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FICHE 4 - EXERCICES SUR DERIVEES ET ETUDE DE FONCTIONS

EXERCICES OBLIGATOIRES

Exercice 1 Pour chacune des fonctions suivantes, déterminer le domaine de définition, le domaine

de dérivabilité et calculer la dérivée.
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Exercice 2 Etudier les fonctions suivantes (tableau de variations et graphe) :
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Exercice 3 Montrer que les fonctions suivantes sont dérivable sur R et en calculer la dérivée.
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Exercice 4 Trouver le polynéome de Taylor a l'ordre 2 des fonctions suivantes :

a) f(x):HLx autour de zp =0 et de g = 1;

= ch(2z) autour de zp =0;
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x) =sin(3z) autour de g = 0 et de xg = 5

=e autour de xg = 0 et de zg = 1;

autour de g = 0 et de g = 1;

T
=cos“xw autourdea:ozoetdex():E;
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e) f(x) =In(1+2x) autour de xg =0et de 29 =1;
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EXERCICES FACULTATIFS

Exercice 5 Pour chacune des fonctions suivantes, déterminer le domaine de définition, le domaine
de dérivabilité et calculer la dérivée.
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c) f(x):x?’;—l—l’ d) f(z)=z—-Inz,
e) f(x)=+/cos?(x)+1, f) f(z)= %tan?’(w) —tan(z) + z,
g) f(z)=xnz, h)  f(z) =Inva?+1,
. er —1 . 1+sinz
i) f(x):\/x:Jrl’ ) fl@)=h—-o—,
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Exercice 6 Etudier les fonctions suivantes (tableau de variations et graphe) :
a) f(z)=a%(z —2)? b)  f(x) = 2%(x —1)3,
|1 —cos(z) B . 2z
¢ flz)= ma d) f(z) = arcsin 1122

e) f(z)=thx— %

Exercice 7 Montrer que la fonction f(x) = |22 — 3| est continue sur R. Est-elle dérivable sur R ?
Etudier les variations et tracer le graphe de cette fonction.

Exercice 8 En utilisant la formule de Taylor, montrer que, pour tout = > 0, on a

x
Pour quelles valeurs de z > 0 peut-on dire que z — 5 est une valeur approchée de In(1+4x) & 1073

pres?

Exercice 9 Trouver le polynéme de Taylor a 'ordre 2 des fonctions suivantes :
a) f(ﬂi):e% autour de g =0 et de zg = 1;
) f(z) =In(1 +sinx) autour de zp = 0;
) f(x) = arcsin(2x) autour de g =0 et de 9 = 1;
d) f(z) =sh(z +2?) autour de zgp = 0;
) f(@)
) f(z)

= ch(z +2?%) autour de zg = 0;



