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Math 2

Programme et plan des cours

A. Frabetti

Partie | : Fonctions de plusieures variables

CM 1 — Coordonnées, ensembles compacts

CM 2 — Fonctions, graphes, composition

CM 3 — Dérivées partielles, gradient

CM 4 — Différentielle, Jacobienne

CM 5 — Regle de la chaine, Hessienne

CM 6 — Taylor, extrema locaux

CM 7 — Intégrales simples et doubles

CM 8 — Intégrales triples, aire, volume, centre de masse

Partie Il : Champs de vecteurs

CM 9 — Champs scalaires et champs de vecteurs
CM 10 — Champs conservatifs et incompressibles
CM 11 — Courbes et circulation

CM 12 — Surfaces et flux



But du cours:

Math 2
A. Frabetti
4. Champs
Champ scalaire -
(lignes de niveau)

Vectoriels
Conservatifs

Incompressibles

Champ de vecteur
sur la sphere

Lignes de champ
(dipole magnétique)

et aussi potentiels, circulation, flux...



Prérequis e

A. Frabetti

rvatifs

1. Espaces vectoriels et vecteurs de R? et R3
(produits scalaire, vectoriel et mixte).

Incompressibles

2. Applications linéaires et matrices
(produit, détérminant, matrice inverse).

3. Géométrie cartesienne du plan et de I'espace
(droites, coniques, plans, quadriques).

4. Dérivées et intégrales des fonctions d’une variable
(graphes, dérivées, points critiques, extrema, Taylor,
primitives).

5. Equations différentielles du ler ordre.



Chapitre 4
Champs scalaires et champs de vecteurs

AR .

Champs et fonctions
Champs scalaires

Champs de vecteurs
Champs conservatifs

Champs incompressibles
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4. Champs
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Incompressibles



1. Champs et fonctions

Dans cette section:

e Reperes et referentiels
e Dépendance des repéres
e Loi de transformation d'un champ

e Dessin d'un champ

Math 2
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Scalaires
Ve
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Incompressibles

ifs



Reperes et referentiels

En physique, le referentiel est I'ensemble des grandeurs et de
leurs unité de mesure. En mathématiques, le referentiel est
représenté par un repere (O, é, ..., &,) de R”, ou:

e |a direction des vecteurs &; represente les grandeurs,

¢ la longueur des vecteurs €; represente |'unité de mesure,

e I'origine O donne la valeur zéro des grandeurs.

Pour tout X € R”, les coordonnées (xi, ..., x,) telles que

X = Y x; & représentent les mesures des grandeurs €;.
Exemple — Dans un gaz parfait, la loi PV = nRT décrit la
relation entre la pression P, le volume V et la temperature T.

Les isothermes (courbes a temperature g
constante), sont dessinées dans |'espace }
R? o I'on fixe le repere (O, €y, €p) pour 3’
représenter le referentiel (V, P). ‘1

H—T——

Math 2

A. Frabetti

Conservatifs

Incompressibles



Math 2

Lois dépendantes du changement de repére

A. Frabetti

Idée — Une fonction et un champ sont des lois qui associent a
X € R" une valeur y € R™. La différence entre fonctions et 7
champs est dans la dépendance des repéres sur R" et R™: -
les fonctions sont indépendantes des changement de repéres,

les champs en dépendent.

Exemple — On veut se ranger en file indienne devant la porte:
x = grandeur qui décrit chaque personne de cette salle

P(x) = ILO = position dans la file a partir de la porte

Si on change I'unité de mesure de x, la position dans la file ne

change pas, mais comment se transforme-t-elle la loi P(x) qui
représente cette position?

On donne deux exemples: une loi qui ne dépend pas du
changement de referentiel, et une qui en dépend.



Math 2

Loi de transformation des fonctions

A. Frabetti

¢ Loi basée sur I'age —

p X N
x = age en années et P(x) = 15 & metres.

Si u = age en mois, la méme position est donnée par P(u)= HUO Incompressibles
Par exemple, vu que v = 12 x, on a:
10 - 120

Quelle est la relation entre P(u) et P(x)?

Le changement de variable est x = h(u) = % et on a

P(x) = P(h(u)) = P(E) =120 = P(u)

cestadie | P=Poh |

C'est la loi de transformation des fonctions par changement de
coordonnées.




Math 2

Loi de transformation des champs
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e Loi basée sur la distance — X
x = distance du tableau en metres, alors P(x) = 10 est en métres. Champs

Si u = distance en centimétres, la position dans la file ne change
u

pas, mais elle est exprimée en centimétres et on a P( ) =

10°
Par exemple, vu que v = 100 x, on a:
1 . 10
P(10) = 18 1m et P(1000) = % = 100cm (= 1m).

Quelle est donc, cette fois, la relation entre P(x) et P(u)?

Le changement de variable est x = h(u) = m et on a

P(x) = P(h(u)) = P(ﬁ) - 10‘;0 - % donc P # P o h!

La bonne loi de transformation est’ P=HoPoh ‘ ou

h(u) = 100 et H(z) =100z = h"'(z2).



Champs de R” a valeurs dans R"

Definition — Un champ de R” a valeurs dans R™ est une
loi
F:R" — R™ X+ F(X)

qui se transforme, par changement de coordonnées X = h(i),
comme

F(i) = H(F(X)) = H(F(h(d))), pour tout i € R",

c'est-a-dire comme F
. Rn )Rm
F:HOFOh hT ’/,///lH
Rn/ — Rm

F

ol H:R™ — R™ est un changement de repére sur R
déterminé par I'application h.
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Dessin d'un champs Math 2
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Remarque — Si F : R" — R™, X — F(X) est un champ, le
repére utilisé pour décrire la valeur F(X) € R™ n'est pas libre, Champs
mais dépend de celui utilisé pour décrire X € R".
Ainsi, un champ ne peut étre representé par un graphe
< R"xR™ comme si c'était une fonction (pour laquelle les
repére de R” et R™ sont indépendants).

Ve

Conservatifs

Incompressibles

Définition — La représentation graphique, ou dessin, du
champ F est I'ensemble des dessins de la valeur F(X) € R™
au-dessus de chaque point X € R" (c'est-a-dire dans un repere
de R™ centré au point X),

R™ R™ R7”

Rn
un seul repére pour le graphe union de repéres pour le dessin
d’une fonction vectorielle d'un champ de vecteurs



2. Champs scalaires

Dans cette section:

e Champs scalaires de R3
e Surfaces de niveau

e Le potentiel gravitationnel V et le potentiel de Coulomb ¢

Math 2
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Champs scalaires de R3 Math 2
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Definition — Un champ scalaire sur R3 est un champ

Champs

¢ :R3— R, X+ ¢(X) 2 valeurs dans les nombres. Se

Vectoriels

e Si X = h(i), 3 priori on a ¢(@i) = H(¢(X)), oi H:R — R est un
changement de repére dans R déterminé par h.

e Dans R il y a une seule direction 7, donc H n'affecte que I'unité de
mesure. Sans unités de mesure, on peut supposer H(y) = y.

En maths, un champ scalaire est assimilé a une fonction

¢ R —R, X— ¢(x),

qui se transforme comme dessin d'un champ scalaire

~ - .o - R
3(@) = 6() si %= h(a) ]
et se représente avec un R"
graphe d’'un champ scalaire
graphe usuel. comme fonction réelle

e Attention en physique, quand I'unité de mesure change!



Exemples de champs scalaires sur R3 il 2
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Exemples — e
. . Scalaires
e La temperature T et la pression P sont des champs scalaires Vemint:

Cor atifs

en physique statistique. e

e |'altitude n'est pas un champ mais une fonction (car la
détérmination de I'endroit ol on la mesure n'affecte pas le résultat).

e Le volume V n’est pas un champ scalaire (car il n'est pas
défini sur les points de R3 mais pour des objets étendus).

La densité volumique v est le champ scalaire qui permet de
calculer le volume d'un objet (par intégration).

e La distance depuis I'origine: d(x,y,z)=+/x2+y?+2z2

En coordonnées sphériques: ’ d(r,p,0)=r

Ceci montre la signification de la variable r.




Exemples: potentiel gravitationnel et de Coulomb

e Le potentiel gravitationnel engendré par une masse M
située a I'origine O:
GM
VX2 + y? + 22
ol G =6,673x10"1 m¥kgs? est la constante gravitationnelle.
GM
r

V(X,y,Z) = -

En coordonnées sphériques: V(r,p,0) =

e Le potentiel électrostatique ou potentiel de Coulomb
engendré par une charge immobile @ située a I'origine O:

1 Q
4re \/x2 + y2 + 72’
ol € = 8.854x 1012 As/V m est la permittivité diélectrique.
1 Q

dme r

¢(X,y’2) =

En coordonnées sphériques: o(r,p,0)

Math 2
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Surfaces de niveau Math 2

A. Frabetti

Champs

Définition — Soit ¢ : R3 — R un champ scalaire. Scalaires
Vectoriels
. . Conservatifs
o Comme une fonction f, ¢ est caractérisé par son domaine Incompressibles

de définition D, = R3, et il est de classe C s'il est
différentiable jusqu'a I'ordre k.

e Pour tout a € R, I'analogue des lignes de niveau L,(f) d'une
fonction f de deux variables est la surface de niveau a de ¢:

Sa(@#) = {(x.y,2) € Dy | 6(x,.2) = a.

N.B. — En général on ne sait pas tracer le graphe de ¢, qui
est dans R*.



Exercice: potentiels gravitationnel et de Coulomb

Enoncé — Pour le potentiel gravitationnel V' et pour le
potentiel de Coulomb ¢, trouver les surfaces de niveau et
dessiner le graphe comme fonctions de r.

Réponse — En coordonnées sphériques, on a:

GM 1 Q
4 0) =— t 0) = —.
(rp) = =22 et olrpd) =
e Pour a € R, les surfaces de niveau a sont données par:
GM 1
r=——— sia<0 et r=—— sia>0
a 4re a

et sont donc des sphéres centrées en |'origine

S.(V Sa(¢

—10 —1 +10 +1
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Exercice (suite)

e La différence entre le potentiel gravitationnel V' et celui de
Coulomb ¢ est dans le sens croissant des niveaux
correspondants aux sphéres: le graphe des potentiels

_GM et ¢(r>90>9) ! Q

r B 4meg r

V(ra()Ove) =

dans la seule variable r > 0 est:
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3. Champs de vecteurs
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Dans cette section: Incompressibles

e Champs de vecteurs

e Reperes mobiles

e Lois de transformations en coordonnées cylindriques et
sphériques

e Champ axial et champ central

e Lignes de champ

e Le champ électrique E etle champ gravitationnel ?



Champs de vecteurs de R3

Définition — Un champ de vecteurs ou champ vectoriel de
R3 est un champ

— 5 —
V: R —R3 2 V(X)
3 valeur dans les vecteurs de R3.

Exemples —

e La position X des points, une force f les champs
gravitationnel g, électrique E et magnétique § ou encore le
potentiel magnétique A, sont des champs vectoriels.

e La vitesse d’écoulement des points d’un fluide est un champ
de vecteurs. La vitesse de déplacement d’un corps ponctuel est
un champ vectoriel, défini sur la trajectoire du corps.

e |a vitesse de déplacement d'un objet étendu qu’on ne peut
pas identifier a son baricentre n'est pas un champ vectoriel,
car elle n'est pas définie sur des points.

Math 2
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Composantes cartesiennes d'un champ de vecteurs
Définition — Soit X — \7()?) un champ de vecteurs de R3.

¢ Si X = (x, y, z) est donné en coordonnées cartesiennes, on a

—

V()= Ve(R) T+ V,(X) T+ Ve(R) k,

ol (T,j’, /?) est le repere cartesien de R? centré au point X, et

Vi, V,, V; : R® — R sont des fonctions réelles qui s'appellent
. . w2

coefficients ou composantes de V.

- 37 1
o Le domaine de V est |'ensemble

Dy = {zemé | %€ Dy,, %€ Dy,, X¢ DVZ}.

e Le champ est de classe C* si ses coefficients le sont.

e Le dessin de V consiste

37— . Je
des vecteurs V' (X) appliqués
aux points X:

Math 2
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Math 2

Loi de transformation d'un champ vectoriel
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N7 . 3
Remarque — Soit V' un champ vectoriel de R-.

e Méme si on ne considere pas les unités de mesure, un chmt

de variables X = h(#) peut modifier le repére pour \7()?) dans
la direction des vecteurs.

e En général, si X = h(d), le champ \_/)(5(') se transforme en

V(@) = H(V(h(@))

ot Vi (i) = Vi (h(d))  (méme chose pour V, et V),

et H(7), H(J), H(k) sont les vecteurs 7, J et k
exprimés dans le nouveau repere de R3 déterminé par h,

c'est-a-dire le repere (&, &, &) qui permet de décrire
U= ué +veé + wés par les coordonnées (u, v, w).



Reperes mobiles

Définition — Un repére mobile est un repére centré en tout
point P variable, et qui dépend de la représentation en
coordonnées de P: les vecteurs indiquent la direction de

variation des coordonnées de P.

En particulier:

e repére cartesien:

(7.7, k)
e repere cylindrique:
(& €. K)
e repere sphérique:

(&, €5, €)

X

k
&
3
N ; ]
I
I
r I
=
. €
|
| ép y
12 é,

Attention — Les vecteurs 7, 7, k ne changent pas de
direction quand P bouge, mais les autres vecteurs si !

Math 2
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Math 2

Transformations des repeéres cartesien, cylindrique
et sphérique

A. Frabetti

Scalaires
Vectoriels

Proposition — Les transformations H entre les repéres Cmm—

Incompressibles

cartesien, cylindrique et sphérique, sont les suivantes:

e cartesien — cylindrique:

X =p Cosp
Si(x,y,z) = h(p,p,z), avec y=psing ,ona
z=7z
€, =cosp T +sing] T=c osgoe_,} siny €,
€, =—sinpT+cosp] et J=sinp e, +cosyp e,
k =k k =k

Preuve — La premiere formule vient de la définition des vecteurs
é,. €, et la deuxieme formule s’obtient en inversant le systeme

donné par la premiére.



Transformations des repeéres cartesien, cylindriques
et sphériques

e cartesien — sphérique:

X = r cossinf
Si(x,y,z) = h(r,¢,0), avec y =r sinpsinf , on a
z=r cosf

e =cosy sinf T +sinp sin@j’—&—cos@E
€, = —sinpT+cospf

€g =cosy cosf T +sinp cosfj—sinb k
et

T =cosy sinfl & —siny e, + cosy cosl €

J =sing sinf & + cosy e, +sinp cost &

k = cosf & —sinf &

Preuve — La premiére formule vient de la définition des vecteurs

€, €., € et la deuxieme formule s'obtient en inversant le systeme
donné par la premiére.
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Champ vectoriel en coordonnées
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. - N7 /= D4 .
Conclusion — Un champ vectoriel V (X) de R3 s'écrit dans le
repére mobile de sa variable X:

e en coordonnées cartesiennes (x,y,z): e
V =V, T+ V, ]+ V,k,
e en coordonnées cylindriques (p, ¢, z):
V= Vyé,+ Ve, + V, k,
e en coordonnées sphériques (r, p,0):
w2 — — —
V=V.e+ Vye, + Ve,
ol les coefficients V4, etc, sont des fonctions R3 — R.

La transformation d’'une forme a une autre est donnée par le
changement de coordonnées usuel sur les coefficients, et par
le changement de repére décrit ci-dessus sur les vecteurs.



Champ axial et champ central

Définition — Un champ de vecteurs V de R3 s'appelle:

e Axial s'il ne dépend que de la distance p d'un axe
(supposons k) et est dirigé dans la direction radiale (par
rapport au “radius” p).

En coordonnées cylindrique, il s'écrit \7(,0) =f(p)e,

e Central s'il ne dépend que de la distance r d'un point
(supposons I'origine) et est dirigé dans la direction radiale (par
rapport au “radius” r).

En coordonnées sphériques, il s'écrit \7(r) =f(r)e

Math 2
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Exemples de champs vectoriels e
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Exemples —
e Le vecteur position est le champ central Vectoriels
Conservatifs
Incompressibles
z
X =xT+yJ+zk f
- » S
=pe,+zk y
. N
=re X

e La vitesse d’écoulement d’un fluide:




Exemples de champs vectoriels

e Le champ gravitationnel engendré par
une masse M est le champ central

Une masse m situé a distance r de M est
soumise a la force gravitationnelle

Flr)=mT(r) = —Mm &

r2

e Le champ électrique engendré par une
charge Q est le champ central

O

Are r?

Une charge g située a distance r de Q est
soumise a la force de Coulomb

P =qE(n=-~-Ye&

4re r2

Math 2
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Math 2

Exercices
A. Frabetti
Enoncé — Trouver le domaine des champs de vecteurs
suivants, les dessiner en un point générique de R® (ou R?) et Champs

en deux ou trois points particuliers au choix. Enfin, exprimer Vectoriels

Conservatifs

ces champs en les autres coordonnées. Incompressibles
—

o Vix,y)=(-y,x)=—-yT+x]J

Réponse —
Domaine = R2.

En coord. polaires:

7 . — . — . — —
V(p,¢) = —psing(cospé,—sinpée,) + pcosy (sing€,+cospey)
= p(—sinpcosp+cospsing) &, + p (sin® p+cos? p) €,



Math 2

Exercices

A. Frabetti
e Vipp)=pe+ye;

Réponse — p > 0 et p € [0,2n[, ainsi Dy = R} x [0,27].

Incompressibles

y R /‘
g, 172, €+ 5 € N T

~_ T

7 IR

En coord. cartesiennes:

Nl=
B

\7(x,y) =p (cos @T+sin (pj) + ¢ ( — sin T +cos <pj)
p COS p—sin @)74— (psin <p+g0cosgp)]

= (x —arctan ¥ —X )

+<y+arctan§\/xzx+7y2>j’ six#0ety>D0.

T




Lignes de champ Math 2
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=]

Définition — Les lignes de champ ou courbes intégrales d'un

. -
champ vectoriel V' sont les

. N7 /= V2 Cor s
courbes v qui ont V(X) 7% v [Eu——
comme vecteur tangent en tout &\§

=

point X € 7.

e Si v est une courbe paramétrée par X(t)=(x(t),y(t),z(t)),
avec t € R, le vecteur tangent a v au point X(t) est le vecteur des

dérivées )'?(t):()’((t)y(t),i(t))

e Alors v est une ligne de champ pour V=V, T+ V, 7+ V, k siet
seulement si, pour tout t, on a:

Vi
%(t) = V(%(t) cad { y(t) =V (x(t),y(t), 2(1))
v

e Par tout point fixé Xy = X(to) il passe une seule ligne de champ.



Math 2

Exercice
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Enoncé — Trouver et dessiner les lignes de champ des champs de
vecteurs suivants.

37 — — Cor S
b V<Xa Y, Z) = (*ya X, 0) =—yr+xy Incompressibles

Réponse — X(t)=(x(t), y(t),z(t)) décrit une ligne de champ si:

X(t) = (x(£),5(1), 2(t)) x(t) = —y(t)
= V(x(t),y(t),2(t)) c-3-d y(t) = x(t)
z(t) =0

. . d
Ainsi X(t)X(t)+y(t)y(t)=E(X(t)2+y(t)2) =0, etdonc
Zz ~ N
(/(//\/'%S
x(t)? + y(t)? est constant =3 ”}5
: S S
z(t) est constant NS ST
e —— S
. . y
Au final, v decrit un cercle sur un K ="

plan horizontal centré sur I'axe Oz.



- Math 2
Exercice
A. Frabetti
GM
e Champ gravitationnel: G (r) = — 2 &
Champs
Scalaires
Réponse — Les lignes de champ de G donnent la trajectoire d'un Vectoriels
corps sousmis a la force gravitationnelle exercée par la masse M. Incompressibles

e En coord. sphériques, une courbe paramétrée  est donnée par
r(t)€]0,0[, (t)e[0,2n] et 6(t)€]0,n.

e Les points de la courbe sont donnés par les vecteurs positions

ou le vecteur €, dépend aussi de t car il change de direction avec le

point X(t) (contrairement 3 7, 7 et k).

e Le vecteur tangent a  au point X(t) est donc
X(t) = (t) &(t) + r(t) &(t).

e Pour trouver les lignes de champ, il nous faut un petit lemme.



Math 2

Dérivée d'un vecteur a norme constante

A. Frabetti

Lemme — Soit i = i(t) un vecteur paramétré par t € R.
Si i a norme constante non nulle, c-a-d  ||i(t)|| = ¢ # 0, Champs

Vectoriels

alors le vecteur dérivé i est toujours orthogonal a u, c-a-d L

cl

(t)-U(t) =0 pour toutt (produit scalaire).




Exercice (suite) Math 2
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e Resumé: pour une courbe v en coordonnées sphérique
X(t) = r(t) &(t),
le vecteur tangent est s
X(t) = H(t) &(1) + r(t) ex(t),

et, puisque €(t) a norme constante 1, le vecteur & (t) est
orthogonal a é/(t), c-a-d avec seulement des composantes
dans les directions €, (t) et &(t).

e Alors v est une ligne de champ de G si

X(t) = r(t) e(t) + r(t) &(t)

- T(R) = s &0
) GM
c'est-a-dire si r(t) B _W (1) :



Exercice (suite) Math 2

A. Frabetti

e (2) dit que &/(t) est constant.
Donc les lignes de champ sont des
droites radiales centrées en M.

e (1) donne la distance r(t) de M:

Champs
Sca 5
Vectoriels
Con

Incompressibles

vatifs

r(t) = —,((;?)/Iz = r(t)?it) =

= r(t)>=-3GMt+r}
= r(t) =4/ —3GMt

ou ry = r(0) est la distance initiale du corps de M.
Pour que r(t) soit positif, il faut que t < rg/3GM.

e En somme, un corps qui se trouve distance ry de M est
attiré par la masse (car r(t) diminue quand t augmente), et la
touche a l'instant t = r3 /3GM. Les lignes de champ sont
orientée vers M: le champ gravitationnel est attractif.



Exercice (suite) Math 2
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1 Q .

e Champ électrique: ?(r) =
TE T

Incompressibles

Réponse breve — Les lignes de champ sont aussi des
droites radiales, passant par la position de la charge Q
qui engendre le champ.

Cette fois, les lignes de champs sont orientée vers
I'extérieur: le champ électrique est répulsif.

N\
N




Math 2

4. Champs conservatifs

A. Frabetti

Dans cette section: Conservatifs

Incompressibles
e Gradient

e Potentiel scalaire et champs conservatifs

e Rotationnel

e Champs irrotationnels

e Ensembles connexes, simplement connexes, contractiles

e Lemme de Poincaré (cas simplement connexe)

e Calcul du potentiel scalaire

Va . =14 . .
e Le champ électrique E et le champ gravitationnel ?



Math 2

Gradient d'un champ scalaire

A. Frabetti

Définition — Soit ¢ : D R — R un champ scalaire. Le
gradient de ¢ est le champ de vecteurs % = grad ¢ sur D

donné par les expressions: i
— b, b, 0T
grad<b = ox ! 3y J + oz k
— 0p — 1 0p — oo T,
grad¢ _Tpep+;%e¢+a7k
> _ 99 2 1 0% g 4, 10¢ 2
grad¢ — or e + rsinf Oy € + r o6 ©0-

Exemple — Le gradient de  ¢(r,¢,0) = rpsinf est

V¢(r,<p79) — a(rWSing) e?+ 1 8(r<psin9) eﬂ

1 O(resinf) -

or rsin 6 Jp P + r 00 €6
— H 5 rsinf rpcosf —
=psind & + o5 €, + 7= &

= psinf & + €, + @ cosb &



Propriétés du gradient e

A. Frabetti
) . 1

Proposition — Le gradient grad ¢ est orthogonal aux surfaces

de niveau de ¢ en tout point, et indique le sens de plus forte

croissance de ¢.

Conservatifs

Incompressibles

Proposition — Le gradient V= grad est un opérateur
linéaire agissant sur les champs scalaires (ici f et g):

V(/\ f+ug)= AVF +uVg, pour tout A, p € R.
Sur un produit, il agit par la régle de Leibniz:

v}(fg) = (Vf) g+ f (Vg) .



Potentiel scalaire et champ conservatif Math 2

A. Frabetti

Définition — -
. w3 - S
e On appelle champ de gradient tout champ vectoriel V' qui Vit
. ’ R , N . Conservatifs
est le gradient d'un champ scalaire ¢, c'est-a-dire de la forme Incompressibles

V= grad ¢.

- - . .
e Une force F est conservative si, quand elle agit sur un
systeme isolé, |'énérgie mécanique du systeme est conservée.

Si on voit F comme un champ de force, cela arrive s'il existe
un champ scalaire ¢ tel que

F = — grad ¢.

Dans ce cas, le champ ¢ s'appelle potentiel (scalaire) de F.

e Donc le potentiel de V= V)gzb est le champ —¢!




Exemples de forces conservatives e

A. Frabetti

Champs
Scalaires

Exemples — -
Conservatifs
Incompressibles

e La force gravitationnelle ?(r) = m?(r) et la force de
Coulomb F (r) = q E (r) sont conservatives.

Justement: quel est leur potentiel?

N s, =
e La force de Lorentz (due a un champ magnétique B),
la pression, le frottement ou un choc sont des forces
non-conservatives.

Questions —
o Comment savoir si une force F est conservative?

e Si elle I'est, comment trouver son potentiel?



Math 2

Rotationnel d'un champ vectoriel

A. Frabetti

Définition — Soit V : D = R3 — R3 un champ de vecteurs.
- 7 Ve
Le rotationnel de V est le champ de vecteurs sur D, noté

- —> . . , e
rot V = V x V (produit vectoriel, en France A), donné par: CoEsneils
T 7k
otV =2 2 o
rot V. = ox Oy 0z
Vi V, V;
_(oV, _ Vy\ - oVx _ 0Vz\ 7 oVy oV \ 1
_<8y W)I—i_(az ax)J+<6x Wk
2 _ (18V, Ve o oV, oV, » 1(0(pVy) Vo7
rot V _(pagp 6z>e/’+(§ op eSD—’_ﬁ op 0p k
—3; 1 o(sinVy) oV \ o 1(o(rVe) 0V, —
rot V. = rsinf ( 00 Op e+ 7 or 20 ) €

1 1 9V, 0rVy)\ =
+7(sinew— or ) €0



Exemples de rotationnel

Exemples — En coordonnées cartesiennes:

. \_/)(x,y,z) =—yT+x7J

_ > _ —

rot V(x,y,z) = (a—g %) i+ ( (6zy) )j (fﬁ
0 J+

(1+1)k =2k.

. V(X,y,z) =x2T+2xy] + zk

tot V(x,y,z) =0T+07+ (2y)k
=2y;.

Math 2

A. Frabetti

Conservatifs
Incompressibles



Math 2

Exemples de rotationnel

A. Frabetti
Exemples — En coordonnées cylindriques et sphériques:
Champs
7 . — Nt calaires
o V(p,p,z) =sinpe, +pk )
Conservatifs
sy — _ 10p 20 . dsingp dp . Incompressibles
rot Vi(p,p,z) = (;@‘g) )+ ( oz —ap) &
1 (3(p0) dsing
+p ( op op k
_ = cosp T
=—e, ) k.
w2 - — —
e V(r,p,0) =sinpe +reé
—> 7 _ 1 a(sin 90) or — 1 ar2 (?singp —
rot Vi(r,¢,0) = g ( a0 _%) e+ (T_ a0 ) €
1 1 Jdsing  9(r0)\ -
r (sinG Op or €6
_ — & — cosp =
=0e + r S + rsind 0
_ — cosy —
- 2e¢’ + rsing €0



Champs irrotationnels e

A. Frabetti
Proposition — Le rotationnel est un opérateur linéaire
. . . - -
agissant sur les champs de vecteurs (ici U et V):

ot AU + V) =Arot U+ prot V,  pour tout \,pe R e

et satisfait I'identité

rot (grad ¢) = 0, pour tout champ scalaire ¢.

Définition — Un champ de vecteurs V se dit irrotationnel si

otV =0.

e Donc tout champ de gradient V = grad ¢ est irrotationnel.

e Mais un champ irrotationnel n’est pas toujours un gradient!
Pour savoir s'il I'est, il existe un critére basé sur les proprietés
topologiques du domaine D du champ.




Ensembles simplement connexes et contractiles e

A. Frabetti

Définition — Un sous-ensemble D de R? ou de R3 s'appelle:

. . ~ - Champs
e Connexe si tous les points de D peuvent étre joint par une courbe Scalaires

Vectoriels

contenue dans D. Gt
Incompressibles
connexe connexe non connexe

e Simplement connexe s'il est connexe et toute courbe fermée
dans D peut étre déformée en un point.

R" simpl. connexe
R\ point, R3\ droite

simpl. connexe non simpl. connexe non simpl. connexe

e Contractile si on peut déformer I'espace entier D en un point.

1
I
. —
L+ - |
/

|
D ... &
non contractile non contractile PO ¢

contractile simpl. connexe non simpl. connexe contractile



Lemme de Poincaré (cas simplement connexe)

r ~ - 7 .
Théoréme — Soit V un champ de vecteurs sur R3 et soit
D < R3 un ensemble simplement connexe. Alors:

\7zgr&d¢ surD <= 1otV =0 surD.

e Ainsi, si F est un champ de force sur D R3:

Si D est simplement connexe:

F est conservative

N
: . F est un champ
(a un potentiel scalaire) irrotationnel

. . . - . ’
e Attention — On ne peut rien dire sur F si D n'est pas
simplement connexe: tout peut arriver!

Math 2

A. Frabetti

Vectoriels

Conservatifs

Incompressibles



Calcul du potentiel scalaire

Probléme — Soit V un champ vectoriel de R3 tel que tot V=0,
défini sur un domaine D simplement connexe.
Trouver son potentiel scalaire ¢, tel que V = —%.

Méthode — Pour simglifier, on cherche 'opposé de ¢: une fonction
f:D— Rtelle que V = Vf.  En coordonnées cartesiennes:

of of
(1) & = VX7 (2) = Vya (3) — =V

0z
e On intégre (1) et on trouve
xy.2) = [Valxy,z) e+ g(r.2). (9

23

e On dérive f par rapport a )é on trouve 2—5 avec (2) et on l'integre:
g
£02) = | Er2)dy + b))

e On met (5) dans (4) pour obtenir a nouveau f. On dérive f par
rapport a z et on utilise (3) pour trouver h'(z) et donc h(z).

e A rebour, on insére h(z) dans (5) pour avoir g(y, z), qu’on met
dans (4), et on obtient enfin f(x,y, z).

Math 2

A. Frabetti

Conservatifs

Incompressibles



Exemple: calcul du potentiel scalaire

Exemple — Soit V(x,y,z) =2xy7+ (x> + 2)7 + y k.
e D’abord on vérifie que rot V = 0.

. kv P . .
e Puisque V est défini sur tout R3, qui est simplement connexe, par
. , . 7 .
le Lemme de Poincaré on sait que V' est un champ de gradient.

e Cherchons la fonction f telle que V= gradf. On a
1) L=29. (2 E=x*+2z @) L-=v

e (1) donne f(x,y,z) = J2xy dx +g(y,z) = x°y + gy, 2).

e (2) donne 2—; =x2+ 2—5 =x%+2z, d'ol suit g—f =z,
ensuite g(y,z) = fz dy + h(z) = zy + h(z)
et enfin  f(x,y,z) = x%y + zy + h(z).

e (3)donne L =y+H(z)=y, dou H(z)=0 et h(z)=c.

OOnaalors’ f(x,y,z) =x?y +zy + ¢ ‘

Math 2

A. Frabetti

Vectoriels
Conservatifs

Incompressibles



Math 2

Exemple: potentiel du champ gravitationnel

GM

Exemple — Soit G (r) = ——5 & le champ gravitationnel.
r

A. Frabetti

e D'abord, vérifions qu'il admet un potentiel:

Conservatifs

_ 1 0 GM ~ 1 0 GM\ 5 _ Incompressibles
ﬁ?(r)__F%(_T) e‘P—’_irsinG%(_rT) e = 0. '

o Le champ G est défini sur D = {(r,,6) | r > 0} = R3\origine,

qui est simplement connexe. Par le Lemme de Poincaré, G admet

donc un potentiel scalaire.

e En coordonnées sphériques: cherchons une fonction ¢(r, ¢, 0) telle
que G = —grad ¢, c'est-a-dire

—ar G rsineﬁew_

09 > 1 0¢p - 104 5 GM =
r

Cela donne les équations

1 =9 2 £=0 (3 ZL=o0

or r2o
e (2) et (3) disent que ¢ ne dépend pas de ¢ et de 6.
o (1) devient alors  ¢/(r) = €&, d'oli suit  ¢(r) = =M = V/(r).



5. Champs incompressibles e

A. Frabetti

Conservatifs

Incompressibles

Dans cette section:

e Divergence

Champs a divergence nulle (incompressibles, solénoidaux)

Potentiel vectoriel

Lemme de Poincaré (cas contractile)

Calcul du potentiel vectoriel

Le champ magnétique B et son potentiel A



Math 2

Divergence

A. Frabetti

Définition — Soit V : D = R3 — R3 un champ de vecteurs.
. - . 7
La divergence de V' est le champ scalaire sur D, noté

divV =V.V (produit scalaire), donné par: (
R

divV = aa\)/: + % + 56\?

vV - %2 a(r;’\/r) rsi1n9 % rsilnH W
Exemples —
e Vix,y) = —yT+x] — divV(x,y)=0.
* V(X>Y>Z) = x2T+2xy]+zk —

div V(x,y,z) =2x+2x+1
=4x+1
2

E- 2 te — - 25 2(5) -0



Propriétés de la divergence Math 2

A. Frabetti

Proposition — La divergence est un opérateur linéaire
. . . - w3
agissant sur les champs de vecteurs (ici U et V ):

Con atifs
Incompressibles

div(AU+u7)=AdivU+udivV, pour tout A\, n € R

et satisfait aux identités suivantes:

div(¢V) =¢divV +gradé - V
div(UAV) =10t (U)- V=T 10t (V)

grad (divV) = AV +rotrot V (A\_/ = Laplacien vectoriel)
=0

)
)
div(grad¢) = A¢ (= Laplacien)
)
div (tot V)

pour tout champ scalaire ¢.



< . . . L, . Math 2
Champs a divergence nulle, incompressibles, solénoidaux .

A. Frabetti

Définition — Champs

. 7 ~ - . . 7
e Un champ vectoriel V' est a divergence nulle si div V =0. T

Conservatifs

Incompressibles

e Un fluide est incompressible si son volume reste constant

quand il est sousmis a une pression. (Par exemple, un liquide est
consideré incompressible, un gaz non.) Cela arrive si le champ v
qui décrit la vitesse d’écoulement du fluide a divergence nulle.

7 . s . N
e Un champ de vecteurs V' qui décrit un courant de matiére
est dit solénoidal (du greque sélen = tuyau) si le volume de
matiére transportée est constant (comme s'il était contraint dans

. . . -
un tuyau): cela arrive si div V = 0.
. 1 , .- .
Exemple — Un champ de gradient grad ¢ est solénoidal si
. —_—
div (grad ¢) = A¢ = 0,

c'est-a-dire si la fonction ¢ est harmonique.



Potentiel vectoriel et invariance de jauge e

A. Frabetti

Définition — Soit V un champ de vecteurs. On appelle
potentiel vectoriel de V un champ U tel que V = rot U.

nservatifs
Incompressibles

Proposition —

. w3 . . - \
e Si le champ V' admet un potentiel vectoriel, alors V' est a
divergence nulle.  (Car V =tot U et divrot U =0.)

o Si U est un potentiel de \7 alors U + grad ¢ I'est aussi,
quelconque soit le champ scalaire ¢.
(En effet, on a

rot (U—kgraé qS) —1ot U = \_/)7
car rtotgrad¢ =0 pour tout ¢.)
Définition — Le remplacement U->TU+ grad ¢ s'appelle
transformation de jauge, la liberté dans le choix du potentiel

vectoriel est due a l'invariance de jauge du champ Voetle
choix d'un potentiel s'appelle choix de jauge.



Lemme de Poincaré (cas contractile) Math 2

A. Frabetti

Remarque - Si = 1ot U alors div V = 0, mais si
divV =0 alors V n'est pas toujours = tot U !

Cor
Incompressibles

Théoreme — Soit V un champ de vecteurs sur R3 et soit
D < R3 un ensemble contractile. Alors:

V:rRU sur D — divV =0 surD.

. - - -
e Ainsi, si V est un champ de vecteurs sur D R3:

Si D est contractile:

V admet un «— Vesta divergence nulle
potentiel vectoriel (incompressible / solénoidal)

. - <7 . '
e Attention — On ne peut rien dire sur V si D n’est pas
contractile: tout peut arriver!



Math 2

Calcul du potentiel vectoriel

A. Frabetti

Probleme — Soit V un champ vectoriel de R3 tel que

div V = 0, défini sur un ensemble contractile. Trouver son
. R — — s —

potentiel vectoriel U, tel que V = rot U. Conservatifs

Incompressibles

Méthode — En coordonnées cartesiennes, le potentiel
- - - ..
vectoriel de V est un champ U = f7 + gJ + hk défini sur D
kv2 — 77 1 N .
tel que V =rot U, c'est-a-dire

oh og of oh g _of

() @_5_ X () g_aix_ Z () Ox 8)/_ z-

e |l s'agit de trouver les trois fonctions f, g et h a travers leurs
dérivées partielles (9 en tout) a partir de seulement 3
équations différentielles du ler ordre qui les relient.

e Ce systeme se résout par intégrations successives (comme
pour le potentiel scalaire), mais n'a pas de réponse unique: mis
a part les constantes, il y a en plus 6 (= 9 — 3) choix a faire!



Cas particulier de champ et de potentiel e

A. Frabetti

Cas particulier — Si V = V, k (c-a-d Vo =V, =0),
avec

Con atifs
.= 8Vz Incompressibles
div V = =0,
0z

et on choisit h = 0 (ce qui fixe 3 conditions sur les 6 libres), il
ne reste qu'un potentiel de la forme U =f7+ gJ sousmis
aux équations
0 of 0 of

g _p —0 g

a._ % _9d_vy,
0z ’ 0z ) ox Oy

(1)

e (1) et (2) assurent que f et g ne dépendent pas de z.

e Pour resoudre (3), il faut encore fixer arbitrairement 4 af et

0 ..
% (2 conditions), plus I'une des deux dérivées 9 ou %
dy dy ox

(derniere condition libre).



Exemple: calcul de potentiel vectoriel e

A. Frabetti

Exemple — Soit \7(x,y, z) = (Xy2 - X3)/) k.

e D’abord, vérifions qu'il admet un potentiel vectoriel:

Con atifs
Incompressibles

d(xy? — x3y)

P =0.

div \7(X, y,z) =

e Puisque D\—/> = R3 est contractile, par le Lemme de Poincaré

7 . . - Py
V admet un potentiel vectoriel U défini sur tout R3.

N
e Cherchons U sous la forme

l_j(x,y,z) =f(x,y)T+g(x,y)J

(h=0etdonc%=a—g=0)telque



Math 2

Exemple (suite)
A. Frabetti

Solution 1: on choisit

1
F=0t = gloy)= fo dx + G(y) = 5x%y* + G(y)

torie

Incompressibles

)|

) 1
I _x3y = f(x,y) = fx3ydy+ F(x) = §X3y2 + F(x)

oy
ol F(x) et G(y) sont des fonctions arbitraires. On a donc

— 1 1
Uitxy2) = (3272 + 00 ) 74 (3374 60)) 7
Solution 2: on choisit

L=y —x? = flxy) = f(x3y —xy?)dy + F'(x)
= %X3y2 - %Xy3 + F'(x)
ol F’'(x) et G'(y) sont des fonctions arbitraires. On a alors

— 1 1 . .
Us(x,y,z) = (2X3y2 — §X)/3 + F/(X)> i+ G'(y)J].



Exemple (suite)

Transformation de jauge — La différence entre les deux
solutions trouvées est donnée par le gradient d'une fonction:
en posant toutes les fonctions F, G, F' et G’ égales a zéro,

on a

Ul(xayvz) - l_jZ(vaaZ)

1,37 1.2 2~
3XY I+ 5Xx7y7 )

gr—ac)l (%Xzy3 + c) .

Math 2

A. Frabetti

Cc rvatifs

Incompressibles



Exercice: le champ magnétique

Enoncé — Un courant d’intensité | qui passe dans un fil droit
placé sur I'axe k engendre le champ magnétique (statique)

E)(x,y,z)—'u—/( Y 7+

T2\ X242 X2+y2j>’

ol pu est la permeabilité magnétique. La force que B exerce
sur une charge q placée en position (x,y,z) est donnée par

F(x.y.z) =qB(x,y,2)
et s'appelle force de Lorentz.

. e ., . - .
1) Trouver le domaine de définition de B, son expression en
coordonnées cylindriques et en dessiner quelques valeurs.

Réponse —
o Dy= {(X,y,z) eR3 | x?+y%# 0} = RR3 privé de I'axe k

Donc Dg n'est pas simplement connexe (et pas contractile).

Math 2

A. Frabetti

Vectorie
Conservatifs
Incompressibles



Exercice: le champ magnétique e

A. Frabetti

o L'expression de E)(x,y,z) = ‘2‘—7: <_ Y T4+ L") en

coordonnées cylindriques est:

=4 / i (’()Hsvv"'»m\\
_ psinp - Cos p —
B(p,(,D,Z) =5 - 2§0’+p 2SO )

271' p p ./ Incompressibles
wll
= €
2m p 7
. —>
e Le dessin de B est alors:
x “ k « <
o+ - N LA
S I A
— ~ - = j
> o .
=
A A E) “ = = ~ ?”




Exercice: le champ magnétique
2) La force de Lorentz F=qgB= 54 1 e¢, est-elle conservative?

Autrement dit, le champ B admet-il un potentle/ scalaire?

Réponse —
e Ona

_ ol 0 (1) . 10 1 il -
tot B = o [ 8z<p> ep+pap k| =0.

Par le lemme de Poincaré alors, on sait qu'un potentiel scalaire ¢
existe sur tout sous-ensemble D < Dj simplement connexe,

par exemple sur D = R3 privé du demi-plan ¢ = 0.

e Calculons ¢ tel que B = —grad ¢ sur un D simplement connexe:

-0 (2) _ 106 mll (3) o6

_ -0
p oy 2 p 0z

@ -3

(1) et (3) disent que ¢ ne dépend pas de p et de z.

2

(2) s'écrit

/ /
s -l — | g(p) = -2 0+ 90)

S}

Math 2

A. Frabetti

Incompressibles



Exercice: le champ magnétique

e Or, le potentiel ¢(p) = ”01 (¢ + o)  est bien défini
seulement si ¢ ne fait pas un tour complet autour de I'axe k!

En effet, si o peut faire un tour complet, au méme point physique
donné en coordonnées polaires par @y ou g + 27, on a deux valeurs
distinctes du champ

go=—Hlpy et ¢ = —4L (po +2m),

ce qui n'a pas de sens.

. = ’ . .
e En conclusion, le champ B n'a pas de potentiel scalaire
sur tout son domaine de définition.

Par conséquent, la force de Lorentz n'est pas conservative,
dés qu’on considere des tours complets autour du fil.

e L'effet physique est bien visible: si une particule chargée,
sousmise a la force de Lorentz, fait un tour complet du fil, elle
aquiert une énergie potentielle qui se manifeste a la fin du tour
par un tourbillonement (spin)!

Math 2

A. Frabetti

rvatifs

Incompressibles



Exercice: le champ magnétique e

A. Frabetti

3) Le champ B admet-il un potentiel vecteur?

Réponse — Conservatifs
— |1 0 1 Incompressibles
none divB(va—’éipa@(p)“"

Par le lemme de Poincaré alors, on sait qu'un potentiel vectoriel A
existe sur tout sous-enemble D — Dy contractile,

par exemple D = R3 privé du demi-plan ¢ = 0.
e Calculons A tel que B = 1ot A sur un D contractile. En générale:
A(p.p,2) = f(p,p,2) 6 + 8p, 0, 2) €, + h(p, p, 2) k

est sousmis aux équations

D
>
S

1) =0 @) F-Zowll o3 L(YR-Z)-0

oz dp s P op

S
q)
©

et on a six choix a faire pour avoir une solution (plus des constantes).



Exercice: le champ magnétique

Math 2

A. Frabetti

e On choisit f = g =0cet % =0, alors on a:

(1) STZ =0 = hnedépend pas de ¢ (choix: ¢y =0) e

Incompressibles

(2) Z=—ll — h(p)=—4L1Inp (choix po—1)

Avec ces choix, I'expression du potentiel magnétique A est

e Contrairement au potentiel scalaire ¢, le potentiel
. —> . Py
magnétique A est bien défini partout sauf en p=0:

D; = D;.

. suw ¢ .
En conclusion, le champ magnétique B admet bien un
potentiel vectoriel sur tout son domaine de définition!
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