Géométrie presque-critique Soutenance d'habilitation

Christophe Garban

ENS Lyon, CNRS

### ENS Lyon, le 9 décembre 2013













Ising presque-critique :

- en température
- en champ magnétique



Ising presque-critique :

- en température
- en champ magnétique

#### Dynamiques :

- $\bullet$  percolation FK
- percolation dynamique conservative



Ising presque-critique :

- en température
- en champ magnétique

Dynamiques :

- percolation FK
- percolation dynamique conservative

Flots coalescents (une nouvelle approche)



Ising presque-critique :

- en température
- en champ magnétique

Dynamiques :

- percolation FK
- percolation dynamique conservative

Flots coalescents (une nouvelle approche)

# Géométrie presque-critique





0°*C* 



2°*C* 

Le modèle d'Ising près de sa température critique :





# Percolation presque-critique

Le modèle de la percolation par site sur  ${\mathbb T}$  :



### Percolation presque-critique

Le modèle de la percolation par site sur  ${\mathbb T}$  :





### Percolation presque-critique

Le modèle de la percolation par site sur  $\ensuremath{\mathbb{T}}$  :





 $\delta \mathbb{Z}^2$ 



### $\{u_x\}_{x\in\mathbb{T}}$ i.i.d $\sim \mathcal{U}([0,1])$ . Pour tout $p \in [0,1]$ et $x \in \mathbb{T}$ , $\omega_p(x) := 1_{u_x \leq p}$



$$\begin{split} & \{u_x\}_{x\in\mathbb{T}} \text{ i.i.d } \sim \mathcal{U}([0,1]). \\ & \text{Pour tout } p \in [0,1] \text{ et } x \in \mathbb{T}, \quad \omega_p(x) := \mathbf{1}_{u_x \leq p} \end{split}$$

Dans la suite, on va renormaliser notre réseau de la façon suivante  $\eta \mathbb{T}$  où  $\eta$  sera toujours la maille du réseau.

$$\eta 
ightarrow$$
 0 ??

On considère le couplage  $\{\omega_{\eta}^{nc}(\lambda)\}_{\lambda \in \mathbb{R}}$  où  $\omega_{\eta}^{nc}(\lambda)$  est la percolation sur  $\eta \mathbb{T}$  de paramètre

$$p = p_c + \frac{\lambda}{\lambda} r(\eta)$$

On considère le couplage  $\{\omega_{\eta}^{nc}(\lambda)\}_{\lambda \in \mathbb{R}}$  où  $\omega_{\eta}^{nc}(\lambda)$  est la percolation sur  $\eta \mathbb{T}$ de paramètre

$$p = p_c + \frac{\lambda}{r(\eta)}$$





$$\lambda < 0$$

 $\lambda = 0$ 



$$\lambda > 0$$

On considère le couplage  $\{\omega_{\eta}^{nc}(\lambda)\}_{\lambda \in \mathbb{R}}$  où  $\omega_{\eta}^{nc}(\lambda)$  est la percolation sur  $\eta \mathbb{T}$ de paramètre

$$p = p_c + \frac{\lambda}{r(\eta)}$$







$$\lambda > 0$$







On considère le couplage  $\{\omega_{\eta}^{nc}(\lambda)\}_{\lambda \in \mathbb{R}}$  où  $\omega_{\eta}^{nc}(\lambda)$  est la percolation sur  $\eta \mathbb{T}$  de paramètre

$$p = p_c + \frac{\lambda}{\lambda} r(\eta)$$



 $\lambda < 0$ 





 $\lambda > 0$ 

Théorème (Kesten, 1987) La bonne vitesse est donnée par  $r(\eta) := \eta^2 \alpha_4(\eta, 1)^{-1}$  $= \eta^{3/4+o(1)}$ 

$$\langle 0 \rangle$$
  $\lambda = 0$ 

On considère le couplage  $\{\omega_{\eta}^{nc}(\lambda)\}_{\lambda \in \mathbb{R}}$  où  $\omega_{\eta}^{nc}(\lambda)$  est la percolation sur  $\eta \mathbb{T}$  de paramètre

$$p = p_c + \frac{\lambda}{\lambda} r(\eta)$$



### Définition

On définit ainsi pour tout  $\eta > 0$  un processus càdlàg

 $\lambda \in \mathbb{R} \mapsto \omega_{\eta}^{\mathsf{nc}}(\lambda) \in \{0,1\}^{\eta \mathbb{T}}$ 

### Zoom et points pivots





#### Question

Est-ce que le processus  $\lambda \in \mathbb{R} \mapsto \omega_{\eta}^{nc}(\lambda)$  converge (en loi) quand  $\eta \searrow 0$  vers un processus limite

 $\lambda \mapsto \omega_{\infty}^{\mathsf{nc}}(\lambda)$  ?

On verrait ainsi la transition de phase vue depuis le "continu".

#### Question

Est-ce que le processus  $\lambda \in \mathbb{R} \mapsto \omega_{\eta}^{nc}(\lambda)$  converge (en loi) quand  $\eta \searrow 0$  vers un processus limite

 $\lambda \mapsto \omega_{\infty}^{\mathsf{nc}}(\lambda)$  ?

On verrait ainsi la transition de phase vue depuis le "continu".

Il faut préciser quel est le cadre !

#### Question

Est-ce que le processus  $\lambda \in \mathbb{R} \mapsto \omega_{\eta}^{nc}(\lambda)$  converge (en loi) quand  $\eta \searrow 0$  vers un processus limite

 $\lambda \mapsto \omega_{\infty}^{\mathsf{nc}}(\lambda)$  ?

On verrait ainsi la transition de phase vue depuis le "continu".

- Il faut préciser quel est le cadre !
- On cherche un espace Polonais (E, d) dont les points ω ∈ E sont naturellement identifiés à des configurations de percolation.
- De nombreuses approches on été proposées !



Cette configuration sur  $\eta \mathbb{T}$  est naturellement codée par la distribution

$$X_{\eta} := \eta \sum_{x \in \eta \mathbb{T}} \sigma_x \, \delta_x$$



Cette configuration sur  $\eta \mathbb{T}$  est naturellement codée par la distribution

$$X_{\eta} := \eta \sum_{\mathbf{x} \in \eta \mathbb{T}} \sigma_{\mathbf{x}} \, \delta_{\mathbf{x}}$$

Par ailleurs  $\{X_{\eta}\}_{\eta}$  est tendue dans  $\mathcal{H}^{-1-\varepsilon}$  et converge vers le **bruit blanc** Gaussien sur  $\mathbb{R}^2$ .



Cette configuration sur  $\eta \mathbb{T}$  est naturellement codée par la distribution

$$X_{\eta} := \eta \sum_{\mathbf{x} \in \eta \mathbb{T}} \sigma_{\mathbf{x}} \, \delta_{\mathbf{x}}$$

Par ailleurs  $\{X_{\eta}\}_{\eta}$  est tendue dans  $\mathcal{H}^{-1-\varepsilon}$  et converge vers le **bruit blanc** Gaussien sur  $\mathbb{R}^2$ .

### Théorème (Benjamini, Kalai, Schramm, 1999)

Ce cadre n'est pas le bon pour conserver à la limite l'information sur les "clusters". (Les observables naturelles pour la percolation sont très discontinues pour la topologie induite par  $\|\cdot\|_{\mathcal{H}^{-1-\varepsilon}}$ ).

- 1 Aizenman 1998 et Aizenman, Burchard 1999.
- 2 Camia, Newman 2006.
- **3** L'espace topologique  $(\mathcal{H}, \mathcal{T})$  de Schramm-Smirnov 2011



- ▶ Soit  $(Q, d_Q)$  l'espace de tous les **quads** (ou tubes).
- On pourrait considérer l'espace  $\{0,1\}^{Q}$



- ▶ Soit  $(Q, d_Q)$  l'espace de tous les **quads** (ou tubes).
- ▶ On pourrait considérer l'espace {0,1}<sup>Q</sup>
- On considère plutôt un espace ℋ ⊂ {0,1}<sup>Q</sup> qui respect l'ordre partiel sur Q : Q > Q'





### Théorème (Schramm, Smirnov)

L'espace  $\mathscr{H}$  peut être muni d'une topologie naturelle  $\mathcal{T}$  ( $\approx$  topologie de Fell) pour laquelle, ( $\mathscr{H}, \mathcal{T}$ ) est :

- compact, Hausdorff et métrisable
- on fixera un distance non-explicite d<sub>H</sub>

### Définition $(\lambda = 0)$

Pour chaque maille  $\eta > 0$ , on peut voir  $\omega_{\eta} \sim \mathbb{P}_{\eta}$  comme un point aléatoire dans l'espace compact  $(\mathcal{H}, d_{\mathcal{H}})$ .

### Définition $(\lambda = 0)$

Pour chaque maille  $\eta > 0$ , on peut voir  $\omega_{\eta} \sim \mathbb{P}_{\eta}$  comme un point aléatoire dans l'espace compact  $(\mathcal{H}, d_{\mathcal{H}})$ .

### Théorème (Smi 2001, CN 2006, GPS 2013)

 $\omega_{\eta} \sim \mathbb{P}_{\eta}$  converge en loi dans  $(\mathcal{H}, d_{\mathcal{H}})$  vers une percolation continue  $\omega_{\infty} \sim \mathbb{P}_{\infty}$ .

 $\Rightarrow$  ça règle le cas  $\lambda = 0$ 

### Hors de la "feuille critique"

• Question 1 : soit  $\lambda > 0$  fixé.

Rappel : 
$$p = p_c + \lambda r(\eta)$$

Est-ce que  $\omega_n^{nc}(\lambda)$  converge en loi dans  $\mathscr{H}$  vers un objet limite ?

### Hors de la "feuille critique"

• Question 1 : soit  $\lambda > 0$  fixé.

Rappel : 
$$p = p_c + \lambda r(\eta)$$

Est-ce que  $\omega_n^{nc}(\lambda)$  converge en loi dans  $\mathscr{H}$  vers un objet limite ?

### Théorème (Nolin, Werner 2009)

Soit  $\lambda \neq 0$  fixé. Toutes les valeurs d'adhérence  $\omega_{\eta_k}^{nc}(\lambda) \xrightarrow{(d)} \tilde{\omega}_{\infty}(\lambda)$  sont telles que leurs interfaces sont singulières par rapport aux courbes SLE<sub>6</sub> !

### Hors de la "feuille critique"

• Question 1 : soit  $\lambda > 0$  fixé.

$$\mathsf{Rappel}: \ p = p_c + \frac{\lambda}{r}(\eta)$$

Est-ce que  $\omega_n^{nc}(\lambda)$  converge en loi dans  $\mathscr{H}$  vers un objet limite ?

#### Théorème (Nolin, Werner 2009)

Soit  $\lambda \neq 0$  fixé. Toutes les valeurs d'adhérence  $\omega_{\eta_k}^{nc}(\lambda) \xrightarrow{(d)} \tilde{\omega}_{\infty}(\lambda)$  sont telles que leurs interfaces sont singulières par rapport aux courbes SLE<sub>6</sub> !

• Question 2 : qu'en est-il de la convergence du processus càdlàg  $\overline{\lambda \mapsto \omega_{\eta}^{nc}(\lambda)}$  ?
### Hors de la "feuille critique"

• Question 1 : soit  $\lambda > 0$  fixé.

$$\mathsf{Rappel}: \ p = p_c + \frac{\lambda}{r}(\eta)$$

Est-ce que  $\omega_n^{nc}(\lambda)$  converge en loi dans  $\mathscr{H}$  vers un objet limite ?

#### Théorème (Nolin, Werner 2009)

Soit  $\lambda \neq 0$  fixé. Toutes les valeurs d'adhérence  $\omega_{\eta_k}^{nc}(\lambda) \xrightarrow{(d)} \tilde{\omega}_{\infty}(\lambda)$  sont telles que leurs interfaces sont singulières par rapport aux courbes SLE<sub>6</sub> !

• Question 2 : qu'en est-il de la convergence du processus càdlàg  $\overline{\lambda \mapsto \omega_{\eta}^{nc}(\lambda)}$  ?

On introduit **l'espace de Skorohod** Sk des trajectoires càdlàg à valeurs dans  $(\mathcal{H}, d_{\mathcal{H}})$ .

Théorème (G., Pete, Schramm 2013) Soit  $\lambda \in \mathbb{R}$  fixé.

$$\omega_{\eta}^{\mathsf{nc}}(\lambda) \xrightarrow{(d)} \omega_{\infty}^{\mathsf{nc}}(\lambda)$$

La convergence en loi a lieu dans l'espace  $(\mathcal{H}, d_{\mathcal{H}})$ .

Théorème (G., Pete, Schramm 2013) Soit  $\lambda \in \mathbb{R}$  fixé.

$$\omega_{\eta}^{\mathsf{nc}}(\lambda) \xrightarrow{(d)} \omega_{\infty}^{\mathsf{nc}}(\lambda)$$

La convergence en loi a lieu dans l'espace  $(\mathcal{H}, d_{\mathcal{H}})$ .

### Théorème (G., Pete, Schramm 2013)

Le processus càdlàg  $\lambda \mapsto \omega_{\eta}^{nc}(\lambda)$  converge en loi vers  $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$  pour la topologie de Skorohod sur  $\mathcal{H}$ .

Modèle de la percolation dynamique :  $t\mapsto\omega(t)$ 

Modèle de la percolation dynamique :  $t \mapsto \omega(t)$ Si  $\eta \searrow 0$ , on peut aussi considérer une percolation dynamique renormalisée

$$t\mapsto \omega_\eta(t)\in \mathscr{H}$$

C'est un processus càdlàg à l'équilibre dans  $\mathscr{H}$ .

Modèle de la percolation dynamique :  $t \mapsto \omega(t)$ Si  $\eta \searrow 0$ , on peut aussi considérer une percolation dynamique renormalisée

$$t\mapsto \omega_\eta(t)\in \mathscr{H}$$

C'est un processus càdlàg à l'équilibre dans  ${\mathscr H}.$ 

#### Théorème (GPS 2013)

 $t \mapsto \omega_{\eta}(t)$  converge en loi dans Sk vers une percolation dynamique continue  $t \mapsto \omega_{\infty}(t)$ .

Modèle de la percolation dynamique :  $t \mapsto \omega(t)$ Si  $\eta \searrow 0$ , on peut aussi considérer une percolation dynamique renormalisée

$$t\mapsto \omega_\eta(t)\in \mathscr{H}$$

C'est un processus càdlàg à l'équilibre dans  ${\mathscr H}.$ 

#### Théorème (GPS 2013)

 $t \mapsto \omega_{\eta}(t)$  converge en loi dans Sk vers une percolation dynamique continue  $t \mapsto \omega_{\infty}(t)$ .

- Approches possibles
- Stratégie
- Difficultés
- Propriétés des objets limites

Rappel du cas  $\lambda = 0$  (cas critique). On a  $\omega_{\eta} \sim \mathbb{P}_{\eta}$  et on veut montrer un résultat de limite d'échelle.

- ► tension, 🗸
- unicité ??
- ingrédient principal pour l'unicité : la formule de Cardy/Smirnov !

Rappel du cas  $\lambda = 0$  (cas critique). On a  $\omega_{\eta} \sim \mathbb{P}_{\eta}$  et on veut montrer un résultat de limite d'échelle.

- 🕨 tension, 🗸
- unicité ??
- ingrédient principal pour l'unicité : la formule de Cardy/Smirnov !
- Cela suggère l'approche suivante pour le cas  $\lambda \neq 0$ : Pour tout  $p \neq p_c(\mathbb{T}) = 1/2$ , trouver une observable  $F_p$ , massive harmonique

 $\Delta F_p(x) \approx m(p)F_p(x)$ 

La "masse" m(p) se comporterait alors en  $|p - p_c|^{8/3}$ .

Rappel du cas  $\lambda = 0$  (cas critique). On a  $\omega_{\eta} \sim \mathbb{P}_{\eta}$  et on veut montrer un résultat de limite d'échelle.

- 🕨 tension, 🗸
- unicité ??
- ingrédient principal pour l'unicité : la formule de Cardy/Smirnov !
- Cela suggère l'approche suivante pour le cas  $\lambda \neq 0$ : Pour tout  $p \neq p_c(\mathbb{T}) = 1/2$ , trouver une observable  $F_p$ , massive harmonique

 $\Delta F_p(x) \approx m(p)F_p(x)$ 

La "masse" m(p) se comporterait alors en  $|p - p_c|^{8/3}$ .

2 Pour la limite de la percolation dynamique

$$\operatorname{Cov} \left[ f_{\eta}^{1}(\omega_{\eta}(0)) f_{\eta}^{2}(\omega_{\eta}(t)) \right] = \sum_{S} \hat{f}_{\eta}^{1}(S) \hat{f}_{\eta}^{2}(S) e^{-t|S|}$$

Rappel du cas  $\lambda = 0$  (cas critique). On a  $\omega_{\eta} \sim \mathbb{P}_{\eta}$  et on veut montrer un résultat de limite d'échelle.

- 🕨 tension, 🗸
- unicité ??
- ingrédient principal pour l'unicité : la formule de Cardy/Smirnov !
- Cela suggère l'approche suivante pour le cas  $\lambda \neq 0$ : Pour tout  $p \neq p_c(\mathbb{T}) = 1/2$ , trouver une observable  $F_p$ , massive harmonique

 $\Delta F_p(x) \approx m(p)F_p(x)$ 

La "masse" m(p) se comporterait alors en  $|p - p_c|^{8/3}$ .

2 Pour la limite de la percolation dynamique

$$\operatorname{Cov}ig[f_\eta^1(\omega_\eta(0))f_\eta^2(\omega_\eta(t))ig] = \sum_{\mathcal{S}} \hat{f}_\eta^1(\mathcal{S})\hat{f}_\eta^2(\mathcal{S})e^{-t|\mathcal{S}|}$$

**3** Une approche "perturbative".











## Difficulté 1 : "trop" de points pivots

La mesure de masse  $\mu$  est dégénérée ( $\infty$ ) (les points pivots sont denses dans le plan).

 $\Rightarrow \text{ on introduit un cut-off } \varepsilon > 0 \text{ et on cherche} \\ \text{a définir } \mu^{\varepsilon} \text{, une mesure de masse sur les points} \\ \text{pivots } \mathcal{P}^{\varepsilon}.$ 



## Difficulté 1 : "trop" de points pivots

La mesure de masse  $\mu$  est dégénérée ( $\infty$ ) (les points pivots sont denses dans le plan).

 $\Rightarrow$  on introduit un cut-off  $\varepsilon > 0$  et on cherche à définir  $\mu^{\varepsilon}$ , une mesure de masse sur les points pivots  $\mathcal{P}^{\varepsilon}$ .

### Théorème (GPS 2013)

On peut définir une application mesurable  $\mu^{\varepsilon}$  de  $\mathscr{H}$  dans l'espace des mesures localement finies telle que

$$(\omega_{\eta}, \mu^{\varepsilon}(\omega_{\eta})) \xrightarrow{(d)} (\omega_{\infty}, \mu^{\varepsilon}(\omega_{\infty}))$$

quand  $\eta \searrow 0$ 





!!! L'application  $\omega \mapsto \mu^{\varepsilon}(\omega)$  n'est pas continue !!!

### Difficulté 2 : Stabilité lorsque $\varepsilon \to 0$

Au niveau discret, cela équivaut à considérer une dynamique approchée  $\lambda \mapsto \omega_{\eta}^{\mathrm{nc},\varepsilon}(\lambda) \Rightarrow \mathrm{Pb}$  de STABILITÉ lorsque  $\varepsilon \searrow 0$  ?



### Difficulté 2 : Stabilité lorsque $\varepsilon \to 0$

Au niveau discret, cela équivaut à considérer une dynamique approchée  $\lambda \mapsto \omega_{\eta}^{\mathrm{nc},\varepsilon}(\lambda) \Rightarrow \mathrm{Pb}$  de STABILITÉ lorsque  $\varepsilon \searrow 0$  ?



### Théorème (GPS 2013)

Il existe une fonction continue  $\psi : [0,1] \rightarrow [0,1]$ , avec  $\psi(0) = 0$  telle que unif. en  $0 < \eta < \varepsilon$ ,

$$\mathbb{E}\big[d_{\mathsf{Sk}}(\omega_{\eta}(\cdot),\omega_{\eta}^{\varepsilon}(\cdot))\big] \leq \psi(\varepsilon)$$

## Difficulté 3 : quelles sont les observables sur $\mathscr{H}$ ?

**1** Rappel : 
$$\boxminus_Q := \{ \omega \in \mathscr{H}, Q \in \omega \}$$



Théorème (Schramm-Smirnov 2011)

$$\mathbb{P}_{\infty}[\partial \boxminus_{Q}] = 0 \implies \mathbb{P}_{\eta}[\boxdot_{Q}] \longrightarrow \mathbb{P}_{\infty}[\boxdot_{Q}]$$

## Difficulté 3 : quelles sont les observables sur $\mathscr{H}$ ?

**1** Rappel : 
$$\boxminus_Q := \{ \omega \in \mathscr{H}, Q \in \omega \}$$



Théorème (Schramm-Smirnov 2011)

$$\mathbb{P}_{\infty}[\partial \boxminus_{Q}] = 0 \implies \mathbb{P}_{\eta}[\boxdot_{Q}] \longrightarrow \mathbb{P}_{\infty}[\boxdot_{Q}]$$

**2** !!! tout n'est pas observable dans  $\mathcal{H}$  : par exemple le **Bruit blanc**.

### Difficulté 3 : quelles sont les observables sur $\mathscr{H}$ ?

**1** Rappel : 
$$\boxminus_{\boldsymbol{Q}} := \{ \omega \in \mathscr{H}, \boldsymbol{Q} \in \omega \}$$



Théorème (Schramm-Smirnov 2011)

$$\mathbb{P}_{\infty}[\partial \boxminus_{Q}] = 0 \implies \mathbb{P}_{\eta}[\boxdot_{Q}] \longrightarrow \mathbb{P}_{\infty}[\boxdot_{Q}]$$

2 !!! tout n'est pas observable dans *H* : par exemple le Bruit blanc.
3 Les événements à plusieurs bras

#### Théorème (GPS 2013)

On peut définir  $\mathcal{A}_4(A)$  un ouvert de  $(\mathcal{H}, d_{\mathcal{H}})$  tel que

$$\mathbb{P}_{\eta}\big[\mathcal{A}_{4}(A)\big] \longrightarrow \mathbb{P}_{\infty}\big[\mathcal{A}_{4}(A)\big]$$



## Difficulté 4 : Suivre l'évolution de $\lambda \mapsto \omega_{\infty}^{\mathrm{nc},\varepsilon}(\lambda)$



## Difficulté 4 : Suivre l'évolution de $\lambda \mapsto \omega_{\infty}^{\mathrm{nc},\varepsilon}(\lambda)$



## Difficulté 4 : Suivre l'évolution de $\lambda \mapsto \omega_{\infty}^{\mathsf{nc},\varepsilon}(\lambda)$



## Difficulté 4 : Suivre l'évolution de $\lambda \mapsto \omega_{\infty}^{\mathsf{nc},\varepsilon}(\lambda)$



## Propriété 1 : invariance par changement d'échelle

#### Théorème

L'application  $z \mapsto \alpha \cdot z$  agit de la façon suivante sur la percolation presque-critique :

$$\left(\lambda\mapsto \underline{\alpha}\cdot\omega_{\infty}^{\mathsf{nc}}(\lambda)\right)\stackrel{(d)}{=}\left(\lambda\mapsto\omega_{\infty}^{\mathsf{nc}}(\underline{\alpha}^{-3/4}\lambda)\right)$$

### Propriété 1 : invariance par changement d'échelle

#### Théorème

L'application  $z \mapsto \alpha \cdot z$  agit de la façon suivante sur la percolation presque-critique :

$$\left(\lambda\mapsto {\pmb{lpha}}\cdot\omega^{\sf nc}_\infty(\lambda)
ight)\stackrel{(d)}{=}\left(\lambda\mapsto\omega^{\sf nc}_\infty({\pmb{lpha}}^{-3/4}\lambda)
ight)$$



#### Théorème

L'image d'une percolation dynamique  $\omega_{\infty}(\cdot)$  par une application conforme  $\phi: D \to \tilde{D}$  est à nouveau une percolation dynamique  $\tilde{\omega}_{\infty}(\cdot)$  dans  $\tilde{D}$  mais dont "l'horloge spatiale" tourne à vitesse  $|\phi'(z)|^{-3/4}$ .

#### Théorème

L'image d'une percolation dynamique  $\omega_{\infty}(\cdot)$  par une application conforme  $\phi: D \to \tilde{D}$  est à nouveau une percolation dynamique  $\tilde{\omega}_{\infty}(\cdot)$  dans  $\tilde{D}$  mais dont "l'horloge spatiale" tourne à vitesse  $|\phi'(z)|^{-3/4}$ .

"Relativistic invariance" O Schramm, ICM 2006.

### Propriétés 3 : percolation par gradient

On obtient une limite d'échelle pour la percolation par gradient



 $t \mapsto \omega_{\eta}(t)$  et  $\lambda \mapsto \omega_{\eta}^{nc}(\lambda)$  sont clairement Markoviens dans  $\mathscr{H}$ . Qu'en est-il de leur limite ??  $t \mapsto \omega_{\eta}(t)$  et  $\lambda \mapsto \omega_{\eta}^{nc}(\lambda)$  sont clairement Markoviens dans  $\mathscr{H}$ . Qu'en est-il de leur limite ??

#### Theorem

- $t \mapsto \omega_{\infty}(t)$  est un Process de Markov réversible pour la mesure  $\mathbb{P}_{\infty}$ .
- λ → ω<sub>∞</sub><sup>nc</sup>(λ) est un Process de Markov homogène en temps, non-reversible.

 $t \mapsto \omega_{\eta}(t)$  et  $\lambda \mapsto \omega_{\eta}^{nc}(\lambda)$  sont clairement Markoviens dans  $\mathscr{H}$ . Qu'en est-il de leur limite ??

#### Theorem

- $t \mapsto \omega_{\infty}(t)$  est un Process de Markov réversible pour la mesure  $\mathbb{P}_{\infty}$ .
- λ → ω<sub>∞</sub><sup>nc</sup>(λ) est un Process de Markov homogène en temps, non-reversible.
- ► On obtient ainsi des diffusions naturelles sur (ℋ, dℋ). !!! Ce ne sont PAS des processus de Feller.

## Arbre couvrant minimal (MST)


# Arbre couvrant minimal (MST)



# Arbre couvrant minimal (MST)



## UST v.s. MST



## UST v.s. MST





#### Théorème

 $\mathsf{MST}_{\eta}$  converge en loi vers  $\mathsf{MST}_{\infty}$  (pour la topologie de ABNW 1999)

#### Théorème

 $\mathsf{MST}_{\eta}$  converge en loi vers  $\mathsf{MST}_{\infty}$  (pour la topologie de ABNW 1999)

"**Preuve**" : on part de  $\lambda = -\infty$  et on suit le processus de coalescence induit par  $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$ .



## Modèle d'Ising presque-critique



#### La percolation FK :

$$\mathbb{P}_{p,q}ig[\omegaig] \propto p^o \left(1-p
ight)^f \, q^{ extsf{\sharp clusters}}$$

## Modèle d'Ising presque-critique



La percolation FK :

$$\mathbb{P}_{p,q}[\omega] \propto p^o \left(1-p\right)^f q^{\sharp \mathsf{clusters}}$$

- Modèle d'Ising  $\leftrightarrow$  FK avec q = 2
- Dans ce cas  $p = 1 e^{-2\beta}$
- $p_c(q=2) = \frac{\sqrt{2}}{1+\sqrt{2}}$
- Modèle d'Ising presque-critique = percolation FK presque-critique *ρ* = *ρ<sub>c</sub>*(2) + δ*p*

## Notion de longueur de correlation



 $p = p_c + \delta p$ 

## Notion de longueur de correlation



$$p = p_c + \delta p$$

$$L(p) = \left|\frac{1}{p - p_c}\right|^{\nu + o(1)}$$

### Notion de longueur de correlation



$$p = p_c + \delta p$$

$$L(p) = \left|\frac{1}{p - p_c}\right|^{\nu + o(1)}$$

Example (critical percolation):

**Theorem** (Smirnov-Werner 2001):

 $L(p) = \left|\frac{1}{p-p_c}\right|^{4/3+o(1)}$ 

#### Recette pour intuiter la longeur de corrélation



Soit  $p = p_c + \delta p$ . On cherche une échelle R = L(p) telle que :

$$|p-p_c|L(p)^2\alpha_4(L(p)) \asymp 1$$

## Longeur de corrélation pour la percolation FK



Conjecture ("travail en cours" avec H. Duminil-Copin)

$$\alpha_4^{\rm FK}(R) = R^{-\frac{35}{24} + o(1)}$$

### Longeur de corrélation pour la percolation FK



Conjecture ("travail en cours" avec H. Duminil-Copin)

$$\alpha_4^{\mathrm{FK}}(R) = R^{-\frac{35}{24} + o(1)}$$

En utilisant la RECETTE ci-dessus, on trouve

$$L(p) = \left|\frac{1}{p - p_c(2)}\right|^{24/13 + o(1)}$$

### Longeur de corrélation pour la percolation FK



Conjecture ("travail en cours" avec H. Duminil-Copin)

$$\alpha_4^{\mathrm{FK}}(R) = R^{-\frac{35}{24} + o(1)}$$

En utilisant la RECETTE ci-dessus, on trouve

$$L(p) = \left|\frac{1}{p - p_c(2)}\right|^{24/13 + o(1)}$$

En contradiction avec les résultats connus depuis Onsager qui suggèrent

$$L(p) \approx \left| \frac{1}{p - p_c} \right| \ll \left| \frac{1}{p - p_c} \right|^{24/13}$$

Trois hypothèses possibles :

1 Onsager s'est trompé (en 1944 ...)

- 1 Onsager s'est trompé (en 1944 ...)
- 2 On s'est trompé dans le calcul de l'exposant  $\alpha_4^{\rm FK}$

- 1 Onsager s'est trompé (en 1944 ...)
- 2 On s'est trompé dans le calcul de l'exposant  $lpha_4^{\rm FK}$
- **3** Le mécanisme qui sous-tend le régime presque-critique est plus subtil qu'en percolation presque-critique.

- 1 Onsager s'est trompé (en 1944 ...)
- 2 On s'est trompé dans le calcul de l'exposant  $\alpha_4^{\rm FK}$
- **3** Le mécanisme qui sous-tend le régime presque-critique est plus subtil qu'en percolation presque-critique.
- $\Rightarrow$  couplages monotones de Grimmett



#### Théorème (Duminil-Copin, G., Pete, 2011)

On fixe q = 2. Il existe une constante c > 0 t.q.

$$c \, rac{1}{|
ho - 
ho_c|} \leq L(
ho) \leq c^{-1} rac{1}{|
ho - 
ho_c|} \, \log rac{1}{|
ho - 
ho_c|}$$

pour tout  $p \neq p_c$ .

#### Technique de preuve :

- Sans passer par l'étude du phénomène d'auto-organisation
- On utilise l'observable para-fermionique de Smirnov hors de p = p<sub>c</sub> (on suit ici les travaux antérieurs de Beffara, Duminil-Copin).

## Champ magnétique critique du modèle d'Ising



Théorème (Camia, G., Newman, 2012) (i)  $m_N := \frac{\sum \sigma_x}{N^{15/8}} \stackrel{(d)}{\longrightarrow} m_\infty$ (ii) La distribution  $\Phi_N := \sum_{x \in \frac{1}{N} \mathbb{Z}^2} N^{-15/8} \sigma_x \delta_x$ converge en loi (pour la topologie de  $\mathcal{H}^{-3}$ ) vers  $\Phi_\infty$ 

## Champ magnétique critique du modèle d'Ising



Théorème (Camia, G., Newman, 2012)  
(i) 
$$m_N := \frac{\sum \sigma_x}{N^{15/8}} \xrightarrow{(d)} m_\infty$$
  
(ii) La distribution  $\Phi_N := \sum_{x \in \frac{1}{N} \mathbb{Z}^2} N^{-15/8} \sigma_x \delta_x$   
converge en loi (pour la topologie de  $\mathcal{H}^{-3}$ )  
vers  $\Phi_\infty$ 

#### Théorème

On obtient ainsi un modèle d'Ising presque-critique en pondérant par  $e^{h\langle\Phi_\infty, \mathbf{1}_{\Lambda_L}\rangle}.$ 

#### preuve :

- 1 Mesures d'aires sur les clusters FK
- 2 En utilisant les fonctions à k-points de Chelkak, Hongler et Izyurov

## Champ magnétique critique (suite)



## Champ magnétique critique (suite)

Théorème

$$\mathbb{P}\big[m_{\infty} > x\big] \approx e^{-C x^{16}},$$

où la constante C ne dépend PAS des conditions au bord.



Résultats presque-critiques classiques :

Théorème (Smirnov,  
Werner, 2001)Théorème (Onsager  
1944)Théorème (CGN  
2012)
$$\theta_{\mathbb{T}}(p)$$
  
 $=$   
 $(p-1/2)_{+}^{5/36+o(1)}$  $\langle \sigma_0 \rangle_{\beta}^+ \asymp (\beta - \beta_c)_{+}^{1/8}$  $\langle \sigma_0 \rangle_{\beta_c,h} \asymp h^{\frac{1}{15}}$ 

•  $\tilde{L}(p) \approx \left|\frac{1}{p-p_c}\right|^{24/13}$  ne décrit PAS la longueur de corrélation du système presque-critique.

- $\tilde{L}(p) \approx \left|\frac{1}{p-p_c}\right|^{24/13}$  ne décrit PAS la longueur de corrélation du système presque-critique.
- En revanche, elle décrit bien une longueur de corrélation pour la dynamique non-locale (type "heat-bath") qui préserve FK critique !

•  $\tilde{L}(p) \approx \left|\frac{1}{p-p_c}\right|^{24/13}$  ne décrit PAS la longueur de corrélation du système presque-critique.

En revanche, elle décrit bien une longueur de corrélation pour la dynamique non-locale (type "heat-bath") qui préserve FK critique !

#### Théorème (en cours avec G. Pete)

Si  $t \mapsto \omega^{FK}(t)$  est la dynamique critique (de type "heat-bath") à l'équilibre, alors l'ensemble des **temps exceptionnels** où une composante connexe infinie apparaît est p.s. de dimension  $\leq \frac{10}{13}$ .







C. Garban (ENS Lyon, CNRS)



## Sensibilité au bruit



#### Difficulté : étude spectrale



Théorème (Broman, G., Steif, 2011)

Si le noyau est tel que

$$P(x,y) \asymp rac{1}{\|x-y\|^{2+lpha}}$$

pour un exposant  $\alpha > 0$ , alors sur  $\mathbb{Z}^{2, site}$ ,  $\mathbb{Z}^{2, bond}$  ou  $\mathbb{T}$ , au point critique, on a

$$\operatorname{Cov}\left[f_n(\omega_0^{\mathbf{P}}), f_n(\omega_t^{\mathbf{P}})\right] \xrightarrow[n \to \infty]{} 0$$

De plus on peut choisir  $t = t_n \ge n^{-\beta(\alpha)}$ .
# "Preuve" : étudier la diffusion du spectre de Fourier sous le processus d'exclusion





# Nouvel espace pour les flots coalescents, inspiré de l'espace de Schramm-Smirnov ${\mathscr H}$



(i) On définit un flot coalescent  $\xi_{\infty}^{S}$  sur le triangle de Sierpinski (ii) principe d'invariance :

$$\xi_{\eta}^{S} \xrightarrow{(d)} \xi_{\infty}^{S}$$

(i) On définit un flot coalescent  $\xi_{\infty}^{S}$  sur le triangle de Sierpinski (ii) principe d'invariance :

$$\xi_{\eta}^{S} \xrightarrow{(d)} \xi_{\infty}^{S}$$

Théorème (Bel Houri, Mountford, Sun, Valle 2006)

Pour la convergence vers le Brownian Web en d = 1

- $\mathbb{E}[X^{3+\varepsilon}] < \infty$  est suffisant pour un principe d'invariance
- $\mathbb{E}[X^{3-\varepsilon}] < \infty$  est nécessaire !

(i) On définit un flot coalescent  $\xi_{\infty}^{S}$  sur le triangle de Sierpinski (ii) principe d'invariance :

$$\xi_{\eta}^{S} \xrightarrow{(d)} \xi_{\infty}^{S}$$

Théorème (Bel Houri, Mountford, Sun, Valle 2006)

Pour la convergence vers le Brownian Web en d = 1

• 
$$\mathbb{E}[X^{3+\varepsilon}] < \infty$$
 est suffisant pour un principe d'invariance

• 
$$\mathbb{E} ig[ X^{3-arepsilon} ig] < \infty$$
 est nécessaire !

#### Théorème (BGS 2013)

On montre un principe d'invariance vers le Brownian Web si et seulement si

$$\mathbb{E}\big[X^2\big] = \sigma^2 < \infty$$

(i) On définit un flot coalescent  $\xi_{\infty}^{S}$  sur le triangle de Sierpinski (ii) principe d'invariance :

$$\xi_{\eta}^{S} \xrightarrow{(d)} \xi_{\infty}^{S}$$

Théorème (Bel Houri, Mountford, Sun, Valle 2006)

Pour la convergence vers le Brownian Web en d = 1

• 
$$\mathbb{E}[X^{3+\varepsilon}] < \infty$$
 est suffisant pour un principe d'invariance

• 
$$\mathbb{E} ig[ X^{3-arepsilon} ig] < \infty$$
 est nécessaire !

#### Théorème (BGS 2013)

On montre un principe d'invariance vers le Brownian Web si et seulement si

$$\mathbb{E}\big[X^2\big] = \sigma^2 < \infty$$

# Gravité quantique de Liouville



### Gravité quantique de Liouville



#### Conjecture

La mesure empirique de ce plongement tend en loi vers la mesure de Liouville  $\mu := \exp \left[ \sqrt{8/3} h \right]$  où h est un champ libre Gaussien



Une FORME VOLUME  
"
$$e^{\gamma h} dx dy$$
"

Une métrique Riemannienne
$$\label{eq:expansion} ``e^{\gamma h}(dx^2+dy^2)"$$













#### Théorème (G., Rhodes, Vargas 2013)

Pour tout  $\gamma < \gamma_c = 2$ , étant donné un champ libre Gaussien h sur  $\mathbb{S}^2$ , on peut définir un semi-groupe  $P_t^h$  sur  $\mathbb{S}^2$  tel que, p.s. en h :

(i)  $(P^h_t)_{t\geq 0}$  est un processus de Feller sur  $\mathbb{S}^2$ 

(ii)  $(P_t^h)$  est réversible par rapport à la mesure de Liouville  $M_{\gamma}$ 

#### Théorème (Juhan Aru, 2013)

*Il existe des ensembles qui dépendent naturellement du champ libre h et pour lesquels la relation KPZ n'est PAS satisfaite !* 



- ▶ Formules de KPZ pour les lignes de niveaux/flots (SLE<sub> $\kappa$ </sub>,  $\kappa \in [0, 8]$ ).
- Etude des moments exponentiels du winding des processus  ${\rm SLE}_\kappa$
- Pour plus de détails : Juhan Aru, arXiv:1312.1324