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Physics Matter Forces Interactions
(particles) (fields)
classical: e galaxies e gravitational macro:
e planets, stars (acts on mass, int. 10740) position and velocity
certainty
e cosmic rays e weak
(acts on “flavour”, int. 1075)
e molecule = group of atomes | e residual electromagnetic B
(chemical link = exchange of e Fem N+
([ ]
electrons) Tf ;F
e atom = kernel + electrons | e electromagnetic tot
(acts on electric charge, int. 1072)
e X rays
quantum: e kernel = group of nucleons | e residual strong micro:
position or velocity
uncertainty ® 7y rays

particles = fields

e nucleon = group of 3 quarks
of type u, d

(proton p = uud, neutron n = udd)

e quark (never saw isolated)

e strong

(acts on “colour”, int. 1)

e strong force confinement

nKp—ke_—kDe

e




Particles Fermions _ . Bosons Feynman graphs
elementary e leptons : (6_) (“) (T) e photon v (QED) s e~ te — s e te
Ve vy, vy
particles
(mass?, charge, 3 flavours) I
= quantum
fields
e WH W, Z0(BW) o | p s yte 40
e quarks : () (¢ (Z) e gluon g 7 (QCD)  o0eee u—sd+u+d
(mass, charge, 3 flavours, —%<
3 colours = red, blu, green) e graviton 7T e
o Higes HT, H-, H*? .....
(spontaneous symmetry break)
hadrons = e baryons (3 quarks) == |e mesons (2 quarks) —— Att L p gt
groups of quarks | p = wud, n = udd, A" = |7t =wud, 77 = ud...




Quantum = (canonical 4+ path integrals) quantization of classical

Fields Observables Measures
classical | functionals F' of field ¢ values F(p) € R
quantum | self-adjoint operators O expectation value v'Ov € R

on states v € Hilbert
enough: G(z" — y*) = probability from z* to y*
where z# € Minkowski = R* with metric (—1,1,1,1), u =0,1,2,3




From classical to quantum

oL oL
Lagrangian L£(p, 0,0) = Lree + Lint — Euler equation — — 0 (—) =0 —
8 dp "\ (Ou)
@o(t, x) = /71 (a elpr—wpt) 4 a*e—i(px_%t)) 7d3p (wave)
| J2E, \ p (2r)?
Ling =0 — classical: a,, a;; = numbers € R or C
quantum: aj, a, = annihilation and creation operators
o) = eolo) + [ Golo? = )50y
Eint :] ¥ —
j = source field classical: Go(z" — y") = Green function (resolvant)
quantum: G(z# — y*) = Go(zt — y*) |
classical: perturbative solutions in g
quantum: perturbative series in g indexed by Feynman graphs
Lint =g ¢" .
g = coupling constant G(z'—y") = ZGn(mﬂ_yﬂ) g = Z Z Upiyn(T) g" = Z Up_yn(T) g™
n>0 n |T|=n r
Upi_yn(I') = amplitude (integral) of Feynman graph I' with n loops




Free theories

Field Free Lagrangian Euler equation Green function
on momentum p*
p(zt) € C Lxe = 30,0° — sm?¢* Klein-Gordon: Go(p) = e €C

boson (spin 0, mass m)

(55— V2+m?)¢ =0

() € C*

fermion (spin 1, mass m)

Lpir = Y(iy*0, — m)y

v = 4 x 4 Dirac matrices

Dirac:

(iv"0y —m)p =0

So(p) = S € Ma(C)

Ar(z¥) e C*
boson (spin 1, mass 0)

Lataa = —3(OMAY — 97 A1)
_%(@VAM)Q

A = mass parameter

Maxwell:
@M(@“A” — OV AM)
+X0,0" A" =0

— —iguw T - A—1 PuPv
p2tie A (p?+ie)?

c M4((C)




Interacting theories

Interacting Lagrangian Feynman graphs Green function
theory = series
o' Lr(d) — §90" Glp) =) Uy(I) g"
: : E Iegt
4——§—>— 4—-%3— S(p) _ Z U;(F) e2|F|
_ I’ fermion
QED 'CDW(,@D) + 'C]Wax(AM) — € ¢7“¢Au
= abelian Gauge ‘W‘Q‘”’ ’-%* D,.(p) = Z U;(I‘) 2T
T" boson

More: ¢3, scalar QED, QCD = non-abelian Gauge, Yukawa, ...

Feynman graph = graph I' with

- arrows depending on the fields

- valence of vertices depending on the interaction term

Feynman amplitude = integral U(I') computed from the graph



Divergent Feynman integrals

1PI Feynman graph = graph I' without bridges

Feynman rule: The Feynman amplitude is multiplicative with respect to junction of graphs

4

1PI graphs: — U]f <_.QS_> = So(p) (—ie) fDO,W(k)’YVSO(p - k)’Y“% (—ie) So(p)

p

connected graphs: = Uj ( L ) = Ue< _Qz_> So(p)~! U;( _Qz_>

Problems: U[I) =00 ! —> find finite R(T")

In particular: - each cycle in I' gives a divergent integral,
- each cycle in a cycle gives a subdivergency in a divergency.

g,e,m, ... # measured values !

—> find f th tive:
call them bare: gg, eg, My, .. nd go, €9, mo from the effective: g,e,m




Dyson renormalization formulas

Bare

Gpig) =D Up(D) gy =D Gulp) gi  with  Gu(p) = Y Up(I)
T n

IT|=n

Green functions:

same for S(p;el) and D, (p; €3) = fine structure constant ag = 9

Glpig) => Ry(I) g™ => Gulp) g" with Gu(p)= > _ R,(I)

IT|=n

Renormalized
Green functions:

same for S(p;e?) and D, (p; €?) = a= % ~
Glg) = Glgo) Z7(g) with  go(9) = 9 Z7'(9)
Dyson and Ward: S(a) = S(ag) Zy ()

with  ag(a) = a Z;'(a)

Renormalization factors: Z=1+0(¢%, Z3=1-0(a), Zy=1+0(a)
Coupling constants: go=9g+90(g*), ay=a—a0(a)
Renormalization coupling " renormalization acts on Green functions:

group constants factors G(p; go) — G(p; 9)




Groups of formal diffeomorphisms and invertible series

Group of invertible series
with product:

G™(A) = {f(:z:) =1+ fua", fu€ A}
n=1

abelian < A commutative
A = C for ®3, o4,
A = M,(C) for QED

Gdif X Ginv - Gren

Group of diffeomorphisms qf B = nal
with composition: G =) =at E:l P T €
-
Right action Gy qdif __, Ginv Semi-direct
by composition: (f, ) — f(p) product:
Ginv X Gren SN Ginv

Renormalization action:

flx)  x (o), g9(x) = [2) = fle(x)) g(z)

For bosons (¢, A,u): Gren — {(QO(ZC),@) c Gdif X Ginv} o Gdif —_— fren(x)

= flp()) - 2

QFT subgroups: | Goraphs = [o = Z f(L)
T

for QED also: Girees <  fo= Z f(t)
t

with [0 =) f(I)

r

Ggmphs cGqG

Ggmphs C Gtrees cG




BPHZ renormalization formula

To use Dyson formulas, need renormalization Z factors explicitely.

> U/ y1) Cop(1) -+ (),

Bogoliubov, RS
Parasiuk, i =0
Zimmermann: Cp(I') = ~Tixed p Up(T') + E - Up(U/71m) Cp (1) -+ Cy()

Here, the 1PI subgraphs +’s contain all the cycles which give subdivergencies.

Then:  Z(g)= Y M) ¢" and  Z(?) =

1PI T 1PI T

cor) M Zg(e?) = ) on(T) M.

1PI T

—> Dyson global formulas not enough, need computations on Feynman graphs!




Hopf algebras of formal diffeomorphisms and invertible series

Toy model A =C :

group G
G= HomAlg((C(G), (C)

Hopf algebra
of invertible series:

C(G™) = Clby, by, ...]

Ainvbn = Zn: bn—m ® bm

m=0

Hopf algebra
of diffeomorphisms
(Faa di Bruno):

C(Gdif) = (C[al, as, ]

dif
A"a,

n
Z Gp—m @ polynomial

m=0

Right
coaction:

§: C(G™) — C(G™) ® C(GY)

(0(bn), f X 0) = bu(f o)

Semi-direct
coproduct:

coordinate ring C(G) := Fun(G, C)
= commutative Hopf algebra

_ 1d"f(0)

! dan

(A (by,), f < g) = ba(f - 9)

1 d"p(0)
n+1)! dzntt

an(p) = pn = (

<Adif(an): p x 1) = an(p o)

Hren - — (C(Gdif) X C(Ginv)

Aren(am R bn) _ Adif(am) [((5 X Id)Ainv(bn)]

Renormalization coaction:

gren . (C(Ginv) _ (C(Ginv) ® f]_(lren7

§renp, = (5 @ Id)A™ (b,)

Hren o C(Gdif)

For bosons:

and 0"y, = Adifp,




Hopf algebra on Feynman graphs

Question:  Since ren L — G —=  H— H =C[IPI T] via a,,b, — ZF,

graphs graphs
[T[=n

can we define the renormalization coproduct on each I'?

Theorem. [Connes-Kreimer] For the scalar theory ¢?:

1) H% = C[1PI T is a commutative and connected graded Hopf algebra, with coproduct

ART=T@l+ > T/(m.m) @ (mm) +1aTl.

2) The BPHZ formula is equivalent to the coproduct A“%:  R(T') = (U ® C, A“KT).

3) The group of characters GK .= Hom Alg(’HCK , C) is the renormalization group.

Example: ACK(@)z@ o1+ o +2 (O @% +1®@

Conclusions: 1) Feynman graphs = natural local coordinates in QFT (= basis for the algebra of functions)

2) By Feynman rules:  connected graph = junction of 1PI graphs

junction = disjoint union = free product

3) Green functions = characters of the algebra of connected Feynman graphs.



Hopf algebra on rooted trees

Hierarchy

of divergences: 1PI Feynman graphs —— Rooted trees decorated with simple divergencies

of. k-

Problem for overlapping divergences {D— : need the difference of trees = forests

Theorem. [Kreimer] For the scalar theory ¢°:

1) Hr = C|[T rooted trees] is a commutative and connected graded Hopf algebra, with coproduct

AT =Tx1+ Z “what remains of 77 ® “branches of 77 +1QT.

admissible
cuts

2) The BPHZ formula is equivalent to the coproduct AR:  R(T) = (U @ C, AXT).




Alternative algebras for QED

For QED, f, and f(T') € A = My(C) non-commutative: Fun(G™(A),C) # C[b,] or C[1PI T!

1) Matrix Basis I';; for the matrix elements f(I';) := (f(T')),;-
elements: Then Fun(G™(A),C) = C[1PI I';;], but junction # free product!

2) Non-commutative  Green functions = “characters with values in A”:  GP = Hom 4,,(C(1PI I'), A).
characters: Then C(1PIT') is an algebra, but not necessarily Hopf.

H™ = Fun(G™(A),A) = C(b,,n € N) is a Hopf algebra with
n—1

Simple Ay = by @1+ 100, + Y by @ b,
Lemma. m—1

and  G™(A) ~ Hom g, (H™, A). Moreover H2V = C(G™).

Then H™ := C(GM) x H" = non-comm. Hopf algebra = electron renormalization with ~ Ar®, =8

Question: Since G}, — G" — H"—HSE =C[teY] via a,b, Zt,

trees trees

can we define the renormalization coproduct on each QED tree?



Hopf algebras on planar binary rooted trees

Theorem. [Brouder-F']

1) Charge renormalization: commutative Hopf H® = (C[\/t ,t €Y] with coproduct

A \/t = Z “what remains of \/t 7 ® “\-branches of ¢”.

2) Electron renormalization: coaction A°:= (§°®Id)A™ of H® on H¢ where

S
e H*=C(Y)/(1— 1) is non-commutative Hopf with A" dual to product under t\s =t ;
)¢ H* — H*®H" coaction extended from 5\/t = A“ \/t -1 ® \/t ;

e renormalization group:  Hd := H* x H¢ with A = A® x A,

3) Photon renormalization: coaction A7 :=m3;(67 ® o)A of H* on H", where

t
e H'=C(Y)/(1— 1) is non-commutative Hopf with A" dual to product over t/s = 's;

e . H" — H"®H" coaction extended from 0;

o H* x H'—>»H" induced by the 1-cocycle o :HY — H* o(ty...t,) =t1/ - /tn.

Remark: A” = A“ on single trees t € Y !



Feed back in mathematics
1) Combinatorial Hopf algebras: Foissy, Holtkamp, Brouder, F., Krattenthaler, Loday, Ronco, Grossmann,
Larson, Hoffman, Painate...
2) Relation with operads: Chapoton, Livernet, Foissy, Holtkamp, van der Laan, Loday, Ronco,...

3) Combinatorial groups: invent group law on tree-expanded series of the form f(x) =", f(¢) 2"
Interesting composition!

4) Non-commutative Hopf algebras and groups: look for new duality between groups and non-commutative
Hopf algebras. Need a new coproduct with values in the free product of algebras. Bergman, Hausknecht, Fresse,
F., Holtkamp,...

Feed back in physics
1) More computations and developpements: Kreimer, Broadhurst, Delbourgo, Ebrahimi-Fard, Bieren-
baum,...

2) Hopf algebras everywhere: Connes, Kreimer’s school, Pinter et al., Brouder, Fauser, F., Oeckl, Schmitt
in QFT; Patras and Cassam-Chenai in quantum chemistry...



1) Combinatorial Hopf algebras

[Foissy,
Holtkamp]

[Brouder-F']

[F.-Krattenthaler]

[Brouder-F']

Hprp = C(T planar rooted decorated trees)

AT = Z “what remains of 7”7 ® “branches of T

admissible
cuts

Hopf algebra
non-commutative version of Hg

HY = C(a,,n € N)

n

Adifan = Z Gp—m & Z (Z)
k=1

m=0

Hopf algebra
non-commutative version of C(G4)

explicit
non-commutative
antipode

n—1
dif — k+1 ny+1 ni+1
S a”_z(_l) Z Z (ml)“'(mk)a’”l'“ankankﬂ

k=0 nytoAdngpp=n my+e+mp=k

MY yeeey nk+1>0 m1+"'+mh2h

h=1,..., k—1
> t
H® extends naturally to H*:=C(\/ ,t€Y)

Hopf algebra analogue to Hf
non-commutative version of H%



2) Relation with operads

[Chapoton-Livernet] L :=Prim((Hgr)*) = Lie algebra from the free pre-Lie algebra on one generator

[Foissy, Holtkamp, Ho o (7”_[@)* ~ LR related to the Loday-Ronco Hopf algebra
Patricia?] B B —> free dendriform Hopf algebra

P operad = S(&P(n)g,) commutative Hopf algebra

[van der Laan] P non-X operad = T(&P(n)) Hopf algebra

operadic version

[van der Laan] F operad of Feynman graphs = S(®F(n)s,) = HK




3) Combinatorial groups

Tree-expanded series: formal symbols

ot | for any treet € Y.

: tibl ) group with the product under
nvertible series e._ _ t _ t\s
G° = x) = t) z 1 = t
for the electron: {f( ) Zf( ) } Z J() gls) @
tey t,seY
. . group Wlth the product over
Invertible series _ —Z £ 1 Z (1) s
for the photon:
tey t,seY
Diffemorphisms Z ot Y\t o) =1 group with the composition law
for the charge: = (po)(x) = @((z))
Y(x) = w(P(x)) where 1 is the monomial which describes ¢ as

Composition:

< (z) in each vertex of ¢

a sequence of over and under products of Y

For instance: % = (Y\Y)/Y  hence

Theorem. [F.]

u% (s) = (s\s)/s

trees

1) The sets G¢, G7 and G form non-abelian groups.

2) QED renormalization at tree-level: G = Homy;,(H", C) and G x G = Homy, (H, A)
3) The “order” map | | :Y — N induces group projections
Ge —» Gdlf C Gdif, G —» Glnv C Ginv’ Ge —» Glnv C Ginv.

trees trees




4) Non-commutative Hopf algebras and groups

G (A) still group if A non-commutative, and

Fact: : .
H™ = Fun(G™(A), A) = C(b,,n € N) non-commutative Hopf
Question: which duality “ group G ~«— non-commutative Hopt H 7 7
Answer: replace coproduct A:H —H®H with A,:H —H*H,
where  * = free product, such that T(U V) =TU)xT(V).

Call H, = (H,A,) and look for duality G = Hom;,(H., A).

= Co-groups in associative algebras: [Bergman-Hausknecht,Fresse]
Group of AV IV Y Y AV ) = AV(D,)  well defined and co-associative!
invertible series: Moreover G (A) 22 Hom y,(H™, A).

GU(A) not a group, because o not associative.

G}""“p of ] ASE it ity it Adif(g)) = Adif(g,)  well defined but not co-associative!
diffeomorphisms:

= [Holtkamp] on trees.



