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Programme et plan des cours

Partie | : Fonctions de plusieures variables

CM 1 — Coordonnées, ensembles compacts

CM 2 — Fonctions, graphes, composition

CM 3 — Dérivées partielles, gradient

CM 4 — Différentielle, Jacobienne

CM 5 — Regle de la chaine, Hessienne

CM 6 — Taylor, extrema locaux

CM 7 — Intégrales simples et doubles

CM 8 — Intégrales triples, aire, volume, centre de masse

Partie Il : Champs de vecteurs

CM 9 — Champs scalaires et champs de vecteurs
CM 10 — Champs conservatifs et incompressibles
CM 11 — Courbes et circulation

CM 12 — Surfaces et flux
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But du cours:

A. Frabetti

1 Fonctions

Coordonnées

Champ scalaire
(lignes de niveau)

Compacts
Fonctions
Graphes
Composition

2 Dérivées
Partielles
Gradient
Différentielle
Jacobienne

Regle de la chaine
Hessienne

Champ de vecteur
sur la sphere

Taylor
Extrema

3. Intégrales
De Riemann
Doubles
Triples

Aire, volume

Lignes de champ
(dipole magnétique)

et aussi potentiels, circulation, flux...



Prérequis e
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Coordonnées

1. Espaces vectoriels et vecteurs de R? et R3
(produits scalaire, vectoriel et mixte).

2. Applications linéaires et matrices
(produit, détérminant, matrice inverse).

de la chaine

nne

3. Géométrie cartesienne du plan et de I’espace i
(droites, coniques, plans, quadriques).

De Riemann
4. Dérivées et intégrales des fonctions d’une variable e
(graphes, dérivées, points critiques, extrema, Taylor, pire, volume
primitives).

5. Equations différentielles du ler ordre.



Chapitre 1
Fonctions de plusieures variables

Dans ce chapitre:

1.

AR A

Coordonnées cartesiennes, polaires, cylindriques et
sphériques

Ensembles ouverts, fermés, bornés et compacts
Fonctions de deux ou trois variables

Graphes et lignes de niveau

Opérations, composition et changements de coordonnées
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1. Coordonnées polaires, cylindriques, sphériques

Dans cette section:

e Coordonnées cartesiennes et polaires du plan

e Coordonnées cartesiennes, cylindriques et sphériques de
I'espace
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Coordonnées cartesiennes du plan

1
On note (O,7,7) un repere E du plan.
Définition — Soit P un point du plan.
e Le coordonnées cartesiennes de P sont le couple

(x,y) e R? tel que V=0P = X7 +y] = <;)

. A "
Autrement dit, x = ||OP|| et y = |OP" || sont les longueurs
des projections orthogonales de Vv dans les directions 7 et J.
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Coordonnées polaires

e Les coordonnées polaires de P # O sont le couple
X = pCos

+
(p,p) € RT x [0,27[  tel que { Y = psing

On a donc
p = |OP| = /x? +y?

© t.q.tan<p=%six;éOoucotg):isiy;éO
(par ex. go=arctan§ si x,y>0)

X%

P/
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Exemples : coord.

Coordonnées
polaires

Il
w

&

€ =
I
o
A

t
—
€ =
([l

37 /4

polaires — cartesiennes

+ calculs avec formules — cuurdc}nnees
cartesiennes
z = 3cos(bm/d) = A= 342 - 3\/’5)
y = 3sin(5m/d) = -3 - 2 2
& = v2cos(3m/4) = =z
p 452 B=(-1,1)
y = v2sin(3n/4) = 3@
{ z =0 cos(3m/2) =0 ¢ =(0,0)

y =0 sin(37/2) =0
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Exemples : coord. cartesiennes — polaires

Coordonnées
cartesiennes

A=(2.3)

B =(2,0)

C =(0,3)

— dessin

~

=,

¥
0
2

calculs avec formules

= Il

Math 2
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coordonnées
polaires

A{

Coordonnées
Compacts
Fonctions
Graphes

Composition

_ Partielles
p=+13 Gradient
P 3 £ N
© = arctan (2) Différentielle
Jacobienne
Regle de la chaine
Hessienne
Taylor
Extrema
De Riemann
p=2 Doubles
b= Triples
©=0
Aire, volume
p=3
o =m/2



Coordonnées cartesiennes de |'espace

On note (0,7,7, l?) un repére - de I'espace.
1

Définition — Soit P un point de I'espace.
e Les coordonnées cartesiennes de P sont le triplet

(x,y,z) e R3 tel que V=0P = XT+yl+zk =y
z

Autrement dit, x = Hﬁ” y = H@HH etz = H@MH sont les

longueurs des projections orthogonales de v dans les directions
7,7 et k.
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Coordonnées cylindriques

¢ Les coordonnées cylindriques de P # O sont le triplet

(p,,2z) € RT x [0,27[ xR tel que

X = pCos Y
y =psing
zZ =2

Si (x,y,z) # (0,0,0) on a donc

p=[0Q| =/x2+y2

tanapzz si x#0
X
z=2z
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Coordonnées sphériques

e Les coordonnées sphériques de P # O sont le triplet

(r,p,0) e R x [0,27[x]0,7[ tel que

X = rcospsinf
y = rsinpsinf
z =rcosf

Si (x,y,z) # (0,0,0) on a donc

r=|0P| = \/x2+y? + 22

tanwzz si x#0
X z

X2+ y? 4 22

6 = arccos
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Coordonnées de |'espace
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Exemples

coord. cylindriques ou sphériques —

cartesiennes

Coordonnées

cylindriques

ou sphériques
p=3

AL o=7/3
z=2
p=2

B o=mn/4
z=-3
r=v2

C L p=m/2
0 = 3n/4
=

D! ¢=n/3
0=rm/6

— dessin

SN R NN

{

—_—— —— ——

calculs avec formules

x = 3cos(m/3)
y = 3sin(m/3)
z=2

r = /2 cos(m/4) =
y = V2sin(m/4) =
z=-3

T =1+/2 cos(m/2) sin(m/4) =0
= /2 sin(n/2) 91n(7r/4) =1
2 =1/2 cos(3m/4) =

x = cos(n/3) sin(r/6) = %
m/6) =

4

y = sin(7/3) sin(m
z = cos(m/6) =

%

coordonnées
cartesiennes
A= (—g %ﬁ 2)
B=(1,1,-3)
C=(0,1,-1)
D=(, \/TE \/7§>
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Exemples : coord. cartesiennes — cylindriques et

sphériques

—> dessin

Coordonnées
cartesiennes
z
A=(-1,1,1)
.1,;
z
B = (3,0,0) A
; / !
z
C=(0,1,1) [ .

calculs avec formules

p=VI+1=12

tangp = —1

r=yI+1+1=+3
1

cosf = 7

coordonnées
cylindriques

A{?

V2
3r/4

5
Il

G

=1

coordonnées
sphériques

-3
AL p=23r/4
0=mr/6

.(;
|

3
0

=6
I Il

3

NS

v

>H I
I

Ay

S
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Notations des points

Conclusion —
e Un point géométrique du plan ou de |'espace est noté P.

e Un point en coordonnées dans R? ou R3 est noté X.

Cela signifie donc (x, y), (p,»), (x,¥,2), (p,,2) ou (r,p,0)
selon le contexte.

Dans la suite R” est I'un des trois espaces R, R? ou R3.
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2. Ensembles ouverts, fermés, bornés, compacts

Dans cette section :

e Intervalles, disques, boules
e Bord d'un ensemble
e Ensembles ouverts et fermés

e Ensembles bornés et compacts
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Intervalles

Définitions —

e Dans R, on appelle

intervalle ouvert

intervalle fermé

L(r)=]la—r,a+r]|

I.(r)=[a—r,a+r]

bord de I'intervalle dl,(r) ={a—r,a+r}

ouvert
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Disques

e Dans R?, on appelle

disque ouvert

Diapy(r) ={(x,y) | (x—a)* + (y = b)* < r?}

disque fermé

Dian(r) = {(x,¥) | (x=2)* + (y — > < r?}

bord du disque

aD(a,b)<r) = {(Xa)’> | (x—a)?+ (y— b)? = r2} (un cercle)

° |
' (ab) )
N 7

~ -

ouvert fermé bord
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Boules Math 2
A. Frabetti
e Dans R3, on appelle
oot
boule ouverte Fers o

Graphes

Blape)(r) = {(x,y,2) | (x=a)? +(y = b)*+(z—¢c)* <r?} oo

Partielles

boEIe fermée
B(a,b,c)(r) = {(X,y,z) ‘ (X_ 3)2 + (y— b)2 + (Z— C)2 < r2}

bord de la boule

0Blae)(r) = {(,,2) | (x— )+ (y = b2 + (z— ) = 12} =
(une sphere)

V4

€
. 4l
X




Bord d’'un ensemble Math 2
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Définition — Soit D < R” un sous-ensemble.

Coordonnées
Compacts

e Un point P est un point intérieur a D, s'il existe une boule
ouverte Bp contenue dans D.

e Un point P est un point extérieur a D il existe une boule
ouverte Bp qui n'intersecte pas D.

Taylor

e Un point P € R" est un point du bord de D si toute boule St
ouverte Bp centrée en P contient a la fois des points de D et

P . De Riemann
de son complémentaire R™\D. Doubles

Triples

Aire, volume

e Le bord de D est I'ensemble o
des points du bord, noté ¢D. intérieur

ATTENTION — Un point de 0D . 4
peut étre dans D ou non! - extérieur
bord



Ensembles ouverts et fermés

Définition — Soit D < R"” un sous-ensemble.

e D est ouvert s'il ne contient aucun de ses points de bord.

e D est fermé s'il contient tous ses points de bord.

~ -

ouvert fermé
Propriété — Le complémentaire d’un ouvert est fermé, le

complémentaire d’un fermé est ouvert.

e Par convention, I'ensemble vide 5 et R” sont a la fois
ouverts et fermés dans R".

ATTENTION — || existe p T
des ensembles qui ne sont <

) ) el _ _ ,
ni ouverts ni fermés! ni oUvert i fermé

Math 2
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Comp:

Frabetti

onnées
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Partiel

osition

Gradient

Diffé

Taylor

tielle
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Extrema
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Ensembles bornés et compacts

Définition — Soit D < R" un sous-ensemble.

e D est borné s'il existe un disque ouvert B qui le contient.

e D est compact s'il est fermé et borné.

- S - ~
< N < N

4 \ £ \
/ \ / \
{ \ { \
[ | [

N A i !
\ =~ / \

\ ~_~- y \ y
A 4 N\ 4
N y N 4
~ // ~ //

borné compact
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Exemples: fermés non bornés

Exemples —

e Les droites, demi-droites et demi-plans sont fermés non
bornés dans le plan R? ou dans I'espace R3.

De méme, les plans sont fermés non bornés dans R3.

[ S—

dans R? dans R?
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Math 2

Exemples: bornés ouverts et fermés

A. Frabetti

1 Fonctions

Coordonnées
Compacts
Fonctions
Graphes

e Toute boule ouverte de R" est ouverte et bornée. Composition

2 Dérivées
Partielles
Gradient

Toute boule fermée est compacte, ainsi que l'intérieur d'un
carré avec son bord (dans R?) et I'intérieur d'un cube avec son "
bord (dans R3) Regle de la chaine

Hessienne

boule ouverte boule fermée cube ouvert cube fermé

Taylor
Extrema

3. Intégrales
De Riemann
Doubles
Triples

Aire, volume

==
I
I

’
z




Exemples: non bornés ouverts et fermés

e Dans le plan R?, le quadrant R, x R, est fermé non borné.

Le méme quadrant sans bord, R% x R% est ouvert non borné.

Ry x Ry TMXM
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Exercice

Enoncé — Dessiner les sous-ensembles suivants de R? et dire

s'ils sont ouverts, fermés, bornés ou compacts :

A:{(X,y)eR2\0<x<5}

B={(x,y)e]R2|0<x<5, 0<y<x2+3}

C:{(x,y)eR2|0<x<5, 0<y<x2+3}

Réponse —

ouvert non borné

B 5
compact

X

ni ouvert ni fermé
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3. Fonctions de deux ou trois variables

Dans cette section:

e Fonctions réelles et vectorielles de plusieurs variables

e Domaine et image
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Fonctions réelles et vectorielles

Définition — Une fonction de plusieurs variables est une loi
f:R" —R" X f(X)

qui associe a un point X € R” au plus une valeur f(X) € R".

e Pour ce cours, n=2ou3etm=1, 2 ou 3.

e Sim=1, la fonction f : R" — R est dite réelle.

e Si m> 1, la fonction f est dite vectorielle.
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Exemples de fonctions de plusieures variables

¢ Fonctions réelles

f:R2— R, (x,y) = f(x,y) = x> +sin(xy) +1

Pression = f(Volume, Temperature)

f RS —R, (x,y,2) — f(x,y,2) = x3z + xyz + In(z2 + 1)
¢ Fonctions vectorielles

f:R2—R3 (x,y)— f(x,y) = (x*,x +y,y%)

g: R —R2 (x,y,2) = glx,y,2z) = (x> + z,xz + y)

h:R* —R?, (p, ) = h(p, ) = (pcos g, psinp)
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Math 2

Attention aux fonctions vectorielles et linéaires !
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1 H ' ., . Coordonnées
ATTENTION — Une fonction vectorielle n’est pas linéaire en Compts
. . I Graphes
general - Cou‘wpos\t\ow
Une fonction f : R” — RR™ est linéaire si et seulement si, en parieles

coordonnée cartesiennes, ses composantes sont des férentiel
polyndmes de degré 1 sans termes constants.

de la chaine

sienne

Taylor

Extrema

Par exemple:

De Riemann
Doubles
Triples

e g(x,y,z) = (xz + 5,3,sin(y)) n'est pas linéaire, Aire, volume

o f(x,y,z) = (22 —x,0,3y +5x — z) est linéaire

car contient un polyndme de degré 2 (xz),
deux termes constants non nuls (5 et 3)
et une fonction non-polynomiale (sin(y)).



Domaine et image

Définition — Soit f : R" — R™ une fonction.

¢ Le domaine (de définition) de f est |'ensemble des points
de R” pour lesquels f est bien définie:

Df = {X € R" | il existe f(X) € R™}
e L’'image de f est I'ensemble des valeurs de f :

If = f(Df) = {y e R™ | il existe X € R tel que y = f(X)}

Math 2

A. Frabetti

Coordonnées
Compacts
Fonctions
Graphes

Composition

Partielles
Gradient
Différentielle
Jacobienne

Regle de la chaine
Hessienne

Taylor

Extrema

De Riemann
Doubles
Triples

Aire, volume



Math 2

Exemples: domaine et image

A. Frabetti
e f:R2 R, (x,y)—Ff(x,y)=4/x2+y2—1 Codomies
Compacts
Fonctions
Dr = {(x.y) eR?* | x> + y* > 1} 1
= complémentaire du disque Dp(1)
(fermé non borné) X

Ie = [0, +0[= R,

e f:R2—R, (x,y)—f(x,y) =4/1—-x2—y2

Dr = {(x.y) e R? | X’ +y* <1} Y
= disque fermé Do(1) (compact)

Extrema

De Riemann

I = [07 1]

car xX24+y?>0<=0<1-x2—y?<

1
= 0<4y/1-x2—y2="f(x,y) <1



Exemples: domaine et image

o f:R2 R, (x,y)r—>f(x,y)=|n(x2+y2—1)

Df ={(x,y) e R? | x* + y* > 1} £
= complémentaire du disque Do (1) /
(ouvert non borné) '

Ir =R
o f:R?—R, (x,y) > f(x,y) =In(l—x*~y?)

Df = {(X,y)E]R2 | x2+y? < 1}
= disque ouvert Dp(1)
(ouvert borné) A1

Ir =1n]0,1] =] — ,0] = R~ .
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Exemples: domaine et image

1 1
SR2 — =\|\—-5,"">5
e f: R R, (x,y) f(x,y) <X27 y2>

Df:{(x’y)€R2 ‘X7é07 y;ﬁO}
= plan privé des deux axes de coordonnées
(ouvert non borné)

I = ]Rar x Ry = 4°"° quadrant privé de son bord
o« f:R—R,
(vaaz) — f(vavz) = (\/Xz _225_\/.)/2 +Z2)

Df = {(X,y,Z) eR ‘ x? — 22 = 0}
= cbne délimité par les deux plans z = +x
(fermé non borné)

Ir = RT x R~ = 4™ quadrant
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Exercices

Enoncé — Dessiner le domaine de définition et I'image des
fonctions suivantes et déterminer la nature du domaine
(ouvert, fermé, borné, compact).

L CIn(+y%+1)
cFRE— R oy floy) = =5 T
Réponse :
Dr ={(x,y) e R} [ x> + y> +1>0, x* + y* # 0}

= R2\{(0,0)} = plan moins l'origine  (ouvert non borné)

La condition x? 4 y? 4+ 1 > 0 est vérifiée pour tout (x,y) € R?
et la condition x? + y? # 0 est vérifiée si (x,y) # (0,0).

lr = R% =]0,400[ (ouvert non borné)

car x> + y? > 0 implique x?> + y? + 1 > 1 et par conséquent
In(x2 + y2 +1) > 0, et le quotient de deux nombres positifs
est positif.
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Exercices

e g:R?2 — RR?
(va)'_)g(xvy) = <

In(x>+1) In(y?+1)
vz X2

Réponse :
Dg={(x,y)eR?|x?+1>0, y#0, y>+1>0, x # 0}
= R* x R* = plan privé des deux axes de coordonnées
(ouvert non borné).
En effet, les conditions x> +1 > 0 et y? + 1 > 0 sont vérifiées
pour tout (x, y) € R?

lg = R% x R¥ = 1°" quadrant privé de son bord
(ouvert non borné)

Les conditions x # 0 et y # 0 impliquent x> > 0 et y? > 0, et
par conséquent In(x? + 1) > 0 et In(y? + 1) > 0.
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4. Graphes et lignes de niveau

Dans cette section:

e Graphe des fonctions d'une variable (rappel)
e Graphe des fonctions de plusieures variables

e Lignes de niveau
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Math 2

Graphe des fonctions d'une variable

A. Frabetti

Coordonnées
Compacts
Fonctions

Rappel — Le graphe de f : R — R est |'ensemble Graphes

Composition

Me = {(X,y) eR? | xe Dy, y = f(x) } c R? O

Gradient
Différentielle
Jacobienne

Regle de la chaine
Hessienne

Taylor

Extrema

De Riemann
Doubles

Triples

Aire, volume

Le graphe des fonctions usuelles d’une variable est a connaitre
par coeur.



Graphes a connatitre !

f(x)=x f(x) =x? f(x) =x*

f(x) =1/x f(x) = 1/x f(x) =1/x°
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Math 2

D’autres graphes a connaitre !

A. Frabetti
3 f(x) =11/x
= |x| f(x) = || () = [1/x|
Co onnees
o s
onctions
Graphes
Composition
X X
Partielles
Gradient
Di
= sin(x) = cos(x f(x) = tap(x) 2 \chaine
I |
ay
: : Extrema
\ | |
i i
T ] De Riemann
\X \/ | | X Doubles
l l Triples
I I Aire, volume
I I
I I

arccos

AN

f(x) = arcsin(x)

X




D’autres encore...

f(x) = exp(x)

X

ouf !

F(x) = exp(—x) =

()
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Graphe des fonctions de plusieures variables

Définition — Le graphe de f : R” — R est I'ensemble

M= {(z,y) eR™™ | X Dy, 7 = f(X) } c R™T,

PROBLEME — Ce graphe
est difficile a dessiner
sin+m>31

Regardons n =2 et m = 1.
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Graphe des fonctions réelle de deux variables

Le graphe de f : R2 — R est I'ensemble

er{(X7y7Z)€R3 ‘ (va)eva Z=f(X,y) }CR?’
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Math 2

Exemple: graphe d'une fonction de deux variables

A. Frabetti

Exemple — o —

Compacts
Fonctions

o flx,y) =A/1-x2—-y2 =2z s

= Dy = 50(1) et Ir= [0, 1] Paitliss

Gradient
Différentielle
Jacobienne
Notons que Regle de la chaine
Hessienne

Taylor

72 =1—x2 —y2, c-a-d. x? +y2 +22=1, e z=>0. Extrema

. . . N De Riemann
Ainsi  [r= demi-sphere Doubles
Triples

Aire, volume




Math 2

Lignes de niveau

A. Frabetti

Soit f : R? — R de domaine Df — R? et d'image Ir — R.

Coordonnées
Compacts
Fonctions

Définition — Pour tout a € R, la ligne de niveau a est la Graphes
. . , N . Composition
projection sur Df de ['r n {z = a}, c'est-a-dire |

Partielles

Lo(f) = {(x,y) € Dr | f(x,y) = a}. ﬁﬁfﬁ'ﬁw

A noter que L,(f) = I sia¢ls. et

Taylor

Extrema

De Riemann

§% Doubles

Triples

Aire, volume

Dr




Math 2

Exemple: lignes de niveau

A. Frabetti

Exemple — T

Compacts

o f(x,y) =+/1—x2—y2 =12z Df = Do(1), Ir = [0,1] s

Composition

Pour tout a€ [0,1] = /r on a Partiele
Gradient
Différentielle

L,(f) = {(X,y) c Eo(l) ‘ m =23 P

Hessienne

, Taylor
= cercle centré en (0,0) de rayon v/1 — a2 e

De Riemann
Doubles
Triples

Aire, volume

N/
J !




Exercice

Enoncé — Trouver le domaine, I'image et la nature des lignes
de niveau de la fonction

X—y
f(x,y) = Xty

Dessiner les lignes de niveau pour les valeurs
a=-2,-1,0,1,2. En déduire le graphe de f.
Réponse —
Df = {(x,y) e R? | y # —x} = R?\ la bissectrice
du 2¢™€ quadrant
I = R, alors pour tout a€ R on a
X—Yy
L(f) = {(x,y) € D —a}
()= {ty)enr| ) =
= droite d'équation (a—1)x+ (a+1)y=0
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Exercice Mt 2

A. Frabetti

L,(f) = droite d'équation (a—1)x+ (a+ 1)y =0 o
Compacts

a = 0 - y=X Fonctions
Graphes
a=1 = y=0 a=-1 = x=0 Composition

a=2 = y:—%x a=-2 = y=-3x

Partielles
Gradient

M= {y2) e B |y #x, 2= 27}

a chaine

X+y
= union de droites tournantes (sans |'axe Oz)

Tay
Extrema

De Riemann
Doubles
Triples

Aire, volume




5. Opérations, composition et changement de
coordonnées

Dans cette section:

e Somme et produit de fonctions
e Composition de fonctions

e Changement de coordonnées
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Somme et produit de fonctions
Définition — Soient f, g : R” — R™ deux fonctions et
A € R. On définit les fonctions suivantes:
somme: (f +g)(X) =f(X)+g(X), Dsig = Dr n Dy;
zéro: 0(X) =(0,...,0), Do =R"
opposée de f: (—f)(X) = —f(X), D_¢= Ds;
produit de f par \: (Af)(X) = Af(X), Dxr = Dr.

Si f et g sont des fonctions réelles (m = 1):

produit: (fg) : (X) = f(X)g(X), Dg = D n Dg;
un: 1(X) =1, D;=R"

1

inverse de f: <7) (X) = ., Dy= {)?e Ds | f()‘(’);éO}.

f(X)

Math 2

A. Frabetti

Composition

Partielles




Exemples: somme et produit de fonctions

Exemple —

Si

fx,y) =x2—y2 glx,y)=x2+y? et \=3,
on a :

(f +8)(x,y) = 2%
(3f)(x,y) = 3f(x,y)

(fg)(x,y) = x* — y*

1 1

20y =5 —5 SX#Ey.
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Math 2

Propriétés des opérations

A. Frabetti
Coordonnées
Compacts
Fonctions
Graphes
Composition
Proposition — Les opérations d’addition, produit par scalaire
. . . . N . . Partielles
et multiplication entre fonctions 3 plusieurs variables ont les R,

Différentielle

mémes proprietés que leurs analogues entre fonctions a une
. . . . . . . e la chaine
variable (elles sont commutatives, associatives et distributives). i
Taylor
Extrema
En particulier, I'ensemble des fonctions a plusieurs variables N
F(R",R™) muni de I'addition et du produit scalaire est un e

Aire, volume

espace vectoriel sur R de dimension infinie.




Composition de fonctions

Définition — Données deux fonctions
f:R" —R" e g:R"—RP
on définit la composée de f et g comme la fonction
gof :R"— RP
obtenue en calculant g sur les valeurs obtenues par f:
rRT L, rm £, Re
£ - X))~ (goN(x) —g(fX)
Le domaine de g o f est I'ensemble

Dgor = {)?e Dr | (R) e Dg}.
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Math 2

Cas particuliers de fonctions composées

A. Frabetti

Si fF:R2-R, (x,y) = f(x,y)
g:R->R, z-g(z)
h:R?—>R?  (u,v) — h(u,v) = (hi(u,v), ha(u,v))
TIR-R? te (1(t),72(t))

les composées gof, foh et fo~ sont

gof 1 R? - R, (gof)(x,y) =g(f(x,y)) © z="f(x,y)

ctions
raphes
omposition

ooOTO0N
o0 o
339
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Exemple: fonctions composées
Exemple —

fx,y) =x*—y

g(z) =expz

h(u,v) = 2u,u+v)

~(t) = (cost,sint)

(gof)(x.y) =8(x* —y) = exp(x* — y)
(Foh)(u,v)=FfRu,u+v)=4u>— (u+v)

(fov)(t) = f(cost,sint) = cos? t —sint
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Changement de variables
Un changement de variable s'écrit comme une composée !

Proposition — Si  y = f(X) est une fonction des variables
X = (x1,...,Xn), son expression comme fonction de nouvelles
variables i = (uy, ..., up) est donnée par la fonction composée

f=foh,

ou
h:R" — R" i+ h(id) = (%)

est I'application qui décrit le changement de variables des
(X1, ..ey Xn) vers les (uq, ..., up).

Autrement dit, on a
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Changements en polaires, cylindriques, sphériques

e Changement en coordonnées polaires:

f(x,y) = f(h(p, %)) = Flp, )
avec h:[0,00[x[0,27[— R?,  h(p,¢) = (pcosp, psinp)
e Changement en coordonnées cylindriques:
f(x,y,2) = f(h(p,¢,2)) = Flp, ¢, 2)

avec h:[0,00[x[0,27[xR —> R3
h(p, ¢, z) = (pcosp, psinp, z)
e Changement en coordonnées sphériques:

f(x,y,z) = f(h(r, @,9)) o= ?(r,g@,G)

avec h:[0,00[x[0,27[x[0, 7] — R3
h(r,,0) = (rcosesinf, rsinpsinf, rcosf)

Math 2

A. Frabetti




Math 2

Exemple: passage en coordonnées polaire

A. Frabetti

Exemple — On veut exprimer la fonction
f:R2—TR, (x,y)— f(x,y) = x>+ y? + 2x
en coordonnées polaires.

Pour cela il suffit de faire la composée f o h ol

h(p,¢) = (pcos g, psinp)
c'est-a-dire a remplacer x et y dans f par pcosy et psin . ET‘
On obtient A vlume
f(p,o) = f(pcosp,psing)

(pcos ) + (psin ) 4+ 2pcos
= p?+2pcosp.



- Math 2
Exercice
A. Frabetti
, . i Coordonnées
Enoncé — Exprimer la fonction Compacis
Graphes
2 Composition
fx,y,2) = (Vx* +y2,2%)
Partielles
, . . ) Gradien
en coordonnées cylindriques et sphériques. Diférentiele
Jacobienne
Reégle de la chaine
Réponse — En coordonnées cylindriques : Hessienne
Taylor
Extrema
~ ) B )
F(p,¢.2) = f(pcos g, psin ¢, z) = (p, z°) .
DOH\)“CS
En coordonnées sphériques : P oy

?(r,cp,@) = f(rcospsinf, rsinpsinf, rcosf)
= (rsinf,r?cos®0)



Chapitre 2
Dérivées, Taylor, extrema locaux

Dans ce chapitre:

[y

[ S —y
= O

© 0Nk wN

Limites et continuité
Dérivées partielles
Dérivée directionelle
Gradient

Différentielle
Jacobienne

Resumé sur les dérivées
Regle de la chaine
Hessienne

Taylor

Extrema locaux
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1. Limites et continuité

Dans cette section:

e Rappels sur les fonctions d'une variable
e Limites de fonctions

e Fonctions continues
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Rappels sur les fonctions d'une variable

Rappel — Si f : R — R est une fonction d'une variable,
avec domaine Dy, on dit que:

e la limite de f en un point a € Dr U 0Dy est la valeur
lim f(x) a laquelle tend f(x) quand x s’approche de a;
X—a

e f est continue en un point a€ Dr si  lim f(x) = f(a).

X—a

_ Ed %

/7 /7 /7

lim # lim lim = lim # f(a)

continue gauche ~ droite gauche  droite

Math 2
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Limites des fonctions

Définition — Soit f : R” — R une fonction de plusieurs
variables, de domaine Dr.

e La limite de f en un point 3€ Df U 0Ds est la valeur a
laquelle tend f(X) quand X s'approche de & par tous les
chemins contenus dans Df. On la note

ATTENTION — La limite peut ne pas exister, mais si elle existe
elle est unique.
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Fonctions continues

e La fonction f est continue en 3 € Dr si

im £(%) = f(

lim
X—a

e La fonction f est continue sur le sous-ensemble D c Dy

si f est continue en tout point de D.

Le graphe d'une
fonction continue
n'a pas de “sauts”!

non continue

non continue
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Quelles fonctions sont-elles continues ?

Théoremes — Toutes les fonctions de plusieurs variables
obtenues comme somme, produit ou composée de fonctions
continues sont continues.

Quelques fonctions continues —

e Les fonctions polynomiales de plusieurs variables sont
continues sur R".

e Toutes les fonctions de plusieurs variables obtenues par
composition ou combinaisons de fonctions a une variable
qui sont continues.

e Ainsi: les fractions rationnelles, les racines, les
exponentielles et les logarithmes, les fonctions circulaires,
les fonctions hyperboliques et leurs réciproques sont
continues sur leur domaine de définition.
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2. Dérivées partielles

Dans cette section:

e Rappels sur les fonctions d'une variable
e dérivées partielles

e fonctions (continiiment) différentiables
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Math 2

Rappels sur les fonctions d'une variable

A. Frabetti
Rappel — Si f : R — R est une fonction d’une variable, la
dérivée de f en x € Dr est la limite e
Fonctions
. f(x+h) —f(x i
f'(x) := lim ( ) — f(x) o
h—0 h

Partielles
Gradient

si elle existe et est finie. Dans ce cas, f est dérivable en x.
La fonction f est dérivable sur D c Ds si elle est dérivable en ’
tout point x € D. Taylor

Extrema
Propriété — Une fonction dérivable est continue. De Riemann
Doubles
. Triples
Le contraire est faux: i, rsitme
7 \ 7 \ 7 \

non continue continue, non dérivable dérivable



Dérivées partielles

Définition — Soit f : R” — R™ une fonction.
e Les dérivées partielles de f en X € Df sont les limites

of f(xl,...,x,-—i—h,...,x,,) — (X1, ..y Xn)

aixi(xla"'vxn) :/|1[>n0 h

pour i = 1,...,n (si ces limites existent).
o Les dérivées partielles de f sont les fonctions

of of
RT—R": X+— — (X =1,..
F X o (X) pour i yeeey
définies sur I'ensemble de points X oli les dérivées ‘7’(( X)
existent.
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Fonctions (continiiment) différentiables

e La fonction f est (contindment) différentiable sur
D < D¢, ou de classe C! sur D, si toutes les dérivées

partielles

ﬁ'DC]R”—»]R'"

Xi
existent et sont des fonctions continues en tout point X € D.
Propriété — Une fonction différentiable est continue.

Le contraire est faux: le graphe d'une fonction différentiable
n'a pas de “sauts” et en plus ne change pas son allure
“brusquement”!

continue

non continue non différentiable différentiable
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Math 2

Exemples de fonctions différentiables

A. Frabetti

Exemple 1 — La fonction f(x,y) = xy? + 3x est C! sur
R? car

Composition

f f
Z}((X,y) - y2 +3 et (?}/(X,y) = 2xy Pirtieues“

sont continues sur R2.

De Riemann
Doubles

2 Extrema
Exemple 2 — La fonction f(x,y,z) = (xy ;_3X> est C!

sur R3 car Tiples

of y2+3 of  (2xy ot of (0
ox 0 "oy \ 0 oz \2z

sont continues sur R3.



Exemples de fonctions différentiables

Exemple 3 — La fonction f(r,p,0) = ¢©?> + rsinf est C*
sur R3 car

of . of
E(r79079>_sm67 %(r7¢76)_29@

. of
@(r, ©,0) = rcosé

sont continues.
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3. Dérivées directionnelles

Dans cette section:

e Dérivées directionnelles

e Croissance et décroissance des fonctions réelles
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Dérivées directionnelles

Soit f : R" — R™ différentiable sur un ensemble D < R".

Définition — Pour tout vecteur vV = (vy,...,v,) € R"”, on
appelle dérivée directionnelle de f dans la direction V la
fonction

of: D — R7
X — Gf(R) =v LX)+ +va £(X)

Nota —
Dérivées partielles = dérivées directionnelles dans la
direction des vecteurs

ou 1 est en jéme position,
. of
c'est-a-dire —— = 0gf.
5X,'
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Exemples de dérivées directionnelles

Exemple 1 — La dérivée directionnelle de la fonction

f: R — R
(x,y) — f(x,y) =xy*+3x

dans la direction v = (X, Y) est la fonction

('7’\7f: RZ — ]R
(x,y) — Osf(x,y) = (Y2 +3) X +2xy Y

puisque

of 5 of
a—x(x,y) =y“+3 et @(X,y) = 2xy.
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Exemples de dérivées directionnelles e

A. Frabetti

Exemple 2 — La dérivée directionnelle de I'application

f=(ff): RS — R2
2 Composition
(yr2) — <xy2+3x,yz2>—(xy +3X)

yz?

Partielles

dans la direction v = (X, Y, Z) est la fonction

oyf = (0yh, 05f2) : R® — R? Exrema
qui vaut, en tout X = (x,y,z) € R3: o

Triples

2 2 Aire, volume
oyf(x,y,z) = <y J3> X+ ( zx2y> Y+ <2§)/z> z

(V2+3) X +2xy Y
22Y +2yz 7 '



Exemples de dérivées directionnelles

Exemple 3 — La dérivée directionnelle de I'application

f: R — R
(r,p,0) —> ©?>+rsind

dans la direction v = (X, Y, Z), au point X = (r, ¢,0) € R3,

est donnée par
a(X7Y,Z)f(r,9079) =sind X +2p Y +rcosf Z

puisque

of of

E(f,%@)zs'na %(r7¢79):290

. of
%(r, ©,0) = rcosf
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Croissance et décroissance des fonctions réelles

Théoreme — Soit f : R" — R une fonction réelle de classe
Clsur D cR". Pour tout X € D et tout Vv e R", on a:

e Si0yf(X) > 0 alors  f est croissante au point X dans
la direction de V.

e Si0yf(X) <0 alors f est décroissante au point X
dans la direction de v.

De plus:
e forte croissance <= grande dérivée positive

o forte décroissance <= grande dérivée négative

ATTENTION — On ne peut rien dire sur la croissance de f si
ozf(X) = 0!
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Exercice

Enoncé — La fonction f(x,y) = xy? + 3x est-elle croissante
ou décroissante au point (3,1), dans les directions (1,1),
(1,2), (1,-1) et (1,-2) ?

Réponse — Pour tout vecteur vV = (X, Y), on a

f(x,y) = (Y’ +3)X+2xy Y
et donc

0sf(3,1) = 4X +6Y

d’ou
® 01,1)f(3,1) =10 = f croissante en direction (1,1)
® 012)f(3,1) =16 = f croissante en direction (1,2)
e 01,-1f(3,1) = -2 = f décroissante en dir. (1,-1)
® 01,-2f(3,1) = -8 = f décroissante en dir. (1,-2)
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ns
Graphes
Composition

Partielles
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Exercice

Enoncé (suite) — Parmi ces quatre directions, quelle est celle
de plus forte croissance et celle de plus forte décroissance 7

Réponse — Pour comparer la croissance d'une fonction en
différentes directions, il faut calculer les différentes dérivées
directionnelles avec des vecteurs ayant tous la méme longueur,
par exemple 1.

Directions croissantes —

10
cILVI=v2 = 01qyf31) = 72
16

o [(1,2)=Vv3 = 6%(172)7‘(3, 1) = Ne

Or % < % car  (10v/3)? =300 < (16+/2)? = 512.

Ainsi, au point (3,1), le fonction f croit plus rapidement dans
la direction (1,2).
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Exercice

Directions décroissantes —

CIL-DI=v2 = 0y 3.1 = -

SIL-DI=V3 = 014 531 - -

Ona —2>-3  carcedi se vérifie ssi

N
ce qui est vrai car  (2v/3)%2 = 12 < (8v/2)? = 128.

8

<5

NS &‘oo %‘ N

Ainsi, au point (3,1), le fonction f décroit plus rapidement
dans la direction (1, —2).
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4. Gradient

Dans cette section:

e Gradient des fonctions réelles

e Interpretation géométrique du gradient
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Gradient d'une fonction réelle et 2

A. Frabetti

Définition — Soit f : R” — R une fonction réelle
différentiable sur D < Ds.

e Le gradient de  en un point X € D est le vecteur de R”

Composition

of (2 artielles
of of ox1 (X) }GradieHnt
grad f(%) = VF(X) = —(X) &1+ -+ 5 (X) & = :
&xl ax,, 6r’. .
OXn (X) ay
Extrema
ou le symbole V se lit nabla.
De Riema ann
o Le gradient de f est la fonction vectorielle Do
Aire, volume
of
Ox1
E—
gradf=Vf=| : |[:DcR"—R"
of
OXn

Pour tout vecteur v € R" on a alors  dyf = <§)f, V) = Vv



Exemples de gradient

Exemples —

2
o f(x,y) =xy°+3x = vf(x,y) = <y2g/3>

0 12

Par exemple:  V£(0,0) = (3) et VF(3,2) = (7 )

o f(x,y,2) =sin(xy) +In(x*> +2z?) =

y cos(xy) + )(227;;2
vf(x,y, z) = x cos(xy)
P
-7
Par exemple: ?’f(o,w, H=10

2
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Math 2

Interprétation géométrique du gradient

A. Frabetti

Coordonnées
Compacts
Fonctions
Graphes

Composition

Théoreme — Soit f : RZ — R une fonction de deux variables, e
différentiable sur D — R?. Pour tout X € D on a alors: Gt

Différentielle

Jacobienne

Regle de la chaine
o Le gradient Vf(R) est orthogonal & la ligne de niveau L,(f) Hessonne
avec a = f(X). Ertrems
. — . . . . De Riemann
o Le gradient N (X) indique la direction de la pente de plus Doubles
Triples

forte croissante du graphe I's en X. Aire, volume



Exemple: interpretation géométrique du gradient

Exemple — f(x,y) =4/1—-x2—y? =
domaine Df = Dp(1) = disque unitaire fermé

ligne de niveau L,(f) = cercle de rayon v/1—2a2, ol a € [0,1]

f est différentiable sur D = Dp(1) = disque unitaire ouvert, et

—X

Viey) = | V' | =S,

2

-y
1-x2—y

direction
croissante

Pour tout a €]0,1[, ce
vecteur est orthogonal
au cercle L,(f) au point
(x,y) et est dirigé vers

PN
7
le centre du cercle. /@

gradient v
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5. Différentielle

Dans cette section:

e Différentielle des fonctions
e Différentielle des fonctions réelles: dx, dy et dz

e Différentielle des coordonnées cylindriques et sphériques:
dp, dy, dr et df
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Math 2

Différentielle d’une fonction en un point

A. Frabetti
Soit f : R" — R™ une fonction différentiable sur I'ensemble o
D < R". Par définition, pour tout X € D, I'application pompacts

Graphes

Composition

Of(x): R" — R™

ﬁ o\ of (2 of (3 artielles
v o= f(X) = e () vt 5o (K) v S
Différentielle
., . N Jacobienne
est linéaire dans la variable v. Regle de la chafne
Hessienne
Taylor
Définition — Cette application linéaire de R"” vers R™ Siane
s'appelle différentielle de f au point X. T
Doubles
Il est d’usage de la noter dfy : R" — R™. .

En somme, pour tout v = (v, ..., v,) € R”, on a donc

. of of .
dfz(V) = a—Xl(X) v1+---—|—67(x) vy = Opf(X).



Différentielle en un point: cas particuliers

Cas particuliers —

e Si f: R” — R est une fonction réelle, la différentielle
dfy : R" — R s'écrit au moyen du gradient de f:

VWWeR", di(V) = (Vf(x),?)

eSif=(f,..,fm) R —> R™est une fonction

d'une seule variable x, la différentielle df, : R — R™ vaut:

VveR, di(V)= <f1’(x) Voo, fr(x) v)
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Exemples de différentielles

Exemples —

of(x)=x2—x5 = f:R->R

= df, :R—> R est donnée par dfi(X) = (2x — 5x*) X.

e flx,y)=x?y>—-T7y = f:R> >R
= dfixy): R? — R est donnée par

dfi ) (X, Y) =2xy* X+ (3x°y* = 7) V.
Par exemple:

dfx)(2,1) = 4xy3 +3x%y? -7
dfi11)(X,Y) =2X —4Y
df(l,l) (27 1) =0
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Math 2

Exemples de différentielles (suite)

A. Frabetti
2

f(x,y) Xi . DRSR
o s = . T2 3
X2 )2 dfixy) 1 RT— R
)/2 2xy y2 X+2xyY e
df(x,y) (Xa Y) =X 0 |+Y 1 = Y ;“iféf(é;:fe:;{ielle
2x —2y 2xX =2y Y

2 .3 2
[ xy f:R>—>R
b f(X7)/7z) - <y23> = df(x,y,z) :R?’ N R2

2
y 2xy 0
dfiy (X, Y, Z) =X <0 ) +Y < 3 ) +Z <3y22>

B <y2X+2ny>

Y +3yz?Z



Math 2

Applications linéaires élementaires

A. Frabetti
Remarque —
Coordonnées
. . « s . . Compacts
e Les n applications linéaires (pour i = 1,...,n) Fonctions
Graphes

Composition

dx; : R" — R, V= (Vl7 cees Vn) — dX,(\7) =V

Partielles

Gradient
formant une base de I'espace vectoriel L(R",R). Bt
R e la chaine
e Par conséquent, toute application linéaire L : R” — R =
s'écrit comme combinaison linéaire des dx;: Extrema
De Riemann
L=ajdxg+- -+ andx, aveca;€R. Douties
Aire, volume

e |l n'y a pas n applications linéaires
"dx! : R" — R™ (pour i =1,....n)

qui forment une base de I'espace vectoriel L(R",R™), parce
que cet espace a dimension n x m !



Différentielle Math 2

A. Frabetti

Définition — Soit f : R” — R™ une fonction différentiable
sur D < R". L'application

DcR' —» L(R",R™) S
§

X — dfz

Partielles
Gradient
Différentielle

s'appelle différentielle de f et est notée df.

a chaine

Tay
Extrema

Corollaire — Si f : R” — R est une fonction réelle, alors:

e La différentielle dfy : R" — R en X € D s'écrit S
of of T
df; = 67)<1<X) dX1+.”+(9x,,(X) dx;,. % vl

e La différentielle df : D — L(R",R) s'écrit

of of
df:aindX1++aixnan



Exemples: écriture usuelle des différentielles

Exemples —

5

e f(x)=x>-x> = df=(2x—5x%) dx.

Par exemple: dfi = —3dx.

o f(x,y)=x%y3 -7y = dfixy) = 2xy3 dx + (3x?y%—7) dy.

Par exemple: df(; 1) = 2dx —4dy.

o f(x,y,2z) = x2y3z —7yz> =

df; = 2xy3z dx + (3x%y%z — 72%) dy + (x%y® — 14yz) dz

X,¥,2)

Par exemple: df(311) =2 dx—4dy —13 dz
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Exercice

Enoncé — Pour la fonction f(x,y) = In(1 — x2 + 5y):
1) Déterminer I'ensemble D od f est différentiable.

2) Déterminer la différentielle en tout point (x,y) € D.

3) Calculer df(, ) en les vecteurs 7 = (1,0), 7 = (0,1),
v=(11)etd=(3,-3).

Réponse —

1 1
1)D={(X,y)eR2|y>gx2—g}

portion du plan au-dessus de la parabole d'éq.

1, 1
}/—EX—

5
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Math 2

Exercice (suite)

A. Frabetti

2) Pour tout (x,y) € D, on a

dfiy) = o (x,y) dx + g—;(x,y) dy
- 1;22);5y dx + 1X25+5y dy
3) Ainsi
df(2,0) %dx%—%dy:%dx—gdy
et
o)1) = 5(2.0) =3

(V)
dfio0)(d) = dfi20)(3,-3)



Exercice : dx, dy, dz, dp, dp, dr et db

Enoncé — On note (x,y, z), (p, o, z) et (r,¢,0) les
coordonnées cartesiennes, cylindriques et sphériques des points

de R3. On rappelle que

et

<

X = pCcosy
y =psing
zZ =2

= rcospsind
= rsin¢psind
= rcosf

p €]0, 0]
€ [0,2n]

r €]0, o[
p € [0,2n]
0 €]0, 7|
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Exercice (suite) Math 2

A. Frabetti

Montrer que -

Compacts
Fonctions

Graphes

dx = cosp dp— psinp dp Compesition

Partielles

i) dy =sinp dp+ pcosyp dp e
Jacobienne
Régle de la chaine

dz Hessienne

Taylor

dz

Extrema

dp = cosp dx + sinp dy o
Doub\‘cst
Triples

i"Y{ pdp = —siny dx + cosp dy e

dz = dz

Formules de passage cartésiennes «<—— cylindriques



Exercice (suite)

dx = cosp sinf dr — rsiny sinf dy + rcospcosf db
i) dy =sinp sinf dr + rcosp sinf dy + rsing cosf df
dz = cosf dr — rsinf df
dr = cos sinf dx +siny sinf dy + cosf dz
i) < rsinf dp = —sinp dx + cosp dy

rdf = cosp cosf dx +sing cosf dy +sinf dz

Formules de passage cartésiennes «—— sphériques
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Math 2

Exercice (suite)

A. Frabetti

Coordonnées

Compacts

dr =sinf dp + cosf dz S

Composition

(III) dQO = ng Partielles
Gradient
Différentielle
. Jacobienne
rdf = cos @ dp —sinf dz Régle de Ia chaine
Hessienne

Taylor

dp =sinf dr + cos df Extrema

De Riemann

(iii') | de = dp e

Aire, volume

dz = rcosf dr — rsinf db

Formules de passage cylindriques «—— sphériques



Exercice (suite et fin)

Réponse — |l suffit d'écrire les différentielles des applications
de changement de variables. Par exemple la différentielle du
changement de variables cylindriques — cartésiennes donne les
formules i):

dx = dp+ dcp—i— dz
coscp dp — psm<,0 d(p
dy = dp—l— d<,0+ 5, dz
= smgo dp+cos<p dy
dz = Zdp+ E do+ & dz
dz

Les formules /') s’obtiennent en inversant le systéme. On
procede similairement pour les autres formules.
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6. Jacobienne

Dans cette section:

e Rappel sur les applications linéaires et les matrices
e Matrice Jacobienne et déterminant Jacobien

e Jacobien des changements de variables
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Rappels sur les applications linéaires et les matrices

Rappel — Toute application linéaire L : R" — R se
represente come une matrice A = (aj;) € Mpmn(R) (avec m
lignes et n colonnes) telle que, pour tout Vv = (vi, ..., vp) € R",

on a

L(V)
d11 412 - din

dml  adm2 te amn

aiy vi+ -+ 3ain Va

aml V1 + -+ 3amn Vn

AV (produit matrice par vecteur)

Vi

Vn

e R™
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Math 2

Matrice jacobienne

A. Frabetti
Définition — Soit f : R” — R™ une fonction diff. sur D. o
Compacts
e La matrice Jacobienne de f est la matrice Jr € M, S

Composition

associée a df, c'est a dire telle que

Partielles
dfy(V) = Je(X) vV, pour tout X € D et tout vV e R". Codene
Jacobienne
Regle de la chaine
Hessienne

Si (fi, ..., fm) sont les composantes de f, on a alors i

Extrema

R(F) AR

X 0% e
Jf ()?) = e IS an (R) Aire, volume
Ofn(3) o)
0x1 OXp

e Si la matrice Jacobienne est carrée (n = m), son
détérminant Jac f = det Jr s’appelle Jacobien de f.



Math 2

Matrice jacobienne: cas particuliers

A. Frabetti

Cas particuliers —
eSi f:R?—R, (x,y)— f(x,y), ona

Je(x,y) = (é’f((;: y) ﬁf(a);, y)> e M12(R) (matrice ligne)

eSi h:R?2—R?: (u,v)— h(u,v) = (hl(u7 v), ha(u, v))

8h1(u, V) (9h1(u, V) De Riemann
In(u, v) = du v € M (R)
Ohy(u,v) 0Oha(u,v)
du ov

et
Ohi(u,v) dha(u,v)  Oha(u,v) Ohi(u, v)
u ov ou ov

Jach(u,v) =



Matrice jacobienne: cas particuliers

Cas particuliers —
eSi 7:R—R?: tsy(t) = (11(t),72(t)), on a

(matrice colonne
= vecteur)

0= () -0

eSi g:R—R, z—g(z),0ona

et

Math 2

A. Frabetti

Coordonnées
Compacts
Fonctions
Graphes

Composition

Partielles
Gradient
Différentielle
Jacobienne

Regle de la chaine
Hes:

Taylor

Extrema

De Riemann
Doubles
Triples

Aire, volume



Exemples : matrices Jacobiennes

Exemples —
o flx,y)=xy = Jr(x,y) = <2Xy x2) € M1
e h(u,v) = (v’v,3u) =

2uv  u?

In(u,v) = ( 3 0 ) € My et Jach(u,v)= —3u2

o y(t)=(2t,3+1) = J(t)= (32tg> € Mxn
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Exemples: Jacobien des changements de variables e

A. Frabetti
- . Coordonnées
e Polaires :  h(p,p) = (pcosp, psinp) E—
Fonctions
Grahes
H Composition
cosp —psing
Jn(ps @) = |
sin@ p Cos @ Partielles
Gradient
2 2 Différentielle
H Jacobienne
Jac h(p, @) = pcos” o + psin® = p
Hes: ne
Taylor
) Extrema
e Cylindriques :  h(p,¢,z) = (pcosp, psinp, z)
De Riemann
i Doubles
cosep —psing 0O Triples
. Aire, volume
In(psp.z) = | sinp pcosp 0
0 0 1

Jac h(p, ¢, z) = pcos® ¢ + psin®p = p



Exemples: Jacobien des changements de variables e

A. Frabetti

e Sphériques :  h(r,p,0) = (rcosesin@, rsinpsinf, rcos)

Composition

cospsinf —rsingsinf rcospcosf

Partielles
In(r,p,0) = | sinpsin® rcospsin®  rsin i cos 0 G
cos 0 —rsinf #;fc‘:?ienn‘e )

He nne

Tay

Extrema
Jach = cosd( — rPsin?psinfcosd — rcos? psinfcosd)

Doubles

— i 2 in2 in2 in2 Triples

rSInG(I’COS @S 0 + rsin wpsin 0) -

= —r?sinfcos?f — r?sin36
= —r?sinf



Exercice

Enoncé — Calculer le gradient, la différentielle et la matrice
jacobienne de la fonction f : R3 — R donnée par

f(x,y,z) = z sin(xy).

Réponse — On a

yz cos(xy)
YVf(x,y,z) = | xz cos(xy)
sin(xy)
dfix.y,z) = yz cos(xy) dx + xz cos(xy) dy + sin(xy) dz

Jr(x,y,z) = (yz cos(xy) xz cos(xy) sin(xy) )
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= Math 2
Exercice
A. Frabetti
Coordonnées
- . 7 . . . Compacts
Enoncé — Calculer la différentielle et la matrice Jacobienne e
1 7 sraphes
de la fonction f : R3 — R? donnée par Composition
Sn Partielles
Z SIn X Gradient
f(X7 Y, Z) = . . Différentielle
Z Sln y Jacobienne
Régle de la chaine
Hessienne
pe Taylor
Réponse — On a Toflor
Z COS X 0 sin x D .
df(x y,2) (X, Y, Z) = X+ Y+ . Z Doubles
Y 0 z cosy siny Tipes
Z COS X 0 sin x
Jf (Xa Y, Z) = .
0 zcosy siny



7. Resumé sur les dérivées

Dans cette section:

e Resumé sur les dérivées des fonctions réelles

e Resumé sur les dérivées des fonctions vectorielles
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Resumé: dérivées des fonctions réelles et 2
A. Frabetti
Si f : R™ — R est une fonction réelle diff. sur D < R" :
Coordonnées
dérivé tiell 2 o .p_LR
e derivees partielles TXl’ ceey TX,, : e (’,um\y
= fonctions réelles Composition
o dérivées directionelles | 0;f : D — R \
. , Gradient
= fonctions réelles 0o = L 61‘ T4y, af’}); piéenle
af Régle de la chaine
ox1
e gradient ’ Vf:D-—R"| VFf=| : e
= fonction vectorielle of De Riemann
0xn Doubles
Triples
o différentielle | df D — E(R" ) \
= fo.ncti.on a .vale.ur df = aX dxy + - + ax dx,,
applications linéaires
¢ Jacobienne ’ Jr: D — Mi,(R) ‘
= fonction a valeur J = (af i)
matrices ligne o OXn



Resumé: dérivées des fonctions vectorielles

Si f=(f,...,fm) : R" — R™ est fonction vectorielle diff. sur D:

e dérivées partielles
= fonctions vectorielles

e dérivées directionelles
= fonctions vectorielles

of _
ox;

of of . m
?Xl’ ..,% . D"R
ofi

ox;’

0fm
) Ox;

’a~f:D—>R’"‘

8f—v16f+~-+v,,a—xn

e gradient “Uf" n'est pas défini
| df : D— L(R",R) |

o différentielle
= fonction a valeur
applications linéaires

e Jacobienne
= fonction a valeur
dans les matrices

mais les " dx;"

n'existent pas

| Jr: DS R"— Mp(R) |

Jp =

o
ox1

Ofm
ox1

of
0xn

Ofm
0xn
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Math 2

8. Regle de la chaine

A. Frabetti

Coordonnées
Compacts
Fonctions
Graphes

Composition

Dans cette section: paricles
e Dérivées de la somme et du produit de fonctions :;'dt.‘h
e Dérivées de la composée de fonctions e
e Transformation des dérivées partielles: g—x g—y, a—z, a—p, g?’ o
% et % ET‘

Aire, volume



Math 2

Dérivées de la somme de fonctions et du produit
par scalaire

A. Frabetti

Proposition — Sif, g : R" — R™ sont différentiables, on a :

0(f+g)_8f og .
T_%JFTX; pour tout i =1,....n

Par conséquent V(f—kg) = vf—kvg (sim=1),

d(f+g) =df +dg, Jrg = Jr +Jg

d(Af) _
oxi Aé’ixi

pour tout i =1,...n ot NeR

Par conséquent V(A f)= AV (sim=1),
dAf) = Xdf,  Ir=AJf



Math 2

Dérivées du produit de fonctions

A. Frabetti

Proposition — Si f, g : R" — R sont des fonctions réelles
différentiables, on a la regle de Leibniz:

dfg) _ of og o
¢ ox o 8 g+f —— o PO touti=1,...,n
Par conséquent V(fg) = (v)f)g—i- f(ﬁg), ) ez
d(f) = (df g+ (dg),

Jrg=(Jr)g +1f(J)



Exemple : regle de Leibniz

Exemple — Soit f : R? — R définie par f(x,y) = xy? .
Le calcul de la différentielle de f peut se faire directement au
moyen de la formule

5(xy2 e )
2 _x _
d (xy e ) R dx

ou en passant par la regle de Leibniz

d(xy2 exy) = d(xyz) e + xy? d(eXy)

= (y2 dx + 2xy dy) e
+xy? (y eY dx+ x e¥ dy)

= (y2 + Xy3) e dx + (2xy + x2y2) e dy

Math 2

A. Frabetti
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Dérivées des fonctions composées

Proposition — Pour deux fonctions

f=(f,...fm): R" > R™ différentiable en X € R"
g = (&1,---.8p) : R™ — RP différentiable en y = f(X) € R™

la composée g o f : R" — RP est différentiable en X et on a la
régle de la chaine :

(3(gof)_‘ a . af B 6 .
. TX’J()O = Ti(f(x)) a—):;'(x)+...+ ayigin(f(x»

Ofm (%
aX,'

)

pour tout i =1,...nettoutj=1,...,p,.

Par conséquent, on a aussi :
d(go f))? = dgf(z) o df,  (composition d’applications linéaires)
Jgor (X) = Jg(f(X)) - Jr(X)  (produit de matrices)
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Cas particuliers de fonctions composées

Reégle de la chaine : cas particuliers —

eSi f:R?—R, (x,y) = z="f(x,y)

g:R—R, z— g(z2)
on a

Math 2

A. Frabetti




Cas particuliers de fonctions composées e

A. Frabetti

Reégle de la chaine : cas particuliers —

eSi  h:R?—R2 (u,v)— (x,y) = h(u,v)
f:R2—)R7 (X7y)'_)f(x7y)

o(f o h) _of 0x of oy
% (uyv) = a—x(h(u,v))%(u,v) + 3y (h(u v))%(u v)

o(f o h) of 0x of oy O
pw (uv) = a—x(h(u,v))a(u,v) + 3y (h(u,v))g(u v) ik

d(f o h)(u'v) = dfh(u,v) o dh(u,v)

Jron(u,v) = Je(h(u,v)) Jn(u,v)



Math 2

Cas particuliers de fonctions composées

A. Frabetti

Reégle de la chaine : cas particuliers —

eSi Y:R—R2 t (x,y) =~(t)

f:R2—)R7 (X,y)'_’f(x,y)
on a

(Fo)/(8) = 2 (3(8) X(0) + O (3(8)) ¥/ (0)




Exercice

Enoncé — Soit f : R2 —> R une fonction dont on connait

of(x.y) _ 2y et ofx.y) _ 2 2.
0x Oy

oF OF
1) Calculer i et o pour F(x,y) =Inf(x,y).

Réponse — Si on pose g(z) =Inz,ona F =gof et donc

TED gt ) = s

OF (x,y) , of x2 — 2y
o —EFw) Z ) =
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Exercice (suite)

0G  0G )
2) Calculer e et 5, Pour G(u,v) = f(v,uv®).

Réponse — Si on pose h(u,v) = (v,uv?) = (x,y), c. ad.

x=vety=uv2,ona G=foh etdonc

0G(uv)  Of 5y OX of 5 Oy
£ = aX(v, uv ) au(u,v) + 6y( , uv ) au(u v)
=2vuv? -0+ (v2 —2uv?) - v?
= (1—2u)v*
0G(u,v) of ox oy

ov Ox

=2vuv? -1+ (v2—2uv?

= ) X + Z( 02 Dy
)2

= 4uv?(v — u)
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Exercice (suite)

3) Calculer H'(t) pour H(t) = f(t?,3t).

Réponse — Si on pose 7(t) = (t2,3t) = (x,y),
c.cad. x=t?’ety=3t,ona H=foy etdonc

H(®) = (For) (0
- 30 X0+ 5 (30 Y0
=2t23t-2t + (t* — 6t) -3

= 24t* — 18t
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Exercice

Enoncé — Soit f : R2 — R la fonction f(x,y) = xy?.

2 2
1) Calculer ‘%8Lo”) et M
0x oy

g : R —> R est une fonction telle que g'(z) = /z.

Réponse — On veut calculer les dérivées de g o f, donc on
applique la regle de la chafine:

gl o dxy?)
aX - g (Xy ) 6X
= \/xy? y?
glxy?) 5 dxy?)
2 = g'(xy*) 2y

Math 2

A. Frabetti

Jac ne
Regle de la chaine

Hessienne
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Exercice (suite) Math 2

A. Frabetti

2) Soit  (x,y) = h(u,v) = (x(u,v),y(u,v)) un changement
de variables dont on connait la matrice Jacobienne

& = 0 1
In(uv) = ‘l; g - ( v 2uv > ’
ou 0

ov

L of of
etsoit f=~foh  Calculer a(u,v) et R(U,V).
Réponse — On applique la regle de la chaine:

of of ox dy
5, uv) = 5 (h(uv)) = (uv) + (h uv)) 5 (uv)

= y(uv)?-0+ 2X(u,v)y( ) 2

of of Ox of dy
E(UvV) = g(h(U:V)) R(UvV) + oy L
= y(u,v)2 -1+ 2x(u,v)y(u,v)2uv



Exercice (suite)

Réponse (suite)-

En alternative, on peut passer par les matrices Jacobiennes.

Puisque

Jr(xy) = ( af(a)i'y) af%}’” ) = ( y? 2xy )7

on a
Jp(uv) = Je(h(u,v)) - Jp(u,v)
= (rto? 2xtuy@n) ) (% o, )

ve 2uv

Z(y2'0+2XY'V2 y2-1+2xy-2uv)

= ( 2v2 x(u,v)y(u,v) y(uv)? + 4uv x(u,v)y(u,v) )
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Exercice (suite)

3) Soit ~(t) = (x

(t),y(t)) une trajectoire dans R?

dépendante du parameétre t. Calculer la dérivée en t de la
fonction t— f(x(t),y(t)).

Réponse — On veut calculer la dérivée de la fonction f o,

donc on applique |

d f(x(t), y(t))
dt

a regle de la chaine:

Z;(xa),y(t))y'(t)

= y(t)? X(t) +2x(t)y(t)) y'()
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Math 2

Exercice : transformation des dérivées partielles

A. Frabetti

Enoncé — Soient (x,y, z) les coordonnées cartesiennes des
points de R3, (p, , z) les coordonnées cylindriques et (r, p, )

les coordonnées sphériques. On rappelle que Composition
Partielles
X = pCos X = rcosysinf Gradient
y =psing et y = rsinpsinf
z=2z z =rcosf
Extrema
avec
r €0, co De Riemann
P E]O, OO[ ] ! [ Doubles
c [0 271’[ et pE [0, 27T[ s
e 0 €10, x|

"4 : Jd 0 0 0 0 0
Montrer que les derivées partielles {5, & 5} {0— £ —}

o 0 0 : : .
et {37 FL %} satisfont aux formules suivantes :



Exercice (suite)

0 0 . 0
a——coscpa—+sm<pa—
1
p
0
0z 0z

7 0 10

a———sm a——kcos 4
o0 P ox 7oy
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Exercice (suite)

a— cosw sinf a— +siny sinf a— + cos 6
or ¥ ox oY dy 0z
L a———sin a——I—cos (l

rsinfdp ¥ ox v oy

%% = cosp cosf g—x + sing cosf gy —sinf %
x cos @ sin EP sinp ——— rsm@& COS ( COS 30
a——sin sin98—+cos L + sin cosHEa—
oy _ onesnta, P rsinfop ? r oo
0 ) 10
E=c0595—5m9 PET]
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Exercice (suite)

-

(iif) 4

\

(iii’") 4

-

0 . .0 0
E:smea—p—i-c059§
1 0 19
rsinddp  pdo
190 0 NG
;%ZCOSH%—SInﬁg
0 .0 10
a—p—smea—l—cosG?%
109 1 0
pOp  rsinf dp
0 0 10

— =cosf — —sinf ——

0z or r oo
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Exercice (suite)

Réponse — Montrons (/). Pour cela on applique la régle de la
chaine a la composée f = f o h ol (x,y,z) = h(p, p,z) est le
changement de variables des coordonnées cylindriques en
coordonnées cartésiennes. On a alors:

of of 0x + of Oy of 0z

o ox dp

oy 0Op 0z 0Op
= cosw%—ksin@g—;

of  _ of ox 4 Of Oy | Of 0z
dp — Ox Op dy O¢ 0z Op
= —rsincp%—i—rcoscpg—;
of  _ of ox 4 of dy 4 of 2z
0oz —  0Ox 6z+8y (7z+6z 0z
— of
- 0z

d'ou suivent les formules (/). Les formules (i") en découlent
par inversion du systéme.
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Math 2

Exercice (suite)

A. Frabetti
e Pour montrer les formules (ii), on applique cette méthode a
la composée f = fohou (x,y,z) = h(r,p,0) est le Cooenes
changement de variables des coordonnées sphériques en e
coordonnées cartésiennes. On a alors: G
ﬁ B ﬁ ix ﬂ al ﬂ Q »jm@e;
or Toaxar Toy ooz o
. . af . . af (}f J,f( obienne R
= cosp sinf 5 +sinp sinf 5y T cos 05, Ree de o chne
Taylor
i’f _ﬁal+ﬁa7y+ﬁg Extrema
op ~ 0x O oy O¢ 0z Op
— —psing sinf 2 + pcosy sing o o
P P ox P ¥ oy Triples
Aire, volume
of  _ of ox | of dy | of oz
00 — ox 00 oy 00 0z 00
_ of i of _ ,eing of
= rcosy cosf 5+ rsinp cosf oy rsinf &=

e On inverse le systeme (ii) pour obtenir (ii’).
)

e On combine les (i) a (ii") pour obtenir (iii) et (iii").



9. Hessienne

Dans cette section:

e Dérivées d'ordre supérieur
e Théoréme de Schwarz
e Matrice Hessienne

e Laplacien, fonctions harmoniques
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Dérivées partielles d'ordre supérieur

Définition — Soit f : D < R" — R différentiable. Si les
dérivées partielles 2 a : D cR" — R sont a leur tour
différentiables, on peut calculer leurs dérivées partielles.

e Pour tout k € N, les dérivées partielles d’ordre k de f sont
les fonctions qu’on obtient en dérivant f succéssivement k fois:

okf o of

(3X,‘1 cee aX,'k aX,'l (7X,'k .

e La fonction f est de classe C si ses dérivées d’ordre k
existent et sont des fonctions continues. La fonction f est
lisse ou de classe C® si elle est CX pour tout k € N.

Par exemple, si f : R2 — R est fonction de (x,y), on a:

?f _ 0 of *f

o°t _ 0 of _ of 0°f _ 0 of
0x2 — OxoOx' Oxdy

ox' oy2 = Oy dy"

0 of 32f
)

- 2
X Oy’ Oyox — Oy
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Théoreme de Schwarz

P ~ . P 2 .
Théoreme — Si les dérivées secondes % existent et sont
1~
continue en un point X, pour tout i,j =1, ..., n, alors

Pf . Pf

W(X) = m(x) pour tout i # j.

Corollaire — Si f est une fonction de classe C (ou lisse),
alors toutes ses dérivées mixtes jusqu’'a I'ordre k (ou ),
ayant le méme nombre de dérivées en chaque x;,
coincident indépendement de |'ordre dans lequel elles sont
calculées.
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Math 2

Exemple : dérivées secondes

A. Frabetti
3.2 Coordonnées
Exemple — f(x,y) = x°y Compacts
Fonctions
Graphes
af (X y) _ 3X2y2 Composition
6X Partielles

of -
@(Xa y) = 2X3y
62)( 02)( Extrema
S2(0y) = 6x° axay ) = 6x2y . ngrl
82 a2f Aire, volume
dyox == (%, Y)76Xy W(X,y):2x3

I'on constate que les dérivées partielles sont continues (donc f
est de classe C2) et que les dérivées mixtes sont identiques.



Exercice

Enoncé — Soient F, G : R —> R de classe C? et soit ¢ € R*,

Montrer que le fonction u(x,t) = F(x — ct) + G(x + ct) est
solution de I'équation des ondes

02 02

6tg (x,t) — c? a—xg(x, t) =0 pour tout (x,t) € R

Réponse — La fonction u est de classe C? car composée de
fonctions C2. On a

Wix,t) = F(x—ct) Lo 4 G/ (x + ct) L
= F'(x —ct) + G’(x + ct)

Wix,t) =F(x—ct) LoD 4 G(x + ct) Lxtet)

—cF’(x—ct)+cG'(x+ct)
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Exercice (suite)

d'ou
%(X, t) = F"(x—ct) w + G"(x + ct) a(x;(ct)
= F"(x —ct) + G"(x + ct),
%(X’ t) =—cF(x—ct) a(Xa_tCt) +cG'(x + ct) a(ngf)
(e P + 6k et
Ainsi 2, .
ﬁ(x, t) — c2 ﬁ(x’ t) =0
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Matrice Hessienne

Définition — Soit f : R” — R de classe C2 en X.

e La matrice Hessienne de f en X est la matrice carrée de
taille n contenant toutes les dérivées secondes de f en X:

Cette matrice est symétrique par le théoréme de Schwarz.

e Son déterminant Hess f(X) = det H¢(X) s'appelle le Hessien

de f.

0%f (®) o*f
(3X12 x 6X1 &X2 x
o’f o°f
6)@ axl (X) 8X22 (X)
0%f e 0%f 3
0xn0X1 0Xp0Xo

0%f
0x10Xn x

—

o’f
aX2aXn x

o2f
0xp2

(X)
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Math 2

Exemple: matrice Hessienne

A. Frabetti
Exemple — e
. . Compacts
Pour g(x,y,z) =xsiny +ysinz, ona Sancisic
Cc;rw!u);s\t\on
siny
. Partielles
Vg(x, y,z) = | xcosy+sinz Gradient
Différentielle
ycosz Jacobienne
Reégle de la chaine
Hessienne
puis Exrama
0 cos y 0
Hg(x,y,z) = | cosy —xsiny cosz pe Hemann
H Triples
0 Cos z —ysinz ,\HL volume
d'ou
det Hg(x,y,z) = —cosy ( —ycosysinz — 0)

= ycos? ysinz



- Math 2
Exercice ’

A. Frabetti
~ - . . Coordonnées
Enoncé — Montrer que le Hessien de la fonction E—

- . Fonctions
f(x,y) = sin(x — y) est nul en tout point (x,y) € R?. i

Composition

Réponse — On a

vf(X,y) = < COS(X N y) ) r::;r‘\c dcm\: chaine

- COS(X - _y) Hessienne
B
puis
_ ( —sinbe=y) sinGx—y)
Hf(X) .y) - ( sin(x o y) _ Sin(X o y) Iy‘izwsjmm(
d'ol

det He(x,y) = (—sin(x —y))2 — (sin(x —y))2 =0



Laplacien

Définition — Soit f : D « R” —> R une fonction C2 au
point X € D.

e Le Laplacien de f en X est la trace de la matrice Hessienne
He (X):

B 0*f

2
Af(X) = 5—(X) + ot

5 (X).

é’xl aXn

e La fonction f est dite harmonique si Af(X) = 0 en tout
point X € D.
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Interprétation géométrique du Laplacien e

A. Frabetti

Proposition — Soit f : D © R?> — R de classe C?. Si o

o C est un carré de taille h x h contenu dans D, et

Graphes

Composition

e u(f, C) est la valeur moyenne de f sur C,

alors, pour tout point (a,b) € C, on a

u(f,C) = f(a, b) + g: Af(a, b) + O(h*)

Taylor
Extrema

De Riemann

1
N.B. Moyenne au Ch.3: u(f,C) = " JJ f(x,y)dxdy. Dot
A ;

Aire, volume

Remarque — Cela signifie que la différence f(a, b) — u(f, C)
est proportionnelle a Af(a, b), et que la constante de
proportionalité ne dépend que de la taille du carré ou on
calcule la moyenne u(f, C).




Exercice

Enoncé — Trouver les valeurs de ¢ € R* pour lesquelles Ia

2

fonction u(x, t) = x> — c?t? est harmonique.

Réponse — On a

Tu(x, t) = < _gi% >

puis

Par conséquent
Au(x, t) =2 —2c?,

donc Au(x,t) = 0 si et seulement si ¢ = +1.
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Exercice

Enoncé — Soient f : R —> R une fonction de classe C2 et
F(x,y) = f(\/x? + y?).

1) Déterminer le Laplacien de F en tout point (x,y) # (0,0).

5 o 2F | %F
Réponse — |l s'agit de calculer AF = &5 + 57

En utilisant la régle de la chaine on trouve:

OF(x,y) __ 0f(\/x2+y?)

0x - Ox

= ()
- (V) 2
OF(x,y) _ Of(a/x2+y?)

oy o dy

= F(yry) .
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o 0 Math 2
Exercice (suite) :
A. Frabetti
Puis, en utilisant aussi la regle de Leibniz, on trouve: SR
Fonctions
PFOy) o (1( i x Compottion
ox? T 0x (V2 +y?) /x24y?

Partielles
afl(\/m) x / 0 X Gradient
_ + f (\/m)i <7> Différentielle
Ox 2 2 ox 2 2
2 x4y —x Hfff'f""e
_ W)(ﬁ) () gt T

Jacobienne

x2+y
Y y2 De Riemann
=f (\/m) 2+y2 T f (W> (x2+y?) /X2+y2’ 3:::3‘55
Aire, volume

et de la méme facon

2

02F(x, X
T = V) e + W)




1 1 Math 2
Exercice (suite) ‘
A. Frabetti
On a donc
Coordonnées
_ PFCoy) | PF(xy) B
AF(x,y) = a2 T ay2 Fe

Composition

_ fN 2\ Xot+y? / sy . X4y
" (\/x2+y?) X2+y2 + (/x> +y?) (+y2)\/x2+y2 Partielles
= (/2 Ty2) + F (/T y2) \/% ncoenne.

x24y? ' Regle de la chaine
Hessienne
Taylor
, Extrema
Enoncé (suite) —
De Riemann
2) Trouver les fonctions f telles que AF(x,y) = /x%+y?2. Dol
Aire, volume

Réponse — En termes de f, I'équation s'écrit

f"(\/ X2+ y2) + ' (\/x2 + y?) f;—&- % =4/x2 4 y2

et dépend de la seule variable réelle r = \/x2+y2 > 0.



Math 2

Exercice (suite)

A. Frabetti
e Finalement, on doit résoudre |'équation différentielle du
2eme ordre non homogene et a ccefficients non constants S
1 Grer”
(E) f'(ry+=f'(r)=r Compsiton
r
e Pour cela, on transforme (E) en un systéeme d'équations portieles
différentielles du ler ordre: RO
Regle de la chaine
f/(r) - g(l’) (El) };Ijs’iifnne
/ 1 o Extrema
gi(r)++glr)=r (E2)
. De Riemann
On trouve g avec (E2) puis on reporte dans (E1) et on trouve f. Doubles

Triples

Aire, volume

e Les solutions de (E2) sont de la forme g = go + gp, ol go
est la solution générale de I'équation homogene associée

(E29)  gh(r) + - gofr) =0

et gp est une solution particuliere de (E2) obtenue par la
méthode de la variation de la constante.



Exercice (suite)

e Explicitement, pour tout A€ R, on a

(E2¥) go(r)=Xe 1T dr— e Inr =) en(7) = i

e On pose g,(r) = @ ce qui donne g, (r) = Xﬁ’) —)‘r(z’)

1 N
€) g =r = “Dof o N=r
On peut choisir A(r) = ? d'ou gp(r) = r32

e Onadonc g(r)=go(r)+gp(r) = %—i—’—; pour tout A € R.
e Enfin, les solutions de (E) sont celles de (E1) :

A 2 r3
(E1) f/(r):7+— <= f(r):)\ln(r)—i-a—l-,u

pour tout A, i € R.
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10. Taylor

Dans cette section:

e Dévéloppement de Taylor

e Approximation et erreur relative
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Math 2

Formule de Taylor
A. Frabetti
Théoreme de Taylor — Toute fonction f : R" — R de )
classe Ck autour d'un point 3 peut étre approximée en tout éwit
point X proche de 3 par un polynéme de degré k en X — 3, (c‘ft
appellé polynéme de Taylor, dont les ccefficients dépendent
uniquement des dérivées de f en 3.

Jacobienne

Rappel — Si f : R — R est une fonction de classe C? sur un  fesie ce s chaine

Hessienne

ensemble D < R qui contient a, alors pour tout x € D on a Taylor

Extrema

Doubles
Triples

Aire, volume

F(x) = f(a) + f'(a) (x — a) + %f"(a) (x— a2 +o((x—a)?). i

Par exemple, voici le graphe de
f(x) = e* (en bleu) et son polynéme
de Taylor de degré 2 en a = 0,
P(x) = 1+ x + x2/2 (en rouge).




Formule de Taylor Math 2

A. Frabetti
Cas particulier — Soit f : R> — R une fonction de classe C?
sur un ensemble D < R? qui contient un point (a, b).
Alors, pour tout (x,y) € D, on a

f(x,y) = f(a,b) + LB (x—a) + LB (y_p)

Composition

Partielles

62 Gradient

a 2 a 2 a Di
ThE (x—a) + EY (x-a)(y—b) + 37537 (v~ b)?

1 0°f
+3 0x 0x0y

a chaine

+o(ll(x—a,y=b)I[), e

ol o(h) est une fonction qui tend vers zéro plus vite de h — 0.~ "
Doubles
Triples

Aire, volume

Ecritures alternatives:

terme a l'ordre 1 = df(, p)(x—a,y—b) = Jr(a, b) <;:Z> ’

T _1 _ _ X—a
terme a l'ordre 2 = 3 (x a 'y b) He(a, b) (y—b)'



Math 2

Exemple

A. Frabetti

-1
Exemple — Soit  f(x,y) = X
y—1

On a f(0,0) = 1, puis

et (a,b) = (0,0).

#Wﬂ)—<yi1 —(;:$%>do#®ﬁ)—<—1 1).

Enfin

_
(y —1)?

1 2(x — 1)
(y-12 (y-1)p3

w0 - (5 )

.. X
Ainsi: )Tl =l-x+y—xy+y*+ O(H(XJ)Hz)'

0 _
Hf(X,Y) =




Exercice e
A. Frabetti
Enoncé — La pression P d’un gaz parfait est fonction de la e
temperature T et du volume V selon la loi Compacts
Graphes
T Composition
P(T,V)=nR v

. o " Diférenti
ol n est la quantité de matiére (moles) et R est la constante e
. , . Régle de la chafne
universelle d’un gaz parfait. e
Taylor
Extrema

On voudrait connaitre la pression du gaz qui se trouve a I'état

(T, V), mais la mesure de cet état nous donne les valeurs D Meman
(To, Vo) avec une erreure relative S
V-W

T_T
’ 0 < 0.002%.

To

< 0.005% et ’

Vo

Quelle est I'erreure relative induite par cette mesure sur la
valeur P(Vgy, To) de la pression?



Exercice (suite)

Réponse — On cherche une borne supérieur pour ‘PE,OPO

P=P(T,V)et Py =P(Ty, Vo).

, ou

Pour cela, on utilise le dévéloppement de Taylor de P(T, V) a
I'ordre 1, autour de ( Ty, Vo):

P—Py =~ d'D(To,Vo)(T_T0> V—-W)
= 22(To, Vo) (T—To) + %(To, Vo) (V— Vo)

= nR 77—;07—0 — pR lV_Vo)

_ 7
On a alors
P— Py T—To To(V=Vo) T-To V-Vo
P SRy RT "R e RD T T, v
0 Vo nR Ve Vi nR Ve 0 0
d’ou suit
P—Py| |T—To| [V-V,
9 < 0|+ 01 < 0.005%40.002 % = 0.007 %.
Po To Vo

Math 2

A. Frabetti




11. Extrema locaux

Dans cette section:

e Rappels sur les fonctions d'une variable
e Extrema locaux
e Points critiques et critére pour trouver les extrema locaux

e Points cols et points plats
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Rappels sur les fonctions d'une variable

Rappel — Si f : R — R est dérivable en a et non constante,
la croissance ou décroissance de f en a est décelée par le signe
de f’(a) (positif ou négatif).

Que se passe-t-il si f'(a) = 0 (point critique) ?

Si f’(a) = 0, la tangente au graphe de f est horizontale, on
est dans I'un des cas suivants:

| | |

1 1 1

1 — - —
minimum local maximum local point d’inflexion

Pour savoir lequel, on regarde la convexité (minimum) ou la
concavité (maximum) par le signe de f”(a) (positif ou négatif).
Que se passe-t-il si f”(a) = 0 (point plat) ?

Si f”(a) = 0, on continue a dériver: si la premiére dérivée non
nulle est d’ordre pair, on a un min ou un max local (selon le
signe). Si elle est d'ordre impair, on a un point d'inflexion.
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Math 2

Extrema locaux et points selle

A. Frabetti
Définition — Soit f : R> — R une fonction. On dit qu’'un e
point (a, b) € D est un extremum local de f s'il est e

Graphes

Composition

e soit un minimum local: f(a, b) <
pour tout (x,y) dans un voisinage de

X, Y)

(
(a, b), E——
(

f
Gradient
e soit un maximum local: f(a, b) > f(x,y)
pour tout (x,y) dans un voisinage de (a, b).

Extrema

De Riemann
Doubles
Triples

Aire, volume

minimum local maximum local



Points critiques

Si f: R? — R est de classe C? en (a, b), le signe de ses
dérivées en (a, b) permet de trouver les extrema locaux.

Définition — On dit que (a, b) est un point critique de f si
?f(a, b) = (0,0). Le plan tangent au graphe de f au point

(a, b, f(a, b)) est alors horizontal.

Proposition — Soit (a, b) un point critique de f.

Si det He(a, b) > 0, alors (a, b) est un extremum local.

De plus

e (a, b) est un minimum local si

e (a,b) est un maximum local si

&t (a,b)>0

2
0x2

ou &£ (a, b)>0;

%

Zf(a, b) <0

ou ﬂ(a, b) <0.

oy?
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Points selles et points plats

Définition — Soit f : R> — R une fonction C? et soit (a, b)
un point critique de f.

e Si det Hr(a, b) < 0 on dit que (a, b) est un point col ou
point selle

e Si det Hr(a, b) = 0 on dit que (a, b) est un point plat.

point selle point plat
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Point col et point plat

Un exemple de point plat : la selle de singe (z = x> — 3xy?)
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Exercice

Enoncé — Déterminer les points critiques des fonctions

suivantes et, si possible, leur nature.

e f : R2 — R définie par f(x,y) =

x? 4 y2.

Réponse — Cherchons d'abord les points critiques:

Vi = ()= (5) = =00

2y

ainsi (0,0) est le seul point critique de . Cherchons sa nature:

det H¢(0,0) =4 >0

He(x,y) = (g g) donc

ainsi (0,0) est un minimum local.

En effet, le graphe de f
autour de (0,0) est:

2£(0,0)=2>0
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Graphe de f(X,y) = X2 —+ y2 Math 2

A. Frabetti

1 Fonctions
Coordonnées
Compacts
Fonctions

Graphes
Composition

N 2 Dérivées

]
1,60011"

] e
1,200231] '''''' Différentielle

N N
] q Jacobienne
X 0,800345 1 Régle de la chafne
<« ! | Hessienne
J Taylor
0,40046'

3. Intégrales

010005 745487‘ .......

1'-\" De Riemann
'6 : | Doubles
\
v, 02y W Triples
7(’3 0 2"\A e Aire, volume
AL e \

0,6} T
1 06 0.2 0,
Axe X

Graphe de f(x,y) = x® + y?



Exercice (suite)

o f:R? — R définie par f(x,y) = x> — y2.

Réponse — Cherchons d'abord les points critiques:

Ve =(5)=(3) = =00
(%)

ainsi (0,0) est le seul point critique de f. Cherchons sa nature:

He(x,y) = <§ _g) donc det H¢(0,0) = —4 <0

ainsi (0,0) est un point col.

En effet, le graphe de f
autour de (0,0) est:
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Graphe de f(x,y) = x> — y?

Axe Z

0999713 [
0,599828 N
0,199943'
0,199943

-0,599828
i

-0,999713
31 0 6.

Axe 02 -
¥ -02
-0,

]
1
]
1

<27k
0, 6
0502

6 70,6 -0,2 N(eX

Graphe de f(x,y) = x*> — y?
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Math 2

Exercice (suite)

A. Frabetti

o f:R2 —> R définie par f(x,y) = 4(x% + y2) — (x2 + y?)2.

Réponse — Cherchons d'abord les points critiques:

B 8x — 4x(x? + y?) (0

x(2—-x>—y?)=0 < soit (x,y) = (0,0)

Extrema

De Riemann
Doubles
Triples

y2—-x2—-y?) =0 soit x2 + y? =2 Bire, vlume

Par conséquent, f admet un cercle de points critiques
d'équation x? + y? = 2 et un point critique isolé de
coordonnées (0, 0).



Exercice (suite)

Cherchons la nature de ces points critiques:
8—12x% —4y? —8xy
Hf (X7 y) = 2 2
—8xy 8—12y“—4x
e Pour le point (0,0), on a

8 0 *f

det Hr(0,0) = det (
donc (0,0) est un minimum local.

e Pour les points (x, y) tels que x> + y> =2, on a

—8x? —8xy
det He(x, y) = det =0
—8xy —8y?

donc tous les points du cercle x> 4+ y? = 2 sont plats.
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12,0309

fow
“.‘{I),ioﬁﬁﬁ

£184066

Axe y 096

Graphe de f(x,y) = 4(x? + y?) — (x? + y?)?

Math 2

A. Frabetti

1 Fonctions
Coordonnées
Compacts
Fonctions
Graphes
Composition

2 Dérivées
Partielles
Gradient
Différentielle
Jacobienne

Regle de la chaine
Hessienne

Taylor

Extrema

3. Intégrales
De Riemann
Doubles
Triples

Aire, volume



Chapitre 3 e
7 . A. Frabetti
Intégrales multiples

Coordonnées
Compacts
Fonctions
Graphes

Composition

Partielles
Gradient
Différentielle
Jacobienne

1. Intégrales de Riemann

Regle de la chaine

Hessienne
2. Intégrales doubles Tar
xtrema
3. Intégrales triples 3. Intégrales
De Riemann
4. Aire, volume, moyenne et centre de masse Bautes

Aire, volume



1. Intégrales de Riemann

Dans cette section:

Rappels sur primitive et intégrale

Subdivisions des intervalles

Somme de Riemann d'une fontion d'une variable
Intégrale de Riemann

Aire sous le graphe d’une fonction
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Math 2

Rappels sur les fonctions d'une variable

A. Frabetti
Rappel [TMB] - Si f: [a,b] — R:
e Une primitive de f sur [a, b] est une fonction F dérivable telle i
que F’(x)=1f(x) pour tout x€ [a, b]. On note F(x) =Jf(x)dx.
b

e L'intégrale de f sur [a, b] est ff(x)dx = F(b)—F(a) = [F(x)]5. i

a

e Intégration par changement de variable x = h(t)

Extrema

b h=L(b)
J f(X) dX = J f(h(t)> h/<t) dt? De Riemann
a h=1(a) Doubles

Aire, volume

ol h est un difféomorphisme  (bijection dérivable avec
réciproque h—! dérivable).
¢ Intégration par parties

| 00 /() o= [ 1) g0)] f F(x) g(x) dx.

a

Probléme — Pas d’analogue pour les fonctions de plusieurs variables!



Somme de Riemann d'une fonction d'une variable

Définition — Soit f : [a, b] — R une fonction d'une variable.
e Une subdivision S; de [a, b] est une partition de I'intervalle
| = [a, b] en n intervalles I; = [aj_1, a;] (pour i =1,....,n) de
longueur § = %, avec a9 = a et a, = b.

e Pour tout choix de n points x; € [;, on appelle somme de
Riemann de f la somme

f {X, fol

Chaque terme f(x;) ¢ est |'aire algébrique (= =+ aire) du
rectangle de base /; et hauteur f(x;).
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Intégrale simple de Riemann

Définition — Si la limite (!irrz) Rs(f; {xi}) existe, elle est

indépendante du choix des points x; € I;. Dans ce cas:

e on appelle intégrale de Riemann de f sur [a, b] la limite:

V(X)

b a
Lf(x)dx = ImRi(F: () _7/\\/9X

e on dit que f est intégrable sur [a, b] selon Riemann si
b

I'intégrale J f(x)dx est finie (un nombre réel, pas +0).

a
Par exemple: les fonctions continues et celles monotones.

Théoréme fondamental du calcul intégral — Si f est
intégrable sur [a, b] selon Riemann, alors f admet une
primitive F sur [a, b], et on a:

F(x):f f(t) dt + ¢ pour tout x € [a, b] et c € R.

a

Math 2
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Signification géométrique de I'intégrale simple

Corollaire —

b
o f f(x) dx = aire “algébrique” sous le graphe de f.

a

b
o J |f(x)| dx = aire sous le graphe de f.

Fro1el f=|fl il

+1 A S+

_ \_/ x
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Math 2

Exemple: aire d'un disque

A. Frabetti
Aire d'un disque —
Coordonnées
Compacts
2 2 2 Fonctions
D = {(X,y) eR | X +y < 1} Graphes
Composition

car m = cos t. Alors dX = cost dt et Extrema
/2
Aire(D) =2 f cos” t dt
,7;/2
/2
cos(2t) + 1
o[ Ly,
—7/2 2

- Bsin(Zt)Hr/2 —(0+Z-0+2)=m

—7/2 2 2



2. Intégrales doubles

Dans cette section:

Subdivisions des domaines du plan

Sommes de Riemann des fonctions de deux variables
Intégrale double

Volume sous le graphe d'une fonction

Théoreme de Fubini

Théoreme du changement de variables

Math 2

A. Frabetti

Coordonnées
Compacts
Fonctions
Graphes

Composition

Partielles
Gradient
Différentielle
Jacobienne

e de la chaine

Taylor

Extrema

De Riemann
Doubles
Triples

Aire, volume



Math 2

Subdivisions d'un domaine du plan

A. Frabetti

Soit D = R? un ensemble borné, avec bord 0D lisse (au moins
par morceaux).

Coordonnées

Composition

Définition — Pour tout § > 0, on appelle subdivision de D
I'ensemble S; des carrés K; de coté ¢ du plan qui couvrent D Partieles

Gradient

dans n'importe quel grillage de pas . Différentiele

nne

En particulier, on considere deux recouvrements: Regle de la chafne
Hessienn
5 Taylor
e un a I'extérieur S, D
\ - De R
3 De Riemann
) Sint > Doubles
e un a l'intérieur S§™. ——t e
I oD

Puisque D est borné, les subdivisions contiennent un nombre
fini de carrés, et on a S§"* < S£°.

Les carrés dans S§Xt\8(§”t couvrent exactement le bord 0D.



Sommes de Riemann d'une fonction de deux variables

Soit f : D — R une fonction de deux variables.

Définition — Pour tout choix de points (x;, y;) € Ki n D, on
appelle sommes de Riemann de f associées aux subdivisions

S et aux points {(x;, yi)} les sommes

REMEAG ) = X Fla) 8%
Kiesgxt/int

ot chaque terme f(x;, y;) 62
représente le volume
algébrique (= + volume)
du parallélepipede de base
K; et hauteur f(x;, yi).
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Math 2

Intégrale double

A. Frabetti
Théoréme — Si les limites (!in}) R;Xt/mt(f; {(xi,yi)}) existent, oo
— Co s
elles sont indépendantes du choix des points (x;, yi) € Ki n D o
et elles coincident. Composition
Définition — Dans ce cas: i
e on appelle intégrale double de f sur D cette limite: T
}:;\‘ ’:Hc”\j chaine
. ext/int Taylor
ff f(x,y) dx dy = (y_rpo R / (f; {(xi, yi)})- Extroma
D De Riemann
Doubles
e on dit que f est intégrable sur D selon Riemann si At olume
I'intégrale JJ f(x,y) dx dy est finie (= nombre, pas +0).
D

Proposition — Toute fonction f continue est intégrable selon
Riemann sur un ensemble D borné a bord lisse (par morceaux).




Math 2

Signification géométrique de I'intégrale double

A. Frabetti

Corollaire —

W] XN
yaeS
A1 TR




Exemple: volume d'une boule

Volume d’une boule — Le volume de la boule
B = {(x,y,z)eR3 | X2+ y? + 22 <1}
est deux fois le volume de la demi-boule
Bt = {(x,y,z)eR3 | x>+ y2 + 22 < 1, y}O},

. V4
qui se trouve sous le B+

graphe de la fonction

z=1/1—-x2—y2

On a alors

X
Vol (B) =2jf\/1—x2—y2 dx dy
D

ot D = {(x,y) e R? | x? + y? < 1} est le disque unitaire.
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Propriétés des intégrales doubles

Propriétés — 1) Pour tout \,u € R, on a

Jf (/\f—i-,ug) dxdy:)\fffdxdy—i-uffgdxdy.
D D D

) SiD =Dy u D, et Dy n Dy = courbe ou point ou &, alors

ff x,y)dxdy = Jf X,y dxdy+JJ x,y) dxdy.
‘Jffxy dxdy f\fxy\dxdy

4) Si f(x,y) < g(x,y) pour tout (x,y) € D, alors

Jf f(x,y)dxdy < jfg(x,y) dx dy.
D D

Math 2

A. Frabetti




Math 2

Théoreme de Fubini sur un rectangle

A. Frabetti

Théoréme de Fubini sur un rectangle — Soit f : D — R
une fonction continue et D = [a, b] x [c, d] un rectangle.

Alors on a
d
f f(x,y) dy) dx

b
L[f(x,y)dxdy Ld< Cb
_L (J f(x,y)dx) dy

b d b d
Notation — j dxj dy f(x,y) = f (J f(x,y) dy> dx

Corollaire — JJ f(x) f(y)dxdy = J

[2,6] [c,d] ?

b d
i (x)dx j y)dy

C



Math 2

Exemples : calcul d'intégrales doubles

A. Frabetti
Exemples — —
Compacts
ff x cos y dx dy J X dx J cos y dy
x[0,7/2] Partielles

=[5, [snr]; " =

chafne

Extrema

JJXy—l dXdy JdeXy—l De Riemann

Triples
Aire, volume

1 y=1
= J dx {xzy2 - y}
1 1
1
—f “x2—1) dx = Ex3—x =—
,1 2 6 71

w| o



Théoreme de Fubini Math 2
A. Frabetti
Lemme — Soit D c R? un ensemble borné quelconque.
e Pour tout (x,y) € D ZZ;’,’:Z‘("{;”
il existe a,be R
tels que a < x < b.
e Pour tout x € [a, b] ‘ | Gt
il existe c(x),d(x) e R 1: ‘ 3
tels que c(x) < y < d(x). | ! L x
- a X b ylc
Au final: Extrema
D ={(x,y)eR?|xe[ab], yelc(x),dx)]} .

Doubles

Triples
Aire, volume

Théoréme de Fubini sur D — Soit f : D — R une fonction
continue, alors

f f f(x,y)dxdy = Lb (J:) f(x,y) dy> dx
D




Théoreme de Fubini

1
\/
Alternative — -l -~ |

L’ensemble D est décrit par a(y) b(y)

D={(x,y)eR?*|yel[cd] xelaly),b(y)]}

Théoreme de Fubini sur D —

[[roasar = ([ o) o
D

Math 2
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Math 2

Exemple : calcul d'intégrale double

A. Frabetti

Exemple — Soit D la partie du plan xOy délimitée par I'arc
de parabole y = x? en bas, et la droite y = 1 en haut.

y y =2 On peut décrire D comme
1

y=1 D= {(x,y)eR?|xe[-1,1], y € [x},1]}.

Par conséquent:

1 1 Elirems
fozydxdy =f x2dxfydy
o -1 x2 B Remen

Doubles

1 1 1 Triples
Aire, volume
= J x2 fy2 dX
-1 2 x2
2




Exemple : volume de la boule e

A. Frabetti

Exemple — Rappelons que le volume de la boule unitaire est
Vol (B) = 2J V1—=x%2—y?dxdy
D

ou D= {(x,y) e R? | x* + y? < 1}.

On peut décrire D comme |'ensemble

Regle de la chaine

D={(y)eR?|xe[-11] ye[-VI2V1-x]} &

o Voici donc le calcul du volume de la boule: Do Bemann

Doubles
Triples

1 V1-x2 Aire, volume
Vol (B) =2f dxf \/1—X2—y2dy
f dx f Vv 1—x2

m—smtpouravow \/1— 157 = |cost|.

e On pose




Math 2

Exemple : volume de la boule (suite)

e y=+v1-—xZsint dy = V1 — x2 costdt
e —V1-x2<y<+V1-x2 = —-1<sint<l1

A. Frabetti

= —5<t<j et 1—1f;=cost
1 V1=x2 2
Vol(B) =2 dx V1-x2y1- 2 5 dy
—1 —Viex2 1—x el de |
1 7 /2 e
= 2[ dx f V1= x2cost \/1—x2cost dt e
—1 —r/2
' S S
= 2J (1—x?) dx J cos® t dt Tripls
-1 _7r/2 Aire, volume
/2
e puisque 2J cos® t dt = 7 (voir ex. précédent)
—7/2

1 1 1 4
wmm:wf<pmawzﬂP_X1 4
1 1



Changement de variables

Définition — Un changement de variables

(x,y) = h(u,v) = (x(u, v), y(u, v))

est un difféomorphisme h: D — D :
c'est-a-dire une bijection de classe C* avec réciproque
h1:D—D: (x,y)— hl(x,y) = (u,v) de classe CI.

(
1 a

Théoreme — Soit f : D — R une fonction des variables (x,y)
et (x,y) = h(u, v) un changement de variables. Alors

Hf(x,y) dxdy = Jf?(u, V) ’det In(u, v)’ du dv
P b

ot f(u,v) = f(h(
et detJp(u,v) =

\’E
<

), D= {(u,v) | hu,v) e D}
al a—xa—y est le Jacobien de h.

Q)‘Q)
X
D

Passage en polaire — ’ dxdy = pdpdyp ‘

v) = h(u,v) = (x,y),

Math 2

A. Frabetti




Exemple : volume d'une boule en polaires

Volume de la boule en coordonnées polaires — On calcul

Vol (B) H V=52 =2 dxdy

D={x2+y2<1}

en coordonnées polaires  (x,y) = h(p,p) = (pcosp, psiny).

e Puisque x? + y?2 = p?, on a :
D = {(p,) € 10, c0[x[0,2[ | p < 1} = ]0,1] x [0, 2x]

e on utilise dxdy=pdpdy, \/1—x2—y2=+/1—p2 et Fubini:

1 2 1
VOI(B)=2J Vl—pzpdpf dg0=47rj V1—p2pdp
0 0 0

e enfin, on pose t=1—p?> donc dt=—2pdp:

4- 0 1 2 1 4
Vol (B) = —;J t1/2 dt = 27rf 12 dr = zﬁg[t%]o _ o
1 0

Math 2
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3. Intégrales triples

Dans cette section:

Subdivisions des solides

Sommes de Riemann des fonctions de trois variables
Intégrales triples

Théoréme de Fubini

Théoréme du changement de variables

Math 2

A. Frabetti
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Composition
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Gradient
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Taylor

Extrema
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Intégrale triple

Soit Q = R3 un ensemble borné avec bord o< lisse (par
morceaux), et soit f : Q — R une fonction de trois variables.

Définition — R3
e On choisit une subdivision Ss de
Q en petits cubes K; de taille 63,
avec ¢ qui tend vers zéro.

e On définit I'intégrale triple de f sur Q2 comme la limite de
la somme de Riemann associée a S; et a des points
(xi, i, zi) € Ki n Q quelconque:

jjj X,y,z)dxdy dz = ||m Z f(xi, i, zi) 0°.

e On dit que f est intégrable si son intégrale est finie.

Proposition — Toute fonction f continue est intégrable selon
Riemann sur un ensemble Q borné a bord lisse (par morceaux).

Math 2

A. Frabetti
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Math 2

Signification géométrique et propriétés

A. Frabetti

Signification géométrique — Le graphe de f est une
hyper-surface de R* (difficile a dessiner):

. JJJ f(x,y,z)dx dy dz = quadri-volume “algébrique”
sous le graphe de f.

. JJ |f(x,y,z)| dx dy dz = quadri-volume sous le graphe de f.

Propriétés — 1) Pour tout \, € R, on a

fff (AMf+pg)dxdydz =X fff f dx dy dz+pu jjj g dxdy dz. e
Q

) Si Q1 N Qp = surface ou courbe ou point ou 5, alors

m fdxdy dz = fﬂfdxdyduﬂffdxdydz.

Ql UQQ Q2
etc



Théoreme de Fubini

Théoréme de Fubini — Soit f : Q « R3 — R continue.

e S5i Q est un parallélépipéde, alors

Q = [a,b]x[c,d]x][e, g]

b d g
ffff(x,y,z) dx dy dz = f dxf dyf dz f(x,y, z)
Q a C e

(on intégre dans I'ordre qu’on veut)

e Si Q est un ensemble borné quelconque, alors:

Q= {(x,y,z)‘xe[a, b]v yE[C(X),d(X)], Ze[e(x,y),g(x,y)]}

Jﬂ X, ¥,z dxdydz—fdxf dyj dzfxy,)

(I'ordre d’intégration est forcé)

Math 2

A. Frabetti




Exemples d'intégrales triples avec Fubini Math 2

A. Frabetti

Exemple — Q= [0,1]x[1,2]x[2,3] = R®

JJJ(X2—2yz)dxdydz :Edz fdyfoldx (x? — 2yz)
Q

3 2

1 x=1
—| dz | d [f 32 ]
, z X | 3% vz |
3 2 1 3r1 y=2
=| dz dy <f—2yz> =J [fy—yzz] dz
2 1 3 > L3 y=1

De Riemann

3 3
2 1 1 Doubles
— - — 4 —_ ) d — ( - — ) d Triples
J; ( 3 Z 3 + z z L 3 32 z Aire, volume

1 3,573 3 21 2 12
-] :
2
1
3



Exemples d'intégrales triples avec Fubini Math 2

A. Frabetti

Exemple — On veut calculer Jff(l —2yz) dx dy dz

Q
ou Q est le cylindre plein de hauteur 3 et de base le disque

D={(xy,z)eR|x*+y*<1, z=0}.

s
Graphes
Composition

e D’abord, on décrit explicitement €2 :

le de la chaine

:{(x,y,z)\x2+y2<1,0<z<3}
— {(x,y,2) | xe[-1,1], ye[-v1=x2 V1—x2], ze[0,3]}

Extrema

De Riemann
Doubles

o Ensuite on applique Fubini: Triples

Uj(l_zyz) dx dy dz :f dZH(l—zyz) dx dy
Q
def de 1_2}/2)



Math 2

Exemples d'intégrales triples avec Fubini

A. Frabetti

Exemple (suite) —

3 1 V1—x2
JJJ(I —2yz)dxdy dz = f dzJ dx f (1 —2yz)dy
o J1 Jyie
Q
3 9 =v1—x2 ie
= f dzJ [y -y z] Vi dx e e 1
f dzJ Viex2 — (1=x¥)z +V/1-x2 + (1—X2)Z> dx . .

= f dZJ 2@ dx Aire, volume
0 -1

/2
= 3f 2cos’t dt
—7/2

=37



Changement de variables

Définition — Un changement de variables

X =(x,y,2) = h(u,v,w) = (x(&),y(d), 2(d))
est un difféomorphisme h:Q — Q: i — h(d) = %
(bijection C! avec réciproque h™1(X) = @ aussi C1).

Théoréme — Soit f : Q = R3 — R une fonction de X et
X = h(d) un changement de variables. Alors

U dxdydz_ﬁ detJh( )‘dudvdw

o Q= {i | h(d) e Q} et detJy(ii) est le Jacobien de h.

Passage en coordonnées cylindriques et sphériques —

dxdydz = pdpdodz = r? sin@ dr dy df

Math 2

A. Frabetti
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Doubles
Triples
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Exemple d'intégrale par changement de variables
Exemple — Considérons a nouveau fff(l —2yz) dx dy dz
Q

ou Q est le cylindre de hauteur 3 et de base le disque D.

e En coordonnées cylindriques, on a

Q={(p.¢.2) | pe10,1], pe0,2r], z¢[0,3]

e Puisque dxdy dz =pdpdpdz, on a

3 1 o
JJ](I —2yz)dx dy dz = f dzj pdp f (1 —2psinpz) dp
0 0 0
Q

3 1 p=27
—f dzf pdp [g0+2pcosgoz]
0 0 ©=0

3 1
:f dzj (27r+2pz—2pz) pdp
0 0

3 1 1
=j dzj 2m pdp =37r[p2] =37
0 0 0

Math 2
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4. Aire, volume, moyenne, centre de masse

Dans cette section:

e Aire d’'un domaine du plan
e Volume d'un solide
e Quantités totale et moyenne

e Centre de masse et moment d'inértie
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Aire d'un domaine du plan

Remarque — Si D est un domaine borné de R?, I'intégrale

gdxdy

représente le volume sous le graphe de la fonction f(x,y) = 1.

|
@

Ce solide € est un cylindre de hauteur H = 1 et de base D:

ff dx dy = Vol (Q) = Aire (D) x H = Aire (D).
D
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Aire d'un domaine du plan e

A. Frabetti

Définition — L'aire d'un domaine D borné de R? est

Coordonnées
_y Compacts
ns

Aire (D) = dedy @
D

Proposition — Si D est la portion
du plan sous le graphe d’une fonction

Partielles

Gradient

f:[a, b] — R positive, c'est-a-dire si o
D ={(x.y) | xe[abl, ye[0.f(x)]}, it

Aire, volume

b
alors: Aire(D):J f(x) dx

a

b f(x) b
e En effet: ff dxdy = J dx J dy = f f(x) dx.
a 0 a
D




Exercice

Enoncé — Calculer I'aire du domaine borné D < R2? délimité
par les courbes d'équation y = x2 +2x + L et y = x3 + 1.

Réponse — D’abord on dessine D et :X3+1yé

on trouve les deux points d'intersection y/ ,
des courbes: (—1,0) et (0,1). y=(x+i)
On a donc [

D:{(x,y)eR2| —-1<x<0, x2—|—2x—|—1<y<x3+1}.

Ensuite on applique Fubini:

0 x3+1
Aire (D) =dexdy =f1dx JQ , 1dy
5 — X“+2x+

0
= f (X3+1—X2—2X—1) dx
-1

Math 2
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Volume d’un solide

Définition — Le volume d'un solide Q borné de R3 est

z

Vol (2

):[ﬂdxdydz

Proposition — Si Q est I'espace
sous le graphe d’une fonction

f:D c R? > R*, cest-a-dire si

Q= {(X7y7

z) | (x,y) e D, z€ [0, f(x,y)]

alors:

Vol (Q

- [ Fexyraxay
D

x.y)
o Car Jjjdx dy dz = dex dy J dz =

}

J | fxy) deay
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Exemple : volume d'une boule en sphériques

Volume de la boule en coordonnées sphériques — En

coordonnées sphériques, la boule unité B s'écrit

B ={(r,p,0) | re[0,1], p€[0,2n[, € [0,7]}.

Puisque dx dy dz = r’>sinf@ dr dy df, on a
fff dx dy dz
B
r?sinf dr dp df

[0,1]x[0,27[x [0,7]

1 27 T
=J r2drf dgof sind do
0 0 0

Vol (B)

1 T 2w 47
:§2F[—COSQ]O:?(1+1):—

Math 2
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Quantités totale et moyenne

Définition — En physique, si f : Q — R™ représente une
concentration de matiére (une densité volumique), ou une
densité de courant ou d'énergie, alors on appelle

e quantité totale de matiére / courant / énergie en Q le
nombre
fff f(x,y,z)dxdydz
Q

e quantité moyenne de matiére / courant / énergie en Q le

nombre 1
Vol (@) Jff f(x,y,z)dxdydz
Q
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Exemple : moyenne

Exemple — Un matériau est réparti dans un cube Q = [0, R]3
selon la densité volumique f(x,y,z) = (;:{)2.

e La quantité totale du matériau est alors

jff X, Y,z dxdydz-deJ X+y) dyj(z—i—l) dz
- J b2l i,
=L (Rx+ R2>dx(1—%+l)

R 3R
Rx? + R%x .
[ o ]0 R+1 2(R+1)

e Puisque Vol (Q) = R3, la quantité moyenne est

1 1 3RrR* 3R
Vol (Q) Ujf(x’y’z)dxcjydzz RB2R+1) 2(R+1)
Q
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Barycentre

Définition — Si i : Q — R denote la densité de masse
d'un matiériau contenu dans €2, on appelle

e masse totale le nombre M = fffﬂ(x,y,z) dx dy dz
D

e centre de masse (ou centre d’inertie, ou barycentre) le
point G de coordonnées

XG = % JJJX'M(X?% z) dx dy dz
D
1
Y6 =1, fﬂyu(x,y, z) dx dy dz

D
1
26 = 4 Jffz,u(x,y, z) dx dy dz
D

Un matériau est dit homogene si sa densité de masse p est
constante.

Math 2
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Moment d'inertie

Définition (suite) — Si r(x,y, z) est la distance d'un point
(x,y,z) a un point fixé P ou a une droite A:

¢ le moment d’inertie par rapport a P ou a A est le nombre

1
MJJJI)(X’)/’Z) ,u(x,y,z) dx dy dz.
Q
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Exemple : centre de masse

Exemple — On cherche a déterminer le centre de masse du
demi-cylindre homogeéne

Q:{(X,y,z)eR3|x2+y2<R2, ze[0,H], y >0}.

o || est naturel de travailler en coordonnées cylindriques et
d’écrire le demi-cylindre comme

Q={(p,e.z) | pe[0,R], ¢€[0,7], z€[0,H]}.

e Le calcul de la masse totale donne

mdxdydz =£”pdpd<pdz
=J pdpf dgof dz :”TH.
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Exemple (suite)

e Le centre de masse G a pour coordonnées cartésiennes

1
XG =ijfxdxdydz
Q
1Hf L R2d cosed Hd
= — pcoswpdpd@dz:—fp chosw @J z =10
M) M Jo 0 0
o}

1
Yo = ijfydxdydz
Q

1 R2 T H
= — p dpf singpdgoj
Mfo 0 0

1
z = Mjffzdxdydz

:MJ pdpf dgoj zdz =

Ainsi G = (

04RH

73w 2

)

dz =

2 R3

R2
R2H 2

TR2H 3

H2

2

BE

H

2

4R

Math 2

A. Frabetti

Regle de la chaine

Extrema

De Riemann
Doubles
Triples
Aire, volume



Math 2

Exercice
A. Frabetti
Enoncé — De la farine s’éparpille au sol selon la densité
Coordonnées
f(x,y) = ou (x,y) € R%. e

(Ve +y2+1)°

Composition

Trouver la quantité totale et moyenne de farine éparpillée sur un

disque D de rayon R > 0 centré en l'origine. Pl
1
Réponse — En coord. polaires, ona f(p,p) = —— et
D= { p,0) | pe[O,R], € [O 27T[} Ainsi: e
Quantité totale = fj 72 pdpdy e Femonn

Triples
Aire, volume

27

R
:fo (<,5++11>2‘<p+11>z) dﬂfo dio
R 1 1
:ZWL (m_m) dp

ﬂ[ln(p+l)+ﬁ]:=2ﬂ (In(RJrl)fRL;l)




Exercice (suite)

Au final:

o R

Quantité totale = 27 ( In(R+1) — m)
Puisque
R 21 RZ
Aire (D) = ffpdpdgo = f pdp j dp = > 2r = 7R?,

g 0 0

on a

. 1 1
Quantité moyenne = Aire (D) ff (+1) pdp dp
D

:% (ln(R+1)—RRH).
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Exercice Math 2

A. Frabetti

Exercice — Calculer le centre de masse du solide 2 composé
de la demi-boule B et du cylindre C suivants:

B ={(re.0)|re[0.Rl pelo.2n] oelr2al} T
¢ ={(p%.2) | pc[0.R], pel0.2r], ze [0,R]},

et avec la densité de masse ji(x,y,z) = z°.

Réponse — Puisque Q = B u C, et B~ C = courbe, le
centre de masse G a coordonnées

Extrema

De Riemann

1
X6 = 3= JJJXH(X’%Z) dxdy dz (idem pour yg et zg), Doutle
Q
Q

oo w-mosme e ([ [[]- ]

e Les intégrales se calculent:
en coordonnées sphériques sur B, ot u(r,p,0)
en coordonnées cylindriques sur C, ou u(p, ¢, z

r?cos26,
22.



Math 2

Exercice (suite)

A. Frabetti
e Calcul de la masse de Q: Lo
Compacts
Fonctions
- Hf r*cos®d r*sin dr dp df

Partielles

:J ' drf J cos? 0sin 0 df
/2 e

a chaine
R® 2R

727'r[ —3 cos 9] 2 G o

MC - Jff 22 p dp dg@ dZ B;L‘wa‘:svmm
; :i;:‘,ijolume
R 2 , .
R TR
= | rd dr =, K TR
L par _L f z az 5 s 3 3

A 2 1 7rR®
final: Mo =Mg+Mc= (= +2) R = _
vl Me = M e (15 3) " 15




Exercice

27 27
e Puisque J cospdp =0 et f sinpdp =0, on a:
0

XG :/VI Jffxuxy, dx dy dz

1

21
= —J r®dr f cos p dip J cos? fsin 0 do
Mq /2

R
fp dpf cosp dy J-zzdz =0
0
Yo = o ”fmxy, dx dy dz

1 27
:—f r er S|n<pd<pf cos? fsin® 0 do
Mq 0 0 /2

1 R 27 R
+—Jp2dpj singpdcpjzzdz =0
Ma Jo 0 0
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Exercice (suite)

Enfin:

MLQ fffz,u(& y,z)dxdy dz
Q

1 (R
)
1 R 27 R3
+—fpdpfdgo Jz
Ma Jo 0 0

(R‘*

15
7R3

157 RS

7R3 <

15R3

7
5R3

14

2

12

6
1 1

273

27 [ — %cos4 9]

)

dz

/2

27 ™
r°dr f dp J cos® @sin 6 df
0 /2
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Exercice (suite)

e En conclusion, le barycentre G de € a pour coordonnées

G = (0,0,5R%/14)

Puisque 5R3/14 > 0, il se trouve dans la partie cylindrique.

e Le barycentre se trouve a l'intérieur de Q si

5R3/14 < R

c'est-a-dire si R < 4/14/5.
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