
Université Claude Bernard Lyon 1
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Présentation du cours

Ce cours est conçu comme support pour l’UE de Math2, L1 - portail PCSI, de la Faculté des Sciences et Technologie de
l’Université Lyon 1. Il contient les résultats théoriques mentionnés au Cours Magistral, illustrés par des exemples et des
exercices resolus.

Le but du cours est d’introduire les notions mathématiques qui permettent de comprendre et manipuler les champs
scalaires, comme la temperature ou l’altitude, et les champs de vecteurs, tels que les forces de gravité, de Coulomb et de
Lorentz, ou les champs de vitesse décrivant le mouvement d’un corps rigide ou l’écoulement d’un fluide.

Les champs, scalaires ou vectoriels, sont des lois qui dépendent des réferentiels fixés au départ et à l’arrivée, c’est-à-dire des
grandeures qu’on choisit pour les décrire et de leur unité de mesure. La nature des champs est determinée par la manière de
se transformer sous changement de réferentiels. Quand on fixe les réferentiels, les champs sont representés par des fonctions,
scalaires ou vectorielles. Quand on fixe les unité de mesure mais on admet des changement de grandeurs (comme on le fait
en mathématiques), les champs scalaires peuvent être assimilés à des fonctions réelles, et les champs de vecteurs peuvent être
assimilés à des fonctions vectorielles sousmises à une modification du repère d’arrivée si celui de départ est modifié.

Le cours est divisé en deux parties: dans la première on étudie les fonctions réelles (representation graphique, lignes ou
surfaces de niveau, dérivées, intégrales) et les fonctions vectorielles (en particulier les changements de coordonnées). Dans la
deuxième partie on étudie les champs vectoriels (lignes de champ, divergence, rotationnel, circulation et flux), en coordonnées
cartesiennes, cylindriques et sphériques.

Les principaux résultats visés sont:

• La representation graphique d’un champ scalaire (fonction) avec surfaces de niveau, points de minimum et maximum
locaux, et approximation locale par un polynôme de Taylor.

• La representation graphique d’un champ de vecteur et la détermination de ses lignes de champ.

• Le calcul du potentiel scalaire d’un champ conservatif, et du potentiel vectoriel d’un champ incompressible (solenöıdale).

• Le calcul de la circulation et du flux d’un champ de vecteurs, le théorème de Stokes-Ampère, le théorème de Gauss-
Ostrogradski et le théorème sur la circulation d’un champ de gradient.

Prérequis:

1. Espaces vectoriels et vecteurs de R2 et R3 (produits scalaire, vectoriel et mixte).

2. Applications linéaires et matrices (produit, détérminant, matrice inverse).

3. Géométrie du plan et de l’espace en coordonnées cartesiennes (droites, coniques, plans, quadriques).

4. Calcul différentiel et intégral des fonctions réelles d’une variable (graphes, dérivées, extrema locaux, Taylor, primitives).

5. Équations différentielles du 1er ordre.
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Part I

Fonctions et champs scalaires
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1 Fonctions de plusieures variables

1.1 Coordonnées polaires, cylindriques et sphériques.

Le plan est identifié à l’espace vectoriel R2 si on fixe un repère cartesien (orthonormal direct) pO,�ı ,� q,
où O est un point quelconque et �ı ,� sont deux vecteurs orientés dans le sens antihoraire tels que �ıK�
et }�ı } “ }� } “ 1. �i

�j

‚
O

En effet, tout point P du plan est identifié au vecteur �v “ ÝÝÑ
OP appliqué en O, et puisque l’ensemble t�ı ,� u forme une base

de l’espace vectoriel des tels vecteurs, tout vecteur �v “ ÝÝÑ
OP est combinaison linéaire de �ı et � . On appelle:

‚ Coordonnées cartesiennes de P = couple px, yq P R2 t. q. �v “ ÝÝÑ
OP “ x�ı `y� ”

ˆ
x
y

˙
,

c. à d.

#
x “ }ÝÝÑ

OP 1}
y “ }ÝÝÑ

OP
2}

= longueur des projections orthogonales de �v dans les directions �ı et � :

‚
O

�v
‚P

‚
P 1

‚P 2

x

y

‚ Coordonnées polaires de P (si P ‰ p0, 0q) = couple pρ,ϕq P R` ˆ r0, 2πr

t. q.

#
x “ ρ cosϕ

y “ ρ sinϕ
c. à d.

$
’&
’%

ρ “ }ÝÝÑ
OP } “ a

x2 ` y2

ϕ t.q. tanϕ “ y
x si x ‰ 0 ou cotϕ “ x

y si y ‰ 0`
par ex. ϕ “ arctan y

x si x, y ą 0
˘ ‚

O

ρ
‚P

‚
P 1

‚P 2

x

y ϕ

Exemples.

1.
Coordonnées
polaires

ÝÑ dessin ` calculs avec formules ÝÑ coordonnées
cartesiennes

A

"
ρ “ 3
ϕ “ 5π{4 �i

�j

5π{4

‚A
3

#
x “ 3 cosp5π{4q “ ´ 3

?
2

2

y “ 3 sinp5π{4q “ ´ 3
?
2

2

A “ p´3
?
2

2
,´3

?
2

2
q

B

"
ρ “ ?

2
ϕ “ 3π{4

�i

�j

3π{4
‚B?
2

#
x “ ?

2 cosp3π{4q “ ´?
2
2

2

y “ ?
2 sinp3π{4q “ 3

?
2
2

2

B “ p´1, 1q

C

"
ρ “ 0
ϕ “ 3π{2 �i

�j‚C
"

x “ 0 cosp3π{2q “ 0
y “ 0 sinp3π{2q “ 0

C “ p0, 0q

2.
Coordonnées
cartesiennes

ÝÑ dessin ` calculs avec formules ÝÑ coordonnées
polaires

A “ p2, 3q �i

�j

‚A

2

3 "
ρ “ ?

4 ` 9 “ ?
13

tanϕ “ 3
2

A

"
ρ “ ?

13
ϕ “ arctan

`
3
2

˘

B “ p2, 0q �i
�j ‚B

2

"
ρ “ ?

4 ` 0 “ 2
tanϕ “ 0

2 “ 0
B

"
ρ “ 2
ϕ “ 0

C “ p0, 3q �i
�j

‚C
3 $

&
%

ρ “ ?
0 ` 9 “ 3

cosϕ “ 0
3 “ 0

sinϕ “ 3
3 “ 1

C

"
ρ “ 3
ϕ “ π{2
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De même, l’espace est identifié à l’espace vectoriel R3 si on fixe un repère cartesien (orthonormal direct)

pO,�ı ,� ,�k q, où est un point quelconque et �ı ,� ,�k sont trois vecteurs orientés comme dans la figure, tels

que �ıK�K�kK�ı et }�ı } “ }� } “ }�k } “ 1. �i �j

�k

En effet, tout point P de l’epace est identifié au vecteur �v “ ÝÝÑ
OP appliqué en O, et puisque l’ensemble t�ı ,� ,�k u forme une

base de l’espace vectoriel des tels vecteurs, tout vecteur �v “ ÝÝÑ
OP est combinaison linéaire de �ı , � et �k . On appelle:

‚ Coordonnées cartésiennes de P = triplet px, y, zq P R3 t. q. �v “ ÝÝÑ
OP “ x�ı ` y� ` z�k ”

¨
˝

x
y
z

˛
‚,

c. à d.

$
’’&
’’%

x “ }ÝÝÑ
OP 1}

y “ }ÝÝÑ
OP

2}
z “ }ÝÝÑ

OP
3}

= longueur des projections orthogonales de �v dans les directions �ı , � et �k

‚ Coordonnées cylindriques de P = triplet pρ,ϕ, zq P R` ˆ r0, 2πrˆR t.q.

$
&
%

x “ ρ cosϕ
y “ ρ sinϕ
z “ z

c. à d.

$
’&
’%

ρ “ |ÝÝÑOQ| “ a
x2 ` y2

ϕ “ arctan
y

x
z “ z

.

‚ Coordonnées sphériques de P = triplet pr,ϕ, θq P R` ˆ r0, 2πrˆr0,πs t.q.

$
&
%

x “ r cosϕ sin θ
y “ r sinϕ sin θ
z “ r cos θ

c. à d.

$
’’’&
’’’%

r “ |ÝÝÑOP | “ a
x2 ` y2 ` z2

ϕ “ arctan
y

x
θ “ arccos

za
x2 ` y2 ` z2

.
O

‚

‚

‚

‚

‚

P

P 1

P 2

P3

Q

x

y

z

ϕ

θ

ρ

r

Exemples.

1.
Coordonnées
cylindriques
ou sphériques

ÝÑ dessin ` calculs avec formules ÝÑ coordonnées
cartesiennes

A

$
&
%

ρ “ 3
ϕ “ π{3
z “ 2

y

z

x

‚A

π{3
3

2
$
&
%

x “ 3 cospπ{3q “ ´ 3
2

y “ 3 sinpπ{3q “ 3
?
3

2
z “ 2

A “ p´3

2
,
3

?
2

2
, 2q

B

$
&
%

ρ “ ?
2

ϕ “ π{4
z “ ´3

y

z

x

‚
B

π{4
?
2

´3

$
’&
’%

x “ ?
2 cospπ{4q “

?
2
2

2 “ 1

y “ ?
2 sinpπ{4q “

?
2
2

2 “ 1
z “ ´3

B “ p1, 1,´3q

C

$
&
%

r “ ?
2

ϕ “ π{2
θ “ 3π{4

y

z

x ‚
C

3π{4
?
2

π{2

$
&
%

x “ ?
2 cospπ{2q sinpπ{4q “ 0

y “ ?
2 sinpπ{2q sinpπ{4q “ 1

z “ ?
2 cosp3π{4q “ ´1

C “ p0, 1,´1q

D

$
&
%

r “ 1
ϕ “ π{3
θ “ π{6

y

z

x

‚D
π{6

1

π{3

$
’&
’%

x “ cospπ{3q sinpπ{6q “ 1
4

y “ sinpπ{3q sinpπ{6q “
?
3
4

z “ cospπ{6q “
?
3
2

D “ p1
4
,

?
3

4
,

?
3

2
q
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2.
Coordonnées
cartesiennes

ÝÑ dessin ` calculs avec formules ÝÑ coordonnées
cylindriques

` coordonnées
sphériques

A “ p´1, 1, 1q
y

z

x

‚A

1

1

-1

$
’’&
’’%

ρ “ ?
1 ` 1 “ ?

2
tanϕ “ ´1

r “ ?
1 ` 1 ` 1 “ ?

3
cos θ “ 1?

3

A

$
&
%

ρ “ ?
2

ϕ “ 3π{4
z “ 1

A

$
&
%

r “ ?
3

ϕ “ 3π{4
θ “ π{6

B “ p3, 0, 0q
y

z

x

‚B3

$
’’&
’’%

ρ “ ?
9 ` 0 “ 3

tanϕ “ 0
3 “ 0

r “ ?
9 ` 0 ` 0 “ 3

cos θ “ 0
3 “ 0

B

$
&
%

ρ “ 3
ϕ “ 0
z “ 0

B

$
&
%

r “ 3
ϕ “ 0
θ “ π{2

C “ p0, 1, 1q y

z

x

‚C

1

1

$
’’’’&
’’’’%

ρ “ ?
0 ` 1 “ 1

cosϕ “ 0
sinϕ “ 1

r “ ?
0 ` 1 ` 1 “ ?

2
cos θ “ 1?

2

C

$
&
%

ρ “ 1
ϕ “ π{2
z “ 1

C

$
&
%

r “ ?
2

ϕ “ π{2
θ “ π{4

1.2 Ensembles ouverts, fermés, bornés et compacts.

Soit Rn l’un des trois espaces R, R2 ou R3.

Définition. Si P P Rn est un point et r ě 0 indique un rayon, on note BP prq, BP prq et BBP prq les ensembles suivants:

‚ dans R: intervalle ouvert Baprq “sa ´ r, a ` r r

intervalle fermé Baprq “ ra ´ r, a ` rs s | rr
a

r

ouvert

r | sr
a

r

fermé

||| ‚‚
a ` raa ´ r

bord

bord de l’intervalle BBaprq “ �
a ´ r, a ` r

(
(= points extrémaux).

‚ dans R2: disque ouvert Bpa,bqprq “ �px, yq | px ´ aq2 ` py ´ bq2 ă r2
(

disque fermé Bpa,bqprq “ �px, yq | px ´ aq2 ` py ´ bq2 ď r2
( ‚ ‚ ‚pa, bq pa, bq pa, bq

r r r

ouvert fermé bord

bord du disque BBpa,bqprq “ �px, yq | px ´ aq2 ` py ´ bq2 “ r2
(

(= cercle)

‚ dans R3: boule ouverte Bpa,b,cqprq “ �px, y, zq | px ´ aq2 ` py ´ bq2 ` pz ´ cq2 ă r2
(

boule fermée Bpa,b,cqprq “ �px, y, zq | px ´ aq2 ` py ´ bq2 ` pz ´ cq2 ď r2
(

x

y

z

bord de la boule BBpa,b,cqprq “ �px, y, zq | px ´ aq2 ` py ´ bq2 ` pz ´ cq2 “ r2
(

(= sphère)

Définition. Soit D Ă Rn un sous-ensemble fixé.

‚ À noter: si P est un point intérieur à D il existe une boule ouverte BP contenue dans D;
si P est un point extérieur à D il existe une boule ouverte BP qui n’intersecte pas D.

‚ Un point P P Rn s’appelle point du bord de D si toute boule ouverte BP centrée
en P contient à la fois des points de D et de son complémentaire RnzD (où le symbol
z indique la soutraction entre ensembles).

Attention: un point du bord de D peut être dans D ou non!

‚

‚
‚

bord

intérieur

extérieur

‚ L’ensemble des points du bord de D s’indique avec BD.
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L’ensemble D Ă Rn s’appelle

‚ ouvert s’il ne contient aucun de ses points de bord;

‚ fermé s’il contient tous ses points de bord.
ouvert fermé

Le complémentaire d’un ouvert est toujours fermé, et viceversa le complémentaire d’un fermé est toujours ouvert.

Par convention, l’ensemble vide H et son complémentaire Rn sont à la fois ouverts et fermés dans Rn.

Attention: il existe aussi des ensembles qui ne sont ni ouverts ni fermés!
Par exemple, un disque avec moitiè de son bord.

ni ouvert ni fermé

L’ensemble D Ă Rn s’appelle

‚ borné s’il existe un disque ouvert B qui le contient;

‚ compact s’il est fermé et borné.

borné compact

Exemples.

1. Les droites, demi-droites et demi-plans sont fermés non bornés
dans le plan R2 ou dans l’espace R3.
De même, les plans sont fermés non bornés dans R3.

‚

dans R2 dans R3

2. Toute boule ouverte de Rn est ouverte et bornée.
Toute boule fermée est compacte, ainsi que l’intérieur
d’un carré avec son bord (dans R2), et l’intérieur d’un
cube avec son bord (dans R3).

boule ouverte boule fermée cube ouvert cube fermé

3. Dans le plan R2, le quadrant R` ˆR` est fermé non borné.
Le même quadrant sans bord, R˚̀ ˆ R˚̀ est ouvert non
borné. R` ˆ R` R˚

` ˆ R˚
`

Exercice. Dessiner les sous-ensembles suivants de R2 et dire s’ils sont ouverts, fermés, bornés et compacts:

A “
!

px, yq P R2 | 0 ă x ă 5
)

B “
!

px, yq P R2 | 0 ď x ď 5, 0 ď y ď x2 ` 3
)

C “
!

px, yq P R2 | 0 ď x ă 5, 0 ď y ă x2 ` 3
)

y

5
x

A
ouvert non borné

y

3

5
x

B
compact

y

3

5
x

C
borné

ni ouvert ni fermé
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1.3 Fonctions de deux ou trois variables.

Soient Rn et Rm les espaces vectoriels R, R2 ou R3. Les points P de Rn, déterminés par des coordonnées, sont alors notés
par �x “ px1, ..., xnq.
Définition. Une fonction de plusieures variables est une application f qui associe à tout point �x P Rn au plus une

valeure fp�xq “ `
f1p�xq, ..., fmp�xq˘ P Rm. On la note par

f : Rn ÝÑ Rm : �x ÞÑ fp�xq.
Si m “ 1, la fonction f : Rn ÝÑ R s’appelle réelle. Si m ą 1, la fonction f s’appelle vectorielle. (Attention: une fonction
vectorielle n’est pas forcement une application linéaire!)

Exemples.

• Fonctions réelles: f : R2 ÝÑ R, px, yq ÞÑ fpx, yq “ x3 ` sinpxyq ` 1

Pression “ fpVolume,Temperatureq
f : R3 ÝÑ R, px, y, zq ÞÑ fpx, y, zq “ x3z ` xyz ` lnpz2 ` 1q

• Fonctions vectorielles: f : R2 ÝÑ R3, px, yq ÞÑ fpx, yq “ px2, x ` y, y3q
g : R3 ÝÑ R2, px, y, zq ÞÑ gpx, y, zq “ px2 ` z, xz ` yq
h : R` ˆ R ÝÑ R2, pρ,ϕq ÞÑ hpρ,ϕq “ pρ cosϕ, ρ sinϕq changement de coordonnées

• L’association fpx, yq “ ˘a
x2 ` y2 n’est pas une fonction, car à tout px, yq elle associe deux valeurs, `a

x2 ` y2 et

´a
x2 ` y2.

Définition. Soit f : Rn ÝÑ Rm une fonction. On appelle:

• domaine de f l’ensemble des points de Rn pour lesquels f est bien définie:

Df :“
!

px1, ..., xnq P Rn | il esiste fpx1, ..., xnq P Rn
)
;

• image de f l’ensemble

If :“
!

py1, ..., ymq P Rm | py1, ..., ymq “ fpx1, ..., xnq, px1, ..., xnq P Df

)
.

Exemples.

1. fpx, yq “ a
x2 ` y2 ´ 1, f : R2 ÝÑ R

Df “ �px, yq P R2 | x2 ` y2 ´ 1 ě 0
( “ complémentaire du disque BOp1q

(fermé non borné)

If “ r0,`8r“ R` (fermé non borné)

y

x

2. fpx, yq “ a
1 ´ x2 ´ y2, f : R2 ÝÑ R

Df “ �px, yq P R2 | 1 ´ x2 ´ y2 ě 0
( “ disque fermé BOp1q (compact)

If “ r0, 1s (compact)

car x2 ` y2 ě 0 ðñ 0 ď 1 ´ x2 ´ y2 ď 1 ðñ 0 ď a
1 ´ x2 ´ y2 “ fpx, yq ď 1

y

x

3. fpx, yq “ lnpx2 ` y2 ´ 1q, f : R2 ÝÑ R

Df “ �px, yq P R2 | x2 ` y2 ´ 1 ą 0
( “ complémentaire du disque BOp1q

(ouvert non borné)

If “ R (ouvert et fermé dans R, non borné)

y

x

9



4. fpx, yq “ lnp1 ´ x2 ´ y2q, f : R2 ÝÑ R

Df “ �px, yq P R2 | 1 ´ x2 ´ y2 ą 0
( “ disque ouvert BOp1q (ouvert borné)

If “ lns0, 1s “s ´ 8, 0s “ R´ (ouvert non borné)

y

x

5. fpx, yq “
´ 1

x2
,´ 1

y2

¯
, f : R2 ÝÑ R2

Df “ �px, yq P R2 | x ‰ 0, y ‰ 0
( “ plan sans axes (ouvert non borné)

If “ R`
0 ˆ R´

0 = 4eme quadrant sans bord (ouvert non borné)

y

x

f
y

x

6. fpx, y, zq “
´?

x2 ´ z2,´a
y2 ` z2

¯
, f : R3 ÝÑ R2

Df “ �px, y, zq P R3 | x2 ´ z2 ě 0
( “ espace délimité par les deux plans z “ ˘x

(fermé non borné)

If “ R` ˆ R´ = 4eme quadrant (fermé non borné)

x

z

y

f
y

x

Exercice. Trouver et dessiner le domaine et l’image des fonctions suivantes, en précisant s’ils sont ouvert, fermés, bornés
et compacts:

1. fpx, yq “ lnpx2 ` y2 ` 1q
x2 ` y2

, f : R2 ÝÑ R

Df “ �px, yq P R3 | x2 ` y1 ` 1 ą 0, x2 ` y2 ‰ 0
(

“ R2ztp0, 0qu “ plan moins l’origine (ouvert non borné)

car la condition x2 ` y1 ` 1 ą 0 est vérifiée pour tout px, yq P R2 et puisque
x2 ` y2 ě 0 toujours, la condition x2 ` y2 ‰ 0 est vérifiée si px, yq ‰ p0, 0q.

If “ R˚̀ “s 0,`8 r (ouvert non borné)

car x2 ` y2 ą 0 implique x2 ` y2 ` 1 ą 1 et par conséquent lnpx2 ` y2 ` 1q ą 0:
le quotient de deux nombres positifs est positif.

y

x

2. gpx, yq “
ˆ
lnpx2 ` 1q

y2
,
lnpy2 ` 1q

x2

˙
, g : R2 ÝÑ R2

Dg “ �px, yq P R2 | x2 ` 1 ą 0, y ‰ 0, y2 ` 1 ą 0, x ‰ 0
(

“ R˚ ˆ R˚ “ plan moins les deux axes (ouvert non borné)

car les conditions x2 ` 1 ą 0 et y2 ` 1 ą 0 sont vérifiées pour tout px, yq P R2.

Ig “ R˚̀ ˆ R˚̀ = 1er quadrant sans bord (ouvert non borné)

car x ‰ 0 et y ‰ 0 implique que x2 ą 0 et y2 ą 0, et par conséquent lnpx2`1q ą
0 et lnpy2 ` 1q ą 0: les deux termes sont donc le quotient de deux nombres
positifs, il sont forcement positifs.
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1.4 Graphes et lignes de niveau.

Rappel. Si f : R ÝÑ R est une fonction d’une seule variable, son graphe est l’ensemble

Γf “
!

px, yq P R2 | x P Df , y “ fpxq
)

Ă R2.

x

fpxq
px, fpxqq

‚
Γf

Les propriétés principales des fonctions sont bien visibles sur son graphe, qui a l’avantage de pouvoir être dessiné. Le graphe
des fonctions usuelles est à connaitre par coeur:

x

fpxq “ x

x

fpxq “ x2

x

fpxq “ x3

x

fpxq “ x4

x

fpxq “ 1{x

x

fpxq “ 1{x2

x

fpxq “ 1{x3

x

fpxq “ 1{x4

x

fpxq “ ?
x

x

fpxq “ 3
?
x

x

fpxq “ 4
?
x

x

fpxq “ 5
?
x

x

fpxq “ |x|

x

fpxq “ |x3|

x

fpxq “ |1{x|

x

fpxq “ | 3
?
x|

x

fpxq “ sinpxq

x

fpxq “ cospxq

x

fpxq “ tanpxq

x

fpxq “ cotpxq

x

fpxq “ arcsinpxq

x

fpxq “ arccospxq

x

fpxq “ arctanpxq

x

fpxq “ arccotpxq

x

fpxq “ exppxq

x

fpxq “ expp´xq “ 1
exppxq

x

fpxq “ lnpxq

x

fpxq “ ´ lnpxq “ ln
`
1
x

˘

11



Définition. Soit f : Rn ÝÑ Rm une fonction de plusieures variables.

Le graphe de f est l’ensemble

Γf :“
!

p�x, �yq P Rn`m | �x P Df , �y “ fp�xq
)

Ă Rn`m.

Le dessin du graphe est difficile à réaliser si n et m sont grands, à cause
de la taille de l’espace ambient Rn`m. �x

p�x, fp�xqq

fp�xq

‚

‚
‚

Rn

Rm

On regarde alors en particulier les fonctions réelles de deux variables: le graphe d’une fonction f : R2 ÝÑ R est l’ensemble

Γf :“
!

px, y, zq P R3 | px, yq P Df , z “ fpx, yq
)

Ă R3.

x

y

z

‚ ‚

‚

‚

‚

‚

�x

p�x, fp�xqq
fp�xq

�y

p�y, fp�yqq
fp�yq

x

y

z

Γf Ă R3

Exemple. fpx, yq “ a
1 ´ x2 ´ y2 “ z

ùñ Df “ BOp1q If “ r0, 1s
x2 ` y2 ` z2 “ 1 et z ě 0 ðñ Γf= demi-sphère

y

z

x

Pour dessiner le graphe d’une fonction f , on peut regarder l’intersection de Γf avec les plans horizontaux z “ a (pour
tout a P R), ce qui conduit à définir les lignes de niveau. On peut aussi regarder l’intersection de Γf avec les plans verticaux
x “ a ou y “ a, ce qui correspond à regarder la restriction de f aux droites x “ a ou y “ b contenues sans son domaine
Df Ă R2. On peut aussi regarder la restriction de f à d’autres courbes de Df : dans tous ces cas, les restrictions sont des
fonctions d’une seule variable dont on peut dessiner le graphe. Toutes ces informations permettent enfin de de se faire une
idée du graphe de f . Nous nous limitons ici à reconstruire le graphe d’une fonction à partir de ses lignes de niveau.

Définition. Soit f : R2 ÝÑ R une fonction, de domaine Df Ă R2 et image If Ă R. Pour tout a P R, la ligne de niveau a
est la courbe du plan R2 contenue dans Df obtenue en projectant la courbe du graphe de f qui se trouve à hauteur z “ a:

Lapfq :“ projection sur Df de Γf X tz “ au “
!

px, yq P Df | fpx, yq “ a
)

Ă Df Ă R2.

À noter que Lapfq “ H (ensemble vide) si a R If .

x

y

z

z “ a

z “ b

z “ c

a ab
b c

c

y

x

Df

a a
b

b
c

c

12



Exemple.

fpx, yq “ a
1 ´ x2 ´ y2 Df “ BOp1q

pour tout a P If “ r0, 1s on a

Lapfq “
!

px, yq P BOp1q | a
1 ´ x2 ´ y2 “ a

)

“ cercle centré en p0, 0q de rayon
?
1 ´ a2

y

z

x

‚
‚

1{2
1

Γf

x

y

‚1
1{2

Exercice. Trouver le domaine, l’image et les lignes de niveau de la fonction fpx, yq “ x ´ y

x ` y
.

Dessiner les lignes de niveau a “ ´2,´1, 0, 1, 2 et reconstruire le graphe de f .

Df “ �px, yq P R2 | y ‰ ´x
(
= R2z bissectrice du 2eme quadrant

If “ R, alors pour tout a P R on a:

Lapfq “
!

px, yq P Df | x ´ y

x ` y
“ a

)

= droite d’éq. pa ´ 1qx ` pa ` 1qy “ 0

a “ 0 ùñ y “ x
a “ 1 ùñ y “ 0 a “ ´1 ùñ x “ 0
a “ 2 ùñ y “ ´ 1

3x a “ ´2 ùñ y “ ´3x

Γf “
!

px, y, zq P R3 | y ‰ ´x, z “ x ´ y

x ` y

)
= union de droites tournantes

a “ 2

a “ 1

a “ 0

a “ ´1

a “ ´2

y “ ´x

1.5 Opérations entre fonctions, composition. Changements de coordonnées.

Définition. À partir de deux fonctions f, g : Rn ÝÑ Rm, de domaine respectivement Df et Dg, et d’un nombre λ P R, on
définit les fonctions suivantes:

• somme:
`
f ` g

˘px1, ..., xnq “ fpx1, , ..., xnq ` gpx1, ..., xnq, de domaine Df`g “ Df X Dg;

zéro: 0px1, ..., xnq “ p0, ..., 0q, de domaine D0 “ Rn;

opposée de f :
` ´ f

˘px1, ..., xnq “ ´fpx1, ..., xnq, de domaine D´f “ Df ;

• produit de f par le scalaire λ:
`
λf

˘px1, ..., xnq “ λfpx1, ..., xnq, de domaine Dλf “ Df .

Si f et g sont des fonctions réelles (m “ 1), on définit aussi les fonctions suivantes:

• produit:
`
fg

˘
: px1, ..., xnq “ fpx1, ..., xnqgpx1, ..., xnq, de domaine Dfg “ Df X Dg;

un: 1px1, ..., xnq “ 1, de domaine D1 “ Rn;

inverse de f :
´ 1

f

¯
px1, ..., xnq “ 1

fpx1, ..., xnq , de domaine D1{f “
!

px1, ..., xnq P Df | fpx1, ..., xnq ‰ 0
)
.

Exemple.
»
–

fpx, yq “ x2 ´ y2

gpx, yq “ x2 ` y2

λ “ 3
ùñ

»
———–

pf ` gqpx, yq “ 2x2

p3fqpx, yq “ 3fpx, yq
pfgqpx, yq “ x4 ´ y4

1

f
px, yq “ 1

x2 ´ y2
si x ‰ ˘y.

Proposition. Les opérations d’addition, produit par scalaire et multiplication entre fonctions à plusieures variables ont les
mêmes proprietés que leurs analogues entre fonctions à une variable (elles sont commutatives, associatives et vaut la distribu-
tivité). En particulier, avec l’addition et le produit par scalaire, l’ensemble des fonctions à plusieures variables FpRn,Rmq
est un espace vectoriel sur R (de dimension infinie).
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Définition. À partir de deux fonctions f : Rn ÝÑ Rm et g : Rm ÝÑ Rp, on définit la composée de f et g comme la
fonction g ˝ f : Rn ÝÑ Rp obtenue en calculant g sur les valeurs obtenues par f :

Rn fÝÑ Rm gÝÑ Rp

px1, ..., xnq ÞÑ fpx1, ..., xnq ÞÑ pg ˝ fqpx1, ..., xnq “ g
´
fpx1, ..., xnq

¯
.

Cas particuliers: si on a

f : R2 ÝÑ R, px, yq ÞÑ fpx, yq une fonction réelle de deux variables,

g : R ÝÑ R, z ÞÑ gpzq une fonction reélle d’une variable,

h : R2 ÝÑ R2, pu, vq ÞÑ hpu, vq “ `
h1pu, vq, h2pu, vq˘

un changement de variables,

γ : R ÝÑ R2, t ÞÑ pγ1ptq, γ2ptqq une paramétrisation par une variable,

la composée de f avec g ou h ou γ se calcule comme suit:
`
g ˝ f

˘px, yq “ gpfpx, yqq `
f ˝ h

˘pu, vq “ fphpu, vqq `
f ˝ γ

˘ptq “ fpγptqq

i.e. on pose z “ fpx, yq i.e. on pose

"
x “ h1pu, vq
y “ h2pu, vq i.e. on pose

"
x “ γ1ptq
y “ γ2ptq

R2 R Rf g

g ˝ f

R2 R� Rh f

f ˝ h

R R2 R
γ f

f ˝ γ

Exemple. »
——–

fpx, yq “ x2 ´ y
gpzq “ ln z
hpu, vq “ p2u, u ` vq
γptq “ pcos t, sin tq

ùñ

»
————–

`
g ˝ f

˘px, yq “ gpx2 ´ yq “ lnpx2 ´ yq
`
f ˝ h

˘pu, vq “ fp2u, u ` vq “ 4u2 ´ pu ` vq
`
f ˝ γ

˘ptq “ fpcos t, sin tq “ cos2 t ´ sin t

Définition. Si h : Rn ÝÑ Rn, pu1, ..., unq ÞÑ hpu1..., unq “ px1, ..., xnq est l’application qui décrit un changement de
variables, des px1, ..., xnq vers les pu1, ..., unq, la fonction composée f̃ “ f ˝ h est l’expression de f comme fonction des
nouvelles variables pu1, ..., unq. Cas particuliers:

‚ Coordonnées polaires: h : r0,8rˆr0, 2πrÝÑ R2, pρ,ϕq ÞÑ hpρ,ϕq “ pρ cosϕ, ρ sinϕq
En posant x “ ρ cosϕ et y “ ρ sinϕ on obtient l’expression d’une fonction f des coordonnées cartesiennes px, yq dans
les coordonnées polaires pρ,ϕq:

f̃pρ,ϕq “ pf ˝ hqpρ,ϕq “ fpρ cosϕ, ρ sinϕq.
‚ Coordonnées cylindriques: h : r0,8rˆr0, 2πrˆR ÝÑ R3, pρ,ϕ, zq ÞÑ hpρ,ϕ, zq “ pρ cosϕ, ρ sinϕ, zq
En posant x “ ρ cosϕ et y “ ρ sinϕ on obtient l’expression d’une fonction f des coordonnées cartesiennes px, y, zq dans
les coordonnées cylindriques pρ,ϕ, zq:

f̃pρ,ϕ, zq “ pf ˝ hqpρ,ϕ, zq “ fpρ cosϕ, ρ sinϕ, zq.
‚ Coordonnées sphériques: h : r0,8rˆr0, 2πrˆr0,πs ÝÑ R3, pr,ϕ, θq ÞÑ hpr,ϕ, θq “ pr cosϕ sin θ, r sinϕ sin θ, r cos θq
En posant x “ r cosϕ sin θ, y “ r sinϕ sin θ et z “ r cos θ on obtient l’expression d’une fonction f des coordonnées
cartesiennes px, y, zq dans les coordonnées sphériques pr,ϕ, θq:

f̃pr,ϕ, θq “ pf ˝ hqpr,ϕ, θq “ fpr cosϕ sin θ, r sinϕ sin θ, r cos θq.
Attention: les changements de coordonnées ne sont pas forcement des applications linéaires. Les changements en coordonnées
polaires, cylindriques et sphériques, par exemple, ne le sont pas!

Exemple. fpx, yq “ x2 ` y2 ` 2x ùñ f̃pρ,ϕq “ fpρ cosϕ, ρ sinϕq “ pρ cosϕq2 ` pρ sinϕq2 ` 2ρ cosϕ “ ρ2 ` 2ρ cosϕ

Exercice. Exprimer la fonction fpx, y, zq “ `a
x2 ` y2, z2

˘
en coordonnées cylindriques et sphériques.

f̃pρ,ϕ, zq “ fpρ cosϕ, ρ sinϕ, zq “ `
ρ, z2

˘

˜̃
fpr,ϕ, θq “ fpr cosϕ sin θ, r sinϕ sin θ, r cos θq “ `

r sin θ, r2 cos2 θ
˘
.
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2 Dérivées des fonctions de plusieures variables

Si f est une fonction d’une variable, les dérivées f 1 et f2 servent à étudier la fonction et dessiner son graphe: elles déterminent
les intervalles où f est croissante, décroissante, convexe ou concave, les points d’inflexion et de minimum / maximum local,
et l’approximation locale de f en un polynôme (de Taylor).

Dans ce chapitre nous introduisons l’analogue des dérivées, des extrema locaux et points d’inflexion, et du dévéloppement
de Taylor, pour les fonctions de plusieures variables. Pour cela, nous avons besoin des limites et de la continuité.

2.1 Limites. Continuité.

Rappel. Si f : R ÝÑ R est une fonction d’une variable, avec domaine Df , on dit que:

‚ la limite de f en un point a P Df Y BDf est la valeur lim
xÑa

fpxq à laquelle tend fpxq quand x s’approche de a;

‚ f est continue en un point a P Df si on a lim
xÑa

fpxq “ fpaq.

continue lim
gauche

‰ lim
droite

‚
˝

lim
gauche

“ lim
droite

‰ fpaq

Définition. Soit f : Rn ÝÑ Rm une fonction de plusieures variables, de domaine Df . On dit que:

‚ La limite de f en un point pa1, ..., anq P Df Y BD est la
valeur à laquelle tend fpx1, ..., xnq quand px1, ..., xnq s’approche
de pa1, ..., anq par tous les chemins contenus dans Df . On la note

lim
px1,...,xnqÑpa1,...,anq

fpx1, ..., xnq.

Γf

‚

‚

Attention: la limite peut ne pas exister, mais, si elle existe, elle est unique.

‚ La fonction f est continue en pa1, ..., anq P Df si

lim
px1,...,xnqÑpa1,...,anq

fpx1, ..., xnq “ fpa1, ..., anq.

‚ La fonction f est continue sur le sous-ensemble D Ă Df si f est continue en tout point de D.

Le graphe d’une fonction continue n’a pas de “sauts”!

continue non continue

˝
˝

non continue

Théorème. Toutes les fonctions de plusieures variables obtenues comme somme, produit ou composée de fonctions continues
sont continues.

Par conséquent, toutes les fonctions polynomiales de plusieurs variables sont continues sur Rn, et toutes les fonctions de
plusieures variables obtenues par composition ou combinaisons de fonctions à une variable qui sont continues (notamment
les fractions rationnelles, les racines, exponentiels et logarythmes, les fonctions circulaires, celles hyperboliques et leur
réciproques) sont continues sur leur domaine de définition.
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2.2 Dériveées partielles.

Rappel. Si f : R ÝÑ R est une fonction d’une variable, la dérivée de f en a P Df est la limite

f 1paq :“ lim
xÑa

fpxq ´ fpaq
x ´ a

“ lim
hÑ0

fpa ` hq ´ fpaq
h

si elle existe et c’est un nombre réel (pas ˘8). Dans ce cas, f est dérivable en a. La fonction f est dérivable sur D Ă Df

si elle est dérivable en tout point x P D. On appelle alors dérivée de f la fonction f 1 : x ÞÑ f 1pxq de domaine D.
À noter qu’une fonction dérivable est forcement continue, et le contraire n’est pas vrai: “être dérivable” est une condition

plus forte que “être continue”.

non continue continue, non dérivable dérivable

Pour une fonction de plusieurs variable, l’analogue de la dérivée est donné par les dérivées partielles, qui sont des fonctions.
Celles-ci sont regroupées sous forme de vecteur, application linéaire ou matrice, selon l’usage qu’on veut en faire, et donnent
lieu à la dérivée directionnelle, au gradient, à la différentielle et à la matrice Jacobienne.

Définition. Soit f : Rn ÝÑ Rm une fonction de plusieures variables, avec domaine Df .

‚ Les dérivées partielles de f au point �a “ pa1, ..., anq P Df sont les limites

Bf
Bxi

pa1, ..., anq “ lim
hÑ0

f
`
a1, ..., ai ` h, ..., an

˘ ´ fpa1, ..., anq
h

P Rm, pour i “ 1, ..., n,

si ces limites existent et donnent des vecteurs de Rm (sans composantes ˘8).

‚ Les dérivées partielles de f sont les fonctions

Bf
Bxi

: Rn ÝÑ Rm : �x ÞÝÑ Bf
Bxi

p�xq, pour i “ 1, ..., n,

définies sur l’ensemble D Ă Rn de points �x oû les dérivées Bf
Bxi

p�xq existent.

‚ La fonction f est (continûment) différentiable sur l’ensemble D Ă Df , ou de classe C1 sur D, si toutes les

dérivées partielles Bf
Bxi

existent et sont des fonctions continues en tout point �x P D.

Une fonction différentiable (d’orenavant on sous-entend “continûment”) est forcement continue. Le contraire n’est pas
vrai: les fonctions continues ne sont pas toutes différentiables. Ceci se voit bien sur le graphe: le graphe d’une fonction
différentiable n’a pas de “sauts” (car la fonction est continue) et en plus ne change pas “brusquement” de pente ou d’allure
(la pente et l’allure peuvent bien sur changer mais “non brusquement”).

non continue
continue

non différentiable différentiable

Exemples.

1. fpx, yq “ xy2 ` 3x ùñ

$
’&
’%

Bf
Bx px, yq “ y2 ` 3

Bf
By px, yq “ 2xy

bien définies et continues sur R2 ùñ f est C1 sur R2.
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2. fpx, y, zq “
ˆ
xy2 ` 3x

yz2

˙
ùñ

$
’’’’’’&
’’’’’’%

Bf
Bx px, y, zq “

ˆ
y2 ` 3

0

˙

Bf
By px, y, zq “

ˆ
2xy
z2

˙

Bf
Bz px, y, zq “

ˆ
0

2yz

˙
bien définies et
continues sur R3 ùñ f est C1 sur R3.

3. fpr,ϕ, θq “ ϕ2 ` r sin θ ùñ

$
’’’’&
’’’’%

Bf
Br pr,ϕ, θq “ ϕ2 ` sin θ

Bf
Bϕ pr,ϕ, θq “ 2ϕ

Bf
Bθ pr,ϕ, θq “ r cos θ

bien définies et
continues sur R3 ùñ f est C1 sur R3.

2.3 Dérivée directionnelle.

Soit f : Rn ÝÑ Rm une fonction de plusieures variables, différentiable sur l’ensemble D Ă Rn.

Définition. Pour tout vecteur �v “ pv1, ..., vnq P Rn, on appelle dérivée directionnelle de f dans la direction �v la
fonction

B�vf : �x ÞÝÑ B�vfp�xq “ v1
Bf
Bx1

p�xq ` ¨ ¨ ¨ ` vn
Bf

Bxn
p�xq.

Les dérivées partielles sont donc les dérivées directionnelles dans la direction des vecteurs �ei “ p0, ..., 1, ..., 0q, où 1 est en

ième position, c’est-à-dire
Bf
Bxi

“ B�eif .

Exemples.

1. fpx, yq “ xy2 ` 3x, �v “ pu, vq ùñ Bpu,vqfpx, yq “ py2 ` 3q u ` 2xy v.

2.
fpx, y, zq “

ˆ
xy2 ` 3x

yz2

˙

�v “ pu, v, wq
ùñ Bpu,v,wqfpx, y, zq “

ˆ
y2 ` 3

0

˙
u`

ˆ
2xy
z2

˙
v`

ˆ
0

2yz

˙
w “

ˆ py2 ` 3q u ` 2xy v
z2 v ` 2yz w

˙
.

3. fpr,ϕ, θq “ ϕ2 ` r sin θ, �v “ pu, v, wq ùñ Bpu,v,wqfpx, y, zq “ pϕ2 ` sin θq u ` 2ϕ v ` r cos θ w.

Théorème. [ Croissance et decroissance d’une fonction réelle. ] Soit f : Rn ÝÑ R une fonction réelle, différentiable
au point �x. Pour tout vecteur �v P Rn on a:

• si B�vfp�xq ą 0 alors f est croissante au point �x dans la direction de �v;

• si B�vfp�xq ă 0 alors f est decroissante au point �x dans la direction de �v.

De plus, la croissance [resp. decroissance] est d’autant plus rapide que la dérivée directionnelle est grande [resp. petite]. Pour
comparer la croissance d’une fonction en différentes directions, il faut que les vecteurs de direction aient la même longueur:
par exemple qu’ils soient tous de norme 1.

Attention: on ne peut rien dire sur la croissance de f en �x dans une direction �v où B�vfp�xq “ 0!

Exercice. La fonction fpx, yq “ xy2 `3x, au point p3, 1q, est-elle croissante ou decroissante dans les directions p1, 1q, p1, 2q,
p1,´1q p1,´2q? Parmis ces quatre directions, quelle est celle de plus forte croissance et celle de plus forte decroissance?

Pour tout vecteur �v “ pu, vq, on a B�vfpx, yq “ py2 ` 3qu` 2xy v. Au point p3, 1q, on a donc B�vfp3, 1q “ 4u` 6 v. Donc:

Bp1,1qfp3, 1q “ 10 ùñ f est croissante en direction p1, 1q,
Bp1,2qfp3, 1q “ 16 ùñ f est croissante en direction p1, 2q,

Bp1,´1qfp3, 1q “ ´2 ùñ f est decroissante en direction p1,´1q,
Bp1,´2qfp3, 1q “ ´8 ùñ f est decroissante en direction p1,´2q.

Pour comparer la croissance, on a besoin des dérivées dans la direction des vecteurs unitaires qui donnent la même
direction de ceux indiqués. Cela revient à diviser la dérivée directionnelle déja calculée par la norme de chaque vecteur. Pour
trouver la direction dans laquelle f croit plus rapidement, on calcule donc:

||p1, 1q|| “ ?
2 ùñ B 1?

2
p1,1qfp3, 1q “ 10?

2
,

||p1, 2q|| “ ?
3 ùñ B 1?

3
p1,2qfp3, 1q “ 16?

3
.
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On a 10?
2

ă 16?
3
si 10

?
3 ă 16

?
2, c’est-à-dire si p10?

3q2 “ 300 ă p16?
2q2 “ 512, ce qui est vrai. Donc f , au point p3, 1q,

croit plus rapidement dans la direction p1, 2q.
Pour trouver la direction dans laquelle f decroit plus rapidement, on calcule:

||p1,´1q|| “ ?
2 ùñ B 1?

2
p1,´1qfp3, 1q “ ´ 2?

2

||p1,´2q|| “ ?
3 ùñ B 1?

3
p1,´2qfp3, 1q “ ´ 8?

3

On a ´ 2?
2

ă ´ 8?
3
si et seulement si 2?

2
ą 8?

3
, i.e. si 2

?
3 ą 8

?
2, c’est-à-dire si p2?

3q2 “ 12 ą p8?
2q2 “ 128, ce qui est

faux. Donc f , au point p3, 1q, decroit plus rapidement dans la direction p1,´2q.

2.4 Gradient d’une fonction réelle.

Définition. Soit f : Rn ÝÑ R une fonction réelle différentiable sur un ensemble D Ă Df .

• Le gradient de f en un point �x “ px1, ..., xnq P D est le vecteur de Rn

ÝÝÑ
grad fp�xq ” ÝÑ∇fp�xq “ Bf

Bx1
p�xq �e1 ` ¨ ¨ ¨ ` Bf

Bxn
p�xq �en “

¨
˚̋

Bf
Bx1

p�xq
...

Bf
Bxn

p�xq

˛
‹‚P Rn.

Pour tout vecteur �v “ pv1, ..., vnq P Rn on a alors

B�vfp�xq “ v1
Bf
Bx1

p�xq ` ¨ ¨ ¨ ` vn
Bf

Bxn
p�xq “ �v ¨ ÝÑ∇fp�xq,

où ¨ indique le produit scalaire de vecteurs.

‚ On peut omettre le point �x et appeller gradient de f la fonction vectorielle
ÝÝÑ
grad f ” ÝÑ∇f : D ÝÑ Rn, �x ÞÝÑ ÝÑ∇fp�xq,

qui s’écrit donc comme un vecteur

ÝÝÑ
grad f ” ÝÑ∇f “ Bf

Bx1
�e1 ` ¨ ¨ ¨ ` Bf

Bxn
�en “

¨
˚̋

Bf
Bx1

...
Bf

Bxn

˛
‹‚

dont les composantes sont des fonctions (et non des nombres). Pour tout �v P Rn on a alors

B�vf “ �v ¨ ÝÑ∇f.
‚ Le symbol nabla

ÝÑ∇ indique donc un opérateur qui agit sur les fonctions différentiables et donne comme valeur des
vecteurs dont les composantes sont des fonctions: f ÞÝÑ ÝÑ∇f “ ÝÝÑ

grad f .

Exemples.

1. fpx, yq “ xy2 ` 3x ùñ ÝÑ∇fpx, yq “
ˆ
y2 ` 3
2xy

˙
ùñ ÝÑ∇fp0, 0q “

ˆ
3
0

˙
et

ÝÑ∇fp3, 2q “
ˆ

7
12

˙
.

2. fpx, y, zq “ sinpxyq ` lnpx2 ` z2q ùñ ÝÑ∇fpx, y, zq “

¨
˚̊
˚̋

y cospxyq ` 2x

x2 ` z2
x cospxyq

2z

x2 ` z2

˛
‹‹‹‚ ùñ ÝÑ∇fp0,π, 1q “

¨
˝

´π
0
2

˛
‚.

Théorème. [ Interpretation géométrique du gradient. ]
Si f : Rn ÝÑ R est une fonction différentiable en �x, le gradientÝÑ∇fp�xq est un vecteur de Rn appliqué au point �x, orthogonal à la
ligne de niveau Lapfq où a “ fp�xq (et donc �x P Lapfq), et qui
indique la direction de plus forte pente croissante du graphe Γf

en �x.

direction
croissante

Γf

gradient
ÝÑ∇f
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Exemple.

fpx, yq “ a
1 ´ x2 ´ y2 ùñ Lapfq = cercle de rayon

?
1 ´ a2, pour tout a P r0, 1s

i.e. pour px, yq P Lapfq on a
a
1 ´ x2 ´ y2 “ a.

Donc, si a ‰ 0, on a que
ÝÑ∇fpx, yq “

¨
˚̊
˝

´xa
1 ´ x2 ´ y2´ya
1 ´ x2 ´ y2

˛
‹‹‚“ ´1

a
px, yq

est un vecteur parallel au vecteur px, yq, donc orthogonal au cercle Lapfq,
et pointe vers l’origine, donc dans le sens croissant du graphe.

y

z

x
ÝÑ∇f

2.5 Différentielle.

Définition. Soit f : Rn ÝÑ Rm une fonction différentiable sur un ensemble D Ă Df .

• La différentielle de f en un point �x P D est l’application df�x : Rn ÝÑ Rm définie par:

�v “ pv1, ..., vnq ÞÝÑ df�xp�vq “ Bf
Bx1

p�xq v1 ` ¨ ¨ ¨ ` Bf
Bxn

p�xq vn “ B�vp�xq.

Il est clair que l’application df�x est linéaire dans sa variable �v P Rn, donc df�x P LpRn,Rmq.
On a deux cas particuliers:

– Si f : Rn ÝÑ R est une fonction réelle, la différentielle df�x : Rn ÝÑ R est liée au gradient de f en �x par la relation

df�xp�vq “ ÝÑ∇fp�xq ¨ �v “ B�vfp�xq pour tout �v P Rn.

– Si f : R ÝÑ Rm est une fonction d’une seule variable et de m composantes f “ pf1, . . . , fmq, la différentielle
dfx : R ÝÑ Rm est liée à la dérivée des fonctions fj en x par la relation

dfxpvq “
´
f 1
1pxq v , . . . , f 1

mpxq v
¯

pour tout v P R.

• On peut omettre la variable �v et appeller différentielle de f l’application df : D ÝÑ LpRn,Rmq, �x ÞÝÑ df�x.

Exemples.

1. fpxq “ x2 ´ x5 ùñ f 1pxq “ 2x ´ 5x4 et dfxpvq “ p2x ´ 5x4q v.

2. fpx, yq “ x2y3 ´ 7y ùñ dfpx,yqpu, vq “ 2xy3 u ` p3x2y2 ´ 7q v.

Par exemple: dfpx,yqp2, 1q “ 4xy3 ` 3x2y2 ´ 7, dfp1,1qpu, vq “ 2u ´ 4v, dfp1,1qp2, 1q “ 0

3. fpx, yq “
¨
˝

xy2

y
x2 ´ y2

˛
‚ ùñ dfpx,yqpu, vq “ u

¨
˝

y2

0
2x

˛
‚` v

¨
˝

2xy
1

´2y

˛
‚“

¨
˝

y2u ` 2xyv
v

2xu ´ 2yv

˛
‚.

4. fpx, y, zq “
ˆ
xy2

yz3

˙
ùñ dfpx,y,zqpu, v, wq “ u

ˆ
y2

0

˙
` v

ˆ
2xy
z3

˙
` w

ˆ
0

3yz2

˙
“

ˆ
y2u ` 2xyv
z3v ` 3yz2w

˙
.

La différentielle contient donc toutes les dérivées partielles et est définie aussi pour les fonctions vectorielles (contrairement
au gradient). Mais pour la calculer on a fait appel à sa variable, le vecteur �v. Si f : Rn ÝÑ R est une fonction réelle, il
y a une astuce pour écrire la différentielle df�x sans indiquer son argument �v explicitement. Par contre pour les fonctions
vectorielles cette astuce ne marche pas, il faut representer la différentielle comme une matrice.

Remarque.

• L’ensemble L
`
Rn,R

˘
est un espace vectoriel de dimension n: on indique les n applications linéaires qui forment la base

canonique de L
`
Rn,R

˘
par

dxi : Rn ÝÑ R, �v “ pv1, ..., vnq ÞÝÑ dxip�vq “ vi, pour tout i “ 1, ..., n.
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• Toute application linéaire L : Rn ÝÑ R s’exprime alors comme combinaison des dxi: L “ a1 dx1 ` ¨ ¨ ¨ ` an dxn, avec
ai P R.

• L’ensemble L
`
Rn,Rm

˘
est un espace vectoriel de dimension n ˆ m, donc ce n’est pas possible d’en décrire une base à

l’aide de seulement n applications. Les “dxi”, pour i “ 1, ..., n, n’existent pas dans ce cas.

Proposition. Si f : Rn ÝÑ R est une fonction réelle différentiable sur D Ă Df , alors:

• sa différentielle en �x P D, c’est-à-dire l’application linéaire df�x : Rn ÝÑ R, s’écrit

df�x “ Bf
Bx1

p�xq dx1 ` Bf
Bx2

p�xq dx2 ` ¨ ¨ ¨ ` Bf
Bxn

p�xq dxn

et est très souvent notée dfp�xq: attention à l’ambiguité dans la position de �x par rapport à la notation df�xp�vq;
• sa différentielle df : D ÝÑ LpRn,Rq s’écrit

df “ Bf
Bx1

dx1 ` Bf
Bx2

dx2 ` ¨ ¨ ¨ ` Bf
Bxn

dxn.

Exemples.

1. fpxq “ x2 ´ x5 ùñ dfx “ p2x ´ 5x4q dx ùñ df1 “ ´3 dx.

2. fpx, yq “ x2y3 ´ 7y ùñ dfpx,yq “ 2xy3 dx ` p3x2y2 ´ 7q dy ùñ dfp1,1q “ 2 dx ´ 4 dy.

3. fpx, y, zq “ x2z ´ 5y3z2 ùñ dfpx,y,zq “ 2xz dx´ 15y2z2 dy ` px2 ´ 10y3zq dz ùñ dfp1,1,1q “ 2 dx´ 15 dy ´ 9 dz.

Exercice. Pour la fonction fpx, yq “ lnp1 ´ x2 ` 5yq, trouver le domaine, ensuite calculer la différentielle au point
px, yq “ p2, 0q et sur le vecteur �v “ p3,´6q.

Df “
!

px, yq P R2 | 1 ´ x2 ` 5y ą 0
)

“ portion du plan au-dessus de la parabole y “ 1

5
x2 ´ 1

5

dfpx,yq “ Bf
Bx px, yq dx ` Bf

By px, yq “ ´2x

1 ´ x2 ` 5y
dx ` 5

1 ´ x2 ` 5y
dy

dfp2,0q “ ´4

1 ´ 4
dx ` 5

1 ´ 4
dy “ 4

3
dx ´ 5

3
dy

dfp2,0qp3,´6q “ 4

3
3 ´ 5

3
p´6q “ 4 ` 10 “ 14

Exercice. Soient px, y, zq les coordonnées cartesiennes des points de R3, pρ,ϕ, zq les coordonnées cylindriques et pr,ϕ, θq
les coordonnées sphériques, définies par

$
&
%

x “ ρ cosϕ
y “ ρ sinϕ
z “ z

ρ P r0,8r
ϕ P r0, 2πr et

$
&
%

x “ r cosϕ sin θ
y “ r sinϕ sin θ
z “ r cos θ

r P r0,8r
ϕ P r0, 2πr
θ P r0,πs

Montrer que, par changement de coordonnées, les différentielles
�
dx, dy, dz

(
,

�
dρ, dϕ, dz

(
et

�
dr, dϕ, dθ

(
se transforment

comme suit :
$
&
%

dx “ cosϕ dρ ´ ρ sinϕ dϕ
dy “ sinϕ dρ ` ρ cosϕ dϕ
dz “ dz

$
&
%

dρ “ cosϕ dx ` sinϕ dy
ρdϕ “ ´ sinϕ dx ` cosϕ dy
dz “ dz

(1)

$
&
%

dx “ cosϕ sin θ dr ´ r sinϕ sin θ dϕ ` r cosϕ cos θ dθ
dy “ sinϕ sin θ dr ` r cosϕ sin θ dϕ ` r sinϕ cos θ dθ
dz “ cos θ dr ´ r sin θ dθ

$
&
%

dr “ cosϕ sin θ dx ` sinϕ sin θ dy ` cos θ dz
r sin θ dϕ “ ´ sinϕ dx ` cosϕ dy
rdθ “ cosϕ cos θ dx ` sinϕ cos θ dy ` sin θ dz

(2)

$
&
%

dr “ sin θ dρ ` cos θ dz
dϕ “ dϕ
rdθ “ cos θ dρ ´ sin θ dz

$
&
%

dρ “ sin θ dr ` cos θ dθ
dϕ “ dϕ
dz “ r cos θ dr ´ r sin θ dθ

(3)
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Pour montrer les formules (1), on dérive x, y et z considerées comme fonctions de ρ, ϕ et z:

dx “ Bx
Bρ dρ ` Bx

Bϕ dϕ ` Bx
Bz dz “ cosϕ dρ ´ ρ sinϕ dϕ

dy “ By
Bρ dρ ` By

Bϕ dϕ ` By
Bz dz “ sinϕ dρ ` cosϕ dϕ

dz “ Bz
Bρ dρ ` Bz

Bϕ dϕ ` Bz
Bz dz “ dz

On en déduit la première formule. La seconde s’obtient en inversant le système donné par la première. Pour montrer les
formules (2), on dérive x, y et z considerées comme fonctions de r, ϕ et θ:

dx “ Bx
Br dr ` Bx

Bϕ dϕ ` Bx
Bθ dθ “ cosϕ sin θ dr ´ r sinϕ sin θ dϕ ` r cosϕ cos θ dθ

dy “ By
Br dr ` By

Bϕ dϕ ` By
Bθ dθ “ sinϕ sin θ dr ` cosϕ sin θ dϕ ` r sinϕ cos θ dθ

dz “ Bz
Br dr ` Bz

Bϕ dϕ ` Bz
Bθ dθ “ cos θ dr ´ r sin θ dθ

Pour les formules (3), on compose les (1) et les (2) de façon opportunée.

2.6 Matrice Jacobienne, Jacobien des changements de coordonnées

Rappel. Toute application linéaire L : Rn ÝÑ Rm se represente come une matrice A “ `
aij

˘ P MmnpRq (avec m lignes et
n colonnes) telle que, pour tout �v “ pv1, ..., vnq P Rn, on a

Lp�vq “ A �v “

¨
˚̋

a11 a12 ¨ ¨ ¨ a1n
...

... ¨ ¨ ¨ ...
am1 am2 ¨ ¨ ¨ amn

˛
‹‚

¨
˚̋

v1
...
vn

˛
‹‚“

¨
˚̋

a11v1 ` ¨ ¨ ¨ ` a1n vn
...

am1v1 ` ¨ ¨ ¨ ` amnvn

˛
‹‚P Rm (produit de matrices).

Définition. Soit f : Rn ÝÑ Rm une fonction différentiable sur D Ă Df , avec différentielle df : D ÝÑ LpRn,Rmq.
• La matrice Jacobienne de f est la matrice Jf P Mmn associée à df , c’est à dire telle que df�xp�vq “ Jf p�xq �v, pour
tout �x P D et pour tout �v P Rn.

Si on indique les m composantes de f par pf1, ..., fmq, la matrice Jacobienne de f en �x P D est

Jf p�xq “

¨
˚̊
˚̊
˝

Bf1p�xq
Bx1

¨ ¨ ¨ Bf1p�xq
Bxn

... ¨ ¨ ¨ ...
Bfmp�xq

Bx1
¨ ¨ ¨ Bfmp�xq

Bxn

˛
‹‹‹‹‚

P MmnpRq.

• Si la matrice Jacobienne est carrée (n “ m), son détérminant Jac f “ det Jf s’appelle Jacobien de f .

Cas particuliers:

‚ si f : R2 ÝÑ R, px, yq ÞÑ fpx, yq, on a Jf px, yq “
ˆBfpx, yq

Bx
Bfpx, yq

By
˙

P M12pRq (matrice ligne)

‚ si h : R2 ÝÑ R2 : pu, vq ÞÑ hpu, vq “ `
h1pu, vq, h2pu, vq˘

, on a

Jhpu, vq “

¨
˚̋

Bh1pu, vq
Bu

Bh1pu, vq
BvBh2pu, vq

Bu
Bh2pu, vq

Bv

˛
‹‚P M22pRq et Jachpu, vq “ Bh1pu, vq

Bu
Bh2pu, vq

Bv ´ Bh2pu, vq
Bu

Bh1pu, vq
Bv

‚ si γ : R ÝÑ R2 : t ÞÑ γptq “ pγ1ptq, γ2ptqq, on a Jgptq “
ˆ
γ1
1ptq

γ1
2ptq

˙
“ γ1ptq P M21pRq (matrice colonne

= vecteur)

‚ si g : R ÝÑ R, z ÞÑ gpzq, on a Jgpzq “
´
g1pzq

¯
P M11pRq et Jac gpzq “ g1pzq P R.
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Exemples.

1. fpx, yq “ x2y ùñ Jf px, yq “
´
2xy x2

¯
P M12

2. hpu, vq “ pu2v, 3uq ùñ Jhpu, vq “
ˆ
2uv u2

3 0

˙
P M22 Jachpu, vq “ ´3u2

3. γptq “ p2t, t3 ` 1q ùñ Jγptq “
ˆ

2
3t2

˙
P M21

4. Jacobien du changement en coordonnées polaires:

hpρ,ϕq “ pρ cosϕ, ρ sinϕq ùñ Jhpρ,ϕq “
ˆ
cosϕ ´ ρ sinϕ
sinϕ ρ cosϕ

˙
Jachpρ,ϕq “ ρ cos2 ϕ ` ρ sin2 ϕ “ ρ

5. Jacobien du changement en coordonnées cylindriques:

hpρ,ϕ, zq “ pρ cosϕ, ρ sinϕ, zq ùñ Jhpρ,ϕ, zq “
¨
˝

cosϕ ´ρ sinϕ 0
sinϕ ρ cosϕ 0
0 0 1

˛
‚ Jachpρ,ϕ, zq “ ρ cos2 ϕ ` ρ sin2 ϕ “ ρ

6. Jacobien du changement en coordonnées spériques:

hpr,ϕ, θq “ pr cosϕ sin θ, r sinϕ sin θ, r cos θq ùñ Jhpr,ϕ, θq “
¨
˝

cosϕ sin θ ´r sinϕ sin θ r cosϕ cos θ
sinϕ sin θ r cosϕ sin θ r sinϕ cos θ

cos θ 0 ´r sin θ

˛
‚

Jachpr,ϕ, θq “ cos θ
´

´ r2 sin2 ϕ sin θ cos θ ´ r2 cos2 ϕ sin θ cos θ
¯

´ r sin θ
´
r cos2 ϕ sin2 θ ` r sin2 ϕ sin2 θ

¯

“ ´r2 sin θ cos2 θ ´ r2 sin3 θ “ ´r2 sin θ

Exercices.

1. Calculer le gradient, la différentielle et la matrice Jacobienne de la fonction fpx, y, zq “ z sinpxyq.
ÝÑ∇fpx, y, zq “

¨
˝

yz cospxyq
xz cospxyq
sinpxyq

˛
‚ dfpx,y,zq “ yz cospxyq dx ` xz cospxyq dy ` sinpxyq dz

Jf px, y, zq “
´
yz cospxyq xz cospxyq sinpxyq

¯
(pas de virgules, c’est une matrice !)

2. Calculer la différentielle et la matrice Jacobienne de la fonction fpx, y, zq “
ˆ
z sinx
z sin y

˙
. Pour tout pu, v, wq P R3 on a

dfpx,y,zqpu, v, wq “
ˆ
z cosx

0

˙
u `

ˆ
0

z cos y

˙
v `

ˆ
sinx
sin y

˙
w Jf px, y, zq “

ˆ
z cosx 0 sinx

0 z cos y sin y

˙
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2.7 Conclusion: presentation des “dérivées” d’une fonction de plusieurs variables

Si f : Rn ÝÑ R est une fonction réelle différentiable sur un domaine D Ă Rn:

• les dérivées partielles sont des fonctions réelles
Bf
Bx1

, ...,
Bf

Bxn
: D ÝÑ R

• la dérivée directionnelle en direction de �v “ pv1, ..., vnq P RN est une fonction réelle B�vf : D ÝÑ R

donnée par B�vf “ v1
Bf
Bx1

` ¨ ¨ ¨ ` vn
Bf

Bxn

• le gradient est une fonction vectorielle
ÝÑ∇f : D ÝÑ Rn donnée par

ÝÑ∇f “

¨
˚̊
˚̊
˝

Bf
Bx1
...

Bf
Bxn

˛
‹‹‹‹‚

• la différentielle est une fonction à valeur dans les applications linéaires df : D ÝÑ LpRn,Rq

donnée par df “ Bf
Bx1

dx1 ` ¨ ¨ ¨ ` Bf
Bxn

dxn

• la Jacobienne est une fonction à valeur dans les matrices à une ligne et n colonnes Jf : D ÝÑ M1npRq

donnée par Jf “
´ Bf

Bx1
¨ ¨ ¨ Bf

Bxn

¯

Si f : Rn ÝÑ Rm est une fonction vectorielle de composantes f “ pf1, ..., fmq, différentiable sur un domaine D Ă Rn:

• les dérivées partielles sont des fonctions vectorielles
Bf
Bx1

, ...,
Bf

Bxn
: D ÝÑ Rm données par

Bf
Bxi

“
ˆBf1

Bxi
, ...,

Bfm
Bxi

˙

• la dérivée directionnelle en direction de �v “ pv1, ..., vnq P RN est une fonction vectorielle B�vf : D ÝÑ Rm

donnée par B�vf “ v1
Bf
Bx1

` ¨ ¨ ¨ ` vn
Bf

Bxn

• le gradient “
ÝÑ∇f” n’existe pas;

• la différentielle est une fonction à valeur dans les applications linéaires df : D ÝÑ LpRn,Rmq
mais les applications linéaires de base “dxi” (i “ 1, ..., n) n’existent pas;

‚ la Jacobienne est une fonction à valeur dans les matrices Jf : D ÝÑ MmnpRq

donnée par Jf “

¨
˚̊
˚̊
˝

Bf1
Bx1

¨ ¨ ¨ Bf1
Bxn

...
...

...
Bfm
Bx1

¨ ¨ ¨ Bfm
Bxn

˛
‹‹‹‹‚
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2.8 Dérivées, gradient, différentielle et Jacobienne des fonctions composées

Proposition. Si f, g : Rn ÝÑ Rm sont deux fonctions différentiables sur D Ă Rn, et λ P R, alors:

‚ La somme f ` g est différentiable et
Bpf ` gq

Bxi
“ Bf

Bxi
` Bg

Bxi
pour tout i “ 1, ..., n

donc aussi
ÝÑ∇pf ` gq “ ÝÑ∇f ` ÝÑ∇g si m “ 1, dpf ` gq “ df ` dg et Jf`g “ Jf ` Jg.

‚ Le produit par scalaire λ f est aussi différentiable et
Bpλ fq

Bxi
“ λ

Bf
Bxi

pour tout i “ 1, ..., n

donc aussi
ÝÑ∇pλ fq “ λ

ÝÑ∇f si m “ 1, dpλ fq “ λ df et Jλ f “ λ Jf .

Si f et g sont deux fonctions réelles (m “ 1), alors:

‚ Le produit fg est différentiable et on a la règle de Leibniz
Bpfgq
Bxi

“ Bf
Bxi

g ` f
Bg
Bxi

pour tout i “ 1, ..., n

donc aussi
ÝÑ∇pfgq “ `ÝÑ∇f˘

g ` f
`ÝÑ∇g˘

, dpfgq “ `
df

˘
g ` f

`
dg

˘
et Jfg “ `

Jf
˘
g ` f

`
Jg

˘
.

Exemple.

d
´
xy2 exy

¯
“ d

`
xy2

˘
exy ` xy2 d

`
exy

˘ “ `
y2 dx ` 2xy dy

˘
exy ` xy2

`
y exy dx ` x exy dy

˘

“ `
y2 ` xy3

˘
exy dx ` `

2xy ` x2y2
˘
exy dy “ B`

xy2 exy
˘

Bx dx ` B`
xy2 exy

˘

By dy.

Proposition. Si f : Rn ÝÑ Rm est une fonction différentiable en �x “ px1, ..., xnq et g : Rm ÝÑ Rp est une fonction
différentiable en �y “ py1, ..., ymq “ fp�xq, alors g ˝ f : Rn ÝÑ Rp est différentiable en �x et on a:

• d
`
g ˝ f

˘
�x

“ dgfp�xq ˝ df�x (composition d’applications linéaires)

• Jg˝f p�xq “ Jgpfp�xqq ¨ Jf p�xq (produit de matrices)

• si f “ pf1, ..., fmq, g “ pg1, ..., gpq et g ˝ f “
´

pg ˝ fq1, ..., pg ˝ fqp
¯
, on a la règle de la chaine:

B`
g ˝ f

˘
j

Bxi
p�xq “ Bgj

By1
`
fp�xq˘ Bf1

Bxi
p�xq ` Bgj

By2
`
fp�xq˘ Bf2

Bxi
p�xq ` ¨ ¨ ¨ ` Bgj

Bym
`
fp�xq˘ Bfm

Bxi
p�xq pour tout i “ 1, ..., n

et pour tout j “ 1, ..., p

Cas particuliers:

‚ si f : R2 ÝÑ R, px, yq ÞÑ fpx, yq “ z et g : R ÝÑ R, z ÞÑ gpzq:

d
`
g ˝ f

˘
px,yq “ g1`fpx, yq˘

dfpx,yq,

Jg˝f px, yq “ g1`fpx, yq˘
Jf px, yq

$
’’’&
’’’%

Bpg ˝ fq
Bx px, yq “ g1`fpx, yq˘ Bf

Bx px, yq

Bpg ˝ fq
By px, yq “ g1`fpx, yq˘ Bf

By px, yq

‚ si h : R2 ÝÑ R2 : pu, vq ÞÑ hpu, vq “ px, yq et f : R2 ÝÑ R, px, yq ÞÑ fpx, yq:

d
`
f ˝ h

˘
pu,vq “ dfhpu,vq ˝ dhpu,vq

Jf˝hpu, vq “ Jf
`
hpu, vq˘

Jhpu, vq

$
’’’&
’’’%

Bpf ˝ hq
Bu pu, vq “ Bf

Bx
`
hpu, vq˘ Bx

Bu pu, vq ` Bf
By

`
hpu, vq˘ By

Bu pu, vq

Bpf ˝ hq
Bv pu, vq “ Bf

Bx
`
hpu, vq˘ Bx

Bv pu, vq ` Bf
By

`
hpu, vq˘ By

Bv pu, vq

‚ si γ : R ÝÑ R2 : t ÞÑ γptq “ px, yq et f : R2 ÝÑ R, px, yq ÞÑ fpx, yq:
d

`
f ˝ γ

˘
t

“ dfγptq ˝ dγt

Jf˝hptq “ Jf
`
γptq˘

Jγptq
`
f ˝ γ

˘1ptq “ Bf
Bx

`
γptq˘

x1ptq ` Bf
By

`
γptq˘

y1ptq
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Exercice. Soit f : R2 ÝÑ R une fonction différentiable de coordonnées px, yq.
1. Calculer BF

Bx et BF
By pour F px, yq “ ln fpx, yq.

Si on pose gpzq “ ln z, on a F “ g ˝ f et donc
$
’’’’&
’’’’%

BF px, yq
Bx “ Bpg ˝ fq

Bx px, yq “ g1pfpx, yqq Bf
Bx px, yq “ 1

fpx, yq
Bf
Bx px, yq

BF px, yq
By “ Bpg ˝ fq

By px, yq “ g1pfpx, yqq Bf
By px, yq “ 1

fpx, yq
Bf
By px, yq

2. Calculer BG
Bu et BG

Bv pour Gpu, vq “ fpv, uv2q.

Si on pose hpu, vq “ pv, uv2q “ px, yq, c. à d.

"
x “ v
y “ uv2

, on a G “ f ˝ h et donc

$
’’’’’’’’’’’&
’’’’’’’’’’’%

BGpu, vq
Bu “ Bpf ˝ hq

Bu pu, vq “ Bf
Bx

`
xpu, vq, ypu, vq˘ Bx

Bu pu, vq ` Bf
By

`
xpu, vq, ypu, vq˘ By

Bu pu, vq
“ Bf

Bx pv, uv2q ¨ 0 ` Bf
By pv, uv2q ¨ v2 “ v2

Bf
By pv, uv2q

BGpu, vq
Bv “ Bpf ˝ hq

Bv pu, vq “ Bf
Bx

`
xpu, vq, ypu, vq˘ Bx

Bv pu, vq ` Bf
By

`
xpu, vq, ypu, vq˘ By

Bv pu, vq
“ Bf

Bx pv, uv2q ¨ 1 ` Bf
By pv, uv2q ¨ 2uv

3. Calculer H 1ptq pour Hptq “ fpt2, 3tq.

Si on pose γptq “ pt2, 3tq “ px, yq, c. à d.

"
x “ t2

y “ 3t
, on a H “ f ˝ γ et donc

H 1ptq “ pf ˝ γq1ptq “ Bf
Bx

`
xptq, yptq˘

x1ptq ` Bf
By

`
xptq, yptq˘

y1ptq “ Bf
Bx pt2, 3tq ¨ 2t ` Bf

Bx pt2, 3tq ¨ 3

Exercice. Soit f : R2 ÝÑ R la fonction fpx, yq “ x2y ´ y2.

1. Calculer
Bgpx2y ´ y2q

Bx et
Bgpx2y ´ y2q

By où g : R ÝÑ R est une fonction dérivable.

On a $
’’’&
’’’%

Bgpx2y ´ y2q
Bx “ Bpg ˝ fq

Bx px, yq “ g1pfpx, yqq Bf
Bx px, yq “ g1pfpx, yqq 2xy

Bgpx2y ´ y2q
By “ Bpg ˝ fq

By px, yq “ g1pfpx, yqq Bf
By px, yq “ g1pfpx, yqq px2 ´ 2yq

2. Soit px, yq “ hpu, vq “ `
xpu, vq, ypu, vq˘

un changement de variables et f̃ “ f ˝ h, calculer
Bf̃pu, vq

Bu et
Bf̃pu, vq

Bv .

On a $
’’’’’’’’’’’&
’’’’’’’’’’’%

Bf̃pu, vq
Bu “ Bf

Bx
`
xpu, vq, ypu, vq˘ Bx

Bu pu, vq ` Bf
By

`
xpu, vq, ypu, vq˘ By

Bu pu, vq
“ 2xpu, vq ypu, vq Bx

Bu pu, vq ` pxpu, vq2 ´ 2ypu, vqq By
Bu pu, vq

Bf̃pu, vq
Bv “ Bf

Bx
`
xpu, vq, ypu, vq˘ Bx

Bv pu, vq ` Bf
By

`
xpu, vq, ypu, vq˘ By

Bv pu, vq
“ 2xpu, vq ypu, vq Bx

Bv pu, vq ` pxpu, vq2 ´ 2ypu, vqq By
Bv pu, vq

3. Soit pxptq, yptqq “ γptq une trajectoire dans R2 dépendante du paramètre t, calculer la dérivée en t de la fonction
fpxptq, yptqq.
On a

d fpxptq, yptqq
dt

“ Bf
Bx

`
xptq, yptq˘

x1ptq ` Bf
By

`
xptq, yptq˘

y1ptq “ 2xptq yptq x1ptq ` pxptq2 ´ 2yptqq y1ptq
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Exercice. Soit f : R2 ÝÑ R une fonction avec dérivées partielles

Bfpx, yq
Bx “ ´ 2x

px2 ´ y2q2 et
Bfpx, yq

By “ 2y

px2 ´ y2q2 .

1. Calculer les dérivées partielles
BF pu, vq

Bu et
BF pu, vq

Bv de la fonction F pu, vq “ f

ˆ
u ` v

2
,
u ´ v

2

˙
.

La fonction f est différentiable sur le domaine D “ �px, yq P R2 | y ‰ ˘x
(
, car pour tout px, yq P D les dérivées

partielles sont bien définies et continues.

La fonction F est l’expression de f dans les nouvelles coordonnées pu, vq, et le changement de coordonnées est donné
par

xpu, vq “ u ` v

2
et ypu, vq “ u ´ v

2
.

Pour que y ‰ ˘x, il faut donc que u ‰ 0 et v ‰ 0. On a alors F “ f ˝ h, où hpu, vq “
´

u`v
2 , u´v

2

¯
, donc

BF pu, vq
Bu “ Bf

Bx
´u ` v

2
,
u ´ v

2

¯ B
Bu

´u ` v

2

¯
` Bf

By
´u ` v

2
,
u ´ v

2

¯ B
Bu

´u ´ v

2

¯

“ ´ 2 u`v
2´ pu`vq2

4 ´ pu´vq2
4

¯2

1

2
` 2 u´v

2´ pu`vq2
4 ´ pu´vq2

4

¯2

1

2

“ ´ u ` v

2u2v2
` u ´ v

2u2v2
“ ´ 1

u2v

BF pu, vq
Bv “ Bf

Bx
´u ` v

2
,
u ´ v

2

¯ B
Bv

´u ` v

2

¯
` Bf

By
´u ` v

2
,
u ´ v

2

¯ B
Bv

´u ´ v

2

¯

“ ´ 2 u`v
2´ pu`vq2

4 ´ pu´vq2
4

¯2

1

2
` 2 u´v

2´ pu`vq2
4 ´ pu´vq2

4

¯2

´
´ 1

2

¯

“ ´ u ` v

2u2v2
´ u ´ v

2u2v2
“ ´ 1

uv2

2. Pour tout t P R, calculer la dérivée G1ptq de la fonction Gptq “ fpcosh t, sinh tq, qui peut être interpretée comme la
restriction de f à l’hyperbole paramétrée par xptq “ cosh t et yptq “ sinh t.

D’abord, on vérifie que Gptq est dérivable pour tout t P R: puisque f est dérivable pour tout px, yq tel que x2 ´ y2 ‰ 0,
et puisque cosh2 t ´ sinh2 t “ 1 pour tout t P R, on a bien xptq2 ´ yptq2 “ 1 ‰ 0. Alors on a G “ f ˝ γ, où
γptq “ pcosh t, sinh tq, et donc

G1ptq “ Bf
Bx

`
cosh t, sinh t

˘ d cosh t

d t
` Bf

By
`
cosh t, sinh t

˘ d sinh t

d t

“ ´ 2 cosh t

pcosh2 t ´ sinh2 tq2 sinh t ` 2 sinh t

pcosh2 t ´ sinh2 tq2 cosh t

“ ´2 cosh t sinh t ` 2 cosh t sinh t “ 0
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Exercice. Soient px, y, zq les coordonnées cartesiennes des points de R3, pρ,ϕ, zq les coordonnées cylindriques et pr,ϕ, θq
les coordonnées sphériques, définies par

$
&
%

x “ ρ cosϕ
y “ ρ sinϕ
z “ z

ρ P r0,8r
ϕ P r0, 2πr et

$
&
%

x “ r cosϕ sin θ
y “ r sinϕ sin θ
z “ r cos θ

r P r0,8r
ϕ P r0, 2πr
θ P r0,πs

Montrer que, par changement de coordonnées, les derivées partielles
!

B
Bx ,

B
By ,

B
Bz

)
,

!
B
Bρ ,

B
Bϕ ,

B
Bz

)
et

!
B
Br ,

B
Bϕ ,

B
Bθ

)
se transforment

comme suit :$
’’’’’’’’’&
’’’’’’’’’%

B
Bρ “ cosϕ

B
Bx ` sinϕ

B
By

1

ρ

B
Bϕ “ ´ sinϕ

B
Bx ` cosϕ

B
By

B
Bz “ B

Bz

$
’’’’’’’’’&
’’’’’’’’’%

B
Bx “ cosϕ

B
Bρ ´ sinϕ

1

ρ

B
Bϕ

B
By “ sinϕ

B
Bρ ` cosϕ

1

ρ

B
Bϕ

B
Bz “ B

Bz

(4)

$
’’’’’’’’’&
’’’’’’’’’%

B
Br “ cosϕ sin θ

B
Bx ` sinϕ sin θ

B
By ` cos θ

B
Bz

1

r sin θ

B
Bϕ “ ´ sinϕ

B
Bx ` cosϕ

B
By

1

r

B
Bθ “ cosϕ cos θ

B
Bx ` sinϕ cos θ

B
By ´ sin θ

B
Bz

$
’’’’’’’’’&
’’’’’’’’’%

B
Bx “ cosϕ sin θ

B
Br ´ sinϕ

1

r sin θ

B
Bϕ ` cosϕ cos θ

1

r

B
Bθ

B
By “ sinϕ sin θ

B
Br ` cosϕ

1

r sin θ

B
Bϕ ` sinϕ cos θ

1

r

B
Bθ

B
Bz “ cos θ

B
Br ´ sin θ

1

r

B
Bθ

(5)

$
’’’’’’’’’&
’’’’’’’’’%

B
Br “ sin θ

B
Bρ ` cos θ

B
Bz

1

r sin θ

B
Bϕ “ 1

ρ

B
Bϕ

1

r

B
Bθ “ cos θ

B
Bρ ´ sin θ

B
Bz

$
’’’’’’’’’&
’’’’’’’’’%

B
Bρ “ sin θ

B
Br ` cos θ

1

r

B
Bθ

1

ρ

B
Bϕ “ 1

r sin θ

B
Bϕ

B
Bz “ cos θ

B
Br ´ sin θ

1

r

B
Bθ

(6)

Pour montrer les formules (4), considerons la fonction composée f̃ “ f ˝ h où f est une fonction des coordonnées
cartesiennes px, y, zq et hpρ,ϕ, zq “ px, y, zq est le changement en coordonnées cylindriques. On a alors f̃pρ,ϕ, zq “ fpx, y, zq,
où x, y, z sont fonctions de pρ,ϕ, zq. En utilisant la règle de la châıne, calculons les dérivées partielles B

Bρ f̃ ,
B
Bϕ f̃ et B

Bθ f̃ en

fonction de B
Bxf ,

B
Byf et B

Bz f :

Bf̃
Bρ “ Bf

Bx
Bx
Bρ ` Bf

By
By
Bρ ` Bf

Bz
Bz
Bρ “ cosϕ

Bf
Bx ` sinϕ

Bf
By

Bf̃
Bϕ “ Bf

Bx
Bx
Bϕ ` Bf

By
By
Bϕ ` Bf

Bz
Bz
Bϕ “ ´r sinϕ

Bf
Bx ` r cosϕ

Bf
By

Bf̃
Bz “ Bf

Bx
Bx
Bz ` Bf

By
By
Bz ` Bf

Bz
Bz
Bz “ Bf

Bz
On en déduit la première formule. La seconde s’obtient en inversant le système donné par la première.

Pour montrer les formules (5), on applique cette méthode à la composée f̃ “ f ˝ h où, cette fois, hpr,ϕ, θq “ px, y, zq est
le changement en coordonnées sphériques:

Bf̃
Br “ Bf

Bx
Bx
Br ` Bf

By
By
Br ` Bf

Bz
Bz
Br “ cosϕ sin θ

Bf
Bx ` sinϕ sin θ

Bf
By ` cos θ

Bf
Bz

Bf̃
Bϕ “ Bf

Bx
Bx
Bϕ ` Bf

By
By
Bϕ ` Bf

Bz
Bz
Bϕ “ ´ρ sinϕ sin θ

Bf
Bx ` ρ cosϕ sin θ

Bf
By

Bf̃
Bθ “ Bf

Bx
Bx
Bθ ` Bf

By
By
Bθ ` Bf

Bz
Bz
Bθ “ r cosϕ cos θ

Bf
Bx ` r sinϕ cos θ

Bf
By ´ r sin θ

Bf
Bz

Pour les formules (6), on compose les (4) et les (5) de façon opportunée.
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2.9 Dériveées partielles d’ordre supérieur, matrice Hessienne

Dans ce cours, les dérivées d’ordre supérieur servent exclusivement à étudier les fonctions (graphe, extrema locaux et
dévéloppement de Taylor). Nous nous limitons donc au cas des fonctions réelles, et en particulier celles de deux variables,
pour lesquelles on peut tracer un graphe décent.

Définition. Soit f : Rn ÝÑ R une fonction de variable �x “ px1, ..., xnq, différentiable sur l’ensemble D Ă Df . Alors les

dérivées partielles Bf
Bxi

, pour i “ 1, ..., n, sont des fonctions définies sur D. Si elles sont à leur tour différentiables, on peut
calculer leurs dérivées partielles. Pour tout k P N:

‚ Les dérivées partielles d’ordre k de f sont les fonctions qu’on obtient en dérivant f succéssivement k fois:

Bkf

Bxi ¨ ¨ ¨ Bxj
“ B

Bxi
¨ ¨ ¨ Bf

Bxj
.

Les dérivées partielles par rapport à des variables différentes s’appellent dérivées mixtes. Les dérivées partielles
d’ordre 2 s’appellent aussi dérivées secondes.

Cas particulier: si f : R2 ÝÑ R est une fonction de deux variables px, yq, les dérivées secondes sont
B2f

Bx2
“ B

Bx
Bf
Bx ,

B2f

BxBy “ B
Bx

Bf
By ,

B2f

ByBx “ B
By

Bf
Bx et

B2f

By2 “ B
By

Bf
By .

‚ Une fonction est de classe Ck si elle est différentiable jusqu’à l’ordre k, et si en plus les dérivées partielles d’ordre k
sont continues. Une fonction est lisse, ou de classe C8, si elle est différentiable à tous les ordres k P N.

Théorème de Schwarz. Si les dérivées partielles Bf
Bxi

sont différentiables en un point �x et les dérivées secondes B2f
BxiBxj

sont continues en �x, alors
B2f

BxiBxj
p�xq “ B2f

BxjBxi
p�xq, pour tout i ‰ j.

Conséquence: Si f est une fonction de classe Ck (ou lisse), alors toutes ses dérivées mixtes jusqu’à l’ordre k (ou 8), ayant
le même nombre de dérivées en chaque xi, coincident, indépendement de l’ordre dans lequel elles sont calculées.

Exemple.

fpx, yq “ x3y2 ùñ

$
’’’&
’’’%

Bf
Bx px, yq “ 3x2y2

Bf
By px, yq “ 2x3y

ùñ

$
’’’’&
’’’’%

B2f

Bx2
px, yq “ 6xy2

B2f

BxBy px, yq “ 6x2y

B2f

ByBx px, yq “ 6x2y
B2f

By2 px, yq “ 2x3

Exercice. Soient F et G deux fonctions de classe C2 sur R, et soit c P R˚. On pose upx, tq “ F px´ctq`Gpx`ctq. Montrer
que u est solution de l’équation d’onde

B2u

Bt2 px, tq ´ c2
B2u

Bx2
px, tq “ 0 pour tout px, tq P R2.

Les fonctions F et G agissent sur une seule variable et sont dérivables deux fois: indiquons par F 1 et G1 leurs dérivées
premières, et par F 2 et G2 leurs dérivées secondes. En utilisant la règle de la chaine pour calculer la dérivée des fonctions
composées, on trouve:

Bu
Bx px, tq “ F 1px ´ ctq Bpx ´ ctq

Bx ` G1px ` ctq Bpx ` ctq
Bx “ F 1px ´ ctq ` G1px ` ctq,

Bu
Bt px, tq “ F 1px ´ ctq Bpx ´ ctq

Bt ` G1px ` ctq Bpx ` ctq
Bt “ ´c F 1px ´ ctq ` cG1px ` ctq.

Dérivons ces fonctions pour obtenir les dérivées secondes:

B2u

Bx2
px, tq “ F 2px ´ ctq Bpx ´ ctq

Bx ` G2px ` ctq Bpx ` ctq
Bx “ F 2px ´ ctq ` G2px ` ctq,

B2u

Bt2 px, tq “ ´c F 1px ´ ctq Bpx ´ ctq
Bt ` cG1px ` ctq Bpx ` ctq

Bt “ p´cq2 F 2px ´ ctq ` c2 G2px ` ctq.
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Pour tout px, tq, on a alors

B2u

Bt2 px, tq ´ c2
B2u

Bx2
px, tq “ c2 F 2px ´ ctq ` c2 G2px ` ctq ´ c2

´
F 2px ´ ctq ` G2px ` ctq

¯
“ 0.

Définition. Soit f : Rn ÝÑ R une fonction différentiable au moins deux fois en �x “ px1, ..., xnq.
‚ La matrice Hessienne de f en �x est la matrice carrée de taille n contenant toutes les dérivées secondes de f en �x:

Hf p�xq “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

B2f

Bx1
2

p�xq B2f

Bx1Bx2
p�xq ¨ ¨ ¨ B2f

Bx1Bxn
p�xq

B2f

Bx2Bx1
p�xq B2f

Bx2
2

p�xq ¨ ¨ ¨ B2f

Bx2Bxn
p�xq

...
... ¨ ¨ ¨ ...

B2f

BxnBx1
p�xq B2f

BxnBx2
p�xq ¨ ¨ ¨ B2f

Bxn
2

p�xq

˛
‹‹‹‹‹‹‹‹‹‹‚

.

Par le Théorème de Schwarz, la matrice Hessienne d’une fonction de classe C2 est symétrique.

‚ Son déterminant Hess fpx, yq “ detHf px, yq s’appelle Hessien de f .

Exemples.

1. fpx, yq “ lnpx2y ` 1q ùñ ÝÑ∇fpx, yq “

¨
˚̊
˚̋

2xy

x2y ` 1

x2

x2y ` 1

˛
‹‹‹‚ ùñ

Hf px, yq “

¨
˚̊
˚̊
˝

2ypx2y ` 1q ´ 2xy 2xy

px2y ` 1q2
2xpx2y ` 1q ´ 2xy x2

px2y ` 1q2

2xpx2y ` 1q ´ x2 2xy

px2y ` 1q2 y ´ x2 x2

px2y ` 1q2

˛
‹‹‹‹‚

“

¨
˚̊
˚̊
˝

2yp1 ´ x2yq
px2y ` 1q2

2x

px2y ` 1q2

2x

px2y ` 1q2 y ´ x4

px2y ` 1q2

˛
‹‹‹‹‚

detHf px, yq “ ´2yp1 ´ x2yq
px2y ` 1q2

x4

px2y ` 1q2 ´
ˆ

2x

px2y ` 1q2
˙2

“ ´2x4py ´ x2y2 ` 1q
px2y ` 1q4

2. gpx, y, zq “ x sin y ` y sin z ùñ ÝÑ∇fpx, y, zq “
¨
˝

sin y
x cos y ` sin z

y cos z

˛
‚ ùñ

Hgpx, y, zq “
¨
˝

0 cos y 0
cos y ´x sin y cos z
0 cos z ´y sin z

˛
‚

detHgpx, y, zq “ ´ cos y
´

´ y cos y sin z ´ 0
¯

“ y cos2 y sin z

Exercice. Montrer que le déterminant Hessien de la fonction fpx, yq “ sinpx ´ yq est nul en tout point px, yq P R2.

ÝÑ∇fpx, yq “
ˆ

cospx ´ yq
´ cospx ´ yq

˙
ùñ Hf px, yq “

ˆ ´ sinpx ´ yq sinpx ´ yq
sinpx ´ yq ´ sinpx ´ yq

˙

ùñ detHf px, yq “ ` ´ sinpx ´ yq˘2 ´ `
sinpx ´ yq˘2 “ 0 pour tout px, yq P R2.
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Définition. Soit f : Rn ÝÑ R une fonction différentiable au moins deux fois en �x “ px1, ..., xnq.

‚ Le Laplacien de f en �x est la trace de la matrice Hessienne de f en �x: Δfp�xq “ B2f

Bx1
2

p�xq ` ¨ ¨ ¨ ` B2f

Bxn
2

p�xq.

‚ Une fonction f s’appelle harmonique si Δfp�xq “ 0 en tout point p�xq.

Proposition. [Interpretation géométrique du Laplacien.] Soit f : R2 ÝÑ R une fonction de classe C2 sur un
carré Q de taille h ˆ h contenant un point pa, bq, et soit µpf,Qq la moyenne de f sur Q (c’est à dire l’intégrale double

µpf,Qq “ 1

h2

ĳ

Q

fpx, yq dx dy, cf. Ch. 4). Alors on a

µpf,Qq “ fpa, bq ` h2

24
Δfpa, bq ` Oph4q.

Cela signifie que la différence fpa, bq ´ µpf,Qq est proportionnelle à Δfpa, bq, et la constante de proportionalité ne dépend
qua de la taille du carré où on calcule la moyenne µpf,Qq!

Exemple.

fpx, y, zq “ x2py ` 1q
z ´ 1

ùñ

$
’’’’’’’’’&
’’’’’’’’’%

Bf
Bx px, y, zq “ 2xpy ` 1q

z ´ 1

Bf
By px, y, zq “ x2

z ´ 1

Bf
Bz px, y, zq “ ´x2py ` 1q

pz ´ 1q2

ùñ

$
’’’’’’’’’&
’’’’’’’’’%

B2f

Bx2
px, y, zq “ 2py ` 1q

z ´ 1

B2f

By2 px, y, zq “ 0

B2f

Bz2 px, y, zq “ 2x2py ` 1q
pz ´ 1q3

ùñ Δfpx, y, zq “ 2py ` 1q
z ´ 1

` 2x2py ` 1q
pz ´ 1q3 “ 2py ` 1q`pz ´ 1q2 ` x

˘

pz ´ 1q3

Exercice. Trouver les valeurs de c P R˚ pour lesquels la fonction upx, tq “ x2 ´ c2t2 est harmonique.

ÝÑ∇upx, tq “
ˆ

2x
´2c2t

˙
ùñ Hupx, tq “

ˆ
2 0
0 ´2c2

˙
ùñ Δupx, tq “ 2 ´ 2c2 “ 0 si et seulement si c “ ˘1.

Exercice. Soit f : R ÝÑ R une fonction de classe C2 sur R et posons F px, yq “ fpa
x2 ` y2q.

1. Calculer le Laplacien de F en tout point px, yq ‰ p0, 0q.

On veut calculer ΔF px, yq “ B2F

Bx2
px, yq ` BF

By px, yq. Notons f 1 et f2 les dérivées de la fonction f (qui a une seule

variable). En utilisant la règle de la chaine pour la dérivée des fonctions composées, on calcule

BF px, yq
Bx “ Bfpa

x2 ` y2q
Bx “ f 1p

a
x2 ` y2q Ba

x2 ` y2

Bx “ f 1p
a
x2 ` y2q 2x

2
a
x2 ` y2

“ f 1p
a
x2 ` y2q xa

x2 ` y2
,

BF px, yq
By “ Bfpa

x2 ` y2q
By “ f 1p

a
x2 ` y2q Ba

x2 ` y2

By
“ f 1p

a
x2 ` y2q ya

x2 ` y2
.

En utilisant aussi la règle de Leibniz pour la dérivée d’un produit de fonctions, on calcule

B2F px, yq
Bx2

“ B
Bx

˜
f 1p

a
x2 ` y2q xa

x2 ` y2

¸
“ Bf 1pa

x2 ` y2q
Bx

xa
x2 ` y2

` f 1p
a
x2 ` y2q B

Bx

˜
xa

x2 ` y2

¸

“ f2p
a
x2 ` y2q

˜
xa

x2 ` y2

¸2

` f 1p
a
x2 ` y2q

a
x2 ` y2 ´ x x?

x2`y2

x2 ` y2

“ f2p
a
x2 ` y2q x2

x2 ` y2
` f 1p

a
x2 ` y2q y2

px2 ` y2qa
x2 ` y2

,
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et de la même façon

B2F px, yq
By2 “ B

By

˜
f 1p

a
x2 ` y2q ya

x2 ` y2

¸

“ f2p
a
x2 ` y2q y2

x2 ` y2
` f 1p

a
x2 ` y2q x2

px2 ` y2qa
x2 ` y2

.

On a donc

ΔF px, yq “ B2F px, yq
Bx2

` B2F px, yq
By2 “ f2p

a
x2 ` y2q x2 ` y2

x2 ` y2
` f 1p

a
x2 ` y2q x2 ` y2

px2 ` y2qa
x2 ` y2

“ f2p
a
x2 ` y2q ` f 1p

a
x2 ` y2q 1a

x2 ` y2
.

2. Déterminer toutes les fonctions f telles que ΔF px, yq “ a
x2 ` y2.

Pour tout px, yq ‰ p0, 0q, l’équation ΔF px, yq “ f2p
a
x2 ` y2q ` f 1p

a
x2 ` y2q 1a

x2 ` y2
“

a
x2 ` y2 ne dépend

que d’une seule variable réelle r “ a
x2 ` y2 ą 0, et devient une équation différentielle du deuxième ordre dans

l’indéterminée f “ fprq, non homogène et à coéfficients non constants. Pour la résoudre, on la transforme en un
système d’équations différentielles du premier ordre (toujours non homogènes et à coéfficients non constants):

(E) f2prq ` 1

r
f 1prq “ r ðñ

$
’&
’%

f 1prq “ gprq (E1)

g1prq ` 1

r
gprq “ r (E2)

La solution f de (E) se trouve en cherchant d’abord la solution g de (E2) et puis en la mettant dans (E1).

La solution g de (E2) s’obtient comme somme de la solution générale g0 de l’équation homogène associée, qui est

g1prq ` 1

r
gprq “ 0, et d’une solution particulière gp de (E2) obtenue avec la méthode de la variation de la constante à

partir de g0. Explicitement, on a:

(E2) homogène g1
0prq “ ´1

r
g0prq ðñ g0prq “ λ e´ ş

1
r dr “ λ e´ ln r “ λ elnp 1

r q “ λ
1

r
, avec λ P R.

Il faut donc chercher une solution particulière de (E2) sous la forme gpprq “ λprq
r

, qui donne g1
pprq “ λ1prq

r
´ λprq

r2
:

(E2) g1
pprq ` 1

r
gpprq “ r ðñ λ1prq

r
“ r ðñ λ1prq “ r2 ðñ λprq “ r3

3
ðñ gpprq “ r2

3
.

La solution de (E2) est donc gprq “ g0prq ` gpprq “ λ

r
` r2

3
, pour tout λ P R.

Enfin, la solution de (E) se trouve à partir de (E1):

(E1) f 1prq “ λ

r
` r2

3
ðñ fprq “ λ lnprq ` r2

9
` µ, pour tout λ, µ P R.
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2.10 Formule de Taylor

Pour simplifier les notations, dans ce paragraphe on se limite à considerer les fonctions de deux variables.

Théorème. [Dévéloppement de Taylor.] Une fonction f : R2 ÝÑ R différentiable dans un voisinage ouvert d’un
point pa, bq peut être approximée par un polynôme, appellé partie principale du dévéloppement de Taylor, dont les
coéfficients dépendent uniquement des dérivées de f en pa, bq.

Plus précisement, soit px, yq un point très proche de pa, bq, dans ce voisinage, de telle sorte que h “ x ´ a et k “ y ´ b
tendent vers zéro.

‚ À l’ordre 1: Si f est de classe C1, alors

fpx, yq “ fpa, bq ` Bfpa, bq
Bx px ´ aq ` Bfpa, bq

By py ´ bq ` ||ph, kq|| εph, kq

“ fpa, bq ` dfpa,bqpx ´ a, y ´ bq ` o
`||ph, kq||˘,

où εph, kq tend vers zéro pour ph, kq Ñ p0, 0q, et donc le terme “petit o” o
`||ph, kq||˘ “ ||ph, kq|| εph, kq tend vers

zéro plus vite que ||ph, kq||, pour ph, kq ÝÑ p0, 0q, i.e. lim
ph,kqÑp0,0q

o
`||ph, kq||˘
||ph, kq|| “ 0, et par conséquent est négligeable

par rapport au terme précédent, qui est de l’ordre de ph, kq.
‚ À l’ordre 2: Si f est de classe C2, alors

fpx, yq “ fpa, bq ` Bfpa, bq
Bx px ´ aq ` Bfpa, bq

By py ´ bq

` 1

2

B2fpa, bq
Bx2

px ´ aq2 ` B2fpa, bq
BxBy px ´ aqpy ´ bq ` 1

2

B2fpa, bq
By2 py ´ bq2 ` ||ph, kq||2 εph, kq

“ fpa, bq ` Jf pa, bq
ˆ
x ´ a
y ´ b

˙
` 1

2

´
x ´ a y ´ b

¯
Hf pa, bq

ˆ
x ´ a
y ´ b

˙
` o

`||ph, kq||2˘
,

où la fonction o
`||ph, kq||2˘ “ ||ph, kq||2 εph, kq tend vers zéro plus vite que ||ph, kq||2, pour ph, kq ÝÑ p0, 0q, donc est

négligeable.

Exemples.

1. fpx, yq “ x ´ 1

y ´ 1
et pa, bq “ p0, 0q ùñ fp0, 0q “ 1

Jf px, yq “
ˆ

1

y ´ 1
´ x ´ 1

py ´ 1q2
˙

ùñ Jf p0, 0q “
´

´ 1 1
¯

Hf px, yq “

¨
˚̊
˚̋

0 ´ 1

py ´ 1q2

´ 1

py ´ 1q2
2px ´ 1q
py ´ 1q3

˛
‹‹‹‚ ùñ Hf p1, 0q “

ˆ
0 ´1

´1 2

˙

ùñ pour px, yq proche de p0, 0q on a
x ´ 1

y ´ 1
“ 1 ´ x ` y ´ xy ` y2 ` o

`||px, yq||2˘
.

2. fpx, yq “ x ´ y

xy ´ 1
et pa, bq “ p2,´1q ùñ fp2,´1q “ ´1

ÝÑ∇fpx, yq “

¨
˚̋

pxy´1q´px´yqy
pxy´1q2

´pxy´1q´px´yqx
pxy´1q2

˛
‹‚“

¨
˚̋

y2´1
pxy´1q2

1´x2

pxy´1q2

˛
‹‚ ùñ ÝÑ∇fp2,´1q “

ˆ
0

´ 1
3

˙

Hf px, yq “

¨
˚̋

´ py2´1q 2pxy´1qy
pxy´1q4

2ypxy´1q2´py1´1q 2pxy´1qx
pxy´1q4

idem ´ p1´x2q 2pxy´1qx
pxy´1q4

˛
‹‚“

¨
˚̋

´ 2ypy2´1q
pxy´1q3

2px´yq
pxy´1q3

idem ´ 2xp1´x2q
pxy´1q3

˛
‹‚ ñ Hf p2,´1q “

¨
˝

0 ´ 2
9

´ 2
9 ´ 4

9

˛
‚

ùñ pour px, yq proche de p2,´1q on a
x ´ y

xy ´ 1
“ ´1´ 1

3
py`1q´ 2

9
px´2qpy`1q´ 2

9
py`1q2`o

`||px´2, y`1q||2˘
.
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Exercice. Montrer que le graphe de la fonction fpx, yq “ x ´ y

xy ´ 1
, dans un voisinage de l’origine p0, 0q, peut être approximé

par le plan d’équation x ´ y ` z “ 0.

Comme montre le calcul des dérivées de f de l’exemple précedent, la fonction f est de classe C2 sur son domaine
Df “ �px, yq P R2 | xy ‰ 1

(
, qui est le plan moins les deux branches de parabole d’équation y “ 1{x. Le point p0, 0q est bien

contenu à l’intérieur de Df (car Df est ouvert et n’a pas de bord), donc il existe un voisinage ouvert de p0, 0q dedans Df .
Dans ce voisinage, appellons-le U , le graphe de f est l’ensemble

Γf pUq “
!

px, y, zq P R3 | z “ x ´ y

xy ´ 1
avec px, yq proche de p0, 0q

)
.

Il faut donc montrer que si px, yq est proche de p0, 0q, l’équation z “ x ´ y

xy ´ 1
peut être approximée par l’équation du plan

z “ ´x ` y. Pour cela, il suffit d’écrire le dévéloppement de Taylor de f au point p0, 0q. En utilisant le gradient et la
matrice Hessienne de f déja calculés, on obtient

fp0, 0q “ 0,
ÝÑ∇fp0, 0q “

ˆ ´1
1

˙
, et Hf p0, 0q “

ˆ
0 0
0 0

˙
.

Donc, pour px, yq proche de p0, 0q on a bien fpx, yq “ ´x ` y ` o
`||px, yq||2q, et finalement

Γf pUq “
!

px, y, zq P R3 | z “ ´x ` y ` o
`||px, yq||2q avec px, yq proche de p0, 0q

)
.

Exercice. La pression P d’un gaz parfait s’exprime comme fonction de la temperature T (mesurée en dégrés Kelvin K) et
du volume V (mesuré en mètres cubes m3) selon la loi

P pT, V q “ nR
T

V
(en K{m3),

où n est la quantité de matière (exprimée en moles) et R “ 8.3144 J{K ˆmoles est la constante universelle d’un gaz parfait.

1. Supposons que le gaz se trouve à pression P0 “ P p300K, 1m3q “ 300nRK{m3. Quelle modification subit la pression
si on augmente la temperature de 1K et au même temps on augmente le volume de 0.1m3, sans changer le nombre de
moles n?

A priori, une augmentation de la temperature fait augmenter la pression, et une augmentation du volume fait diminuer
la pression. Si les deux augmentent au meme temps, que se passe-t-il?

Pour répondre, il faut évaluer ΔP “ P p301K, 1.1m3q ´ P0. On pourrait calculer P p301K, 1.1m3q “ nR 301
1.1 K{m3,

mais sans calculette ce n’est pas amusant. Utilisons plutôt le dévéloppement de Taylor à l’ordre 1, autour du point
pT0, V0q “ p300K, 1m3q:

P pT, V q » P pT0, V0q ` dPpT0,V0qpT ´ T0, V ´ V0q “ P0 ` BP
BT pT0, V0q pT ´ T0q ` BP

BV pT0, V0q pT ´ T0q

“ P0 ` nR
T ´ T0

V0
´ nR

T0pV ´ V0q
V 2
0

ùñ ΔP » nR

ˆ
1K

1m3
´ 300K ˆ 0.1m3

p1m3q2
˙

“ nR
`
1K{m3 ´ 30K{m3

˘ “ ´29 nR K{m3 ă 0!

Au final, l’augmentation du volume de 0.1m3 l’emporte sur l’augmentation de la temperature de 1K, et la pression
diminue.

2. Maintenant on veut connaitre la pression du gaz qui se trouve à l’état pT, V q, mais la mesure de cet état nous donne
les valeurs pT0, V0q avec une erreure relative

ˇ̌
ˇ̌T ´ T0

T0

ˇ̌
ˇ̌ ă 0.005% et

ˇ̌
ˇ̌V ´ V0

V0

ˇ̌
ˇ̌ ă 0.002%.

Quelle est l’erreure relative induite par cette mesure sur la pression?

On utilise à nouveau le dévéloppement de Taylor de P “ P pT, V q à l’ordre 1, autour de pT0, V0q, en posant P0 “
P pT0, V0q:

P ´ P0 » dPpT0,V0qpT ´ T0, V ´ V0q “ nR
T ´ T0

V0
´ nR

T0pV ´ V0q
V 2
0

ùñ P ´ P0

P0
» nR

T ´ T0

V0 nR
T0

V0

´ nR
T0pV ´ V0q
V 2
0 nR T0

V0

“ T ´ T0

T0
´ V ´ V0

V0

ùñ
ˇ̌
ˇ̌P ´ P0

P0

ˇ̌
ˇ̌ ď

ˇ̌
ˇ̌T ´ T0

T0

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌V ´ V0

V0

ˇ̌
ˇ̌ ă 0.005% ` 0.002% “ 0.007%.
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2.11 Points critiques, extrema locaux et points col.

Rappel. Si f : R ÝÑ R est une fonction dérivable en un point a P Df , la croissance ou décroissance de f en a est décelée
par le signe de f 1paq (positif ou négatif). Que se passe-t-il si f 1paq “ 0 (point critique) ?

Dans ce cas, la tangente au graphe de f au point pa, fpaqq est horizontale et tout peut arriver: au point a, la fonction f
a soit un minimum local, soit un maximum local, soit un point d’inflexion:

a
minimum local

a
maximum local

a
point d’inflexion

Si f 1paq “ 0, pour comprendre le comportement de f en a il faut regarder le signe de la deuxième dérivée, qui detecte la
convexité ou concavité de la fonction: si f2paq ą 0 on a un minimum local, et si f2paq ă 0 on a un maximum local. Que se
passe-t-il si f2paq “ 0 (point plat) ?

Si f2paq “ 0 on ne sait toujours pas ce que fait f en a, il faut regarder les dérivées d’ordre supérieur: si la première dérivée
non nulle est d’ordre pair, on a un minimum ou un maximum local selon le signe de cette dérivée (positive ou négative). Si
la première dérivée non nulle est d’ordre impair, par contre, on a un point d’inflexion.

Dans ce paragraphe on introduit l’analogue des points de minimum et maximum locaux et des points d’inflexion pour les
fonctions de deux variables, et on donne un critère pour les trouver (incomplet, car s’arrete aux dérivées d’ordre 2).

Définition. Soit f : R2 ÝÑ R une fonction. On dit qu’un point pa, bq P Df est un extremum local de f s’il est

• soit un minimum local: fpa, bq ď fpx, yq
pour tout les px, yq dans un voisinage de pa, bq,

• soit un maximum local: fpa, bq ě fpx, yq
pour tout les px, yq dans un voisinage de pa, bq.

‚ pa, bq
minimum local

‚ pa, bq
maximum local

Si f est différentiable au point pa, bq, le signe des dérivées de f en pa, bq permet d’établir si le point est un extremum
local. À partir de maintenant, soit donc f : R2 ÝÑ R une fonction de classe C2 sur un domaine D Ă R2.

Définition. Un point pa, bq P D s’appelle point critique de f si
ÝÑ∇fpa, bq “ p0, 0q.

Cette condition signifie que le plan tangent au graphe de f au point pa, b, fpa, bqq est horizontal: un extremum local est
donc un point critique. Mais tous les points avec tangente horizontale ne sont pas des extrema locaux. Pour détecter la
nature d’un point critique, on utilise le critère suivant.

Théorème. Soit pa, bq P D un point critique de f . Si detHf pa, bq ą 0, alors le point pa, bq est un extremum local.
Dans ce cas:

• pa, bq est un minimum local si
B2f

Bx2
pa, bq ą 0 ou

B2f

By2 pa, bq ą 0,

• pa, bq est un maximum local si
B2f

Bx2
pa, bq ă 0 ou

B2f

By2 pa, bq ă 0.

Définition. Soit pa, bq P D un point critique de f .

• Si detHf pa, bq ă 0, on dit que pa, bq est un point col ou point selle.

La forme d’un point col est détérminée: par rapport aux deux courbes qui
le traversent et qui ont la plus forte pente (croissante ou décroissante), il est
un minimum local de l’une et un maximum local de l’autre. Cela arrive, par
exemple, dans l’hyperbolöıde parabolique z “ x2 ´ y2 (cf. figure). ‚ pa, bq

point selle

• Si detHf pa, bq “ 0, on dit que pa, bq est un point plat.

La forme d’un point plat n’est pas détérminée: par rapport aux courbes qui
le traversent et qui ont la plus forte pente (croissante ou décroissante), il peut
être un point d’inflexion pour les deux, par exemple dans la selle de singe
z “ x3 ´ 3xy2 (cf. figure), ou bien il peut être un extremum locale pour l’une
alors que l’autre est horizontale. Pour déterminer la forme d’un point plat il
faudrait regarder les dérivées de f d’ordre supérieur à 2.

‚
point plat
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Exercice. Déterminer les points critiques des fonctions suivantes et, si possible, leur nature.

1. fpx, yq “ x2 ` y2 ùñ ÝÑ∇fpx, yq “
ˆ
2x
2y

˙
Hf px, yq “

ˆ
2 0
0 2

˙

Points critiques:
ÝÑ∇fpx, yq “ p0, 0q ðñ px, yq “ p0, 0q

Nature: detHf p0, 0q “ 4 ą 0 B2f
Bx2 p0, 0q “ 2 ą 0 ùñ p0, 0q est un minimum local.

2. fpx, yq “ x2 ´ y2 ùñ ÝÑ∇fpx, yq “
ˆ

2x
´2y

˙
Hf px, yq “

ˆ
2 0
0 ´ 2

˙

Points critiques:
ÝÑ∇fpx, yq “ p0, 0q ðñ px, yq “ p0, 0q

Nature: detHf p0, 0q “ ´4 ă 0 ùñ p0, 0q est un point col.

3. fpx, yq “ 4px2`y2q´px2`y2q2 ùñ ÝÑ∇fpx, yq “
¨
˝

8x ´ 4xpx2 ` y2q

8y ´ 4ypx2 ` y2q

˛
‚ Hf px, yq “

¨
˝

8´12x2´4y2 ´ 8xy

´8xy 8´12y2´4x2

˛
‚

Points critiques:
ÝÑ∇fpx, yq “ p0, 0q ðñ

"
xp2 ´ x2 ´ y2q “ 0
yp2 ´ x2 ´ y2q “ 0

ðñ
C

soit px, yq “ p0, 0q

soit x2 ` y2 “ 2 (cercle)

Nature:

detHf p0, 0q “ det

ˆ
8 0
0 8

˙
“ 64 ą 0 B2f

Bx2 p0, 0q “ 8 ą 0 ùñ p0, 0q est un minimum local.

Si px, yq est tel que x2 ` y2 “ 2, alors detHf px, yq “ det

¨
˝

´8x2 ´ 8xy

´8xy ´ 8y2

˛
‚“ 0 ùñ px, yq est un point plat.

4. fpx, yq “ 2x2y ` 2x2 ` y2 ùñ ÝÑ∇fpx, yq “
¨
˝

4xy ` 4x

2x2 ` 2y

˛
‚ Hf px, yq “

¨
˝

4y ` 4 4x

4x 2

˛
‚

Points critiques:
ÝÑ∇fpx, yq “ p0, 0q ðñ

"
4xpy ` 1q “ 0
2px2 ` yq “ 0

ðñ
C

soit px, yq “ p0, 0q

soit px, yq “ p˘1,´1q
Nature:

detHf p0, 0q “ det

ˆ
4 0
0 2

˙
“ 8 ą 0 B2f

Bx2 p0, 0q “ 4 ą 0 ùñ p0, 0q est un minimum local.

detHf p˘1,´1q “ det

ˆ
0 ˘ 4
˘4 2

˙
“ ´16 ă 0 ùñ p˘1,´1q sont deux points col.

5. fpx, yq “ 2x3 ` xy2 ` 5x2 ` y2 ùñ ÝÑ∇fpx, yq “
¨
˝

6x2 ` y2 ` 10x

2xy ` 2y

˛
‚ Hf px, yq “

¨
˝

12x ` 10 2y

2y 2

˛
‚

Points critiques:
ÝÑ∇fpx, yq “ p0, 0q ðñ

"
6x2 ` y2 ` 10x “ 0
2px ` 1qy “ 0 ðñ soit x “ ´1, soit y “ 0

ðñ

soit

"
6x2 ` y2 ` 10x “ 0
x “ ´1

ðñ
"

y2 ´ 4 “ 0
x “ ´1

ðñ px, yq “ p´1,˘2q,

soit

"
6x2 ` y2 ` 10x “ 0
y “ 0

ðñ
"

2xp3x ` 5q “ 0
y “ 0

ðñ
C

soit px, yq “ p0, 0q

soit px, yq “ p´5{3, 0q
Nature:

detHf p´1,˘2q “ det

ˆ ´2 ˘ 4
˘4 2

˙
“ ´20 ă 0 ùñ p´1,˘2q sont deux points col.

detHf p0, 0q “ det

ˆ
10 0
0 2

˙
“ 20 ą 0 B2f

Bx2 p0, 0q “ 10 ą 0 ùñ p0, 0q est un minimum local.

detHf p´5{3, 0q “ det

ˆ ´10 0
0 2

˙
“ ´20 ă 0 ùñ p´5{3, 0q est un point col.
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Si f : R2 ÝÑ R est une fonction C1, on peut reconnaitre les points critiques et leur nature en regardant les lignes de
niveau de f .

Proposition. Un point pa, bq P Df est un point critique de f si on est dans l’une des situations suivantes, pour c “ fpa, bq:
• Lcpfq ne contient que le point pa, bq: dans ce cas pa, bq est un extremum local.

De plus:

– pa, bq est un minimum si, dans un petit disque autour de pa, bq,
on a

∗ Ldpfq “ H pour d ă c

∗ Ldpfq est une courbe fermée pour d ą c et d proche de c.

– pa, bq est un maximum si, dans un petit disque autour de pa, bq,
on a

∗ Ldpfq “ H pour d ą c

∗ Ldpfq est une courbe fermée pour d ă c et d proche de c.

y

x

‚pa, bq

valeurs croissantes

`
``

disque

minimum

y

x

‚pa, bq

valeurs décroissantes

´
´´

disque

maximum

• Lcpfq consiste de plusieurs courbes qui s’intersectent en pa, bq: dans ce cas pa, bq est un point selle ou un point plat.

De plus:

– pa, bq est un point selle si

∗ il est intersection de deux courbes

∗ Ldpfq‰H pour tout d proche de c.

– pa, bq est un point plat dans tous les
autres cas.

y

x

‚pa, bq `
´
´`

` ``

´´

´´
disque

point selle

y

x

‚pa, bq `
`
``

` ``

``

``
disque

point plat

y

x

‚
`
´

´

`´

`

disque

point plat

Exercice. À partir des lignes de niveau d’une fonction f : R2 ÝÑ R de classe C2, dire si les points indiqués sont critiques
et, si c’est le cas, décrire leur nature.

‚
A

´2

‚
D

´2‚
C

2

‚
E

‚
B

2

0

0

1

´ 1
2

´1
´ 1

2

´1

A est un minimum local
B n’est pas un point critique
C est un maximum local
D est un minimum local
E est un point selle

‚
A

2

‚
D

2‚
C

2

‚
E

‚
B

3

0

0

1

1
2

1

1
2

1

A est un maximum local
B est un point plat
C est un maximum local
D est un minimum local
E est un point plat
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3 Intégrales multiples

3.1 Intégrale simple comme somme de Riemann et aire.

Rappel. Si f : R ÝÑ R est une fonction à une variable définie sur un intervalle ra, bs, on a défini l’intégrale de f sur
ra, bs comme le nombre ż b

a

fpxq dx “ F pbq ´ F paq “ rF pxqsba,

où F est une primitive de f sur ra, bs, c’est-à-dire une fonction dérivable et telle que F 1pxq “ fpxq pour tout x P ra, bs. La
primitive de f est notée F pxq “

ż
fpxq dx. Si f admet une primitive F , par exemple quand f est continue, l’intégrale de f

sur ra, bs existe dès que l’intervalle ra, bs est borné. (Si l’intervalle n’est pas borné, on parle d’intégrale impropre.)
Pour calculer l’intégrale, ou la primitive, on transforme l’intégrand fpxq jusqu’à obtenir la dérivée d’une fonction, qui

sera F pxq. Pour cela, on emploit les deux techniques suivantes:

Théorème du changement de variable.

ż b

a

fpxq dx “
ż h´1pbq

h´1paq
f

`
hptq˘

h1ptq dt,

où x “ hptq et h est un difféomorphisme (bijection dérivable avec réciproque h´1 dérivable).

Théorème d’intégration par parties.

ż b

a

fpxq g1pxq dx “
”
fpxq gpxq

ıb
a

´
ż b

a

f 1pxq gpxq dx.

Définir l’intégrale comme valeur d’une primitive ne permet pas d’en comprendre la signification géométrique (c’est une
aire), ni d’en éteindre la définition aux fonctions de plusieures variables. Pour cela, il faut interpreter les intégrales comme
sommes de Riemann. Cette méthode ne réquiert pas de connaitre à priori une primitive.

Définition. Une subdivision Sδ de ra, bs est une partition de l’intervalle I “ ra, bs en n intervalles Ii “ rai´1, ais (pour

i “ 1, ..., n) de longueur δ “ b ´ a

n
, en partant de a0 “ a et en finissant en an “ b.

R
‚a “ a0 ‚an “ b‚a1|
x1

‚a2|
x2

‚a3|
x3

‚a4|
x4

‚a5|
x5

δ
¨ ¨ ¨

Pour tout choix de n points xi P Ii (i “ 1, ..., n), on appelle somme de Riemann de f associée à la subdivision Sδ et aux
points txiu la somme

Rδpf ; txiuq :“
nÿ

i“1

fpxiq δ

où chaque terme fpxiq δ représente l’aire algébrique
du rectangle de base Ii et hauteur fpxiq.
Ici, “algébrique” signifie avec un signe ˘ qui dépend du
signe de la fonction f au point choisi xi.

x

f

‚a ‚b

négatif positif négatif

Définition. Si la limite lim
δÑ0

Rδpf ; txiuq existe, elle est indépendante du choix des points xi P Ii. Dans ce cas, on appelle

intégrale de Riemann de f sur ra, bs cette limite:

ż b

a

fpxq dx “ lim
δÑ0

Rδpf ; txiuq.

On dit que f est intégrable sur ra, bs selon Riemann si l’intégrale

ż b

a

fpxq dx est finie (un nombre réel, pas ˘8).

Théorème fondamental du calcul intégral. Si la fonction f est intégrable sur ra, bs selon Riemann, alors elle admet
une primitive F sur ra, bs, et on a:

F pxq “
ż x

a

fptq dt ` c pour tout x P ra, bs et c P R.
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Corollaire. [Signification géométrique de l’intégrale simple.]

1.

ż b

a

fpxq dx “ aire “algébrique” de la portion du plan comprise en-
tre le graphe de f et l’axe �Ox.

2.

ż b

a

|fpxq| dx “ aire de la portion du plan comprise entre le graphe
de f et l’axe �Ox.

x

f

négatif positif négatif

|f | f “ |f | |f |

Exemple. Aire du disque. Par symétrie, on voit que l’aire du disque D “ �px, yq P R2 | x2 ` y2 ď 1
(
est deux fois

l’aire du demi-disque

D` “ �px, yq P R2 | x2 ` y2 ď 1, y ě 0
(
,

qui est la portion de plan comprise entre l’axe �Ox et le graphe de la fonction
y “ ?

1 ´ x2. On a alors

Aire pDq “ 2

ż 1

´1

a
1 ´ x2 dx.

x

y

y “ ?
1 ´ x2

D`

On calcule cette intégrale par changement de variable, en posant x “ sin t pour t P r´π{2,π{2s, car ?
1 ´ x2 “ cos t.

Puisque dx “ cos t dt, on a

Aire pDq “ 2

ż π{2

´π{2
cos2 t dt “ 2

ż π{2

´π{2
cosp2tq ` 1

2
dt “

”1
2
sinp2tq ` t

ıπ{2
´π{2

“ `
0 ` π

2
´ 0 ` π

2

˘ “ π.

3.2 Intégrale double et volume. Théorème de Fubini. Changement de variables.

Soit f : R2 ÝÑ R une fonction définie sur un ensemble borné D Ă R2.

Définition. Pour tout δ ą 0, on appelle subdivision de D l’ensemble Sδ des carrés Ki de coté δ qui recouvrent D dans
n’importe quel grillage de pas δ. On considère deux telles subdivisions:

• Sext
δ indique le recouvrement large (à l’extérieur),

• Sint
δ indique le recouvrement strict (à l’intérieur).

Puisque D est borné, les subdivisions contiennent un nombre fini
de carrés, et on a Sint

δ Ă Sext
δ . En fait, les carrés contenus dans

l’ensemble Sext
δ zSint

δ couvrent exactement le bord BD de D.

Sint

Sext

D

Pour tout choix de points pxi, yiq P Ki X D, on appelle sommes de Riemann de f associées aux subdivisions Sext{int
δ

et aux points tpxi, yiqu les sommes

R
ext{int
δ pf, tpxi, yiquq “

ÿ

KiPSext{int
δ

fpxi, yiq δ2,

où chaque terme fpxi, yiq δ2 représente le volume algébrique
du parallélepipède de base Ki et hauteur fpxi, yiq, avec signe ˘
qui dépend du signe de f en pxi, yiq. ‚

‚

x

y

fpx, yq

Définition. Si les limites lim
δÑ0

R
ext{int
δ pf ; tpxi, yiquq existent, elles sont indépendantes du choix des points pxi, yiq P Ki X D

et elles coincident. Dans ce cas, on appelle intégrale double de f sur D cette limite:

ĳ

D

fpx, yq dx dy “ lim
δÑ0

R
ext{int
δ pf ; tpxi, yiquq.
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On dit que f est intégrable sur D selon Riemann si l’intégrale

ĳ

D

fpx, yq dx dy est finie (un nombre réel, pas ˘8). En

particulier, c’est le cas si f est continue et D est borné.

Corollaire. [Signification géométrique de l’intégrale double.]

1.

ĳ

D

fpx, yq dx dy “ volume “algébrique” de la portion d’espace comprise
entre le graphe de f et le plan xOy.

2.

ĳ

D

|fpx, yq| dx dy “ volume de la portion d’espace comprise entre le
graphe de f et le plan xOy.

y

z

x

positif négatif

f “ |f | |f |

f

Exemple. Volume de la boule. Le volume de la boule B “ �px, y, zq P R3 | x2 ` y2 ` z2 ď 1
(
est deux fois le volume

de la demi-boule

B` “ �px, y, zq P R3 | x2 ` y2 ` z2 ď 1, y ě 0
(
,

comprise entre le plan xOy et le graphe de la fonction z “ a
1 ´ x2 ´ y2. On a alors

Vol pBq “ 2

ĳ

D

a
1 ´ x2 ´ y2 dx dy, où D “ �px, yq P R2 | x2 ` y2 ď 1

(
.

‚

‚ y

z

x

px, yq

z “ a
x2 ` y2B`

Pour calculer les intégrales doubles, on utilise les proprietés suivantes, et deux techniques spécifiques.

Proposition.

1.

ĳ

D

`
λ fpx, yq ` µ gpx, yq˘

dx dy “ λ

ĳ

D

fpx, yq dx dy ` µ

ĳ

D

gpx, yq dx dy, pour tout λ, µ P R;

2. Si D “ D1 Y D2 et D1 X D2 “ courbe ou H, alors

ĳ

D

fpx, yq dx dy “
ĳ

D1

fpx, yq dx dy `
ĳ

D2

fpx, yq dx dy;

3.
ˇ̌
ˇ
ĳ

D

fpx, yq dx dy
ˇ̌
ˇ ď

ĳ

D

|fpx, yq| dx dy;

4. Si fpx, yq ď gpx, yq pour tout px, yq P D, alors

ĳ

D

fpx, yq dx dy ď
ĳ

D

gpx, yq dx dy.

Calcul des intégrales doubles: théorème de Fubini.

Premier cas. Soit f : R2 ÝÑ R une fonction continue définie sur un rectangle D “ ra, bs ˆ rc, ds.

Théorème. [Fubini, 1er cas.]

ĳ

D

fpx, yq dx dy “
ż b

a

˜ż d

c

fpx, yq dy

¸
dx “

ż d

c

˜ż b

a

fpx, yq dx

¸
dy

Corollaire.

ĳ

ra,bsˆrc,ds
f1pxq f2pyq dx dy “

ż b

a

f1pxq dx

ż d

c

f2pyq dy

Notation:

ż b

a

dx

ż d

c

dy fpx, yq “
ż b

a

˜ż d

c

fpx, yq dy

¸
dx.

Exemples.

1.

ĳ

r0,1sˆr0,π{2s
x cos y dx dy “

ż 1

0

x dx

ż π{2

0

cos y dy “
”1
2
x2

ı1
0

”
sin y

ıπ{2
0

“ 1

2
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2.

ĳ

r´1,1sˆr0,1s
px2y ´ 1q dx dy “

ż 1

´1

dx

ż 1

0

px2y ´ 1q dy “
ż 1

´1

dx

„
1

2
x2y2 ´ y

y“1

y“0

“
ż 1

´1

ˆ
1

2
x2 ´ 1

˙
dx “

„
1

6
x3 ´ x

1

´1

“ ´5

3

Deuxième cas. Soit f : R2 ÝÑ R une fonction continue définie sur un ensemble borné D quelconque. Alors:

• pour tout px, yq P D, il existe surement des valeurs a, b P R tels
que a ď x ď b,

• pour tout x P ra, bs, il existe surement des valeurs cpxq, dpxq P R
tels que cpxq ď y ď dpxq,

de telle sorte que D “ � px, yq P R2 | x P ra, bs, y P rcpxq, dpxqs (
. x

y

bxa

cpxq

dpxq

À noter que les deux courbes BD´ “ � px, yq P R2 | x P ra, bs, y “ cpxq (
et BD` “ � px, yq P R2 | x P ra, bs, y “ dpxq (

decrivent le bord de D.

En alternative:

• pour tout px, yq P D, il existe surment des valeurs c, d P R tels
que c ď y ď d,

• pour tout y P rc, ds, il existe surment des valeurs apyq, bpyq P R
tels que apyq ď x ď bpyq,

de telle sorte que D “ � px, yq P R2 | y P rc, ds, x P rapyq, bpyqs (
.

x

y

d

y

c

apyq bpyq

Dans ce cas, ce sont les deux courbes BD´ “ � px, yq P R2 | y P rc, ds, x “ apyq (
et BD` “ � px, yq P R2 | y P rc, ds, x “ bpyq (

qu decrivent le bord de D.

Selon le choix qu’on adopte pour décrire D, on a alors:

Théorème. [Fubini, 2ème cas.]

ĳ

D

fpx, yq dx dy “
ż b

a

˜ż dpxq

cpxq
fpx, yq dy

¸
dx “

ż d

c

˜ż bpyq

apyq
fpx, yq dx

¸
dy.

Exemples.

1. Soit D la partie du plan xOy délimitée par l’arc de parabole y “ x2 en bas,
et la droite y “ 1 en haut. On peut alors décrire D comme l’ensemble

D “ �px, yq P R2 | x P r´1, 1s, y P rx2, 1s(.
Par conséquent, on a:

x

y

y “ 1

y “ x2

‚1

ĳ

D

x2y dx dy “
ż 1

´1

x2 dx

ż 1

x2

y dy “
ż 1

´1

x2

„
1

2
y2

1

x2

dx “
ż 1

´1

1

2
px2 ´ x4q dx “ 1

2

„
1

3
x3 ´ 1

5
x5

x“1

x“´1

“ 2

15
.

2. Volume de la boule en coordonnées cartesiennes. Pour B “ �px, y, zq P R3 | x2 ` y2 ` z2 ď 1
(
, on sait que

Vol pBq “ 2

ĳ

D

a
1 ´ x2 ´ y2 dx dy, où D “ �px, yq P R2 | x2 ` y2 ď 1

(
.

On peut décrire D comme l’ensemble

D “
!

px, yq P R2 | x P r´1, 1s, y P “ ´
a
1 ´ x2,

a
1 ´ x2

‰ )
,

donc on a

x

y

‚ ‚´1 1

D

´?
1 ´ x2

?
1 ´ x2

Vol pBq “ 2

ż 1

´1

dx

ż ?
1´x2

´?
1´x2

a
1 ´ x2 ´ y2 dy “ 2

ż 1

´1

dx

ż ?
1´x2

´?
1´x2

a
1 ´ x2

c
1 ´ y2

1 ´ x2
dy.
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Avec le changement de variable
y?

1 ´ x2
“ sin t, on a

´
a
1 ´ x2 ď y ď

a
1 ´ x2 ùñ ´1 ď sin t ď 1 ùñ ´π

2
ď t ď π

2
,

y2

1 ´ x2
“ sin2 t ùñ

c
1 ´ y2

1 ´ x2
“

a
1 ´ sin2 t “

?
cos2 t “ | cos t| “ cos t pour t P r´π

2 ,
π
2 s,

y “
a
1 ´ x2 sin t ùñ dy “

a
1 ´ x2 cos t dt.

En sachant que 2

ż π{2

´π{2
cos2 t dt “ π (voir exemple précédent), on a alors:

Vol pBq “ 2

ż 1

´1

p1 ´ x2q dx

ż π{2

´π{2
cos2 t dt “ π

ż 1

´1

p1 ´ x2q dx “ π

„
x ´ 1

3
x3

1

´1

“ 4π

3
.

Calcul des intégrales doubles: changement de variables.

Considerons l’intégrale

ĳ

D

fpx, yq dx dy et un changement de variables px, yq “ hpu, vq “ `
xpu, vq, ypu, vq˘

. Pour exprimer

l’intégrale en termes de la fonction f̃pu, vq “ f
`
xpu, vq, ypu, vq˘

, il faut exprimer D et le ”produit” dx dy en termes de pu, vq:
• Le domaine D se transforme en le domaine D̃ “ h´1pDq “ �pu, vq P R2 | px, yq “ hpu, vq P D

(
.

• Les éléments dx et dy se transforment comme

$
’’’&
’’’%

dx “ Bx
Bu du ` Bx

Bv dv

dy “ By
Bu du ` By

Bv dv

i.e. comme

ˆ
dx
dy

˙
“ Jhpu, vq

ˆ
du
dv

˙

où Jhpu, vq “

¨
˚̊
˚̋

Bx
Bu

Bx
Bv

By
Bu

By
Bv

˛
‹‹‹‚est la matrice Jacobienne du changement de coordonnées.

• Pour le ”produit” dx dy il faut faire attention: il s’agit d’un produit wedge entre formes différentielles (hors programme
Math2), normalement noté dx ^ dy. Sans rentrer dans les détails, il suffit de dire qu’il est linéaire dans les coefficients
de dx et dy (qui sont des fonctions) et antisymétrique:

dx ^ dy “ ´dy ^ dx et donc aussi dx ^ dx “ 0, dy ^ dy “ 0.

Par conséquent, on a

dx ^ dy “
´Bx

Bu du ` Bx
Bv dv

¯
^

´ By
Bu du ` By

Bv dv
¯

“ Bx
Bu

By
Bu du ^ du ` Bx

Bu
By
Bv du ^ dv ` Bx

Bv
By
Bu dv ^ du ` Bx

Bv
By
Bv dv ^ dv

“
´Bx

Bu
By
Bv ´ Bx

Bv
By
Bu

¯
du ^ dv “ det Jhpu, vq du ^ dv.

Quand on identifie dx dy à dx ^ dy en réalité on ne fait pas attention à l’ordre, on suppose que dx dy “ dy dx. Pour
éviter le changement de signe ”´” qui viendrait de l’égalité dx^ dy “ ´dy ^ dx, il suffit d’adopter la formule suivante,
avec la valeur absolue du détérminant Jacobien:

dx dy “
ˇ̌
ˇBx
Bu

By
Bv ´ Bx

Bv
By
Bu

ˇ̌
ˇ du dv “

ˇ̌
ˇdet Jhpu, vq

ˇ̌
ˇ du dv.

En particulier, pour le changement en coordonnées polaires, on a: dx dy “ ρ dρ dϕ .

On arrive finalement au théorème suivant:

Théorème. [Changement de variables.]

ĳ

D

fpx, yq dx dy “
ĳ

h´1pDq
f

`
xpu, vq, ypu, vq˘ ˇ̌

ˇdet Jhpu, vq
ˇ̌
ˇ du dv
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Exemple. Volume de la boule en coordonnées polaires. Pour B “ �px, y, zq P R3 | x2 ` y2 ` z2 ď 1
(
, calculons

Vol pBq “ 2

ĳ

D

a
1 ´ x2 ´ y2 dx dy, où D “ �px, yq P R2 | x2 ` y2 ď 1

(

avec le changement de variables en coordonnées polaires, px, yq “ hpρ,ϕq “ pρ cosϕ, ρ sinϕq. Puisque x2 ` y2 “ ρ2, on a:
a
1 ´ x2 ´ y2 “

a
1 ´ ρ2

h´1pBq “ �pρ,ϕq P r0,8rˆr0, 2πr ˇ̌
ρ ď 1

( “ r0, 1s ˆ r0, 2πr
et donc, en sachant que dx dy “ ρ dρ dϕ et en utilisant Fubini pour separer les variables, on a

Vol pBq “ 2

ĳ

r0,1sˆr0,2πr

a
1 ´ ρ2 ρ dρ dϕ “ 2

ż 1

0

a
1 ´ ρ2 ρ dρ

ż 2π

0

dϕ.

L’intégrale en ϕ est simple:

ż 2π

0

dϕ “ “
ϕ

‰2π
0

“ 2π. Pour l’autre, si on pose t “ 1 ´ ρ2 on a
a
1 ´ ρ2 “ ?

t “ t1{2 et

ρ “ 0 ùñ t “ 1 et ρ “ 1 ùñ t “ 0,

dt “ ´2ρ dρ ùñ ρ dρ “ ´1

2
dt,

et on obtient enfin

Vol pBq “ ´2

2
2π

ż 0

1

t1{2 dt “ 2π

ż 1

0

t1{2 dt “ 2π

„
1

1
2 ` 1

t
1
2 `1

1

0

“ 2π
2

3

”
t
3
2

ı1
0

“ 4π

3
.

3.3 Intégrale triple. Théorème de Fubini. Changement de variables.

Soit f : R3 ÝÑ R une fonction de trois variables px, y, zq, et soit Ω Ă R3 un ensemble borné sur lequel f est définie.

Définition. On définit l’intégrale triple de f sur Ω comme la limite de la
somme de Riemann associée à une subdivision Sδ de Ω en petits cubes Ki

de taille δ3, avec δ qui tend vers zéro:

¡

Ω

fpx, y, zq dx dy dz “ lim
δÑ0

ÿ

KiPSδ

fpxi, yi, ziq δ3,

quelconque soit le choix des points pxi, yi, ziq P Ki.

‚ ‚
‚ ‚

D

R3

Cette définition est l’analogue en dimension 3 de celle donnée en dimension 2 pour les intégrales doubles. Les intégrales
triples ont donc les mêmes proprietés des intégrales doubles, et les mêmes théorèmes d’existance (f continue sur Ω borné).

La signification géométrique de l’intégrale triple est plus abstraite: par analogie, le volume (algébrique) de la portion
d’espace comprise entre le graphe de f et le plan xOy devient le quadri-volume (algébrique) de la portion de quadri-
espace comprise entre le graphe de f et l’espace Oxyz.

Calcul des intégrales triples.

Théorème. [Fubini.]

1. Si Ω “ ra, bs ˆ rc, ds ˆ re, gs est un parallélepipède, alors:

¡

Ω

fpx, y, zq dx dy dz “
ż b

a

dx

ż d

c

dy

ż g

e

dz fpx, y, zq (dans l’ordre qu’on veut).

2. Si Ω “
!

px, y, zq P R3
ˇ̌
x P ra, bs, y P rcpxq, dpxqs, z P repx, yq, gpx, yqs

)
est un ensemble borné quelconque, alors:

¡

Ω

fpx, y, zq dx dy dz “
ż b

a

dx

ż dpxq

cpxq
dy

ż gpx,yq

epx,yq
dz fpx, y, zq (ordre forcé).
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Exemples.

1.

¡

r0,1sˆr1,2sˆr2,3s
px2 ´ 2yzq dx dy dz “

ż 3

2

dz

ż 2

1

dy

ż 1

0

dx px2 ´ 2yzq “
ż 3

2

dz

ż 2

1

dy
” 1

3
x3 ´ 2xyz

ıx“1

x“0

“
ż 3

2

dz

ż 2

1

dy
´ 1

3
´ 2yz

¯
“

ż 3

2

” 1

3
y ´ y2z

ıy“2

y“1
dz “

ż 3

2

´ 2

3
´ 4z ´ 1

3
` z

¯
dz

“
ż 3

2

´ 1

3
´ 3z

¯
dz “

” 1

3
z ´ 3

2
z2

ı3
2

“ 3

3
´ 27

2
´ 2

3
` 12

2
“ 1

3
´ 15

2
“ ´43

6

2. Si Ω est le cylindre plein, de base le disque D “ �px, y, zq P R3 | x2 ` y2 ď 1, z “ 0
)
et de hauteur 3, on peut écrire

Ω “ � px, y, zq P R3 | x2 ` y2 ď 1, 0 ď z ď 3
)

“ � px, y, zq P R3 | x P r´1, 1s, y P “ ´
a
1 ´ x2,

a
1 ´ x2

‰
, z P r0, 3s

)

et donc

¡

Ω

p1 ´ 2yzq dx dy dz “
ż 3

0

dz

ĳ

D

p1 ´ 2yzq dx dy “
ż 3

0

dz

ż 1

´1

dx

ż ?
1´x2

´?
1´x2

p1 ´ 2yzq dy

“
ż 3

0

dz

ż 1

´1

”
y ´ y2z

ıy“?
1´x2

y“´?
1´x2

dx “
ż 3

0

dz

ż 1

´1

´a
1 ´ x2 ´ p1 ´ x2qz `

a
1 ´ x2 ` p1 ´ x2qz

¯
dx

“
ż 3

0

dz

ż 1

´1

2
a
1 ´ x2 dx “ 3

ż π{2

´π{2
2 cos2 t dt “ 3π

Théorème. [Changement de variables.] Si px, y, zq “ hpu, v, wq est un changement de variables, alors:

¡

Ω

fpx, y, zq dx dy dz “
¡

h´1pΩq
f

`
xpu, v, wq, ypu, v, wq, zpu, v, wq˘ ˇ̌

ˇdet Jhpu, v, wq
ˇ̌
ˇ du dv dw

En particulier, pour les changements on coordonnées cylindriques et sphériques, on a:

dx dy dz “ ρ dρ dϕ dz “ r2 sin θ dr dϕ dθ

Exemple. Considerons à nouveau l’intégrale de la fonction fpx, y, zq “ 1 ´ 2yz sur le cylindre plein Ω, de base le disque

D “ �px, y, zq P R3 | x2 ` y2 ď 1, z “ 0
)
et de hauteur 3. En coordonnées cylindriques, on a

Ω “ � px, y, zq P R3 | x2 ` y2 ď 1, 0 ď z ď 3
)

“ � pρ,ϕ, zq | ρ P r0, 1s, ϕ P r0, 2πr, z P r0, 3s
)

et donc, puisque dx dy dz “ ρ dρ dϕ dz, on a

¡

Ω

p1 ´ 2yzq dx dy dz “
ż 3

0

dz

ĳ

D

p1 ´ 2yzq dx dy “
ż 3

0

dz

ż 1

0

ρ dρ

ż 2π

0

p1 ´ 2ρ sinϕzq dϕ

“
ż 3

0

dz

ż 1

0

ρ dρ
”
ϕ ` 2ρ cosϕz

ıϕ“2π

ϕ“0
“

ż 3

0

dz

ż 1

0

´
2π ` 2ρz ´ 2ρz

¯
ρ dρ

“
ż 3

0

dz

ż 1

0

2π ρ dρ “ 3 π
”
ρ2

ı1
0

“ 3π
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3.4 Applications: aire, volume, moyenne, baricentre

Si D est un domaine borné de R2, l’intégrale

ĳ

D

dx dy represente le volume de la

portion d’espace comprise entre le graphe de la fonction constante fpx, yq “ 1 et le
plan xOy: ce solide est un cylindre de hauteur 1 et de base D, son volume est donc
égal à l’aire de D multipliée par la hauteur, qui vaut 1.

y

z

x
D

1

Définition. Soit D un domaine borné de R2. L’aire de D est l’intégrale double

Aire pDq “
ĳ

D

dx dy

x

y

D

Proposition. Si D est la portion du plan sous le graphe d’une fonction f : ra, bs ÝÑ
R positive, c’est-à-dire si

D “ � px, yq | x P ra, bs, y P r0, fpxqs (
,

alors on a: Aire pDq “
ż b

a

fpxq dx

x

y

f

D

ba

En effet, si D “ � px, yq | x P ra, bs, y P r0, fpxqs (
, on a

Aire pDq “
ĳ

D

dx dy “
ż b

a

dx

ż fpxq

0

dy “
ż b

a

r y sfpxq
0 dx “

ż b

a

fpxq dx.

Exercices.

1. Calculer l’aire du domaine D de R2 délimité par les courbes d’équation y “ x2 ` 2x ` 1 et y “ x3 ` 1.

D’abord on dessine le domaine D: la courbe y “ x3 `1 n’est rien d’autre
que y “ x3 translaté vers le haut de 1, et la courbe y “ x2 ` 2x ` 1 “
px`1q2 est une parabole orientée vers le haut et centrée au point x`1 “ 0
et y “ 0, c’est-à-dire au point p´1, 0q. Les deux courbes se rencontrent
aux points p´1, 0q et p0, 1q. On a donc

D “
!

px, yq P R2 | ´ 1 ď x ď 0, x2 ` 2x ` 1 ď y ď x3 ` 1
)
.

x

y
y “ px ` 1q2

y “ x3 ` 1

Donc

Aire pDq “
ĳ

D

dx dy “
ż 0

´1

dx

ż x3`1

x2`2x`1

dy “
ż 0

´1

r y sx3`1
x2`2x`1 dx “

ż 0

´1

`
x3 ` 1 ´ x2 ´ 2x ´ 1

˘
dx

“
„
1

4
x4 ´ 1

3
x3 ´ x2

0

´1

“ ´1

4
p´1q4 ` 1

3
p´1q3 ` p´1q2 “ ´1

4
´ 1

3
` 1 “ 5

12
.

2. Calculer l’intégrale

ĳ

D

px2 ´ 2yq dx dy, où D est le domaine de l’exercice précédent.

ĳ

D

px2 ´ 2yq dx dy “
ż 0

´1

dx

ż x3`1

x2`2x`1

px2 ´ 2yq dy “
ż 0

´1

“
x2y ´ y2

‰x3`1

x2`2x`1
dx

“
ż 0

´1

´
x2px3 ` 1q ´ px3 ` 1q2 ´ x2px2 ` 2x ` 1q ` px2 ` 2x ` 1q2

¯
dx

“
ż 0

´1

` ´ x6 ` x5 ` 6x2 ` 4x
˘
dx “

”
´ 1

7
x7 ` 1

6
x6 ` 2x3 ` 2x2

ı0
´1

“ 1

7
` 1

6
´ 2 ` 2 “ 13
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Définition. Soit Ω un domaine borné de R3. Le volume de Ω est
l’intégrale triple

Vol pΩq “
¡

Ω

dx dy dz

y

z

x

Ω

Proposition. Si Ω est la portion d’espace sous le graphe d’une fonction
f : D Ă R2 ÝÑ R positive, c’est-à-dire si

Ω “ � px, y, zq | px, yq P D Ă R2, z P r0, fpx, yqs (
,

alors on a: Vol pΩq “
ĳ

D

fpx, yq dx dy

x

y

z

f

Ω

D

En effet, si Ω “ � px, y, zq | px, yq P D Ă R2, z P r0, fpx, yqs (
, on a

Vol pΩq “
¡

Ω

dx dy dz “
ĳ

D

dx dy

ż fpx,yq

0

dz “
ĳ

D

r z sfpx,yq
0 dx dy “

ĳ

D

fpx, yq dx dy.

Exemple. Volume de la boule en coordonnées sphériques. En coordonnées sphériques, la boule B “ � px, y, zq P
R3 | x2 ` y2 ` z2 ď 1

(
devient

h´1pBq “ � pr,ϕ, θq | r P r0, 1s, ϕ P r0, 2πr, θ P r0,πs (
,

et, puisque dx dy dz “ r2 sin θ dr dϕ dθ, on a

Vol pBq “
¡

B

dx dy dz “
¡

r0,1sˆr0,2πrˆr0,πs
r2 sin θ dr dϕ dθ “

ż 1

0

r2 dr

ż 2π

0

dϕ

ż π

0

sin θ dθ

“ 1

3
2π

”
´ cos θ

ıπ
0

“ 2π

3
p1 ` 1q “ 4π

3
.

Définition. Si f ě 0 denote la concentration d’une matière (densité volumique) dans un volume Ω Ă R3, ou la densité d’un
courant ou d’une énergie, on appelle:

• Quantité totale de matière / courant présente en Ω “
¡

Ω

fpx, y, zqdx dy dz

• Quantité moyenne de matière / courant présente en Ω “ 1

Vol pΩq
¡

Ω

fpx, y, zqdx dy dz

Exemple. Un matériau est distribué dans le cube Ω “ r0, Rs3 selon la densité volumique fpx, y, zq “ x ` y

pz ` 1q2 . La

quantité totale du matériau est alors

¡

Ω

fpx, y, zq dx dy dz “
ż R

0

dx

ż R

0

px ` yqdy
ż R

0

1

pz ` 1q2 dz “
ż R

0

”
xy ` 1

2
y2

ıR
0
dx

”
´ 1

z ` 1

ıR
0

“
ż R

0

´
Rx ` 1

2
R2

¯
dx

´
1 ´ 1

R ` 1

¯
“

” 1

2
Rx2 ` 1

2
R2x

ıR
0

R

R ` 1

“
´ 1

2
R3 ` 1

2
R3

¯ R

R ` 1
“ R4

R ` 1
,

et, puisque Vol pΩq “ R3, le volume moyen du matériau dans le cube est

1

Vol pΩq
¡

Ω

fpx, y, zq dx dy dz “ 1

R3

R4

R ` 1
“ R

R ` 1
.
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Définition. Si µ ě 0 denote la densité de masse, on appelle:

• Masse totale présente en Ω: M “
¡

Ω

µpx, y, zq dx dy dz

• Centre de masse (ou centre d’inértie, ou encore baricentre) le point G de coordonnées pxG, yG, zGq telles que

xG “ 1

M

¡

Ω

x µpx, y, zq dx dy dz, yG “ 1

M

¡

Ω

y µpx, y, zq dx dy dz, zG “ 1

M

¡

Ω

z µpx, y, zq dx dy dz

Un matériau est homogène si sa densité de masse est constante. Si cette constante n’est pas spécifiée, on peut supposer
que µpx, y, zq “ 1 pour tout px, y, zq.

Si rpx, y, zq denote la distance d’un point px, y, zq depuis un point fixe P ou une droite fixe Δ, on appelle aussi:

• Moment d’inértie par rapport à P ou à Δ =
1

M

¡

Ω

r2px, y, zq µpx, y, zq dx dy dz

Exemple. Trouvons le centre de masse du demi-cylindre homogène

Ω “ � px, y, zq P R3 | x2 ` y2 ď R2, z P r0, Hs, y ě 0
(
.

Il convient de travailler en coordonnées cylindriques:

h´1pΩq “ � pρ,ϕ, zq | ρ P r0, Rs, ϕ P r0,πs, z P r0, Hs(.
La masse totale est alors

M “
¡

Ω

dx dy dz “
¡

h´1pΩq
ρ dρ dϕ dz “

ż R

0

ρ dρ

ż π

0

dϕ

ż H

0

dz “ πR2H

2
.

Puisque

ż π

0

cosϕ dϕ “
”
sinϕ

ıπ
0

“ 0, et

ż π

0

sinϕ dϕ “
”

´ cosϕ
ıπ
0

“ 2, le centre de masse G a coordonnées cartesiennes

xG “ 1

M

¡

Ω

x dx dy dz “ 1

M

¡

h´1pΩq
ρ cosϕ ρ dρ dϕ dz “ 1

M

ż R

0

ρ2 dρ

ż π

0

cosϕ dϕ

ż H

0

dz “ 0

yG “ 1

M

¡

Ω

y dx dy dz “ 1

M

ż R

0

ρ2 dρ

ż π

0

sinϕ dϕ

ż H

0

dz “ 2

πR2H

R3

3
2 H “ 4R

3π

zG “ 1

M

¡

D

z dx dy dz “ 1

M

ż R

0

ρ dρ

ż π

0

dϕ

ż H

0

z dz “ 2

π R2H

R2

2
π

H2

2
“ H

2

donc G “
´
0,

4R

3π
,
H

2

¯
.

Exercices.

1. Un sac de farine tombe par terre et la farine s’éparpille au sol avec une concentration non homogène

fpx, yq “ 1
´a

x2 ` y2 ` 1
¯2 , pour tout px, yq P R2.

Calculer la quantité totale et celle moyenne de farine éparpillée dans le disque de rayon R ą 0 autour du sac.

La fonction f se simplifie en coordonnées polaires, car on a f̃pρ,ϕq “ 1

pρ ` 1q2 , et le disque en coordonnées polaires
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est DR “ � pρ,ϕq | ρ P r0, Rs, ϕ P r0, 2πr (
. On a alors:

Quantité totale “
ĳ

DR

1

pρ ` 1q2 ρ dρ dϕ “
ż R

0

´ ρ ` 1

pρ ` 1q2 ´ 1

pρ ` 1q2
¯
dρ

ż 2π

0

dϕ “ 2π

ż R

0

´ 1

ρ ` 1
´ 1

pρ ` 1q2
¯
dρ

“ 2π
”
lnpρ ` 1q ` 1

ρ ` 1

ıR
0

“ 2π
´
lnpR ` 1q ` 1

R ` 1
´ ln 0 ´ 1

¯
“ 2π

´
lnpR ` 1q ´ R

R ` 1

¯

Aire pDRq “
ĳ

DR

ρ dρ dϕ “
ż R

0

ρ dρ

ż 2π

0

dϕ “ R2

2
2π “ πR2

Quantité moyenne “ 1

Aire pDRq
ĳ

DR

1

pρ ` 1q2 ρ dρ dϕ “ 2

R2

´
lnpR ` 1q ´ R

R ` 1

¯

2. Calculer le centre de masse du solide Ω composé de la demi-boule B´
R et du cylindre CR suivants:

B´
R “

!
pr,ϕ, θq ˇ̌

r P r0, Rs, ϕ P r0, 2πs, θ P rπ{2,πs
)

CR “
!

pρ,ϕ, zq ˇ̌
ρ P r0, Rs, ϕ P r0, 2πs, z P r0, Rs

)
,

ayant densité de masse µpx, y, zq “ z2.

Puisque Ω “ B Y C, et B X C = courbe, le centre de masse G a coordonnées

xG “ 1

MΩ

¡

Ω

xµpx, y, zq dx dy dz (idem pour yG et zG),

où MΩ “ MB´
R

` MCR
et

¡

Ω

“
¡

B´
R

`
¡

CR

.

Les intégrales se calculent:

- en coordonnées sphériques sur B, où µpr,ϕ, θq “ r2 cos2 θ,

- en coordonnées cylindriques sur C, où µpρ,ϕ, zq “ z2.

On a donc

MB´
R

“
¡

B´
R

r2 cos2 θ r2 sin θ dr dϕ dθ “
ż R

0

r4 dr

ż 2π

0

dϕ

ż π

π{2
cos2 θ sin θ dθ “ R5

5
2π

”
´ 1

3
cos3 θ

ıπ
π{2

“ 2πR5

15

MCR
“

¡

CR

z2 ρ dρ dϕ dz “
ż R

0

ρ dρ

ż 2π

0

dϕ

ż R

0

z2 dz “ R2

2
2π

R3

3
“ πR5

3

MΩ “ MB´
R

` MCR
“

ˆ
2

15
` 1

3

˙
πR5 “ 7πR5

15
.

Puisque

ż 2π

0

cosϕ dϕ “ 0 et

ż 2π

0

sinϕ dϕ “ 0, les coordonnées cartesiennes du baricentre G de Ω sont:

xG “ 1

MΩ

¡

Ω

x µpx, y, zq dx dy dz

“ 1

MΩ

ż R

0

r5 dr

ż 2π

0

cosϕ dϕ

ż π

π{2
cos2 θ sin2 θ dθ ` 1

MΩ

ż R

0

ρ2 dρ

ż 2π

0

cosϕ dϕ

ż R

0

z2 dz “ 0

yG “ 1

MΩ

ż R

0

r5 dr

ż 2π

0

sinϕ dϕ

ż π

π{2
cos2 θ sin2 θ dθ ` 1

MΩ

ż R

0

ρ2 dρ

ż 2π

0

sinϕ dϕ

ż R

0

z2 dz “ 0

zG “ 1

MΩ

¡

Ω

z3 dx dy dz “ 1

MΩ

ż R

0

r5 dr

ż 2π

0

dϕ

ż π

π{2
cos3 θ sin θ dθ ` 1

MΩ

ż R

0

ρ dρ

ż 2π

0

dϕ

ż R

0

z3 dz

“ 15

7πR3

ˆ
R6

6
2π

”
´ 1

4
cos4 θ

ıπ
π{2

` R2

2
2π

R4

4

˙
“ 15πR6

7πR3

ˆ
´1

3

1

4
` 1

4

˙
“ 15R3

7

´1 ` 3

12
“ 5R3

14
.

En conclusion, le baricentre a coordonnées G “ p0, 0, 5R3{14q et se trouve dans la partie cylindrique, car 5R3{14 ą 0.

À noter que le baricentre se trouve à l’intérieur de Ω seulement si 5R3{14 ď R, ce qui se vérifie si R ď a
14{5.
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