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REPERES MOBILES ET CHAMPS DE VECTEURS

CONVENTION STANDARD ISO 80000-2
http://en.wikipedia.org/wiki/ISO 80000-2
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Théoréme de Poincaré : Sur D C R? simplement connexe: A =gradf <= R A=0
Sur D C R3 contractile : A= ot B = divA=0
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Si ST = 990 est une surface fermée : # A.dS = /// div A dx dy dz
S+ Q

Théoréme de Stokes :

Théoréme de Gauss :
A-dt=0
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Si A =grad f et C" est une courbe qui relie P & Q : / A-dl =
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Corollaires : Si A =grad f et CT est une courbe fermée :
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