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Introduction

Qand on considère un type d’ensembles ayant des proprietés caractéristiques, on doit dire aussi comment on peut identifier
un tel ensemble à un autre: cela est possible s’il existe une application bijective entre ces deux ensembles qui preserve leurs
caractéristiques.

Ainsi, les types d’ensembles sont toujours corrélés à des types d’applications qui permettent de les identifier. Les
corrélations ’ensembles’ + ’applications’ plus connues sont les suivantes:

• Ensembles + Bijections (applications inversibles, dans le sens qu’il en existe la réciproque)

• Espaces vectoriels + Isomorphismes (bijections qui sont aussi des applications linéaires)

• Espaces métriques (espaces vectoriels avec produit scalaire ou norme) + Isométries (isomorphismes qui preservent le
produit scalaire ou la norme)

• Espaces topologiques (où l’on sait dire quelles parties sont ouvertes ou fermées) + Homéomorphismes (bijections
continues avec réciproque continue)

• Variétés différentiables (espaces topologiques localement homéomorphes à des ouverts de Rn) + Difféomorphismes
(bijections différentiables avec réciproque différentiable)

En physique, tous ces couples sont largement utilisés. Dans ce manuel nous rappellons le couple espaces vectoriels +
applications linéaires, qui permet de distinguer les deux types suivants de grandeurs:

masse, charge, temperature = nombre (à part l’unité de mesure) ÝÑ scalaire
force, vitesse, accéleration = point d’application + direction + sense + longueur ÝÑ vecteur

Nous rappellons en particulier la définition et les propriétés principales des deux espaces vectoriels indispensables au
cours de Math2 (R3 et les vecteurs de l’espace), l’isomorphisme entre eux qui définit les coordonnées cartesiennes des points,
le calcul vectoriel en coordonnées cartesiennes (produit scalaire, vectoriel et mixte) et l’équation cartesienne des principales
courbes et surfaces utilisées en cours et aux examens (droites, coniques, plans et quadriques).
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1 Espaces vectoriels et vecteurs

1.1 Espaces vectoriels

Espaces vectoriels

Espace vectoriel = ensemble V muni

‚ d’une addition ` , avec un zéro ~0 ,

‚ d’un produit par scalaire Rˆ V ÝÑ V : pt, ~vq ÞÑ t ~v t.q. t p~u` ~vq “ t ~u` t ~v.

On appelle vecteurs les éléments ~v de V et scalaires les nombres réels t.

Exemples.

(a) Espaces de coordonnées.
Les ensembles Rn :“ tpx1, ..., xnq | x1, ..., xn P R u et Cn :“ tpz1, ..., znq | z1, ..., zn P C u sont des espaces vectoriels
avec

‚ addition: px1, ..., xnq ` py1, ..., ynq :“ px1 ` y1, ..., xn ` ynq,

‚ produit par scalaire: t px1, ..., xnq :“ pt x1, ..., t xnq, t P R.

(b) Fonctions.
L’ensemble des fonctions d’une variable réelle FpRq “ t f :RÑR, x ÞÑ fpxq | fonction avec domaine Df Ă R u est un
espace vectoriel avec

‚ addition: pf ` gqpxq :“ fpxq ` gpxq,

‚ produit par scalaire: pt fqpxq :“ t fpxq, t P R.

(c) Vecteurs du plan et de l’espace.

Rappellons qu’un vecteur du plan ou de l’espace est une flèche P
~v Q

, notée ~v ”
ÝÝÑ
PQ, caracterisée par

‚ le point d’application P ;

‚ la direction et le sens, donnés par la flèche;

‚ la longueur }~v} “ }
ÝÝÑ
PQ} “ dist pP,Qq P R.

Souvent on identifie les vecteurs qu’on obtient par translation, ainsi P change mais le vecteur ne change pas.

Rappellons aussi les notions de bases des vecteurs:

‚ Angle entre deux vecteurs ~u et ~v = angle xuv orienté de ~u vers ~v comme dans
~u

~v xuv
.

‚ Vecteurs parallèles ou colinéaires ~u ‖ ~v si ~u
~v

, i.e. ssi sinpxuvq “ 0.

‚ Vecteurs perpendiculaires ou orthogonaux ~uK~v si ~u
~v , i.e. ssi cospxuvq “ 0.

Finalement, l’ensemble Vect des vecteurs appliqués en un point fixé O est un espace vectoriel, avec

‚ addition: ~u` ~v := vecteur diagonale du parallèlogramme de cotés ~u et ~v, par ex.

~u
~v

~u` ~v

‚ produit par scalaire: si t P R, t~v := vecteur avec
meme direction que ~v et longueur } t~v} “ t }~v}, par ex. 3~v

~v

Attention: l’ensemble des vecteurs appliqués en tous les points n’est pas un espace vectoriel (il s’appelle espace affine).

Le produit par scalaire caracterise les vecteurs parallèles: ~u ‖ ~v ðñ ~u “ t~v pour un t ‰ 0.
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Bases et dimension des espaces vectoriels

Combinaison linéaire de ~u, ~v, ~w,... = vecteur r~u` s~v` t~w`¨ ¨ ¨ , où r, s, t, ... P R sont les coéfficients scalaires.

Exemple dans R3: p5, 4, 9q est une combinaison linéaire de p1, 2, 3q et p1,´1, 0q car 3 p1, 2, 3q`2 p1,´1, 0q “ p5, 4, 9q.

Espace vectoriel engendré par ~u, ~v, ~w, ... = ensemble de leur combinaisons linéaires
!

r~u`s~v`t~w`¨ ¨ ¨ | r, s, t, ... P R
)

.

Les vecteurs ~u, ~v, ~w, ... sont linéairement dépendants si chacun d’eux est combinaison linéaire des autres:

‚ il existe une combinaison linéaire nulle (r~u` s~v ` t~w ` ¨ ¨ ¨ “ 0) avec des coéfficients scalaires pas tous nuls.

Les vecteurs ~u, ~v, ~w, ... sont linéairement indépendants si aucun d’eux n’est combinaison linéaire des autres:

‚ r~u` s~v ` t~w ` ¨ ¨ ¨ “ 0 ðñ r “ s “ t “ ¨ ¨ ¨ “ 0.

Base de V := ensemble t~e1, ~e2, ...u de vecteurs t.q.

‚ ils engendrent V , i.e. tout autre vecteur ~v s’écrit comme leur combinaison linéaire: ~v “ t1~e1 ` t2~e2 ` ¨ ¨ ¨ ,

‚ ils sont linéairement indépendants.

La base n’est pas unique, mais toutes les bases ont le même nombre d’éléments.

Dimension de V , dimV := nombre de vecteurs d’une base. La dimension peut être finie (un nombre) ou infinie.

Exemples.

(a) Dans R2 (valables aussi dans C):

‚ p1, 2q et p3, 6q sont linéairement dépendants car p3, 6q “ 3 p1, 2q.

‚ p1, 2q et p2, 1q sont linéairement indépendants car a p1, 2q ` b p2, 1q “ p0, 0q ðñ a “ 0 et b “ 0.

‚ Trois vecteurs dans R2 sont toujours linéairement dépendants, ex. p1, 2q, p2, 1q et p1, 1q.

‚ Les vecteurs ~e1 “ p1, 0q et ~e2 “ p0, 1q sont linéairement indépendants et forment la base canonique de R2.

‚ En conclusion, dim R2 “ 2.

(b) Dans R3:

‚ p1, 2, 3q et p2, 4, 6q sont linéairement dépendants car p2, 4, 6q “ 2 p1, 2, 3q.

‚ p1, 2, 3q et p2, 1, 3q sont linéairement indépendants car a p1, 2, 3q ` b p2, 1, 3q “ p0, 0, 0q ðñ a “ 0 et b “ 0.

‚ p1, 2, 3q, p2, 1, 3q et p4, 5, 9q sont linéairement dépendants car p4, 5, 9q “ 2 p1, 2, 3q ` p2, 1, 3q.

‚ Quatre vecteurs dans R3 sont toujours linéairement dépendants;

‚ Les vecteurs ~e1 “ p1, 0, 0q, ~e2 “ p0, 1, 0q et ~e3 “ p0, 0, 1q sont linéairement indépendants et forment la base
canonique de R3.

‚ En conclusion, dim R3 “ 3.

(c) Dans FpRq: Pour les fonctions, on sait que dimFpRq “ 8 , mais on ne connait pas de bases.

(d) Dans Vect :

‚ Un vecteur ~v engendre une droite, ∆ “

!

t~v | t P R
)

.

‚ Deux vecteurs linéairement indépendants ~u et ~v engendrent un plan, π “
!

s~u` t~v | s, t P R
)

.

Attention: deux vecteurs linéairement dépendants n’engendrent pas un plan mais une droite.
~v

~u
.
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‚ Les deux vecteurs ~ı et ~ de la figure, avec ~ıK~ et }~ı } “ }~ } “ 1,
sont linéairement indépendants et forment une base de Vect dans le plan:
le repère cartesien pO,~ı ,~ q.

~ı

~

O

Coordonnées cartesiennes d’un vecteur ~v “
ÝÝÑ
OP du plan (ou du point P ) =

couple px, yq P R2 tel que ~v “
ÝÝÑ
OP “ x~ı ` y~ ”

ˆ

x
y

˙

,

où

$

&

%

x “ }
ÝÝÑ
OP 1}

y “ }
ÝÝÑ
OP

2
}

= longueur des projections orthogonales de ~v
dans les directions ~ı et ~

x

y ~v

O

P

P 1

P2

Donc les vecteurs du plan appliqués en un point O forment un espace vectoriel de dimension 2: on le note Vect pR2q.

‚ Trois vecteurs linéairement indépendants engendrent tout l’espace.

Attention: trois vecteurs linéairement dépendants peuvent engendrer une droite ou un plan.

‚ Les trois vecteurs ~i, ~j, ~k de la figure, avec ~ıK~K~kK~ı et }~ı } “ }~ } “ }~k } “ 1,
sont linéairement indépendants et forment une base de Vect dans l’espace:
le repère cartesien pO,~ı ,~ ,~k q.

~ı

~~k

ą
O

Coordonnées cartesiennes d’un vecteur ~v “
ÝÝÑ
OP de l’espace (ou du point P ) =

triplet px, y, zq P R3 tel que ~v “
ÝÝÑ
OP “ x~ı ` y~ ` z~k ”

¨

˝

x
y
z

˛

‚,

où

$

’

’

&

’

’

%

x “ }
ÝÝÑ
OP 1}

y “ }
ÝÝÑ
OP

2
}

z “ }
ÝÝÑ
OP

3
}

= longueur des projections orthogonales de ~v dans les
directions ~ı , ~ et ~k

O

P

~v

P 1

x

P2

y

P3

z

Donc les vecteurs de l’espace appliqués en un point O forment un espace vectoriel de dimension 3: on le note
Vect pR3q.

1.2 Norme, produit scalaire et produit vectoriel

Norme

Norme sur un espace vectoriel V = application V ÝÑ R : ~v ÞÑ ||~v|| t.q.

‚ ||~v|| ě 0, et ||~v|| “ 0 ô ~v “ ~0,

‚ ||t~v|| “ |t| ||~v||, où |t| = valeur absolue,

‚ ||~u` ~v|| ď ||~u|| ` ||~v|| (inegalité triangulaire).

Attention: les espaces vectoriels n’ont pas tous une norme.

Exemples.

(a) Dans R3 (valable aussi dans R2 et dans tout Rn):

‚ norme euclidienne: ||px, y, zq|| :“
a

x2 ` y2 ` z2;

‚ norme L1: ||px, y, zq||1 :“ |x| ` |y| ` |z| ;

‚ norme Lp, avec p P N: ||px, y, zq||p :“
´

|x|p ` |y|p ` |z|p
¯1{p

(la norme L2 est la norme euclidienne);

‚ norme L8: ||px, y, zq||8 :“ maxt |x|, |y|, |z| u;

(b) Dans des sous-ensembles opportunés de FpRq:

‚ norme L1: ||f ||1 :“
ş

|fpxq| dx;

‚ norme Lp, avec p P N: ||f ||p :“
´

ş

|fpxq|p dx
¯1{p

(la norme L2 donne lieu à l’espace de Hilbert);
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‚ norme L8: ||f ||8 :“ supt fpxq, x P Df u.

(c) Dans Vect :

‚ norme = longueur: ||~v|| “ |~v|.

Produit scalaire

Produit scalaire sur un espace vectoriel V = opération V ˆ V ÝÑ R : p~u,~vq ÞÑ ~u ¨ ~v qui soit

‚ défini positif: ~v ¨ ~v ě 0 et ~v ¨ ~v “ 0 ô ~v “ ~0;

‚ bilinéaire: pt~uq ¨ ~v “ tp~u ¨ ~vq “ ~u ¨ pt~vq

p~u` ~vq ¨ ~w “ ~u ¨ ~w ` ~v ¨ ~w, et ~u ¨ p~v ` ~wq “ ~u ¨ ~v ` ~u ¨ ~w

‚ symmetrique: ~u ¨ ~v “ ~v ¨ ~u.

Autre notations: ~v ¨ ~u ”
`

~v, ~u
˘

” x~v, ~uy ” x~v|~uy (où x | = bra et | y = ket).

Attention: les espaces vectoriels n’ont pas tous un produit scalaire.

Tout produit scalaire definit une norme: ||~v|| “
?
~v ¨ ~v. (Le contraire n’est pas vrai.)

Exemples.

(a) Dans R3 (valable aussi dans R2 et dans tout Rn):

‚ Produit scalaire euclidien: px, y, zq ¨ px1, y1, z1q :“ x x1 ` y y1 ` z z1.

(b) Dans le sous-ensemble de FpRq des fonctions continues sur un interval:

‚ Produit scalaire de Hilbert: f ¨ g :“
ş

fpxq gpxq dx.

(c) Dans Vect :

‚ Produit scalaire: ~v ¨ ~u :“ |~v| |~u| cosp~v~uq P R.

La norme induite est la longueur des vecteurs: ||~v|| “
?
~v ¨ ~v “ |~v|.

Le produit scalaire caracterise les vecteurs orthogonaux: ~u ¨ ~v “ 0 ðñ ~uK~v.

Le produit scalaire donne l’aire: |~u ¨ ~vK| = aire du parallelogramme de cotés ~u et ~v.

Le produit scalaire donne la projection orthogonale de ~u
sur la droite de direction ~v: Pr~vp~uq :“

~u ¨ ~v

|~v|2
~v, ex.

~u~v

P~up~vq
.

Dans l’espace: le produit scalaire donne la projection orthogonale de ~u
sur le plan engendré par ~v et ~w: Pr~v,~wp~uq :“

~u ¨ ~v

|~v|2
~v `

~u ¨ ~w

|~w|2
~w.

(d) Pour Vect dans l’espace:

‚ Produit vectoriel: ~u^~v := vecteur avec longueur |~u| |~v| sinpxuvq et direction orthogonale directe

~u

~v

~u^ ~v

.

Le produit vectoriel est bilinéaire:

pt~uq ^ ~v “ tp~u^ ~vq “ ~u^ pt~vq,

p~u` ~vq ^ ~w “ ~u^ ~w ` ~v ^ ~w, et ~u^ p~v ` ~wq “ ~u^ ~v ` ~u^ ~w.

Le produit vectoriel est anti-symmetrique: ~u^ ~v “ ´~v ^ ~u.

Le produit vectoriel caracterise les vecteurs parallèles: ~u^ ~v “ 0 ðñ ~u ‖ ~v (i.e. ~u “ t~v avec t ‰ 0).

‚ Produit mixte: r~u,~v, ~ws :“ ~u ¨ p~v ^ ~wq “ p~u^ ~vq ¨ ~w (scalaire!).

Le produit mixte est trilinéaire:

rt~u,~v, ~ws “ r~u, t~v, ~ws “ r~u,~v, ~tws “ tr~u,~v, ~ws,

r~u` ~u1, ~v, ~ws “ r~u,~v, ~ws ` r~u1, ~v, ~ws, etc.

Le produit mixte a une symmetrie mixte:

r~u,~v, ~ws “ r~v, ~w, ~us “ r~w, ~u,~vs “ ´r~v, ~u, ~ws “ ´r~u, ~w,~vs “ ´r~w,~v, ~us.

Le produit mixte donne le volume: |r~u,~v, ~ws| = volume du parallelepipède de cotés ~u, ~v, ~w.
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2 Applications linéaires et matrices

2.1 Applications linéaires

Application linéaire

Soient V et V 1 des espaces vectoriels sur R.
Application linéaire entre V et V 1 = application L : V ÝÑ V 1, ~v ÞÑ ~v1 “ Lp~vq t.q.

‚ Lp~u` ~vq “ Lp~uq ` Lp~vq, @~u,~v P V ,

‚ Lpt ~vq “ t Lp~vq, @~v P V et @s, t P R. [En particulier: Lp~0q “ Lp0 ~vq “ 0 Lp~vq “ ~0.]

Autrement dit: L : V ÝÑ V 1 est linéaire ðñ Lps ~u` t ~vq “ s Lp~uq ` t Lp~vq, @~u,~v P V et @s, t P R.

En coordonnées, une application linéaire est donnée par des polynômes de degré 1 sans termes constants.

Exemples.

(a) Applications linéaires sur R2 et R3:

‚ L : R2 ÝÑ R3, Lpx, yq “ p3x` y,´y, y ´ 2xq

‚ L : R3 ÝÑ R2, Lpx, y, zq “ pz, x´ y ` zq

‚ L : R3 ÝÑ R3, Lpx, y, zq “ p0, 0, zq

Applications NON linéaires sur R2 et R3:

‚ Lpx, y, zq “ px` 1, yzq: le terme x` 1 contient une constante, le terme yz est un polynôme de degré 2.

‚ Lpx, yq “ px3` sin y, xyq: les termes x3 et xy sont des polynômes de degré supérieur à 1, le terme sin y n’est pas
un polynôme.

(b) Applications linéaires sur l’espace C8pRq des fonctions différentiables:

‚ La dérivation d : C8pRq ÝÑ C8pRq, pdfqpxq :“ f 1pxq est linéaire, car

dp3 f ` 2 gq “ 3 df ` 2 dg.
”

En effet, cela signifie que
´

3 fpxq ` 2 gpxq
¯1

“ 3 f 1pxq ` 2 g1pxq.
ı

‚ La multiplication par x: Mx : C8pRq ÝÑ C8pRq, Mxpfqpxq “ px fqpxq :“ x fpxq est linéaire, car

Mxp3 f ` 2 gqpxq “ x
´

3 fpxq ` 2 gpxq
¯

“ 3
´

x fpxq
¯

` 2
´

x gpxq
¯

“

´

3 Mxpfq ` 2 Mxpgq
¯

pxq.

Applications NON linéaires sur l’espace C8pRq:

‚ La puissance carrée p : C8pRq ÝÑ C8pRq, ppfqpxq :“ fpxq2 n’est pas linéaire, car

pp3 f ` 2 gqpxq “ p3 fpxq ` 2 gpxqq2 “ 9 fpxq2 ` 12 fpxq gpxq ` 4 gpxq2,

alors que
`

3 ppfq ` 2 ppgq
˘

pxq “ 3 fpxq2 ` 2 gpxq2.

(c) Applications linéaires sur Vect pR2q et Vect pR3q:

‚ Rotation d’angle θ dans le plan: Rθ : Vect pR2q ÝÑ Vect pR2q, Rθ

ˆ

x
y

˙

:“

ˆ

cos θ x` sin θ y
´ sin θ x` cos θ y

˙

.

‚ Projections sur les droites de direction ~ı , ~ et ~k :

P~ı , P~ , P~k
: Vect pR3q ÝÑ Vect pR3q, P~ı

¨

˝

x
y
z

˛

‚:“

¨

˝

x
0
0

˛

‚, P~ı

¨

˝

x
y
z

˛

‚:“

¨

˝

0
y
0

˛

‚, P~ı

¨

˝

x
y
z

˛

‚:“

¨

˝

0
0
z

˛

‚.

Applications NON linéaires sur Vect pR2q et Vect pR3q:

‚ Translation par un vecteur ~v “

ˆ

a
b

˙

(dans le plan): T~v : Vect pR2q ÝÑ Vect pR2q, T~v

ˆ

x
y

˙

:“

ˆ

x` a
y ` b

˙

.

‚ Application affine = application linéaire plus translation: L

ˆ

x
y

˙

“

ˆ

x` y ` 1
2y ` 2

˙

“

ˆ

x` y
2y

˙

`

ˆ

1
2

˙

.
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Espace vectoriel des applications linéaires

L’ensemble LpV, V 1q des applications linéaires L : V ÝÑ V 1 est un espace vectoriel, avec

‚ addition: pL` L1qp~vq :“ Lp~vq ` L1p~vq pour tout v P V , avec zéro = application nulle 0p~vq “ ~0;

‚ produit par scalaire: si t P R, pt Lqp~vq :“ t Lp~vq pour tout v P V .

Exemple. Si L,L1 : Vect pR3q ÝÑ Vect pR2q sont données par L

¨

˝

x
y
z

˛

‚“

ˆ

2x` z
´y

˙

et L1

¨

˝

x
y
z

˛

‚“

ˆ

3y
x` z

˙

,

alors pL` L1q

¨

˝

x
y
z

˛

‚“

ˆ

2x` 3y ` z
x´ y ` z

˙

et p3 Lq

¨

˝

x
y
z

˛

‚“

ˆ

6x` 3z
´3y

˙

.

Composition d’applications linéaires

Composition de L : U ÝÑ V et L1 : V ÝÑW = application L1 ˝L : U ÝÑW déf. par pL1 ˝Lqp~uq :“ L1
´

Lp~uq
¯

.

Exemple. Si L : R2 ÝÑ R3, L

ˆ

x
y

˙

“

¨

˝

3x` y
´y

x` 2y

˛

‚ et L1 : R3 ÝÑ R2, L

¨

˝

u
v
w

˛

‚“

ˆ

u` w
v ´ w

˙

,

alors pL1 ˝ Lq

ˆ

x
y

˙

“

ˆ

p3x` yq ` px` 2yq
´y ´ px` 2yq

˙

et pL ˝ L1q

¨

˝

u
v
w

˛

‚“

¨

˝

3pu` wq ` pv ´ wq
´pv ´ wq

pu` wq ` 2pv ´ wq

˛

‚.

Isomorphismes et isométries

Isomorphisme entre V et V 1 = application linéaire L : V ÝÑ V 1 qui soit bijective (i.e. inversible, D L´1 : V 1 ÝÑ V ).
On dit alors que les espaces vectoriels V et V 1 sont isomorphes, et on note V – V 1.

Un isomorphisme transforme une base de V en une base de V 1. Donc V et V 1 ont la même dimension.

Si V et V 1 ont un produit scalaire: isométrie entre V et V 1 = isomorphisme L : V ÝÑ V 1 qui conserve les produits
scalaires: Lp~uq ¨ Lp~vq “ ~u ¨ ~v.

Une isométrie conserve aussi les longueurs (norme) et les angles.

Exemples.

(a) Identification du plan avec R2:

‚ En fixant sur le plan un point O, on peut identifier tout point P avec le vecteur
ÝÝÑ
OP P Vect pR2q appliqué en O.

‚ En fixant ensuite un repère cartesien pO,~ı ,~ q, on définie l’application Vect pR2q ÝÑ R2 qui associe à tout vecteur
~v “

ÝÝÑ
OP ses coordonnées cartesiennes px, yq, définies, on le rappelle, par l’identité ~v “

ÝÝÑ
OP “ x~ı ` y~ .

Cette application est linéaire et bijective, donc c’est un isomorphisme d’espaces vectoriel: Vect pR2q – R2.

De plus, cette application preserve les produits scalaires, c’est donc une isométrie.

‚ En conclusion, les points P du plan, avec leurs coordonnées cartesiennes, sont vus comme éléments de R2.

(b) Identification de l’espace avec R3:

‚ En fixant dans l’espace un point O, on peut identifier tout point P avec le vecteur
ÝÝÑ
OP P Vect pR3q appliqué en O.

‚ En fixant ensuite un repère cartesien pO,~ı ,~ ,~k q, on définie l’application Vect pR3q ÝÑ R3 qui associe à tout vecteur

~v “
ÝÝÑ
OP ses coordonnées cartesiennes px, y, zq, définies, on le rappelle, par l’identité ~v “

ÝÝÑ
OP “ x~ı ` y~ ` z~k .

Cette application est linéaire et bijective, donc c’est un isomorphisme d’espaces vectoriel: Vect pR3q – R3.

De plus, cette application preserve les produits scalaires, c’est donc une isométrie.

‚ En conclusion, les points P de l’espace, avec leurs coordonnées cartesiennes, sont vus comme éléments de R3.
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2.2 Matrices

Matrices

Matrice mˆ n à coéfficients réels paijq := tableau

¨

˚

˝

a11 ¨ ¨ ¨ a1n
...

...
...

am1 ¨ ¨ ¨ amn

˛

‹

‚

où aij P R pour

"

i “ 1, ...,m
j “ 1, ..., n

.

Matrice carrée de taille n = matrice nˆ n.

Matrice colonne de taille n = matrice nˆ 1 = vecteur à n composantes.

Matrice ligne de taille n = matrice 1ˆ n.

Exemples.

‚

ˆ

8 ´3
´2 1

˙

, 1 “

ˆ

1 0
0 1

˙

et

ˆ

cospπ{3q ´ sinpπ{3q
sinpπ{3q cospπ{3q

˙

sont des matrices carrées de taille 2.

‚

ˆ ?
3 0 ´1

?
2 1

2
?

5 0 ´3 0

˙

est une matrice 2ˆ 5, et

¨

˚

˚

˚

˚

˝

lnp5q ´2
0 1
´3 5
π 0
7 sinpπ{6q

˛

‹

‹

‹

‹

‚

est une matrice 5ˆ 2.

‚

¨

˝

3
1
?

2

˛

‚ est une matrice colonne, et
`

3 1
?

2
˘

est une matrice ligne.

Espace vectoriel des matrices

L’ensemble Mmn ”MmnpRq des matrices mˆ n à coéfficients réels est un espace vectoriel, avec

‚ addition: paijq ` pbijq :“ paij ` bijq “

¨

˚

˝

a11 ` b11 ¨ ¨ ¨ a1n ` b1n
...

...
...

am1 ` bm1 ¨ ¨ ¨ amn ` bmn

˛

‹

‚

, avec zéro= matrice nulle.

‚ produit par scalaire: si t P R, t paijq :“ pt aijq “

¨

˚

˝

t a11 ¨ ¨ ¨ t a1n
...

...
...

t am1 ¨ ¨ ¨ t amn

˛

‹

‚

.

Exemples.

ˆ

8 ´3 0
´2 1 4

˙

`

ˆ

3 0 ´1
2 5 0

˙

“

ˆ

11 ´3 ´1
0 6 4

˙

et 2

ˆ

8 ´3 0
´2 1 4

˙

“

ˆ

16 ´6 0
´4 2 8

˙

.

Produit de matrices

Produit Mmn ˆMnp ÝÑMmp, paijq pbjkq “ pcikq avec cik :“
řn
j“1 aij bjk (règle “ligne ˆ colonne”)

Par ex.

ˆ

a b
c d

˙

¨

ˆ

a1 b1

c1 d1

˙

“

ˆ

aa1 ` bc1 ab1 ` bd1

ca1 ` dc1 cb1 ` dd1

˙

et

ˆ

a b
c d

˙

¨

ˆ

x
y

˙

“

ˆ

ax` by
cx` dy

˙

.

Exemples.

‚

ˆ

1 2 3
4 5 6

˙

¨

¨

˝

1 0
0 1
1 1

˛

‚“

ˆ

4 5
10 11

˙

et

¨

˝

1 0
0 1
1 1

˛

‚¨

ˆ

1 2 3
4 5 6

˙

“

¨

˝

1 2 3
4 5 6
5 7 9

˛

‚

‚

ˆ

1 2 3
4 5 6

˙

¨

¨

˝

1
0
1

˛

‚“

ˆ

4
10

˙

et
`

1 2 3
˘

¨

¨

˝

1 0
0 1
1 1

˛

‚“
`

4 5
˘
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Rélation entre matrices et applications linéaires

Les ensembles LpRn,Rmq et MmnpRq sont en bijection:
à une application linéaire L : Rn ÝÑ Rm correspond la matrice A PMmnpRq telle que

Lp~xq “

¨

˝

a11x1 ` ¨ ¨ ¨ ` a1nxn
¨ ¨ ¨

am1x1 ` ¨ ¨ ¨ ` amnxn

˛

‚“

¨

˚

˝

a11 ¨ ¨ ¨ a1n
...

...
am1 ¨ ¨ ¨ amn

˛

‹

‚

¨

˚

˝

x1
...
xn

˛

‹

‚

“ A ~x.

De plus, les espaces vectoriels LpRn,Rmq et MmnpRq sont isomorphes:

si

"

Lp~xq “ A ~x
L1p~xq “ A1 ~x

alors pL` L1qp~xq “ pA`A1q ~x et pt Lqp~xq “ pt Aq ~x pour tout t P R.

Enfin, la composition d’applications linéaires corresponds au produit de matrices:

si

"

~y “ Lp~xq “ A ~x
~z “ L1p~yq “ A1 ~y

alors ~z “ pL1 ˝ Lqp~xq “ pA1Aq ~x.

Exemples.

‚ Si Lpx, yq “ p3x` y,´y, y ´ 2xq, on écrit L

ˆ

x
y

˙

“

¨

˝

3x` y
´y

y ´ 2x

˛

‚“

¨

˝

3 1
0 ´1
´2 1

˛

‚

ˆ

x
y

˙

,

donc la matrice associée à L est A “

¨

˝

3 1
0 ´1
´2 1

˛

‚.

‚ Si L

ˆ

x
y

˙

“

ˆ

3x` y
´y

˙

“

ˆ

3 1
0 ´1

˙ˆ

x
y

˙

et L1
ˆ

x
y

˙

“

ˆ

x` y
3y

˙

“

ˆ

1 1
0 3

˙ˆ

x
y

˙

, alors

L1 ˝ L

ˆ

x
y

˙

“

ˆ

3x` y ´ y
´3y

˙

“

ˆ

3 0
0 ´3

˙ˆ

x
y

˙

et A1A“

ˆ

1 1
0 3

˙ˆ

3 1
0 ´1

˙

“

ˆ

3` 0 1´ 1
0` 0 0´ 3

˙

“

ˆ

3 0
0 ´3

˙

.

Détérminant, matrices inversibles

Détérminant det : Mnn ÝÑ R défini, pour n “ 2, 3, par: det

ˆ

a b
c d

˙

”

ˇ

ˇ

ˇ

ˇ

a b
c d

ˇ

ˇ

ˇ

ˇ

:“ ad´ bc et

det

¨

˝

a11 a12 a13
a21 a22 a23
a31 a32 a33

˛

‚”

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13
a21 a22 a23
a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:“ a11

ˇ

ˇ

ˇ

ˇ

a22 a23
a32 a33

ˇ

ˇ

ˇ

ˇ

´ a12

ˇ

ˇ

ˇ

ˇ

a21 a23
a31 a33

ˇ

ˇ

ˇ

ˇ

` a13

ˇ

ˇ

ˇ

ˇ

a21 a22
a31 a32

ˇ

ˇ

ˇ

ˇ

.

Attention: det n’est pas une application linéaire, car detpA`Bq ‰ detpAq ` detpBq et detpt Aq ‰ t detpAq.

Par contre, si A est une matrice carrée de taille n, on a: detpt Aq “ tn detpAq.

De plus: detpA Bq “ detpAq detpBq.

Une matrice A “

ˆ

a b
c d

˙

est inversible si detA ‰ 0 et sa matrice inverse est A´1 “
1

detA

ˆ

d ´b
´c a

˙

.

Si Lp~xq “ A ~x: L est un isomorphisme ðñ detA ‰ 0. Dans ce cas L´1p~yq “ A´1 ~y.

Exemple. det

ˆ

2 1
3 5

˙

“ 2 ¨ 5´ 3 ¨ 1 “ 7, donc

ˆ

2 1
3 5

˙´1

“
1

7

ˆ

5 ´1
´3 2

˙

.

Matrices orthogonales

Transposé T : Mmn ÝÑMnm, paijq
T :“ pajiq.

Une matrice A est orthogonale si A´1 “ AT . Sur l’espace vectoriel Rn muni du produit scalaire euclidien:

Si Lp~xq “ A ~x: L est un isométrie ðñ detA “ ˘1 et A est une matrice orthogonale.

Exemples.

‚ La transposée de la matrice

ˆ

2 1
3 5

˙

est la matrice

ˆ

2 1
3 5

˙T

“

ˆ

2 3
1 5

˙

.

‚ Une rotation

ˆ

cos θ sin θ
´ sin θ cos θ

˙

est une matrice orthogonale.
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3 Géométrie cartesienne dans le plan et dans l’espace

3.1 Géométrie cartesienne dans le plan

Coordonnées cartesiennes des points et des vecteurs du plan:

‚ Repère cartesien ou orthonormal direct (o.n.d.): pO,~ı ,~ q = ~ı

~

O , avec ~ıK~ et }~ı } “ }~ } “ 1.

‚ L’ensemble t~ı ,~ u forme une base de l’espace vectoriel des vecteurs du plan appliqués en O, donc tout vecteur ~v “
ÝÝÑ
OP

est combinaison linéaire de ~ı et ~ .

‚ Coordonnées cartesiennes: P = px, yq P R2 ðñ ~v “
ÝÝÑ
OP “ x~ı ` y~ ”

ˆ

x
y

˙

,

où

$

&

%

x “ }
ÝÝÑ
OP 1}

y “ }
ÝÝÑ
OP

2
}

= longueur des projections orthogonales de ~v dans les directions~ı et ~ : x

y ~v

O

P

P 1

P2

‚ Plan + repère cartesien ” R2, car tout point P ” vecteur
ÝÝÑ
OP = deux coordonnées x et y.

‚ Attention: Vecteur affine:
ÝÝÑ
PQ “ P `

ÝÝÑ
OQ´

ÝÝÑ
OP “ P ` ~u,

où ~u “ pxQ´xP q ~ı ` pyQ´yP q ~

O

P

Q
ÝÝÑ
PQ

~u

Calcul vectoriel en coordonnées cartesiennes: si ~v “

ˆ

x
y

˙

, ~v1 “

ˆ

x1

y1

˙

et t P R, alors

‚ addition: ~v ` ~v1 “

ˆ

x` x1

y ` y1

˙

, ex.

ˆ

1
2

˙

`

ˆ

3
4

˙

“

ˆ

4
6

˙

‚ produit par scalaire: t~v “

ˆ

tx
ty

˙

, ex. 3

ˆ

1
2

˙

“

ˆ

3
6

˙

‚ produit scalaire: ~v ¨ ~v1 “ xx1 ` yy1, ex.

ˆ

2
3

˙

¨

ˆ

´1
2

˙

“ ´2` 6 “ 4

‚ longueur: }~v} “
a

x2 ` y2, ex.

›

›

›

›

ˆ

1
2

˙
›

›

›

›

“
?

1` 22 “
?

5

‚ vecteurs orthogonaux: ~vK~v1 ô xx1 ` yy1 “ 0, ex.

ˆ

1
2

˙

K

ˆ

´2
1

˙

‚ vecteurs parallèles: ~v ‖ ~v1 ô

"

x1 “ tx
y1 “ ty

t ‰ 0 ô
x

x1
“

y

y1
, ex.

ˆ

1
2

˙

‖
ˆ

3
6

˙

‚ projection orthogonale: Pr~vp~v
1q “

x1x` y1y

x2 ` y2
~v, ex. Pr~ı

ˆ

5
´1

˙

“
5ˆ 1´ 1ˆ 0

12 ` 02
~ı “ 5 ~ı “

ˆ

5
0

˙

.
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Droite (affine): ∆ “

!

P “ px, yq | ax` by ` c “ 0
)

avec pa, bq ‰ p0, 0q.

Si b ‰ 0 alors y “ ´
a

b
x´

c

b
“ m x` p où m “ tan θ

Si a ‰ 0 alors x “ ´
b

a
y ´

c

a
.

p

θ

∆

Attention: une droite est un espace vectoriel de dimension 1 si et seulement si elle passe par O, i.e. c “ 0.

‚ Vecteur directeur de ∆ =

ˆ

b
´a

˙

.

‚ Vecteur orthogonal ou normal à ∆ =

ˆ

a
b

˙

.

‚ Droite passante par A “ pa1, a2q et K ~u “

ˆ

u1
u2

˙

:
ÝÑ
AP ¨ ~u “ 0

∆ “

!

px, yq | u1px´ a1q ` u2py ´ a2q “ 0
)

ðñ u1x` u2y ´ pu1a1 ` u2a2q “ 0.

~u

A

∆P

‚ Droite passante par A “ pa1, a2q et ‖ ~v “
ˆ

v1
v2

˙

:
ÝÑ
AP ‖ ~v

∆ “

!

P “ px, yq |
ÝÝÑ
OP “

ÝÑ
OA` t~v, t P R

)

ðñ

"

x “ a1 ` tv1
y “ a2 ` tv2

éq. parametrique de paramètre t P R

ðñ
x´ a1
v1

“
y ´ a2
v2

éq. cartesienne

~v

A

∆P

‚ Droite passante par A “ pa1, a2q et B “ pb1, b2q:
ÝÑ
AP ‖ ÝÝÑAB

∆ “

!

px, yq |
x´ a1
b1 ´ a1

“
y ´ a2
b2 ´ a2

)

A

B

P

∆

Distance: dist pP, P 1q “ }
ÝÝÑ
PP 1} “ }

ÝÝÑ
OP 1 ´

ÝÝÑ
OP } “

a

px´ x1q2 ` py ´ y1q2.

Si P 1 est la projection orthogonale de P sur la droite ∆, alors

dist pP,∆q “ dist pP, P 1q “
| ax` by ` c |
?
a2 ` b2

.

∆

P

P 1

Aire du parallelogramme de sommets A, B, C, D = |
ÝÝÑ
AB¨

ÝÝÑ
AD

K
| “ }

ÝÝÑ
AB^

ÝÝÑ
AD}.

Si
ÝÝÑ
AB “

ˆ

x
y

˙

et
ÝÝÑ
AD “

ˆ

x1

y1

˙

, alors
ÝÝÑ
AD

K
“

ˆ

´y1

x1

˙

et Aire = | xy1 ´ yx1|.

A

B

C

D

Conique = intersection d’un cône de l’espace avec un plan:

C “
!

px, yq | ax2 ` bxy ` cy2 ` dx` ey ` f “ 0
)

où pa, b, cq ‰ p0, 0, 0q.

‚ Cercle: px´ aq2 ` py ´ bq2 “ r2, centre pa, bq, rayon r.

‚ Ellipse:
x2

a2
`
y2

b2
“ 1, centre p0, 0q, axes ~ı et ~ .

‚ Hyperbole:
x2

a2
´
y2

b2
“ 1, centre p0, 0q, axes ~ı et ~ , droites asymptotes y “ ˘

b

a
x,

ou bien: y “
a

x
, centre p0, 0q, droites asymptotes ~ı et ~ , axes = bisectrices des quadrants.

‚ Parabole: y “ ax2 ` bx` c, axe ~

ou bien: x “ ay2 ` by ` c, axe ~ı .
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3.2 Géométrie cartesienne dans l’espace

Coordonnées cartesiennes des points et des vecteurs de l’espace:

‚ Repère cartesien ou orthonormal direct (o.n.d.) de l’espace: pO,~ı ,~ ~k q =
~ı

~~k

ą
O

,

avec ~ıK~K~kK~ı et }~ı } “ }~ } “ }~k } “ 1.

‚ L’ensemble t~ı ,~ ,~k u forme une base de l’espace vectoriel des vecteurs de l’espace

appliqués en O, donc tout vecteur ~v “
ÝÝÑ
OP est combinaison linéaire de ~ı , ~ et ~k .

‚ Coordonnées cartesiennes:

P = px, y, zq P R3 ðñ ~v “
ÝÝÑ
OP “ x~ı ` y~ ` z~k ”

¨

˝

x
y
z

˛

‚,

où

$

’

’

&

’

’

%

x “ }
ÝÝÑ
OP 1}

y “ }
ÝÝÑ
OP

2
}

z “ }
ÝÝÑ
OP

3
}

=
longueur des projections orthogonales de ~v
dans les directions ~ı , ~ et ~k :

O

P

~v

P 1

x

P2

y

P3

z

‚ Espace + repère cartesien = R3, car tout point P ” vecteur
ÝÝÑ
OP = trois coordonnées x, y et z.

‚ Attention: Vecteur affine:
ÝÝÑ
PQ “ P `

ÝÝÑ
OQ´

ÝÝÑ
OP “ P ` pxQ´xP q ~ı ` pyQ´yP q ~ ` pzQ´zP q ~k .

Calcul vectoriel en coordonnées cartesiennes: Si ~v “

¨

˝

x
y
z

˛

‚, ~v1 “

¨

˝

x1

y1

z1

˛

‚, ~v2 “

¨

˝

x2

y2

z2

˛

‚ et t P R, alors

‚ addition: ~v ` ~v1 “

¨

˝

x` x1

y ` y1

z ` z1

˛

‚, ex.

¨

˝

1
2
3

˛

‚´

¨

˝

3
2
1

˛

‚“

¨

˝

´2
0
2

˛

‚

‚ produit par scalaire: t~v “

¨

˝

tx
ty
tz

˛

‚, ex. ´

¨

˝

1
2
3

˛

‚“

¨

˝

´1
´2
´3

˛

‚

‚ produit scalaire: ~v ¨ ~v1 “ xx1 ` yy1 ` zz1, ex.

¨

˝

2
3
4

˛

‚¨

¨

˝

´1
2
1

˛

‚“ ´2` 6` 4 “ 8

‚ longueur: }~v} “
a

x2 ` y2 ` z2

‚ produit vectoriel: ~v ^ ~v1 “

¨

˝

yz1 ´ zy1

´xz1 ` zx1

xy1 ´ yx1

˛

‚, ex.

¨

˝

2
3
4

˛

‚^

¨

˝

´1
2
1

˛

‚“

¨

˝

3´ 8
´2´ 4
4` 3

˛

‚“

¨

˝

´5
´6
7

˛

‚

‚ produit mixte: r~v,~v1, ~v3s “ xpy1z2 ´ z1y2q ´ ypx1z2 ´ z1x2q ` zpx1y2 ´ y1x2q,

ex.

»

–

¨

˝

1
2
3

˛

‚,

¨

˝

´1
2
1

˛

‚,

¨

˝

1
´2
3

˛

‚

fi

fl “ p2´ 3q ´ 2p´3´ 1q ` 3p2´ 2q “ ´1` 8 “ 7

‚ vecteurs orthogonaux: ~vK~v1 ô xx1 ` yy1 ` zz1 “ 0, ex.

¨

˝

1
2
3

˛

‚ K

¨

˝

´2
1
0

˛

‚ ou

¨

˝

´1
2
´1

˛

‚

‚ vecteurs parallèles: ~v ‖ ~v1 ô ~v1 “ t~v @t ‰ 0 ô

$

&

%

x1 “ tx
y1 “ ty
z1 “ tz

ô
x

x1
“

y

y1
“

z

z1
,

alternative: ~v ‖ ~v1 ô ~v ^ ~v1 “ 0 ô

$

&

%

xy1 “ yx1

yz1 “ zy1

xz1 “ zx1
ô

x

x1
“

y

y1
“

z

z1
, ex.

¨

˝

1
2
3

˛

‚ ‖

¨

˝

´3
´6
´9

˛

‚

‚ projection orthogonale:

Pr~vp~v
1q “

x1x` y1y ` z1z

x2 ` y2 ` z2
~v, ex. Pr5~

¨

˝

1
2
3

˛

‚“
1ˆ 0` 2ˆ 5` 3ˆ 0

02 ` 52 ` 02
5 ~ “ 2 ~ “

¨

˝

0
2
0

˛

‚.

12



Plan (affine): π “
!

P “ px, y, zq | ax` by ` cz ` d “ 0
)

avec pa, b, cq ‰ p0, 0, 0q.

Attention: un plan est un espace vectoriel de dimension 2 ssi il passe par O, i.e. d “ 0.

O

π

‚ Vecteur orthogonal ou normal à π =

¨

˝

a
b
c

˛

‚.

‚ Plan passant par A “ pa1, a2, a3q et K ~u “

¨

˝

u1
u2
u3

˛

‚:
ÝÑ
AP ¨ ~u “ 0

π “
!

px, y, zq | u1px´ a1q ` u2py ´ a2q ` u3pz ´ a3q “ 0
)

.

‚ Plan passant par A “ pa1, a2, a3q et ‖ à ~v “

¨

˝

v1
v2
v3

˛

‚ et ~v1 “

¨

˝

v11
v12
v13

˛

‚: r
ÝÑ
AP,~v,~v1s “ 0

π “
!

P “px, y, zq |
ÝÑ
AP “ t~v ` t1~v1, t, t1 P R

)

ðñ

$

&

%

x´ a1 “ tv1 ` t
1v11

y ´ a2 “ tv2 ` t
1v12

z ´ a3 “ tv3 ` t
1v13

ðñ px´ a1qpv2v
1
3 ´ v3v

1
2q ´ py ´ a2qpv1v

1
3 ´ v3v

1
1q ` pz ´ a3qpv1v

1
2 ´ v2v

1
1q “ 0 éq. cartesienne

‚ Plan passant par A “ pa1, a2, a3q, B “ pb1, b2, b3q et C “ pc1, c2, c3q: r
ÝÑ
AP,

ÝÝÑ
AB,

ÝÑ
ACs “ 0

π = comme ci-dessus.

Droite (affine): ∆ “ π X π1 “
!

P “ px, y, zq |
ax` by ` cz ` d “ 0
a1x` b1y ` c1z ` d1 “ 0

)

avec p0, 0, 0q ‰ pa, b, cq ∦ pa1, b1, c1q ‰ p0, 0, 0q.

O

∆

Attention: une droite est un espace vectoriel de dimension 1 ssi elle passe par O, i.e. d “ 0 et d1 “ 0.

‚ Droite passante par A “ pa1, a2, a3q et ‖ à ~v “

¨

˝

v1
v2
v3

˛

‚:
ÝÑ
AP ‖ ~v

∆ “

!

P “ px, y, zq |
ÝÑ
AP “ t~v, t P R

)

ðñ

$

&

%

x´ a1 “ tv1
y ´ a2 “ tv2
z ´ a3 “ tv3

éq. parametrique
de paramètre t P R

ðñ
x´ a1
v1

“
y ´ a2
v2

“
z ´ a3
v3

éq. cartesienne

‚ Droite passante par A “ pa1, a2, a3q et B “ pb1, b2, b3q:
ÝÑ
AP ‖ ÝÝÑAB, ∆ comme ci-dessus.

Distance: dist pP, P 1q “ }
ÝÝÑ
PP 1} “

a

px´ x1q2 ` py ´ y1q2 ` pz ´ z1q2.
Si P 1 est la projection orthogonale de P sur le plan π, alors

dist pP, πq “ dist pP, P 1q “
|ax` by ` cz ` d|
?
a2 ` b2 ` c2

.
π

P

P 1

Volume du parallelepipède de sommets A, B, C, D, etc =
ˇ

ˇ

ˇ

”

ÝÝÑ
AB,

ÝÑ
AC,

ÝÝÑ
AD

ı
ˇ

ˇ

ˇ
. A

C

B

D

Si
ÝÝÑ
AB “

¨

˝

x
y
z

˛

‚,
ÝÑ
AC “

¨

˝

x1

y1

z1

˛

‚ et
ÝÝÑ
AD “

¨

˝

x2

y2

z2

˛

‚, alors Volume = |xpy1z2 ´ z1y2q ´ ypx1z2 ´ z1x2q ` zpx1y2 ´ y1x2q|.

Quadrique: Q “
!

px, y, zq | P px, y, zq “ 0
)

, où P px, y, zq est un polynôme de degré 2.

‚ Sphère: x2 ` y2 ` z2 “ r2

‚ Ellipsöıde:
x2

a2
`
y2

b2
`
y2

c2
“ 1

‚ Hyperbolöıde à une nappe: x2 ` y2 ´ z2 “ 1

‚ Hyperbolöıde à deux nappes: x2 ´ y2 ´ z2 “ 1

‚ Cylindre: x2 ` y2 “ r2

‚ Cône: x2 ` y2 “ z2

‚ Parabolöıde: z “ xy

ou bien: z “ x2 ` y2
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