http://math.univ-lyon1.fr/~frabetti/Math2/

- INTÉGRALES MULTIPLES, CURVILIGNES, DE SURFACE FICHE TD 4

Exercice 1 (Intégrales curvilignes)

Calculer les intégrales curvilignes suivantes :

- a) $\oint_{\mathcal{C}} (xy^2 dx + 2xy dy)$, où \mathcal{C} est le triangle de sommets (0,0),(1,0),(0,1) parcouru dans le sens
- b) $\oint_{\mathcal{C}} (y + xy) dx$, où \mathcal{C} est la courbe définie par l'arc de parabole $y = x^2$ et la portion de droite
- b) $\int_{\mathcal{C}} (y + xy) dx$, so \mathcal{C} and y = x ($0 \le x \le 1$), parcourue dans le sens positif. c) $\oint_{\mathcal{C}} \left((3x^2 8y^2) dx + (4y 6xy) dy \right)$, où \mathcal{C} est la courbe définie par les arcs de parabole $y = x^2$ et $x = y^2$ ($0 \le x, y \le 1$), parcourue dans le sens positif.
- d) $\oint_{\mathcal{C}} \left(\frac{x^2}{y} dx + \frac{y^2}{x} dy\right)$, où \mathcal{C} est le cercle de rayon 1 centré en l'origine, parcouru dans le sens
- e) $\int_{\gamma} f \, ds$, où γ est l'arc d'hélice paramétrée par $\gamma(t) = (\cos t, \sin t, t)$ pour $t \in [a, b]$ et f(x, y, z) = xy + z.

Exercice 2 (Longueur de courbes)

Calculer la longueur des courbes γ suivantes :

- a) γ est l'arc de cycloïde paramétré par $\gamma(t)=(t-\sin t,1-\cos t)$, pour $t\in[0,2\pi]$.
- b) γ est l'arc d'hélice paramétré par $\gamma(t) = (\cos t, \sin t, t)$, pour $t \in [0, 2\pi]$.

Exercice 3 (Intégrales doubles)

Calculer les intégrales doubles suivantes :

a)
$$\iint_D xy \ dx \ dy$$
, où $D = [0, 1] \times [0, 1]$.

- b) $\iint_D (x-y) dx dy$, où D est la partie bornée du plan délimitée par les droites x=0, y=x+2,
- c) Même intégrale mais en utilisant le changement de variables u = x + y et v = x y.
- d) $\iint_D (4 x^2 y^2) dx dy$, où $D = \{(x, y) \mid 0 \le x, \ 0 \le y, \ x^2 + y^2 \le 1\}$ est le quart de disque

Exercice 4 (Aire de surfaces)

Calculer l'aire des surfaces S suivantes :

- a) S est la partie bornée du plan délimitée par les courbes d'équation y = x et $y^2 = x$.
- b) $S = \{(x,y) \in \mathbb{R}^2 \mid \frac{y^2}{2} \le x \le 2\}$. Comparer l'aire de S à l'intégrale $\iint_S (1+xy) \ dx \ dy$.
- c) S est le tronc d'hélicoïde paramétré par $\sigma(u,v)=(v\cos u,v\sin u,u)$, avec $u\in[0,\pi/2],v\in[0,1]$.

Exercice 5 (Intégrales triples)

Calculer les intégrales triples suivantes :

a)
$$\iiint_D (x^3y^2z - xy^2z^3) \ dx \ dy \ dz, \quad \text{où } D = [0, 1] \times [0, 1] \times [0, 1].$$

b)
$$\iiint_D \frac{xy}{x^2 + y^2 + z^2} dx dy dz$$
, où D est la boule de \mathbb{R}^3 de rayon 1 centrée en l'origine.

Exercice 6 (Volumes)

Calculer le volume des ensembles $\Omega \subset \mathbb{R}^3$ suivants :

- a) Ω est la boule de \mathbb{R}^3 de rayon r.
- b) Ω est le tronc de cylindre d'équation $x^2 + y^2 = r$, pour $z \in [0, h]$.

Exercice 7 (Applications des intégrales multiples)

- a) Trouver le centre de gravité de la surface plane homogène délimitée par la parabole $y = 6x x^2$ et la droite y = x.
- b) Déterminer le centre de gravité d'un demi-disque homogène.
- c) Calculer la masse totale du cube $D = [0,1] \times [0,1] \times [0,1]$ de \mathbb{R}^3 ayant pour densité de masse $\mu(x,y,z) = x^2y + xz^2$. Calculer ensuite le centre d'inertie de D.

Exercice 8 (Culbuto homogène en équilibre)

Un *culbuto* est un objet avec base arrondie fait de telle manière que si on le déplace de la position verticale il y revient en oscillant.

 $[{\tt Photo}: {\tt MONSIEUR} \ {\tt COLBUTO} \ {\tt de} \ {\tt HIBAI} \ {\tt AGORRIA} \ {\tt MUNITIS}]$

Considerons le culbuto homogène constitué d'une demi-boule de rayon 1 surmontée d'un cône de hauteur a > 0. Pour que ce culbuto revienne à sa position verticale d'équilibre il faut que le centre de masse G se trouve <u>strictement en dessous</u> du plan qui sépare la demi-boule du cône.

Pour quelles valeurs de a le culbuto revient-il donc à l'équilibre en position verticale?

Concrètement, soit K_a l'ensemble des points $(x, y, z) \in \mathbb{R}^3$ avec $-1 \le z \le a$ et tels que

$$\begin{cases} x^2 + y^2 + z^2 \le 1 & \text{si } -1 \le z \le 0, \\ x^2 + y^2 \le \left(1 - \frac{z}{a}\right)^2 & \text{si } 0 \le z \le a. \end{cases}$$

- a) Dessiner K_a et en calculer le volume.
- b) Pour tout $z \in [-1, a]$, soit D_z le disque contenu dans K_a à hauteur z fixée. Dessiner D_z , trouver son rayon et calculer son aire.
- c) Trouver le centre de masse de K_a , en sachant qu'il se trouve sur l'axe \vec{Oz} .
- d) Trouver les valeurs de a > 0 pour que le culbuto K_a revienne à l'équilibre en position verticale.

2