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FICHE TD3 - CHAMPS DE VECTEURS

Exercice 1 (Changements de coordonnées)

Soient (x,y,z) les coordonnées cartesiennes des points de R3, (p, 8, z) les coordonnées cylindriques et (r,0,¢) les
coordonnées sphériques, définies comme dans le Formulaire distribué en cours. Montrer que, par changement de
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coordonnées, les derivées partielles {5, 75 521 {87’ 590 521 et 155, 59 %} se transforment comme suit :
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Exercice 2 (Champs de vecteurs)
1. Donner I’allure graphique des champs vectoriels suivants, définis sur R2.
(@) V(z,y)=i+]
z,y) = (z+1,y)

2. Méme question pour les champs vectoriels suivants, définis sur R3.
() V(w,y,2) =i+2j+Fk

(b) V(,y,2) = 5- +y &+ 5

(c) V(r,0,9) =1 ¢+ €,

3. Pour les champs vectoriels précédents, calculer divV.

Exercice 3 (Divergence 1)
1. Pour quelle fonction f: R — R la divergence de V=xzi+ y f—i— f(2) k est-elle égale a z7
2. Pour quelle fonction f: R — R a-t-on divV =0 pour les champs de vecteurs V suivants :
(2) V(@,y,2) = x2i + yj + (f(2) — 2/2)k
(b) V(w,y,2) = 2f(y)i - f(v)]
(c) V(,y,2) = af(2)i —yj — 2f(x)k



Exercice 4 (Divergence 2)
Pour les champs de vecteurs E suivants, définis sur R? \ {(0,0)}, calculer la divergence en fonction de p = || OM ||
ot M = (z,y) € R%
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Exercice 5 (Divergence 3)

Soit f : R® — R une fonction différentiable, o € R et U .V deux champs de vecteurs différentiables définis sur R®.
Montrer les relations suivantes :

div(U + V) = divU + divV
div(a V) = o divV
div(f V) = f divV + gradf -V

Exercice 6 (Divergence et rotatlonnel)
Pour les champs de Vecteurs B su1vants défini sur R3, trouver divB et rotB.

1. B(x,y, )—:cy +2x yz +3yz &

2. B(x,y,z) = sh(zyz) i+ ch(a:yz) J
3. g(a:,y, )—yzz—i—xzj—I—myk‘
4. E(;v,y, z) = xyz %

Exercice 7 (Champs de gradient)
Un champ de vecteurs V est un champ de gradient si V= grad(f) pour une fonction f qui s’appelle potentiel scalaire
de V. Dire si les champs suivants sont des champs de gradient, et dans ce cas déterminer leurs potentiels scalaires.
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Exercice 8 (Champ central)
Un champ central dans R? est un champ de la forme

‘7(961,5627%3) =f(r) ¥
ou
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T=x1i+ x2) + 23k = (x1, 22, T3) est le vecteur associé au point,

r=|Z|*=1/22+22+22  est la distance du point de 'origine, et

f:Rt =R est une application dérivable.

Montrer qu’un champ central est toujours un champ de gradient et calculer son potentiel.



