NOMBRES COMPLEXES

1 Définition des nombres complexes

1. Unité imaginaire : i = symbol ayant la propriété $i^2 = -1$. Attention : i n'est pas un nombre réel.

Nombre complexe : z = x + iy, où x et y sont des nombres réels.

Exemples: **zéro** $0 = 0 + i \ 0$, **unité** $1 = 1 + i \ 0$.

Partie réelle de z = x + iy : c'est le nombre réel Re(z) := x.

Partie imaginaire de z = x + iy : c'est le nombre réel Im(z) := y.

Ensemble des nombres complexes : $\mathbb{C} = \{z = x + iy, x, y \in \mathbb{R}\};$

- sous-ensemble des nombres réels : $\mathbb{R} = \{x = x + i0 \in \mathbb{C}\};$
- sous-ensemble des nombres **imaginaires purs** : $i\mathbb{R} = \{iy = 0 + iy \in \mathbb{C}\}.$
- 2. **Egalité**: a + ib = c + id si et seulment si a = c et b = d.
- 3. Opérations entre nombres complexes :
 - addition : (a+ib) + (c+id) := (a+c) + i(b+d); **soustraction**: (a+ib) - (c+id) := (a-c) + i(b-d).
 - $\begin{array}{l} \bullet \ \ \mathbf{multiplication:} \quad (a+ib)(c+id) := ac+ibc+iad+i^2bd = (ac-bd)+i(bc+ad)\,; \\ \mathbf{quotient:} \quad \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{ac+bd}{c^2+d^2}+i\frac{bc-ad}{c^2+d^2}. \end{array}$

Les opérations dans \mathbb{C} ont les mêmes proprietés que leurs opérations analogues dans \mathbb{R} .

- 4. Conjugué complexe de z = x + iy: c'est le nombre complexe $\overline{z} := x iy$.
 - $\bullet \ \overline{z_1+z_2}=\overline{z_1}+\overline{z_2}\,;$
 - $\bullet \ \overline{z_1 z_2} = \overline{z_1} \ \overline{z_2};$
 - $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ et $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$.
- 5. Module de z = x + iy: c'est le nombre réel $|z| := \sqrt{x^2 + y^2}$.
 - $|z| \ge 0$, et |z| = 0 si et seulement si z = 0;
 - si $z \in \mathbb{R}$, alors |z| est la valeur absolue du réel z;
 - $\bullet |-z| = |z|;$
 - $z\overline{z} = |z|^2$, autrement dit, si $z \neq 0$ alors $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$;
 - $|z_1 z_2| = |z_1||z_2|$, et si $z \neq 0$ alors $\left|\frac{1}{z}\right| = \frac{1}{|z|}$;

 - $|z_1 + z_2| \le |z_1| + |z_2|$ et $|z_1 + z_2| = |z_1| + |z_2|$ si et seulement si $z_1 = az_2$ pour un $a \in \mathbb{R}, a \ne 0$; $|z_1 + z_2| \ge ||z_1| |z_2||$, autrement dit : $\begin{cases} \text{ si } |z_1| \ge |z_2| \text{ alors } |z_1 + z_2| \ge |z_1| |z_2|, \\ \text{ et si } |z_2| \ge |z_1| \text{ alors } |z_1 + z_2| \ge |z_2| |z_1|. \end{cases}$

$\mathbf{2}$ Représentation géométrique des nombres complexes

La représentation géométrique des nombres complexes est la correspondence qui identifie \mathbb{C} avec \mathbb{R}^2 , vu comme le plan euclidien muni d'un repère orthonormé (e_1, e_2) d'origine O. Dans cette correspondance :

• un point M = (x, y) correspond au nombre complexe z = x + iy, qui s'appelle affixe complexe de M.

Si on denote

 $\rho := \|OM\|$ la distance du point M de l'origine O;

 $\theta := (e_1, \vec{OM}) \pmod{2\pi}$ l'angle compris entre le vecteur e_1 et le vecteur \vec{OM} (pour $M \neq O$);

on a alors:

- $|z| = \sqrt{x^2 + y^2} = \rho$;
- $\operatorname{Re}(z) = x = \rho \cos \theta$ et $\operatorname{Im}(z) = y = \rho \sin \theta$;
- $\cos \theta = \frac{\operatorname{R}e(z)}{\rho} = \frac{x}{\sqrt{x^2 + y^2}}$ et $\sin \theta = \frac{\operatorname{Im}(z)}{\rho} = \frac{y}{\sqrt{x^2 + y^2}}$;
- $\tan \theta = \frac{y}{x}$ si $x \neq 0$, et $\cot \theta = \frac{x}{y}$ si $y \neq 0$.

3 Représentation des nombres complexes comme exponentiels

- 1. Exponential complexe d'argument θ : c'est le nombre complexe $e^{i\theta} := \cos \theta + i \sin \theta$.
 - exemples: $e^{i0} = e^{i2\pi} = 1$, $e^{i\frac{\pi}{2}} = i$, $e^{i\pi} = -1$ et $e^{i\frac{3\pi}{2}} = -i$;
 - $|e^{i\theta}| = 1$;
 - l'exponentiel complexe est périodique de période 2π : $e^{i(\theta+2k\pi)}=e^{i\theta}$ pour tout $k\in\mathbb{Z}$.
- 2. Représentation exponentielle des nombres complexes : tout nombre complexe différent de zéro s'ecrit sous la forme

$$z = \operatorname{R}e(z) + i\operatorname{Im}(z) = \rho\cos\theta + i\rho\sin\theta = \rho(\cos\theta + i\sin\theta) = \rho\ e^{i\theta}.$$

Pour $z = \rho e^{i\theta}$, $z_1 = \rho_1 e^{i\theta_1}$ et $z_2 = \rho_2 e^{i\theta_2}$ des nombres complexes, et $n \in \mathbb{N}$, on a donc :

- module : $|z| = \rho$;
- produit : $z_1 z_2 = (\rho_1 \rho_2) e^{i(\theta_1 + \theta_2)}$,
- puissance entière positive : $z^n = \rho^n e^{in\theta}$.
- puissance entière negative : $z^{-n} = \frac{1}{z^n} = \frac{1}{\rho^n} e^{-in\theta}$ si $\rho \neq 0$,
- racines n-ièmes : $\sqrt[n]{z} = z^{\frac{1}{n}} = \left\{ \sqrt[n]{\rho} \ e^{i\frac{\theta + 2k\pi}{n}}, \text{ avec } k \in \mathbb{N} \text{ tel que } 0 \le k \le n-1 \right\}$ (attention : c'est un ensemble de n éléments distincts!).
- Formule de Moivre : $(e^{i\theta})^n = e^{in\theta}$ pour tout $n \in \mathbb{Z}$. Autrement dit : $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ pour tout $n \in \mathbb{Z}$.

4 Polynômes complexes

- 1. Polynôme complexe : c'est un polynôme $P(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ dans la variable X, avec des coefficients complexes, i.e. $a_0, a_1, ..., a_n \in \mathbb{C}$.
 - Racine de P(X) : c'est un nombre complexe z tel que P(z) = 0.
 - Si z est une racine de P(X), alors il existe un entier $m \ge 1$ et un polynôme Q(X), tels que $P(X) = (X z)^m Q(X)$ et $Q(z) \ne 0$. On appelle m la **multiplicité** de la racine z.
- 2. Polynôme irreductible [dans \mathbb{C} ou dans \mathbb{R}] : c'est un polynôme qui ne se factorise pas en produit de polynômes de degrés strictement inferieurs [respectivement dans \mathbb{C} ou dans \mathbb{R}]. Exemples :
 - $z^2 1$ n'est pas irreductible, ni dans \mathbb{R} ni dans \mathbb{C} , car $z^2 1 = (z 1)(z + 1)$;
 - $z^2 + 1$ est irreductible dans \mathbb{R} , mais il n'est pas irreductible dans \mathbb{C} , car $z^2 + 1 = (z i)(z + i)$.
- 3. Théorème de d'Alembert-Gauss : Tout polynôme complexe P(X) se factorise comme produit

$$P(X) = a(X - z_1)^{m_1} \cdots (X - z_l)^{m_l}$$

où $z_1,...,z_l$ sont les racines complexes de P, de multiplicité respectives $m_1,...,m_l$, et la somme $d:=\sum_{i=1}^l m_i$ est le degré du polynôme P.

- Enoncé équivalent : Tout polynôme complexe de degré $d \ge 1$ admet d racines complexes (eventuellement réelles et eventuellement de multiplicité m > 1).
- Polynômes complexes irréductibles : Les polynômes complexes irreductibles sont de degré 1, c'est-à-dire qu'ils sont de la forme $a_1X + a_0$ avec $a_0, a_1 \in \mathbb{C}$.
- 4. Résolution des équations complexes de degré 2 : un polynôme $P(X) = aX^2 + bX + c$ à coefficients complexes admet donc toujours deux racines distinctes ou une racine double, solutions de l'équation P(X) = 0. Pour le détérminer, on calcule le discriminant $\Delta = b^2 4ac \in \mathbb{C}$, puis on a les deux cas suivants :
 - (a) si $\Delta = 0$, alors le polynôme a une racine double z = -b/2a;
 - (b) si $\Delta \neq 0$, alors on calcule les deux racines carrées $\delta_{1,2}$ de Δ (c'est-à-dire les nombres complexes δ tels que $\delta^2 = \Delta$). Ces deux racines carrées ont le même module $\rho = \sqrt{|\Delta|}$, et deux arguments qui different par π .

Autrement dit, on a $\delta_1 = -\delta_2$, que l'on appelle δ . Par consequent, le polynôme P(X) a deux racines complexes distinctes

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$.

- 5. Racines complexes d'un polynôme réel : Si P(X) est un polynôme à coefficients réels, et $z \in \mathbb{C}$ est une racine complexe de P(X) de multiplicité m, alors \overline{z} est aussi une racine de P(X), de même multiplicité m.
 - Polynômes réels irréductibles : Par conséquent, les polynômes réels irreductibles sont de degré 1 ou 2, c'est-à-dire qu'ils sont de la forme $a_1X + a_0$ ou bien $a_2X^2 + a_1X + a_0$ avec $a_0, a_1, a_2 \in \mathbb{R}$ opportunés.
 - Racines complexes d'un polynôme réel irréductible : Par conséquent, tout polynôme réel irréductible de degré 2 admet deux racines complexes conjuguées, z et \overline{z} .