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Présentation du cours

Ce cours est congu comme support pour 'UE de Math2, L1 - portail PCSI, de la Faculté des Sciences et Technologie de
I’Université Lyon 1. Il contient les résultats théoriques mentionnés au Cours Magistral, illustrés par des exemples et des
exercices resolus.

Le but du cours est d’introduire les notions mathématiques qui permettent de comprendre et manipuler les champs
scalaires, comme la temperature ou 'altitude, et les champs de vecteurs, tels que les forces de gravité, de Coulomb et de
Lorentz, ou les champs de vitesse décrivant le mouvement d’un corps rigide ou I’écoulement d’un fluide.

Les champs, scalaires ou vectoriels, sont des lois qui dépendent des réferentiels fixés au départ et a I’arrivée, c’est-a-dire des
grandeures qu’on choisit pour les décrire et de leur unité de mesure. La nature des champs est determinée par la maniere de
se transformer sous changement de réferentiels. Quand on fixe les réferentiels, les champs sont representés par des fonctions,
scalaires ou vectorielles. Quand on fixe les unité de mesure mais on admet des changement de grandeurs (comme on le fait
en mathématiques), les champs scalaires peuvent étre assimilés a des fonctions réelles, et les champs de vecteurs peuvent étre
assimilés a des fonctions vectorielles sousmises & une modification du repere d’arrivée si celui de départ est modifié.

Le cours est divisé en deux parties: dans la premiere on étudie les fonctions réelles (representation graphique, lignes ou
surfaces de niveau, dérivées, intégrales) et les fonctions vectorielles (en particulier les changements de coordonnées). Dans la
deuxiéme partie on étudie les champs vectoriels (lignes de champ, divergence, rotationnel, circulation et flux), en coordonnées
cartesiennes, cylindriques et sphériques.

Les principaux résultats visés sont:

e La representation graphique d’un champ scalaire (fonction) avec surfaces de niveau, points de minimum et maximum
locaux, et approximation locale par un polynéme de Taylor.

e La representation graphique d’un champ de vecteur et la détermination de ses lignes de champ.
e Le calcul du potentiel scalaire d’un champ conservatif, et du potentiel vectoriel d’'un champ incompressible (solenoidale).

e Le calcul de la circulation et du flux d’un champ de vecteurs, le théoréeme de Stokes-Ampere, le théoréeme de Gauss-
Ostrogradski et le théoreme sur la circulation d’un champ de gradient.

Prérequis:

1. Espaces vectoriels et vecteurs de R? et R? (produits scalaire, vectoriel et mixte).
2. Applications linéaires et matrices (produit, détérminant, matrice inverse).

Géométrie du plan et de 'espace en coordonnées cartesiennes (droites, coniques, plans, quadriques).

- W

Calcul différentiel et intégral des fonctions réelles d’une variable (graphes, dérivées, extrema locaux, Taylor, primitives).

5. Equations différentielles du ler ordre.
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Part 1
Fonctions et champs scalaires



1 Fonctions de plusieures variables

1.1 Coordonnées polaires, cylindriques et sphériques.

Le plan est identifié & 1’espace vectoriel R? si on fixe un repére cartesien (orthonormal direct) (O,7,7 ), 7
ou O est un point quelconque et 7,7 sont deux vecteurs orientés dans le sens antihoraire tels que 717
et |7 =[7] = 1. o

En effet, tout point P du plan est identifié au vecteur v = opP appliqué en O, et puisque 'ensemble {7,7 } forme une base
de V'espace vectoriel des tels vecteurs, tout vecteur v = OP est combinaison linéaire de 7 et 7. On appelle:

e Coordonnées cartesiennes de P = couple (z,y) e R? t. q. 7= OoP = Ty = (I),
Y]

s {x - |07

c. ad. p
y=[OP]

= longueur des projections orthogonales de v dans les directions 7 et J:

e Coordonnées polaires de P (si P # (0,0)) = couple (p,p) € RT x [0, 27|
o e p= 0P| = /7 + 7
t. q. { c. ad. <pt.q.tanga:%sim#Ooucotgo:isiy;éO

y = psinep
(par ex. ¢ = arctan £ si z,y > 0)

Exemples.
Coordonnées . coordonnées
. —> dessin + calculs avec formules — .
polaires cartesiennes
57/
N { p=3 x:3cos(57r/4):—¥ A—(—3\/§ _3\/5)
¢ =bm/4 y = 3sin(br/4) = —% 27 2

2
B {p—\@ { x:ﬁcos(?m/él):;/\g B—(-1,1)
©=3r/4 y = /2sin(31/4) = 2%
p=0 x =0 cos(37/2) =0 B
¢ { © =371/2 { y =0 sin(37/2) =0 ¢ =100
. d .

2. Coord.onnees —> dessin + calculs avec formules —, coorconnecs
cartesiennes polaires
A=(2,3) P=V Jgg:m Al p=v13 s

tanp = 3 (¢ = arctan (5)
_ p=+v/4+0=2 p=2
B =20 {tamp—g—O B =0
p=+/0+9=3 p—3
C =(0,3) cosp =9 = C { -
sing = § = p=m/2




De méme, I'espace est identifié & I’espace vectoriel R? si on fixe un repére cartesien (orthonormal direct)
(0,7,7,k), ou est un point quelconque et 7,7, k sont trois vecteurs orientés comme dans la figure, tels
que TL7LELT et [7] =7 =[k] =1.

En effet, tout point P de I'epace est identifié au vecteur v = oP appliqué en O, et puisque l'ensemble {7,7, E} forme une
base de 'espace vectoriel des tels vecteurs, tout vecteur ¥ = OP est combinaison linéaire de 7,7 et k. On appelle:

x
e Coordonnées cartésiennes de P = triplet (z,y,2) e R® t.q. U= OP = a7 + Y7 + 2k = TR
4_7 Z
z = |OF|
c. ad. Y= HWD)”” = longueur des projections orthogonales de ¥ dans les directions 7, J et k
"
z=|OP"]
e Coordonnées cylindriques de P = triplet (p, ¢, z) € RT x [0,27[xR  t.q.
T = pcosy P:|@|:\/=’E2+y2
y = psinp c. ad. (p = arctan = .
x
r=z 2=z
P e
e Coordonnées sphériques de P = triplet (r, p,0) € R x [0,27[x[0,7] t.q. K ) P
|
z 1
) T=|@|=«/z2+y2+z2 1
x =rcospsind Y oo
. . N (p = arctan — !
Yy = rsinpsin c. ad. T . y' P
z=rcosf 0 = arccos ————— % —*
Va?+y? + 22 a0 S0
P /
Q
Exemples.
Coordonnées d )
1. cylindriques — dessin + calculs avec formules — coordonnees
ou sphériques cartesiennes
3
p=3 x = 3cos(m/3) = —35 3 3,2
A p=m/3 y=3sin(7r/3)=¥ A:(_§7772)
z2=2 z2=2

p=2 m:\/ﬁcos(w/él):‘/:?z:l
. 2 — _
B o =m/4 Y= 2s1n(7r/4)=\/2§ =1 B=(1,1,-3)
z=-3 z=-3

r=4/2 x =+/2 cos(m/2) sin(n/4) =0
C < o=m/2 y = +/2 sin(n/2) sin(r/4) =1 C=(0,1,-1)
0 = 3m/4 z =1+/2 cos(3m/4) = —1
r=1 x = cos(m/3) sin(r/6) = 1
D < p=m/3 y = sin(7/3) sin(w/6) = % D= (17 é, ﬁ)
0=/ z = cos(m/6) = 52 442




Coordonnées . coordonnées coordonnées
R —> dessin + calculs avec formules . . .
cartesiennes cylindriques sphériques
p=+14+1= V2
tanp = —1 p=V2 r=v3
cosf — L z=1 0=m/6
V3
z
p=+49+0=3
4 tanp = % =0 p=3 r=
B = (3,0,0) 3 0% 4 T:ng B =0 B p=0
z cosf=9=0 z=0 0 =mn/2
3
p=+0+1=1
cosp = p=1 r=1/2
C=(0,1,1) sing = C < p=mu/2 C < p=mu/2
r=y0+1+1=v2 =1 6 =m/4
cosf = =

1.2 Ensembles ouverts, fermés, bornés et compacts.
Soit R™ 1'un des trois espaces R, R? ou R3.

Définition. Si P e R" est un point et r > 0 indique un rayon, on note Bp(r), Bp(r) et 0Bp(r) les ensembles suivants:

e dans R: intervalle ouvert B,(r) =]a—r,a+r|

a a a—r a a+r
= ———t ———F +—F—+
intervalle fermé B,(r) =[a—1,a+r] ouvert formé bord

bord de lintervalle 0B,(r) = {a —r,a+r} (= points extrémaux).
e dans R* disque ouvert B, ;) (r) = {(z,y) | (z —a)* + (y — b)* <r?} AN
disque fermé  B(a)(r) = {(2.9) | (z —a)* + (y—b)* <r*} y
ouvert fermé bord
bord du disque 0B, (r) = {(z,y) | (x —a)? + (y — b)? =r?} (= cercle)
e dansR?: boule ouverte B, (r) = {(z,9,2) | (x—a)*+ (y = b)* + (z — ¢)® < r?}

boule fermée B, (1) = {(2,y,2) | (z —a)? + (y —b)* + (z — ¢)? < r?}

bord de la boule 0B, (r) = {(z,4,2) | (x—a)*+ (y —b)? + (z —¢)* = r?} (= sphere)

Définition. Soit D < R" un sous-ensemble fixé.

e A noter: si P est un point intérieur a D il existe une boule ouverte Bp contenue dans D;
si P est un point extérieur a D il existe une boule ouverte Bp qui n’intersecte pas D.

intérieur
e Un point P € R" s’appelle point du bord de D si toute boule ouverte Bp centrée
en P contient & la fois des points de D et de son complémentaire R™\D (ou le symbol AT
\
\ indique la soutraction entre ensembles). ~ S
Attention: un point du bord de D peut étre dans D ou non! \bB;d/ extérieur

e [’ensemble des points du bord de D s’indique avec 0D.



L’ensemble D < R" s’appelle

e ouvert s’il ne contient aucun de ses points de bord; b \
. . . ouvert fermé
e fermé s’il contient tous ses points de bord.

Le complémentaire d’un ouvert est toujours fermé, et viceversa le complémentaire d'un fermé est toujours ouvert.

Par convention, ’ensemble vide J et son complémentaire R™ sont & la fois ouverts et fermés dans R".

Attention: il existe aussi des ensembles qui ne sont ni ouverts ni fermés! / -

- ~

Par exemple, un disque avec moitie¢ de son bord. <

~
-

L’ensemble D — R" s’appelle

e N e N
/ A\ / A\
/ \ / A\
’ . . . . . ) )
e borné s’il existe un disque ouvert B qui le contient; r(—\ | |
\ \
VT TS // /I \ /I
\ ~_7 \
9. ’ ’ N // N //
e compact s’il est fermé et borné. L P L .
borné compact

Exemples.

1. Les droites, demi-droites et demi-plans sont fermés non bornés / @
dans le plan R? ou dans I'espace R3. T
De méme, les plans sont fermés non bornés dans R3. \
dans R2 dans R3

’ I
2. Toute boule ouverte de R™ est ouverte et bornée. |
s . . . ’ . 1
Toute boule fermée est compacte, ainsi que 'intérieur |
d’un carré avec son bord (dans R?), et I'intérieur d’'un e
7z

cube avec son bord (dans R3).

boule ouverte boule fermée cube ouvert cube fermé
3. Dans le plan R?, le quadrant R, x R, est fermé non borné. ' i
Le méme quadrant sans bord, R x R* est ouvert non :
* *
s R+ X R+ R* xR
borné. I + 70+

Yy Yy |
|

{(x,y)eR2|0<x<5} Y, } I

{(x,y)eR2|0<x<5,0<y<x2+3} | 5 4
| | 3 37 :

{(x,y)eR2|0<x<5,0<y<x2+3} 1 ! N . %L,z

A B 5 C
compact borné
ni ouvert ni fermé

A
B
C

ouvert non borné



1.3 Fonctions de deux ou trois variables.

Soient R™ et R™ les espaces vectoriels R, R? ou R3. Les points P de R”, déterminés par des coordonnées, sont alors notés
par T = (21, ..., Tpn)-

Définition. Une fonction de plusieures variables est une application f qui associe a tout point & € R™ au plus une
valeure f(Z) = (fi(Z), ..., fm(Z)) € R™. On la note par

f:R" —>R™: Z— f(Z).

Sim =1, la fonction f : R™ — R s’appelle réelle. Si m > 1, la fonction f s’appelle vectorielle. (Attention: une fonction
vectorielle n’est pas forcement une application linéaire!)

Exemples.
e Fonctionsréelles:  f:R?2 — R, (x,y) — f(z,y) = 23 + sin(xy) + 1
Pression = f(Volume, Temperature)

fiRE R, (2,,2) = f(2,9,2) = 2%% + ayz + (2 + 1)

e Fonctions vectorielles:  f:R? — R3, (2,9) — f(x,9) = (2%, 2 + y,y?)
9: R — R (2,y,2) = g(2,y,2) = (2° + 2,22 + y)
h:Ry x R—R2 (p,¢)— h(p,0) = (pcosp, psing) changement de coordonnées

e L’association f(x,y) = ++/22 + y? n’est pas une fonction, car & tout (z,y) elle associe deux valeurs, ++/22 + y? et

—Va? 4y

Définition. Soit f: R™ — R une fonction. On appelle:

e domaine de f I’ensemble des points de R™ pour lesquels f est bien définie:

Dy := {(xl,...,xn) e R" | il esiste f(x1,...,x,) € R" };

e image de f ’ensemble

Iy = {(yl,...,ym) ER™ | (Y1, ym) = F(@1, o @n), (21, 20) € Dy }

Exemples.

L floy) =22 +2—1, [:R?—R i
Dy = {(z,y)eR? |2 +y?>—1>0} = complémentaire du disque Bo(1) @

(fermé non borné)

Iy =[0,4o[=R; (fermé non borné)

2. flz,y) =1—-22—y% [:R2—R
o Y
Dy ={(z,y) e R* | 1 —2? — y? > 0} = disque fermé Bp(1) (compact)
Iy =[0,1] (compact) x
carz? +y* 2 0= 0<1-22 -’ <1l<=0</1-22—y? = f(z,y) <1
3. f(z,y) =ln(z® +42 - 1), f:R?—R 1

Dy = {(z,y)eR?|2? +y?>—1>0} = complémentaire du disque Bo(1) / \
(ouvert non borné) \ ,

Iy =R (ouvert et fermé dans R, non borné)



4. f(z,y) =In(1 —2® —y?), f:R*—R

Y
Dy = {(z,y) e R? | 1 — 2% — y* > 0} = disque ouvert Bo(1) (ouvert borné) L
[+
Iy =In]0,1] =] —00,0] =R~  (ouvert non borné) N
1 1 i
Y C.R2 ., R2 |
5. f(x7y)_(l_27 yg)? fR R y' ; y

Dy ={(z,y) €R? |z # 0, y # 0} = plan sans axes  (ouvert non borné) ~ ==--- Lw- - — l—;— -

I
Ir = Ry x Ry = 4°™¢ quadrant sans bord  (ouvert non borné) |
I
I

Dy = {(z,y,2) e R? | 22 — 22 > 0} = espace délimité par les deux plans z = +x
(fermé non borné)

6. f(x,y,z):(\/m2—22,—\/y2+z2), f:R3 — R? * z

|

Exercice. Trouver et dessiner le domaine et 'image des fonctions suivantes, en précisant s’ils sont ouvert, fermés, bornés
et compacts:

Iy =Rt x R™ = 4°"¢ quadrant  (fermé non borné)

In(z? +y% + 1
1. f(x’y)_<a:2+y2)’ f:R* —R -

Dy ={(z,y) eR® | 2 +y' +1>0, 2% + 3 # 0}
X

= R?\{(0,0)} = plan moins l'origine  (ouvert non borné)

car la condition z? + y' + 1 > 0 est vérifiée pour tout (z,y) € R? et puisque
22 + y? > 0 toujours, la condition x2 + y? # 0 est vérifiée si (z,y) # (0,0).

Iy =R% =]0,4+0[ (ouvert non borné)

car 22 4+ y? > 0 implique 22 + 32 + 1 > 1 et par conséquent In(z% 4+ y2 + 1) > 0:
le quotient de deux nombres positifs est positif.

In(z%2 +1) In(y? +1)
2

2. g(x,y)=< > g:R? —R?

v
Dy={(z,y)eR? |22 +1>0, y#0, y> +1>0, z # 0}
= R* x R* = plan moins les deux axes  (ouvert non borné)

car les conditions 22 +1 > 0 et 42 + 1 > 0 sont vérifiées pour tout (z,y) € R2.

I, = R* x R% = 1°" quadrant sans bord (ouvert non borné)

car v # 0 et y # 0 implique que 72 > 0 et y? > 0, et par conséquent In(z2+1) >
0 et In(y? + 1) > 0: les deux termes sont donc le quotient de deux nombres
positifs, il sont forcement positifs.

10



1.4 Graphes et lignes de niveau.

Rappel.

Les propriétés principales des fonctions sont bien visibles sur son graphe, qui a ’avantage de pouvoir étre dessiné. Le graphe

des fonctions usuelles est a connaitre par coeur:

f(2) = sin(x)

f(x) = arcsin(x)

exp(z)

f(z) = 2
J(@) = 1/2
f@) = Y5

f(z) = cos(z)

8

f(x) = arccos(x)

I'y= {($7y)ER2 | € Dy, y = f(z) }CRQ.

7
1-
=

J%

$

fe) =

I'l
|
|
|
|
|
|
[
!
|
|
|
I

f(x) = arctan(z)

;g

f(z) = In(z)

flz) =

Si f: R — R est une fonction d’une seule variable, son graphe est I’ensemble

A{L
J%
4:

z) = | /=
x —cota:

f@)

—_— |- - — =

z = arccot

%

—In(z) = %

xT



Définition. Soit f: R™ — R™ une fonction de plusieures variables.
Le graphe de f est I’ensemble
= {(f,gj) eR"™™ | Fe Dy, = f(7) } c R,

Le dessin du graphe est difficile a réaliser si n et m sont grands, a cause
de la taille de I'espace ambient R™**™,

On regarde alors en particulier les fonctions réelles de deux variables: le graphe d’une fonction f : R? — R est I’ensemble

Ij:= {(m,y,z)ER?’ | (z,y) e Dy, z = f(z,y) }CR3'

z

GRS
e (@ (2))

J@) -
S R )
1 1 Y

Exemple. f(z,y) =+/1—22 —y2 =2

- Df = EO(l) If = [0, 1]

?+y*+22=1et2>0 <= I'y= demi-sphere

Pour dessiner le graphe d’une fonction f, on peut regarder I'intersection de I'; avec les plans horizontaux z = a (pour
tout a € R), ce qui conduit & définir les lignes de niveau. On peut aussi regarder l'intersection de I'y avec les plans verticaux
T =aouy = a, ce qui correspond a regarder la restriction de f aux droites x = a ou y = b contenues sans son domaine
Dy < R2. On peut aussi regarder la restriction de f & d’autres courbes de Dy: dans tous ces cas, les restrictions sont des
fonctions d’une seule variable dont on peut dessiner le graphe. Toutes ces informations permettent enfin de de se faire une
idée du graphe de f. Nous nous limitons ici & reconstruire le graphe d’une fonction a partir de ses lignes de niveau.

Définition. Soit f : R? — R une fonction, de domaine Dy < R? et image I = R. Pour tout a € R, la ligne de niveau a
est la courbe du plan R? contenue dans D¢ obtenue en projectant la courbe du graphe de f qui se trouve a hauteur z = a:

Lo(f) := projection sur Dy de 'y n {z = a} = {(a?,y) €Dy | flz,y) =a } c Dy c R?

A noter que L,(f) = & (ensemble vide) si a ¢ I.

12



Exemple.

flx,y) =~+/1—22—y> Dy = Bo(l)

pour tout a € Iy = [0,1] on a
Lo(H) ={@yeBo) | Vi-2*—y>=a}

= cercle centré en (0,0) de rayon /1 — a?

r—y
a:—&-y'

Exercice. Trouver le domaine, I'image et les lignes de niveau de la fonction f(z,y) =

Dessiner les lignes de niveau a = —2,—1,0, 1,2 et reconstruire le graphe de f.

Dy ={(z,y) e R? | y # —z} = R?\ bissectrice du 2°"¢ quadrant

Iy =R, alors pour tout a € R on a:

Lo = {(e.y) € Dy | 7 = af

= droite d’éq. (a — 1)z + (a+ 1)y =0

a=0 Eo Yy=x

a=1 = y=0 a=—-1 — x=
a=2 = y:—%z a=-2 = y=-3z
3 =Yy . .
Ff:{(xay,Z)ER |y #—x, z = n }:umondedrmtestournantes
rry

1.5 Opérations entre fonctions, composition. Changements de coordonnées.

Définition. A partir de deux fonctions f,g: R" — R™, de domaine respectivement D et D, et d'un nombre A € R, on
définit les fonctions suivantes:

e somme: (f+g)(z1,...,xn) = f(@1,, .., Ty) + g(21,...,x,), de domaine Dy, = Dy N Dy;
zéro: 0(z1,...,z,) = (0,...,0), de domaine Dy = R™;

opposée de f: (f f)(xl,...,xn) = —f(z1,...,&,), de domaine D_y = Dy;
e produit de f par le scalaire \: ()\f)(xl,...,xn) = Af(z1,...,x,), de domaine Dyy = Dy.
Si f et g sont des fonctions réelles (m = 1), on définit aussi les fonctions suivantes:

e produit: (fg) sz, ) = f(z1, .y zn)g(x1, .. @), de domaine Dy, = Dy n Dyg;

un: 1(z1,...,z,) = 1, de domaine D; = R™;

. 1 1 .
inverse de f: (?)(xl,,:vn) = ERTSE de domaine Dy/; = {(ml,...,xn) € Dy | f(z1,...,xn) # 0}.
Exemple. (f +9)(x,y) = 222
fla,y) =a® —y? (3f)(z.y) =3f(z,y)
g(@,y) = 2% +y? — (1fg)(x, y) = wf -y

Proposition. Les opérations d’addition, produit par scalaire et multiplication entre fonctions a plusieures variables ont les
mémes proprietés que leurs analogues entre fonctions & une variable (elles sont commutatives, associatives et vaut la distribu-
tivité). En particulier, avec addition et le produit par scalaire, 'ensemble des fonctions & plusieures variables F(R™ R™)
est un espace vectoriel sur R (de dimension infinie).
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Définition. A partir de deux fonctions f : R® — R™ et ¢ : R — RP, on définit la composée de f et g comme la
fonction g o f : R™ — RP obtenue en calculant g sur les valeurs obtenues par f:

rR» L R L R
(X1, ey ) — fT1, ey @n) — (gof)(xl,...,xn)=g(f(x1,...,xn)).
Cas particuliers: sion a

f:R* —TR, (x,y)~ f(z,y) une fonction réelle de deux variables,

g:R— R, 2z g(z) une fonction reélle d’une variable,

h:R* — R?  (u,v) — h(u,v) = (hi(u,v), ha(u,v)) un changement de variables,

7:R—R?, t— (y1(t),72(t)) une paramétrisation par une variable,

la composée de f avec g ou h ou 7y se calcule comme suit:

(90 f)(@,y) = g(f(z.y)) (f o) (u,v) = f(h(u,v)) (fo)(t) = f(x(1)

. . x = hy(u,v) . x = 7(t)

i.e. on pose z = f(z,y) i.e. on pose { Y — ha(u, v) i.e. on pose { Y= 32(15)

R— o r— R RR— gL g R——pz—L LR

gof Joh fon
Fxemple. o) = (9 F)(@,9) = 9a” —y) =ln(a? — y)
z)=Inz 2

Z(u,v)z(Qu,quv) — (foh)(u,v) = f(2u,u +v) = 4u* — (u+v)
~(t) = (cost,sint)

(fov)(t) = f(cost,sint) = cos® t — sint

Définition. Si h : R" — R", (u1,...,un) = h(ui...,un) = (v1,...,7,) est Iapplication qui décrit un changement de
variables, des (z1, ..., ) vers les (uq,...,u,), la fonction composée f = f o h est 'expression de f comme fonction des
nouvelles variables (ug,...,u,). Cas particuliers:

e Coordonnées polaires: 5 : [0,0[x[0,27[— R2, (p, ) — h(p,¢) = (pcosp, psin p)

En posant x = pcosp et y = psiny on obtient Pexpression d’une fonction f des coordonnées cartesiennes (x,y) dans
les coordonnées polaires (p, ¢):

fpsp) = (foh)(p,p) = f(pcosp, psing).
e Coordonnées cylindriques: h : [0,0[x[0,27[xR — R3,  (p, ¢, 2) — h(p,¢,2) = (pcos p, psin ¢, 2)

En posant = pcos ¢ et y = psin g on obtient 'expression d’une fonction f des coordonnées cartesiennes (z,y, z) dans
les coordonnées cylindriques (p, ¢, 2):

f(psp,2) = (foh)(p,p,2) = f(pcosp, psing, z).

e Coordonnées sphériques: h : [0,00[x[0,2r[x[0,7] — R, (r,¢,0) — h(r,p,0) = (r cos psin, rsin psin, r cos )
En posant © = rcospsing, y = rsinpsinf et z = rcosf on obtient 'expression d’une fonction f des coordonnées
cartesiennes (z,y, z) dans les coordonnées sphériques (r, ¢, 0):

f(ryp,0) = (foh)(r,e,0) = f(rcospsinb, rsinpsind,r cosf).

Attention: les changements de coordonnées ne sont pas forcement des applications linéaires. Les changements en coordonnées
polaires, cylindriques et sphériques, par exemple, ne le sont pas!

Exemple. f(z,y) =22+ +2c =— f(p, )= f(pcosep, psing) = (pcos)? + (psing)? + 2pcos p = p2 + 2pcos ¢
Exercice. Exprimer la fonction f(x,y,z) = («/:162 + 42, 22) en coordonnées cylindriques et sphériques.

flp.o.2) = f(pcose, psing, z) = (p, 22)

f(r,gp,&) = f(rcospsin6,rsingsinb, rcosd) = (r sinf,r* cos>6).
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2 Dérivées des fonctions de plusieures variables

Si f est une fonction d’une variable, les dérivées f’ et f” servent & étudier la fonction et dessiner son graphe: elles déterminent
les intervalles ou f est croissante, décroissante, convexe ou concave, les points d’inflexion et de minimum / maximum local,
et 'approximation locale de f en un polynéme (de Taylor).

Dans ce chapitre nous introduisons ’analogue des dérivées, des extrema locaux et points d’inflexion, et du dévéloppement
de Taylor, pour les fonctions de plusieures variables. Pour cela, nous avons besoin des limites et de la continuité.

2.1 Limites. Continuité.

Rappel. Si f: R — R est une fonction d’une variable, avec domaine Dy, on dit que:

e la limite de f en un point a € Dy U 0Dy est la valeur lim f(z) & laquelle tend f(z) quand x s’approche de g;

r—a

e [ est continue en un point a € Dy sion a lim f(z) = f(a).
Tr—a

L

/] VAR
. lim # lim lim = lim # f(a
continue gauche droite gauche droite f( )

Définition. Soit f : R™ — R™ une fonction de plusieures variables, de domaine Df. On dit que:

e La limite de f en un point (aq,....,a,) € Dy U 0D est la
valeur a laquelle tend f(z1,...,2,) quand (z1,...,2,) s’approche
de (a1, ...,an) par tous les chemins contenus dans Dy. On la note

lim T1yeeny Xp)-
(ml,...,zn)ﬁ(al,...,an)f( ! L)

Attention: la limite peut ne pas exister, mais, si elle existe, elle est unique.

e La fonction f est continue en (ai,...,a,) € Dy si

lim f(xlv"'vxn) :f(a17"'7an)'
(Z1,eesTn)—(a1,eee0an)

e La fonction f est continue sur le sous-ensemble D — Dy si f est continue en tout point de D.

77'

Le graphe d’une fonction continue n’a pas de “sauts

continue non continue non continue

Théoreme. Toutes les fonctions de plusieures variables obtenues comme somme, produit ou composée de fonctions continues
sont continues.

Par conséquent, toutes les fonctions polynomiales de plusieurs variables sont continues sur R, et toutes les fonctions de
plusieures variables obtenues par composition ou combinaisons de fonctions & une variable qui sont continues (notamment
les fractions rationnelles, les racines, exponentiels et logarythmes, les fonctions circulaires, celles hyperboliques et leur
réciproques) sont continues sur leur domaine de définition.
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2.2 Dériveées partielles.

Rappel. Si f:R — R est une fonction d’une variable, la dérivée de f en a € Dy est la limite

oy @)= fla) o flath) = fla)
f'(a) := lim = lim o

r—a r—a h—0

si elle existe et c’est un nombre réel (pas +00). Dans ce cas, f est dérivable en a. La fonction f est dérivable sur D c Dy
si elle est dérivable en tout point € D. On appelle alors dérivée de f la fonction f': z — f’(x) de domaine D.
A noter qu’une fonction dérivable est forcement continue, et le contraire n’est pas vrai: “étre dérivable” est une condition

plus forte que “étre continue”.

/o] e R

non continue continue, non dérivable dérivable

Pour une fonction de plusieurs variable, 'analogue de la dérivée est donné par les dérivées partielles, qui sont des fonctions.
Celles-ci sont regroupées sous forme de vecteur, application linéaire ou matrice, selon 1'usage qu’on veut en faire, et donnent
lieu a la dérivée directionnelle, au gradient, a la différentielle et a la matrice Jacobienne.

Définition. Soit f: R® — R™ une fonction de plusieures variables, avec domaine Dy.

o Les dérivées partielles de f au point d = (a1, ...,a,) € Dy sont les limites

0 ey @y + hyan) — yeeny Oy
2 (0 = i L0120 Prstn) = @11200) g,

pour:=1,...,n,

si ces limites existent et donnent des vecteurs de R™ (sans composantes +0).

e Les dérivées partielles de f sont les fonctions

of " of
:R" —-R™: ¥+—s
e P Lo,

ox;

pour ¢ =1,...,n,

définies sur I'ensemble D < R" de points & ol les dérivées %(f) existent.
e La fonction f est (contintiment) différentiable sur ’ensemble D < Dy, ou de classe C' sur D, si toutes les
af

ox;

dérivées partielles existent et sont des fonctions continues en tout point ¥ € D.

Une fonction différentiable (d’orenavant on sous-entend “contintiment”) est forcement continue. Le contraire n’est pas
vrai: les fonctions continues ne sont pas toutes différentiables. Ceci se voit bien sur le graphe: le graphe d’une fonction
différentiable n’a pas de “sauts” (car la fonction est continue) et en plus ne change pas “brusquement” de pente ou d’allure
(la pente et I’allure peuvent bien sur changer mais “non brusquement”).

Y]
5 117
\ g
/ e v
/4 /4
continue
non continue non différentiable différentiable

Exemples.

== (z,y) =y>+3
1. f(z,y) =2y* + 3z = g}?

oy

bien définies et continues sur R?> == f est C'! sur R2.

8f(
(:L'ay) = 2xy
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of v +3
%(‘%‘7 Y, Z) - 0
2 . s
_ (xy®+ 3z of _ [ 2zy bien définies et P 3
2 f@y.2) = ( yz? ) - Oy (2,y,2) = 22 continues sur R3 fest O sur R
A
oz 2yz

of
f

3. flr,p,0) =¢? +rsing = ——(r,¢,0) =2¢
¢

of

00

(r,0,0) = ©* +sinf
bien définies et

: ; = fest C!sur R
continues sur R

(r,p,0) = rcosf

2.3 Dérivée directionnelle.
Soit f : R™ — R™ une fonction de plusieures variables, différentiable sur ’ensemble D < R™.

Définition. Pour tout vecteur ¢ = (v1,...,v,) € R™, on appelle dérivée directionnelle de f dans la direction ¥ la

fonction of of
é’gfx»—>85f(x):v1 67551( )++'Un E( )

Les dérivées partielles sont donc les dérivées directionnelles dans la direction des vecteurs €; = (0, ...,1,...,0), ot 1 est en

. - . 0
iéme position, c’est-a-dire 6f =0g, f.
T

Exemples.
L f(z,y) =2y* +3z, U= (u,v) = Juwf(z,y)=(4>+3)u+2ryo.

f(z,y,2) = <xy2 +3x> v+ 3 2xy 0 (Y2 +3) u+2zyv

IR A) - 2 _ —

2. g} Yz and a(u,v,w)f(xvy7z)( 0 ) ”+< 22 ) v+<2yz> w= ( z2v+2yzw )
U= (u,v,w)

3. flr,p,0) =¢*+rsing, o= (uv,w) = Ouw,w) [ (1,9, 2) = (¢? +sin6) u+ 29 v + rcosb w.

Théoréme. [ Croissance et decroissance d’une fonction réelle. | Soit f : R” — R une fonction réelle, différentiable
au point Z. Pour tout vecteur v € R" on a:

e si 07f(Z) > 0 alors f est croissante au point & dans la direction de ¥

e si 0z f(Z) < 0 alors f est decroissante au point & dans la direction de ©.

De plus, la croissance [resp. decroissance] est d’autant plus rapide que la dérivée directionnelle est grande [resp. petite]. Pour
comparer la croissance d’une fonction en différentes directions, il faut que les vecteurs de direction aient la méme longueur:
par exemple qu’ils soient tous de norme 1.

Attention: on ne peut rien dire sur la croissance de f en & dans une direction ¥ ou 0z f(Z) = 0!

Exercice. La fonction f(x,y) = zy? + 3x, au point (3, 1), est-elle croissante ou decroissante dans les directions (1, 1), (1,2),
(1,-1) (1,—2)? Parmis ces quatre directions, quelle est celle de plus forte croissance et celle de plus forte decroissance?

Pour tout vecteur @ = (u,v), on a dzf(z,y) = (y? +3)u+ 2xyv. Au point (3,1), on a donc d5f(3,1) = 4u + 6v. Done:
01,1)f(3,1) =10 = f est croissante en direction (1, 1),
0(1,2f(3,1) =16 = [ est croissante en direction (1,2),
O0a,-1f(3,1)=—=2 = f est decroissante en direction (1,—1),
0(1,—2)f(3,1) = =8 == f est decroissante en direction (1, —2).
Pour comparer la croissance, on a besoin des dérivées dans la direction des vecteurs unitaires qui donnent la méme

direction de ceux indiqués. Cela revient a diviser la dérivée directionnelle déja calculée par la norme de chaque vecteur. Pour
trouver la direction dans laquelle f croit plus rapidement, on calcule donc:

10
ILDI=v2 = 03 00/G1) =,

EE

I0.21=V3 = 2102/@.1)=2.
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On a % < % si 1003 < 164/2, c’est-a-dire si (104/3)%2 = 300 < (164/2)? = 512, ce qui est vrai. Donc f, au point (3,1),
croit plus rapidement dans la direction (1,2).

Pour trouver la direction dans laquelle f decroit plus rapidement, on calcule:

10Dl =v2 = 020-1fB1)=-

IL-2)l=V3 = 010 5f@1)=-

Sl Sl

On a f% < f% si et seulement si % > %, i.e. si 2¢/3 > 84/2, cest-a-dire si (2¢/3)% = 12 > (8+/2)? = 128, ce qui est
faux. Donc f, au point (3,1), decroit plus rapidement dans la direction (1, —2).

2.4 Gradient d’une fonction réelle.

Définition. Soit f : R” — R une fonction réelle différentiable sur un ensemble D < Dy.

e Le gradient de f en un point ¥ = (z1,...,2,) € D est le vecteur de R"

Of (=
E(x)

graﬁf(f)zv’f(f):%(f) é’1+~--+;7f(9?) & = : e R™.
! 2@

Pour tout vecteur ¥ = (v1,...,v,) € R™ on a alors

ot @ = 2L @)+t @) = 0 V@),

ou - indique le produit scalaire de vecteurs.

e On peut omettre le point & et appeller gradient de f la fonction vectorielle graa f= v)f :D— R", ¥+ Vf(f)
qui s’écrit donc comme un vecteur

of
6301
a o}
graa)fEsz—f€1+~~+Uf En = :
61‘1 61'71 (’}.f
dan

dont les composantes sont des fonctions (et non des nombres). Pour tout ¥ € R™ on a alors
ozf = ¥-Vf.

e Le symbol nabla v indique donc un opérateur qui agit sur les fonctions différentiables et donne comme valeur des
vecteurs dont les composantes sont des fonctions: f+—— vf = grad f.

Exemples.
2
1. flz,y) =2y* + 3z = vf(x,y): y +3 = ?f(0,0): 3 et ?7(3,2): 7 .
2zy 0 12
2z
y cos(zy) + ——— -
T4+ z
2. f(z,y,2) = sin(zy) + In(z2 + 22) —  Vf(z,y,2) = x cos(zy) — Vio,m1)=| 0
2z 9
x? + 22
direction
croissante
Théors I . .. d di //’,jé?i?i\\\
7NN
éoréme. [ Interpretation géométrique du gradient. | 4,5’%@5‘\“&?‘

Si f:R™ — R est une fonction différentiable en ', le gradient / 7 1“ \
Vf (Z) est un vecteur de R™ appliqué au point #, orthogonal & la ¢ lh'..’& \
ligne de niveau L,(f) ot a = f(&) (et donc & € L,(f)), et qui "1 .

indique la direction de plus forte pente croissante du graphe I'y

gradient V_f
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Exemple.

flz,y) =+/1—22—y2 = Lu(f) = cercle de rayon /1 — a2, pour tout a € [0, 1]
Le. pour (z,y) € Lo(f) on a /1 —22 —y? = a.

-z
M — 72 — 2 1

Dong, si a # 0, on a que Vf(x,y)z 1 fy y =——(z,y)
a

V1 =22 —y?
est un vecteur parallel au vecteur (x,y), donc orthogonal au cercle L, (f),
et pointe vers l'origine, donc dans le sens croissant du graphe.

2.5 Différentielle.

Définition. Soit f: R™ — R™ une fonction différentiable sur un ensemble D < Dy.
e La différentielle de f en un point & € D est 'application  dfz : R — R™ définie par:

17=(v17...7vn)|—>df5(17) = %(_‘) U1+"'+;Tf(f) Uy = 65(:?)

Il est clair que Papplication dfz est linéaire dans sa variable ¥ € R"™, donc dfz € L(R™,R™).

On a deux cas particuliers:

— Si f:R™ — R est une fonction réelle, la différentielle dfz : R™ — R est liée au gradient de f en & par la relation
df3(0) = Vf(Z) - T = 0sf(Z)  pour tout 7€ R™.

— Si f : R —> R™ est une fonction d’une seule variable et de m composantes f = (f1,..., fm), la différentielle
dfz : R — R™ est liée a la dérivée des fonctions f; en x par la relation

df,(v) = (f{ (Z)v ..., fr.(x) v) pour tout v € R.

e On peut omettre la variable ¢ et appeller différentielle de f l'application df : D — L(R™,R™), & +— dfz.

Exemples.
1. fla) =22 -2 = f'(z) =205z et df.(v)=(2x—5z%) v.
2. flz,y) =2y =Ty = df(u,0) =22y u+ Bz?y* —7) v.
Par exemple: df(,,)(2,1) = 4xy® 4 322y — 7, df1,1)(u,v) = 2u — 4o, df1,1y(2,1) =0

x> y? 2zy y2u + 2xyv
3. flz,y) = y =  dfgy(wv)=u | 0 |+v 1 |= v
z? — 92 2z —2y 2zu — 2yv

2 2 2
[y _ Y 2zy 0 ([ yru+2zyv
4- f(x7yvz) - (yz3> B df(:c,y,z)(uvvvw) =u ( O > +v ( 2,3 ) +w (3y22) - (2’31) + 3yz2w>'

La différentielle contient donc toutes les dérivées partielles et est définie aussi pour les fonctions vectorielles (contrairement
au gradient). Mais pour la calculer on a fait appel a sa variable, le vecteur ¢. Si f : R” — R est une fonction réelle, il
y a une astuce pour écrire la différentielle dfz sans indiquer son argument v explicitement. Par contre pour les fonctions
vectorielles cette astuce ne marche pas, il faut representer la différentielle comme une matrice.

Remarque.

e L’ensemble E(R", R) est un espace vectoriel de dimension n: on indique les n applications linéaires qui forment la base
canonique de L’(R”,R) par

de; :R" — R, U= (v1,...,0p) — da;(0) = v;, pour tout ¢ = 1,...,n.
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e Toute application linéaire L : R™ — R s’exprime alors comme combinaison des dx;: L = aydxy + --- + a, dz,, avec
a; € R.

e [’ensemble E(R’ZR’”) est un espace vectoriel de dimension n x m, donc ce n’est pas possible d’en décrire une base a
I’aide de seulement n applications. Les “dz;”, pour i = 1,...,n, n’existent pas dans ce cas.

Proposition. Si f:R"™ — R est une fonction réelle différentiable sur D < Dy, alors:
e sa différentielle en & € D, c’est-a-dire I'application linéaire dfz : R™ — R, s’écrit

dfs — afl( ) da 1+%(f) dx2+-~-+a%<*> iz,

et est trés souvent notée df (Z): attention a ’ambiguité dans la position de & par rapport a la notation dfz(¥);
o sa différentielle df : D — L(R™,R) s’écrit

af aof
Er dx 1+a 2dl‘2+'

af
oxy,

dx,,.

df =

Exemples.
1. fla) =22 -2 = df,=2z—-52)dr = df} =-3dx.
2. flz,y) =2’ =Ty = dfy) =22y doe+ Ba?y? —7)dy — dfa) =2de—4dy.
3. fla,y,2) =222 —5y322 = df(z,y,2) = 272 dv — 159222 dy + (22 — 10y%2) dz = df(i,1,1) =2 dr—15dy -9 d=.

Exercice. Pour la fonction f(z,y) = In(1 — 22 + 5y), trouver le domaine, ensuite calculer la différentielle au point
(z,y) = (2,0) et sur le vecteur ¥ = (3, —6).
2

1 1
Dy = {(az,y) eR* |1 -2 +5y> O} = portion du plan au-dessus de la parabole y = gm 5

_of of B —2x 5
—4 5 4 5
df(2,0)—1_4d$+1_4dy_§dx_§dy
4 )
df(2,0)(3,=6) = 3 83— 2(=6) =4 +10 =14

Exercice. Soient (z,v,2) les coordonnées cartesiennes des points de R®, (p, ¢, 2) les coordonnées cylindriques et (r, o, 0)
les coordonnées sphériques, définies par

T = pcos € [0, o0 x =rcospsinf r e [0,00]
y = psing [0’ o[ et y =rsinpsinf w e [0,2n]
2=z ’ z =rcosf 0 € [0,n]

Montrer que, par changement de coordonnées, les différentielles {dw,dy,dz}, {dp, d<p7dz} et {dr, d<p7d9} se transforment
comme suit :

dx = cosp dp — psinp dy dp = cosp dxr +sinp dy

dy = sinp dp + pcos dy pdp = —sinp dx + cos ¢ dy (1)
dz = dz dz = dz

dx = cosy sinf dr —rsing sinf dy + 7 cos pcosf db dr = cos sinf dx +siny sinf dy + cos 6 dz

dy = sing sinf dr + rcosp sinf dp + rsing cosf df rsiné dp = —siny dxr + cos ¢ dy (2)
dz = cosf dr — rsinf df rdf = cosp cosf dxr +siny cosf dy + sinf dz

dr =sinf dp + cosf dz dp =sinf dr + cos 6 db

do =dp dp =dyp (3)
rdf = cosf dp —sinf dz dz =rcosf dr —rsinf db
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Pour montrer les formules (1), on dérive z, y et z considerées comme fonctions de p, ¢ et z:

dx:%dp—kaidgo—l—adeZCOS(Pdp_pSin(Pd‘P
op op 0z

dy:@dp+@dgp+@dz=sin<pdp+cos<pd<p
op o 0z
0z 0z 0z

dz="dp+ — d —dz=d

On en déduit la premiere formule. La seconde s’obtient en inversant le systéeme donné par la premiere. Pour montrer les
formules (2), on dérive x, y et z considerées comme fonctions de r, ¢ et 6:

do — Jx dr + oz dp + oz df = cosp sinf dr —rsiny sin@ dp + rcosp cosf d
or op 00
A

dy = %Y dr + 47 dp + % df = sinp sin@ dr + cosy sinf dp + rsin e cosf df
or Op 00

dz:%dr+27;d@+%d0:c089dr—rsin0d9

Pour les formules (3), on compose les (1) et les (2) de fagon opportunée.

2.6 Matrice Jacobienne, Jacobien des changements de coordonnées

Rappel. Toute application linéaire L : R™ — R™ se represente come une matrice A = (aij) € My (R) (avec m lignes et
n colonnes) telle que, pour tout ¥ = (vy,...,v,) € R, on a
air a2 - Qln U1 a11v1 + -+ aip Up
L) =A0= o L= e R™ (produit de matrices).

am1l  Am2 o Gmn Un Am1V1 +  + GmnUn

Définition. Soit f : R” — R™ une fonction différentiable sur D < Dy, avec différentielle df : D — L(R",R™).

¢ La matrice Jacobienne de f est la matrice J; € M,,,, associée a df, c’est a dire telle que dfz(¥) = J;(Z) ¥, pour
tout £ € D et pour tout v € R”.

Si on indique les m composantes de f par (fi,..., fm), la matrice Jacobienne de f en Z € D est

oh@ oK@
ox1 0%y,
Ji (@) = : : € My (R).
ofml®) (@)
51171 al‘n

o Sila matrice Jacobienne est carrée (n = m), son détérminant Jac f = det J; s’appelle Jacobien de f.

Cas particuliers:

esi f:R2—R, (z,y) — f(z,y),on a Ji(z,y) = (afgi’ y) afi;; y)) € Mi2(R) (matrice ligne)

o sih:R?—R?: (u,v) — h(u,v) = (h1(u,v), ha(u,v)), on a

Ohy(u,v)  Ohy(u,v)
Jn(u,v) = ahga(;‘tl,ﬂ)) ahf(%i’v) € Mo(R) et Jach(u,v) =
ou ov

0hi(u,v) dha(u,v)  dha(u,v) hy(u,v)
ou ov ou ov

(matrice colonne

TR s TR2 - £ s _ _ (M
esiv:R R : t—7(t) = (71(t),72(t)), ona  Jy(t) (’yé = vecteur)

esig:R—R, z—g(z),ona Jg(2) = (g’(z)) € M1 (R) et Jacg(z) = ¢'(z) eR.
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Exemples.

L f(zyy) =2y = Js(z,y) = (2xy x2) € Miq

Quv  u?

2. h(u,v) = (u?v,3u) = Ju(u,v) = < 3 0

) € Moy Jac h(u,v) = —3u?

3. 4(t) = 26,8 +1) —  J (1) = <3§2> e Mo

4. Jacobien du changement en coordonnées polaires:

cos ¢ psincp)

— 2 G2
sin ¢ P COS Jac h(p,¢) = pcos® ¢ + psin® ¢ = p

h(p, ) = (pcosp,psing) = Jh(pvso)—<

5. Jacobien du changement en coordonnées cylindriques:
cosp —psing 0
h(p,p,2) = (pecosp,psing, z) = Jp(p,p,2)=| sinp pcosp 0 Jach(p,p,z) = pcos® ¢ + psin® o = p
0 0 1
6. Jacobien du changement en coordonnées spériques:

cospsinf —rsinpsinf rcosycosf
h(r,p,0) = (rcospsind, rsinpsind,rcos) = Jy(r,p,0) = | sinpsind rcospsing rsinpcosd
cos 0 —rsinf

Jach(r,,0) = cos@( — r2sin? psin § cos § — 12 cos? psin  cos 0) - rsin@(r cos? psin? @ + rsin? @ sin® 0)

= —r2sinfcos? — r2sin®0 = —r?2sin 0

Exercices.

1. Calculer le gradient, la différentielle et la matrice Jacobienne de la fonction f(z,y, z) = z sin(xy).

yz cos(zy)
v)f(x,y, z) = | zz cos(xy) df(z.y,2) = yz cos(xy) dx + xz cos(xy) dy + sin(xy) dz
sin(zy)
Ji(z,y,2) = ( yz cos(zy) xz cos(xy) sin(xy) ) (pas de virgules, c’est une matrice !)

z sinx
z siny

Z COST 0 sinx Z COST 0 sinx
df(z,y’z)(u,v,w) - ( 0 ) ut (z cosy) vt <siny) w Jy(@.y,2) = < 0 z cosy siny )

2. Calculer la différentielle et la matrice Jacobienne de la fonction f(z,y, z) = ( > Pour tout (u,v,w) € R? on a
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2.7
Sif:

Sif:

Conclusion: presentation des “dérivées” d’une fonction de plusieurs variables

R™ — R est une fonction réelle différentiable sur un domaine D < R":

0 0
les dérivées partielles sont des fonctions réelles —f, e —f :D— R
ox oxy,
la dérivée directionnelle en direction de @ = (vy,...,v,) € RV est une fonction réelle ‘ Ozf : D — R
0 0
donnée par 0zf = vy / + -4 vn—f
0x1 0xy, of
6:51
le gradient est une fonction vectorielle v)f :D— R"” donnée par vf = :
of
0xy,
la différentielle est une fonction a valeur dans les applications linéaires ’ df : D — L(R™,R) ‘
a o]
donnée par df = —f dey + -+ ﬁ dxy,
0x1 axn
la Jacobienne est une fonction a valeur dans les matrices a une ligne et n colonnes ‘ Ji: D — M1, (R) ‘
of of
donnée par J =(— )
P f 8951 al’n

R™ — R™ est une fonction vectorielle de composantes f = (fi, ..., fim), différentiable sur un domaine D < R™:

0 0 0 0 Ofm
les dérivées partielles sont des fonctions vectorielles of o D — R™ |données par / = ( h . / )

(?.’El T 8xn ’ &Q (}1'7;7 " 0351
la dérivée directionnelle en direction de @ = (vy,...,v,) € R est une fonction vectorielle ‘ Ogf : D — R™ ‘
0 0
donnée par 0z f = vl—f +o 4 vn—f
51'1 ﬁxn

le gradient “Vf” n’existe pas;

la différentielle est une fonction a valeur dans les applications linéaires ’ df : D — L(R",R™) ‘

mais les applications linéaires de base “dz;” (i = 1,...,n) n’existent pas;

la Jacobienne est une fonction a valeur dans les matrices ’ Jr: D — M (R) ‘
o of
o . Fr
donnée par Jy = : : :
Ofm Ofm
e . .
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2.8 Dérivées, gradient, différentielle et Jacobienne des fonctions composées

Proposition. Si f,g:R® — R™ sont deux fonctions différentiables sur D < R", et A € R, alors:

af+g) of  0dg

e La somme f + g est différentiable et =

pour tout ¢ =1,...,n

donc aussi V)(f—l—g):v)f—kv)g sim =1, d(f +g)=df +dg et Jrrg = J5 + Jy.

oNf) _, o

e Le produit par scalaire A f est aussi différentiable et p =A5 pour tout ¢ = 1,...,n
€Z; €T,

donc aussi V()\ f)=)\v)f sim=1, dX fy=Xdf et Ix g =X Jj.

Si f et g sont deux fonctions réelles (m = 1), alors:

afg) of Ly 0

e Le produit fg est différentiable et on a la régle de Leibniz = g pour tout ¢ = 1,...,mn
ox; ox; ox;

donc aussi V(fg) = (Vf) g+ f (Vg), d(fg) = (df) g+ f (dg) et Jrg = (Jg) g+ f (Jy).

Exemple.
d(azyz e’”y) = d(myz) ™Y 4 xy? d(e™) = (y2 dx + 2zy dy) €™ + xy? (y €Y dz + x €™ dy)
o(zy? eV o(zy? e®¥
= (y2 + a:y3) e dx + (Qxy + x2y2) e™ dy = ( J ) dxr + ( Y ) dy.
or 0y
Proposition. Si f : R® — R™ est une fonction différentiable en ¥ = (z1,...,x,) et g : R™ — RP est une fonction

différentiable en ¢ = (y1, ..., ym) = f(&), alors go f : R™ — RP est différentiable en Z et on a:
° d(g o f)f =dgsz o dfz (composition d’applications linéaires)

o Jyop (%) = Jo(f(Z)) - Jf (D) (produit de matrices)

o sif=(f1,.s fm), 9=10(g1,..,9p) et go f = ((gof)l,...,(gof)p), on a la régle de la chaine:

8(90f). . 0g; o Of1, g o Ofa, 0g; o Ofm pour tout i =1,...,n
@ = FHI@) 5@+ SEU@) G2@ 4+ ZEG@) @ e LT
Cas particuliers:
esif:RZ—R, (2,9)— f(r,y) =zet g:R— R, 2> g(2):
dgof) / of
(g0 f) .y = 9 (F@:9)) dfay, o (@) =g (f(z,) S (@)
_ (g o 0
Joor (2.9) = ' (£(2,9)) Ty(x.y) <gayf> (2.) = ¢ (f(z. 1)) aiz(x,y)

o sih:R?—R”: (u,0) = h(u,v) = (z,9) et f:R? — R, (z,9) = f(z,y):

foh 0 o 0 0
d(f o h) () = At © dhgu) (J;u )(u,v) = %(h(u, v)) a—u(u,v) + a—zjj(h(u,v)) a—Z(u,v)
Jron(u,v) = Jp(h(u,v)) Jp(u,v) d(foh) _of ox of y
foh 7( ) Jn pe (u,v) = 7 (h(u,v)) Ew (u,v) + 2 (h(u,v)) e (u,v)
e siv:R—R2: tsq(t) = (2,y) et f:R2— R, (z,y) — f(z,y):
d(fo7), = dfs) o dr ,
(Fon)0) = S (0) 20+ 5 (210 w0

Jth(t) =J (’7(75)) J’y(t)
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Exercice. Soit f : R? — R une fonction différentiable de coordonnées (z,y).

1. Calculer g—i et FF pour F(z,y) = Iln f(z,y).

Sion pose g(z) =1lnz,ona F =go f et donc

oF d(go 0 0
) 92D ) = ) L) = 7o Lo
OF(z,y) _dlgof) _ of _ 1 oF
ay - ay (x,y) g (f(iU,:l/)) ay(x’y) f(:z:,y) ay(x7y)
2. Calculer % et aG pour G(u,v) = f(v,uv?).
Si on pose h(u,v) = (v,uv?) = (z,9), c. ad. { 5: ZUQ ,ona G = foh et donc
6Géz:t,v) = a(faz h) (u,v) = Z—i(m(u,v),y(u,v)) g—fb(u,v) + %(m(u,v),y(u,v)) g—z(u, v)
= %(umﬁ) 0+ %(v,mﬂ) v? =02 %(v,mﬂ)
oG ofoh 0 0 0
th = A ) = (ot pta,0) S0 + 2 ol 0),000)) L)
= %(umﬁ) 1+ %(v,mﬂ) 2uv

3. Calculer H'(t) pour H(t) = f(t2, 3t).

2

Si on pose y(t) = (t2,3t) = (x,y), c. a d. { ;:gt ,ona H = fo~y et donc
H'(0) = (F 279)(0) = S (2(0.0(0)) '(0) + 5 (w(0),0(0)) w'(6) = 26230020+ SL(230) 3

Exercice. Soit f: R? — R la fonction f(z,y) = 2%y — y>.

dg(x?y — y?) ot dg(x?y — y?)

1. Calculer P 2

ol g : R — R est une fonction dérivable.

On a
ke éyz_ = a(ga(;f) (x,y) = ¢'(f(2,9)) %(%y) =9 (f(z,y)) 2zy

09y = y") _ 92 0) (0 (5w D) = o (1) (7 —20)

oy oy
2. Soit (z,y) = h(u,v) = (x(u,v),y(u,v)) un changement de variables et f = f oh, calculer é‘f(;;, v) et 8f(aqi,v).
On a B
of(u,v of ox of oy
) = L (aturo) gt )) S0 + 5 (o) p0,0) L)

= 2x(u,v) y(u,v) %(u, v) + (2(u,v)? = 2y(u,v)) Z—Z(u, v)

= 2x(u,v) y(u,v)

or 2 ay
%(uv U) + (x(u, ’U) - 2y(u7 U)) %(uv ’U)

3. Soit (z(t),y(t)) = ~v(t) une trajectoire dans R? dépendante du parametre ¢, calculer la dérivée en ¢ de la fonction
)
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Exercice. Soit f: R? — R une fonction avec dérivées partielles

of(e,y) 2 o My 2y
i @—pP oy @
oF oF —
1. Calculer les dérivées partielles (1, 0) et éu, v) de la fonction F(u,v) = f (u ;_ U, 4 5 U).
u v

La fonction f est différentiable sur le domaine D = {(m,y) eR? |y # ix}, car pour tout (z,y) € D les dérivées
partielles sont bien définies et continues.
La fonction F' est Uexpression de f dans les nouvelles coordonnées (u,v), et le changement de coordonnées est donné

par
U+ v " ( ) u—v

e U, V) = .

2 Y, 2

z(u,v) =

Pour que y # *x, il faut donc que uw # 0 et v # 0. On a alors F' = f o h, ol h(u,v) = (“;’”, "5“), donc

OF (u,v) :g(zu—v u—v) i<u+v)+g(u+v u—v) i(u—v)
ou oxr\ 2 7 2 ou\ 2 oy\ 2 7 2 ou\ 2
_emr 1 pmm
(M_M)Q 2 (m_@f 2
1 1 1 1
o utv  u—v 1
T2u? T 2u2? ue

v dx\ 2 7 2 ) ov oy\ 2 7 2 ) ow\ 2
9 utv

— 2
((u+v>2 B (u—v)2)2
4 4

o’F(u,v)_g(u—H} u—v) i(u+v)+g(u+v u—v) §<u—v)
2
o+

e ()
((u+u)2 - (u—v)? ) 2 2
4 4

u+v uU—v 1

2u2v2  2u2v? uv

2. Pour tout ¢t € R, calculer la dérivée G'(t) de la fonction G(t) = f(cosht,sinht), qui peut étre interpretée comme la
restriction de f & 'hyperbole paramétrée par x(t) = cosht et y(¢) = sinh¢.

D’abord, on vérifie que G(t) est dérivable pour tout ¢ € R: puisque f est dérivable pour tout (x,y) tel que z? —y? # 0,
et puisque cosh?t — sinh®t = 1 pour tout ¢t € R, on a bien z(t)2 — y(t)2 = 1 # 0. Alors on a G = f o+, ol
~(t) = (cosht,sinht), et donc

0 d cosht 0 d sinh ¢
G'(t) = (3% ( cosht,sinh t) C;j + 8;; ( cosh , sinh t) sclllrllt
2cosht ] 9ginht
T 2+ _ sinh?¢)2 sinht + 2, 12,2 cosht
(cosh” t — sinh* t) (cosh®  — sinh2 )

= —2coshtsinht + 2coshtsinht = 0
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Exercice. Soient (z,v,2) les coordonnées cartesiennes des points de R?, (p, ¢, 2) les coordonnées cylindriques et (r, o, 0)
les coordonnées sphériques, définies par

T =peosy pe 0, x:rc'oscps'lne r € [0, 0]
y = psinp e [0, 2n] et y = rsinpsiné v e [0,2n]
z=1z \ ’ z = rcosf 0 € [0,7]

Montrer que, par changement de coordonnées, les derivées partielles {37, g—y, g—z }, {g—p, g—@, %} et {27, g— %} se transforment
comme suit :

a——cos a——i—sin a— a— cos a——sm L7
op Y % w&y or (p&’ sDp&p
4 1a———sin a——i—cos 2 4 a——sin a——kcos 10 (4)
pop Y oz (p@y oy 906,0 (pp&p
2_9 2_9
0z 0z 0z 0z
(0 0 0 (
5, = oSy sin § e +sing sinf E» + cosd e 6% = cospsinf % —sing r511n9§<,0 + cospcosf — e
1 0 0 0 0 ) .0 0 10
rsm@&g@ s1n<pa—+cos<p oy @=s1n<ps1n9§+cosgp 7“5111987+Sm('0COS(9 r o0 (5)
10 0 0 0 0 0 . .10
~3g — Os® cosf %+s1n<p cosf a—y—smﬁ Ep . = cosf g—smﬁ e
0 ., 0 0 0 0 10
2 _gng = . Y _gne & -Z
5y = Sin Py + cos p Ey sin 6 ar + cosd e
1 0 10
] L2 172 ple L2 (6)
rsinf dp  p oy pOp  rsinf dy
10 0 ., 0 0 0 10
Z —osf — —sinh — g _ Y gne L
SR A PR | & =l 5 o 5

Pour montrer les formules (4), considerons la fonction composée f = foh ol f est une fonction des coordonnées
cartesiennes (x,y, z) et h(p, v, z) = (x,y, z) est le changement en coordonnées cylindriques. On a alors f(p 0,2 ) = f(x Y, %),
ot z,y, z sont fonctions de (p, ¢, z). En utilisant la régle de la chaine, calculons les dérivées partielles < > 7 Ow fetZ 5[ en

fonction de £ f, %f et & f:

al:affaj—l—aff@—&-aff%:coswaff—l-simpa—f
op Ox 0p 0Oy Op 0z dp oz oy
aff:affai:-i-aff@-i-ai%:—rsingpa—f+rcosg0a—f
dp O0xr dp dy Op 0z Op ox oy

of _ofov of dy o o _ 2t

0z 0x 0z dy 0z 0z 0z 0z
On en déduit la premiere formule. La seconde s’obtient en inversant le systéme donné par la premiere.

Pour montrer les formules (5), on applique cette méthode a la composée f = foh o, cette fois, h(r,p,0) = (x,y, 2) est
le changement en coordonnées sphériques:
of of ox Loy of o o Of of of

or  dx or oy or 0z or Cosp s = -+ sily sin 2y + cos 6=

of of oz  of oy Of oz . ., 0f ., 0f
= — = —psing sinf == + pcosp sinf ——

%7%%—%@&,@—'—62&,@ oz By
of of ax _of oy _of o= o oo
0" s 20 + = 2y 20 + 5. a9 oS¢ cos pe + rsing cosé 2 rsind 3

Pour les formules (6), on compose les (4) et les (5) de fagon opportunée.
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2.9 Dériveées partielles d’ordre supérieur, matrice Hessienne

Dans ce cours, les dérivées d’ordre supérieur servent exclusivement & étudier les fonctions (graphe, extrema locaux et
dévéloppement de Taylor). Nous nous limitons donc au cas des fonctions réelles, et en particulier celles de deux variables,
pour lesquelles on peut tracer un graphe décent.

Définition. Soit f : R® — R une fonction de variable & = (1, ..., z,), différentiable sur 'ensemble D < Dy. Alors les
dérivées partielles %7 pour ¢ = 1,...,n, sont des fonctions définies sur D. Si elles sont a leur tour différentiables, on peut
calculer leurs dérivées partielles. Pour tout k£ € N:

e Les dérivées partielles d’ordre k de f sont les fonctions qu’on obtient en dérivant f succéssivement k fois:

ok f o of

Omzax] - &xl&xj

Les dérivées partielles par rapport a des variables différentes s’appellent dérivées mixtes. Les dérivées partielles
d’ordre 2 s’appellent aussi dérivées secondes.

Cas particulier: si f: R? — R est une fonction de deux variables (x,%), les dérivées secondes sont

>f_oof *f _20f of _oo 0 @ _00f
ox? Oz dx’ oxdy  dx dy’ dyoxr  dy ox oYz dy oy’

e Une fonction est de classe CF si elle est différentiable jusqu’a lordre k, et si en plus les dérivées partielles d’ordre k
sont continues. Une fonction est lisse, ou de classe C'®, si elle est différentiable & tous les ordres k € N.

o f
6riarj

Théoréme de Schwarz. Si les dérivées partielles (fo sont différentiables en un point Z et les dérivées secondes
hx;
sont continues en &, alors
>f >f

= T tout ¢ .
Frr z Fas0m, (@), pour tout ¢ # j

Conséquence: Si f est une fonction de classe C* (ou lisse), alors toutes ses dérivées mixtes jusqu’a I’ordre k (ou o0), ayant
le méme nombre de dérivées en chaque x;, coincident, indépendement de I'ordre dans lequel elles sont calculées.

Exemple.
aof _ 9.2 2 ﬁ = 2 o*f = 622
i a(m,y) =327y 0z2 (z,y) = 6zy 0xdy (z,9) = 627y
r,y) =2y = -
of 3 o f 02
—(z,y) = 2x — = 622 — =223
8y( Y) Yy ayon (z,y) = 627y a0 (z,y) =2z

Exercice. Soient F et G deux fonctions de classe C? sur R, et soit ¢ € R*. On pose u(x,t) = F(z—ct)+ G(z +ct). Montrer
que u est solution de ’équation d’onde

2 2
%(x,t) —c %(x,t) =0 pour tout (z,t) € R?.

Les fonctions F' et GG agissent sur une seule variable et sont dérivables deux fois: indiquons par F’ et G’ leurs dérivées
premicres, et par F” et G” leurs dérivées secondes. En utilisant la régle de la chaine pour calculer la dérivée des fonctions
composées, on trouve:

ou o(x — ct) o(x + ct)

e — ' v e 7 ’
" (x,t) = F'(x — ct) Fra G'(x + ct) . F'(x —ct) + G'(z + ct),
a—u(x,t) = F'(x — ct) Az —ct) + G'(x + ct) Awtet) _ —cF'(z —ct) + cG'(z + ct).
ot ot ot
Dérivons ces fonctions pour obtenir les dérivées secondes:
A2 _
%(x,t) = F"(z — ct) w + Gz + ct) W = F'(z—ct) + G"(z +ct),
2 _
%(x,t) = —cF'(z —ct) w +cG'(x + ct) W = (=)’ F'(x —ct) + S G"(x + ct).
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Pour tout (z,t), on a alors

Définition. Soit f: R™ — R une fonction différentiable au moins deux fois en & = (x4, ..., Zp).

e La matrice Hessienne de f en I est la matrice carrée de taille n contenant toutes les dérivées secondes de f en Z:

Py P P
31'12 (71'191’2 ﬁxlaxn
Af . >f 2f .
Hy(7) = 0x9071 * 0192 @ - 0T20%n (@)
azf T an _') e a2f (f)
0%y, 071 0%, 0T 0xp?

Par le Théoréme de Schwarz, la matrice Hessienne d’une fonction de classe C2 est symétrique.

e Son déterminant Hess f(x,y) = det Hy(x,y) s’appelle Hessien de f.

Exemples.

2zy
2y +1
L f(z,y) =l@*y+1) = Vf(zy) = , —
x
22y + 1
2y(x?y + 1) — 2zy 20y 2z(x?y + 1) — 22y 22 2y(1 — 2%y) 2x
(z2y + 1) (z2y +1)? (@Py+1)? (Py+1)?
Hy(z,y) = =
2x(x%y + 1) — 22 22y x? 22 2x x?
@y+1? 7 (a2 + 1) @y+12" @y 1)
2u(1 — 2 4 2 2 2 4 2,2 1
detHf(x,y):_y(2 z%y) z 3 z _ 2y -2ty + 1)
' (?y + 1) (2?y+1)> \(=%y+1)° (x%y + 1)*
siny
2. g(x,y,z) = xsiny + ysin z = Vf(:z:,y,z)z xcosy + sin z —
Y COS 2
0 cosy 0
Hy(z,y,z) = | cosy —zsiny cosz
0 cos 2 —ysin z

det Hy(z,y,2) = —cosy <fycosysinz 70> = ycos? ysin z

Exercice. Montrer que le déterminant Hessien de la fonction f(z,y) = sin(z —y) est nul en tout point (x,y) € R2.

—sin(z —y) sin(z —y)

(200 ) = me- (D )

= det Hy(z,y) = (—sin(z — y))2 — (sin(z — y))2 =0 pour tout (x,y) € R2.
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Définition. Soit f : R™ — R une fonction différentiable au moins deux fois en & = (1, ..., ).

(92
e Le Laplacien de f en 7 est la trace de la matrice Hessienne de f en &1 Af(Z) = 3 fz(f) + 4
1

e Une fonction f s’appelle harmonique si Af(Z) = 0 en tout point (Z).

Proposition. [Interpretation géométrique du Laplacien.] Soit f : R?> — R une fonction de classe C? sur un
carré @ de taille h x h contenant un point (a,b), et soit u(f,Q) la moyenne de f sur @ (c’est a dire I'intégrale double

u(f,Q) = % J-Jf(x,y) dz dy, c¢f. Ch. 4). Alors on a
Q

P7,Q) = Flasb) + o Af(ab) + O(H).

Cela signifie que la différence f(a,b) — u(f, Q) est proportionnelle & Af(a,b), et la constante de proportionalité ne dépend
qua de la taille du carré on on calcule la moyenne u(f, Q)!

Exemple. |
of 2z(y + 1) o2 _—
e =T S =22l
2(y+1 of ) y
fly2) = % - 2y @2 = zfc_1 — @92 =0
- (x z):_w aif(x Z)_w
[ 2, (z—1)? | 222 =~
— Af(oyn - D 20°(y +1) _ 2y +1((z—1)* +2)

z—1 (z—1)3 (z—1)3

Exercice. Trouver les valeurs de ¢ € R* pour lesquels la fonction wu(x,t) = 22 — c¢®t? est harmonique.

YVu(z,t) = < 72?3"% ) = H,(z,t) = < (2) 7(2)02 ) = Au(x,t) =2—-2c> =0 sietseulementsi c¢= +1.

Exercice. Soit f: R — R une fonction de classe C? sur R et posons F(z,y) = f(1/22 + y?).
1. Calculer le Laplacien de F' en tout point (x,y) # (0,0).
0*F oF y " e . .
(z,y) + —(z,y). Notons f’" et f” les dérivées de la fonction f (qui a une seule

02 0y
variable). En utilisant la régle de la chaine pour la dérivée des fonctions composées, on calcule

On veut calculer AF(z,y) =

OF@y) _ AWTEYD) o ra @ TNy N’MT
z Y

ox ox
, T
= f'(Wz* +y?) \/TTyQ’
/-2 2 /-2 2

oy oy

=V e

En utilisant aussi la regle de Leibniz pour la dérivée d’un produit de fonctions, on calcule

PF(x,y) 0 [, x of' (v/22 + y?) x , 0 x
amz‘ax<f<m%ﬁz+yz>‘ = Wuyz*f(m)a<>

2 VET P w2
o

2 + 32

- (
- W)

T
Va?+y?
2 2

Y
(@ + PP g

2 + 32
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et de la méme fagon

PF(xy) 0 y
Tar (f et /Ty>
2 2 2 y2 / 2 2 56'2
(v +y)$2+y2+f(vx +9?) RN

On a donc

O’F(z,y) 0*F(z,y) 22 + y? z? + y?
AF _ ) ) _ fN /.2 2 / /2 2
(z,9) oz y? Fve +y)m2+y2+f( ! +y)(x2+y2)\/m

= PV PV )

. Déterminer toutes les fonctions f telles que AF(z,y) = /2% + y2.

1
Pour tout (z,y) # (0,0), 'équation AF(z,y) = f"(v/ 22 +y2) + f'(V/ 22+ y?) ﬁ = +/22 4+ y? ne dépend
e +y
que d’une seule variable réelle r = /22 + 32 > 0, et devient une équation différentielle du deuxieme ordre dans
lindéterminée f = f(r), non homogene et & coéfficients non constants. Pour la résoudre, on la transforme en un

systeme d’équations différentielles du premier ordre (toujours non homogenes et a coéfficients non constants):

1 EORY ORI
®) SO+ L= |
g+ gl =1 (B2

La solution f de (E) se trouve en cherchant d’abord la solution g de (E2) et puis en la mettant dans (E1).

La solution g de (E2) s’obtient comme somme de la solution générale go de ’équation homogene associée, qui est

g'(r) + - g(r) =0, et d’une solution particuliere g, de (E2) obtenue avec la méthode de la variation de la constante a
r

partir de gg. Explicitement, on a:

1 1
(E2) homogene g (r) = - go(r) — go(r) =Ae S7dr = x e lor = ) em(F) = & o avec A € R
. . r) / N(r) _ Ar)
Il faut donc chercher une solution particuliere de (E2) sous la forme g,(r) = ——, qui donne g,(r) = - =5
r r r
1 N 3 2
(E2) g;,(r) + - gp(r)=r — fnr) =r = Nr)=r <= Ar)= % =  gp(r) = %

2

A
La solution de (E2) est donc  g(r) = go(r) + gp(r) = = + %, pour tout A € R.
r

Enfin, la solution de (E) se trouve & partir de (E1):

2 2
(E1) f'(r) = % + % < f(r) =X In(r) + % + u, pour tout A, 1 € R.
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2.10 Formule de Taylor
Pour simplifier les notations, dans ce paragraphe on se limite a considerer les fonctions de deux variables.

Théoréme. [Dévéloppement de Taylor.] Une fonction f : R? — R différentiable dans un voisinage ouvert d’un
point (a,b) peut étre approximée par un polyndme, appellé partie principale du dévéloppement de Taylor, dont les
coéfficients dépendent uniquement des dérivées de f en (a,b).

Plus précisement, soit (z,y) un point trés proche de (a,b), dans ce voisinage, de telle sorte que h =z —a et k =y —b
tendent vers zéro.

e A lordre 1: Si f est de classe C', alors

o
f((;i . (@=a)+ oy

f(z,y) = f(a,b) + (y = b) + [[(h, K)|| (A, k)

= f(a,b) + df(ap)(z = a,y = b) + o(|(h, K)II),

ou e(h, k) tend vers zéro pour (h,k) — (0,0), et donc le terme “petit 0” o(||(h, k)||) = |[(h, k)|| €(h, k) tend vers

ol B
(hk)=(0,0)  [|(h, k)|
par rapport au terme précédent, qui est de 'ordre de (h, k).

zéro plus vite que ||(h, k)|[, pour (h,k) — (0,0), i.e. = 0, et par conséquent est négligeable

e A Pordre 2: Si f est de classe C2, alors

o) = Sast) + LD oy o LD
% f(a,b) *f(a,b) *f(a,b)

LEf@D) (e BL@b) o 3@ :
y EE T @t LS @m0 b+ g S (= b (R ()

~ st +agan) (D25) 45 (-0 v=0) e (D25) + ol RIR)

ou la fonction of||(h, k)||?) = ||(h, k)|[* e(h,k) tend vers zéro plus vite que ||(h, k)|, pour (h, k) —> (0,0), donc est

négligeable.
Exemples.
Lien =t @ @h)=00)  —  f0.0) -1
1 z—1
Jp(z,y) = <y—1 = 1)2) = J;0,0) = (—1 1)
1
0 —

. - (y—1)? o0 1

f(-’L',y)— 1 2(1,71) e f<7 )_ 1 2

(y—1)2 (y—1)3

1
= pour (z,y) proche de (0,0) on a S | —z+y—zy+y*+o(|(zy)).

y—1
r—y
2. f(z,y) = et (a,b)=(2,—1) = f(2,-1)=-1
zy —1
(:ryf(l)*(la)r;y)y ( yz—ll)z
TYy— Ty— 0
Vfy) - - - Vre-n-( )
—(zy—1)—(z—y)= 1—a? 3
(zy—1)? (zy—1)2
_ W= 2@y—1y  2y(@y—1)>—(y'—1) 2(zy—D= _2y(y’-1)  2(z—y) 0 5
(zy—1)* (zy—1)* (zy—1)* (zy—1)% )
Hf(ﬂ?,y) = ) = R = Hf(Qa_l) = )
e B idem  —F55 -3 -
T—y 1 2 2 9 9
= pour (z,y) proche de (2,—1) on a 1 —1—§ (y+1)—§ (m—2)(y+1)—§ (y+1)*+o(||(z—2,y+1)|?).
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T —
Exercice. Montrer que le graphe de la fonction f(z,y) = 7y17 dans un voisinage de ’origine (0, 0), peut étre approximé
Ty —

par le plan d’équation z —y + z = 0.

Comme montre le calcul des dérivées de f de 'exemple précedent, la fonction f est de classe C? sur son domaine
Dy = {(x, y) eR? |y # 1}, qui est le plan moins les deux branches de parabole d’équation y = 1/x. Le point (0,0) est bien
contenu ¢ l'intérieur de Dy (car Dy est ouvert et n’a pas de bord), donc il existe un voisinage ouvert de (0,0) dedans Dy.
Dans ce voisinage, appellons-le U, le graphe de f est I’ensemble

T —

Ir'y(U) = {(x,y,z) eR?|z= avec (z,y) proche de (0,0)}.

zy — 1

Y peut étre approximée par ’équation du plan

Il faut donc montrer que si (x,y) est proche de (0,0), ’"équation z = z
x

z = —x +y. Pour cela, il suffit d’écrire le dévéloppement de Taylor de f au point (0,0). En utilisant le gradient et la
matrice Hessienne de f déja calculés, on obtient

£(0,0) =0, Wmm=<ff),a mmm=(88>.
Donc, pour (z,y) proche de (0,0) on a bien f(z,y) = —z +y + o(||(z,y)]|?), et finalement

Ly(U) = {(m,y,z) eR® | z=—z+y+o((z,y)|]’) avec (z,y) proche de (0,0)}.

Exercice. La pression P d’un gaz parfait s’exprime comme fonction de la temperature 7' (mesurée en dégrés Kelvin K) et
du volume V' (mesuré en metres cubes m?) selon la loi

P(T,V)=nR % (en K/m3),

ol n est la quantité de matiere (exprimée en moles) et R = 8.3144 J/K x moles est la constante universelle d’un gaz parfait.

1. Supposons que le gaz se trouve & pression Py = P(300 K, 1m?) = 300 nR K /m?. Quelle modification subit la pression
si on augmente la temperature de 1 K et au méme temps on augmente le volume de 0.1 m?, sans changer le nombre de
moles n?

A priori, une augmentation de la temperature fait augmenter la pression, et une augmentation du volume fait diminuer
la pression. Si les deux augmentent au meme temps, que se passe-t-il?

Pour répondre, il faut évaluer AP = P(301 K,1.1m?%) — Py. On pourrait calculer P(301 K,1.1m?) = nR 3% K/m?,
mais sans calculette ce n’est pas amusant. Utilisons plutot le dévéloppement de Taylor a l'ordre 1, autour du point
(To, Vo) = (300 K, 1m?):

0P oP
P(T,V) ~ P(Ty, Vo) + dPig, ve) (T — To, V = Vo) = Po + == (To, Vo) (T — To) + = (To, Vo) (T — To)

oT ov
T T To(V — Vo)
- P 2 -10 4olV — Vo)
o + nR 7 nR vz
1K 300K x 0.1m? . s ,
= AP ~nR <1m3 - (T2 )an (1K/m® =30 K/m?) = =29 nR K/m’> < 0!

Au final, "augmentation du volume de 0.1 m? ’emporte sur 'augmentation de la temperature de 1 K, et la pression
diminue.

2. Maintenant on veut connaitre la pression du gaz qui se trouve a I’état (T, V'), mais la mesure de cet état nous donne
les valeurs (Tp, V) avec une erreure relative

T—1Ty
0

V-Vy
0

< 0.002 %.

< 0.005 % et ’

Quelle est 'erreure relative induite par cette mesure sur la pression?

On utilise & nouveau le dévéloppement de Taylor de P = P(T,V) & lordre 1, autour de (7o, Vp), en posant Py =

P(To,V0>Z
T—T To(V -V,
P — Py ~ dPg, vy)(T — To,V — Vo) = nR Vongoﬁﬂ 0)
0 0
P— P, T-T, To(V-Vo) T-Ty V-V
= AT T e ey P TR 74
0 VonRV0 VbnRVn 0 0
P—P T-Ty| |V-V
— ’ 0 <' ol + o1 < 0.005% + 0.002% = 0.007 %.
Py To 0
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2.11 Points critiques, extrema locaux et points col.

Rappel. Si f: R — R est une fonction dérivable en un point a € Dy, la croissance ou décroissance de f en a est décelée
par le signe de f’(a) (positif ou négatif). Que se passe-t-il si f'(a) = 0 (point critique) ?

Dans ce cas, la tangente au graphe de f au point (a, f(a)) est horizontale et tout peut arriver: au point a, la fonction f
a soit un minimum local, soit un mazimum local, soit un point d’inflexion:

| | |
1 1 1

/ M a e M a
minimum local maximum local point d’inflexion

Si f’(a) = 0, pour comprendre le comportement de f en a il faut regarder le signe de la deuxiéme dérivée, qui detecte la
convexité ou concavité de la fonction: si f”(a) > 0 on a un minimum local, et si f”(a) < 0 on a un maximum local. Que se
passe-t-il si f”(a) = 0 (point plat) ?

Si f”(a) = 0 on ne sait toujours pas ce que fait f en a, il faut regarder les dérivées d’ordre supérieur: si la premiere dérivée
non nulle est d’ordre pair, on a un minimum ou un maximum local selon le signe de cette dérivée (positive ou négative). Si
la premiére dérivée non nulle est d’ordre impair, par contre, on a un point d’inflexion.

Dans ce paragraphe on introduit ’analogue des points de minimum et maximum locaux et des points d’inflexion pour les
fonctions de deux variables, et on donne un critére pour les trouver (incomplet, car s’arrete aux dérivées d’ordre 2).

Définition. Soit f: R? — R une fonction. On dit qu’un point (a,b) € D¢ est un extremum local de f s’il est

e soit un minimum local: f(a,b) < f(z,y)
pour tout les (z,y) dans un voisinage de (a, b),

e soit un maximum local: f(a,b) = f(z,y)
pour tout les (z,y) dans un voisinage de (a, b). /

|
¢ (a,b)
minimum local maximum local

Si f est différentiable au point (a,b), le signe des dérivées de f en (a,b) permet d’établir si le point est un extremum
local. A partir de maintenant, soit donc f : R? — R une fonction de classe C? sur un domaine D c R2.
Définition. Un point (a,b) € D s’appelle point critique de f si V)f(m b) = (0,0).

Cette condition signifie que le plan tangent au graphe de f au point (a, b, f(a, b)) est horizontal: un extremum local est
donc un point critique. Mais tous les points avec tangente horizontale ne sont pas des extrema locaux. Pour détecter la
nature d’un point critique, on utilise le critere suivant.

Théoréme. Soit (a,b) € D un point critique de f. Si det H¢(a,b) > 0, alors le point (a,b) est un extremum local.
Dans ce cas:

e (a,b) est un minimum local si i(a b) > 0 ou 62—f(a b) >0
b ax2 b ayQ b b
0 f o f

e (a,b) est un maximum local si —%(a,b) <0 ou (a,b) < 0.

Ox o2

Définition. Soit (a,b) € D un point critique de f.

o Sidet Hy(a,b) <0, on dit que (a,b) est un point col ou point selle.

La forme d’un point col est détérminée: par rapport aux deux courbes qui
le traversent et qui ont la plus forte pente (croissante ou décroissante), il est
un minimum local de I'une et un maximum local de 'autre. Cela arrive, par

exemple, dans 1'hyperboloide parabolique z = x? — y* (cf. figure). /

¢ (a,b)

o Sidet Hy(a,b) =0, on dit que (a,b) est un point plat.

La forme d’un point plat n’est pas détérminée: par rapport aux courbes qui
le traversent et qui ont la plus forte pente (croissante ou décroissante), il peut
étre un point d’inflexion pour les deux, par exemple dans la selle de singe |

z = 23 — 3xy? (cf. figure), ou bien il peut étre un extremum locale pour I'une ¢
alors que l'autre est horizontale. Pour déterminer la forme d’un point plat il point plat
faudrait regarder les dérivées de f d’ordre supérieur a 2.
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Exercice. Déterminer les points critiques des fonctions suivantes et, si possible, leur nature.

L flzy)=2a?+y> = Vf(z,y) = <§z> Hy(z,y) = <(2) g)

Points critiques:  Vf(z,y) = (0,0) <= (z,y) = (0,0)
Nature: det Hf(0,0) =4>0 227]20(0, 0)=2>0 = (0,0) est un minimum local.

2 flayy)=a?—y? =  Vf(z,y) = <_22xy> Hy(z,y) = (3 _g>

Points critiques:  Vf(z,y) = (0,0) <= (z,y) = (0,0)
Nature: det H;(0,0) = —-4<0 = (0,0) est un point col.

8z — dx(x? + y?) 8—1222 —4y? — 8zy
3. f(x,y) = 4@ +y?)—(a2+y?)? = Vf(z,y) = Hy(z,y) =
8y — dy(2? + y?) —8xy 8—12y% —4a?
9 oy soit (z,y) = (0,0)
Points critiques:  Vf(z,y) = (0,0) <« { x((g B ;:2 B yz)) :8 — <
Y y= soit 22 + y% = 2 (cercle)
Nature:
det H(0,0) = det (i g) —64>0 24(0,00=8>0 =  (0,0) est un minimum local.
—8z2 —8xy
Si (z,y) est tel que z2 +y* = 2, alors det Hy(z,y) = det =0 = (z,y) est un point plat.
—8xy — 8y?
dzy + 4z 4y +4 4z
4. f(w,y) =222y + 222 +y? — Vf(z,y) = Hy(z,y) =
222 + 2y 4z 2

_ soit (z,y) = (0,0)
Points critiques:  Vf(z,y) = (0,0) < { dr(y+1) =0 — < o)
Y

2 _
22" +y) =0 soit (z,y) = (£1,-1)
Nature:

det H;(0,0) = det <é g) =8>0 g%’;((), 0)=4>0 = (0,0) est un minimum local.

0 =+4 .

det Hp(£+1,—1) = det P —-16 <0 = (£1,—1) sont deux points col.
622 + y? + 10z 120 +10 2y

5. f(w,y) =223 + 2y + 522 + > = v)f(x,y)= Hy¢(z,y) =

2zy + 2y 2y 2

622 + y? + 10z = 0

Points critiques:  Vf(z,y) = (0,0) <« { 2z +1)y—0 < soit z——1,soit y— 0

. 6z +y? + 10z =0 2-4=0
soit { v 731/ — { Z: 1 = (z,y9) = (-1,%2),
soit (2,) = (0,0)

. {6m2+y2+10w=0 {2x(3x+5)=0 <
so1t — —

y=0 y=0 soit (2,y) = (~5/3,0)

Nature:

det Hp(—1,42) = det (_2

+24> =-20<0 == (—1, +2) sont deux points col.
10 0 o%f C .
det Hy(0,0) = det 5 | = 20>0 %5%(0,0)=10>0 = (0,0) est un minimum local.

det H¢(—5/3,0) = det <_1O 20) =-20<0 = (—5/3,0) est un point col.
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Si f : R? — R est une fonction C', on peut reconnaitre les points critiques et leur nature en regardant les lignes de
niveau de f.

Proposition. Un point (a,b) € Dy est un point critique de f si on est dans 'une des situations suivantes, pour ¢ = f(a, b):
e L.(f) ne contient que le point (a,b): dans ce cas (a,b) est un extremum local.

De plus:

o . . . 1 i t, it décroi t
— (a,b) est un minimum si, dans un petit disque autour de (a, b), Yq valeurs croissantes Y g valeurs desrolssantes

T
on a +
|

x Lqg(f) = pourd <c !
x Lq(f) est une courbe fermée pour d > ¢ et d proche de c.

— (a,b) est un maximum si, dans un petit disque autour de (a, b),
on a disque

* Ld(f) = pourd>c minimum x maximum T

x Lq(f) est une courbe fermée pour d < ¢ et d proche de c.

e L.(f) consiste de plusieurs courbes qui s’intersectent en (a,b): dans ce cas (a,b) est un point selle ou un point plat.

De plus:

(a,b) est un point selle si
x il est intersection de deux courbes q q
x Lq(f)# & pour tout d proche de c. 4 4 A‘
— (a,b) est un point plat dans tous les A A "
autres cas.
disque A disque A disque

point selle T point plat T point plat

Exercice. A partir des lignes de niveau d’une fonction f : R? — R de classe C?, dire si les points indiqués sont critiques
et, si c’est le cas, décrire leur nature.

A est un minimum local A est un maximum local
B n’est pas un point critique B est un point plat
C' est un maximum local C' est un maximum local
D est un minimum local D est un minimum local
FE est un point selle FE est un point plat
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3 Intégrales multiples
3.1 Intégrale simple comme somme de Riemann et aire.

Rappel. Si f: R — R est une fonction & une variable définie sur un intervalle [a,b], on a défini 'intégrale de f sur
[a,b] comme le nombre

b
fﬂ@M=F@fﬂ®=W@m

ol F est une primitive de f sur [a,b], c’est-a-dire une fonction dérivable et telle que F’'(x) = f(z) pour tout x € [a,b]. La
primitive de f est notée F(z) = | f(z) dz. Si f admet une primitive F, par exemple quand f est continue, l'intégrale de f

sur [a, b] existe dés que l'intervalle [a, b] est borné. (Si I'intervalle n’est pas borné, on parle d’intégrale impropre.)
Pour calculer l'intégrale, ou la primitive, on transforme Uintégrand f(x) jusqu’a obtenir la dérivée d’une fonction, qui
sera F'(x). Pour cela, on emploit les deux techniques suivantes:

b h=1(b)
Théoréme du changement de variable. Jf(x) dzx = J f(h(t)) B'(t) dt,
a h=1(a)

olt * = h(t) et h est un difféomorphisme (bijection dérivable avec réciproque h=! dérivable).

b b b
Théoréme d’intégration par parties. J flx) ¢'(z) do = [f(x) g(a:)]a —J f(x) g(z) da.

Définir l'intégrale comme valeur d’une primitive ne permet pas d’en comprendre la signification géométrique (c’est une
aire), ni d’en éteindre la définition aux fonctions de plusieures variables. Pour cela, il faut interpreter les intégrales comme
sommes de Riemann. Cette méthode ne réquiert pas de connaitre a priori une primitive.

Définition. Une subdivision Ss de [a,b] est une partition de 'intervalle I = [a,b] en n intervalles I; = [a;—1,a;] (pour

—a
i=1,..,n) de longueur ¢ = , en partant de ag = a et en finissant en a,, = b.

a = ap al as as aq 5 an =0b

Pour tout choix de n points x; € I; (i = 1,...,n), on appelle somme de Riemann de f associée & la subdivision S5 et aux
points {x;} la somme

f

Rs(fi{ai}) == > fl@:) 6 a m b
i=1 ,
x
ou chaque terme f(z;) 0 représente 'aire algébrique u?f w

du rectangle de base I; et hauteur f(z;). négatif positif négatif
Ici, “algébrique” signifie avec un signe + qui dépend du
signe de la fonction f au point choisi ;.

Définition. Si la limite (%in}) Rs(f;{x;}) existe, elle est indépendante du choix des points x; € I;. Dans ce cas, on appelle

intégrale de Riemann de f sur [a,b] cette limite:
b
[ #t) do =t Batr: g,

b
On dit que f est intégrable sur [a,b] selon Riemann si 'intégrale J f(z) dz est finie (un nombre réel, pas +00).
a

Théoréme fondamental du calcul intégral. Si la fonction f est intégrable sur [a,b] selon Riemann, alors elle admet
une primitive F sur [a, b], et on a:

F($)=J f(t) dt+c¢  pour tout z € [a,b] et c€ R.
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Corollaire. [Signification géométrique de ’intégrale simple.] f |f] f=Ifl |£]

N - ~

b > p N
1. f f(z) dx = aire “algébrique” de la portion du plan comprise en- >
a tre le graphe de f et 'axe Oz. / \_/ *

mégatif positif négatif

b
2. J |f(x)| dz = aire de la portion du plan comprise entre le graphe
a de f et 'axe Oz.

Exemple. Aire du disque. Par symétrie, on voit que l'aire du disque D = {(x,y) eR? | 22 +42 < 1} est deux fois
l'aire du demi-disque

DY ={(z,y) eR?* | 2? +y* < 1, y = 0},

qui est la portion de plan comprise entre l'axe Oz et le graphe de la fonction

y =+/1— 2. On a alors
1
Aire (D) = QJ V1—a?d.
—1

On calcule cette intégrale par changement de variable, en posant x = sint pour ¢t € [—7/2,7/2], car +/1 — 22 = cost.
Puisque dx = cost dt, on a

/2 /2
dt = [%sin(2t)+t] ! =(O+E—O+E)=7r.

cosZt dt =2 JW/Q M
/2 2 2

Aire (D) = 2 J
e 2

—m/2

3.2 Intégrale double et volume. Théoréeme de Fubini. Changement de variables.
Soit f : R? — R une fonction définie sur un ensemble borné D — R2.

Définition. Pour tout § > 0, on appelle subdivision de D l’ensemble S5 des carrés K; de coté § qui recouvrent D dans
n’importe quel grillage de pas §. On considére deux telles subdivisions:

Sezt
e S indique le recouvrement large (a l'extérieur), 7
e Si" indique le recouvrement strict (a I'intérieur). . N
int 7
/
Puisque D est borné, les subdivisions contiennent un nombre fini T
int

de carrés, et on a Si** < S§*'. En fait, les carrés contenus dans
I'ensemble S§*"\S¢™ couvrent exactement le bord 0D de D.

Pour tout choix de points (z;,y;) € K; n D, on appelle sommes de Riemann de | associées aux subdivisions S;It/ it

et aux points {(x;,y;)} les sommes

f(a,y)
Rl = Y flaiw) 8,

Kiesga;t/int §§

olt chaque terme f(z;,1;) 02 représente le volume algébrique y
du parallélepipede de base K; et hauteur f(z;,y;), avec signe + [ |
. 12 . ey
qui dépend du signe de f en (z;,y;).
x

Définition. Si les limites }irr(l) Rgrt/mt(f; {(x;,v:)}) existent, elles sont indépendantes du choix des points (z;,y;) € K; n D

et elles coincident. Dans ce cas, on appelle intégrale double de f sur D cette limite:

[ #6000 do dy = tim R (G
D
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On dit que f est intégrable sur D selon Riemann si l'intégrale Jff(x, y) dx dy est finie (un nombre réel, pas +o0). En

D
particulier, c’est le cas si f est continue et D est borné.

Corollaire. [Signification géométrique de I’intégrale double.]
! :| | /’lfi\
X
FHRRKEHS
l’..b&@\\\&&p//}/ f

R
K FFP
N

1. Jf f(z,y) dx dy = volume “algébrique” de la portion d’espace comprise
5 entre le graphe de f et le plan zOy.

AN

2. Jf\f(x,yﬂ dz dy = volume de la portion d’espace comprise entre le T
D

graphe de f et le plan 2zOy. positif négatif

Exemple. Volume de la boule. Le volume de la boule B = {(x, y,2) eR3 | 22 + 92 + 22 < 1} est deux fois le volume
de la demi-boule

Bt ={(z,y,2) eR® | 2® + y> + 2* < 1, y = 0},
comprise entre le plan zOy et le graphe de la fonction z = 4/1 — 22 — 2. On a alors

v01(B>:szdxdy, ot D={(z,y) e R | 2® +y? <1},
D

Pour calculer les intégrales doubles, on utilise les proprietés suivantes, et deux techniques spécifiques.

Proposition.

L H (A f(z,y) + pgla,y)) de dy = /\ﬂf(xyy) dz dy + u”g(:ﬂ,y) dz dy, pour tout A\, i € R;
D D D
2. Si D = D;u Dy et Dy n Dy = courbe ou ¢, alors Jff(m,y) dr dy = Jff(m,y) dzr dy + fff(m,y) dz dy;
D D, D»

3. ‘Hf(x,y) da dy‘ < Hlf(x,y)l dx dy;

4. Si f(x,y) < g(x,y) pour tout (z,y) € D, alors Jff(a:,y) dr dy < JJg(m,y) dz dy.
D D

Calcul des intégrales doubles: théoréme de Fubini.

Premier cas. Soit f: R? — R une fonction continue définie sur un rectangle D = [a,b] x [c, d].

Théoréme. [Fubini, ler cas.] ﬂ Foy) dz dy — f ’ ( J ") dy) do J ’ ( f ey d:v) dy
A e .\

b d
Corollaire. Jf fi(x) fa(y) dx dy = f fi(x) dx J f2(y) dy
] .

[a,b] x[c,d
b d b [ rd
Notation: fdmfdy f(ac,y):f f flx,y) dy | dx.
Exemples.
1 /2 1 .71 /2 1
1. dr dy = d dy = |=a2? i ==
ff xcosy dx dy Jox xL cosy dy [295 ]0 [Smy]o 5
[0,1]x[0,7/2]
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2 ' Lo ! L oo e 2 L 3 ' 5
2. (zfy — D)dedy = | dz | (z*y—1)dy= | do | z2y* —y = —x—1) doe=|=z2"—2 =—-
—1 Jo 1 L2 y=0 J-1\2 6 1 3

[—1,1]x[0,1]

Deuxiéme cas. Soit f : R?> — R une fonction continue définie sur un ensemble borné D quelconque. Alors:

e pour tout (z,y) € D, il existe surement des valeurs a,b € R tels y
que a <z < b,

e pour tout x € [a, b], il existe surement des valeurs ¢(z), d(x) € R
tels que ¢(z) <y < d(z),

de telle sorte que D= {(z,y) eR? | we[a,b], y<[c(z),dz)]}

A noter que les deux courbes 0D~ = {(z,y) eR? | 2 € [a,b], y =
decrivent le bord de D.

En alternative:

e pour tout (z,y) € D, il existe surment des valeurs ¢, d € R tels Yy

que c <y <d, dd---=

e pour tout y € [¢,d], il existe surment des valeurs a(y),b(y) € R y m

tels que a(y) <z < b(y), \/
cH-r---==

de telle sorte que D={(z,y)eR* |yelcd], z<aly),b®)]} | 3

Dans ce cas, ce sont les deux courbes 0D~ = { (z,y) e R? |y € [¢,d], z = a(y) } et ID* = { (z,y) e R? |y € [¢,d], x = b(y) }
qu decrivent le bord de D.

Selon le choix qu’on adopte pour décrire D, on a alors:

ﬁ()) f(@,y) dy) dr = f (

b(y)
J f(z,y) dx) dy.

a a(y)

b
Théoréme. [Fubini, 2éme cas.] fff(x,y) dr dy = J (
D

Exemples.

1. Soit D la partie du plan zOy délimitée par I’arc de parabole y = 22 en bas,
et la droite y = 1 en haut. On peut alors décrire D comme ’ensemble y = 22

D= {(z,y)eR? | ze[-1,1], ye [z 1]}.

Par conséquent, on a:

1

! ! ! 1 1 1[1 S R
Jfa:Qy dr dy = JA z? dx Lz y dy = —Ll z? [2y2L2 dr = f,1 5(3:2 —z*) dx = 3 [33:3 — 53:5] . =
D

2. Volume de la boule en coordonnées cartesiennes. Pour B = {(x, y,2) eR3 | 22 + 92 + 22 < 1}, on sait que

Vol (B) :2fjx/1—m2—y2 dz dy, on D= {(Jc,y)eR2 | 22 + 9% < 1}.
D

On peut décrire D comme ’ensemble
D= {(m,y)e]RQ |xe[-1,1], y € [—\/1—3:2,\/1—1:2]},

donc on a

1 Vi—z?
Vol(B):2J dxf V1—a?2—y?2dy=2
—1

—V/1—x2
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Avec le changement de variable S t,on a

—V1i-22<y<yV1-22 = -—-1<sint<l = -— g
Y _sin?t — =V1—sin’t = Vcos?t = |cost| = cost pourte[-F, T],

1— 22 17552

y=+1—22sint = dy=+/1—22cost dt.

St<

[V

/2
En sachant que QJ cos?t dt = 7 (voir exemple précédent), on a alors:
—m/2

/2

Vol (B) = 2L(1 —2%) dx f

1 1
1 4
cosztdt=7rf (l—xg)dgjzﬂ-[x_m?)] _ i
—7/2 -1 3 1

Calcul des intégrales doubles: changement de variables.

Considerons l'intégrale f f(x,y) dx dy et un changement de variables (z,y) = h(u,v) = (z(u,v),y(u,v)). Pour exprimer

I'intégrale en termes de la fonction f(u,v) = f(z(u,v),y(u,v)), il faut exprimer D et le "produit” dz dy en termes de (u, v):

e Le domaine D se transforme en le domaine D = h~!(D) = {(u,v) € R? | (z,y) = h(u,v) € D}.

dr = o du + e dv
ou ov dr du
e Les éléments dx et dy se transforment comme i.e. comme ( d ) = Jp(u,v) ( d )
dy =2 dut % av ! ’
Y= % ov
ou Ov
ot Jp(u,v) = est la matrice Jacobienne du changement de coordonnées.
o o
ou Ov

e Pour le "produit” dz dy il faut faire attention: il s’agit d’un produit wedge entre formes différentielles (hors programme
Math2), normalement noté dx A dy. Sans rentrer dans les détails, il suffit de dire qu’il est linéaire dans les coefficients
de dx et dy (qui sont des fonctions) et antisymétrique:

dr A dy = —dy A dx et donc aussi dxr Adx =0, dydy=0.

Par conséquent, on a

dmdy=(@du axd) (ayd aydv)

ou v au ™t
oxr Oy ox Oy azv oy or Oy
=— —dundu+—— = dundv+ — = dvordu+ — == dvond
~ Bu du “Fou T N N
ox 0 or 0
(8—2 a—z - a—i a—y) du A dv = det Jp (u,v) du A dv.
Quand on identifie dz dy a dz A dy en réalité on ne fait pas attention a I'ordre, on suppose que dzx dy = dy dx. Pour
éviter le changement de signe ”—" qui viendrait de ’égalité dx A dy = —dy A dzx, il suffit d’adopter la formule suivante,
avec la valeur absolue du détérminant Jacobien:
or 0y OJdx Oy
de dy = 2 20 0 a—u‘ du dv = )detJh(u,v)‘ du dv.
En particulier, pour le changement en coordonnées polaires, on a: ‘ dr dy = p dp dp

On arrive finalement au théoréme suivant:

Théoréme. [Changement de variables.]

ijscy ) dx dy = JJ x(u,v), y(u,v) ’detJh(uv)‘dudv

h=1(D)
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Exemple. Volume de la boule en coordonnées polaires. Pour B = {(z,y,2) € R? | 22 + y* + 2% < 1}, calculons
Vol (B) = QJJ\/l — 22 —y? dzx dy, ot D={(z,y)eR*|2*+y* <1}
D

avec le changemen € variables en coordonnees polaires, (¥, = s = COS @, pSIn . uisque + = , on a:
le changement de variabl données polai y) = hip,¢) = (pcosp, psinp). Pui Pyt =p?

Vi—a? =2 =/1-p?

h~Y(B) = {(p,¢) € [0,00[x[0,27[ | p <1} = [0,1] x [0, 27[

et donc, en sachant que dx dy = pdp dy et en utilisant Fubini pour separer les variables, on a
1 2m
Vol (B) = 2 JJ \/l—prdpdga:ZJ V1—p2pdp de.
[0,1]x[0,27[ 0 0

2T
L’intégrale en ¢ est simple: J dp = [(,0]57r = 27. Pour lautre, sionpose t=1—p?ona +/1—p2=+/t=1t"/2et
0

p=0 = t=1 et p=1 = t=0,
1
dt = -2pdp = pdp= —5 dt,

et on obtient enfin

2 0 ! 1 ! 21510 4

Vol (B) = —= 2 J t1/2 dt = 21 J 2 dt =2m | —— 37| =2 7[t%] ==

2 1 0 3 +1

3.3 Intégrale triple. Théoreme de Fubini. Changement de variables.

Soit f : R* — R une fonction de trois variables (z,y, 2), et soit {2 = R® un ensemble borné sur lequel f est définie.
Définition. On définit I'intégrale triple de f sur 2 comme la limite de la R?

somme de Riemann associée & une subdivision S5 de €2 en petits cubes K;
de taille 63, avec § qui tend vers zéro: D

Jfff(x,y,z) dzr dy dz = %1_1)]% Z Flai,yir ) 8,
)

KiGS,;

quelconque soit le choix des points (z;,y;, 2;) € K.

Cette définition est 'analogue en dimension 3 de celle donnée en dimension 2 pour les intégrales doubles. Les intégrales
triples ont donc les mémes proprietés des intégrales doubles, et les mémes théorémes d’existance (f continue sur € borné).

La signification géométrique de l'intégrale triple est plus abstraite: par analogie, le volume (algébrique) de la portion
d’espace comprise entre le graphe de f et le plan xOy devient le quadri-volume (algébrique) de la portion de quadri-
espace comprise entre le graphe de f et l’espace Oxyz.

Calcul des intégrales triples.

Théoréme. [Fubini.]
1. Si Q = [a,b] x [¢,d] % [e, g] est un parallélepipede, alors:

b d g
Jﬁ[f(x, y,2) de dy dz = J dxf dyf dz f(z,y,2) (dans l'ordre qu’on veut).
Q a (& €

2. 510 = { (r,y,2) e R3 ’ z € [a,b], y € [c(x),d(x)], z€[e(z,y),9(z,y)] } est un ensemble borné quelconque, alors:

b d() g(z,y)
Jfff(m,y, z) dz dy dz = f dxf dyJ dz f(z,y,2) (ordre forcé).
a c(x)
Q

e(z,y)
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Exemples.

1.
3 2 1 3 2 1 o1
JJJ x —2yz) dx dy dz =J dz J dyj dx (a?2—2yz)= dz dy[gx?’—?xyz] o

x[1,2]x[2

2. Si Q) est le cylindre plein, de base le disque D = {(a?, y,2)eR3 |22 +942 <1, 2z = 0} et de hauteur 3, on peut écrire

Q={(z,y,2) e R® | 2® +y* < 1, 0<Z<3}

={(z,y,2)eR® |ze[-1,1], ye [ - V1 —22,1/1—2a?], ze[0,3]}

et donc
3 Vi—zZ
Jff 1—2yz) dx dy dz = J dz J(1—2yz ) dx dy—f dzj dx J (1—2yz) dy
0 D Vi—zZ
3l "
:f dzf [y—y2z]y daz—f dzJ V1-—22— (1 -2z + 1—x2+(1—x2)z) dx
0 -1 y=—v1-22

[l
S—
w
QL
Q
|
2
A
b
—_
|
8
[\v]
U
S
[l

3f 2cos?t dt = 3w
—m/2

Théoréme. [Changement de variables.] Si (z,y,z) = h(u,v,w) est un changement de variables, alors:

Jf flz,y,2) doe dy dz = fff z(u, v, w), y(u, v, w), z(uvw )detJh(uvw) du dv dw

h=1(Q)

En particulier, pour les changements on coordonnées cylindriques et sphériques, on a:

‘ drdydz = pdpdedz = r%sinfdr dp d

Exemple. Considerons & nouveau 'intégrale de la fonction f(x,y,z) = 1 — 2yz sur le cylindre plein ), de base le disque

D= {(Ly, 2)eR3 |22 +42 <1, 2= 0} et de hauteur 3. En coordonnées cylindriques, on a

Q={(z,5,2) e R |22 + 12 < 1, 0<z<3}
= {(p.%.2) | pe (0,1, pe[o,21], z[0,3] }

et donc, puisque dx dy dz = pdp dp dz, on a

3 3 1 27
1—-2yz)dx dy dz = z 1—2yz) dz dy = z | pdp 1 —2psinpz) de
dr dy d d dzx d d d d
0 0 0 0
Q D

3 1 =2 3 1
=f dzf pdp [g0+2pcosgoz] =f dzf (27r+2pzf2pz) pdp
0 0 »=0 0 0

3 1 1
:fdzj 27Tpdp237r[p2] =37
0 0 0
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3.4 Applications: aire, volume, moyenne, baricentre

Si D est un domaine borné de R?, Iintégrale Jf dx dy represente le volume de la

| a>
portion d’espace comprise entre le graphe de la fonction constante f(z,y) = 1 et le
plan xOy: ce solide est un cylindre de hauteur 1 et de base D, son volume est donc x/ k D ;

égal a l'aire de D multipliée par la hauteur, qui vaut 1.

Définition. Soit D un domaine borné de R?. L’aire de D est I'intégrale double Y
Aire (D) = JJ dz dy
D
T
Proposition. Si D est la portion du plan sous le graphe d’une fonction f : [a, b] — Y
R positive, c¢’est-a-dire si i
D={(z,y) | ze[ab], ye[0,f(2)] }, ] D
a 5T

b
alors on a: Aire (D) = f f(z) dx

En effet, si D = { (2,y) | # € [a,b], y€ [0, f(z)] }, on a

Aire (D) = Jf dzx dy = Jb dx Jof(m) dy = Jb [y]g(m) dx = Jb f(z) du.
)9 a a a

Exercices.

1. Calculer I'aire du domaine D de R? délimité par les courbes d’équation y = 22 + 2x + 1 et y = 23 + 1.

D’abord on dessine le domaine D: la courbe y = 23 41 n’est rien d’autre
que y = 3 translaté vers le haut de 1, et la courbe y = 22 4+ 2z + 1 =
(r+1)? est une parabole orientée vers le haut et centrée au point z+1 = 0 /

et y = 0, c’est-a-dire au point (—1,0). Les deux courbes se rencontrent ﬂ

aux points (—1,0) et (0,1). On a donc

y=(z+1)

D:{(z’y)eR2| —l<z<0, x2+2x+1<y<x3+1}.

Donc
0 2341 0 5 0
Aire (D) = ffdx dy :J dx J dy:J [y]izi§w+l dx:j («* +1—x2—2x—1) dx
—1 x2+4+2x+1 -1 -1
D
0

1, 14 1, 1, , 11 5
— |2t — 2ot - (DA (1P (C1)P = s s 1=
|35 - 30 x] L

2. Calculer l'intégrale ff(xQ —2y) dx dy, ou D est le domaine de I’exercice précédent.
D

2 0 S 2 0 2 2 12°+1
(2 = 2y) dx dy = dz (2 —2y) dy = [ 2%y —y ]12+21+1 dz
7 —1 x242x+1 —1

0
= f (wQ(x?’ +1) = (2 +1)? —2?(2? + 22+ 1) + (2% + 22 + 1)2> dx
-1

0 1 1 1
] N PP
-1 7

0
1 1
6 5 2 7 6 3 2
= — 2% +2° + 62 + 42) d ——[—f + —2°% +22° + 2

7
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Définition. Soit © un domaine borné de R3. Le volume de ) est
Iintégrale triple

Vol () — H da dy d=
Q

Proposition. Si € est la portion d’espace sous le graphe d’une fonction
f: D c R? — R positive, c’est-a-dire si

Q={ (292 | (z,y)e D=R? z€[0, f(z,y)] },

alors on a: Vol (Q) = Jff(x,y) dz dy
D

En effet, si @ = { (z,y,2) | (z,y) e D R?, z€[0, f(z,y)] }, on a

Vol () = ﬂ de dy dz = H dx dy Lﬂx’y) dz = ” (210 de dy = ”f(ar,y) dx dy.
Q D D D

Exemple. Volume de la boule en coordonnées sphériques. En coordonnées sphériques, la boule B = {(:v, Y,2) €
R3 | 22 4+ y% + 22 <1} devient

h=H(B) = { (r,¢,0) | r€[0,1], p€[0,2[, §€[0,7]},
et, puisque dx dy dz = r?sinf dr dy df, on a

1 27 T
JJJ dr dy dz = fff r?sin® dr dp df = J r? dr f dy J sin 6 df
0 0 0
B ]

[0,1]x[0,27[x [0,

Vol (B)

_271'

1 77 4
=§27T[7c0s9]0— 3 (1+1)=§.

Définition. Si f > 0 denote la concentration d'une matiere (densité volumique) dans un volume © = R?, ou la densité d’'un
courant ou d’une énergie, on appelle:

e Quantité totale de matiére / courant présente en {2 = Jff f(z,y,2)dz dy dz
Q

1
e Quantité moyenne de matieére / courant présente en ) = m Jff flx,y,2)dx dy dz
0
Q

Tty

(z+1)% La

Exemple. Un matériau est distribué dans le cube € = [0, R]® selon la densité volumique f(z,y,z) =

quantité totale du matériau est alors

fiff(x,y,z) dx dy dz = LRdx LR(x+y)dy JOR(Z+11)2 dz = LR [:cy+ %yﬂfdm [ - 241—1 ]:

:LR<R:£+;R2)CZ:E (1—7]%11) _ [%Rw2+%R2x]: 7Ri1
4
- (3R +3%) T - 7ot

et, puisque Vol () = R3, le volume moyen du matériau dans le cube est

1 1 R R
Vol () mf(z’y’z) dvdydz=p3 R i1~ R+ 1
Q

45



Définition. Si p > 0 denote la densité de masse, on appelle:

e Masse totale présente en Q: M = JJJM(:E, y,2) dx dy dz

e Centre de masse (ou centre d’inértie, ou encore baricentre) le point G de coordonnées (zg, Yy, 2¢) telles que

1 1 1
i _fo p(z,y, z) de dy dz, Yo = 37 .[Uy w(z,y,2) de dy dz, 2= 7 ijz w(x,y,2) de dy dz
Q a 5

Un matériau est homogeéne si sa densité de masse est constante. Si cette constante n’est pas spécifiée, on peut supposer
que pu(x,y,z) =1 pour tout (z,y, 2).

Si r(z,y, z) denote la distance d’un point (z,y, z) depuis un point fixe P ou une droite fixe A, on appelle aussi:

1
e Moment d’inértie par rapport & P ou a A = i Jff r2(x,y, 2) p(z,y, 2) de dy dz

Exemple. Trouvons le centre de masse du demi-cylindre homogene

Q={(2,y,2)eR® |2 +y* < R? z€[0,H],y=>0}.
Il convient de travailler en coordonnées cylindriques:

W) = {(p.6.2) | e [0.R], g [0,7], e [0.H]}.

La masse totale est alors

e [ [ s [P [ [0 252

h=1(Q)

s

i i T
Puisque J cos dp = [ smgo] =0, et J sinp dp = [ —cos g@] = 2, le centre de masse G a coordonnées cartesiennes
O 0

TG = —fffxdxdydz—— ij pcosgopdpdgpdz——f p dpj cosgpdgoj dz=0
0

1(Q)

= [ 2 S - " 9H=__
ve M”fydx dy dz ML p* dp L sin g dy L dz H 3 H 3

R> H? H
zZg = —fffzdmdydz——f pdpj dng. zdz = ﬁ 5 T~

donc G = (O, Z;—f, g)

Exercices.
1. Un sac de farine tombe par terre et la farine s’éparpille au sol avec une concentration non homogene

1
f(z,y) = % pour tout (z,y) € R2.

(Vv o+ 1)

Calculer la quantité totale et celle moyenne de farine éparpillée dans le disque de rayon R > 0 autour du sac.

La fonction f se simplifie en coordonnées polaires, car on a f(p,p) = et le disque en coordonnées polaires

b
(p+1)*
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est Drp={(p,¢) | pe[0,R], p[0,27]}. On a alors:

1 R p+1 1 27 R 1 1
tité totale — || — 22— 5 dp do — - d dp =2 — = ———3) d
Quantité totale J-J (o + 1) pap ap Jo <(p+1)2 (p+1)2) p.[o @ WJO (erl (p+1)2) P

Dr

1 1R 1
:27r[ln(p+1)+m]o —or <ln(R+1)+R+1

R 27 R2
Aire (Dg) = J-Jp dp dp = f p dp J dap=727r=7rR2
0

—an—l) =27 <ln(R+1)—R7+1)

. R
Quantité moyenne = Alre JJ NEYP pdp dp = Ri ( In(R+1) — R7+1)

2. Calculer le centre de masse du solide €2 composé de la demi-boule By et du cylindre Cr suivants:
By = {(r,ap,&) | re[0,R], pel0,2r], Oe [7r/2,7r]}
Cr={(p.w.2) | e [0.R], pe[0,27], 2 [0, R]},

ayant densité de masse pu(z,y,z) = 22

Puisque Q2 = Bu C, et B n C = courbe, le centre de masse G a coordonnées

1
@ =30 Jffx,u(a:,y,z) dxdydz (idem pour yg et zg),
Q
Q

o =t e = [+

Les intégrales se calculent:

- en coordonnées sphériques sur B, ot u(r, ¢, 0) = r? cos? 0,

- en coordonnées cylindriques sur C, ot u(p, @, z) = 22.

On a donc

R 27 R5 1
M, - JJJT cos? 0 r¥sin@ dr dp dﬂ—f rd dr f dy J cos?fsinf df = — 27 [ — = cos 0]
5 3 w2 15

0
B

R 2 R 2 3 5
MCR:JJJZdepdgadz:f pdpf algpfzdz—R—ZwR—fﬂ

Cr

2 1 TnRY
MQ:MBR+MCR:<15+3) 7TR5= 15 .

foy]

27 27
Puisque f cosp dp =0 et .[ sin ¢ dy = 0, les coordonnées cartesiennes du baricentre G de €2 sont:
0

rq = — g ijxum y,2z) de dy dz

2m T 2m R
= L J ro drf cosgodgaf cos? 6 sin? 9d9+—J p dpJ cosgadgof 22dz=0
Mq 0 /2 0
1 R 2m T 2m R
ve = 350 J S dr f sinp dy f cos? 0 sin® 9d9+—J p dpJ sin ¢ dy f 22dz=0
Q iy

/2
o 27
ZG=M J_Uz da:dydz——f r drj dtpf cos 951n9d9+—f PdPJ d@f 2% dz
Q

15 <R627r[—1cos49]7r R? R4>_157TR6< 11 1)_15R3 ~1+3 5R

— | = — 21— | =——1 (-2 -+ - —_—
R\ 6 s N R\ 3471 712 14
En conclusion, le baricentre a coordonnées G = (0,0,5R3/14) et se trouve dans la partie cylindrique, car 5R3/14 > 0.

A noter que le baricentre se trouve A Uintérieur de Q seulement si 5R3/14 < R, ce qui se vérifie si R < +/14/5.
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