Hopf algebras and renormalization in physics

Alessandra Frabetti

Banff, september 1st, 2004

${\bf Contents}$

enormalization Hopf algebras	2
Matter and forces	 2
Standard Model and Feynman graphs	 4
Quantum = quantization of classical	 ļ
From classical to quantum	 (
Free theories	 7
Interacting theories	 8
Divergent Feynamn integrals	 Ć
Dyson renormalization formulas	 10
Groups of formal diffeomorphisms and invertible series	 11
BPHZ renormalization formula	 12
Hopf algebras of formal diffeomorphisms and invertible series	 13
Hopf algebra on Feynman graphs	 14
Hopf algebra on rooted trees	 15
Alternative algebras for QED	 16
Hopf algebras on planar binary rooted trees	 17

Feed back in mathematics and in physics	18
Combinatorial Hopf algebras	19
Relation with operads	20
Combinatorial groups	21
Non-commutative Hopf algebras and groups	22

Physics	Matter (particles)	Forces (fields)	Interactions
classical:	galaxiesplanets, stars	• gravitational (acts on mass, int. 10^{-40})	macro: position and velocity
	• cosmic rays	• weak (acts on "flavour", int. 10^{-5})	
	• molecule = group of atomes	• residual electromagnetic (chemical link = exchange of	e^-F_{em} T F_{tot} N^+
	• $atom = kernel + electrons$	electrons) • electromagnetic (acts on electric charge, int. 10 ⁻²)	T F_{tot}
	• X rays		
quantum:	• kernel = group of nucleons	• residual strong	micro: position or velocity
uncertainty	• γ rays		$n \xrightarrow{W^-} p + e^- + \bar{\nu}_e$
particles = fields	• nucleon = group of 3 quarks of type u, d (proton $p = uud$, neutron $n = udd$)		- Tongo and the second and the secon
	• quark (never saw isolated)	• strong force confinement	

Particles	Fermions	Bosons	Feynman graphs
elementary particles = quantum fields	• leptons : $\binom{e^-}{\nu_e}$ $\binom{\mu}{\nu_\mu}$ $\binom{\tau}{\nu_\tau}$ (mass?, charge, 3 flavours) • quarks : $\binom{u}{d}$ $\binom{c}{s}$ $\binom{t}{b}$ (mass, charge, 3 flavours, 3 colours = red, blu, green)	• photon γ (QED)	$e^{-} + e^{-} \xrightarrow{\gamma} e^{-} + e^{-}$ $\mu^{-} \xrightarrow{W^{-}} \nu_{\mu} + e^{-} + \bar{\nu}_{e}$ $u \xrightarrow{g} d + u + \bar{d}$ $\downarrow 0$
hadrons = groups of quarks	• baryons (3 quarks) $p = uud, n = udd, \Delta^{++} = uuu$	• mesons (2 quarks) $\pi^+ = u\bar{d}, \pi^- = \bar{u}d$	$\Delta^{++} \xrightarrow{g} p + \pi^{+}$ $= 2$ 2 2 2 2 3 3 4 3 4 4 4 4 4 4 4 4 4 4

Quantum = (canonical + path integrals) quantization of classical

Fields	Observables	Measures
classical	functionals F of field φ	values $F(\varphi) \in \mathbb{R}$
quantum	self-adjoint operators O on states $v \in Hilbert$	expectation value $v^tOv \in \mathbb{R}$ enough: $G(x^{\mu} - y^{\mu}) = \text{probability from } x^{\mu} \text{ to } y^{\mu}$ where $x^{\mu} \in \text{Minkowski} = \mathbb{R}^4$ with metric $(-1, 1, 1, 1), \mu = 0, 1, 2, 3$

From classical to quantum

Lagrangian
$$\mathcal{L}(\varphi, \partial_{\mu}\varphi) = \mathcal{L}_{free} + \mathcal{L}_{int}$$
 =

Euler equation
$$\frac{\partial \mathcal{L}}{\partial \varphi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \right) = 0$$

$$\mathcal{L}_{int} = 0$$
 \Longrightarrow

$$\varphi_0(t,x) = \int \frac{1}{\sqrt{2E_p}} \left(a_p e^{i(px - \omega_p t)} + a_p^* e^{-i(px - \omega_p t)} \right) \frac{\mathrm{d}^3 p}{(2\pi)^3} \quad \text{(wave)}$$
classical: $a_p, a_p^* = \text{numbers} \in \mathbb{R} \text{ or } \mathbb{C}$

quantum: $a_p, a_p^* = \text{annihilation}$ and creation operators

$$\mathcal{L}_{int} = j \varphi$$

$$j = \text{source field} \Longrightarrow$$

$$\varphi(x^{\mu}) = \varphi_0(x^{\mu}) + \int G_0(x^{\mu} - y^{\mu})j(y^{\mu})d^4y^{\mu}$$
classical: $G_0(x^{\mu} - y^{\mu}) = \text{Green function (resolvant)}$

quantum: $G(x^{\mu} - y^{\mu}) = G_0(x^{\mu} - y^{\mu})$!

$$\mathcal{L}_{int} = g \ \varphi^k$$

$$g = \text{coupling constant} \Longrightarrow$$

classical: perturbative solutions in g

quantum: perturbative series in g indexed by Feynman graphs

$$G(x^{\mu} - y^{\mu}) = \sum_{n \ge 0} G_n(x^{\mu} - y^{\mu}) \ g^n = \sum_n \sum_{|\Gamma| = n} U_{x^{\mu} - y^{\mu}}(\Gamma) \ g^n = \sum_{\Gamma} U_{x^{\mu} - y^{\mu}}(\Gamma) \ g^{|\Gamma|}$$

 $U_{x^{\mu}-y^{\mu}}(\Gamma) = \text{amplitude (integral) of Feynman graph } \Gamma \text{ with } n \text{ loops}$

Free theories

Field	Free Lagrangian	Euler equation	Green function on momentum p^{μ}
$\phi(x^{\mu}) \in \mathbb{C}$ boson (spin 0, mass m)	$\mathcal{L}_{KG} = \frac{1}{2}\partial_{\mu}\phi^2 - \frac{1}{2}m^2\phi^2$	Klein-Gordon: $ (\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2)\phi = 0 $	$G_0(p) = \frac{i}{p^2 - m^2 + i\epsilon} \in \mathbb{C}$
$\psi(x^{\mu}) \in \mathbb{C}^4$ fermion (spin $\frac{1}{2}$, mass m)	$\mathcal{L}_{Dir} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi$ $\gamma^{\mu} = 4 \times 4 \text{ Dirac matrices}$	Dirac: $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$	$S_0(p) = \frac{i}{\gamma^{\mu} p_{\mu} - m + i\epsilon} \in M_4(\mathbb{C})$
$A^{\mu}(x^{\nu}) \in \mathbb{C}^4$ boson (spin 1, mass 0)	4 \	Maxwell: $\partial_{\mu}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) + \lambda \partial_{\mu}\partial^{\nu}A^{\mu} = 0$	$D_0(p) = \frac{-ig_{\mu\nu}}{p^2 + i\epsilon} + i\frac{\lambda - 1}{\lambda} \frac{p_{\mu}p_{\nu}}{(p^2 + i\epsilon)^2}$ $\in M_4(\mathbb{C})$

Interacting theories

Interacting theory	Lagrangian	Feynman graphs	
ϕ^4 \mathcal{L}_{KG}	$\mathcal{L}_{KG}(\phi) - rac{1}{4!} g \phi^4$	\times	$G(p) = \sum_{\Gamma \in \phi^4} U_p(\Gamma) g^{ \Gamma }$
OFF			$S(p) = \sum_{\Gamma \text{ fermion}} U_p^e(\Gamma) e^{2 \Gamma }$
QED = abelian Gauge	$\mathcal{L}_{Dir}(\psi) + \mathcal{L}_{Max}(A^{\mu}) - e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$		$D_{\mu\nu}(p) = \sum_{\Gamma \text{ boson}} U_p^{\gamma}(\Gamma) e^{2 \Gamma }$

More: ϕ^3 , scalar QED, QCD = non-abelian Gauge, Yukawa, ...

Feynman graph = graph Γ with - arrows depending on the fields

- valence of vertices depending on the interaction term

Feynman amplitude = integral $U(\Gamma)$ computed from the graph

Divergent Feynman integrals

1PI Feynman graph = graph Γ without bridges

Feynman rule:

The Feynman amplitude is multiplicative with respect to junction of graphs

1PI graphs:
$$\Longrightarrow U_p^e \left(\underline{\hspace{1cm}} \right) = S_0(p) \ (-ie) \ \int D_{0,\mu\nu}(k) \gamma^{\nu} S_0(p-k) \gamma^{\mu} \frac{\mathrm{d}^4 k}{(2\pi)^4} \ (-ie) \ S_0(p)$$

connected graphs:
$$\Longrightarrow U_p^e \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) = U_p^e \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) S_0(p)^{-1} U_p^e \left(\begin{array}{c} & & \\ & & \\ \end{array} \right)$$

Problems:

$$U(\Gamma) = \infty$$
! \Longrightarrow find finite $R(\Gamma)$

In particular: - each cycle in Γ gives a divergent integral,

- each cycle in a cycle gives a subdivergency in a divergency.

 $g, e, m, \dots \neq \text{measured values}$! \Longrightarrow find g_0, e_0, m_0 from the effective: g, e, m

Dyson renormalization formulas

Bare Green functions:

$$G(p;g_0) = \sum_{\Gamma} U_p(\Gamma) \ g_0^{|\Gamma|} = \sum_n G_n(p) \ g_0^n$$
 with $G_n(p) = \sum_{|\Gamma|=n} U_p(\Gamma)$

same for $S(p; e_0^2)$ and $D_{\mu\nu}(p; e_0^2)$ \Rightarrow fine structure constant $\alpha_0 = \frac{e_0^2}{4\pi}$

Renormalized Green functions:

$$\bar{G}(p;g) = \sum_{\Gamma} R_p(\Gamma) \ g^{|\Gamma|} = \sum_{n} \bar{G}_n(p) \ g^n \quad \text{with} \quad \bar{G}_n(p) = \sum_{|\Gamma|=n} R_p(\Gamma)$$

same for $\bar{S}(p;e^2)$ and $\bar{D}_{\mu\nu}(p;e^2)$

 $\Rightarrow \quad \alpha = \frac{e^2}{4\pi} \simeq \frac{1}{137}$

Dyson and Ward:

$$\bar{G}(g) = G(g_0) Z^{-1/2}(g) \quad \text{with} \quad g_0(g) = g Z^{-1}(g)$$

$$\begin{cases} \bar{S}(\alpha) = S(\alpha_0) Z_2^{-1}(\alpha) \\ \\ \bar{D}_{\mu\nu}^T(\alpha) = D_{\mu\nu}^T(\alpha_0) Z_3^{-1}(\alpha) \end{cases} \quad \text{with} \quad \alpha_0(\alpha) = \alpha Z_3^{-1}(\alpha)$$

Renormalization factors:

$$Z = 1 + \mathcal{O}(g^2), \quad Z_3 = 1 - \mathcal{O}(\alpha), \quad Z_2 = 1 + \mathcal{O}(\alpha)$$

Coupling constants:

$$g_0 = g + g\mathcal{O}(g^2), \quad \alpha_0 = \alpha - \alpha\mathcal{O}(\alpha)$$

Renormalization group

$$\begin{array}{ccc} \text{coupling} & & \text{renormalization} \\ \text{constants} & & \text{factors} \end{array}$$

acts on Green functions: $G(p; q_0) \mapsto G(p; q)$

Groups of formal diffeomorphisms and invertible series

Group of invertible series with product:

$$G^{\text{inv}}(A) = \left\{ f(x) = 1 + \sum_{n=1}^{\infty} f_n \ x^n, \ f_n \in A \right\}$$
 abelian $\Leftrightarrow A \text{ commut}$
 $A = \mathbb{C} \text{ for } \Phi^3, \Phi^4,$
 $A = M_4(\mathbb{C}) \text{ for QED}$

 $abelian \Leftrightarrow A commutative$

Group of diffeomorphisms with composition:

$$G^{\mathrm{dif}} = \left\{ \varphi(x) = x + \sum_{n=1}^{\infty} \varphi_n \ x^{n+1}, \quad \varphi_n \in \mathbb{C} \right\}$$

Right action by composition:

$$G^{\mathrm{inv}} \times G^{\mathrm{dif}} \longrightarrow G^{\mathrm{inv}}$$

 $(f, \varphi) \mapsto f(\varphi)$

Semi-direct product:

$$G^{\mathrm{dif}} \ltimes G^{\mathrm{inv}} := G^{\mathrm{ren}}$$

Renormalization action:

$$G^{\mathrm{inv}} \times G^{\mathrm{ren}} \longrightarrow G^{\mathrm{inv}},$$

$$f(x) \times (\varphi(x), g(x)) \mapsto f^{\mathrm{ren}}(x) = f(\varphi(x)) \cdot g(x)$$

For bosons
$$(\phi, A_{\mu})$$
: $G^{\text{ren}} = \left\{ (\varphi(x), \frac{\varphi(x)}{x}) \in G^{\text{dif}} \ltimes G^{\text{inv}} \right\} \cong G^{\text{dif}} \implies f^{\text{ren}}(x) = f(\varphi(x)) \cdot \frac{\varphi(x)}{x}$

QFT subgroups:

$$G_{graphs} \iff f_n = \sum_{\Gamma} f(\Gamma)$$

 $G_{araphs} \subset G$

for QED also:

$$G_{trees} \iff f_n = \sum_t f(t)$$
 with $f(t) = \sum_{\Gamma} f(\Gamma)$ $G_{graphs} \subset G_{trees} \subset G$

with
$$f(t) = \sum_{\Gamma} f(\Gamma)$$

$$G_{graphs} \subset G_{trees} \subset G$$

BPHZ renormalization formula

To use Dyson formulas, need renormalization Z factors explicitely.

Bogoliubov, Parasiuk, Hepp, Zimmermann:

$$R_{p}(\Gamma) = U_{p}(\Gamma) + C_{p}(\Gamma) + \sum_{\substack{1 \text{PI } \gamma_{1}, \dots, \gamma_{l} \subset \Gamma \\ \gamma_{i} \cap \gamma_{j} = \emptyset}} U_{p}(\Gamma/\gamma_{1} \dots \gamma_{l}) C_{p_{1}}(\gamma_{1}) \cdots C_{p_{l}}(\gamma_{l}),$$

$$C_{p}(\Gamma) = -T_{\text{fixed } p}^{deg(\Gamma)} \left(U_{p}(\Gamma) + \sum_{\substack{1 \text{PI } \gamma_{1}, \dots, \gamma_{l} \subset \Gamma \\ \gamma_{i} \cap \gamma_{j} = \emptyset}} U_{p}(\Gamma/\gamma_{1} \dots \gamma_{l}) C_{p_{1}}(\gamma_{1}) \cdots C_{p_{l}}(\gamma_{l}) \right).$$

Here, the 1PI subgraphs γ 's contain all the cycles which give subdivergencies.

Then:
$$Z(g) = \sum_{1 \neq I} C(\Gamma) \ g^{|\Gamma|} \quad \text{and} \quad Z_2(e^2) = \sum_{1 \neq I} C^e(\Gamma) \ e^{2|\Gamma|}, \quad Z_3(e^2) = \sum_{1 \neq I} C^{\gamma}(\Gamma) \ e^{2|\Gamma|}.$$

⇒ Dyson global formulas not enough, need computations on Feynman graphs!

Hopf algebras of formal diffeomorphisms and invertible series

Toy model $A = \mathbb{C}$:

group
$$G$$

$$G \cong \operatorname{Hom}_{Alg}(\mathbb{C}(G), \mathbb{C})$$

 \iff coordinate ring $\mathbb{C}(G) := \operatorname{Fun}(G, \mathbb{C})$ = commutative Hopf algebra

Hopf algebra of invertible series:

$$\mathbb{C}(G^{\mathrm{inv}}) \cong \mathbb{C}[b_1, b_2, \dots]$$

$$\Delta^{\mathrm{inv}}b_n = \sum_{m=0}^n b_{n-m} \otimes b_m$$

$$b_n(f) = f_n = \frac{1}{n!} \frac{d^n f(0)}{dx^n}$$
$$\langle \Delta^{\text{inv}}(b_n), f \times g \rangle = b_n(f \cdot g)$$

Hopf algebra of diffeomorphisms (Faà di Bruno):

$$\mathbb{C}(G^{\mathrm{dif}}) \cong \mathbb{C}[a_1, a_2, \ldots]$$

$$\Delta^{\text{dif}} a_n = \sum_{m=0}^n a_{n-m} \otimes \text{polynomial}$$

$$a_n(\varphi) = \varphi_n = \frac{1}{(n+1)!} \frac{d^{n+1}\varphi(0)}{dx^{n+1}}$$

$$\langle \Delta^{\mathrm{dif}}(a_n), \varphi \times \psi \rangle = a_n(\varphi \circ \psi)$$

Right coaction:

$$\begin{array}{c} \delta: \mathbb{C}(G^{\mathrm{inv}}) \longrightarrow \mathbb{C}(G^{\mathrm{inv}}) \otimes \mathbb{C}(G^{\mathrm{dif}}) \\ \\ \langle \delta(b_n), f \times \varphi \rangle = b_n(f \circ \varphi) \end{array} \Longrightarrow \begin{array}{c} \mathbf{Semi-direct} \\ \mathbf{coproduct:} \end{array}$$

$$\mathcal{H}^{\mathrm{ren}} := \mathbb{C}(G^{\mathrm{dif}}) \ltimes \mathbb{C}(G^{\mathrm{inv}})$$

$$\Delta^{\text{ren}}(a_m \otimes b_n) = \Delta^{\text{dif}}(a_m) \left[(\delta \otimes \text{Id}) \Delta^{\text{inv}}(b_n) \right]$$

Renormalization coaction:

$$\delta^{\mathrm{ren}}: \mathbb{C}(G^{\mathrm{inv}}) \longrightarrow \mathbb{C}(G^{\mathrm{inv}}) \otimes \mathcal{H}^{\mathrm{ren}}, \quad \delta^{\mathrm{ren}}b_n = (\delta \otimes \mathrm{Id})\Delta^{\mathrm{inv}}(b_n)$$

!!!

For bosons:

$$\mathcal{H}^{\mathrm{ren}} \cong \mathbb{C}(G^{\mathrm{dif}})$$
 and $\delta^{\mathrm{ren}}b_n = \Delta^{\mathrm{dif}}b_n$

Hopf algebra on Feynman graphs

Question: Since $G_{graphs}^{\text{ren}} \hookrightarrow G^{\text{ren}} \implies \mathcal{H}^{\text{ren}} \longrightarrow \mathcal{H}_{graphs}^{\text{ren}} := \mathbb{C}[1\text{PI} \ \Gamma]$ via $a_n, b_n \mapsto \sum_{|\Gamma|=n} \Gamma$, can we define the renormalization coproduct on each Γ ?

Theorem. [Connes-Kreimer] For the scalar theory ϕ^3 :

1) $\mathcal{H}^{CK} = \mathbb{C}[1PI \ \Gamma]$ is a commutative and connected graded Hopf algebra, with coproduct

$$\Delta^{\mathrm{CK}}\Gamma = \Gamma \otimes 1 + \sum_{\substack{1 \text{PI} \ \gamma_1, \dots, \gamma_l \subset \Gamma \\ \gamma_i \cap \gamma_j = \emptyset}} \Gamma / (\gamma_1 \dots \gamma_l) \otimes (\gamma_1 \dots \gamma_l) + 1 \otimes \Gamma.$$

- 2) The BPHZ formula is equivalent to the coproduct Δ^{CK} : $R(\Gamma) = \langle U \otimes C, \Delta^{\text{CK}} \Gamma \rangle$.
- 3) The group of characters $G^{CK} := \text{Hom}_{Alg}(\mathcal{H}^{CK}, \mathbb{C})$ is the renormalization group.

Conclusions: 1) Feynman graphs = natural local coordinates in QFT (= basis for the algebra of functions)

- 2) By Feynman rules: connected graph = junction of 1PI graphs junction = disjoint union = free product
- 3) Green functions = characters of the algebra of connected Feynman graphs.

Hopf algebra on rooted trees

Hierarchy of divergences:

1PI Feynman graphs \longrightarrow Rooted trees decorated with simple divergencies

Problem for overlapping divergences - : need the difference of trees \Rightarrow forests

Theorem. [Kreimer] For the scalar theory ϕ^3 :

1) $\mathcal{H}_R = \mathbb{C}[T \text{ rooted trees}]$ is a commutative and connected graded Hopf algebra, with coproduct

$$\Delta T = T \otimes 1 + \sum_{\substack{\text{admissible} \\ \text{cuts}}}$$
 "what remains of T " \otimes "branches of T " $+ 1 \otimes T$.

2) The BPHZ formula is equivalent to the coproduct Δ^{K} : $R(T) = \langle U \otimes C, \Delta^{K}T \rangle$.

Alternative algebras for QED

For QED, f_n and $f(\Gamma) \in A = M_4(\mathbb{C})$ non-commutative: Fun $(G^{\text{inv}}(A), \mathbb{C}) \neq \mathbb{C}[b_n]$ or $\mathbb{C}[1\text{PI }\Gamma]!$

- 1) Matrix Basis Γ_{ij} for the matrix elements $f(\Gamma_{ij}) := (f(\Gamma))_{ij}$. elements: Then $\operatorname{Fun}(G^{\operatorname{inv}}(A), \mathbb{C}) = \mathbb{C}[\operatorname{1PI} \Gamma_{ij}]$, but junction \neq free product!
- 2) Non-commutative Green functions = "characters with values in A": $G^p \cong \operatorname{Hom}_{Alg}(\mathbb{C}\langle 1\operatorname{PI} \Gamma \rangle, A)$. characters: Then $\mathbb{C}\langle 1\operatorname{PI} \Gamma \rangle$ is an algebra, but not necessarily Hopf.

Simple Lemma.

$$\mathcal{H}^{\mathrm{inv}} := \mathrm{Fun}(G^{\mathrm{inv}}(A), A) \cong \mathbb{C}\langle b_n, n \in \mathbb{N} \rangle$$
 is a Hopf algebra with
$$\Delta^{\mathrm{inv}}b_n = b_n \otimes 1 + 1 \otimes b_n + \sum_{m=1}^{n-1} b_{n-m} \otimes b_m,$$
 and $G^{\mathrm{inv}}(A) \sim \mathrm{Hom}_{Alg}(\mathcal{H}^{\mathrm{inv}}, A)$. Moreover $\mathcal{H}^{\mathrm{inv}}_{ab} = \mathbb{C}(G^{\mathrm{inv}})$.

Then $\mathcal{H}^{\text{ren}} := \mathbb{C}(G^{\text{dif}}) \ltimes \mathcal{H}^{\text{inv}} = \text{non-comm. Hopf algebra} \Rightarrow \text{electron renormalization with} \quad \Delta^{\text{ren}}, \ \delta^{\text{ren}}$

Question: Since $G_{trees}^{\text{ren}} \hookrightarrow G^{\text{ren}} \implies \mathcal{H}^{\text{ren}} \longrightarrow \mathcal{H}_{trees}^{\text{ren}} := \mathbb{C}[t \in Y]$ via $a_n, b_n \mapsto \sum_{|t|=n} t$, can we define the renormalization coproduct on each QED tree?

Hopf algebras on planar binary rooted trees

Theorem. [Brouder-F.]

1) Charge renormalization: commutative Hopf $\mathcal{H}^{\alpha} = \mathbb{C}[\sqrt{t}, t \in Y]$ with coproduct

$$\Delta^{\alpha} \checkmark^{t} = \sum$$
 "what remains of \checkmark^{t} " \otimes "\-branches of t".

- 2) Electron renormalization: coaction $\Delta^e := (\delta^e \otimes \operatorname{Id}) \Delta_e^{\operatorname{inv}}$ of $\mathcal{H}^{\operatorname{qed}}$ on \mathcal{H}^e , where
- $\mathcal{H}^e = \mathbb{C}\langle Y \rangle/(1-1)$ is non-commutative Hopf with Δ_e^{inv} dual to product under $t \setminus s = t^{-s}$;
- $\delta^e: \mathcal{H}^e \longrightarrow \mathcal{H}^e \otimes \mathcal{H}^{\alpha}$ coaction extended from $\delta \swarrow^t = \Delta^{\alpha} \swarrow^t 1 \otimes \swarrow^t$;
- renormalization group: $\mathcal{H}^{\text{qed}} := \mathcal{H}^{\alpha} \ltimes \mathcal{H}^{e}$ with $\Delta^{\text{qed}} = \Delta^{\alpha} \times \Delta^{e}$.
- 3) Photon renormalization: coaction $\Delta^{\gamma} := m_{23}^3(\delta^{\gamma} \otimes \sigma)\Delta_{\gamma}^{\text{inv}}$ of \mathcal{H}^{α} on \mathcal{H}^{γ} , where
- $\mathcal{H}^{\gamma} = \mathbb{C}\langle Y \rangle/(1-1)$ is non-commutative Hopf with $\Delta_{\gamma}^{\text{inv}}$ dual to product over $t/s = \sqrt[t]{s}$;
- $\delta^{\gamma}: \mathcal{H}^{\gamma} \longrightarrow \mathcal{H}^{\gamma} \otimes \mathcal{H}^{\alpha}$ coaction extended from δ ;
- $\mathcal{H}^{\alpha} \ltimes \mathcal{H}^{\gamma} \longrightarrow \mathcal{H}^{\alpha}$ induced by the 1-cocycle $\sigma : \mathcal{H}^{\gamma} \longrightarrow \mathcal{H}^{\alpha}$ $\sigma(t_1 \dots t_n) = t_1 / \dots / t_n$.

Remark: $\Delta^{\gamma} \equiv \Delta^{\alpha}$ on single trees $t \in Y$!

Feed back in mathematics

- 1) Combinatorial Hopf algebras: Foissy, Holtkamp, Brouder, F., Krattenthaler, Loday, Ronco, Grossmann, Larson, Hoffman, Painate...
- 2) Relation with operads: Chapoton, Livernet, Foissy, Holtkamp, van der Laan, Loday, Ronco,...
- 3) Combinatorial groups: invent group law on tree-expanded series of the form $f(x) = \sum_{t \in Y} f(t) x^t$. Interesting composition!
- **4) Non-commutative Hopf algebras and groups:** look for new duality between groups and non-commutative Hopf algebras. Need a new coproduct with values in the *free product* of algebras. Bergman, Hausknecht, Fresse, F., Holtkamp,...

Feed back in physics

- 1) More computations and developpements: Kreimer, Broadhurst, Delbourgo, Ebrahimi-Fard, Bierenbaum,...
- 2) Hopf algebras everywhere: Connes, Kreimer's school, Pinter et al., Brouder, Fauser, F., Oeckl, Schmitt in QFT; Patras and Cassam-Chenai in quantum chemistry...

1) Combinatorial Hopf algebras

[Foissy, Holtkamp] $\mathcal{H}_{PRD} = \mathbb{C}\langle T \text{ planar rooted decorated trees} \rangle$

 $\Delta T = \sum_{\substack{\text{admissible} \\ \text{cuts}}}$ "what remains of T " \otimes "branches of T "

Hopf algebra non-commutative version of \mathcal{H}_R

[Brouder-F.]

 $\mathcal{H}^{\text{dif}} = \mathbb{C}\langle a_n, n \in \mathbb{N} \rangle$ $\Delta^{\text{dif}} a_n = \sum_{m=0}^n a_{n-m} \otimes \sum_{k=1}^m \binom{n}{k} \sum_{\substack{m_1 + \dots + m_k = m \\ m_1 > 0, \dots, m_k > 0}} a_{m_1} \cdots a_{m_k}$

Hopf algebra non-commutative version of $\mathbb{C}(G^{\mathrm{dif}})$

[F.-Krattenthaler]

$$S^{\text{dif}}a_n = \sum_{k=0}^{n-1} (-1)^{k+1} \sum_{\substack{n_1 + \dots + n_{k+1} = n \\ n_1, \dots, n_{k+1} > 0}} \sum_{\substack{m_1 + \dots + m_k = k \\ m_1 + \dots + m_h \ge h \\ h = 1, \dots, k-1}} {\binom{n_1 + 1}{m_1} \cdots \binom{n_k + 1}{m_k}} \ a_{n_1} \cdots a_{n_k} a_{n_{k+1}}$$

explicit non-commutative antipode

[Brouder-F.]

 \mathcal{H}^{α} extends naturally to $\widetilde{\mathcal{H}}^{\alpha} := \mathbb{C}\langle \vee^t, t \in Y \rangle$

Hopf algebra analogue to \mathcal{H}^{dif} non-commutative version of \mathcal{H}^{α}

2) Relation with operads

[Chapoton-Livernet]

 $L := Prim((\mathcal{H}_R)^*) \implies \text{Lie algebra from the free } pre\text{-}Lie algebra \text{ on one generator}$

[Foissy, Holtkamp, Patricia?]

$$\widetilde{\mathcal{H}^{lpha}}\cong(\widetilde{\mathcal{H}^{lpha}})^{st}\cong\mathcal{H}^{\mathrm{LR}}$$

related to the Loday-Ronco Hopf algebra \implies free $dendriform\ Hopf\ algebra$

[van der Laan]

$$\mathcal{P}$$
 operad \Longrightarrow $S(\oplus \mathcal{P}(n)_{S_n})$ commutative Hopf algebra \mathcal{P} non- Σ operad \Longrightarrow $T(\oplus \mathcal{P}(n))$ Hopf algebra

operadic version

[van der Laan]

$$\mathcal{F}$$
 operad of Feynman graphs $\Rightarrow S(\oplus \mathcal{F}(n)_{S_n}) = \mathcal{H}^{CK}$

3) Combinatorial groups

formal symbols x^t , for any tree $t \in Y$. Tree-expanded series:

Invertible series for the electron:

$$G^e := \left\{ f(x) = \sum_{t \in Y} f(t) \ x^t, \ f(1) = 1 \right\}$$

group with the product under $f(x)\backslash g(x) := \sum_{s} f(t) g(s) x^{t\backslash s}$

Invertible series for the photon:

$$G^{\gamma} = \left\{ f(x) = \sum_{t \in Y} f(t) \ x^{t}, \ f(1) = 1 \right\}$$

group with the product over $f(x)/g(x) := \sum f(t) g(s) x^{t/s}$

Diffemorphisms for the charge:

$$G^{\alpha} = \left\{ \varphi(x) = \sum_{t \in Y} \varphi(t) x^{Y \setminus t}, \ \varphi(1) = 1 \right\}$$

group with the composition law $(\varphi \circ \psi)(x) := \varphi(\psi(x))$

Composition:

$$\psi(x)^t := \mu_t(\psi(x))$$

 $\Leftrightarrow \psi(x) \text{ in each vertex of } t$

where μ_t is the monomial which describes t as a sequence of over and under products of Y

$$\stackrel{\checkmark}{Y} = (Y \backslash Y) / Y$$

For instance:
$$= (Y \setminus Y)/Y$$
 hence $\mu_{\searrow}(s) = (s \setminus s)/s$

Theorem. [F.]

- 1) The sets G^e , G^{γ} and G^{α} form non-abelian groups.
- and $G^{\alpha} \ltimes G^{e} \cong \operatorname{Hom}_{Alg}(\mathcal{H}^{\operatorname{qed}}, A)$ $G^{\alpha} \cong \operatorname{Hom}_{Alg}(\mathcal{H}^{\alpha}, \mathbb{C})$ 2) QED renormalization at tree-level:
- 3) The "order" map $| \cdot | : Y \longrightarrow \mathbb{N}$ induces group projections

$$G^{\alpha} \longrightarrow G_{trees}^{\mathrm{dif}} \subset G^{\mathrm{dif}}, \qquad G^{\gamma} \longrightarrow G_{trees}^{\mathrm{inv}} \subset G^{\mathrm{inv}}, \qquad G^{e} \longrightarrow G_{trees}^{\mathrm{inv}} \subset G^{\mathrm{inv}}.$$

$$G^e \longrightarrow G_{trees}^{inv} \subset G^{inv}$$
.

4) Non-commutative Hopf algebras and groups

Fact:

 $G^{\text{inv}}(A)$ still group if A non-commutative, and

 $\mathcal{H}^{\text{inv}} = \text{Fun}(G^{\text{inv}}(A), A) = \mathbb{C}\langle b_n, n \in \mathbb{N} \rangle$ non-commutative Hopf

Question:

which duality "group $G \longleftrightarrow \text{non-commutative Hopf } \mathcal{H}$ "?

Answer:

replace coproduct $\Delta: \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ with $\Delta_*: \mathcal{H} \longrightarrow \mathcal{H} \star \mathcal{H}$,

where $\star =$ free product, such that $T(U \oplus V) \cong T(U) \star T(V)$.

Call $\mathcal{H}_* = (\mathcal{H}, \Delta_*)$ and look for duality $G \cong \operatorname{Hom}_{Alg}(\mathcal{H}_*, A)$.

Co-groups in associative algebras: [Bergman-Hausknecht,Fresse]

Group of invertible series: $\Delta_*^{\text{inv}}: \mathcal{H}^{\text{inv}} \longrightarrow \mathcal{H}^{\text{inv}} \star \mathcal{H}^{\text{inv}}, \quad \Delta_*^{\text{inv}}(b_n) = \Delta^{\text{inv}}(b_n) \quad \text{well defined and co-associative!}$

Moreover $G^{\text{inv}}(A) \cong \text{Hom}_{Alg}(\mathcal{H}_*^{\text{inv}}, A)$.

 $G^{\mathrm{dif}}(A)$ not a group, because \circ not associative.

Group of diffeomorphisms:

 $\Delta^{\text{dif}}_*: \mathcal{H}^{\text{dif}} \longrightarrow \mathcal{H}^{\text{dif}} \star \mathcal{H}^{\text{dif}}, \quad \Delta^{\text{dif}}_*(a_n) = \Delta^{\text{dif}}(a_n)$ well defined but not co-associative!

[Holtkamp] on trees.