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What are the
fluctuations of
the magnetiza-
tion field ?
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e If the spins are i.i.d
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Ising model

To each configuration o € {—1,1}"", one

A associates the Hamiltonian
Ft— o
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Ising model

To each configuration o € {—1,1}"", one

A associates the Hamiltonian

P

St e O

i H(o):=—3,.;0i0;
Nl '

FR—— .

——+- And we define:
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o lf 3 < 8.

§ 2 0e — N(0,0%)
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o If 3< 3.
* >0 = N(0,0%)
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o lf 3 < B,
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o lf 3 < B,
¥ 2 0. = N(0,07)
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And now: what about 3 = (3. 77
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Which normalization 7

To avoid boundary issues, consider our system on the torus Z2/NZ?. We
have:

Var(Zax) = ZE[UXO'y]
= N2ZE[UQO'y]

y

= N2 Z ly|~/* (by Onsager)
y

= N2N2N“VA = N

Hence it is natural to look at the random variable m(N) =

Question

Does m") have a (unique) scaling limit ?




“Subtle” issue of renormalization

Theorem (McCoy, Wu, 1967)

As N — oo
<Uo’0 U'N,N> ~cN-1/4

where ¢ = 21/12¢3¢'(-1)
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“Subtle” issue of renormalization

Theorem (McCoy, Wu, 1967)
As N — oo
(00,0 oNN) ~ C N4

where ¢ = 21/12¢3¢'(-1)

Proposition (Rotational invariance of the two-point function)

(00 0x)

e 1
(00 |jx|1p) lIxlla—o0
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Notations / definitions

Rescaled lattice aZ?, a < 1.

Definition (Renormalized

aZ?

magnetization field)

d? = Z Ox Ox as

x€aZ?

ma = <¢a, 1[071]2>

mi = (9, 110 12)




Notations / definitions

Rescaled lattice aZ?, a < 1. _— .
Definition (Renormalized

++ 777777 - - .
A magnetization field)
P 15
-ttt 15
—+——4— e = E dxOxas
-ttt
- —4- x€aZ?
4+
- a._ /p2
T m? := (9%, 1[g 1j2)
-+
2
aZ a . a
mf = (®%, 1[0 12)

Question

The field ®2 € D’.
Is it the case that ®? converges as a — 0 to some random distribution ® ?
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Road map
o First part :

Theorem (Camia, G., Newman)
(i) The magnetization field 2 on aZ? has a unique scaling limit as the mesh
a—0.
(i) On a finite domain Q with boundary conditions £, the magnetization field

‘ngmazz has a scaling limit ¢§2,

(iii) In particular, m? has a unique limiting law m = m* which depends on the
boundary conditions (usually +, —, or free).

(iv) The scaling limit is NOT Gaussian.

e Second part: properties of the limiting objects ® and m

(i) Conformal covariance of ®gq
(i) Tail behavior of m etc ...

e Applications (near-critical Ising model in the h-direction ...)



Behavior of the magnetization at (. for small external field

Theorem (Camia, G., Newman)

Consider Ising model on Z? at (3. with a positive external magnetic field
h > 0, then .
<0'0> = his
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Behavior of the magnetization at (. for small external field

Theorem (Camia, G., Newman)

Consider Ising model on Z? at (3. with a positive external magnetic field
h > 0, then .
<O’0> = his

This is the analog of

(1) Onsager: (o)} = |6 — Bc[V/8 as 5 — ..
and

(i) Kesten - Smirnov/Werner: 8(p) = |p — pc|?/30°() for site
percolation on the triangular lattice.
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Tightness

e Recall m? := a1°/8 > ox.
x€[0,1]2Na Z2
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Tightness

— a15/8 o5
x€[0,1]2Na 72

e Recall m?:

Fact

limsupEg, [(ma)z] < 00

a—0
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Tightness

e Recall m? := a1°/8 > ox.
x€[0,1]2Na Z2

Fact

limsupEg, [(ma)z] < 00

a—0

e Now, for the field 2 ¢ D’:
Fact

limsupE[||®?]|3,-2] < oo
a—0

Since By;—2(0,1) is compact in H~3, one can take subsequential
scaling limits ®% — &* in H 3.

C. Garban (ENS Lyon and CNRS) Magnetization field of the Ising model 11 /25



Tightness

e Recall m? := a1°/8 > ox.
x€[0,1]2Na Z2

Fact

limsupEg, [(ma)z] < 00

a—0

e Now, for the field 2 ¢ D’:
Fact

limsupE[||®?]|3,-2] < oo
a—0

Since By;—2(0,1) is compact in H~3, one can take subsequential
scaling limits ®% — &* in H 3.

It remains to characterize the subsequential scaling limits ®*
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Proof 1: use the breakthrough results by Smirnov

Theorem (Smirnov, Chelkak-Smirnov)

a—0 :

= CLE, \

N ~ SLE;

2

-

m
[Tl

Question

Can one recover the magnetization m = lim,_,o m? as a functional of the
CLE3 7




Use instead the scaling limit of FK percolation (g = 2)
Definition

1 w w clusters
Ppq(w) = 5— pP (I = p)et) grreiuss
Zpaq
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Use instead the scaling limit of FK percolation (g = 2)
Definition

1 w w clusters
IP)p,q(“’) = Z p°)(1 — p)ele) g#elust

m? — Z alS/SO_X

x€az?n[o0,1]?
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Use instead the scaling limit of FK percolation (g = 2)
Definition

1 w w clusters
IP)p,q(w) = Z p°)(1 — p)ele) g#elust

m? = Z a8y, = Z 28, + Z PEIAY NN

x€aZ2n|0,1]? xeCy x€Ca
= & Area,(Cr) + & Areay(Co) + ...

where (§)i>1 are i.i.d coin flips.
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Use instead the scaling limit of FK percolation (g = 2)
Definition

1 w w clusters
Py q(w) = Zoa pP (I = p)et) grreiuss

m? = Z a8y, = Z a8, + Z a8, + ...

x€aZ2n|0,1]? x€Cy x€C2
= {1 Areay(Cr) + & Areay(Co) + ...
where (§)i>1 are i.i.d coin flips.

Claim
Uniformly in a — 0,

E[( Z i Areaa(ci))z} < Cel*

diam(C;)<e
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1<K ek 1

|,

e
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1<K ek 1

|,

- #points = ZXi
~ YNE(R)"

e

a

C. Garban (ENS Lyon and CNRS) Magnetization field of the Ising model 14 / 25



#points = ZXi

E[(X - K(5)*FY)?] = 2 E[(x K9P (X, = K (2)™)]

a a

= O(E{XQD
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Proof 2: use the recent results by Dubédat or Chelkak,
Hongler, lzyurov

Theorem (Dubédat or Chelkak, Hongler, lzyurov)

There exist n-point correlation
functions

21y Zn <21,...,z,,>$,

so that as the mesh a — 0, and if
the points zy, ..., z, remain
“macroscopically far apart”,

a8 Eg(azf...azﬁ) ~ (zl,...,z,,>$

This suggests that one should have for each n > 1:

a—»O//Zl"H7 le d
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In order to show that ®? converges to a limiting random distribution, two
things thus remain to be proved:

1. Show that the nt" moment EJ (m) indeed converges towards

fn :z//(zlj...,zn% dzi...dz,

2. Show that the sequence of moments {ip}n>1 uniquely characterizes a
probability law m (moment problem).

as a — 0.

The second property will follow from the following proposition:
Proposition (Camia, G., Newman)

For all fixed t > 0, one has

supEJ (e!™) < o0
a>0




Second part: properties of ® and m

e Conformal covariance properties
e Tail estimates, i.e. P[m > x] for x > 1.
e Analyticity of the probability density function of m
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Conformal covariance

Theorem

@) )\15/8

(I) m[07A]2 = m[071]2
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Conformal covariance

Theorem

(d)

(i) m[07/\]2 = )\15/8 m[071]2
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Conformal covariance

Theorem

(d)

(I) m[07/\]2 = )\15/8 m[071]2

O

Q
(ii) £, P(w) and ®(O) are a.c.

¢ € ()

6=pofleCoQ) , one has

Furthermore, ¥ {

(6(0): 8) = (o). 02) IF 2)*")
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Tail behavior: heuristics

Let's try to understand ]P’[m > X] o
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Tail behavior: heuristics

Let's try to understand ]P’[m > x] .

Fact
There is a universal constant C > 0 s.t.

P[m* > x] > e X
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Tail behavior: heuristics

Let's try to understand ]P’[m > X] o

Fact
There is a universal constant C > 0 s.t.

P[m* > x] > e X

This suggests
16
P[mf > x] ~ e O
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Tail behavior: main theorem
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Tail behavior: main theorem

Theorem

There exists a universal constant ¢ > 0 such that for any boundary
conditions & around [0,1]?, as x — oco:

IogIP’[mg > X] ~ —cx0

ﬂ (by a Tauberian Theorem)

Proof: Goes through the study of the moment generating function of m*:

Proposition

There exists a universal constant b > 0 such that for any boundary
conditions & around [0,1]?, one has as t — oco:

IogE[et’"&] ~ —btis

COROLLARY: m¢ is indeed not Gaussian.
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Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
Zgp =Y, e PHOI+hox s such that

97 (log Zs ) <0
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Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
Zgp =Y, e PHOI+hox s such that

97 (log Zs ) <0

ag [log(z e_/ch‘i‘hzo'x)] S 0

Z e_ﬁcH+h20'x
S e PeH JI

& 0 [log(
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Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
Zgp =Y, e PHOI+hox s such that

97 (log Zs ) <0

03 log(3_ e =T 7)] <0

Z e—ﬁcH+hZ¢7x
ST e BH )] <0
& 82[|ogE[ehZ”"H <0

& 0 [log(
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Why would m = lim m? have exponential moments 77

Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
Zgp =Y, e PHOI+hox s such that

97 (log Zs ) <0

03 log(3_ e =T 7)] <0

Z e—ﬁcH+hZJx
ST e BH )] <0
& 8ﬁ[|ogE[ehZ”"H <0

& 0 [log(

2
|ogE[eh20x] < h <Z ox) + %Var[z ox]
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2
|OgE[ehZUx] < h <Z ox) + %Var[z ox]

With h := ta'®/8, this gives

) t2
tm a a
zgg{logE[e I} < iig<tE[m ]+ > Var[m ]) < 00



|OgE[ehZUx] < h <Z ox) + h;Var[Z ox]

With h := ta'®/8, this gives

) t2
tm a a
zgg{logE[e I} < iig(tE[m ]+ > Var[m ]) < 00

Using the estimate with ¥ > t > 0, we get
Fact

E[etm] = lim E[et’"a] < 00

a—0




Get a hand on the exponential moments

Main tool: use scaling !

logE[e""] = logE [et/)‘ls/s’m]
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Get a hand on the exponential moments

Main tool: use scaling !

logE[e""] = IogIE[et/)‘ls/s’"A]
= logE[e™:] (with A := £8/15)

= 2 % log E[e™:¢]

t
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Get a hand on the exponential moments

Main tool: use scaling !

logE[e""] = IogIE[et/)‘ls/s’"A]
= logE[e™:] (with A := £8/15)

= 2 % log E[e™:¢]

t

~ )\2 ||m plogE[ ]
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Get a hand on the exponential moments

Main tool: use scaling !

logE[e""] = IogIE[et/)‘ls/s’"A]
= logE[e™:] (with A := £8/15)
= 2 % log E[e™:¢]

t

~ )\2 ||m plogE[ ]

N t16/15(_—
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Analyticity of the density function of m
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Analyticity of the density function of m

Theorem
For all t € R and any boundary condition &, one has

|E§(eitm)| < e—c\t\%g )

In particular, the density function f = fq is an entire function on the whole
plane C !

v
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Further applications

A first one:
Theorem

Consider Ising model on Z? at (3. with a positive external magnetic field
h > 0, then

(00) = his
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Further applications

A first one:

Theorem

Consider Ising model on Z? at (3. with a positive external magnetic field
h > 0, then .
<0’0> = his

A second one;

Theorem

Consider Ising model on aZ? with external magnetic field h a'>/®, then
there is a scaling limit as a — 0 towards a massive near-critical model.
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