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Théoréme de Poincaré : Sur D C R3 simplement connexe: A = gra rot A = 0

Théoréme de Stokes :

Théoréme de Gauss :

Corollaires :

Sur D C R3 contractile : A = rvo?c B = divA=0
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Si A = grad f et C" est une courbe qui relie P & Q :
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Si A = grad f et C* est une courbe fermée :
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