From gauge fields to direct connections on gauge groupoids

Alessandra Frabetti

Institut Camille Jordan – Université Lyon 1

Women at the intersection of Mathematics and Theoretical Physics February 24, 2021 Perimeter Institute

Based on a joint work with

Sara Azzali (Hamburg), Youness Boutaïb (Aachen) and Sylvie Paycha (Potsdam)

in progress also with Alfonso Garmendia (Potsdam)

Geometric model underlying field and gauge theories

- space-time manifold M
- vector/spinor bundle $E \rightarrow M$ with fibres V
- (matter) field $\psi : M \to E$ section of E \Rightarrow configuration space $\mathcal{E} = \Gamma(M, E)$
- dynamics via action $S[\psi]$ (isolated particles) \Rightarrow use derivatives $D_X\psi$ i.e. linear connection on E
- symmetries by Lie group G acting on fibres of E
- principal *G*-bundle $P \rightarrow M$ s.t. $E = P \times_G V$ (associated bundle)
- gauge bosons (force carriers) A ∈ Ω¹_{loc}(M, g) local form of principal connection on P
- gauge group $\widehat{G} = \operatorname{Aut}_M(P) = \Gamma(M, P^{ad}) = \operatorname{Aut}_M(E)$ \Rightarrow acts on ψ and A
- dynamics via \hat{G} -inv. action $S[\psi, A]$ (interacting particles) \Rightarrow new covariant derivative $D_X^A \psi$

	ſ	connection on P
Idea: replace	ł	+ gauge group (+ Lie algebra g)

by $\begin{cases} \text{ direct connection} \\ \text{ on gauge groupoid of } P \\ (+ \text{ Lie algebroid of } P) \end{cases}$

Infinitesimal structure: Lie algebroids

- Lie algebroid: vector bundle A→ M with a Lie bracket [,]_A on sections Γ(A) and an anchor map a: A→ TM inducing a derivation on sections w.r.t. vector fields on M:
 [X, fY]_A = f[X, Y]_A + a(X)(f)Y
- Atiyah Lie algebroid of a principal *G*-bundle $\pi : P \to M$: $A(P) = TP/G \to M$ with fibres $A_x(P) \cong T_{P_x}P$, anchor $A(P) \to TM$ induced by $d\pi : TP \to TM$ via quotient map $j : TP \to TP/G$ and Lie bracket of *G*-invariant vector felds on *P*.

- Trivial *G*-bundle: $P = M \times G \to M \Rightarrow A(M \times G) = TM \oplus (M \times \mathfrak{g}) \xrightarrow{id+0} TM$ where $\mathfrak{g} = \operatorname{Lie}(G)$.
- Frame bundle of a vector bundle $E \to M$ of rank r: $F(E) = \bigcup_{x \in M} \operatorname{Iso}(\mathbb{R}^r, E_x) \to M$

 $\Rightarrow \quad A(F(E)) = \operatorname{Der}(E) \to TM \text{ bundle of derivative endomorphisms} \\ \text{s.t. } \Gamma(\operatorname{Der}(E)) = \text{derivations of } \Gamma(E).$

Principal connections, gauge fields and covariant derivative

- Principal connection on P: five equivalent presentations
- G-equivariant horizontal subbundle HP ⊂ TP → P
 s.t. TP = HP ⊕ VP, where the vertical bundle VP (spaces tangent to the fibres) is canonical.
- 2) G-equivariant connection 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ s.t. $\omega_p(\hat{A}_p) = A$ if \hat{A} is the (vertical) fundamental vector field on P det. by $A \in \mathfrak{g}$, and $\omega_p(B_p) = 0$ if $B_p \in H_pP$ is horizontal.
- 3) infinitesimal connection $\delta: TM \to A(P) \text{ s.t. } j^{-1}(\delta(X)) \in HP$ is the horizontal lift of $X \in TM$.
- parallel transport τ_γ(y, x) : P_x → P_y along a curve γ of M from x to y given by the horizontal lift of γ.
- 5) (local) gauge fields $| \{A_{\alpha} \in \Omega^{1}(U_{\alpha}, \mathfrak{g})\} |$ = pull back of ω along local sections of P.
- Covariant derivative on sections of E: bundle map $D^A : TM \to Der(E)$ equivalent to $C^{\infty}(M)$ -derivation $D^A_X : \Gamma(E) \to \Gamma(E)$ for $X \in \Gamma(TM)$ given only locally by

$$D^{\mathbf{A}}_{\mathbf{X}}(\psi)_{|U_{\alpha}} = \sum_{\mu,i,j} \left(\mathbf{X}^{\mu} \partial_{\mu} \psi^{i} + \mathbf{X}^{\mu} \mathbf{A}^{i}_{\mu j} \psi^{j} \right) \mathbf{e}_{i}$$

if $X = X^{\mu}\partial_{\mu}$ in coordinates x^{μ} on $U_{\alpha} \subset M$ $\psi = \psi^{i}e_{i}$ on a local basis (e^{i}) of $E_{U_{\alpha}}$ and $A^{i}_{j} = A^{i}_{\mu j}dx^{\mu}$ are the components of the gauge field A in terms of generators of \mathfrak{g} .

Lie groupoids

• Lie groupoid $\mathcal{G} \rightrightarrows \mathcal{M}$: bi-fibred manifold $\mathcal{G} = \bigcup_{(y,x) \in \mathcal{M} \times \mathcal{M}} \mathcal{G}_x^x$

with elements $a_{yx} \in \mathcal{G}_x^y$ called **arrows**

 $\begin{array}{ll} \text{projections} \quad s,t:\mathcal{G} \rightarrow M \ \left\{ \begin{array}{ll} \text{source} \quad s(a_{y_X}) = x \\ \text{target} \quad t(a_{y_X}) = y \end{array} \right. \end{array}$

such that

- arrows can be **composed**: $b_{zy}a_{yx} \in \mathcal{G}_x^z$ if $s(b_{zy}) = t(a_{yx})$ (composition is associative),
- there are units $u(x) = 1_x \in \mathcal{G}_x^x$ and $M \equiv u(M) \subset \mathcal{G}$,
- each arrow $a_{yx} \in \mathcal{G}_x^y$ has an **inverse** $a_{yx}^{-1} \in \mathcal{G}_y^x$.

The induced map $(t, s) : \mathcal{G} \to M \times M$ is called the **anchor**.

Each \mathcal{G}_x^x is a Lie group, called the **vertex group** or **isotropy**.

• Infinitesimal structure of Lie groupoid = Lie algebroid:

$$\mathcal{LG} = \bigcup_{x \in M} T_{1_x} \mathcal{G}_x \to TM$$

Gauge groupoids

- Gauge groupoid of principal G-bdl $P \to M$: $\mathcal{G}(P) = P \times_G P \rightrightarrows M$ contains equivalence classes [p,q] under $(p,q) \sim (pg,qg)$ for $g \in G$. $\Rightarrow 1$) $\mathcal{L}(\mathcal{G}(P)) = A(P) \to TM$ 2) $\mathcal{G}(P)$ acts on $E = P \times_G V$: $\mathcal{G}(P) \times_M E = \{([p,q], [r,v]), \pi(q) = \pi(r)\} \to E$ with action $\rho_{[p,q]}([r,v]) = [p,gv]$ where $g \in G$ s.t. r = qg, 3) $\widehat{G} = \operatorname{Aut}_M(P) \subset \mathcal{G}(P)$ given by $\Phi \mapsto [\Phi(p), p]$ for any $p \in P$.
- Pair groupoid: $Pair(M) = M \times M \rightrightarrows M$ for $P = M \times \{1\} \to M$ \Rightarrow Lie algebroid $= \mathcal{L}(Pair(M)) = TM \xrightarrow{id} TM.$
- Trivial Lie groupoid with fibre G: $M \times G \times M \rightrightarrows M$ for $P = M \times G \rightarrow M$ \Rightarrow Lie algebroid $= TM \oplus (M \times \mathfrak{g}) \xrightarrow{id+0} TM$.
- Frame groupoid of $E \to M$: $Iso(E) = \bigcup_{x,y} Iso(E_y, E_x)$ for P = F(E) \Rightarrow Lie algebroid = $Der(E) \to TM$

If the structure gp of E reduces to $G \subset GL_r(\mathbb{R})$ and $P \subset F(E)$ then $| \mathcal{G}(P) \hookrightarrow Iso(E)$

Direct connections on Lie groupoids

- Local map $| \psi : \mathcal{G} \ast \rightarrow \mathcal{G}' |$ between two groupoids: map $\psi : \mathcal{U} \subset \mathcal{G} \rightarrow \mathcal{G}'$ defined on an open neighborhood \mathcal{U} of the units $u(M) \subset \mathcal{G}$, which commutes with s, t and u. Local morphism: local map which also preserves composition (hence inversion).
- [Teleman 2004 in the linear case, Kock 2007 similar, ABFP general]

Direct connection on $\mathcal{G} \rightrightarrows M$: local right inverse of the anchor which preserves units, i.e. $\Gamma : \operatorname{Pair}(M) \ast \rightarrow \mathcal{G}$ defined on an open n. \mathcal{U}_{Δ} of the diagonal $\Delta \subset \operatorname{Pair}(M)$ s.t.

$$\Gamma(y,x)\in \mathcal{G}_x^y \text{ for all } (y,x)\in \mathcal{U}_\Delta \quad \text{and} \quad \boxed{\Gamma(x,x)=1_x\in \mathcal{G}_x^x} \text{ for all } x\in M$$

A Lie groupoid with a direct connection is a gauge groupoid.

- If $\mathcal{G} \times_M E \to E$ is a linear action, then a direct connection Γ on \mathcal{G} induces a transport on fibres $E_x \rightarrow E_y$ which is not necessarily a parallel displacement!
- Γ natural if $|\Gamma(x, y)\Gamma(y, x) = 1_x |$ for all $x \in M$ and suitable y.
- Curvature of Γ at x: $\begin{array}{c} R^{\Gamma}(z,y,x) = \Gamma(z,x)^{-1}\Gamma(z,y)\,\Gamma(y,x) \in \mathcal{G}_{x}^{x} \\ \Gamma \text{ is flat if } R^{\Gamma}(_,_,x) = 1_{x} \text{ for any } x, \text{ i.e. } \Gamma \text{ is a groupoid morphism.} \end{array}$ for suitable y, z.

Relationship to usual connections

Assume M is a manifold with affine connection ∇^M and local geodesics.

Parallel displacement τ on $P \to M$ along small geodesics (equivalent to a principal connection ω on P hence to gauge fields A) defines a direct connection Γ^{τ} on $\mathcal{G}(P) \rightrightarrows M$ by

 $\Gamma^{ au}(y,x) = \begin{bmatrix} au(y,x)(p), p \end{bmatrix}$ for any choice of $p \in P_x$

Same for $E \rightarrow M$ and $\operatorname{Iso}(E)$ [Teleman 2004].

• Viceversa, a direct connection Γ on $\mathcal{G}(P) \rightrightarrows M$ induces an infinitesimal connection on the Lie algebroid $A(P) \rightarrow TM$ by

$$\nabla^{\mathsf{\Gamma}}(\dot{\gamma}(0)) = D\mathsf{\Gamma}_{|M}(\dot{\gamma}(0)) = \frac{d}{dt}_{|t=0}\mathsf{\Gamma}(\gamma(t), x).$$

hence a principal connection ω^{Γ} on *P*.

- Apply maps $\omega \mapsto \tau \mapsto \Gamma^{\tau} \mapsto \omega^{\Gamma^{\tau}}$, then $\omega^{\Gamma^{\tau}} = \omega$ on P.
- Viceversa, if apply maps $\Gamma \mapsto \omega^{\Gamma} \mapsto \tau^{\Gamma} \mapsto \Gamma^{\tau^{\Gamma}}$, then $\Gamma^{\tau^{\Gamma}} \neq \Gamma$ on $\mathcal{G}(P)$ in general. There are direct connections on $\mathcal{G}(P)$ which are not parallel displacements!

Examples

- $M = \mathbb{R}$ with flat connection $\nabla^M_{\partial_x}(h(x) \partial_x) = h'(x) \partial_x$.
- $E = M \times \mathbb{R} \to M$ with global section $e_1(x) = (x, 1) \in E_x$ and linear connection $\nabla^E_{\partial_x} : \Gamma(E) \to \Gamma(E)$ given by $f \in C^{\infty}(M)$ s.t. $\nabla^E_{\partial_x} e_1 = f e_1$.
- The induced **parallel transport** along a geodesic from x to y is the isomorphism $\tau(y, x) : E_x \to E_y$ defined by $\tau(y, x) \xi_0 e_1(x) = \xi(y) e_1(y)$ solution of the ODE

$$\nabla_{\partial_x}^E \big(\xi(x) \, e_1(x) \big) = \big(\xi'(x) + \xi(x) f(x) \big) e_1(x) = 0$$

with initial value $\xi(x) e_1(x) = \xi_0 e_1(x)$. Set $F(x) = \int -f(x)dx$. Then the direct connection on Iso(E) is

$$\tau(y,x): E_x \to E_y, \quad \mathbf{e}_1(x) \mapsto \tau(y,x) \, \mathbf{e}_1(x) = \mathbf{e}^{F(y) - F(x)} \, \mathbf{e}_1(y)$$

The associated direct connection is flat. For instance:

$$\begin{aligned} \nabla^{\mathsf{E}}_{\partial_{x}} \mathbf{e}_{1}(x) &= -2x \, \mathbf{e}_{1}(x) \quad \Rightarrow \quad \tau(y, x) \mathbf{e}_{1}(x) = \mathbf{e}^{y-x+y^{2}-x^{2}} \mathbf{e}_{1}(y), \\ \nabla^{\mathsf{E}}_{\partial_{x}} \mathbf{e}_{1}(x) &= -3x^{2} \, \mathbf{e}_{1}(x) \quad \Rightarrow \quad \tau(y, x) \mathbf{e}_{1}(x) = \mathbf{e}^{y-x+y^{3}-x^{3}} \mathbf{e}_{1}(y). \end{aligned}$$

• Instead, the following direct connections are not parallel transports:
$$\begin{split} & \Gamma(y,x) = \mathbf{e}^{y-x+(y-x)^2} & \text{non natural} \quad \left(\Gamma(x,y)\Gamma(y,x) = \mathbf{e}^{2(y-x)^2} \neq \mathbf{1}_x\right), \\ & \Gamma(y,x) = \mathbf{e}^{y-x+(y-x)^3} & \text{natural but non-flat.} \end{split}$$

Conclusion: there is a surjective functor

Gauge groupoids	\rightarrow	Principal bundles
with direct connections		with connections

which admits an inverse, but it is not an equivalence of categories.

Further results:

- Jet prolongation of direct connections to jet groupoids $J^n \mathcal{G} \rightrightarrows M$ (existence, examples).
- Applications to geometric regularity structures for solving stochastic PDEs (cf. M. Hairer and coll.).

Next:

- Look for more examples of direct connections which are not parallel displacements.
- Adapt to α -Hölder sections of bundles i.e. define distributional direct connections and compare to usual propagators.
- Study the whole geometry of groupoids with direct connections and compare with usual gauge theory.