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PREREQUIS DU COURS DE MATH 2:
ESPACES VECTORIELS, APPLICATIONS LINEAIRES
ET GEOMETRIE CARTESIENNE
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Introduction

Qand on considére un type d’ensembles ayant des proprietés caractéristiques, on doit dire aussi comment on peut identifier
un tel ensemble a un autre: cela est possible s’il existe une application bijective entre ces deux ensembles qui preserve leurs
caractéristiques.

Ainsi, les types d’ensembles sont toujours corrélés a des types d’applications qui permettent de les identifier. Les
corrélations ’ensembles’ + ’applications’ plus connues sont les suivantes:

e Ensembles + Bijections (applications inversibles, dans le sens qu’il en existe la réciproque)
e Espaces vectoriels + Isomorphismes (bijections qui sont aussi des applications linéaires)

e Espaces métriques (espaces vectoriels avec produit scalaire ou norme) + Isométries (isomorphismes qui preservent le
produit scalaire ou la norme)

Espaces topologiques (ot 'on sait dire quelles parties sont ouvertes ou fermées) + Homéomorphismes (bijections
continues avec réciproque continue)

Variétés différentiables (espaces topologiques localement homéomorphes a des ouverts de R™) + Difféomorphismes
(bijections différentiables avec réciproque différentiable)

En physique, tous ces couples sont largement utilisés. Dans ce manuel nous rappellons le couple espaces vectoriels +
applications linéaires, qui permet de distinguer les deux types suivants de grandeurs:

masse, charge, temperature = nombre (& part I'unité de mesure) — scalaire
force, vitesse, accéleration = point d’application + direction + sense + longueur —  vecteur

Nous rappellons en particulier la définition et les propriétés principales des deux espaces vectoriels indispensables au
cours de Math2 (R? et les vecteurs de 'espace), I'isomorphisme entre eux qui définit les coordonnées cartesiennes des points,
le calcul vectoriel en coordonnées cartesiennes (produit scalaire, vectoriel et mixte) et ’équation cartesienne des principales
courbes et surfaces utilisées en cours et aux examens (droites, coniques, plans et quadriques).



1 Espaces vectoriels et vecteurs

1.1 Espaces vectoriels

Espaces vectoriels

Espace vectoriel = ensemble V' muni

e d’une addition + , avec un zéro O,

e d’un produit par scalaire RxV —V: (t,0) —t¥ tq t@+9)=td+1¢7.

On appelle vecteurs les éléments ¥ de V et scalaires les nombres réels t.

Exemples.

(a) Espaces de coordonnées.
Les ensembles R™:= {(z1,...,zn) | z1,..,2n € R} et C":={(z1,...,2n) | 21,...,2n €C} sont des espaces vectoriels
avec

e addition: (z1,...,2,) + (Y1, -, Yn) := (T1 + Y1, -, Tno + Yn),

e produit par scalaire: ¢ (z1,...,x,) = (t z1,...,t ), teR.

(b) Fonctions.
L’ensemble des fonctions d’une variable réelle F(R) = { f:R—R, = — f(z) | fonction avec domaine Dy < R } est un
espace vectoriel avec

e addition: (f+ g)(z) := f(z) + g(x),
e produit par scalaire: (¢ f)(z):=t f(x), teR.

(¢) Vecteurs du plan et de ’espace.

U
Rappellons qu'un vecteur du plan ou de I’espace est une fleche p__—7 Q , notée ¥ = m, caracterisée par

e le point d’application P;
e la direction et le sens, donnés par la fleche;
e lalongueur |7 = |PQ| = dist (P,Q) € R.

Souvent on identifie les vecteurs qu’on obtient par translation, ainsi P change mais le vecteur ne change pas.

Rappellons aussi les notions de bases des vecteurs:

- R " AN
e Angle entre deux vecteurs @ et ¥ = angle v orienté de @ vers ¥ comme dans &,
U

—

N s s s T v . s~
e Vecteurs paralléles ou colinéaires @ || ¢ si ‘//ﬁ' , le.ssi sin(uw) = 0.

. . Qo v . .
e Vecteurs perpendiculaires ou orthogonaux «lv si /HV\ , l.e.ssi cos(uw) = 0.

Finalement, ’ensemble Vect des vecteurs appliqués en un point fixé O est un espace vectoriel, avec

U+ v
e addition: « + ¥ := vecteur diagonale du parallelogramme de cotés @ et U, par ex. = %
s

e produit par scalaire: siteR, tu:= vecteur avec v,
meme direction que ¥ et longueur |t 4] = ¢|¥], par ex. 30

Attention: I’ensemble des vecteurs appliqués en tous les points n’est pas un espace vectoriel (il s’appelle espace affine).

Le produit par scalaire caracterise les vecteurs paralléles: @ ||¢ <= @ =t pour unt #0.



Bases et dimension des espaces vectoriels

—

Combinaison linéaire de i, v, W,... = vecteur ru+ sv'+tw+---,our,s,t, ... € R sont les coéfficients scalaires.
Exemple dans R?: (5,4, 9) est une combinaison linéaire de (1,2,3) et (1,—1,0) car 3 (1,2,3)+2(1,—1,0) = (5,4,9).
Espace vectoriel engendré par u, U, W, ... = ensemble de leur combinaisons linéaires {rﬁJr ST+HLW+- | r,s,t, ... € R}.

Les vecteurs , U, @, ... sont linéairement dépendants si chacun d’eux est combinaison linéaire des autres:

e il existe une combinaison linéaire nulle (r@ + st/ + ¢t + - - - = 0) avec des coéfficients scalaires pas tous nuls.

Les vecteurs u, U, W, ... sont linéairement indépendants si aucun d’eux n’est combinaison linéaire des autres:

e ri+si+tw+---=0 << r=s=t=---=0.

Base de V := ensemble {€7, &, ...} de vecteurs t.q.
e ils engendrent V, i.e. tout autre vecteur v s’écrit comme leur combinaison linéaire: v = t1€] + to€y + - - -,

e ils sont linéairement indépendants.

La base n’est pas unique, mais toutes les bases ont le méme nombre d’éléments.

Dimension de V, dim V' := nombre de vecteurs d’une base. La dimension peut étre finie (un nombre) ou infinie.

Exemples.
(a) Dans R? (valables aussi dans C):

e (1,2) et (3,6) sont linéairement dépendants car (3,6) = 3 (1,2).
(1,2) et (2,1) sont linéairement indépendants car a (1,2) +b (2,1) = (0,0) < a=0etb=0.

Trois vecteurs dans R? sont toujours linéairement dépendants, ex. (1,2), (2,1) et (1,1).

Les vecteurs €7 = (1,0) et €3 = (0,1) sont linéairement indépendants et forment la base canonique de R?.

En conclusion, dim R? = 2.

(b) Dans R3:

e (1,2,3) et (2,4,6) sont linéairement dépendants car (2,4,6) = 2 (1,2, 3).
(1,2,3) et (2,1, 3) sont linéairement indépendants car a (1,2,3) +b (2,1,3) = (0,0,0) < a=0etb=0.
(1,2,3), (2,1,3) et (4,5,9) sont linéairement dépendants car (4,5,9) =2 (1,2,3) + (2,1, 3).

Quatre vecteurs dans R? sont toujours linéairement dépendants;

Les vecteurs ¢ = (1,0,0), é¢3 = (0,1,0) et €3 = (0,0,1) sont linéairement indépendants et forment la base
canonique de R3.

En conclusion, dimR? = 3.

(c) Dans F(R): Pour les fonctions, on sait que dim F(R) = 0o , mais on ne connait pas de bases.

(d) Dans Vect:
e Un vecteur ¥ engendre une droite, A = {t{f |[teR }

e Deux vecteurs linéairement indépendants # et v engendrent un plan, =7 = {sﬁ +tv | s,teR }

<L

_ 5

Attention: deux vecteurs linéairement dépendants n’engendrent pas un plan mais une droite.

<L



e Les deux vecteurs 7 et 7 de la figure, avec 717 et |7| =|7] =1,
sont linéairement indépendants et forment une base de Vect dans le plan:
le repére cartesien (0,7,7 ).

-

Q
=l

Coordonnées cartesiennes d'un vecteur 7 = OP du plan (ou du point P) =

P’

couple (z,y) € R? tel que ¥ = OP = a7+ yj = <Zj>, P
. U
v = |oP| Y
ol = longueur des projections orthogonales de ¥ o

U
y=|OP" dans les directions 7 et 7

Donc les vecteurs du plan appliqués en un point O forment un espace vectoriel de dimension 2: on le note Vect (R?).

e Trois vecteurs linéairement indépendants engendrent tout 1’espace.

Attention: trois vecteurs linéairement dépendants peuvent engendrer une droite ou un plan.

|

|

p"

e Les trois vecteurs i, j, k de la figure, avec 717 LEL7 et [7] = |7] = |k] = 1, i
sont linéairement indépendants et forment une base de Vect dans I'espace:
le repére cartesien (O,7,7,k ). o
Coordonnées cartesiennes d'un vecteur 7 = OP de lespace (ou du point P) =
x P//
triplet (x,y,2) € R tel que ¥ = OP = a7+ yj+zk =1y |, P
z i
— U
N o
ol Y= ||O—P)HH = longueur des projections orthogonales de ¥ dans les z
- P/

m directions 7, 7 et k
z=|OP"|

Donc les vecteurs de I'espace appliqués en un point O forment un espace vectoriel de dimension 3: on le note

Vect (R3).

1.2 Norme, produit scalaire et produit vectoriel

Norme

Norme sur un espace vectoriel V' = application V — R: 7+ |[7]| t.q.
o [7l|=0, et [|7]=0=7=0,
o ||tT]| = |¢| ||7]], ou |t| = valeur absolue,
o ||g+ || < ||g|| +||Y]] (inegalité triangulaire).

Attention: les espaces vectoriels n’ont pas tous une norme.

Exemples.

(a) Dans R? (valable aussi dans R? et dans tout R™):

e norme euclidienne: ||(z,y,2)|| := v/ + y? + 22;

e norme L': ||(z,y, 2)||1 := |z] + |y| + |2] ;

1/p
e norme LP, avec pe N:  ||(x,y, 2)||p, := (|x\p + |y|P + |z\p) (la norme L? est la norme euclidienne);
e norme L*: ||(z,y, 2)||e := max{ |z|, |y|, |z| };

(b) Dans des sous-ensembles opportunés de F(R):

e norme L' ||f]|; := (|f(2)| dx;

Y
e norme LP, avec pe N:  ||f|[, := <S|f(:c)|p d:c) ! (la norme L? donne lieu & I'espace de Hilbert);




e norme L®: ||f||o :=sup{ f(z), z € Dy }.
(¢) Dans Vect:

e norme = longueur: ||7]| = |7].

Produit scalaire

e défini positif: 7-7=0 et ¢-7=0< 7=0;

e bilinéaire: (i) 0 = t(d-v) = 4 - (tV)
@+7) T=T-T+50, et T (F+T)=a-T+@-@
e symmetrique: 4-U=vU-1u.
Autre notations: ¥-4 = (7,4) =@, @)y ={0ld) (ou(|=braet|)=ket).

Attention: les espaces vectoriels n’ont pas tous un produit scalaire.

Tout produit scalaire definit une norme: ||7]| =7 7. (Le contraire n’est pas vrai.)

Produit scalaire sur un espace vectoriel V- = opération V xV — R: (4,0) — @ -7 qui soit

Exemples.
(a) Dans R? (valable aussi dans R? et dans tout R™):

e Produit scalaire euclidien: (z,y,2) - (2/,¢y,2' )=z 2" +yy + 2z 2.

(b) Dans le sous-ensemble de F(R) des fonctions continues sur un interval:

e Produit scalaire de Hilbert: f-g:={f(z) g(z) dx.
(c) Dans Vect:
e Produit scalaire: ¥4 := |0] || cos(vd) €R.
La norme induite est la longueur des vecteurs: ||7]| = V7 -7 = |9].
Le produit scalaire caracterise les vecteurs orthogonaux: -7 =0 < dlv.

Le produit scalaire donne I’aire: |i - o| = aire du parallelogramme de cotés i et o.

Le produit scalaire donne la projection orthogonale de 4

g
<y

sur la droite de direction - Prz(@) := BE U,
U
Dans l'espace: le produit scalaire donne la projection orthogonale de
sur le plan engendré par ¥ et w: Pry (%) :

(d) Pour Vect dans l’espace:

P(v)
v i - w
U
2 ||
TN

e Produit vectoriel: 4 A ¥ := vecteur avec longueur @] |7] sin(uv) et direction orthogonale directe

Le produit vectoriel est bilinéaire:
(td) A U =t(d AT) =1 A (t0),
(U+0)ATB=UAW+TAW, et UA{T+W) =UAT+UTAD.

Le produit vectoriel est anti-symmetrique: 4 A U = —U A 4.

S <y

S

Le produit vectoriel caracterise les vecteurs paralleles: @A =0 < @ | ¢ (le. €=tV avect#0).

e Produit mixte: [u,v,w]:=d- (A W)= (TAT) -0 (scalaire!).
Le produit mixte est trilinéaire:
[tid, ¥, W] = [, t7, @] = [i, T, tw] = t[d, T, 7],
[@ + ', 7,4 = [@, 0, + [o,7,7], etc.
Le produit mixte a une symmetrie mixte:

[TI,’B‘,'ZB] = [H,TE, ﬁ] = [TE, ﬁaﬂ = _[173 ﬁa Uj] = _[ﬁ7’lﬁ7ﬂ = _[lﬁaﬁaﬁ]

Le produit mixte donne le volume: |[i@, ¥, w]| = volume du parallelepipede de cotés @, ¥, .




2 Applications linéaires et matrices

2.1 Applications linéaires

Application linéaire

Soient V et V' des espaces vectoriels sur R.
Application linéaire entre V et V' = application L:V — V' ¥ ¢ = L(7)

v) t.q.
o L(ii+0) = L(@) + L(7), VY@, 7€V,

o L(t¥)=1tL(U), VeV etVsteR. [En particulier: L(0) = L(0 @) = 0 L(7) = 0.]
Autrement dit: L:V — V’ est linéaire <= L(s@+1t?)=sL(W)+1t L), Vid,0eV et Vs, teR.

En coordonnées, une application linéaire est donnée par des polyndomes de degré 1 sans termes constants

Exemples.

(a) Applications linéaires sur R? et R*:

o [:R? —R3,

L(z,y) = Br +y, —y,y — 2)
e [:R? — R?,

L(I,y,Z) = (Z,I*]J‘FZ)
b L:R3—>R3a L(m,y,z)=(070,z)

Applications NON linéaires sur R? et R3:

o L(z,y,2) = (z + 1,y2):

o Liw,y) = (2% +siny, ay):
un polynome.

le terme x + 1 contient une constante, le terme yz est un polynéme de degré 2

les termes 2% et zy sont des polynomes de degré supérieur a 1, le terme siny n’est pas

(b) Applications linéaires sur ’espace C*(R) des fonctions différentiables:

e La dérivation d:C*®(R) — C®(R), (df)(x):= f'(x) est linéaire, car

d3f+2g)=3df +2dg. [En effet, cela signifie que (3 f(z) + 2g(:c))/ =3f'(z)+ 29'(:::).]

e La multiplication par x: M, : C*(R) — C®(R), M,(f)(z) = (z f)(x):=x f(z) est linéaire, car

Mo(3 f+29)@) = (3 f(2) +29(@)) =3 (v /(@) +2 (v 9@)) = (3 Ma(f) +2 Ma(9)) ).
Applications NON linéaires sur 1’espace C*(R):

e La puissance carrée p:C%®(R) — C®(R), (pf)(z):= f(x)? n’est pas linéaire, car

P f+2g)(x) = (3 f(z) +2g(x)* =9 f(2)* + 12 f(x) g(z) + 4 g(x)?,
alors que (3p(f) +2p(g))(z) =3 f(z)? + 2g(z)>.

(c) Applications linéaires sur Vect (R?) et Vect (R?):

e Rotation d’angle 6 dans le plan: Ry : Vect (R?) — Vect (R?), Ry (?j) = < cosf x+sinf y )

—sinf x + cosf y
e Projections sur les droites de direction 7, 7 et k:

T x x 0 T 0
Py, Py, Pr: Vect R¥) — Vect(R*), Pily =10 Ply|=(yv] Plyv]=][0
z 0 z 0 z z

Applications NON linéaires sur Vect (R?) et Vect (R?):

y+b

e Translation par un vecteur v = (Z) (dans le plan): Ty : Vect (R?) —> Vect (R?), Ty (;j) = <x N a>.
e Application affine = application linéaire plus translation: L (;) = (a: tyt 1> = (xQ—Zy) + (;)

29+ 2




Espace vectoriel des applications linéaires

L’ensemble L£(V, V') des applications linéaires L : V — V' est un espace vectoriel, avec
e addition: (L + L')(¥) := L(¥) + L'(¥) pour tout ve V, avec zéro = application nulle 0(%) = 0;

e produit par scalaire: siteR, (¢t L)(?):=t L(¥) pour toutveV.

x x
Exemple. Si L, L’ : Vect (R?) — Vect (R?) sont données par L [ y | = (2I_J; Z) et L' |y |= (x?z)’
z

x 20+ 3y + =z v 6x + 32
alors (L+L') | vy =< v y+z> et B3L)[|y =< _3 >
z 4 z Y

Composition d’applications linéaires

Compositionde L: U — Vet L' : V. — W = application L'oL:U — W déf. par (L' oL)(@):=1L' (L(ﬂ'))

. 3T +y U w At w
Exemple. Si L:R? — R3, L< )z —y et L':R®*—R2%2 L|uw :<v—w>’
T+ 2y w
u 3(u+w)+ (v—w)
alors (L’OL)<x)—<(3x_+g)(+(fz+)2y)> et (LoL)| v |= —(v—w)
Y y—lx+ay w (u+w) +2(v—w)

Isomorphismes et isométries

Isomorphisme entre V et V'’ = application linéaire L : V — V' qui soit bijective (i.e. inversible, 3 L™1 : V' — V).
On dit alors que les espaces vectoriels V' et V’/ sont isomorphes, et on note V =~ V",

Un isomorphisme transforme une base de V' en une base de V’. Donc V et V'’ ont la méme dimension.

Si V et V' ont un produit scalaire: isométrie entre V et V/ = isomorphisme L : V — V' qui conserve les produits
scalaires: L(#) - L(7) = 4 - U.

Une isométrie conserve aussi les longueurs (norme) et les angles.

Exemples.

(a) Identification du plan avec R?:

e En fixant sur le plan un point O, on peut identifier tout point P avec le vecteur OP € Vect (R?) appliqué en O.

e En fixant ensuite un repere cartesien (O,7,7), on définie application Vect (R?) — R? qui associe & tout vecteur
@ = OP ses coordonnées cartesiennes (x,y), définies, on le rappelle, par I'identité ¢ = OP = z7 + yJ.

Cette application est linéaire et bijective, donc c’est un isomorphisme d’espaces vectoriel: ~Vect (R?) =~ R2.
De plus, cette application preserve les produits scalaires, c¢’est donc une isométrie.

e En conclusion, les points P du plan, avec leurs coordonnées cartesiennes, sont vus comme éléments de R2.

(b) Identification de I’espace avec R3:

e En fixant dans ’espace un point O, on peut identifier tout point P avec le vecteur OP € Vect (R3) appliqué en O.

e En fixant ensuite un repere cartesien (O, 7,7, E), on définie I'application Vect (R?) — R? qui associe & tout vecteur
@ = OP ses coordonnées cartesiennes (x,y,2), définies, on le rappelle, par I'identité ¢ = OP =27 + yJ + zk.

Cette application est linéaire et bijective, donc c’est un isomorphisme d’espaces vectoriel: ~Vect (R3) =~ R3.
De plus, cette application preserve les produits scalaires, c¢’est donc une isométrie.

e En conclusion, les points P de ’espace, avec leurs coordonnées cartesiennes, sont vus comme éléments de R3.



2.2 Matrices

Matrices
aiy A1n 1
Matrice m x n & coéfficients réels (a;;) := tableau ou a;; € R pour { ;i 1’ ’Zl
Am1 e Amn
Matrice carrée de taille n = matrice n x n.
Matrice colonne de taille n = matrice n x 1 = vecteur & n composantes.
Matrice ligne de taille n = matrice 1 x n.
Exemples.
8 -3 (10 cos(m/3) —sin(w/3) . , .
° ( 9 1 >, 1= ( 0 1 > et ( sin(r/3)  cos(r/3) sont des matrices carrées de taille 2.
In(5) -2
V3 0 -1 42 1 0 1
. est une matrice 2 x 5, et -3 5 est une matrice 5 x 2.
2 V5 0 -3 0
T 0
7 sin(7/6)
3
. 1 est une matrice colonne, et ( 31 42 ) est une matrice ligne.
V2
Espace vectoriel des matrices
L’ensemble M,,, = M,,,(R) des matrices m x n A coéfficients réels est un espace vectoriel, avec
aip +bir o ai, +biy
e addition: (a;;) + (bsj) := (ai; + bij) = , avec zéro= matrice nulle.
am1 + bml e Amn + bmn
t a1 cee t A1n
e produit par scalaire: siteR, t (a;;):=(ta;y) = :
t am1 - t Amn

- . 8 =3 0), (30 —1)_(11 -3 -1 . o 8 3 O0N_[16 —6
xemples- | _9 1 4 25 0 /)7 Lo 6 4 ¢ 2 1 4 )"\ 4 2

Produit de matrices

Produit M,,, x M, — My, (aij) (bjr) = (cir) avec ¢ = Z;L=1 ai; bj (régle “ligne x colonne”)

p a b\ (d V\_ [ a+b’ ab+bd ¢ b\ (x\_ [ ax+by
ar ex. c d d d )"\ cd+dd eV +dd ¢ d y )\ ex+dy )

o

Exemples.
1 2 3 10 4 5 L0 1 2 3 L2
. 456.01:1011 et 01'4562 4 5 6
11 11 5 79
1 1 0
1 2 3 4
.(456> (1) _<10> et (1 2 3) ?1 =(4 5)



Rélation entre matrices et applications linéaires

Les ensembles L(R",R™) et M,,,(R) sont en bijection:
a une application linéaire L : R* — R™ correspond la matrice A € M,,,,(R) telle que

a11T1 + -+ a1pTy a1 o @in 11
L(Z) = = : : D l=AZ

Am1T1 + -+ ApnTn Am1 N Amn, Tn

De plus, les espaces vectoriels L(R",R™) et M,,,,(R) sont isomorphes:

. L@ =A% P N o -
si { (@) - A & alors (L+ L) (&) =(A+A)Z et (¢tL)&) = (tA) Zpour tout ¢t € R.
Enfin, la composition d’applications linéaires corresponds au produit de matrices:
. =L@ =AZ o N AT AN =
si { L) = A alors 2z = (L'oL)(Z) = (4'A) &.
Exemples. - 3z +y 3 1 .
e Si L(z,y) = B3z +vy,—y,y — 2x), on écrit L<y>: —y =10 -1 (y)’
3 1 y—2x -2 1
donc la matrice associée a Lest A= | 0 —1].
-2 1

)56 )6 < #6036 D) o
n(G)-( )6 )6 « e Y6 -G -6 )

Détérminant, matrices inversibles

. o a b a b
Détérminant det: M,,, — R défini, pour n = 2,3, par: det ( e d ) =l . 41= ad —bc et
ailp a2 ais a1 a2 ais
d _ L Q22 A23 a21 Aa23 a21  A22
et a21 Qg2 a23 =| @21 Qa22 G23 |:= G11 — 12 + ais
asz2 ass asz1 ass asz1 asz
a31 asz @33 a3y asz a33

Attention: det n’est pas une application linéaire, car det(A + B) # det(A) + det(B) et det(t A) # ¢ det(A).
Par contre, si A est une matrice carrée de taille n, on a: det(t A) =t" det(A).
De plus: det(A B) = det(A) det(B).

. a
Une matrice A = ( c

1 _
b est inversible si det A # 0 et sa matrice inverse est A~1 = d b .
d det A

Si L(¥)=AZ: L estunisomorphisme <= detA#0. Danscecas L7'(7)=A"17.

-1
2 1 2 1 1/5 -1
Exemple. det (3 5) =2-5—-3-1=7, donc (3 5) =z <_3 9 )

Matrices orthogonales

Transposé 7 : Myn — Mpm, (aij)T = (aji)-
Une matrice A est orthogonale si A~! = AT, Sur ’espace vectoriel R™ muni du produit scalaire euclidien:

Si L(Z)=AZ: L estunisométrie <= detA=+1 et A estune matrice orthogonale.

Exemples. T
o Lat ‘e de 1 tri 2 1 ‘1 tri 2 1\ (2 3
a transposée de la matrice | ;. | est lamatrice |, o) =[] .

cosf sinf

. est une matrice orthogonale.
—sinf cosf

e Une rotation (



3 Géométrie cartesienne dans le plan et dans ’espace

3.1 Géométrie cartesienne dans le plan

Coordonnées cartesiennes des points et des vecteurs du plan:

J
o

e Repére cartesien ou orthonormal direct (o.n.d.): (0,7,7) = 77 ,avec 717 et |7]=[7]|=1.

e L’ensemble {7,7 } forme une base de l'espace vectoriel des vecteurs du plan appliqués en O, donc tout vecteur ¥ = opP
est combinaison linéaire de 7 et 7.

p P

e Coordonnées cartesiennes: P = (z,y) € R «— ¢=0P = a7+ v = (Z)’ gl
/ y /
z = [OF| ’

T

ol = longueur des projections orthogonales de ¢ dans les directions 7 et 7: o

"
y=[OF]
e Plan + repére cartesien = R?, car tout point P = vecteur OP = deux coordonnées z et Y.

e Attention: Vecteur affine: @ =P+ @ ~OP =P+ U,
ou = (vg—zp) 7+ (Yo—yr)J

!
Calcul vectoriel en coordonnées cartesiennes: si ¥ = <x>’ v o= (Z,) et t € R, alors
/
e addition: v+ v = (;iz,), ex. (;) +
e produit par scalaire: 0= tx , ex.3 ! =
ty 2
. . R p , 2 -1
e produit scalaire: o-v =zx’ +yy', ex. ) o )= —-24+6=4
e longueur: ||7]| = /22 +y2, ex. ‘(;) ‘ =vV1+22=4/§

e vecteurs orthogonaux: o147 < z2’+yy =0, ex (1> 1 <_2)

2 1
!
. T =tx Ty 1 3
e vecteurs paralleles: ¢ || 7 < { Y =ty t#0 < 7y ex. (2) I (6)
L. B 'z +y'y 5 5x1—-1x0 . 5
. () — 7 N - 7 = =
e projection orthogonale: Prz(?v') 2y U, ex. Prj 1 102 57 0)

10



Droite (affine): A = {P =(z,y) |ax+by +c= O} avec (a,b) # (0,0)

V) A
. a c N
Si b # 0 alors yzfg:vfgzm:c+p ol m =tanf ‘ /
p
Si a # 0 alors xzféyfg. /{

a a

Attention: une droite est un espace vectoriel de dimension 1 si et seulement si elle passe par O, i.e. ¢ = 0.

Vecteur directeur de A = ( b )

—a

e Vecteur orthogonal ou normal & A = (Z)

Droite passante par A = (a1,a2) et L @ = (Zl): AP i=0
2

A= {(Jc,y) | ui(x —a1) + uz(y —az) =

<>  wz + ugy — (u1a1 + ugas) =

0
Droite passante par A = (a1,az2) et || ¥ = (Zl>: AP || @
2

A:{p:(x,y)\o’za’:@iuﬁ, teR}

T=aqa tv , . \
— 1+t éq. parametrique de parametre t € R
Yy = az + tvg
r—a Yy — a2 . .
&< —— = ~——— éq. cartesienne
U1 (%)

by —ay by — as

A P
e Droite passante par A = (a1,as) et B = (by,bs): AP || AB \\
_ _ A
r—a Y — as
A= {(x,y) | - = }

Distance: dist (P, P’) = HWH = HW —OP| =+/(z =22+ (y — ¢)2.

Si P’ est la projection orthogonale de P sur la droite A, alors /A
| ax + by + ¢ |

dist (P, A) = dist (P, P’) = N
a

Aire du parallelogramme de sommets A, B, C', D = | Eﬁﬂ — |ABAAD|. D

/ n o
SiA_B)=<§> etﬂ)):(;:,),alorsj =<;,J>et Aire = | ay’ — ya'|. B
Conique = intersection d’un cone de I’espace avec un plan:

C= {(x,y) | ax2+bxy+cy2+dx+ey+f20} ou (a,b,c) #(0,0,0).

e Cercle: (z—a)?+ (y—0b)2 =712 centre (a,b), rayon r.

2 2
. Y o
¢ Ellipse: pol + 2= 1, centre (0,0), axes7 et .
z2 P b
e Hyperbole: — — 2= 1, centre (0,0), axes7 et 7, droites asymptotes y = +—x,
a a

a
ou bien: y = —, centre (0,0), droites asymptotes 7 et j, axes = bisectrices des quadrants.
x

e Parabole: y=ax?>+bx+c, axe]

ou bien: x =ay?>+by+c, axeT.

11



3.2 Géométrie cartesienne dans 1’espace

Coordonnées cartesiennes des points et des vecteurs de ’espace:

=l
|

e Repére cartesien ou orthonormal direct (o.n.d.) de l'espace: (O,?,jl_c') = ,
avec 7171k17 et |7] =7 = k] =1

=]

e L'ensemble {7,7, % } forme une base de I'espace vectoriel des vecteurs de Despace

appliqués en O, donc tout vecteur v = OP est combinaison linéaire de 7,7 et k. P

e Coordonnées cartesiennes: 5

P = (2,y,2)eR® <= T=0P = 27 +yj + 2k =

ISEINE ]
S

z = 0P y
. 7 n._ longueur des projections orthogonales de ¥
ot y= HO-P))/”H "~ dans les directions 7, 7 et k: P’
2= 0P|

e Espace + repére cartesien = R?, car tout point P = vecteur OP = trois coordonnées x,y et z.

e Attention: Vecteur affine: PQ =P+ 0Q—O0P =P + (zo—zp) T+ (Yo—yp) T + (20—2p) k.

/ "
T

x x
Calcul vectoriel en coordonnées cartesiennes: Sivd= |y |, 0 = |y |, = |y’ | et teR, alors
z 2! 2"
x4+ 1 3 -2
e addition: T+7 =|y+y |, ex. 21-(2]=1 0
z+ 2 3 1 2
tx 1 -1
e produit par scalaire: tv= |ty |, ex. —[2|=[| -2
tz 3 -3
2 -1
e produit scalaire: ¥-¢ =zxa' +yy +22, ex. |3 ]-| 2 |=-2+6+4=38
4 1
e longueur: |[v] = /22 + y2 + 22
yz' — 2y 2 -1 3-8 -5
e produit vectoriel: TAv = | —zz' +z22' |, ex. |3 |A| 2 |=| -2—-4|=][ -6
xy' —ya' 4 1 4+3 7
e produit mixte: [U,7,0"] = z(y'2" — 2'y") —y(2'2" — 2'2") + z2(a'y” — y'2"),
1 -1 1
ex. [[2].l 2 ].l-—2||l=(2-3-20-3-1)+32-2)=-1+8=7
3 1 3
1 —2 -1
e vecteurs orthogonaux: .17 < z2'+yy +22=0, ex (2] 1L 1 ou 2
3 0 —1
2 =tz .
e vecteurs paralleles: 7 | ¢V < U =t0 Vi#0 < y =ty & = E/ =,
2=tz royoz
zy = yx' . . 1 -3
alternative: o || 0 & A7 =0 & { y2'=2y & = = y/ =—, ex. 2] [ -6
_ € Y Z
xz' = za 3 -9
e projection orthogonale:
1 0
dr+y'y+ 2z 1x04+2x5+3x0
Pro(d) = “2 T YYTE2 5 o Prs [ 2] = 57=27=1|2]
o) x4+ y? + 22 e 3 02 + 52 + 02 R 0
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Plan (affine): = = {P = (z,y,2) |ax + by +cz+d = O} avec (a,b,c) # (0,0,0).
Attention: un plan est un espace vectoriel de dimension 2 ssi il passe par O, i.e. d = 0.

a o
e Vecteur orthogonal ou normalan® = | b
c
Uy
e Plan passant par A = (a1,az2,a3) et L @ = [ ug | AP i=0
us

T = {(a@y,z) | ui(z —a1) + ue(y —az) + uz(z —az) = 0}.

!
V1 (%1
Plan passant par A = (a1,a2,a3) et || & ¥ = vg et v = vé : [—15, U,7] =0

Yy — ag = tug + t'v)

x —ay = tvy + t']
7r={P=(ac,y,z)|A_P)—tv+t’_” tt’eR
z —az = tug + t'vj

—  (z—a1)(vavh —vgvh) — (y — az)(v1vh — v3v)) + (2 — a3)(vivh —vav]) =0  éq. cartesienne

1)
Plan passant par A = (a1, as,a3), B = (by,be,b3) et C = (c1,ca,c3): [ﬁ,@,@] =

7 = comme ci-dessus.

A
. ) _ ;L - ar +by+cz+d=0 } o
Droite (affine): A=rn7n'= {P = (z,y,2) | dr by +dztd =0
avec (0,0,0) # (a,b,c) }f (', V', ") # (0,0,0).
Attention: une droite est un espace vectoriel de dimension 1 ssi elle passe par O, i.e. d =0 et d’ = 0.
U1
e Droite passante par A = (a1,as,a3) et |a 7= | v | AP || @
U3
T = toy éq. parametrique
A={P=(x,y,z)|A_P)=tv7teR} — Y — ag = tvg de paramatre ¢ € R
z —ag = tus
T — ay Yy — asg zZ — asg . .
— = = éq. cartesienne
U1 V2 U3
e Droite passante par A = (a1,a2,a3) et B = (by,bs, b3): AP I A_B), A comme ci-dessus.
. . =5 P
Distance: dist (P,P') = |[PP'| =+/(z —2')2 + (y — y)2 + (= — 2')2.
Si P’ est la projection orthogonale de P sur le plan 7, alors
. y lax + by + cz + d| D
dist (P, ) = dist (P, P') =
VaZ + b2 + 2
Volume du parallelepipéde de sommets A, B, C, D, etc = HA.B),@, E]‘ A
B
T x/ x/l
SiAB= [y |, AC= [y |et AD = | ¢ |, alors Volume = lx(y'2" — 2'y") —y(a'2" — 2'2") + z(2'y" — y'2")|.
z Z/ Z”

Quadrique: Q = {(x,y,z) | P(xz,y,2) = O}, ou P(z,y,z) est un polyndéme de degré 2.

e Sphere: 22 4 y? 4 22 =12 e Cylindre: z2+y? =12
¢ Ellipsoide: Z—z + Zé + Zé =1 e Coéne: z2+19y? =22

e Hyperboloide & une nappe: 22+ y? —22=1 e Paraboloide: =z = zy

e Hyperboloide & deux nappes: z2 -3 —22=1 ou bien: z =22 +y?
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