)−1S(f + g′)S(g′)−1S(g′ + (g − g′)) =

= S(g)−1S(g′)S(g′)−1S(f + g′)Sg′(g − g′) =

= AdSg′(g − g′)−1(Sg′(f)) ,

where we use the notation AdB(A)
.
= B−1AB for A,B ∈ AΦ.

The above proposition shows that the structure of local algebras depends
only locally on the interaction. This allows to perform the adiabatic limit
directly on the level of local algebras as a certain inductive limit. In the first
step we remove the restriction to interactions with compact support. Let
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G ∈ C∞(M,RN ) and let O be a bounded simply connected region in M . We
define

[G]O = {g ∈ DN |g ≡ G on a neighborhood of J+(O) ∩ J−(O)} .

Next we consider the AΦ-valued maps

SG,O(f) : [G]O 3 g 7→ Sg(f) ∈ AΦ .

We are now ready to extend the definition 6.11 to functions with arbitrary
support.

Definition 6.12. The local net of algebras O 7→ AΦ,G(O) is defined by
assigning to O the algebra generated by SG,O(f), where supp f ⊂ O. For
O1 ⊂ O2 the embedding iO2O1 of corresponding algebras is defined by

iO2O1 : SG,O1(f) 7→ SG,O2(f)

for f ∈ DN with supp f ⊂ O1.

Let AG be the inductive limit of algebras AΦ,G(O) constituting the net
defined in 6.12. Let us denote the corresponding canonical embedding into
AG by

iO : AG(O)→ AG

We set
SG(f) = iO(SG,O(f)) .

The following result shows that the net defined in 6.12 is covariant in the
sense of definition 2.40.

Theorem 6.3. Let
αG,Oβ (SG(f))

.
= SG(β∗f) , (6.24)

where SG(f) ∈ AΦ,G(O), β ∈ G is an element of the isometry group of M
and β∗f .

= f ◦ β. Then αG,Oβ , β ∈ G extends to a family of isomorphisms
αG,Oβ : AΦ,G(O)→ AΦ,G(βO) satisfying the conditions of definition 2.40.

Before we prove the theorem we need a lemma that allows to reduce the
problem to the problem that involves the net {AΦ,g(O)}.

Lemma 6.1. The evaluation maps

γg,G : SG,O(f)→ Sg(f)

extend to isomorphisms of AΦ,G(O) and AΦ,g(O) for every g ∈ [G]O.



6.5. EXPLICIT CONSTRUCTION 109

Proof. The only thing that we need to check is that the map γg,G is injective.
Assume that γg,G(SG,O(f)) = γg,G(SG,O(f ′)) for some f, f ′ with supports
contained in O. Then Sg,O(f) = SG,O(f ′) and using the proposition 6.3
we conclude that Sg,O(f) = SG,O(f ′) for every g′ ∈ [G]O, so SG,O(f) =
SG,O(f ′).

Proof of the theorem. We have to prove that the map αG,Oβ given by (6.24)
extends to an isomorphism AΦ,G(O)→ AΦ,G(βO). Let O1 ⊃ O∪βO and g ∈
[G]O1 . Then g, β

∗g ∈ [G]O and β∗g = g+hβ+ +hβ− with supphβ±∩J∓(O) = ∅.
By the causal factorization property (6.20) we obtain

αGO
β = γ−1

g,G ◦AdUg(β) ◦ αO
β ◦ γg,G

where Ug(β) = Sg(h
β
−) and

αO
β (S(f)) = S(β∗f) .

It is now apparent that (6.24) extends to an isomorphism. From the def-
inition (6.24) it is also clear that if O1 ⊂ O2, then the restriction of
αGO2
β to AΦ,G(O1) coincides with αGO1

β and for any β, β′ ∈ G, we have
αGO
β′ ◦ αGO

β = αGO
β′◦β .

6.5 Construction of time-ordered products

In this section we review the abstract Epstein-Glaser construction of time-
ordered products on Minkowski spacetime following [EG73, BF00, HW02a].
We will also show how to obtain more explicit formulas using regularization
prescriptions and combinatorics involving Feynman diagrams. First we need
to introduce some notation. Time-ordered products THn are maps from F⊗nloc

to Fµc[[~]] and, as indicated in the previous section, they are obtained by
extending non-renormalized expressions that are originally defined only on
(Floc)

⊗n
pds. Let us consider F ≡ F1⊗· · ·⊗Fn ∈ (Floc)

⊗n
pds. Note that F induces

a map from En to C by F (ϕ1, ..., ϕ2) = F1(ϕ1) · · ·Fn(ϕn). When we talk
about functionals on E we will denote the variable by ϕ and for functionals
on En, the variable is an n-tuple (ϕ1, ..., ϕn). For a multiindex β ∈ Nn0 we
denote

δβF (ϕ1, . . . , ϕn)
.
=

δ|β|F

δϕβ1
1 . . . δϕβnn

(ϕ1, . . . , ϕn) ,

where F is a smooth functional on En and (ϕ1, . . . , ϕn) ∈ En. Clearly
δβF (ϕ1, . . . , ϕn) ∈ L(E|β|;C) and by proposition 3.1 it induces an element
of Γ′(E�|β| →M |β|).
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Definition 6.13. We say that a smooth functional F on En is microcausal
if it is compactly supported and satisfies

WF
(
δβF (ϕ1, . . . , ϕn)

)
⊂ Ξ|β|, ∀β ∈ Nn0 , ∀(ϕ1, . . . , ϕn) ∈ En, ∀n ∈ N .

(6.25)
We denote the space of such functionals by Fnµc.

6.5.1 Existence of time-ordered products

We have seen in section 6.2.3 that the renormalization problem amounts to
extension of maps THn to local functionals with arbitrary supports. In fact,
we will see that it reduces to extending numerical distributions defined ev-
erywhere outside certain subdiagonals inMn (see [BF00]). The construction
proceeds recursively and, having constructed the time-ordered products of
order k < n, at order n one is left with the problem of extending a dis-
tribution defined everywhere outside the thin diagonal of Mn. One way of
constructing explicitly such distributional extensions relies on the splitting
method (see for example [Sch95]). Here we take a different approach, based
on the notion of Steinmann’s scaling degree [Ste71].

Definition 6.14. Let U ⊂ Rn be a scale invariant open subset (i.e. λU = U
for λ > 0), and let t ∈ D′(U) be a distribution on U . Let tλ(x) = t(λx) be
the scaled distribution. The scaling degree sd of t is

sd t = inf{δ ∈ R| lim
λ→0

λδtλ = 0} . (6.26)

The degree of divergence, another important concept used often in the
literature, is defined as:

div(t)
.
= sd(t)− n .

The crucial result which allows us to construct time-ordered products is
stated in the following theorem:

Theorem 6.4. Let t ∈ D(Rn\{0}) with scaling degree sd t <∞. Then there
exists an extension of t to an everywhere defined distribution with the same
scaling degree. The extension is unique up to the addition of a derivative
P (∂)δ of the delta function, where P is a polynomial with degree bounded by
div(t) (hence vanishes for sd t < n).

In order to apply theorem (6.4), we need to be able to reduce the problem
of constructing the time-ordered products to the problem of extension of
numerical distributions defined everywhere outside the thin diagonal. In



6.5. EXPLICIT CONSTRUCTION 111

this section we work on the level of quantum Lagrangian in the sense of
definition 6.9. A construction performed on the level of functionals will be
presented in section 6.5.2.

In the first step we restrict ourselves to Lagrangians, which are linear
maps on the space of test functions. The general case is obtained by re-
defining the test functions. For example if L(f) =

∫
M f2(x)L(x)dµ(x),

then we obtain a Lagrangian linear in test function by setting L′(f ′)
.
=∫

M f ′L(x)dµ(x) and the original Lagrangian is L′(f2).
An n-fold time-ordered product of Lagrangians L1, . . . , Ln induces a lin-

ear map
f1 ⊗ · · · ⊗ fn 7→ THn (L1(f1), . . . , Ln(fn)) , (6.27)

We denote L .
= (L1, . . . , Ln) and the map (6.27) by THn (L1, . . . , Ln) or by

THn,L. This maps extends to D(Mn,R) and we denote this extension by the
same symbol THn,L.

Similarly, let I = {i1, . . . , ik} be a subset of {1, . . . , n} we introduce the
notation THI,L for the map

f1 ⊗ · · · ⊗ fk 7→ THk (Li1(f1), . . . , Lik(fk)) .

Ultimately we need maps THn,L to construct the S-matrix and interacting
local nets, as outlined in section 6.4. For this purpose, it is convenient to
formulate the problem of constructing the time-ordered products as the prob-
lem of constructing maps THn,L. A method formulated on the level of local
functionals, rather than such maps will be presented in the next subsection.

Let us start with formulating the axioms that maps THn,L have to fulfill.

(TL 1) Causal factorisation property

THn,L(f1 ⊗ · · · ⊗ fn) = THI,L(f1 ⊗ · · · ⊗ fk) ?H THIc,L(fk+1 ⊗ · · · ⊗ fn)

where I = {1, . . . , k} and the supports supp fi, i = 1, . . . , k of the
first k arguments do not intersect the past of the supports supp fj ,
j = k + 1, . . . , n of the last n− k entries.

(TL 2) Starting element: TH0 = 1, TH1,L(f) = L(f).

(TL 3) Symmetry: For a bosonic theory THI,L = THI,σ(L), where σ

is a permutation of n elements and we define σ(L1, . . . , Ln)
.
=

(Lσ(1), . . . , Lσ(n)). In the presence of fermions, each permutation
of two elements introduces an extra minus sign.

(TL 4) Field independence.
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(TL 5) ϕ-Locality.

(TL 6) Unitarity.

(TL 7) Covariance.

The construction of time-ordered products proceeds inductively. We as-
sume that the maps TH

k,L′
with k < n are constructed for all possible k-tuples

L′ of generalized Lagrangians of the theory. For a power-counting renor-
malizable theory this set is finite dimensional, see definition 6.10. Using the
causal factorisation property (T 1) we fix the values of THn,L on test functions
f ∈ D(Mn \ Dn). Maps constructed this way are called non-renormalized
time-ordered products and we denote them by T̊Hn,L.

Definition 6.15. Let I be a proper subset of {1, . . . , n} and we denote by
CI the subset of Mn defined by

CI = {(x1, . . . , xn)|xi /∈ J+(xj) for all i ∈ I , j ∈ Ic} ,

where Ic is the complement of I.

Sets CI are open and they constitute an open covering of Mn \Dn.

Definition 6.16. Let I be a proper subset of {1, . . . , n}. We define a
functional-valued linear map THI|Ic,L on D(Mn \Dn) by fixing its values on
test functions that arise as products

THI|Ic,L(f1 ⊗ · · · ⊗ fn)
.
= THI,L(fI) ? T

H
Ic,L(fIc) ,

where for I = {i1, . . . , ik} we define fI
.
= fi1 ⊗ · · · ⊗ fik).

Let {gI} be a partition of unity subordinate to the open covering defined
in 6.15. We define the non-renormalized time-ordered products by

T̊Hn,L(f)
.
=

∑
I({1,...,n}

I 6=∅

THI|Ic,L(gIf) ,

where f ∈ D(Mn \ Dn). The following proposition has been proven in
[HW01].

Proposition 6.4. Assuming that time ordered products T̊H
k,L′

with less or
equal than n− 1 arguments have been defined in such a way that they satisfy
properties (TL 1) – (TL 7) as maps on D⊗n. Then the maps T̊Hn,L automat-
ically satisfy the restrictions of properties (TL 1) – (TL 7) to D(Mn \Dn).
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Proof. See the proof in [HW01].

In the next step we reduce the problem of defining the time-ordered
products THn,L to the problem involving only C-valued distributions. For this
we use the properties (TL 4) and (TL 5) and write the n-fold time-ordered
product THn,L in terms of its Taylor expansion around 0.

THn,L(f1 ⊗ · · · ⊗ fn)[ϕ] =

= THn,L(f1 ⊗ · · · ⊗ fn)[0]+

+
∑
|β|>0

〈
THn (δβ1L1(f1), . . . , δβnLn(fn))[0], ϕ⊗β1 ⊗ · · · ⊗ ϕ⊗βn

〉
,

where β ∈ Nn0 . In physics literature this is called the Wick expansion. Note
that this expansion converges as a power series in ~, because due to (TL 5),
in each order in ~ the sum contains only finitely many terms. Therefore it
is sufficient to know the time-ordered products of polynomials.

Among all the Lagrangians linear in test functions we distinguish the
monomial ones,

L(f)[ϕ] =

∫
M
ϕk(x)f(x)dµ(x) ≡ Φk(f)[ϕ] , (6.28)

We will now construct time ordered products of Lagrangians that are of this
form. The advantage of working with such objects is the fact that computing
functional derivatives reduces to simple algebraic manipulation.〈

δl

δϕl
Φk(f)[ϕ0], ψ⊗l

〉
=

k!

(k − l)!

〈
Φk−l(.)[ϕ0], fψl

〉
≡ k!

(k − l)!

〈
Φk−l[ϕ0], fψl

〉
Hence the Wick expansion takes the form

THn (Φk1(f1), . . . ,Φkn(fn))(ϕ) =

=

k1∑
l1=0

· · ·
kn∑
ln=0

(
k1

l1

)
. . .

(
kn
ln

)〈
tHn (Φk1−l1 , . . . ,Φkn−ln), f1ϕ

l1 ⊗ · · · ⊗ fnϕln
〉
,

(6.29)

We chose the convention where test functions are put together with config-
urations on the right-hand side of the pairing, and the remaining numerical
distriubutions are denoted by small t’s.
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Remark 6.3 (Hopf algebraic interpretation). The combinatorics appearing
in our formulas can be significantly simplified in the Hopf algebra language
[Bro06, Dan13, BFK06]. Let H denote the algebra generated by the La-
grangians Φk, where the product is defined by

ΦkΦl .= Φk+l .

Note that this is not the pointwise product we have introduced before on
the space of functionals. We identify Φ0 with the unit 1, i.e. a Lagrangian
of the form Φ(f)[ϕ] =

∫
M fdµ. We define the co-product ∆ : H → H ⊗H

by

∆(Φk) =

k∑
l=0

(
k

l

)
Φk−l ⊗ Φl ,

and the counit

ε(Φk) =

{
1 if k = 0,

0 else.

Using Swindler notation we can now write〈
δl

δϕl
Φk(f)[ϕ0], ψ⊗l

〉
=
〈

Φk
(1)[ϕ0], fΦk

(2)[ψ],
〉
.

where ∆(Φk) ≡
∑

Φk
(1) ⊗ Φk

(2). Hence

THn (Φk1(f1), . . . ,Φkn(fn))(ϕ) =

=
∑〈

tHn

(
Φk1

(1), . . . ,Φ
kn
(1)

)
, f1Φk1

(2)(ϕ)⊗ · · · ⊗ fnΦkn
(2)(ϕ)

〉
, (6.30)

On the left-hand side of the pairing we have a distribution on Mn and on
the left-had side a compactly supported function on Mn, so the expression
above is well defined.

We have reduced the extension problem to a problem that involves only
numerical distributions tHn (Φk1 , . . .Φkn). Combining with the earlier con-
struction of maps T̊Hn , we can conclude that the renormalization problem
reduces to extending numerical distributions t̊Hn (Φk1 , . . .Φkn) ∈ D(Mn\Dn).
Using the axioms (TL 1)-(TL 7) we can formulate the corresponding axioms
for t̊Hn ’s (see [HW01]) for details. We label these axioms by (t 1)-(t 7)

It is actually helpful to impose some additional, more technical require-
ments, which control the regularity of distributions tHn . These are:

(t 8) Almost homogeneous scaling,



6.5. EXPLICIT CONSTRUCTION 115

(t 9) Micolocal spectrum condition,

(t 10) Smoothness,

(t 11) Analyticity.

The final two axioms concern the dependence on the background metric. The
precise statement of these axioms can be found in section 3.3 of [HW01]. The
existence of the distributional extensions with desired properties in guaran-
teed by the following result.

Theorem 6.5 (following [HW01]). There exist distribution tHn (Φk1 , . . .Φkn)
satisfying the axioms (t 1)-(t 11).

Proof. See [BF00, HW01]. A more robust and mathematically cleaner
method for constructing such distributional extension has been provided in
[Dan13].

Let us now discuss Lagrangians containing derivatives. We generalize the
class of objects we consider to Lagrangians of the form

Φma (f)[ϕ]
.
=

∫
M
〈a, (∇)m1ϕ⊗ · · · ⊗ (∇)mkϕ〉 fdµ ,

where f ∈ D , m = (m1, . . . ,mk) is a multiindex, (∇)m1ϕ denotes the rank
m1 covariant tensor obtained by applying m1 covariant derivatives to ϕ,
a is a rank |m| contravariant tensor and 〈., .〉 denotes the pairing between
covariant and contravariant tensors of matching rank. We can also generalize
Lagrangians to maps on arbitrary tensor fields, i.e. L : Tens → Floc, where
Tens

.
=
⊕

p,q Γ(T pqM). We introduce the notation

Φma,c(f)[ϕ]
.
=

∫
M
〈a, f ⊗ (∇)m1ϕ⊗ · · · ⊗ (∇)mkϕ〉c dµ , (6.31)

where f is an arbitrary rank (q, r) tensor field2, the rank of a is rk(a) =
(r, q+ |m|), c = (c1, . . . , c|m|) is an ordered (|m|+ q)-tuple of numbers that
indicate in which slots contractions of tensor indices have to be performed
and 〈., .〉c is the contraction itself. This way, after applying 〈., .〉c we are left
with a tensor of rank rk(a)− (0, |m|), which is subsequently contracted with
f .

2We use convention where a tensor field of type (q, 0) is a q-form and (0, r) is an
r-vector.
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The l-th derivative of Φma,c can be expressed as〈
δl

δϕl
Φma,c(f)[ϕ0], ψ⊗l

〉
=
∑
I

〈
Φ
m/I
a,cI [ϕ0], f ⊗ (∇)mi1ψ ⊗ · · · ⊗ (∇)milψ

〉
cI
,

(6.32)
where I = {i1, . . . , il} is an ordered subset of {1, . . . , k} and the notation
Φ
m/I
a means that we “take out” the corresponding factors from the monomial

in (6.32). The notation gets a bit complicated at this point, but we can still
write an analog of (6.29) with the appropriate combinatorics of Φma,c’s. This
can be simplified with the use of the Hopf algebra language, since (6.32)
induces again a co-product. This Hopf algebra, however is non-commutative,
because a in (6.31) is not necessary symmetric and the operation of putting
together such objects using the tensor product is non-commutative. The
framework needed to handle non-commutative Hopf algebras that arise this
way can be found for example in [BFK06]. The non-commutativity appears
also if we want to generalize from scalar fields to field configurations which
are sections of an arbitrary vector-bundle.

The general procedure can be summarized as follows. We fix a theory
Φ and we choose a suitable family of Lagrangians {Φα}α∈A, where A is
some suitable label set (for example in (6.28) A = N0). We allows for test
functions f which are compactly supported sections of some vector bundle E0

overM . The family {Φα}α∈A has to be chosen in such a way that functional
derivatives of Φα’s can be written in terms of other elements of {Φα}α∈A,
as it was done in (6.29). The concrete expression for the l-th functional
derivative of Φα determines the choice of the product and the co-product in
the set {Φα}α∈A and we define H to be the bi-algebra generated with respect
to these structures. The crucial requirement is that〈

δl

δϕl
Φα(f)[ϕ0], ψ⊗l

〉
=
∑〈

Φα
(1)[ϕ0], f ⊗ Φα

(2)[ψ]
〉

(1)(2)
,

with a suitable choice of pairings 〈., .〉(1)(2). The choice of the unit and the
co-unit is the same as in remark 6.3 and we introduce a grading in such a
way that the degree 0 component is one-dimensional, spanned by the unit 1.
The latter guarantees the existence of the antipode and H becomes a Hopf
algebra. The Wick expansion takes the form

THn (Φα1(f1), . . . ,Φαn(fn))(ϕ) =

=
∑〈

tHn

(
Φα1

(1), . . . ,Φ
αn
(1)

)
, f1Φα1

(2)(ϕ)⊗ · · · ⊗ fnΦαn
(2)(ϕ)

〉
, (6.33)
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The problem is again reduced to construction of numerical-valued distribu-
tions tHn .

The potential non-uniqness in representing functionals in terms of Φα’s
implies some extra conditions on t’s. For example, if we consider just the
scalar field in the presence of field derivatives in Lagrangians, the non-
uniquness arises due to the possibility of integration by parts. For con-
sistency, distributions tHn (Φm1

q1 , . . .Φ
mn
qn ) have to satisfy the condition:

(t 12) Action Ward Identity

ki ◦ tHn (Φm1

q1 , . . .Φ
mn
qn ) = tHn (Φm1

q1 , . . . , k ◦ Φmi
qi
, . . . ,Φmn

qn ) , (6.34)

where ki =
∑

µ k
µ∇iµ, the notation ∇iµ indicates that the derivative is

applied in the i-th slot and

k ◦ Φma,c(f)[ϕ]
.
=

k∑
j=1

∫
M
〈a, f ⊗ (∇)m1ϕ⊗ k ◦ (∇)mjϕ⊗ · · · ⊗ (∇)mkϕ〉c dµ .

It was shown in [DF07] that this condition can be fulfilled also for the exten-
sions of t’s to the diagonal. Before AWI has been proven, the construction
of time-ordered products was known only on the level of polynomials Φma,c,
treated as formal expressions, not as functionals on the configuration space.
It was then suggested by Stora [Sto02] to impose the additional requirement
(6.34). The proof of this requirement achieved in [DF07] was a major break-
through in mathematical pQFT since it opened the way for the functional
formalism. In [HW05] this condition is called the Leibniz rule, and its proof
is generalized to curved spacetimes.

Having constructed the numerical distributions tHn (Φm1

q1 , . . .Φ
mn
qn ) satisfy-

ing conditions (t 1)- (t 12) we use the formula (6.33) to construct maps
THn (Φα1 , . . .Φαn) satisfying properties (TL 1)–(TL 7). Using linearity and
appropriate redefinitions of test functions this allows to construct time-
ordered products of arbitrary Lagrangians in Φ. Note that all the way
throughout this section we have worked purely on the level of topological
algebras of functionals, without the need to refer to a concrete Hilbert space
representation. This functional viewpoint is very useful in QFT on curved
spacetimes, where there is no unique vacuum state and hence no distin-
guished vacuum representation. We can push this idea even further and
formulate the problem of construction the time ordered product as a prob-
lem of extending vector-valued distributions. We expect the following to
hold true:
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Conjecture 6.1. Equip Fµc(M) with a topology that controls the WF
set properties of functional derivatives. Then the time-ordered products
THn (L1, . . . Ln) constructed in this section, in each order in ~, are Fµc(M)-
valued distributions.

6.5.2 Explicit construction and Feynman graphs

In the section (6.5.1) we have reviewed the existence proof for time ordered
products, reformulating it in the language of the functional formalism. The
drawback of the method presented there was that it relied on (potentially
non-unique) parametrisation of local functionals in terms of Lagrangians
and also, that the existence proof is rather abstract and doesn’t provide an
explicit expression for time-ordered products. There is a more direct method
to construct TnH, which is formulated on the level of functionals, rather
than the natural Lagrangians. For simplicity we will present it only in the
context of Minkowski spacetime. The generalization to arbitrary globally
hyperbolic spacetimes is not difficult and can be done using the methods of
[BF00, Dan13].

In this section we work on the Minkowski spacetime, so we set H = ∆1

and ∆+
S0

= i
2∆S0 + ∆1 is the Wightman 2-point function. In this case ∆F

S0

is the “standard” Feynman propagator.
Theorem 6.4 allows in principle to extend all the numerical distributions

we need for the construction of time-ordered products. Although it is pos-
sible to argue on the level of THn s, here we use a perturbative expansion of
time-ordered products in terms of Feynman graphs, to make the relation to
other approaches to renormalization more apparent. Note, however, that in
the pAQFT framework, Feynman graphs are not fundamental objects, but
instead they are derived (together with the corresponding Feynman rules)
from the definition of time-ordered products.

Let us denote Dij
.
= i~〈∆F

S0
, δ2

δϕiδϕj
〉 and D .

= i~〈∆F
S0
, δ2

δϕ2 〉. The Leibniz
rule for differentiation can be formulated as

δ

δϕ
◦mn = mn ◦

(
n∑
i=1

δ

δϕi

)
, (6.35)

where mn is the pointwise multiplication of n arguments, or in other words,
a pullback through the diagonal map E→ En, ϕ 7→ (ϕ, . . . , ϕ).

Proposition 6.5. The unrenormalized n-fold time ordered product THn :
(Floc)

⊗n
pds → Fµc[[~]] can be expressed as

THn (F1, . . . , Fn) = mn ◦ e
∑
i<j Dij (F1, . . . Fn) .
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Proof. By definition we have

THn (F1, . . . , Fn) = F1 ·TH · · · ·TH Fn = e
D
2 ◦mn(e−

1
2
D11F1, . . . , e

− 1
2
DnnFn) .

The Leibniz rule implies that

e
D
2 ◦mn = mn ◦ e

∑
i<j Dij+

∑
i

1
2
Dii ,

hence

THn (F1, . . . , Fn) = mn ◦ e
∑
i<j Dij+

∑
i

1
2
Dii ◦ (e−

1
2
D11F1, . . . , e

− 1
2
DnnFn) .

It is now clear that all the factors e−
1
2
Dii cancel, which proves the result.

Finally, let us denote
Tn

.
= e

∑
i<j Dij ,

so Tn is a map from (Floc)
⊗n
pds to Fnµc. The combinatorial identity

e
∑
i<j Dij =

∏
i<j

∞∑
lij=0

D
lij
ij

lij !
(6.36)

allows us to express time ordered products in terms of graphs. Let Gn be
the set of all graphs with vertex set V (Γ) = {1, . . . n} and lij the number of
lines e ∈ E(Γ) connecting the vertices i and j. We set lij = lji for i > j and
lii = 0. If e connects i and j we set ∂e := {i, j}. Then

Tn =
∑

Γ∈Gn

TΓ , (6.37)

where
TΓ =

1

Sym(Γ)
〈tΓ, δΓ〉 , (6.38)

with

δΓ =
δ2 |E(Γ)|∏

i∈V (Γ)

∏
e:i∈∂e δϕi(xe,i)

and
tΓ =

∏
e∈E(Γ)

~∆F (xe,i, i ∈ ∂e) (6.39)

The symmetry factor Sym is the number of possible permutations of lines
joining the same two vertices, Sym(Γ) =

∏
i<j lij !. Note that TΓ is a map
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from (Floc)
⊗V (Γ)
pds to F|V (Γ)|[[~]], where ⊗V means that the factors in the

tensor product are numbered by vertices and to a vertex v ∈ V (Γ) we assign
the variable ϕv. The renormalization problem to extend Tn’s to maps on
(Floc)

⊗n is nnow reduced to extending all the maps TΓ. For the latter we
can use methods relying on the combinatorics of Feynman graphs, as is done
in other approaches to pQFT. In particular, one can establish a relation with
the Connes-Kreimer approach [CK00, CK01] (see [Pin00, GBL00, DFKR14]).

First we note that functional derivatives of local functionals are of the
form

F (l)(ϕ)(x1, . . . , xl) =

∫ N∑
j=1

gj [ϕ](y)pj(∂x1 , . . . , ∂xl)
l∏

i=1

δ(y − xi)dµ(y) ,

(6.40)
where N ∈ N, pj ’s are polynomials in partial derivatives and gj [ϕ] are ϕ-
dependent test functions. The representation above is not unique, since some
of the partial derivatives ∂xi can be replaced with ∂y and applied to gj [ϕ].
Another representation of F (l)(ϕ) is obtained by performing the integral
above and using the centre of mass and relative coordinates:

F (l)(ϕ)(x1, . . . , xl) =
∑
β

fβ[ϕ](z)∂βδ(xrel) (6.41)

where β ∈ N4(l−1)
0 , test functions fβ[ϕ](x) ∈ D are now ϕ-dependent

functions of the center of mass coordinate z = (x1 + · · · + xk)/k and
xrel = (x1 − z, . . . , xk − z) denotes the relative coordinates.

Using (6.40) we see that the functional differential operator δΓ applied
to F ∈ F⊗nloc yields, at any n-tuple of field configurations (ϕ1, . . . , ϕn), a
compactly supported distribution in the variables xe,i, i ∈ ∂e, e ∈ E(Γ) with
support on the partial diagonal ∆Γ = {xe,i = xf,i, i ∈ ∂e∩∂f, e, f ∈ E(Γ)} ⊂
M2|E(Γ)| and with a wavefront set perpendicular to T∆Γ. Note that the
partial diagonal ∆Γ can be parametrized using the center of mass coordinates

zv
.
=

1

valence(v)

∑
e|v∈∂e

xe,v ,

assigned to each vertex. The remaining relative coordinates are xrele,v = xe,v−
zv, where v ∈ V (Γ), e ∈ E(Γ) and v ∈ ∂e. Obviously, we have

∑
e|v∈∂e x

rel
e,v =

0 for all v ∈ V (Γ). In this parametrization δΓF can be written as a finite
sum

δΓF =
∑
finite

fβ∂βδrel ,
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where β ∈ N4|V (Γ)|
0 , each fβ(ϕ1, ..., ϕn) is a test function on ∆Γ and δrel is

the Dirac delta distribution in relative coordinates, i.e. δrel(g) = g(0, . . . , 0),
where g is a function of (xrele,v, v ∈ V (Γ), e ∈ E(Γ)).

We can simplify our notation even further. Let YΓ denote the vector
space spanned by derivatives of the Dirac delta distributions ∂βδrel, where
β ∈ N4|V (Γ)|

0 . Obviously, YΓ is graded by |β|. Let D(∆Γ, YΓ) denote the
graded space of test functions on ∆Γ with values in YΓ. With this notation
we have δΓF ∈ D(∆Γ, YΓ) and if F ∈ (Floc)

⊗n
pds, then δΓF is supported on

∆Γ \DIAG, where DIAG is the large diagonal:

DIAG = {z ∈ ∆Γ| ∃v, w ∈ V (Γ), v 6= w : zv = zw} .

We can now write (6.38) in the form

1

Sym(Γ)
〈tΓ, δΓ〉 =

∑
finite

〈
fβ∂βδrel, tΓ

〉
where tΓ is now written in terms of centre of mass and relative coordi-
nates. To see that this expression is well defined, note that we can move
all the partial derivatives ∂β to tΓ by formal partial integration. Then the
contraction with δrel is just the pullback through the diagonal map map
ρΓ : ∆Γ →M2|E(Γ)| by

(ρΓ(z))e,v = zv if v ∈ ∂e .

From the wavefront set properties of ∆F
S0
, we deduce that the pullback

ρ∗Γ of each tβΓ
.
= ∂βtΓ is a well defined distribution on ∆Γ\DIAG, so

(6.38) makes sense if F ∈ (Floc)
⊗n
pds, as expected. We conclude that

tΓ ∈ D′(∆Γ\DIAG, YΓ), where the duality between tΓ and a test function
f =

∑
finite f

β∂βδ is given by

〈tΓ, f〉
.
=
∑
β

〈tβΓ, fβ〉 .

The renormalization problem now reduces to finding the extensions of tβΓ,
so that tβΓ gets extended to an element of D′(∆Γ, YΓ). The solution to this
problem is obtained by using the inductive procedure of Epstein and Glaser.
The induction step works as follows: if tΓ′ is known for all graphs Γ′ with
fewer vertices than Γ, then tΓ can be uniquely defined for all disconnected,
all connected one particle reducible and all one particle irreducible one vertex
reducible graphs. Graphs which are irreducible and do not contain any non-
trivial irreducible subgraphs are called EG-primitive. For the remaining
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graphs, called EG-irreducible, tΓ is defined uniquely on all f ∈ D(∆Γ, YΓ) of
the form above where fβ vanishes together with all its derivatives of order
≤ ωΓ + |β| on the thin diagonal of ∆Γ. Here

ωΓ = (d− 2)|E(Γ)| − d(|V (Γ)| − 1)

is the degree of divergence of the graph Γ. We denote this subspace
by DωΓ(∆Γ, YΓ). Graphs which are irreducible and do not contain any
non-trivial irreducible subgraphs are called EG-primitive. Renormalization
amounts to project a generic f to this subspace by a translation invari-
ant projection WΓ : D(∆Γ, YΓ) → DωΓ(∆Γ, YΓ). Different renormalization
schemes differ by different choices of the projections WΓ (see [DFKR14] for
details).

By exploiting the translation invariance in Minkowski spacetime we find
that, at each step of the recursive construction of time-ordered products,
the renormalization problem reduces to the problem of extension of some
distribution defined everywhere outside the origin, so this is what we will
focus on now.

6.5.3 Regularization of distributions

There is an important conceptual difference between the Epstein Glaser
framework and other approaches to renormalization; namely form the EG
point of view one constructs objects (e.g. time-ordered products, the S-
matrix) which are already renormalized and can be physically interpreted.
In other approaches, one first introduces some regularization, which renders
the Feynman graphs well defined and then, in the next steps performs renor-
malization, which is some procedure that allows to recover physicaly relevant
information after the regularization parameters are removed by some limiting
process.

In this section we show how introducing an explicit regularization proce-
dure is related to the problem of extension of distributions.

Definition 6.17. We define

Dλ(Mn−1) := {f ∈ D(Mn−1) | (∂αf)(0) = 0 ∀|α| ≤ λ} (6.42)

to be the space of functions with derivatives vanishing up to order λ and
D ′λ(Mn−1) is the corresponding space of distributions.

Theorem 6.6 ([Ste71, BF00]). A distribution t ∈ D ′(Rn \ {0}) with scaling
degree sd(t) has a unique extension t̄ ∈ D ′λ(Rn), λ = sd(t)−n, which satisfies
the condition sd(t̄) = sd(t).
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Definition 6.18 ([DFKR14]). Let t̃ ∈ D ′(Rn \ {0}) be a distribution with
degree of divergence λ, and let t̄ ∈ D ′λ(Rn) be the unique extension of t̃ with
the same degree of divergence. A family of distributions {tζ}ζ∈Ω\{0}, tζ ∈
D ′(Rn), with Ω ⊂ C a neighborhood of the origin, is called a regularization
of t̃, if

∀g ∈ Dλ(Rn) : lim
ζ→0
〈tζ , g〉 = 〈t̄, g〉 . (6.43)

The regularization {tζ} is called analytic, if for all functions f ∈ D(Rn) the
map

Ω \ {0} 3 ζ 7→ 〈tζ , f〉 (6.44)

is analytic with a pole of finite order at the origin. The regularization {tζ}
is called finite, if the limit limζ→0〈tζ , f〉 ∈ C exists ∀f ∈ D(Rn); in this case
limζ→0 t

ζ ∈ D ′(Rn) is called an extension or renormalization of t̃.

Given the unique extension t̄ one can define (in general not unique)
extension of t to a distribution in D(Rn) by a choice of a projection
W : D(Rn)→ Dλ(Rn) defined as

W : D(Rn) → Dλ(Rn)

f 7→ Wf := f −
∑

|γ|≤sd(t)−n

wγ ∂
γf(0) , (6.45)

given in terms of functions wγ ∈ D(Rn) , |β| ≤ sd(t)− n , fulfilling

∂γwβ(0) = δγβ ∀γ ∈ Nn0 (6.46)

In particular, it was shown in [] that for an analytic regularization {tζ} we
can write (6.43) in the form

〈t̄,Wf〉 = lim
ζ→0

〈tζ , f〉 − ∑
|γ|≤sd(t)−n

〈tζ , wγ〉 ∂γf(0)

 . (6.47)

and each of the two expressions appearing inside the square bracket can be
expanded in a Laurent series around ζ = 0. This allows to perform the
Minimal Subtraction, as done in

Corollary 6.1 (Minimal Subtraction [DFKR14]). The regular part (rp =
1− pp) of any analytic regularization {tζ} of a distribution t ∈ D ′(Rn \ {0})
defines by

〈tMS, f〉 := lim
ζ→0

rp(〈tζ , f〉) (6.48)

an extension of t with the same scaling degree, sd(tMS) = sd(t), which we
call the Minimal Subtraction.
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Let us now come back to the construction of the S-matrix. To relate
this to the method of divergent counter terms, we need to find a family of
renormalization group elements Zζ ∈ R such that

S = lim
ζ→ζ0

Sζ ◦ Zζ . (6.49)

It was shown in [DFKR14, BDF09] that for a given S, such a family (Zζ)
exists and is uniquely determined up to a sequence which converges to the
identity.

Remark 6.4. Note that, by construction, maps Zζ obtained this way are
local, so the construction provided in [DFKR14] automatically yields local
counter terms.



Chapter 7

Gauge theories

In section 4.3 we have already seen that the space of multilocal on-shell
functionals FS(M) can be characterized as the 0th homology of the differ-
ential complex (ΛV, δS) (see (4.7)). The 1-st homology of this complex is
interpreted as the pace of non-trivial local symmetries. Now we discuss the
quantization of theories where this homology class is non-trivial, using the
BV framework, in the version proposed in [FR12b, FR12a].

7.1 Classical gauge theory

Recall from section 4.3 that ΛV as the space of multivector fields, is equipped
with a natural structure of the Schouten bracket {., .} and the BV differential
δS is locally generated by the bracket in the sense that

δSX = {S,X} .

The triple (ΛV, {., .}, δS) is an algebraic structure called differential Gersten-
haber algebra. In the quantized theory this structure, together wit a certain
grade 1 operator gives rise to a BV algebra. In this chapter we will use a
slightly formal notation X(ϕ) =

∫
Xx(ϕ) δ

δϕ(x) introduced in section 3.4 for a
vector field X ∈ V. This notation allows to make contact with the standard
physics literature on the BV formalism, if one identifies δ

δϕ(x) with a formal
generator ϕ‡, called the antifield.

The structure described above appears also in theories where local sym-
metries are present, but there the space of multivector fields on an infinite
dimensional manifold E has to be replaced by the space of multivector fields
on certain graded infinite dimensional manifold, which we denote by E(M).

125
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We show how this space is constructed on the example of Yang-Mills theories
and the free electromagnetic field.

7.1.1 Dynamics and symmetries

Let K be a finite dimensional semisimple compact Lie group and k
.
= Lie(K)

its Lie algebra. Consider the trivial principal bundle P = M ×K over M .
We take the point of view that the QFT model on a given spacetimes should
be first constructed from “simple building blocks”, i.e. algebras associated to
regions that are topologically simple, and the global structure is recovered
from the properties of the net itself. Therefore, it is sufficient for our purposes
to restrict ourselves to trivial principal bundles.

Globally the configuration space E for a Yang-Mills theory should be the
space of connection 1-forms, i.e. the space of k-valued 1-forms on P which
satisfy:

1. R∗αω = adα−1 ◦ ω,

2. ω(Z(ξ)) = ξ,

where α ∈ K, Rα : K → K is the right multiplication, ad is the adjoint
representation of K on k and Z : k → Γ(TP ) is the map which assigns to
ξ ∈ k its fundamental vector field given by

Zp(ξ)
.
=

d

dt

∣∣∣
t=0

petξ .

After fixing a background connection A0 we can characterize all the connec-
tion 1-forms in terms of one forms onM with values in the associated bundle
kP

.
= P ×K k. We denote this space by Ω1(M, kP ) and this is going to be

our configuration space. For simplicity we will assume that A0 is a trivial
connection. For the discussion of the general case see [Zah13].

Definition 7.1. Define the configuration space E for a Yang-Mills theory as
the space Ω1(M, kP ) of one forms on M with values in the associated bundle
kP

.
= P ×K k. Since P is assumed to be trivial, E = Ω1(M, k).

Let F denote the space of multilocal compactly supported functionals on
E and V the space of multilocal vector fields. The generalized Lagrangian of
the Yang-Mills theory is given by

LYM(f)(A) = −1

2

∫
M
f tr(F ∧ ∗F ) , (7.1)
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where F = dA + 1
2 [A,A], ∗ is the Hodge operator and tr is the trace on k.

The equation of motion reads:

S′YM(A) = DA∗F = 0 ,

whereDA is the covariant derivative induced by the connectionA. To analyse
H1(ΛV, δS), we will construct explicitly non-trivial symmetries of the action
corresponding to the Lagrangian (7.1). Let us define the gauge group as the
space of vertical G-equivariant compactly supported diffeomorphisms of P :

G := {α ∈ Diffc(P )|α(p · g) = α(p) · g, π(α(p)) = π(p), ∀g ∈ K, p ∈ P} .

We can also characterize G as Γc(M,P ×K K) and for a trivial bundle P
this reduces ro C∞c (M,K). It is known ([Nee04, Glö02, KM97], see also
[Nee06, Woc06]) that C∞c (M,K) can be equipped with the structure of an
infinite dimensional Lie group modelled on its Lie algebra gc = C∞c (M, k).
Since the gauge group is just a subgroup of Diff(P ), it has a natural action
on Ω1(P, k)G by the pullback. This induces the action of G(M) on E, and the
corresponding derived action σ of gc is given by

σ(c)(A) = dc+ [A, c] = DAc , c ∈ gc (7.2)

The Yang-Mills action is invariant under the transformation (7.2), in the
sense that 〈

S′YM(A), σ(c)(A)
〉

= 0 , ∀A ∈ E ,

so σ induces a map from gc to V, whose image is contained in the kernel
of δS . More generally, we consider G

.
= C∞ml(E, gc), the space of multilocal

functionals on the configuration space with values in the gauge algebra, and
a map ρ : G→ V defined by ρ(Ξ)(A)

.
= σ(Ξ(A))A, i.e.

∂ρ(Ξ)F (A)
.
=
〈
F (1)(A), σ(Ξ(A))A

〉
.

Remark 7.1. The assignment of G(M) to M induces a functor from Loc
to Vec, which we dente by the same letter, i.e. G. The fact that the action
of gc on E is local implies that ρ is a natural transformation between G and
V, both treated as functors from Loc to Vec.

Remark 7.2. To see a more geometrical interpretation of the map ρ , note
that G ⊂ Γ(E × gc) (the space of sections of a trivial bundle over E), and
we have a morphism of vector bundles E × gc(M) → TE given by (A, c) 7→
(A, ρ(c)A). This way E× gc is made into a Lie algebroid.
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7.1.2 The Koszul-Tate complex

The invariance of the Yang-Mills action under σ implies that ρ(G) ⊂ ker(δS).
In fact, one can characterize all non-trivial local symmetries this way, in the
sense that for eachX ∈ ker δS there exists an element Ξ ∈ G and I ∈ δS(Λ2V)
such that

X = I + ρ(Ξ) .

We can use this fact to kill the homology in degree one of the differential
complex (4.7). We nned extend the complex by adding G in degree 2 and
symmetric powers of G(M) in higher degrees. This idea is made precise in
the folowing definition.

Definition 7.2. The underlying algebra of the Koszul-Tate complex is de-
fined as

KT
.
= Oml(E⊕ E∗[1]⊕ g∗[2]) = C∞ml(E,ΛE∗′⊗̂πS•g∗′ ⊗ C) ,

where g∗ ≡ C∞(M, k∗).

Remark 7.3. The completion ΛE∗′⊗̂πS•g∗′ of the tensor product is identi-

fied with
∞∏
n=0
k+l=n

Γ′k|l(M
n, E�k � k�l), as in the definition 3.14.

We equip KT with a differential δKT which acts on ΛV as δS and on
S•G(M) it is given by ρ extended by means of the graded Leibniz rule. The
resulting differential complex is called the Koszul-Tate complex.

. . .→ Λ2V⊕G
δ=δS⊕ρ−−−−−→ V

δ=δS−−−→ F → 0 (7.3)

The 0-th homology of this complex is FS) and higher homologies are trivial,
so (KT, δ) provides a resolution of FS .

7.1.3 The Chevalley-Eilenberg complex

We have already seen how to characterize the space of on-shell functionals
in Yang-Mills theory, now we want to find a homological interpretation for
the space of gauge invariant ones. This can be done with the use of the
Chevalley-Eilenberg complex.

Definition 7.3. The underlying algebra of the Chevalley-Eilenberg complex
is defined as CE = C∞ml(E,Λg′), where g

.
= C∞(M, k) and the tensor product

in Λg′ is the completed projective tensor product.
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Remark 7.4. Note that CE can be seen as the space of multilocal functionals
on the graded manifold E

.
= E⊕g[1], called the extended configuration space.

The Chevalley-Eilenberg differential γ is constructed in such a way that
it encodes the action σ of the gauge algebra g on F, induced by (7.2). For
F ∈ F we define γF ∈ C∞ml(E, g

′C) as

(γF )(A, c)
.
= (σ(c)F )(A) =

〈
F (1)(A), DAc

〉
, (7.4)

where c ∈ g. Note that now we have dropped the restriction on the support
of gauge parameters. For a form ω ∈ g′, which doesn’t depend on A we set

γω(c1, c2)
.
= ω([c1, c2]) .

Since γ is required to be nilpotent of order 2 and has to satisfy the graded
Leibniz rule, for a general F ∈ C∞ml(E,Λ

qg′) we define

(γF )(A; c0, . . . , cq)
.
=

q∑
i=0

(−1)i∂ρM(ci)(ι(c0,...,ĉi,...,cq)F )(A)+

+
∑
i<j

(−1)i+jF (A, [ci, cj ], . . . , ĉi, ..., ĉj , ..., cq) ,

where the hat over a variable means that this variable is omitted and ι de-
notes the insertion of n-vector fields into an n-form. The differential complex
looks as follows:

0→ F
γ−→ C∞ml(E, g

′C)
γ−→ C∞ml(E,Λ

2g′
C
)→ . . . (7.5)

Note that from (7.4) follows that the kernel of γ in degree 0 consists of all the
multilocal functionals invariant under the action σ. Hence H0(CE(M), γ) =
Finv(M), the space of invariants.

Remark 7.5. Note that the assignment of CE(M) to a spacetime M induces
a covariant functor CE from Loc to Vec and the differential γ can be lifted
to a natural transformation.

Remark 7.6. Formally we write elements of CE as sums of functionals of
the form

F (A)(c1, . . . , cn) =

=
∑

a1,...,an

∫
f(A)(x1, ..., xn)a1,...,anc1(x1)a1 . . . cn(Xn)andµ(x1) . . . dµ(xn) ,
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where f(A) ∈ Γ′a(M
n, k⊗n). Let us denote by Ca(x) the evaluation functional

Ca(x)(c)
.
= ca(x) (compare with section 3.3). Clearly Ca(x) ∈ g′. We call

these evaluation functionals ghosts and we write

F (A) =

=
∑

a1<...<an

∫
f(A)(x1, ..., xn)a1,...,anC(x1)a1 . . . C(xn)andµ(x1) . . . dµ(xn) .

Analogously to section 3.3 we denote by δl

δc the left derivative on Λg′.

7.1.4 The BV complex

The Chevalley-Eilenberg complex and the Koszul-Tate complex fit together
into one structure called the BV complex, which encodes information about
both the equations of motion and the invariants. To see how it arises in
a natural way it is worth to look back at the example of the scalar fields,
which we recalled at the beginning of this section. There, in order to char-
acterize the space of on-shell functionals we needed to consider the space of
multilocal vector fields on the configuration space. Now, to take the gauge
symmetries into account, we have extended the configuration space into a
graded manifold E. The space of multivector fields on E is formally given as
the ring of functions on

T ∗[−1]E = E⊕ g[1]⊕ E′c[−1]⊕ g′c[−2] , (7.6)

the odd cotangent bundle of E, with the nagative grading on the fiber. To
give this object a meaning in the infinite dimensional situation we identify
O(T ∗[−1]E) with

BV
.
= C∞ml(E, S

•gc⊗̂πΛEc⊗̂πΛg′ ⊗ C) . (7.7)

The geometric interpretation as the the space of functions on T ∗[−1]E fits
very well with the spirit of the functional approach. Constructing the under-
lying algebra of the BV complex we are working all the time with multilocal
functionals but we have to pass from infinite dimensional manifolds to graded
infinite dimensional manifolds. Clearly, both CE and KT with inverted grad-
ing1 are subalgebras of BV.

On BV we introduce two gradings:
1The grading assigned to the vector fields in the bicomplex BV is minus the grading

of the KT complex. In the mathematical literature, the resulting structure is called a
Beilinson-Drinfeld algebra [BD04], rather than a BV algebra.
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• the pure ghost number #pg, which isinherited the grading of the
Chevalley-Eilenberg coplex, i.e. assigns grade +1 to elements of g′.

• the antifield number #af, which is inherited from the grading of the
Koszul-Tate complex, i.e. assigns grade +1 to elements of Ec and +2k
to elements of gc.

The total grading of the BV complex is called the ghost number #gh and is
defined by

#gh = #pg −#af

and it reflects the grading of the graded manifold (7.6).
We will now extend the differentials δ and γ to the whole of BV. As in

the case of the scalar field, BV can be equipped with the graded Schouten
bracket {., .}. We use this structure to extend the Koszul-Tate differential
to the whole algebra BV by setting

δX
.
= {SYM , X} , X ∈ BV .

The Chevalley-Eilenberg differential can also be written in terms of the
bracket in a similar manner. To this end we need to find a natural La-
grangian that implements γ. Firstly, note that the assignamnts of BV(M) to
spacetimes M induces a functor BV : Loc → Vec. We denote this functor
by BV.

Proposition 7.1. There exists a natural transformation θ : D→ BV such
that

γX = {θM(f), X} ,

where f ≡ 1 on supp f and X ∈ CE(M).

Proof. γ is a derivation of CE, so by definition a vector field on E. In the
antifield notation γ can be written as

γ(A) =

〈
δ

δA
, σ(C)A

〉
+

1

2

〈
δr

δC
, [C,C]

〉
In order to obtain an element of BV, we modify γ by multiplying with a
cutoff function. Define

θM(f)[A]
.
=

〈
δ

δg
, σ(fC)A

〉
+

1

2

〈
δr
δC

, f [C,C]

〉
.

This definition is local and covariant and it can be easily checked that θ ∈
Nat(D,BV).
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We will denote the generalized action corresponding to the Lagrangian
θM by γM, or simply γ, if we work on a fixed spacetime. We can now write

γX
.
= {θM(f), X} , X ∈ BV(M) ,

where f ≡ 1 on the support of X. On a fixed spacetime we will just use the
shorthand notation

γX = {γ,X} ,

since γ can be understood both as a differential on CE and a generalized
action. We define the BV differential as the sum

sBV = δ + γ = {SYM + γ, .} ,

and call Sext .
= S + γ the extended action of the Yang-Mills theory. In this

case s2
BV = 0, since both δ and γ are nilpotent and they anti-commute. The

latter is a consequence of the gauge invariance of the equations of motion.
For a detailed discussion see [Rej13]. In general, sBV defined above would not
be automatically nilpotent and one would need to add to it further terms.
To do it systematically, it is convenient to formulate the problem in terms
of the natural Lagrangians. First we need some notation. First extend the
equiovalence relation (4.2) the natural Lagrangians depending on several test
functions.

Definition 7.4. We say that L1 ∼ L2, L1, L2 ∈ Nat(Dk,BVloc) if:

supp((L1−L2)M (f1, ..., fk)) ⊂ supp(df1)∪...∪supp(dfk), ∀f1, ..., fk ∈ Dk(M)
(7.8)

Next we lift the antibracket to the level of natural transformations.

Definition 7.5. Let L1, L2 be natural Lagrangians such that L1 ∈
Nat(Dp,BVloc), L2 ∈ Nat(Dq,BVloc). We define

{L1, L2}M (f1, ..., fp+q) =
1

p!q!

∑
π∈Pp+q

{L1M (fπ(1), ..., fπ(p)), L2M (fπ(p+1), ..., fπ(p+q))} ,

(7.9)
where Pp+q denotes the permutation group.

It was shown in [FR12b] that the nilpotency of sBV is equivalent to the
condition that

{Lext, Lext} ∼ 0 , (7.10)
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formulated for the natural Lagrangian Lext. This condition is called the
classical master equation. One can now formulate the problem of finding
the BV differential that extends δ + γ to the problem of finding a natural
Lagrangian that satisfies (7.10), with fixed initial terms in degree #af = −1
and #af = 0.

Using the two gradings of BV we construct a bicomplex, whose columns
are numbered by #af and rows by #gh. We obtain

. . .
δ−−−−→

(
Λ2V⊕G

) δ−−−−→ V
δ−−−−→ F

δ−−−−→ 0yγ yγ yγ
. . .

δ−−−−→ C∞ml

(
E, (Λ2Ec ⊕ gc)⊗̂g′C

) δ−−−−→ C∞ml

(
E,Ec⊗̂g′C

) δ−−−−→ C∞ml

(
E, g′C

) δ−−−−→ 0

The grading of the total complex is #gh. Note that the first row is just the
Koszul-Tate complex KT with inverted grading. Since it is by construction
a resolution, and a standard result in homological algebra tells us that the
cohomology of the total complex is given by

Hk(BV, sBV ) = Hk(H0(BV, δ), γ) .

Note that taking the 0th homology of δ amounts to going on-shell, while
taking the 0th cohomology of γ characterizes gauge invariants. Hence,

H0(BV, sBV ) = Finv
S (M) ,

is the space of gauge invariant on-shell functionals.

7.2 Gauge-fixing

In the next step we use the differential Gerstenhaber algebra (BV, sBV ) to
implement the gauge fixing by modifying the extended action. Note that the
#af = 0 term of Sext is still the original Yang-Mills action, which doesn’t
induce normally hyperbolic equations of motion, so we cannot construct re-
tarded and advanced Green’s operators. The idea now is to find an automor-
phism α of (BV, {., .}) such that S .

= α(Sext) at #af = 0 induces normally
hyperbolic equations of motion. Such an automorphism can be defined by
means of a gauge fixing fermion.

Definition 7.6. Let Ψ ∈ Nat(D,BV) be a natural Lagrangian of degree
#gh = −1. We call it the gauge fixing fermion and define

αΨ(X) :=
∞∑
n=0

1

n!
{ΨM(f), . . . , {ΨM(f)︸ ︷︷ ︸

n

, X} . . . } , (7.11)
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where X ∈ BV(M) and f ≡ 1 on suppX.

A concrete form of Ψ depends on the choice of gauge fixing and for
particular choices one might need to extend BV with some further generators.
This is the case for the Lorentz gauge, which is commonly used in the context
of Yang-Mills theory.

Therefore we extend the BV-complex by adding to the configuration
space the so called non-minimal sector. It consists of the Nakanishi-Lautrup
fields b ∈ Sg[0], which we add in degree 0 and the antighosts c̄ ∈ g[−1], added
in degree -1. The new extended configuration space is written explicitly as

E = E⊕ g[1]⊕ g[0]⊕ g[−1] .

The underlying algebra of the BV complex is defined as the space of multi-
local functionals on T ∗[−1]E, analogously to (7.7).

The BV differential is extended to the non-minimal sector is such a way
that the cohomology of the BV complex remains unchanged. We define:
sF = 0, and sG = ΠG ◦ mi for F ∈ S1g′(M), G ∈ Λ1g′(M), where Π
denotes the grade shift by +1 and mi the multiplication of the argument by
i. The last operation is just a convention used in physics to make antighosts
hermitian. We use it to stay consistent with the literature. The extended
Lagrangian is now:

Lext(f)[A] = −1

2

∫
M
ftr(F ∧ ∗F ) +

〈
δ

δA
, σ(fC)A

〉
+

1

2

〈
δr
δC

, f [C,C]

〉
+

− i
〈
δr
δC̄

, fB

〉
. (7.12)

The last term corresponds to the action of s on the non-minimal sector and
we used the traditional notation B for evaluation functionals on the space
of the Nakanishi-Lautrup fields and C̄ for the evaluation functional in the
antighosts.

Let us define S̃ext .
= αΨ(Sext) and s

.
= αΨ ◦ sBV ◦ α−1

Ψ = {S̃ext, ., }.
Clearly, we have H0(BV, s) = H0(BV, sBV ) = Finv

S (M), so we didn’t loose
the information about the gauge invariant on-shell observables. We want to
choose the gauge fixing fermion in such a way that the #af = 0 term of the
new extended action S̃ induces normally hyperbolic EOM’s. This is achieved
in the Lorentz gauge, which is implemented by

ΨM(f)[A] = i

∫
M

f
(α

2
κ(C̄, B) +

〈
C̄, ∗d ∗A

〉
k

)
dµ , (7.13)
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where κ is the Killing form on the Lie algebra k and 〈., .〉k is the pairing
between k and its dual k∗. The transformed extended Lagrangian takes the
form

L̃ext(f) = −1

2

∫
M

ftr(F ∧ ∗F )+

− i
∫
M

ftr[dC̄, ∗DC]−
∫
M

f
(α

2
κ(B,B) + 〈B, ∗−1d ∗A〉k

)
dµ+ LAF (f) ,

(7.14)

where LAF (f) is the term with #af > 0.
Now it is convenient to redefine the gradings again. Let #ta denote the

total antifield number, which is 1 for all the vector fields on E and 0 for
functions. We expand s with respect to this grading and we obtain two
terms

s = δ̃ + γ̃ ,

where the first term has #ta = −1 and the second #ta = 0. Both δ̃ and γ̃
are nilpotent and they anti-commute with each other.

δ̃ is the Koszul differential for the Lagrangian L defined as the #ta =
0 term in (7.14). L is a graded functional depending on the multiplet of
variables ϕ = (A, c, c̄, b) and we label the components in this multiplet by
ϕα. We define S′′ as a map from the extended configuration space to the
space of vector-valued distrubutions ( see section 3.3 and [Rej11b]) given by

〈
(S′′)βα, ψ

α
1 ⊗ ψ

β
2

〉
.
=

〈
δl

δϕβ
δr

δϕα
L(f), ψα1 ⊗ ψ

β
2

〉
,

where ψ1 ∈ E, ψ2 ∈ E
′
c are field configuration multiplets and f ≡ 1 on the

support of ψ2. Note that S′′ induces normally hyperbolic equations of mo-
tion, so using 4.3 we conclude that there are no non-trivial local symmetries
and hence (BV, δ̃) is a resolution.

The differential γ̃ is called the gauge-fixed BV differential, or just the
BRST differential. The action of γ̃ on the elements of BV is summarized in
the table below.
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γ̃

F ∈ F
〈
F (1), dC + [., C]

〉
C −1

2 [C,C]

B 0

C̄ iB

Because (BV, δ̃) is a resolution, we can characterize the space of gauge in-
variant on-shell functionals as

Finv
S = H0(BV, s) = H0(H0(BV, δ̃), γ̃) .

The advantage of this reformulation is that now we are working with field
equations that normally hyperbolic and the abstract homological argument
tells us that the we still recover the corresc space of functionals at the end.

For the action S we can find ∆A
S and ∆R

S and introduce the Peierls bracket
{., .}S on BV, analogously to (4.8):

bA,Bc(g, bµ, c, cµ)
.
=
∑
α,β

〈
δlA

δϕα
,∆αβ

g

δrB

δϕβ

〉
(g, bµ, c, cµ), ∆g = ∆A

g −∆R
g .

Note that L can be expressed as

L(f) = LYM(f) + γ̃(Ψ(f)) ,

and SYM is invariant under γ̃, so S is also γ̃-invariant. The latter can be
expressed as

{L, θ̃} ∼ 0 , (7.15)

where θ̃ is the natural Lagrangian implementing γ̃. This identity allows one
to prove the following result, stated in [FR12a] generalized in [BFR13].

Proposition 7.2. The BRST differential γ̃ is a derivation with respect to
the Peierls bracket induced by the gauge-fixed action S, modulo the image of
δ̃.

after [BFR13]. To prove the result we need to show that

m ◦ (γ̃ ⊗ 1 + 1⊗ γ̃) ◦ Γ′∆S
= m ◦ Γ′∆S

◦ (γ̃ ⊗ 1 + 1⊗ γ̃) ,

modulo the image of δ̃. Here we use the notation where

Γ′∆S

.
=
∑
α,β

〈
∆S

αβ,
δl

δϕα
⊗ δr

ϕβ

〉
,
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After a short calculation, we obtain the following condition (compare with
Prop. 2.3. of [Rej13]):

(−1)|σ|Kϕ
σ
β(x)∆S(ϕ)βα(x, y) +Kϕ

α
β(y)∆S(ϕ)σβ(x, y) = γ̃(∆S(ϕ)σα(x, y)) ,

(7.16)
where |σ| denotes #gh(ϕσ), whileKϕ is defined with the use of the evaluation
functionals Φα

x as

γ0ϕΦα
x =

∑
σ

Kϕ
α
σ(x)Φσ

x ≡ (KϕΦ)α ,

and γ0ϕ is the linearization of γ̃ around ϕ. In a more compact notation we
can write this condition as

(−1)|σ|(Kϕ ◦∆S(ϕ))σα + (∆S(ϕ) ◦K†ϕ)σα = γ̃(∆S(ϕ)σα) ,

where K†ϕ means taking the transpose of the operator-valued matrix and
adjoints of its entries. Now we use (7.15) to conclude that〈

δlL(f ′)

δϕα
, θ̃α(f)

〉
= F (f, f ′) ,

where θ̃α(f) is the term in θ̃(f) which is contracted with δl

δϕα

and F is a generalized Lagrangian, with the support contained in
supp(f)

∑
supp(f ′). We can now apply on the both sides the differential

operator
〈
f1∆R

S (ϕ)µβ ◦ δl

δϕβ
δr

δϕκ ,∆
R
S (ϕ)κνf2

〉
, where f1, f2 ∈ D(M). We ob-

tain〈
f1∆R

S (ϕ)µβ ◦
〈

δl

δϕβ
δl

δϕα
δr

δϕκ
L(f ′), θ̃α(f)

〉
,∆R

S (ϕ)κνf2

〉
+

+

〈
f1∆R

S (ϕ)µβ ◦

〈
δl

δϕβ
δl

δϕα
L(f ′),

δθ̃α(f)

δϕκ

〉
,∆R

S (ϕ)κνf2

〉
+

+

〈
f1∆R

S (ϕ)µβ ◦

〈
δl

δϕα
δr

δϕκ
L(f ′),

δθ̃α(f)

δϕβ

〉
∆R
S (ϕ)κνf2

〉
+

+

〈
f1∆R

S (ϕ)µβ ◦
〈
δL(f ′)

δϕα
,
δr

δϕκ
δl

δϕβ
θ̃α(f)

〉
,∆R

S (ϕ)κνf2

〉
=

=

〈
δl

δϕβ
δr

δϕκ
F (f, f ′),∆A

S (ϕ)βµf1 ⊗ (∆R
g )κνf2

〉
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Setting f ′ ≡ 1 on the support of f we see that the last term is proportional
to equations of motion, so we can ignore it. In the remaining terms on the
left-hand side we can make use of the fact that ∆R

S (ϕ) is the Green’s function
for S′′M. As for the right-hand side, we choose f and f ′ such that they are
equal to 1 on J− supp(f2) ∩ J+(supp f1). Now use the fact that F is local,
depends locally on both f and f ′ and the support of F (f, f ′) is contained
within the support of df ∪df ′. It follows that the term on the right-hand side
vanishes and because f1, f2 were chosen arbitrarily, we obtain the identity

γ(∆R
S )

o.s.
= (−1)|σ|(Kϕ ◦∆S(ϕ))σα + (∆S(ϕ) ◦K†ϕ)σα .

The same argument can be applied to ∆A
S (ϕ), so the identity (7.16) follows.

This concludes the proof.

Since γ̃ is a derivation with respect to the Peierls bracket modulo the
image of δ̃, b., .cS̃ is well defined on H0(BV, δ̃) and on Finv

S (M). In order to
obtain a space which is closed under the Poisson bracket, we extend BV to
the space BVµc of microcausal functionals on T ∗[−1]E.

The classical net of local algebras on a spacetimes M is then defined by
assignments

O 7→ (Finv
S,µc(O), b., .c) ,

where O ⊂M.

Remark 7.7. Although the construction of the BV complex has been done
covariantly, it is injective only with Vec as a target category, so might not
extend to an injective functor into the category of differential graded alge-
bras. Consequently, the assignment of (Finv

S,µc(M), b., .c) does not, in general,
give a locally covariant field theory model in the sense of 2.47 on the full
category Loc. This is due to the existence of topological charges, as shown
in [BSS14]

Example 7.1 (Electromagnetic field). Let us illustrate the general construc-
tion described above on the example of the electromagnetic field. The gauge
group is G = U(1), so g = R and the Lagrangian takes the form

LM (f)(A) = −1

2

∫
M
f (F ∧ ∗F ) .

E is the space of principal connections on M ×U(1) and it is an affine space
modeled on Ec(M) = Ω1

c(M). As in the case of the free field we can consider
the space Flin(M) of linear functionals on E. They are of the form

Fβ(A) =

∫
M
A ∧ ∗β ,
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We can now apply to Flin(M) the general BV formalism and compare the
construction of [Dim92]. The equation of motion is given by

δdA = 0 ,

so the image of δS consists of functionals Fβ, where β = δdη for some
η ∈ Ω1

c(M). We can realize Flin,S(M) as the space of equivalence classes of
forms

Flin,S(M) ∼=
Ω1
c(M)

δdΩ1
c(M)

.

Now we have to characterize the kernel of γ. It consists of linear functionals
that satisfy

0 = (γFβ)(c) =

∫
M
dc ∧ ∗β =

∫
M
c ∧ ∗δβ .

It follows that δβ = 0. Let us denote Ω1
c,δ(M)

.
= {ω ∈ Ω1

c(M)|δω = 0}. The
space of gauge invariant on-shell linear functionals is isomorphic to (compare
with [SDH14, DS13, DL12])

Finv
lin,S(M) ∼=

Ω1
c,δ(M)

δdΩ1
c(M)

.

Among these functionals we can distinguish the ones which are constructed
from the field strength, i.e. those of the form∫

M
dA ∧ ∗η =

∫
M
A ∧ ∗δη = Fδη(A) .

If H1(M) is trivial, then all elements of Finv
lin,S arise from field strength func-

tionals, since all co-closed forms are also co-exact.

7.3 Quantization in the Batalin-Vilkoviski formal-
ism

In this section we discuss quantization along the lines of [FR12a]. We start
with the discussion of the free scalar field. We consider the deformation of
δS0 under the time-ordering operator T. This deformation corresponds to
the difference between the ideal generated by eom’s in the classical theory
(i.e. with respect to “·”) and the ideal generated by eom’s with respect to
·T . We define

δTS0
= T ◦ δS0 ◦ T−1 , (7.17)
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Let us first consider regular functionals. Explicit computation shows that,
on Freg,

δTS0
:= T ◦ δ ◦ T−1 = δ + i~4 ,

where 4 acts on vector fields X ∈ Vreg as

4X(ϕ) =

∫
δXx

δϕ(x)
(ϕ), where X(ϕ) =

∫
Xx(ϕ)

δ

δϕ(x)
,

It’s remarkable that the operator 4 is “almost” a derivation of ΛVreg and
the failure is characterized by {., .}, i.e:

4(X ∧ Y )−4(X) ∧ Y − (−1)|X|X ∧4(Y ) = {X,Y } ,

The triple (ΛVreg(M), {., .},4) is an example of a mathematical structure
called Beilinson-Drinfeld (BD) algebra [BD04], however in the physics litera-
ture it is called a BV algebra. The difference between the usage of these two
terms lies in the choice of gradings. In the quantization of gauge theories,
one simply replaces ΛVreg with BVreg and S0 is the #af = 0 quadratic term
of the extended action. The resulting structure is also a BD algebra.

Remark 7.8. Physically the relation between δTS0
and δS0 corresponds to

the Schwinger-Dyson equation. Let X(ϕ) =
∫
Xx(ϕ) δ

δϕ(x) . We obtain

(δTS0
X)(ϕ) =

∫ (
Xx ·T

δS0(ϕ)

δϕ(x)

)
(ϕ) =

∫
Xx(ϕ)

δS0(ϕ)

δϕ(x)
+ i~

∫
δXx

δϕ(x)
(ϕ) ,

where δS0(ϕ)
δϕ(x) is a shorthand notation for δL0(f)(ϕ)

δϕ(x) , where we take the limit
f → 1. Note that∫

Xx(ϕ)
δS0(ϕ)

δϕ(x)
=

∫ (
Xx ?

δS0

δϕ(x)

)
(ϕ) .

Hence, ∫ (
Xx ·T

δS0(ϕ)

δϕ(x)

)
(ϕ) = i~

∫
δXx

δϕ(x)
(ϕ) ,

modulo the ?-ideal generated by the eom’s, which is exactly the algebraic
Schwinger-Dyson equation.

Let us now consider a deformation of δS0 which corresponds to intro-
ducting the interaction. Here we treat the scalar field and gauge theories
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together, but still restrict to regular functionals, i.e. V ∈ BVreg is a regular
interaction term. We define the quantum BV operator ŝ as

ŝ
.
= R−1

V ◦ δS0 ◦RV . (7.18)

Analogously to section 6.2.3, RV is a map from the interacting quantum
theory to the free quantum theory, so δS0 acts on A0, as explained in detail
in section 5.2. Note that V ∈ BV is physical if RV is in ker(δS0) and is
identified with elements that differ by the image of ŝ, i.e. RV (F ) is in in the
same equivalence class as RV (F ) + RV (I), where I ∈ Im(δ0). This is the
same equivalence relation as the one used in section 5.2 to define the space
of on-shell observables. The difference is that now the kernel of δS0 is not
the full space of functionals, but only a subspace, since δS0 has non-trivial
action on antifields. In fact, we will see later on that in the renormalized
theory V (and hence also RV (F )) necessarily contains antifields.

Let us assume that
δS0

(
e
iV/~
T

)
= 0 . (7.19)

This condition reduces to the known quantum master equation qme, since

δS0

(
e
iV/~
T

)
=

1

2
{S0 + V, S0 + V } − i~4 V , (7.20)

where we set {S0, S0} ≡ 0, since S0 doesn’t contain antifields. If (7.19)
holds, then

ŝF = {F, S0 + V } − i~4 F , (7.21)

for F ∈ Freg(M). If qme is fulfilled, then the cohomology of ŝ characterizes
the space of quantum gauge invariant on-shell observables.

Now we want to extend the qme and ŝ to local functionals. This is done
by renormalizing the time-ordered products present in (7.18) and the (7.19)
using the Epstein-Glaser framework. Clearly, formulas (7.20) and (7.25) are
not well defined for local arguments, since 4 is singular. Nevertheless, very
similar results can be obtained using the anomalous Master Ward Identity
([BD08, Hol08]), which states that there exists a family of maps

4̃
n

: T(BVloc)
n+1 → Aloc(M) , (7.22)

which depend locally on their arguments and the formal power series

4̃(V )
.
=

∞∑
n=0

4̃
n
(V ⊗n;V ) ,
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fulfills the identity∫ (
e
iV/~
T ·T

δV

δϕ(x)

)
?
δS0

δϕ(x)
= e

iV/~
T ·T (1

2{V +S0, V +S0}T−4̃(V )) , (7.23)

The maps 4̃
n
can be determined recursively. For an explicit formula, see

[BD08, Rej13]. We can now see that the renormalized qme reduces to

δS0

(
e
iV/~
T

)
=

1

2
{S0 + V, S0 + V } − i~4̃(V ) . (7.24)

and the renormalized quantum BV operator takes the form

ŝF = {F, S0 + V } − i~4V F , (7.25)

where4V (F )
.
= d

dλ

∣∣∣
λ=0
4̃(V +λF ). Note that the renormalized operator4V

depends on V , in contrast to the non-renormalized one 4. It has no longer
the interpretation of a graded Laplacian, but is still a functional differential
operator.

The construction outlined above allows us to choose V which is a local
functional. In the Yang-Mills theory example, which we are focusing on, we
can define the local interacting net corounded region O ⊂M by taking V =
L̃ext
M (f)−L0M(f) and choosing f ≡ 1 on O. The details of the construction,

in particular the algebraic adiabatic limit, can be found in [FR12a].

Remark 7.9. The remarkable aspect of the approach presented above is
that using the BV formalism in the sense of [FR12a] we can construct Møller
maps RV that intertwine between theories with different gauge symmetries.
Indeed, the symmetries are encoded in the Chevalley-Elenberg differential γ,
which then enters into the extended action Sext and consequently into V .



Chapter 8

Effective quantum gravity

The functional approach to pQFT together with the BV framework in-
troduced in chapter 7 has been successfully applied to gauge theories
[FR12b, FR12a] and can also be used in quantization of theories where the lo-
cal symmetries involve transformation of spacetime points. The first model,
where this has been achieved was the quantization of a bosonic string in
arbitrary dimension, where the local symmetries are compactly supported
diffeomorphisms of the string world-sheet. Recently these methods have also
been applied to construct the effective theory of quantum gravity [BFR13].
By this we mean a quantum theory understood in terms of formal power
series in the both ~ and the coupling constant, where at each order of the
perturbative construction new types of contributions appear, but they are
always finite. The theory is not UV complete, so the the relevant formal
power series do not converge, but one can, nevertheless apply it to model
physical situations where the quantum gravity (QG) effects are not very
strong. This seems to be a sensible Ansatz for the start, as the QG effects
which we expect to observe in the nearest future should be relatively small.
Example physical applications include cosmology and black hole physics.

8.1 From LCQFT to quantum gravity

The road to quantum gravity is paved with numerous technical and con-
ceptual problems. In contrast to QFT on curved spacetimes, in QG the
spacetime structure is dynamical. This means that we cannot treat the
metric as a fixed structure, but it interacts with the matter field. One can
partially model this situation using the framework involving backreaction.
In this formalism one treats matter fields as quantum objects and studies

143
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their effect of the metric by inserting the expectation value of the quantum
stress-energy tensor in a given state ω into Einstein’s equations:

〈Tµν〉ω = Gµν ,

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor. In the pAQFT framework

this approach has been applied in cosmology and in the study of QFT in
black-hole spacetimes, see for example [Hac10, Hac14, DMP09b, DMP09a,
DMP11] and a recent book [Hac15].

On the next level of approximation one can split the metric g into the
background metric g0 and a perturbation h and quantize the the perturba-
tion as a quantum field on the background g0. This is the approach which
has been taken in [BFR13]. Since this tentative split into background and
perturbation metric is not physical, one needs to show that the predictions
of the theory do not depend on the way g is being split. Such consistency
condition is called background independence and we will come back to it later
in this section. In the pAQFT approach, the background independence of
effective QG has been proven in [BFR13] in the sense that a localized change
in the background which formally yields an automorphism on the algebra of
observables (called relative Cauchy evolution in [BFV03]) is actually trivial,
in agreement with the proposal made in [BF07] (see also [FR11]).

Another conceptual difficulty in quantizing gravity is that the Einstein-
Hilbert action is reparametrization invariant, hence the theory has a huge
symmetry group, the diffeomorphism group. This means that labeling of
spacetime points doesn’t have a physical meaning. As a consequence, phys-
ical observables have to be diffeomorphism invariant. In the framework of
[BFR13] the characterization of diffeomorphism invariant observables is given
by means of the BV formalism. The abstract setting looks very similar to
the one discussed in 7, but there remains the difficulty in finding non-trivial
elements of the 0-th cohomology of the BV differential. In [FR12b, Rej11a]
it has been proposed to use locally covariant quantum fields in the sense
of definition 2.51 as diffeomorphism invariant physical quantities in effective
classical and quantum gravity. In [BFR13] this idea has been refined an a
more explicit characterisation of these objects has been given in terms of
relational observables. The latter are conceptually similar to the notion of
observables introduced by Rovelli in the framework of loop quantum gravity
[Rov02] and later used and further developed in [Dit06, Thi06].

Finally, there is a known difficulty that quantum gravity, as a QFT, is
power counting non-renormalizable. We deal with this problem by using the
Epstein-Glaser renormalization scheme, which allows to calculate finite con-
tributions to renormalized time-ordered products in every order in ~ and the
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coupling constant. The theory is then interpreted as an effective theory with
the property that only finitely many parameters have to be considered below
a fixed energy scale [GW96]. Another possible direction would be to make
contact with the asymptotic safety approach. A theory is called asymptoti-
cally safe if there exists an ultraviolet fixed point of the renormalisation group
flow with only finitely many relevant directions [Wei79]. Results supporting
this perspective have been obtained by Reuter et al. [Reu98, RS02].

8.2 Dynamics and symmetries

We consider a formal metric g on a M given by g = g0 + λh, where λ is a
formal parameter. In this setting M ≡ (M, g0) is the background manifold
and h is the metric perturbation. For the effective theory of gravity the
configuration space is E(M) = Γ((T ∗M)⊗2).

Definition 8.1. In this section F(M) denotes the space of multilocal func-
tionals on E(M) that are Laurent series in λ.

Note that for physical interpretation to make sense, the observables we
obtain at the end cannot depend on negative powers of λ.

Definition 8.2. A functional derivative of F ∈ F(M) is defined by〈
F (1)(h), h1

〉
.
=

1

λ

〈
δ

δh
F (h), h1

〉
,

where δ
δhF means that we take the functional derivative of coefficients of F

at each order in λ separately.

It is convenient to use the natural units, where λ (identified with the
square of the coupling constant) has a dimension of length, so h has a di-
mension of 1/length. The action used in quantization must be dimensionless,
so we use LEH/λ2, where LEH is the Einstein-Hilbert Lagrangian

LEH(M,g)(f)[h]
.
=

∫
R[g]f dµg, g = g0 + λh, h ∈ E(M) , (8.1)

The Euler-Lagrange derivative of LEH is defined as in 4.2, i.e.〈
SEHM

′(h), h1

〉 .
=
〈
LEHM (f)(1)(h), h1

〉
.

For general relativity local symmetries arise from infinitesimal diffeomor-
phism symmetries. The compactly supported diffeomorphism group acts on
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E(M) via the pullback: ρM(α)h = (α−1)∗h, where α ∈ Diffc(M), t ∈ E(M).
This induces the action of X(M) ≡ Γ(TM) via the Lie derivative:

ρM(ξ)λh
.
=

d

dt

∣∣∣
t=0

(exp(−tξ))∗g = £ξ(g0 + λh) ,

where ξ ∈ X(M). On the level of functionals F ∈ F we obtain

ρM(ξ)F [h]
.
=
〈
F (1)(h),£ξ(g + λh)

〉
.

Definition 8.3. CE(M), the underlying algebra of the Chevalley-Eilenberg
complex, is defined the space of Laurent series in λ with coefficients in mul-
tilocal functionals on the extended configuration space E(M)

.
= E⊕X[1](M).

The Chevalley-Eilenberg differential γCE is defined as in section 7.1.3.

Definition 8.4. BV(M), the underlying algebra of the BV complex is defined
as T ∗[−1]E(M) in the sense of (7.7).

As in gauge theories, BV(M) is equipped with the natural structure of
the Schouten bracket {., .} and the BV differential sBV can be expressed as

sBV = {., SEH + γ} ,

where we choose the natural Lagrangian θ, which represents γ as

θCE(M,g0)(f)[h, c] =

〈
δ

δg
,£fcg

〉
+

1

2

〈
δr

δc
, f [c, c]

〉
, (8.2)

The space of “gauge-invarian” on-shell observables, Finv
S is characterized by

Finv
S (M) = H0(BV(M), sBV ) .

In the next step we perform the gauge-fixing. In general relativity fixing
the gauge means essentially fixing the coordinate system. For the specific
choice of gauge we need, we have to extend the BV complex by adding auxil-
iary scalar fields: 4 scalar antighosts c̄µ in degree −1 and 4 scalar Nakanishi-
Lautrup fields bµ, µ = 0, ..., 3 in degree 0. The new extended configuration
space is again denoted by E(M). We define s on functionals of antighosts and
Nakanishi-Lautrup fields by fixing the action of s on evaluation functionals
Cµ(x), Bµ(x):

s(Cµ) = iBµ −£CCµ ,

s(Bµ) = £CBµ .
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To implement these new transformation laws we need to add to the La-
grangian a term 〈

δr

δcµ
, ifbµ −£fccµ,

〉
+

〈
δr

δbµ
,£fcbµ,

〉
.

Next, we perform an automorphism αΨ of (BV(M), {., .}) such that the part
of the transformed action which doesn’t contain antifields has a well posed
Cauchy problem. We choose the gauge-fixing Fermion as

Ψ(M,g0)(f)[h, c, c̄µ, bµ] = i
∑
µ,ν

∫
(∂µc̄νg

µν − 1
2bµc̄νκ

µν)fdµg , (8.3)

where g = g0 + λh and κ is a non-degenerate 2-form on R4. The explicit
appearance of this form in the gauge fixing Fermion is related to the choice
of a dual pairing for Nakanishi-Lautrup fields. Note that expression (8.3) is
explicitly coordinate-dependent. This is necessary, because we need to brake
the reparametrization invariance of the action. The new terms appearing in
the αΨ-transformed action arise from

{Ψ(f ′), Lext(f)}(h, c, cµ, bµ) = −
∫

(∂µ(fbν)gµν−1
2f2bµbνκ

µν)
√
−det gd4x+

+ i

∫
(∂µcν

√
−det ggµα∂α(fcν))d4x ,

where f ′ ≡ 1 on supp f . We rewrite the above expression as

−
∫
∂µ(fbν)gµνdµg +

∫ (
1
2fbµbν

)
κµνdµg + i

∫
cνf�g c̄νdµg ,

where �g is the d’Alembertian constructed from the formal metric g = g0 +
λh. We denote the first term in the above formula by LGF (f) and the second
by LFP (f) (gauge-fixing and Fadeev-Popov terms, respectively). The full
transformed Lagrangian is given by:

Lext = LEH + LGF + LFP + LAF , (8.4)

where LAF is the term containing antifields.
The variables of the theory (i.e. the components ϕα of the multiplet

ϕ ∈ E(M) are now: the metric g ∈ E(M), the Nakanishi-Lautrup fields bµ
and the antighosts c̄µ, µ = 0, . . . , 3 (scalar fields), ghosts c ∈ X(M). As in
7.2 we introduce a new grading #ta, which is equal to 0 for functions on
E(M) and equal to 1 for all the vector fields on E(M).
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The new field equations are now equations for the full multiplet ϕ =
(g, bµ, c, c̄µ), µ = 0, . . . , 3 and are derived from the #ta = 0 term of Lext,
denoted by L. The αΨ-transformed BV differential s = αΨ ◦ sBV ◦ α−1

Ψ is
given by:

s = {., Sext} = γ + δ .

The action of γ on F(M) and the evaluation functionals Bµ, C, C̄µ is sum-
marized in the table below:

γ

F ∈ F
〈
F (1),£Cg

〉
C −1

2 [C,C]

Bµ £CBµ

C̄µ iB −£CCµ

The equations of motion are:

Rλν [g] = −i∂λCα ∂νCα − ∂(λBν) (8.5)

�gC
µ = 0 (8.6)

�gCµ = 0 (8.7)
1√
− det g

∂µ(
√
−det ggµν) = Bµκ

µν (8.8)

where Bµ, Cµ, Cµ are evaluation functionals. The equation for Bµ is ob-
tained by using the Bianchi identity satisfied by Rλν [g] in equation (8.5) and
takes the form

�gBµ = 0 . (8.9)

8.3 Linearized theory

Definition 8.5. The linearized Lagrangian L0 is defined as

L0
.
=
λ2

2
L(2)

(M,g0)(g0, 0, 0, 0) ,

where L is the #af = 0 term in Lext. We introduce the notation = Sext =
λ2(S0 + SI).

Remark 8.1. The dimensionless action we use in the quantization is
Sext/λ2, so to quadratic part is of order 0 in λ. If g0 is not a solution to
Einstein’s equations, the λ-linear term in Sext doesn’t vanish and negative
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powers of λ appear in the interatction SI . Formally, we solve this problem by
introducing another parameter µ, so that 1

λL
(1)
(M,g0)(g0, 0, 0, 0) ≡ µJg0 , where

Jg0 is the source term, linear in h. Our observables are now formal power
series in both λ and µ. For the physical interpretation we restrict ourselves
to spacetimes where g0 is a solution and put µ = 0, but algebraically we can
perform our construction of quantum theory on arbitrary backgrounds.

We choose from now on the gauge with κ = g0. Let us introduce some
notation.

Definition 8.6. The divergence operator div : Γ(S2T ∗M) → Γ(T ∗M) is
defined by

(div t)α
.
=

1√
−det g0

gβµ0 ∂µ(tβα
√
−det g0) .

Definition 8.7. We define a product

〈u, v〉g0
=

∫
M

〈
u#, v

〉
dµg0 ,

where u, v are tensors of the same rank and # is the isomorphism between
T ∗M and TM induced by g0.

Definition 8.8. The formal adjoint of div with respect to the product 〈., .〉g0

is denoted by div∗ : Γ(T ∗M)→ Γ(S2T ∗M).

Definition 8.9. The trace reversal operator G : (TM)⊗2 → (TM)⊗2 is
defined by

Gt = t− 1

2
(trt)g0 . (8.10)

We have tr(Gt) = −trt and G2 = id. Using the notation above we write
L0M in the form:

L0M(f)[h, c, cµ, bµ] =

=

∫
M

δ

δg
(Rfdµ)

∣∣∣∣
g0

(h) + 2i
3∑

ν=0

〈
dc̄ν , d(fcν)

〉
g0

+
〈
fb, div(Gh)− 1

2b
〉
g0
,

where δ
δg (Rdµ)

∣∣∣
g0

(h) denotes the linearization of the Einstein-Hilbert La-

grangian density around the background g0 and b is a 1-form on M con-
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structed from bν ’s in the fixed coordinate system. The linearized eom’s are

S′′M(z, x) = δ(z, x)


−1

2 (�LG+ 2Gdiv∗ ◦ div ◦G) G ◦ div∗ 0 0
div ◦G −1 0 0

0 0 0 −i�H

0 0 i�H 0

 (x) ,

(8.11)
where the variables are (h, b, c0, ..., c3, c0, ..., c3); �H = δd is the Hodge Lapla-
cian, δ .

= ∗−1d∗ is the codifferential and �L is given in local coordinates by

(�Lh)αβ = ∇µ∇µhαβ − 2(R
µ

(α hβ)µ +R
µν

(α β)hµν) . (8.12)

The retarded and advanced propagators for S0 are given by:

∆A/R(x, y) = −2


G∆

A/R
t G∆

A/R
t G ◦ div∗y 0 0

divx ◦∆
A/R
t divx ◦∆

A/R
t G ◦ div∗y + 1

2δ4 0 0

0 0 0 −i∆A/R
s

0 0 i∆
A/R
s 0

 ,

where δ4 denotes the Dirac delta in 4 dimensions and subscript y in div∗y
means that the operator should be applied on the second variable. We in-
troduce the Peierls bracket on BV(M):

bF,Gcg0 =
∑
α,β

〈
δlF

δϕα
,∆αβ δ

rG

δϕβ

〉
,

where ∆ = ∆R−∆A. As in section 7 we extendBV(M) to the spaceBVµc(M)
of microcausal functionals, which is closed under the Peierls bracket.

8.4 Quantization

For the definition of the ?-product we need a 2-point function ∆+
S . Assume

that ∆+
S is of the form:

∆+
S = −2


Gωt ωTt div∗y 0 0

divx ωt divxGωT div∗y 0 0

0 0 0 −iωv
0 0 iωv 0

 , (8.13)
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In this case, the conditions for ∆+
S to be a Hadamard 2-point function reduce

to:

ωv/t(x, y)− ωv/t(y, x) = i∆v/t(x, y), (8.13a)
�L ωt = 0, �H ωv = 0, (8.13b)

WF(ωv/t) ⊂ C+, (8.13c)

ωv/t(x, y) = ωv/t(y, x). (8.13d)

We choose arbitrary parametrices ωt, ωv of �L and �H respectively. Their
existence was already proven in [?] (the paper actually discusses general
wave operators acting on vector-valued field configurations). Now, from a
parametrix, one can construct a bisolution using a following argument: let
ω be a Hadamard parametrix and by O we denote the hyperbolic operator
from (??), so Oxω = h, Oyω = k, hold for some smooth functions h and k.
Let χ be a smooth function such that suppχ is past-compact and supp(1−χ)
is future-compact. Define

Gχ
.
= ∆Rχ+ ∆A(1− χ) .

Clearly Gχ is a right inverse for O. A Hadamard bisolution ωχ can be now
obtained as

ωχ
.
= (1−GχO) ◦ ω ◦ (1−OGTχ ) .

From Hadamard solutions for �L and �H we can then construct ∆+
S using

(8.13).
We define A(M) as in section 5.1 and introduce the interaction using the

Epstein-Glaser renormalization. The rest of the construction follows exactly
the scheme described in section 6, so the abstract net of algebras can be
defined without problems on arbitrary backgrounds. There are two questions
that remain. First is the existence of non-trivial gauge invariant observable
and the other is the background independence of the resulting theory. We
will address these problems in two following subsections, referring to the
results of [BFR13].

8.5 Relational observables

Abstractly we have characterized the classical gauge-invariant observbles as

Finv
S (M) = H0(BV(M), s) ,

but there is no a’priori reason for this space to be non-empty. To prove that
non-trivial observables exist, we will construct them explicitly. We start with
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a heuristic reasoning. If we think about an experiment that locally probes
the geometric structure of spacetime, we can associate to our setup a causally
convex spacetime region O of spacetime M and an observable Φ localised in
O, which we measure. Since the experiment has a finite resolution, we don’t
really measure values of the geometric data at a point. There is always some
smearing involved. For example, in case of the Ricci curvature R we can
model it by defining our observable quantity as Φ(f) =

∫
f(x)R(x), where

f is the smearing function with supp(f) ⊂ O. In certain situations, we can
think of the measured observable as a perturbation of the fixed background
metric. This is for example the case if we want to observe gravitational waves.
We make a tentative split: g = g0+λh. The situation is pictured on the figure
8.1. To formulate what the diffeomorphism invariance means, we first have
to answer the question: what happens if we move our experimental setup
to a different region O′? Now to compare Φ(O,g)(f) and Φ(O′,α∗g)(α∗f) we

O′
(M, g)

Φ(O,g)(f)(h)

f

O

Figure 8.1: Experimental situation while probing the spacetime geometry.

need to know what does it mean to have “the same observable in a different
region”. We can give sense to this statement using the notion of locally
covariant quantum fields, as defined in 2.51.

Let Φ be a natural transformation from D to Floc. The condition for Φ
to be a natural transformation reads

ΦO(f)(χ∗h) = ΦM (χ∗f)(h) . (8.14)

For a fixed spacetime M we define the action of infinitesimal diffeomorphism
algebra X(M) on maps ΦM as

(ρ(ξ)Φ(M,g0))(f)[h]
.
=
〈

(Φ(M,g0)(f))(1)(h),£ξg
〉

+ Φ(M,g0)(£ξ f)[h] ,
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where ξ ∈ X(M).

Definition 8.10. We say that a locally covariant quantum field ΦM is dif-
feomorhism invariant if

ρ(ξ)ΦM ≡ 0 , ∀ M ∈ Obj(Loc), ξ ∈ X(M) .

Example 8.1. As an example of a diffeomorphism invariant field we can
take

Φ1(M,g0)(f)[h] =

∫
R[g]f dµg , where g = g0 + λh .

Note that both the scalar curvature and the volume form depend on the full
metric g̃. However if we take a field defined as

Φ2(M,g0)(f)[h] =

∫
R[g]f dµg0 , where g = g0 + λh ,

it is still a locally covariant quantum field, but it is no longer diffeomorphism
invariant.

The reasoning presented above suggests that locally covariant quantum
fields are good candidates for diffeomorphism invariant quantities. The ques-
tion remains, how to relate these with non-trivial elements of H0(BV(M), s).

For a fixed spacetime M and a locally covariant quantum field Φ, a test
function specifies the geometrical setup for an experiment, and the concrete
choice of f ∈ D(M) can be made only if we fix a coordinate system. In our
framework, following [BFR13], we realize the choice of a coordinate system by
introducing four scalar fields Xµ, which will parametrize points of spacetime.
We can write any test function f ∈ D(M) in the coordinate basis induced by
X

.
= (Xµ|µ = 0, . . . , 3), so if we fix f : R4 → R, then the change of f = X∗f

due to the change of the coordinate system is realized through the change of
scalar fields Xµ.

Definition 8.11. For a natural transformation Φ ∈ Nat(D,F) we obtain a
map

ΦM,f (h,X)
.
= ΦM(X∗f)(h) .

As long as we keep M fixed, we drop M in ΦM,f and use the notation
Φf instead. Φf is a function of the metric and the coordinate system and
transforms under the infinitesimal diffeomorphisms according to

(ρ(ξ)Φf ) =

〈
δΦf
δg

∣∣∣
X
,£ξg

〉
+

3∑
µ=0

〈
δΦf
δXµ

∣∣∣
g
,£ξX

µ

〉
. (8.15)
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This is still not satisfactory, since Xµ’s are not dynamical variables, so there
are no vector fields in BV(M) which would implement the second term in the
above transformation. To solve this problem, we can replace Xµ with some
scalars Xµ

g , µ = 0, . . . , 3, which depend locally on the metric. They could be,
for example, scalars constructed from the Riemann curvature tensor and its
covariant derivatives. The caveat is that some particularly symmetric space-
times do not admit such metric dependent coordinates, since in such cases
the curvature might vanish (for a detailed discussion see [CHP09, HC10]).
If matter field are present, one can construct Xµ’s using the matter fields.
A known example is the Brown-Kuchař model [?], which uses dust fields.

Let us denote by β the map g 7→ (X0
g , . . . , X

3
g ) and we define

Φβ
f (h)

.
= Φf (g,Xg) , (8.16)

where g = g0 +λh. Note that for (8.16) to be well defined we need to choose
f and β in such a way that the support of f is contained in the interior of
the image of M inside M under the quadruple of maps Xµ

g0 . If this can be
done, then a functional of the form (8.16) is an element of H0(BV(M), s)
if and only if Φ is a diffeomorphism invariant locally covariant quantum
field. Observables of this type are interpreted as relational observables, since
they capture the relations between different wquantities constructed from
the metric (and possibly also matter fields) and they do not rely on absolute
labeling of spacetime points. Instead, the map β provides relative labels Xg,
which change with g.

Example 8.2. Assume that for a fixed background M = (M, g0) we can
choose f and β in such a way that f .

= X∗g0
f is compactly supported. Then an

example X(M)-invariant functional can be obtained from the scalar curvature

Φβ
f (h) =

∫
M
R[g0]f(Xg0)dµg0+

+λ

(∫
M
f(Xg0)

δ

δg
(Rdµ)

∣∣∣∣
g0

(h) +

∫
M
R[g0]∂µf(Xg0)

δXµ
g

δg

∣∣∣∣
g0

(h)

)
+O(λ2) .

To summarize, we have three ways to realize diffeomorphism invariant
quantities in classical gravity:

• as locally covariant fields ΦM : D(M)→ F(M),

• as functionals of the metric and the coordinates Φf (h,X),

• as relational observables Φf (., Xg).
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8.6 Background independence

The last issue which we have to discuss in the background independence. We
have made a tentative split into the free and interacting Lagrangian, relying
on the taylor expansion around the background metric g0. Now we want to
see what will happen if we slightly perturb the background. If the theory is
background independent then physical quantities do not change under such
a perturbation. Following [BFR13] we sketch the argument that this is true
in effective QG constructed by the methods of pAQFT.

In [?] it was proposed that a condition of background independence can be
formulated by means of the relative Cauchy evolution. Let us fix a spacetime
M1 = (M, g1) ∈ Obj(Loc) and choose Σ− and Σ+, two Cauchy surfaces
in M1, such that Σ+ is in the future of Σ−. Consider another globally
hyperbolic metric g2 on M , such that k .

= g2 − g1 is compactly supported
and its support K lies between Σ− and Σ+. Let us take N± ∈ Obj(Loc)
that embed into M1, M2, via χ1±, χ2± and χi±(N±), i = 1, 2 are causally
convex neighborhoods of Σ± in Mi. We use the time-slice axiom to define

(M, g1) (M, g2)

N+

N−

supp(k)

χ1+ χ2+

χ1− χ2−

Figure 8.2: Embeddings of neighborhoods of Cauchy surfaces into spacetimes
M1 = (M, g1) and M2 = (M, g2).

isomorphisms αχi±
.
= Aχi± and the free relative Cauchy evolution is an
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automorphism of A(M1) given by β0g = α0χ1−
◦α−1

0χ2−
◦α0χ2+

◦α−1
0χ1+

. It was
shown in [BFV03] that the functional derivative of β0g with respect to g is
the commutator with the free stress-energy tensor. A different proof of this
result has been given in [BFR13] with the use of the principle of perturbative
agreement, which is a condition introduced by Hollands and Wald in [?] and
recently proven in a more general context in [?]. Following these ideas, we
introduce a map τ ret : A(M2) → A(M1), such that τ ret maps ΦM2(f) to
ΦM1(f) (modulo the image of δ0), if the support of f lies outside the causal
future of K. Physically it means that free algebras A(M1) and A(M2) are
identified in the past of K. Analogously, we introduce a map τadv, which
identifies the free algebras in the future. The free relative Cauchy evolution
is then expressed as

β0g
.
= τ retg1g2

◦ (τadvg1g2
)−1 , (8.17)

As we choose to work off-shell, we define τ ret as the classical retarded Møller
operator constructed in [DF02]. The perturbative agreement is a condition
that, on shell,

τ retg1g2
◦ S2 = SS0M2

−S0M1
holds. (8.18)

Here SS0M1
−S0M2

denotes the relative S-matrix constructed with the inter-
action S0M1

− S0M2
and the background metric g1, while S2 is the S-matrix

constructed on M2 with the TM2 product. The perturbative agreement con-
dition for τadvg1g2

is analogous to (??). A straightforward calculation shows
that The functional derivative of β0g with respect to k .

= g2− g1 can now be
easily calculated, yielding

δ

δkµν
β0g

(
e
iΦM1f

′/~
TM1

) ∣∣∣
g1

=
i

~

[
T0µν , e

iΦM1f
′/~

TM1

]
?

,

where T0µν is the stress-energy tensor of the linearized theory.
To obtain the relative Cauchy evolution for the full interacting theory, we

use the quantum Møller maps introduced in (6.12). The following theorem
has been proven in [BFR13]

Theorem 8.1. The functional derivative Θµν of the relative Cauchy evolu-
tion can be expressed, on-shell, as

Θµν(ΦM1(f))
o.s.
= [RV1(ΦM1(f)), RV1(Tµν)]? ,

where Tµν is the stress-energy tensor of the extended action and one can
define the time-ordered products in such a way that Tµν = 0 holds, so the
interacting theory is background independent.
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Proof. We write the interacting relative Cauchy evolution as:

β = R−1
V1
◦ τ retg1g2

◦RV2 ◦A−1
V2
◦ (τadvg1g2

)−1 ◦AV1 .

The condition of background independence is

R−1
V1
◦ τ retg1g2

◦RV2 = A−1
V1
◦ τadvg1g2

◦AV2 .

Differentiating with respect to kµν yields a condition

[RV1(ΦM1f
′), RV1(T (η))]?

o.s.
= 0 ,

where

T (η)
.
=
〈
Tµνf , η

µν
〉

=

〈
δLext

M2f

δkµν

∣∣∣
g1

, ηµν

〉
To prove that the infinitesimal background independence is fulfilled, we have
to show that T (η) = 0 in the cohomology of ŝ. This is easily done, as

T (η) =

〈
δSext

M2

δkµν

∣∣∣
g1

, ηµν

〉
=

〈
δSext

M2

δhµν

∣∣∣
g1

, ηµν

〉
= s

〈
h‡, η

〉
= ŝ

〈
h‡, η

〉
,

where h is the perturbation metric. The last equality follows from the fact
that the anomaly can always be removed for linear functionals [BD08]. This
concludes the argument, so the theory is perturbatively background inde-
pendent.
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