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FORMULAIRE SUR LES CHAMPS VECTORIELS DE R3

Coordonnées Coordonnées Coordonnées
cartesiennes (x, y, z) cylindriques (ρ, θ, z) sphériques (r, θ, ϕ)

Champ de
vecteurs ~V Vx ~i+ Vy ~j + Vz ~k Vρ ~eρ + Vθ ~eθ + Vz ~k Vr ~er + Vθ ~eθ + Vϕ ~eϕ
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Divergence
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Laplacien
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Laplacien
vectoriel ∆~V ∆Vx ~i+ ∆Vy ~j + ∆Vz ~k (affreux...) (horrible !)
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Proprietés :
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grad (fg) = (
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grad f)g + f(
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−−→
grad (~U · ~V ) = (~U · ~∇)~V + (~V · ~∇)~U + ~U ∧ −→rot ~V + ~V ∧ −→rot ~U

div (f ~V ) = (
−−→
grad f)~V + f(div ~V ) div (~U ∧ ~V ) = (
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Identités :
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Théorème de Poincaré : Sur D ⊂ R3 simplement connexe : ~V =
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grad f ⇐⇒ −→
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Sur D ⊂ R3 contractile : ~V =
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rot ~U ⇐⇒ div ~V = 0

Théorème de Stokes : Si ~V =
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¨
S+

~V · ~dS =

˛
∂S+

~U · ~d`

Théorème de Ostrogradski : Si S+ = ∂Ω est une surface fermée :
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Corollaires : Si ~V =
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grad f et C+ est une courbe fermée :
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Si ~V =
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grad f et C+ est une courbe qui relie A à B :
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