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Programme et plan des cours

Partie I : Fonctions de plusieures variables

CM 1 – Coordonnées, ensembles compacts
CM 2 – Fonctions, graphes, composition
CM 3 – Dérivées partielles, gradient
CM 4 – Différentielle, Jacobienne
CM 5 – Règle de la châıne, Hessienne
CM 6 – Taylor, extrema locaux
CM 7 – Intégrales simples et doubles
CM 8 – Intégrales triples, aire, volume, centre de masse

Partie II : Champs de vecteurs

CM 9 – Champs scalaires et champs de vecteurs
CM 10 – Champs conservatifs et incompressibles
CM 11 – Courbes et circulation
CM 12 – Surfaces et flux
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But du cours:

Champ scalaire
(lignes de niveau)

Champ de vecteur
sur la sphère

Lignes de champ
(dipole magnétique)

et aussi potentiels, circulation, flux...
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Prérequis

1. Espaces vectoriels et vecteurs de R2 et R3

(produits scalaire, vectoriel et mixte).

2. Applications linéaires et matrices
(produit, détérminant, matrice inverse).

3. Géométrie cartesienne du plan et de l’espace
(droites, coniques, plans, quadriques).

4. Dérivées et intégrales des fonctions d’une variable
(graphes, dérivées, points critiques, extrema, Taylor,
primitives).

5. Équations différentielles du 1er ordre.
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Chapitre 4
Champs scalaires et champs de vecteurs

1. Champs et fonctions

2. Champs scalaires

3. Champs de vecteurs

4. Champs conservatifs

5. Champs incompressibles
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1. Champs et fonctions

Dans cette section:

‚ Repères et referentiels

‚ Dépendance des repères

‚ Loi de transformation d’un champ

‚ Dessin d’un champ
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Repères et referentiels

En physique, le referentiel est l’ensemble des grandeurs et de
leurs unité de mesure. En mathématiques, le referentiel est
représenté par un repère pO,~e1, ...,~enq de Rn, où:

‚ la direction des vecteurs ~ei represente les grandeurs,

‚ la longueur des vecteurs ~ei represente l’unité de mesure,

‚ l’origine O donne la valeur zéro des grandeurs.

Pour tout ~x P Rn, les coordonnées px1, ..., xnq telles que
~x “

ř

xi ~ei représentent les mesures des grandeurs ~ei .

Exemple – Dans un gaz parfait, la loi PV “ nRT décrit la
relation entre la pression P, le volume V et la temperature T .

Les isothermes (courbes à temperature
constante), sont dessinées dans l’espace
R2 où l’on fixe le repère pO,~eV ,~ePq pour
représenter le referentiel pV ,Pq.
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Lois dépendantes du changement de repère

Idée – Une fonction et un champ sont des lois qui associent à
~x P Rn une valeur ~y P Rm. La différence entre fonctions et
champs est dans la dépendance des repères sur Rn et Rm:
les fonctions sont indépendantes des changement de repères,
les champs en dépendent.

Exemple – On veut se ranger en file indienne devant la porte:
x = grandeur qui décrit chaque personne de cette salle

Ppxq “
x

10
= position dans la file à partir de la porte

Si on change l’unité de mesure de x , la position dans la file ne
change pas, mais comment se transforme-t-elle la loi Ppxq qui
représente cette position?

On donne deux exemples: une loi qui ne dépend pas du
changement de referentiel, et une qui en dépend.
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Loi de transformation des fonctions

‚ Loi basée sur l’age –

x = age en années et Ppxq “
x

10
en mètres.

Si u = age en mois, la même position est donnée par P̃puq“
u

120
.

Par exemple, vu que u “ 12 x , on a:

Pp10q “
10

10
“ 1 et P̃p120q “

120

120
“ 1.

Quelle est la relation entre P̃puq et Ppxq?

Le changement de variable est x “ hpuq “
u

12
, et on a

Ppxq “ P
`

hpuq
˘

“ P
´ u

12

¯

“
u

120
“ P̃puq

c’est-à-dire P̃ “ P ˝ h .

C’est la loi de transformation des fonctions par changement de
coordonnées.
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Loi de transformation des champs

‚ Loi basée sur la distance –
x = distance du tableau en mètres, alors Ppxq “

x

10
est en mètres.

Si u = distance en centimètres, la position dans la file ne change

pas, mais elle est exprimée en centimètres et on a P̃puq “
u

10
.

Par exemple, vu que u “ 100 x , on a:

Pp10q “
10

10
“ 1m et P̃p1000q “

1000

10
“ 100cm p“ 1mq.

Quelle est donc, cette fois, la relation entre Ppxq et P̃puq?

Le changement de variable est x “ hpuq “
u

100
, et on a

Ppxq “ P
`

hpuq
˘

“ P
´ u

100

¯

“
u

1000
“

P̃puq

100
donc P̃ ‰ P ˝ h!

La bonne loi de transformation est P̃ “ H ˝ P ˝ h , où

hpuq “
u

100
et Hpzq “ 100 z “ h´1pzq.
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Champs de Rn à valeurs dans Rm

Definition – Un champ de Rn à valeurs dans Rm est une
loi

F : Rn ÝÑ Rm, ~x ÞÑ F p~xq

qui se transforme, par changement de coordonnées ~x “ hp~uq,
comme

F̃ p~uq “ H
`

F p~xq
˘

“ H
`

F
`

hp~uq
˘˘

, pour tout ~u P Rn,

c’est-à-dire comme

F̃ “ H ˝ F ˝ h
Rn Rm

Rn Rm

h

F

F̃

H

où H : Rm ÝÑ Rm est un changement de repère sur Rm

déterminé par l’application h.
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Dessin d’un champs

Remarque – Si F : Rn ÝÑ Rm, ~x ÞÑ F p~xq est un champ, le
repère utilisé pour décrire la valeur F p~xq P Rm n’est pas libre,
mais dépend de celui utilisé pour décrire ~x P Rn.

Ainsi, un champ ne peut être representé par un graphe
Γ Ă RnˆRm comme si c’était une fonction (pour laquelle les
repère de Rn et Rm sont indépendants).

Définition – La représentation graphique, ou dessin, du
champ F est l’ensemble des dessins de la valeur F p~xq P Rm

au-dessus de chaque point ~x P Rn (c’est-à-dire dans un repère
de Rm centré au point ~x),

Rm

Rn

un seul repère pour le graphe
d’une fonction vectorielle

Rm

‚

Rm

‚

Rm

‚

Rn

union de repères pour le dessin
d’un champ de vecteurs
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2. Champs scalaires

Dans cette section:

‚ Champs scalaires de R3

‚ Surfaces de niveau

‚ Le potentiel gravitationnel V et le potentiel de Coulomb φ
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Champs scalaires de R3

Definition – Un champ scalaire sur R3 est un champ
φ : R3 ÝÑ R, ~x ÞÑ φp~xq à valeurs dans les nombres.

‚ Si ~x “ hp~uq, à priori on a φ̃p~uq “ H
`

φp~xq
˘

, où H : RÑ R est un
changement de repère dans R déterminé par h.

‚ Dans R il y a une seule direction~ı , donc H n’affecte que l’unité de

mesure. Sans unités de mesure, on peut supposer Hpyq “ y .

En maths, un champ scalaire est assimilé à une fonction

φ : R3 ÝÑ R, ~x ÞÑ φpxq,

qui se transforme comme

φ̃p~uq “ φp~xq si ~x “ hp~uq

et se représente avec un
graphe usuel.

Rn

R R

dessin d’un champ scalaire

R

Rn

graphe d’un champ scalaire
comme fonction réelle

‚ Attention en physique, quand l’unité de mesure change!
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Exemples de champs scalaires sur R3

Exemples –
‚ La temperature T et la pression P sont des champs scalaires
en physique statistique.

‚ L’altitude n’est pas un champ mais une fonction (car la

détérmination de l’endroit où on la mesure n’affecte pas le résultat).

‚ Le volume V n’est pas un champ scalaire (car il n’est pas

défini sur les points de R3 mais pour des objets étendus).

La densité volumique ν est le champ scalaire qui permet de
calculer le volume d’un objet (par intégration).

‚ La distance depuis l’origine: dpx , y , zq“
a

x2`y 2`z2

En coordonnées sphériques: dpr , ϕ, θq “ r

Ceci montre la signification de la variable r .
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Exemples: potentiel gravitationnel et de Coulomb

‚ Le potentiel gravitationnel engendré par une masse M
située à l’origine O:

V px , y , zq “ ´
G M

a

x2 ` y 2 ` z2

où G “ 6, 673ˆ10´11 m3{kg s2 est la constante gravitationnelle.

En coordonnées sphériques: V pr , ϕ, θq “ ´
G M

r
.

‚ Le potentiel électrostatique ou potentiel de Coulomb
engendré par une charge immobile Q située à l’origine O:

φpx , y , zq “
1

4πε

Q
a

x2 ` y 2 ` z2
,

où ε “ 8.854ˆ1012 A s{V m est la permittivité diélectrique.

En coordonnées sphériques: φpr , ϕ, θq “
1

4πε

Q

r
.
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Surfaces de niveau

Définition – Soit φ : R3 ÝÑ R un champ scalaire.

‚ Comme une fonction f , φ est caractérisé par son domaine
de définition Dφ Ă R3, et il est de classe C k s’il est
différentiable jusqu’à l’ordre k .

‚ Pour tout a P R, l’analogue des lignes de niveau Lapf q d’une
fonction f de deux variables est la surface de niveau a de φ:

Sapφq “
!

px , y , zq P Dφ | φpx , y , zq “ a
)

.

a
b

c c

Dφ

N.B. – En général on ne sait pas tracer le graphe de φ, qui
est dans R4.
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Exercice: potentiels gravitationnel et de Coulomb

Énoncé – Pour le potentiel gravitationnel V et pour le
potentiel de Coulomb φ, trouver les surfaces de niveau et
dessiner le graphe comme fonctions de r .

Réponse – En coordonnées sphériques, on a:

V pr , ϕ, θq “ ´
G M

r
et φpr , ϕ, θq “

1

4πε0

Q

r
.

‚ Pour a P R, les surfaces de niveau a sont données par:

r “ ´
G M

a
si a ă 0 et r “

1

4πε

Q

a
si a ą 0

et sont donc des sphères centrées en l’origine

‚

M
´10 ´1

SapV q

‚
Q

`10 `1

Sapφq
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Exercice (suite)

‚ La différence entre le potentiel gravitationnel V et celui de
Coulomb φ est dans le sens croissant des niveaux
correspondants aux sphères: le graphe des potentiels

V pr , ϕ, θq “ ´
G M

r
et φpr , ϕ, θq “

1

4πε0

Q

r

dans la seule variable r ą 0 est:

r

V prq´10

´1

r

φprq´10

´1
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3. Champs de vecteurs

Dans cette section:

‚ Champs de vecteurs

‚ Repères mobiles

‚ Lois de transformations en coordonnées cylindriques et
sphériques

‚ Champ axial et champ central

‚ Lignes de champ

‚ Le champ électrique
ÝÑ
E et le champ gravitationnel

ÝÑG
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Champs de vecteurs de R3

Définition – Un champ de vecteurs ou champ vectoriel de
R3 est un champ

ÝÑ
V : R3 ÝÑ R3, ~x ÞÝÑ

ÝÑ
V p~xq

à valeur dans les vecteurs de R3.

Exemples –
‚ La position ~x des points, une force

ÝÑ
F , les champs

gravitationnel
ÝÑG , électrique

ÝÑ
E et magnétique

ÝÑ
B , ou encore le

potentiel magnétique
ÝÑ
A , sont des champs vectoriels.

‚ La vitesse d’écoulement des points d’un fluide est un champ
de vecteurs. La vitesse de déplacement d’un corps ponctuel est
un champ vectoriel, défini sur la trajectoire du corps.

‚ La vitesse de déplacement d’un objet étendu qu’on ne peut
pas identifier à son baricentre n’est pas un champ vectoriel,
car elle n’est pas définie sur des points.
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Composantes cartesiennes d’un champ de vecteurs

Définition – Soit ~x ÞÝÑ
ÝÑ
V p~xq un champ de vecteurs de R3.

‚ Si ~x “ px , y , zq est donné en coordonnées cartesiennes, on a

ÝÑ
V p~xq “ Vxp~xq~ı ` Vy p~xq~ ` Vzp~xq ~k ,

où
`

~ı ,~ ,~k
˘

est le repère cartesien de R3 centré au point ~x , et
Vx ,Vy ,Vz : R3 Ñ R sont des fonctions réelles qui s’appellent

coefficients ou composantes de
ÝÑ
V .

‚ Le domaine de
ÝÑ
V est l’ensemble

DÝÑ
V
“

!

~x P R3 | ~x P DVx , ~x P DVy , ~x P DVz

)

.

‚ Le champ est de classe C k si ses coefficients le sont.

‚ Le dessin de
ÝÑ
V consiste

des vecteurs
ÝÑ
V p~xq appliqués

aux points ~x : ‚

‚

~x
ÝÑ
V p~xq

~y

ÝÑ
V p~yq
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Loi de transformation d’un champ vectoriel

Remarque – Soit
ÝÑ
V un champ vectoriel de R3.

‚ Même si on ne considère pas les unités de mesure, un chmt

de variables ~x “ hp~uq peut modifier le repère pour
ÝÑ
V p~xq, dans

la direction des vecteurs.

‚ En général, si ~x “ hp~uq, le champ
ÝÑ
V p~xq se transforme en

Ý̃Ñ
V p~uq “ H

`ÝÑ
V
`

hp~uq
˘˘

“ Ṽxp~uq Hp~ı q ` Ṽy p~uq Hp~ q ` Ṽzp~uq Hp~k q

où Ṽxp~uq “ Vx

`

hp~uq
˘

(même chose pour Ṽy et Ṽz),

et Hp~ı q, Hp~ q, Hp~k q sont les vecteurs~ı ,~ et ~k
exprimés dans le nouveau repère de R3 déterminé par h,

c’est-à-dire le repère
`

~e1,~e2,~e3

˘

qui permet de décrire
~u “ u~e1 ` v ~e2 ` w ~e3 par les coordonnées pu, v ,wq.
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Repères mobiles

Définition – Un repère mobile est un repère centré en tout
point P variable, et qui dépend de la représentation en
coordonnées de P: les vecteurs indiquent la direction de
variation des coordonnées de P.

En particulier:

‚ repère cartesien:

p~ı ,~ ,~k q

‚ repère cylindrique:
`

~eρ, ~eϕ,~k
˘

‚ repère sphérique:
`

~er , ~eϕ, ~eθ
˘

y

z

x

‚

‚

r

θ

ρ

ϕ

~er
~eϕ

~eθ

~j

~k

~i

~eρ
~eϕ

Attention – Les vecteurs~ı ,~ , ~k ne changent pas de
direction quand P bouge, mais les autres vecteurs si !
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Transformations des repères cartesien, cylindrique
et sphérique

Proposition – Les transformations H entre les repères
cartesien, cylindrique et sphérique, sont les suivantes:

‚ cartesien – cylindrique:

Si px , y , zq “ hpρ, ϕ, zq, avec

$

&

%

x “ ρ cosϕ
y “ ρ sinϕ
z “ z

, on a

»

–

~eρ “ cosϕ~ı ` sinϕ~
~eϕ “ ´ sinϕ~ı ` cosϕ~
~k “ ~k

et

»

–

~ı “ cosϕ ~eρ ´ sinϕ ~eϕ
~ “ sinϕ ~eρ ` cosϕ ~eϕ
~k “ ~k

Preuve – La première formule vient de la définition des vecteurs

~eρ, ~eϕ, et la deuxième formule s’obtient en inversant le système

donné par la première.
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Transformations des repères cartesien, cylindriques
et sphériques

‚ cartesien – sphérique:

Si px , y , zq “ hpr , ϕ, θq, avec

$

&

%

x “ r cosϕ sin θ
y “ r sinϕ sin θ
z “ r cos θ

, on a

»

–

~er “ cosϕ sin θ ~ı ` sinϕ sin θ ~ ` cos θ ~k
~eϕ “ ´ sinϕ~ı ` cosϕ~

~eθ “ cosϕ cos θ ~ı ` sinϕ cos θ ~ ´ sin θ ~k

et
»

–

~ı “ cosϕ sin θ ~er ´ sinϕ ~eϕ ` cosϕ cos θ ~eθ
~ “ sinϕ sin θ ~er ` cosϕ ~eϕ ` sinϕ cos θ ~eθ
~k “ cos θ ~er ´ sin θ ~eθ

Preuve – La première formule vient de la définition des vecteurs

~er , ~eϕ, ~eθ et la deuxième formule s’obtient en inversant le système

donné par la première.
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Champ vectoriel en coordonnées

Conclusion – Un champ vectoriel
ÝÑ
V p~xq de R3 s’écrit dans le

repère mobile de sa variable ~x :

‚ en coordonnées cartesiennes px , y , zq:
ÝÑ
V “ Vx~ı ` Vy~ ` Vz

~k ,

‚ en coordonnées cylindriques pρ, ϕ, zq:
ÝÑ
V “ Vρ ~eρ ` Vϕ ~eϕ ` Vz

~k ,

‚ en coordonnées sphériques pr , ϕ, θq:
ÝÑ
V “ Vr ~er ` Vϕ ~eϕ ` Vθ ~eθ,

où les coefficients Vx , etc, sont des fonctions R3 ÝÑ R.

La transformation d’une forme à une autre est donnée par le
changement de coordonnées usuel sur les coefficients, et par
le changement de repère décrit ci-dessus sur les vecteurs.
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Champ axial et champ central

Définition – Un champ de vecteurs
ÝÑ
V de R3 s’appelle:

‚ Axial s’il ne dépend que de la distance ρ d’un axe
(supposons ~k ) et est dirigé dans la direction radiale (par
rapport au “radius” ρ).

En coordonnées cylindrique, il s’écrit
ÝÑ
V pρq “ f pρq ~eρ

‚ Central s’il ne dépend que de la distance r d’un point
(supposons l’origine) et est dirigé dans la direction radiale (par
rapport au “radius” r).

En coordonnées sphériques, il s’écrit
ÝÑ
V prq “ f prq ~er
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Exemples de champs vectoriels

Exemples –

‚ Le vecteur position est le champ central

~x “ x~ı ` y~ ` z ~k

“ ρ ~eρ ` z ~k

“ r ~er

y

z

x

‚

‚

‚

‚

‚ La vitesse d’écoulement d’un fluide:
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Exemples de champs vectoriels

‚ Le champ gravitationnel engendré par
une masse M est le champ central

ÝÑG prq “ ´GM

r 2
~er

Une masse m situé à distance r de M est
soumise à la force gravitationnelle

ÝÑ
F prq “ m

ÝÑG prq “ ´GMm

r 2
~er .

‚

R2

M

‚ Le champ électrique engendré par une
charge Q est le champ central

ÝÑ
E prq “

1

4πε

Q

r 2
~er

Une charge q située à distance r de Q est
soumise à la force de Coulomb

ÝÑ
F prq “ q

ÝÑ
E prq “

1

4πε

Qq

r 2
~er .

‚

R2

Q
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Exercices

Énoncé – Trouver le domaine des champs de vecteurs
suivants, les dessiner en un point générique de R3 (ou R2) et
en deux ou trois points particuliers au choix. Enfin, exprimer
ces champs en les autres coordonnées.

‚
ÝÑ
V px , yq “ p´y , xq “ ´y ~ı ` x ~

Réponse –
Domaine = R2.

x

y

‚

En coord. polaires:
ÝÑ
V pρ, ϕq “ ´ρ sinϕ

`

cosϕ ~eρ´sinϕ ~eϕ
˘

` ρ cosϕ
`

sinϕ ~eρ`cosϕ ~eϕ
˘

“ ρ
`

´sinϕ cosϕ`cosϕ sinϕ
˘

~eρ ` ρ
`

sin2 ϕ`cos2 ϕ
˘

~eϕ

“ ρ ~eϕ .
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Exercices

‚
ÝÑ
V pρ, ϕq “ ρ ~eρ ` ϕ ~eϕ

Réponse – ρ ą 0 et ϕ P r0, 2πr, ainsi DV “ R˚` ˆ r0, 2πr.

x

y

‚

‚‚

~eρ

1
2
~eρ`

π
2
~eϕ

~eρ`
π
6
~eϕ

En coord. cartesiennes:

ÝÑ
V px , yq “ ρ

´

cosϕ~ı`sinϕ~
¯

` ϕ
´

´ sinϕ~ı`cosϕ~
¯

“

´

ρ cosϕ´ϕ sinϕ
¯

~ı `
´

ρ sinϕ`ϕ cosϕ
¯

~

“

´

x ´ arctan y
x

y?
x2`y2

¯

~ı

`

´

y ` arctan y
x

x?
x2`y2

¯

~ si x ‰ 0 et y ą 0.
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Lignes de champ

Définition – Les lignes de champ ou courbes intégrales d’un

champ vectoriel
ÝÑ
V sont les

courbes γ qui ont
ÝÑ
V p~xq

comme vecteur tangent en tout
point ~x P γ.

γ
ÝÑ
V

‚ Si γ est une courbe paramétrée par ~xptq“
`

xptq, yptq, zptq
˘

,
avec t P R, le vecteur tangent à γ au point ~xptq est le vecteur des
dérivées 9~xptq“p 9xptq, 9yptq, 9zptqq.

‚ Alors γ est une ligne de champ pour
ÝÑ
V “ Vx~ı`Vy~`Vz

~k si et
seulement si, pour tout t, on a:

9~xptq “
ÝÑ
V p~xptqq c-à-d

$

’

&

’

%

9xptq “ Vx

`

xptq, yptq, zptq
˘

9yptq “ Vy

`

xptq, yptq, zptq
˘

9zptq “ Vz

`

xptq, yptq, zptq
˘

‚ Par tout point fixé ~x0 “ ~xpt0q il passe une seule ligne de champ.
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Exercice

Énoncé – Trouver et dessiner les lignes de champ des champs de
vecteurs suivants.

‚
ÝÑ
V px , y , zq “ p´y , x , 0q “ ´y~ı ` x~

Réponse – ~xptq“pxptq, yptq, zptqq décrit une ligne de champ si:

9~xptq “
`

9xptq, 9yptq, 9zptq
˘

“
ÝÑ
V
`

xptq, yptq, zptq
˘

“
`

´ yptq, xptq, 0
˘

c.-à-d.

$

&

%

9xptq “ ´yptq
9yptq “ xptq
9zptq “ 0

.

Ainsi 9xptq xptq` 9yptq yptq“
d

dt

`

xptq2`yptq2
˘

“ 0, et donc

#

xptq2 ` yptq2 est constant

zptq est constant
.

Au final, γ decrit un cercle sur un
plan horizontal centré sur l’axe Oz .

y

z

x
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Exercice

‚ Champ gravitationnel:
ÝÑG prq “ ´GM

r 2
~er .

Réponse – Les lignes de champ de
ÝÑG donnent la trajectoire d’un

corps sousmis à la force gravitationnelle exercée par la masse M.

‚ En coord. sphériques, une courbe paramétrée γ est donnée par

rptq P s0,8r , ϕptq P r0, 2πr et θptq P s0, πr.

‚ Les points de la courbe sont donnés par les vecteurs positions

~xptq “ rptq ~er ptq,

où le vecteur ~er dépend aussi de t car il change de direction avec le

point ~xptq (contrairement à~ı ,~ et ~k ).

‚ Le vecteur tangent à γ au point ~xptq est donc

9~xptq “ 9rptq ~er ptq ` rptq 9~er ptq.

‚ Pour trouver les lignes de champ, il nous faut un petit lemme.
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Dérivée d’un vecteur à norme constante

Lemme – Soit ~u “ ~uptq un vecteur paramétré par t P R.
Si ~u a norme constante non nulle, c-à-d ||~uptq|| “ c ‰ 0,

alors le vecteur dérivé 9~u est toujours orthogonal à ~u, c-à-d

~uptq ¨ 9~uptq “ 0 pour tout t (produit scalaire).

Preuve – On écrit ||~uptq|| “
a

~uptq ¨ ~uptq et on dérive:

´

||~uptq||
¯1

“

´

a

~uptq ¨ ~uptq
¯1

“
9~uptq ¨ ~uptq ` ~uptq ¨ 9~uptq

2
a

~uptq ¨ ~uptq

“
2 ~uptq ¨ 9~uptq

2
a

~uptq ¨ ~uptq
“
~uptq ¨ 9~uptq

||~uptq||

On a donc

||~uptq|| “ c ô

´

||~uptq||
¯1

“ 0 ô ~uptq ¨ 9~uptq “ 0. l
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Exercice (suite)

‚ Resumé: pour une courbe γ en coordonnées sphérique

~xptq “ rptq ~er ptq,

le vecteur tangent est

9~xptq “ 9rptq ~er ptq ` rptq 9~er ptq,

et, puisque ~er ptq a norme constante 1, le vecteur 9~er ptq est
orthogonal à ~er ptq, c-à-d avec seulement des composantes
dans les directions ~eϕptq et ~eθptq.

‚ Alors γ est une ligne de champ de
ÝÑG si

9~xptq “ 9rptq ~er ptq ` rptq 9~er ptq

“
ÝÑG
`

~xptq
˘

“ ´
GM

rptq2
~er ptq

c’est-à-dire si

$

&

%

9rptq “ ´
GM

rptq2
p1q

9~er ptq “ 0 p2q
.
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Exercice (suite)

‚ p2q dit que ~er ptq est constant.
Donc les lignes de champ sont des
droites radiales centrées en M.

‚ p1q donne la distance rptq de M:

‚

R3

M

9rptq “ ´
GM

rptq2
ñ rptq2 9rptq “

1

3

d

dt

`

rptq3
˘

“ ´GM

ñ rptq3 “ ´3GM t ` r 3
0

ñ rptq “ 3

b

r 3
0 ´ 3GM t

où r0 “ rp0q est la distance initiale du corps de M.
Pour que rptq soit positif, il faut que t ď r 3

0 {3GM.

‚ En somme, un corps qui se trouve distance r0 de M est
attiré par la masse (car rptq diminue quand t augmente), et la
touche à l’instant t “ r 3

0 {3GM. Les lignes de champ sont
orientée vers M: le champ gravitationnel est attractif.
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Exercice (suite)

‚ Champ électrique:
ÝÑ
E prq “

1

4πε

Q

r 2
~er

Réponse brève – Les lignes de champ sont aussi des
droites radiales, passant par la position de la charge Q
qui engendre le champ.

Cette fois, les lignes de champs sont orientée vers
l’extérieur: le champ électrique est répulsif.

‚

R3

Q
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4. Champs conservatifs

Dans cette section:

‚ Gradient

‚ Potentiel scalaire et champs conservatifs

‚ Rotationnel

‚ Champs irrotationnels

‚ Ensembles connexes, simplement connexes, contractiles

‚ Lemme de Poincaré (cas simplement connexe)

‚ Calcul du potentiel scalaire

‚ Le champ électrique
ÝÑ
E et le champ gravitationnel

ÝÑG
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Gradient d’un champ scalaire

Définition – Soit φ : D Ă R3 ÝÑ R un champ scalaire. Le
gradient de φ est le champ de vecteurs

ÝÑ∇φ “ ÝÝÑgradφ sur D
donné par les expressions:

ÝÝÑ
gradφ “

Bφ
Bx ~ı `

Bφ
By ~ `

Bφ
Bz
~k

ÝÝÑ
gradφ “

Bφ
Bρ ~eρ `

1
ρ
Bφ
Bϕ ~eϕ `

Bφ
Bz
~k

ÝÝÑ
gradφ “

Bφ
Br ~er `

1
r sin θ

Bφ
Bϕ ~eϕ `

1
r
Bφ
Bθ ~eθ.

Exemple – Le gradient de φpr , ϕ, θq “ rϕ sin θ est

ÝÑ∇φpr , ϕ, θq “
Bprϕ sin θq

Br
~er `

1
r sin θ

Bprϕ sin θq
Bϕ

~eϕ `
1
r
Bprϕ sin θq

Bθ
~eθ

“ ϕ sin θ ~er `
r sin θ
r sin θ

~eϕ `
rϕ cos θ

r
~eθ

“ ϕ sin θ ~er ` ~eϕ ` ϕ cos θ ~eθ
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Propriétés du gradient

Proposition – Le gradient
ÝÝÑ
gradφ est orthogonal aux surfaces

de niveau de φ en tout point, et indique le sens de plus forte
croissance de φ.

Sapφq

∇φ

Proposition – Le gradient
ÝÑ∇“ ÝÝÑgrad est un opérateur

linéaire agissant sur les champs scalaires (ici f et g):
ÝÑ∇pλ f ` µ gq “ λ

ÝÑ∇f ` µ
ÝÑ∇g , pour tout λ, µ P R.

Sur un produit, il agit par la règle de Leibniz:

ÝÑ∇pf gq “
´

ÝÑ∇f
¯

g ` f
´

ÝÑ∇g
¯

.
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Potentiel scalaire et champ conservatif

Définition –
‚ On appelle champ de gradient tout champ vectoriel

ÝÑ
V qui

est le gradient d’un champ scalaire φ, c’est-à-dire de la forme

ÝÑ
V “

ÝÝÑ
gradφ.

‚ Une force
ÝÑ
F est conservative si, quand elle agit sur un

système isolé, l’énérgie mécanique du système est conservée.

Si on voit
ÝÑ
F comme un champ de force, cela arrive s’il existe

un champ scalaire φ tel que

ÝÑ
F “ ´

ÝÝÑ
gradφ.

Dans ce cas, le champ φ s’appelle potentiel (scalaire) de
ÝÑ
F .

‚ Donc le potentiel de
ÝÑ
V “

ÝÑ∇φ est le champ ´φ!
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Exemples de forces conservatives

Exemples –

‚ La force gravitationnelle
ÝÑ
F prq “ m

ÝÑG prq et la force de
Coulomb

ÝÑ
F prq “ q

ÝÑ
E prq sont conservatives.

Justement: quel est leur potentiel?

‚ La force de Lorentz (due à un champ magnétique
ÝÑ
B ),

la pression, le frottement ou un choc sont des forces
non-conservatives.

Questions –

‚ Comment savoir si une force
ÝÑ
F est conservative?

‚ Si elle l’est, comment trouver son potentiel?
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Rotationnel d’un champ vectoriel

Définition – Soit
ÝÑ
V : D Ă R3 ÝÑ R3 un champ de vecteurs.

Le rotationnel de
ÝÑ
V est le champ de vecteurs sur D, noté

ÝÑ
rot
ÝÑ
V “

ÝÑ∇ˆÝÑV (produit vectoriel, en France ^), donné par:

ÝÑ
rot
ÝÑ
V “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

~ı ~ ~k
B
Bx

B
By

B
Bz

Vx Vy Vz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

´

BVz
By ´

BVy

Bz

¯

~ı `
`

BVx
Bz ´

BVz
Bx

˘

~ `
´

BVy

Bx ´
BVx
By

¯

~k

ÝÑ
rot
ÝÑ
V “

´

1
ρ
BVz
Bϕ ´

BVϕ
Bz

¯

~eρ `
´

BVρ
Bz ´

BVz
Bρ

¯

~eϕ `
1
ρ

´

BpρVϕq
Bρ ´

BVρ
Bϕ

¯

~k

ÝÑ
rot
ÝÑ
V “ 1

r sin θ

´

Bpsin θVϕq
Bθ ´

BVθ
Bϕ

¯

~er `
1
r

´

BprVθq
Br ´ BVr

Bθ

¯

~eϕ

`1
r

´

1
sin θ

BVr
Bϕ ´

BprVϕq
Br

¯

~eθ
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Exemples de rotationnel

Exemples – En coordonnées cartesiennes:

‚
ÝÑ
V px , y , zq “ ´y ~ı ` x ~

ÝÑ
rot
ÝÑ
V px , y , zq “

´

B0
By ´

Bx
Bz

¯

~i `
´

Bp´yq
Bz ´ B0

Bx

¯

~j `
´

Bx
Bx´

Bp´yq
By

¯

~k

“ 0~ı ` 0~ ` p1` 1q~k “ 2~k .

‚
ÝÑ
V px , y , zq “ x2~ı ` 2xy~ ` z ~k

ÝÑ
rot
ÝÑ
V px , y , zq “ 0~ı ` 0~ ` p2yq~k

“ 2y ~k .
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Exemples de rotationnel

Exemples – En coordonnées cylindriques et sphériques:

‚
ÝÑ
V pρ, ϕ, zq “ sinϕ ~eρ ` ρ~k

ÝÑ
rot
ÝÑ
V pρ, ϕ, zq “

´

1
ρ
Bρ
Bϕ´

B0
Bz

¯

~eρ `
´

B sinϕ
Bz ´

Bρ
Bρ

¯

~eϕ

`1
ρ

´

Bpρ¨0q
Bρ ´

B sinϕ
Bϕ

¯

~k

“ ´ ~eϕ ´
cosϕ
ρ
~k .

‚
ÝÑ
V pr , ϕ, θq “ sinϕ ~er ` r ~eθ

ÝÑ
rot
ÝÑ
V pr , ϕ, θq “ 1

r sin θ

´

Bpsin θ¨0q
Bθ ´ Br

Bϕ

¯

~er `
1
r

´

Br2

Br ´
B sinϕ
Bθ

¯

~eϕ

`1
r

´

1
sin θ

B sinϕ
Bϕ ´

Bpr ¨0q
Br

¯

~eθ

“ 0 ~er `
2r
r ~eϕ `

cosϕ
r sin θ ~eθ

“ 2 ~eϕ `
cosϕ
r sin θ ~eθ.
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Champs irrotationnels

Proposition – Le rotationnel est un opérateur linéaire
agissant sur les champs de vecteurs (ici

ÝÑ
U et

ÝÑ
V ):

ÝÑ
rot pλ

ÝÑ
U ` µ

ÝÑ
V q “ λ

ÝÑ
rot
ÝÑ
U ` µ

ÝÑ
rot
ÝÑ
V , pour tout λ, µ P R

et satisfait l’identité

ÝÑ
rot p

ÝÝÑ
gradφq “ 0, pour tout champ scalaire φ.

Définition – Un champ de vecteurs
ÝÑ
V se dit irrotationnel si

ÝÑ
rot
ÝÑ
V “ 0.

‚ Donc tout champ de gradient
ÝÑ
V “

ÝÝÑ
gradφ est irrotationnel.

‚ Mais un champ irrotationnel n’est pas toujours un gradient!
Pour savoir s’il l’est, il existe un critère basé sur les proprietés
topologiques du domaine D du champ.
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Ensembles simplement connexes et contractiles

Définition – Un sous-ensemble D de R2 ou de R3 s’appelle:

‚ Connexe si tous les points de D peuvent être joint par une courbe
contenue dans D.

connexe connexe non connexe

‚ Simplement connexe s’il est connexe et toute courbe fermée
dans D peut être déformée en un point.

simpl. connexe

γ

non simpl. connexe

γ Rn simpl. connexe

R2r point, R3r droite
non simpl. connexe

‚ Contractile si on peut déformer l’espace entier D en un point.

contractile

‚

non contractile
simpl. connexe

non contractile
non simpl. connexe

‚

contractile
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Lemme de Poincaré (cas simplement connexe)

Théorème – Soit
ÝÑ
V un champ de vecteurs sur R3 et soit

D Ă R3 un ensemble simplement connexe. Alors:

ÝÑ
V “

ÝÝÑ
gradφ sur D ðñ

ÝÑ
rot
ÝÑ
V “ 0 sur D.

‚ Ainsi, si
ÝÑ
F est un champ de force sur D Ă R3:

Si D est simplement connexe:
ÝÑ
F est conservative
(a un potentiel scalaire)

ðñ
ÝÑ
F est un champ
irrotationnel

‚ Attention – On ne peut rien dire sur
ÝÑ
F si D n’est pas

simplement connexe: tout peut arriver!
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Calcul du potentiel scalaire

Problème – Soit
ÝÑ
V un champ vectoriel de R3 tel que

ÝÑ
rot
ÝÑ
V “ 0,

défini sur un domaine D simplement connexe.
Trouver son potentiel scalaire φ, tel que

ÝÑ
V “ ´

ÝÑ∇φ.

Méthode – Pour simplifier, on cherche l’opposé de φ: une fonction
f : D ÝÑ R telle que

ÝÑ
V “

ÝÑ∇f . En coordonnées cartesiennes:

p1q
Bf

Bx
“ Vx , p2q

Bf

By
“ Vy , p3q

Bf

Bz
“ Vz .

‚ On intègre p1q et on trouve

f px , y , zq “

ż

Vxpx , y , zq dx ` gpy , zq. p4q

‚ On dérive f par rapport à y , on trouve Bg
By avec p2q et on l’intègre:

gpy , zq “

ż

Bg

By
py , zq dy ` hpzq. p5q

‚ On met p5q dans p4q pour obtenir à nouveau f . On dérive f par
rapport à z et on utilise p3q pour trouver h1pzq et donc hpzq.

‚ À rebour, on insère hpzq dans p5q pour avoir gpy , zq, qu’on met
dans p4q, et on obtient enfin f px , y , zq.
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Exemple: calcul du potentiel scalaire

Exemple – Soit
ÝÑ
V px , y , zq “ 2xy~ı ` px2 ` zq~ ` y ~k .

‚ D’abord on vérifie que
ÝÑ
rot
ÝÑ
V “ 0.

‚ Puisque
ÝÑ
V est défini sur tout R3, qui est simplement connexe, par

le Lemme de Poincaré on sait que
ÝÑ
V est un champ de gradient.

‚ Cherchons la fonction f telle que
ÝÑ
V “

ÝÝÑ
grad f . On a

p1q Bf
Bx “ 2xy , p2q Bf

By “ x2 ` z , p3q Bf
Bz “ y .

‚ p1q donne f px , y , zq “

ż

2xy dx ` gpy , zq “ x2y ` gpy , zq.

‚ p2q donne Bf
By “ x2 `

Bg
By “ x2 ` z , d’où suit Bg

By “ z ,

ensuite gpy , zq “

ż

z dy ` hpzq “ zy ` hpzq

et enfin f px , y , zq “ x2y ` zy ` hpzq.

‚ p3q donne Bf
Bz “ y`h1pzq “ y , d’où h1pzq“0 et hpzq“c .

‚ On a alors f px , y , zq “ x2y ` zy ` c .
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Exemple: potentiel du champ gravitationnel

Exemple – Soit
ÝÑG prq “ ´GM

r 2
~er le champ gravitationnel.

‚ D’abord, vérifions qu’il admet un potentiel:

ÝÑ
rot
ÝÑG prq “ ´ 1

r
B
Bθ

`

´GM
r2

˘

~eϕ `
1

r sin θ
B
Bϕ

`

´GM
r2

˘

~eθ “ 0.

‚ Le champ
ÝÑG est défini sur D “ tpr , ϕ, θq | r ą 0u “ R3zorigine,

qui est simplement connexe. Par le Lemme de Poincaré,
ÝÑG admet

donc un potentiel scalaire.

‚ En coordonnées sphériques: cherchons une fonction φpr , ϕ, θq telle
que

ÝÑG “ ´
ÝÝÑ
gradφ, c’est-à-dire

´
Bφ
Br
~er ´

1
r sin θ

Bφ
Bϕ

~eϕ ´
1
r
Bφ
Bθ
~eθ “ ´

GM
r2 ~er ,

Cela donne les équations

p1q Bφ
Br “

GM
r2 , p2q Bφ

Bϕ “ 0, p3q Bφ
Bθ “ 0.

‚ p2q et p3q disent que φ ne dépend pas de ϕ et de θ.

‚ p1q devient alors φ1prq “ GM
r2 , d’où suit φprq “ ´GM

r “ V prq.
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5. Champs incompressibles

Dans cette section:

‚ Divergence

‚ Champs à divergence nulle (incompressibles, solénöıdaux)

‚ Potentiel vectoriel

‚ Lemme de Poincaré (cas contractile)

‚ Calcul du potentiel vectoriel

‚ Le champ magnétique
ÝÑ
B et son potentiel

ÝÑ
A
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Divergence

Définition – Soit
ÝÑ
V : D Ă R3 ÝÑ R3 un champ de vecteurs.

La divergence de
ÝÑ
V est le champ scalaire sur D, noté

div
ÝÑ
V “

ÝÑ∇ ¨ ÝÑV (produit scalaire), donné par:

div
ÝÑ
V “ BVx

Bx `
BVy

By `
BVz
Bz

div
ÝÑ
V “ 1

ρ
BpρVρq
Bρ ` 1

ρ
BVϕ
Bϕ `

BVz
Bz

div
ÝÑ
V “ 1

r2
Bpr2 Vr q

Br ` 1
r sin θ

BVϕ
Bϕ `

1
r sin θ

Bpsin θVθq
Bθ

Exemples –

‚
ÝÑ
V px , yq “ ´y~ı ` x~ ùñ div

ÝÑ
V px , yq “ 0.

‚
ÝÑ
V px , y , zq “ x2~ı ` 2xy~ ` z ~k ùñ

div
ÝÑ
V px , y , zq “ 2x ` 2x ` 1

“ 4x ` 1
.

‚
ÝÑ
E prq “

Q

4πε

1

r 2
~er ùñ div

ÝÑ
E prq “

Q

4πε

1

r 2

B

Br

ˆ

r 2

r 2

˙

“ 0
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Propriétés de la divergence

Proposition – La divergence est un opérateur linéaire
agissant sur les champs de vecteurs (ici

ÝÑ
U et

ÝÑ
V ):

div pλ
ÝÑ
U ` µ

ÝÑ
V q “ λ div

ÝÑ
U ` µdiv

ÝÑ
V , pour tout λ, µ P R

et satisfait aux identités suivantes:

div pφ
ÝÑ
V q “ φ div

ÝÑ
V `

ÝÝÑ
gradφ ¨

ÝÑ
V

div p
ÝÑ
U ^

ÝÑ
V q “

ÝÑ
rot p

ÝÑ
U q ¨

ÝÑ
V ´

ÝÑ
U ¨

ÝÑ
rot p

ÝÑ
V q

div p
ÝÝÑ
gradφq “ ∆φ (= Laplacien)

ÝÝÑ
grad pdiv

ÝÑ
V q “ ∆

ÝÑ
V `

ÝÑ
rot
ÝÑ
rot
ÝÑ
V (∆

ÝÑ
V = Laplacien vectoriel)

div p
ÝÑ
rot
ÝÑ
V q “ 0

pour tout champ scalaire φ.
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Champs à divergence nulle, incompressibles, solénöıdaux

Définition –

‚ Un champ vectoriel
ÝÑ
V est à divergence nulle si div

ÝÑ
V “0.

‚ Un fluide est incompressible si son volume reste constant
quand il est sousmis à une pression. (Par exemple, un liquide est

consideré incompressible, un gaz non.) Cela arrive si le champ
ÝÑ
V

qui décrit la vitesse d’écoulement du fluide a divergence nulle.

‚ Un champ de vecteurs
ÝÑ
V qui décrit un courant de matière

est dit solénöıdal (du grèque sôlen = tuyau) si le volume de
matière transportée est constant (comme s’il était contraint dans

un tuyau): cela arrive si div
ÝÑ
V “ 0.

Exemple – Un champ de gradient
ÝÝÑ
gradφ est solénöıdal si

div p
ÝÝÑ
gradφq “ ∆φ “ 0,

c’est-à-dire si la fonction φ est harmonique.



Math 2

A. Frabetti

4. Champs

Champs

Scalaires

Vectoriels

Conservatifs

Incompressibles

Potentiel vectoriel et invariance de jauge

Définition – Soit
ÝÑ
V un champ de vecteurs. On appelle

potentiel vectoriel de
ÝÑ
V un champ

ÝÑ
U tel que

ÝÑ
V “

ÝÑ
rot
ÝÑ
U .

Proposition –

‚ Si le champ
ÝÑ
V admet un potentiel vectoriel, alors

ÝÑ
V est à

divergence nulle. (Car
ÝÑ
V “

ÝÑ
rot
ÝÑ
U et div

ÝÑ
rot
ÝÑ
U “ 0.)

‚ Si
ÝÑ
U est un potentiel de

ÝÑ
V , alors

ÝÑ
U `

ÝÝÑ
gradφ l’est aussi,

quelconque soit le champ scalaire φ.
(En effet, on a

ÝÑ
rot

´

ÝÑ
U `

ÝÝÑ
gradφ

¯

“
ÝÑ
rot
ÝÑ
U “

ÝÑ
V ,

car
ÝÑ
rot
ÝÝÑ
gradφ “ 0 pour tout φ.)

Définition – Le remplacement
ÝÑ
U Ñ

ÝÑ
U `

ÝÝÑ
gradφ s’appelle

transformation de jauge, la liberté dans le choix du potentiel
vectoriel est due à l’invariance de jauge du champ

ÝÑ
V et le

choix d’un potentiel s’appelle choix de jauge.
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Lemme de Poincaré (cas contractile)

Remarque – Si
ÝÑ
V “

ÝÑ
rot
ÝÑ
U alors div

ÝÑ
V “ 0, mais si

div
ÝÑ
V “ 0 alors

ÝÑ
V n’est pas toujours =

ÝÑ
rot
ÝÑ
U !

Théorème – Soit
ÝÑ
V un champ de vecteurs sur R3 et soit

D Ă R3 un ensemble contractile. Alors:

ÝÑ
V “

ÝÑ
rot
ÝÑ
U sur D ðñ div

ÝÑ
V “ 0 sur D.

‚ Ainsi, si
ÝÑ
V est un champ de vecteurs sur D Ă R3:

Si D est contractile:
ÝÑ
V admet un
potentiel vectoriel

ðñ
ÝÑ
V est à divergence nulle
(incompressible / solénöıdal)

‚ Attention – On ne peut rien dire sur
ÝÑ
V si D n’est pas

contractile: tout peut arriver!
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Calcul du potentiel vectoriel

Problème – Soit
ÝÑ
V un champ vectoriel de R3 tel que

div
ÝÑ
V “ 0, défini sur un ensemble contractile. Trouver son

potentiel vectoriel
ÝÑ
U , tel que

ÝÑ
V “

ÝÑ
rot
ÝÑ
U .

Méthode – En coordonnées cartesiennes, le potentiel
vectoriel de

ÝÑ
V est un champ

ÝÑ
U “ f ~ı ` g~ ` h~k défini sur D

tel que
ÝÑ
V “

ÝÑ
rot
ÝÑ
U , c’est-à-dire

p1q
Bh

By
´
Bg

Bz
“ Vx , p2q

Bf

Bz
´
Bh

Bx
“ Vy , p3q

Bg

Bx
´
Bf

By
“ Vz .

‚ Il s’agit de trouver les trois fonctions f , g et h à travers leurs
dérivées partielles (9 en tout) à partir de seulement 3
équations différentielles du 1er ordre qui les relient.

‚ Ce système se résout par intégrations successives (comme
pour le potentiel scalaire), mais n’a pas de réponse unique: mis
à part les constantes, il y a en plus 6 p“ 9´ 3q choix à faire!
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Cas particulier de champ et de potentiel

Cas particulier – Si
ÝÑ
V “ Vz

~k (c-à-d Vx “ Vy “ 0),
avec

div
ÝÑ
V “

BVz

Bz
“ 0,

et on choisit h “ 0 (ce qui fixe 3 conditions sur les 6 libres), il
ne reste qu’un potentiel de la forme

ÝÑ
U “ f ~ı ` g~ sousmis

aux équations

p1q
Bg

Bz
“ 0, p2q

Bf

Bz
“ 0, p3q

Bg

Bx
´
Bf

By
“ Vz .

‚ p1q et p2q assurent que f et g ne dépendent pas de z .

‚ Pour resoudre p3q, il faut encore fixer arbitrairement Bf
Bx et

Bg
By (2 conditions), plus l’une des deux dérivées Bf

By ou Bg
Bx

(dernière condition libre).
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Exemple: calcul de potentiel vectoriel

Exemple – Soit
ÝÑ
V px , y , zq “ pxy 2 ´ x3yq~k .

‚ D’abord, vérifions qu’il admet un potentiel vectoriel:

div
ÝÑ
V px , y , zq “

Bpxy 2 ´ x3yq

Bz
“ 0.

‚ Puisque DÝÑ
V
“ R3 est contractile, par le Lemme de Poincaré

ÝÑ
V admet un potentiel vectoriel

ÝÑ
U défini sur tout R3.

‚ Cherchons
ÝÑ
U sous la forme

ÝÑ
U px , y , zq “ f px , yq~ı ` gpx , yq~

(h “ 0 et donc Bf
Bz “

Bg
Bz “ 0) tel que

p3q
Bg

Bx
´
Bf

By
“ xy 2 ´ x3y .
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Exemple (suite)

Solution 1: on choisit

Bg
Bx “ xy 2 ñ gpx , yq “

ż

xy 2 dx ` G pyq “
1

2
x2y 2 ` G pyq

Bf
By “ x3y ñ f px , yq “

ż

x3y dy ` F pxq “
1

2
x3y 2 ` F pxq

où F pxq et G pyq sont des fonctions arbitraires. On a donc

ÝÑ
U 1px , y , zq “

ˆ

1

2
x3y 2 ` F pxq

˙

~ı `

ˆ

1

2
x2y 2 ` G pyq

˙

~ .

Solution 2: on choisit
Bg
Bx “ 0 ñ gpx , yq “ G 1pyq

Bf
By “ x3y ´ xy 2 ñ f px , yq “

ż

px3y ´ xy 2q dy ` F 1pxq

“ 1
2 x3y 2 ´ 1

3 xy 3 ` F 1pxq

où F 1pxq et G 1pyq sont des fonctions arbitraires. On a alors

ÝÑ
U 2px , y , zq “

ˆ

1

2
x3y 2 ´

1

3
xy 3 ` F 1pxq

˙

~ı ` G 1pyq~ .
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Exemple (suite)

Transformation de jauge – La différence entre les deux
solutions trouvées est donnée par le gradient d’une fonction:
en posant toutes les fonctions F , G , F 1 et G 1 égales à zéro,
on a

ÝÑ
U 1px , y , zq ´

ÝÑ
U 2px , y , zq “ 1

3 xy 3~ı ` 1
2 x2y 2~

“
ÝÝÑ
grad

`

1
6 x2y 3 ` c

˘

.
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Exercice: le champ magnétique

Énoncé – Un courant d’intensité I qui passe dans un fil droit
placé sur l’axe ~k engendre le champ magnétique (statique)

ÝÑ
B px , y , zq “

µ I

2π

´

´
y

x2 ` y 2
~ı `

x

x2 ` y 2
~
¯

,

où µ est la permeabilité magnétique. La force que
ÝÑ
B exerce

sur une charge q placée en position px , y , zq est donnée par
ÝÑ
F px , y , zq “ q

ÝÑ
B px , y , zq

et s’appelle force de Lorentz.

1q Trouver le domaine de définition de
ÝÑ
B , son expression en

coordonnées cylindriques et en dessiner quelques valeurs.

Réponse –

‚ D~B “
 

px , y , zq P R3 | x2`y 2‰ 0
(

“ R3 privé de l’axe ~k

Donc D~B n’est pas simplement connexe (et pas contractile).
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Exercice: le champ magnétique

‚ L’expression de
ÝÑ
B px , y , zq “ µ I

2π

´

´
y

x2`y2~ı `
x

x2`y2~
¯

en

coordonnées cylindriques est:

ÝÑ
B pρ, ϕ, zq “

µ I
2π

´

´
ρ sinϕ
ρ2 ~ı ` ρ cosϕ

ρ2 ~
¯

“
µ I

2π

1

ρ
~eϕ .

‚ Le dessin de
ÝÑ
B est alors:

~k

ÝÑ
B

~k

ÝÑ
B
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Exercice: le champ magnétique

2q La force de Lorentz
ÝÑ
F “ q

ÝÑ
B “

µ I q
2π

1
ρ
~eϕ est-elle conservative?

Autrement dit, le champ
ÝÑ
B admet-il un potentiel scalaire?

Réponse –

‚ On a
ÝÑ
rot
ÝÑ
B “

µ0 I

2π

„

´
B

Bz

ˆ

1

ρ

˙

~eρ `
1

ρ

B

Bρ

ˆ

ρ
1

ρ

˙

~k



“ 0.

Par le lemme de Poincaré alors, on sait qu’un potentiel scalaire φ
existe sur tout sous-ensemble D Ă D~B simplement connexe,

par exemple sur D “ R3 privé du demi-plan ϕ “ 0.

‚ Calculons φ tel que
ÝÑ
B “ ´

ÝÝÑ
gradφ sur un D simplement connexe:

p1q ´
Bφ

Bρ
“ 0 p2q ´

1

ρ

Bφ

Bϕ
“
µ0 I

2π

1

ρ
p3q ´

Bφ

Bz
“ 0

p1q et p3q disent que φ ne dépend pas de ρ et de z .

p2q s’écrit Bφ
Bϕ “ ´

µ0 I
2π ùñ φpϕq “ ´µ0 I

2π pϕ` ϕ0q .
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Exercice: le champ magnétique

‚ Or, le potentiel φpϕq “ ´µ0 I
2π pϕ` ϕ0q est bien défini

seulement si ϕ ne fait pas un tour complet autour de l’axe ~k !

En effet, si ϕ peut faire un tour complet, au même point physique
donné en coordonnées polaires par ϕ0 ou ϕ0 ` 2π, on a deux valeurs
distinctes du champ

φ0 “ ´
µ0 I
2π ϕ0 et φ1 “ ´

µ0 I
2π pϕ0 ` 2πq,

ce qui n’a pas de sens.

‚ En conclusion, le champ
ÝÑ
B n’a pas de potentiel scalaire

sur tout son domaine de définition.

Par conséquent, la force de Lorentz n’est pas conservative,
dès qu’on considère des tours complets autour du fil.

‚ L’effet physique est bien visible: si une particule chargée,
sousmise à la force de Lorentz, fait un tour complet du fil, elle
aquiert une énergie potentielle qui se manifeste à la fin du tour
par un tourbillonement (spin)!



Math 2

A. Frabetti

4. Champs

Champs

Scalaires

Vectoriels

Conservatifs

Incompressibles

Exercice: le champ magnétique

3q Le champ
ÝÑ
B admet-il un potentiel vecteur?

Réponse –

‚ On a div
ÝÑ
B pρ, ϕ, zq “

µ0 I

2π

1

ρ

B

Bϕ

ˆ

1

ρ

˙

“ 0.

Par le lemme de Poincaré alors, on sait qu’un potentiel vectoriel
ÝÑ
A

existe sur tout sous-enemble D Ă D~B contractile,

par exemple D “ R3 privé du demi-plan ϕ “ 0.

‚ Calculons
ÝÑ
A tel que

ÝÑ
B “

ÝÑ
rot
ÝÑ
A sur un D contractile. En générale:

ÝÑ
A pρ, ϕ, zq “ f pρ, ϕ, zq ~eρ ` gpρ, ϕ, zq ~eϕ ` hpρ, ϕ, zq~k

est sousmis aux équations

p1q 1
ρ
Bh
Bϕ´

Bg
Bz “ 0 p2q Bf

Bz ´
Bh
Bρ “

µ0 I
2π

1
ρ p3q 1

ρ

´

Bpρgq
Bρ ´ Bf

Bϕ

¯

“ 0

et on a six choix à faire pour avoir une solution (plus des constantes).
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Exercice: le champ magnétique

‚ On choisit f “ g “ 0 et Bh
Bz “ 0, alors on a:

p1q Bh
Bϕ “ 0 ùñ h ne dépend pas de ϕ (choix: ϕ0 “ 0)

p2q Bh
Bρ “ ´

µ0 I
2π

1
ρ ùñ hpρq “ ´µ0 I

2π ln ρ (choix: ρ0 “ 1)

Avec ces choix, l’expression du potentiel magnétique
ÝÑ
A est

ÝÑ
A pρq “ ´µ0 I

2π lnpρq~k .

‚ Contrairement au potentiel scalaire φ, le potentiel
magnétique

ÝÑ
A est bien défini partout sauf en ρ“0:

D~A “ D~B .

En conclusion, le champ magnétique
ÝÑ
B admet bien un

potentiel vectoriel sur tout son domaine de définition!
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