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0.1 Les paradoxes de la géométrie des nombres

Un étudiant en mathématiques entend parler de géométrie des nombres pour la

première fois assez tard dans sa formation. Ce constat apparaît déjà comme para-

doxal car beaucoup de mathématiciens ont insisté sur le caractère simple et intuitif

de la géométrie des nombres1. Ce premier contact se passe en général dans des cours

de théorie des nombres avancés2 et la géométrie des nombres y est surtout présente

comme préliminaire, à travers un résultat servant à démontrer certains théorèmes plus

centraux pour ces cours. Ce résultat, attribué au mathématicien Hermann Minkowski,

est présenté actuellement de la façon suivante. Considérons Rn muni de sa structure

euclidienne, B une base orthonormée de Rn et notons µ la mesure de Lebesgue sur Rn.

Soit maintenant L un réseau de Rn d’origine O et dont une base est (e1, . . . , en). Une

maille du réseau L est alors
{

n∑

i=1

xi ei , 0 ≤ xi ≤ 1

}

1Ce paradoxe est souligné par Mordell dès 1940 : « The geometry of numbers, or Diophantine ap-
proximation, apart from classic results mostly associated with continued fractions, is still an uncommon
feature of elementary books despite the simplicity, the generality and the richness of application of
some of the results », Mordell 1940a p.295.

2En France, la géométrie des nombres ne semble jamais apparaître dans les programmes universi-
taires avant la première année de Master.
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INTRODUCTION

et le volume de cet ensemble | detB(e1, . . . , en)| ne dépend pas de la base du réseau

choisie ; notons-le Vol(L). On a alors :

Lemme. Soit A ⊂ Rn une partie mesurable et telle que µ(A) > Vol(L), il existe a et

a′ dans A tels que la différence a− a′ appartienne à L.

Ce lemme implique le théorème dit de Minkowski :

Théorème. Soit A ⊂ Rn une partie convexe mesurable, symétrique par rapport à

l’origine O et telle que µ(A) > 2nVol(L). Il existe alors un point a différent de O dans

l’intersection A ∩ L.

Dans le livre de Pierre Samuel, Théorie algébrique des nombres, par exemple, ce théo-

rème intervient dans un paragraphe intitulé « Préliminaires sur les groupes discrets de

Rn » ; il sert à établir la preuve de la finitude du groupe des classes d’idéaux et celle

du théorème des unités3.

Pourtant, plusieurs indicateurs suggèrent que la géométrie des nombres est un do-

maine de recherche autonome, stabilisé et qu’il est donc possible d’identifier et d’en-

seigner en soi. Même s’ils sont peu nombreux, des livres consacrés spécifiquement à ce

sujet ont été publiés et témoignent de son existence en tant que discipline. Les com-

mentaires faits dans ces livres présentent la géométrie des nombres comme un domaine

à part entière à l’intérieur de la théorie des nombres et dont l’origine est le travail de

Minkowski :

« This new branch of number theory, which Minkowski christened “The Geo-

metry of Numbers”, has developed into an independent branch of number-

theory which, indeed, has many applications elsewhere but which is well

worth studying for its own sake4. »

« Cette idée extrêmement originale, fondamentale malgré sa simplicité,

constitue l’acte de naissance de la géométrie des nombres, branche nouvelle

des mathématiques dont l’existence autonome peut être datée de 1896, an-

née de parution du livre Geometrie der Zahlen de Minkowski5. »

« The geometry of numbers is a branch of number theory that originated

with the publication of Minkowski’s seminal work in 1896 and ultimately

established itself as an important field of study in its own right6. »

3Samuel 2003, chapitre IV.
4Cassels 1959 p.1.
5Martinet 1996 p.8.
6Olds et al. 2000 p.xiii.
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Cette place de la géométrie des nombres au sein de la théorie des nombres est confirmée

par la classification des Mathematical Reviews. Dans cette classification, la géométrie

des nombres est la sous-section 11H – la théorie des nombres occupe toute la section

11 – et elle est mise au même niveau par exemple que les équations diophantiennes

(section 11D) ou les corps de nombres globaux (section 11R).

En plus de ces indices explicites sur l’autonomie du sujet et de son importance, nous

trouvons aussi des références à un vocabulaire propre à la géométrie des nombres :

certains termes sont employés « conformément à l’usage de la géométrie des nombres7 »,

ou parce qu’ils sont « traditionnels en géométrie des nombres8 ». Dès 1948, Freeman

Dyson renvoie son lecteur à des conventions qui seraient alors bien intégrées

« The subject of this paper belongs to the “geometry of numbers”, and the

standard terminology of that branch of mathematics will be used9. »

Les définitions ou les caractérisations plus fines de la géométrie des nombres propo-

sées par les mathématiciens dénotent aussi une certaine stabilité. Voici quelques-unes

de ces caractérisations classées dans l’ordre chronologique :

1. « Wenn man für den Raum rechtwinklige Coordinaten einführt, so entsprechen

den Systemen von drei ganzen Zahlen discrete Punkte, welche derart über den

Raum verstreut liegen, dass sie eine gewisse Nähe in Bezug auf jede beliebige

Raumstelle erreichen. Den Inbegriff aller dieser Punkte mit lauter Coordinaten,

die ganze Zahlen sind, nennt der Vortragende das dreidimensionale Zahlengitter ;

unter dem Titel “Geometrie der Zahlen” begreift er geometrische Studien über das

dreidimensionale Zahlengitter und über das entsprechende Gebilde in der Ebene,

und in weiterem Sinne auch die Ausdehnung der Ergebnisse solcher Studien auf

Mannigfaltigkeiten beliebiger Ordnung10. »

2. « Im folgenden möchte ich versuchen, in kurzen Zügen einen Bericht über ein ei-

genartiges, zahlreicher Anwendungen fähiges Kapitel der Zahlentheorie zu geben,

ein Kapitel, vom dem Charles Hermite einmal als der “introduction des variables

continues dans la théorie des nombres” gesprochen hat. Einige hervorstehende

Probleme darin betreffen die Abschätzung der kleinsten Beträge kontinuierlich

7Martinet 1996 p.7.
8Martinet 1996 p.40.
9Dyson 1948 p.82.

10« Lorsqu’on introduit pour l’espace des coordonnées cartésiennes, aux systèmes de trois entiers
correspondent des points discrets, qui sont répartis dans l’espace de telle sorte qu’ils atteignent une
certaine distance par rapport à n’importe quel endroit de l’espace. Le conférencier nomme l’ensemble
de tous ces points à coordonnées entières le réseau de nombres à trois dimensions ; sous le titre
de “Géométrie des nombres” il comprend des études géométriques sur le réseau de nombres à trois
dimensions et sur la figure correspondante dans le plan, et dans un sens plus général, aussi l’extension
des résultats de telles études aux variétés de dimension quelconque. », Minkowski 1891c.
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veränderlicher Ausdrücke für ganzzahlige Werte der Variablen.

Die in dieses Gebiet fallenden Tatsachen sind zumeist einer geometrischen Dars-

tellung fähig, und dieser Umstand ist für die in letzter Zeit hier erzielten Fort-

schritte derart maßgebend gewesen, daß ich geradezu das ganze Gebiet als die

Geometrie der Zahlen bezeichnet habe11. »

3. « Le problème fondamental de la géométrie des nombres est de trouver des condi-

tions sous lesquelles une inégalité

ϕ(u1, . . . , un) ≤ λ

(ou plusieurs inégalités de cette forme) possède une solution entière12. »

4. « Parmi les théories les plus séduisantes nous avons celles qui combinent les idées

de l’analyse et de l’arithmétique. J’emploie le mot « analyse » ici dans le sens

le plus large, c’est-à-dire toute théorie où l’on fait usage de variables continues.

Une de ces théories est la géométrie des nombres. [. . .] Une partie essentielle de la

démonstration des résultats arithmétiques dépend de l’emploi de variables conti-

nues et d’intégrations effectuées sur ces variables13. »

5. « It [the geometry of numbers] consists in interpreting geometrically questions in

the theory of numbers, making use of points with integral co-ordinates, either in

the plane, or, more generally, in an n-dimensional space14. »

6. « The geometry of numbers is an approach to problems of Diophantine approxi-

mation, suggested by interpreting them geometrically. The inequality

f(x1, . . . , xn) < λ represents a certain region in n dimensional space. Under what

conditions does this region contain a point with integral coordinates15 ? »

11« Dans ce qui suit je voudrais essayer de donner à grands traits un rapport sur un chapitre spéci-
fique et susceptible de nombreuses applications de la théorie des nombres, un chapitre à propos duquel
Charles Hermite a parlé autrefois d’“introduction des variables continues dans la théorie des nombres”.
Certains problèmes importants concernent ici l’estimation des plus petites contributions d’expressions
variables continument pour des valeurs entières des variables.
Les faits intervenant dans ce domaine sont pour la plupart susceptibles d’une représentation géomé-
trique, et cette circonstance a été décisive pour les progrès obtenus ici dans les derniers temps, de sorte
que j’ai désigné le domaine entier comme la Géométrie des nombres. », Minkowski 1904b p.164.

12Davenport 1946b p.1.
13Il s’agit d’un extrait de notes non datées de Davenport mais qui sont très certainement de la

seconde moitié des années 1940. Davenport (WL), C 169.
14Davenport 1947a p.104.
15Davenport 1947b p.206.
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7. « In the geometry of numbers, we treat a general class of problems in number

theory by methods which are suggested by a geometrical interpretation. The pro-

blems in question relate to “Diophantine inequalities”, ie inequalities which are

to be satisfied by integral values of the variables16. »

8. « In der Geometrie der Zahlen ist von Gedankengängen die Rede, in denen geome-

trische Begriffe und Methoden auf zahlentheoretische Fragen angewandt werden.

Die Anfänge solcher Betrachtungen gehen auf C. F. Gauß zurück. Er und nach

ihm G. Dirichlet, F. Klein, H. Minkowski und andere hatten mit geometrischen

Methoden Erfolg bei Fragestellungen, bei denen ein System ganzer Zahlen eine

oder ein System von Ungleichungen zu erfüllen hatte, so vor allem in der Theorie

der definiten und indefiniten quadratischen Formen17. »

9. « This book deals with bodies and lattices in the n-dimensional euclidean space.

The bodies considered are convex bodies centered at the origin or, more generally

star bodies (with respect to the origin). With each star body there is associated

a continuous distance function ; it is a positively homogeneous function assuming

the value 1 at the points of the boundary of the given body.

The correspondence between star bodies and distance function just sketched

brings on the interchange of the geometric and the arithmetic viewpoint that

is typical for the subject. Historically, the arithmetic viewpoint existed first. But

the geometry of numbers as such came into being only when Minkowski brought

in the geometric viewpoint18. »

10. « The geometry of numbers deals essentially with an arithmetical question. The

simplest one is to find the minimum value of f(x) = f(x1, . . . , xn) for integer

values of (x), where f(x) is a real valued function of the variables (x). As this

is rather an ambitious aim, significant estimates for the minimum are of value.

[. . .] Only slight progress was made until the end of the century when Minkowski

found some very general results by geometric considerations19. »

16Résumé d’un cours sur la géométrie des nombres, Berkeley, 24 janvier 1948, Davenport (WL),
C 165.

17« Dans la Géométrie des nombres il est question de raisonnements dans lesquels des concepts et
des méthodes géométriques sont appliqués à des questions de théorie des nombres. Les débuts de telles
considérations remontent à Gauss. Lui, et après lui, G. Dirichlet, F. Klein , H. Minkowski et d’autres
ont résolu avec succès par des méthodes géométriques des questions dans lesquelles un système de
nombres entiers devait satisfaire une ou un système d’inégalités, donc avant tout dans la théorie des
formes quadratiques définies ou indéfinies. », Keller 1954 p.2.

18Lekkerkerker 1969 p.vii.
19Mordell 1971c p.611.
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11. « The basic idea in Minkowski’s treatment of an algebraic number field K|Q of

degree n is to interpret its numbers as points in n-dimensional space. This ex-

plains why his theory has been called “Geometry of Numbers20”. »

12. « Il [Minkowski] s’illustra dans la suite, non seulement par d’autres travaux sur

les formes quadratiques, mais aussi par la création de l’ensemble de méthodes

appelé “géométrie des nombres21”. »

13. « The term ‘Geometry of Numbers’ was first used by Minkowski to describe ar-

guments based on considerations of packing and covering22. »

14. « The geometry of numbers deals with the use of geometric notions, especially

convexity and lattices, to solve problems in number theory, usually via the solu-

tions of inequalities in integers23. »

15. « The geometry of numbers is connected with the problem of determining whe-

ther inequalities of various kinds are solvable in integers24. »

16. « La géométrie des nombres est une méthode inventée par Hermann Minkowski :

le but est d’étudier des objets arithmétiques, tels que des formes quadratiques ou

des corps de nombres, par des méthodes géométriques25. »

Beaucoup des commentaires précédents caractérisent la géométrie des nombres par

l’application d’un point de vue géométrique en théorie des nombres. Cette rencontre

entre géométrie et théorie des nombres, qui est « typique » de ce sujet (voir la définition

9), est exprimée de façons diverses. D’abord en expliquant que la géométrie permet de

représenter ou bien interpréter dans un cadre nouveau des problèmes arithmétiques :

la recherche de solutions en nombres entiers à des inégalités est traduite en termes

de recherche de points d’un réseau dans un domaine (voir par exemple la définition

5). La connexion entre géométrie et arithmétique peut aussi être mise en évidence par

l’utilisation de la continuité dans l’étude de phénomènes discrets (définition 2) et dans

ce contexte l’analyse vient parfois se substituer à la géométrie (définition 4).

Mais ces définitions donnent aussi les premières raisons de nuancer le statut de la géo-

20Neukirch 1999 p.28. Je remercie Norbert Schappacher de m’avoir indiqué cette citation.
21Serre 1993 p.4.
22Coates et van der Poorten 1994 p.273.
23Goldman 1998 p.440.
24Olds et al. 2000 p.65.
25Bayer-Fluckiger 2006a p.31.
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métrie des nombres comme discipline clairement identifiée. D’abord, même si employer

la géométrie en théorie des nombres est l’idée qui revient le plus souvent dans ces dé-

finitions, nous avons constaté que l’analyse peut se substituer à la géométrie et que

certaines définitions ne font aucune référence explicite à la géométrie.

Ensuite ces citations n’insistent pas sur les mêmes points pour décrire ce qu’est la

géométrie des nombres. Elle est parfois définie par un ou des objets considérés comme

fondamentaux dans son étude (définitions 1, 9), parfois par le type de problèmes qu’elle

doit résoudre (définitions 2, 3, 6, 7, 10, 15) ou encore elle est décrite comme un en-

semble de méthodes (définitions 4, 5, 8, 12, 13, 14, 16). Certaines définitions combinent

plusieurs des aspects précédents comme par exemple 6, 7 ou 9. De plus, les objets

qui sont mis en avant ne sont pas toujours les mêmes. Nous trouvons par exemple

les réseaux, les formes quadratiques, les corps (convexes, étoilés ou quelconques) ou

alternativement les fonctions distances. Les problèmes dont s’occupe la géométrie des

nombres sont eux aussi divers : estimation du minimum de fonctions pour des valeurs

entières des variables, recherche de solutions entières pour des inégalités, recherche de

points d’un réseau dans un domaine.

Enfin, même si nous observons une certaine stabilité dans le vocabulaire utilisé dans ces

descriptions, en particulier avec les termes géométrie ou arithmétique qui reviennent

fréquemment, ces notions ont-elles la même signification pour tous ces mathématiciens ?

Leur sens ne change-t-il pas selon les époques ? Si un aspect crucial de la géométrie des

nombres est l’emploi de méthodes géométriques en théorie des nombres, quelles sont

exactement ces méthodes ? De quel type de géométrie est-il question et est-ce le même

qui est visé dans toutes ces définitions ?

Ces questions sont d’autant plus pertinentes que plusieurs champs de recherche actuels

se présentent comme prolongement naturel des travaux sur la géométrie des nombres,

champs dont les objets et les techniques paraissent très variés. En plus de la théorie

algébrique des nombres déjà évoquée, citons les recherches sur les réseaux26, la cristal-

lographie27, les problèmes d’empilement et de recouvrement par des corps convexes28,

la cryptologie, la géométrie convexe et discrète29, la géométrie d’Arakelov30 ou la géo-

métrie diophantienne31. Nous avons cette fois l’image d’un sujet éclaté, au carrefour

entre différentes spécialités.

Cette observation est confirmée par les repères historiques fournis par les mathémati-

ciens au cours de leurs travaux. D’une part, ils racontent une préhistoire de la géométrie

des nombres qui est assez bien balisée. L’origine de la géométrie des nombres est tou-

26Martinet 1996.
27Senechal 1992; Engel 1993.
28Gruber 1993a p.741.
29Gruber 2007.
30Soulé 2005.
31Hindry et Silverman 2000.
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jours située dans les recherches sur la théorie arithmétique des formes quadratiques.

Les mathématiciens cités sont alors dans un premier temps Lagrange, Gauss et Diri-

chlet pour leurs contributions à l’étude des formes quadratiques binaires. Une étape

importante est ensuite la démonstration par Hermite en 1847 que si f est une forme

quadratique de n variables définie positive, alors il existe des entiers x1, . . . , xn non

tous nuls et tels que

f(x1, . . . , xn) ≤
(

4

3

)n−1
2

D1/n ,

où D désigne la valeur absolue du déterminant de f . Ce résultat est jugé important

car il est considéré comme « the first important result of a general nature32 ». Après ce

travail d’Hermite les recherches de Korkine, Zolotareff sont souvent mentionnées par

exemple pour leur travail sur les formes quadratiques binaires indéfinies33 ou encore

pour la détermination de la meilleure estimation dans le théorème d’Hermite quand

n = 3 et n = 4 34.

Après ces grandes étapes de la préhistoire, Minkowski est unanimement considéré

comme le créateur de la géométrie des nombres, c’est d’ailleurs lui qui baptise ainsi cette

théorie. Le résultat emblématique de Minkowski est celui sur les domaines convexes qui

peut être réinterprété pour obtenir un énoncé du même type que celui d’Hermite. Si

f(x) = f(x1, . . . , xn) est maintenant une fonction qui vérifie

1. f(x) ≥ 0, f(x) = 0 si et seulement si (x) = 0,

2. f(tx) = |t|f(x),

3. f(x+ y) ≤ f(x) + f(y),

alors il existe des entiers (x1, . . . , xn) non tous nuls tels que

f(x1, . . . , xn) ≤ 2
n
√
V
,

où V désigne le volume du domaine défini par l’inégalité f(x) ≤ 1 35.

Mais l’histoire des développements de la géométrie des nombres après Minkowski est

beaucoup moins consensuelle. Selon les mathématiciens ou les spécialités de recherche,

ce ne sont pas les mêmes protagonistes qui sont mis en avant et leurs contributions ne

sont pas interprétées de la même manière. Mordell rend compte des développements de

la géométrie des nombres en se focalisant sur le problème de la convexité36. Selon lui,

avec Minkowski ou plus tard Blichfeldt, l’attention s’est d’abord portée sur l’étude des

32Blichfeldt 1919 p.449.
33Mordell 1946a p.266.
34Bergé et Martinet 1985-1986.
35Mordell 1946a p.268.
36Comme nous le verrons, c’est un moyen d’intégrer ses propres recherches ainsi que celles de ses

collaborateurs dans l’histoire du sujet.
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domaines convexes, puis la discipline a évolué ensuite vers une théorie devant permettre

d’aborder aussi les domaines non convexes

« All this served as a tremendous stimulus and marked the beginning of

some of the great advances made soon after in the Geometry of Numbers by

Mahler, Davenport, C. A. Rogers and many others. In the past, practically

all the results dealt with convex regions, but now the new results for non-

convex regions constitute an important body of knowledge37. »

Quant aux mathématiciens s’intéressant aux réseaux, leur présentation insiste davan-

tage sur Hermite, Korkine, Zolotareff, en ce qui concerne la préhistoire du sujet, puis sur

Voronoï dont les travaux sur les formes quadratiques sont beaucoup moins citées dans

d’autres traditions de recherche38. Ce n’est plus ici l’évolution convexité/non convexité

qui est vue comme pertinente pour décrire la dynamique du domaine ; c’est le passage

d’une théorie ayant pour objet fondamental les formes à une théorie centrée sur la

notion de réseaux qui est alors souligné.

Dans la préface de son livre sur la géométrie des nombres, Lekkerkerker sépare quant

à lui les contributions à la géométrie des nombres après Minkowski selon leur nature

arithmétique ou géométrique39. Du côté des travaux arithmétiques nous trouvons cités

les mathématiciens Remak, Oppenheim, Davenport et Barnes ; du côté géométrique,

Blichfeldt, Mordell, Mahler et Rogers.

En 1980, Edmund Hlawka40 mentionne lui aussi le travail de mathématiciens comme

Blichfeldt, Mordell, Siegel, Mahler, Cassels ou Rogers. Mais s’il signale une « école de

Manchester » autour de Mordell, il identifie aussi une « école de Vienne » dont des

représentants sont Furtwängler, Hofreiter, Hlawka et W. Schmidt, des « écoles russe et

australienne », ainsi que de celle de Fejes-Toth spécialisée en géométrie discrète.

La variété des objets présentés comme fondamentaux, des résultats clés mis en va-

leur, des généalogies, remet en question le statut de la géométrie des nombres : est-ce

un ensemble de méthodes pour traiter des problèmes posés dans d’autres domaines ou

bien une théorie autonome avec ses propres sujets d’étude ? Si c’est le cas quelles en

sont les limites ? Qu’est-ce qui la caractérise et lui donne son identité ? Peut-on réelle-

ment considérer la géométrie des nombres comme une discipline mathématique ? Cette

question conduit à s’interroger sur les critères qui pourraient caractériser une discipline

scientifique.

37Mordell 1959 p.9.
38Martinet 1996; Bergé et Martinet 1985-1986.
39Lekkerkerker 1969.
40Hlawka 1980.
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0.2 La notion de discipline comme catégorie en his-

toire des sciences

La notion de discipline a été théorisée dans plusieurs sciences humaines. Elle est

cruciale par exemple dans les travaux de Michel Foucault sur l’histoire de la folie et

la naissance de la psychiatrie41. C’est une unité d’analyse qui a aussi été employée en

histoire des sciences, surtout pour les sciences dites expérimentales, par exemple en

histoire de la physique42.

Les historiens des sciences ont insisté sur deux types de facteurs dans la constitution

et la description d’une discipline scientifique43 : des facteurs sociaux qui ont surtout

été discutés dans le cas des sciences expérimentales et des facteurs intellectuels. L’im-

portance qui leur est accordée varie selon les auteurs.

Dans son livre de 1982 sur la constitution de la biochimie comme discipline, Robert

Kohler juge que l’histoire des disciplines scientifiques a négligé jusqu’alors les aspects

sociaux car elle était jusqu’alors écrite principalement par des scientifiques. Il choisit

alors de considérer les disciplines comme des institutions politiques qui organisent la

vie académique. Bien qu’il admette l’influence de critères intellectuels au début de la

constitution d’une nouvelle discipline, ce sont les facteurs économiques et politiques

qu’il voit comme déterminants44.

Dans le travail de Bruno Strasser45 sur « l’émergence de la biologie moléculaire à Ge-

nève », le développement d’une nouvelle discipline est décrite en plusieurs étapes :

d’abord, l’apparition au sein d’un petit groupe de collaborateurs de nouvelles pra-

tiques de recherches, de nouveaux discours, de nouveaux facteurs explicatifs et de

nouveaux instruments ; ensuite l’institutionnalisation de ces innovations à travers la

création d’instituts de recherche ou de journaux. Ces développements sont dans un pre-

mier temps ancrés dans la culture locale avant que ces nouvelles idées et ces nouvelles

pratiques ne circulent dans des réseaux de communications plus larges. Dans le cas

étudié, Strasser met l’accent sur le rôle particulier joué par un instrument scientifique

(ici le microscope électronique) dans la constitution de la discipline : le microscope,

montre Strasser, participe à la construction de nouvelles sociabilités, en favorisant par

exemple la collaboration entre disciplines déjà établies46, mais il constitue aussi un

facteur intellectuel de développement de la discipline : c’est « un objet » de recherche,

41Voir par exemple Foucault 2003.
42Pour des pistes bibliographiques à ce sujet voir Walter 1996 p.1-3.
43Woodward 1991 p.8.
44Voir l’introduction de Kohler 1982.
45Strasser 2002.
46Strasser 2002 p.26.
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un « outil » appliqué à des problèmes très variés47 », et des expériences sont pensées

spécifiquement pour exploiter les nouvelles possibilités qu’il offre.

Regardons maintenant comment la question de discipline a été abordée dans le cas

des mathématiques.

Roland Wagner-Döbler et Jan Berg ont essayé de mesurer le dynamisme de diffé-

rents domaines des mathématiques au XIXe siècle en utilisant des méthodes quantita-

tives. Dans un article publié en 1996, ils calculent pour chaque année le pourcentage

des articles publiés dans les journaux mathématiques dans un domaine par rapport

à l’ensemble des articles48. Les publications sont repérées dans l’index mathématique

du Catalogue of Scientific Papers of the Royal Society of London qui fournit aussi une

classification. Ce sont les entrées de cette classification qui sont reprises pour délimiter

les domaines, sans que soient analysés ce que ces domaines recouvrent ou les procédés

qui affectent tel ou tel travail à une entrée de la classification. Cette situation est la plus

fréquente : le point de vue des acteurs est sollicité pour repérer les disciplines mathé-

matiques – l’utilisation des classifications des journaux, qui sont élaborées en général

par des scientifiques eux-mêmes, entre dans ce cadre49. Les caractérisations que nous

avons données de la géométrie des nombres montrent les limites de ce type d’approches,

les mathématiciens n’ayant pas tous la même conception de leur spécialité.

Charles Fisher a précisément opposé ce qu’est une discipline pour les mathématiciens

et la nécessité de prendre en compte des facteurs sociaux pour en comprendre la consti-

tution et le développement. Fisher considère que si pour les mathématiciens une théorie

est un ensemble d’idées liées à des objets mathématiques, pour lui c’est une catégorie

sociale qui change avec le point de vue des mathématiciens. Pour le montrer, il re-

garde comment différents groupes de mathématiciens caractérisent une même théorie,

à partir de l’exemple particulier de la théorie des invariants50. Remarquons toutefois

que peu de facteurs sociaux sont réellement pris en compte. Des commentaires diffé-

rents sur la théorie des invariants sont relevés dans des contextes variés, mais il s’agit

essentiellement de changements de contextes mathématiques. Des indicateurs comme

les postes universitaires ou les comptes rendus dans des journaux spécialisés sont men-

tionnés mais ils ne servent qu’à décrire des évolutions quantitatives de la théorie des

invariants : l’impact de ces facteurs sociaux sur la théorie même n’est pas discuté.

Une approche très différente a été proposé par Ralf Haubrich : suivant Guntau et Laitko,

il propose une liste de critères purement internalistes pour caractériser une discipline

47Strasser 2002 p.19.
48Wagner-Döbler et Berg 1996.
49Voir aussi Fisher 1966-1967; Cohn 1986; Crane 1972 p.14.
50Fisher 1966-1967.
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mathématique51. Ces critères sont par exemple l’identification d’un objet d’étude, d’un

noyau de concepts et de résultats clés, la systématisation de la discipline (reflétée par

son apparition dans les tables des matières des livres, les classifications de journaux),

son système de preuves (c’est-à-dire les moyens selon lesquels sont validées les solutions

des problèmes posés), les valeurs mises en avant par les mathématiciens pour évaluer

les questions et les résultats obtenus.

Ce que nous avons vu au paragraphe précédent témoigne de la difficulté à mettre en

oeuvre ces critères dans le cas de la géométrie des nombres : en particulier, différents

objets d’étude ont pu être mis en avant et les résultats ne sont pas toujours interprétés

de la même manière.

Mais le principal problème semble être de réussir à articuler des caractéristiques in-

ternes du type précédent et des facteurs sociaux qui participent aussi à l’établissement

d’une discipline. Comme le suggère l’exemple du microscope, ces deux types de facteurs

ne sont pas nécessairement distincts mais peuvent être au contraire fortement imbri-

qués l’un dans l’autre. Par exemple, les échanges entre scientifiques au cours desquels

circulent idées, méthodes, pratiques de recherche ou encore les rapports de forces dans

la vie académique (reflétés en particulier dans les recrutements) modèlent la représen-

tation de la discipline, et ils peuvent aussi favoriser certains points de vue, définir les

problèmes jugés les plus importants etc. Réciproquement, des proximités intellectuelles

entre des scientifiques peuvent contribuer à la formation de nouveaux réseaux de com-

munication ou à la création de nouvelles communautés. Mais cet exemple met aussi en

évidence les difficultés propres au cas des mathématiques : les facteurs proprement in-

tellectuels sont plus délicats à articuler à des facteurs sociaux, en particulier parce que

des énoncés apparemment identiques peuvent renvoyer à des réalités différentes selon

les époques. Foucault insiste déjà sur la nécessité de ne pas prendre de tels énoncés

comme des évidences mais comme des unités à problématiser52. Est-ce qu’“utiliser la

géométrie en arithmétique” recouvre la même chose dans la géométrie des nombres de

Minkowski et de Mordell ? Nous devons trouver le moyen d’analyser de tels termes (et

leur concaténation) dans la pratique de chacun, afin de comprendre comment ils sont

utilisés pour définir la discipline qu’ils cherchent à instituer.

Une autre dimension a été souvent attachée à la notion de discipline : c’est celle de

l’enseignement et de la pédagogie. En particulier, certains travaux sur des disciplines

théoriques ont intégré le social en étudiant comment la transmission du savoir influence

le développement d’un domaine. L’importance de plus en plus grande accordée à l’en-

seignement dans la définition d’une discipline est soulignée dans les commentaires de

51Exposé à Oberwolfach en 2001 cité dans Goldstein et Schappacher 2007a p.54 et 57.
52Foucault 1969 par exemple p.37-38.
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Steve Fuller sur cette notion53. Pour lui l’ancien sens de discipline, « a set of practices

that are cultivated and transmitted by a group of specially trained people », désigne

maintenant davantage la notion d’« école » des historiens alors que « discipline » se

rattacherait davantage à l’ensemble des moyens de transmission du savoir.

Le rôle de l’enseignement dans la formation du « contour intellectuel » de la physique

théorique en Allemagne a été étudié par Kathryn Olesko à travers l’exemple du sémi-

naire de physique organisé à Königsberg par Franz Ernst Neumann54. Dans son livre,

le sens donné à « discipline » est proche de celui proposé par Foucault55. Chez Foucault

l’idée de « discipline » est associée à la notion de pouvoir et désigne un ensemble de

procédés agissant sur le corps afin de le rendre docile, exercé et d’accroître son effi-

cacité56. Dans le cadre de son séminaire, Neumann entraine les étudiants à suivre des

règles, des protocoles et des techniques de recherche57 et cet apprentissage contribue à

« l’émergence de la physique théorique en Allemagne58. »

Andrew Warwick note lui aussi que les phénomènes sociaux ont surtout été pris en

compte par les historiens pour étudier les sciences expérimentales alors qu’ils ont été

négligés pour les disciplines plus théoriques. Il avance deux raisons pour expliquer ce

déséquilibre de traitement : la première raison est que la circulation des concepts des

sciences théoriques n’est pas vue comme problématique et donc que les facteurs locaux

sont abandonnés. La seconde raison vient de l’opposition entre théorie et pratique et de

leurs images respectives, la théorie étant considérée comme une activité contemplative

et individuelle59. Pour Warwick, les arguments en faveur d’une différence de traitement

méthodologique entre disciplines théoriques et disciplines expérimentales ne tiennent

pas. Par exemple, il n’y a pas de raison pour que les concepts circulent mieux que les

pratiques, leur réception peut être influencée par des particularismes locaux. Pour étu-

dier le développement de la physique mathématique à Cambridge, Warwick insiste sur

ces aspects locaux en s’intéressant aux caractéristiques de l’enseignement à Cambridge

et à son évolution. Il examine ensuite comment les compétences spécifiques issues de

cet enseignement ont un impact sur la manière dont une théorie est reçue60.

Avant de conclure ce bref tour d’horizon, il faut souligner que la question des dis-

ciplines scientifiques a pu être abordée à travers des catégories alternatives d’analyse.

Thomas Kuhn, par exemple, a préféré s’intéresser aux communautés scientifiques plus

53Fuller 2000.
54Olesko 1991.
55Olesko reprend le commentaire de Jan Goldstein sur Foucault et la notion de discipline, voir

Goldstein 1984.
56Foucault 1975 p.161.
57Olesko 1991 p.15.
58Olesko 1991 p.6.
59Warwick 2003 p.11.
60C’est l’exemple de la théorie de la relativité restreinte qui est développé dans son livre.
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qu’aux disciplines61. Pour Kuhn, « une communauté scientifique se compose de ceux qui

pratiquent une certaine spécialité scientifique62 ». Si les facteurs sociaux semblent alors

privilégiés, il faut se souvenir que certains éléments internes – la notion de paradigme

par exemple – interviennent de manière importante pour délimiter et caractériser ces

communautés.

En sociologie, la notion de « champ » se substitue parfois à « discipline » dans les

analyses. Les disciplines sont alors vues comme des champs locaux appartenant au

champ scientifique. Le développement de ces disciplines (ou sous-champs) est en partie

la conséquence de la position (hiérarchisée) qu’elles occupent dans le champ scienti-

fique63. Cette tradition considère que la prise en compte de l’histoire intellectuelle et

de l’histoire sociale d’une discipline est fondamentale pour en comprendre les dévelop-

pements64. La présence dans les travaux des scientifiques de cette histoire est d’ailleurs

un témoignage important de l’existence même du champ

« un autre indice du fonctionnement en tant que champ est la trace de

l’histoire du champ dans l’oeuvre65 ».

Les éléments historiques que les mathématiciens incorporent à leur travail sur la géo-

métrie des nombres peuvent être interprétés dans ce cadre.

Ces approches ont en commun d’identifier différents niveaux d’organisation des dis-

ciplines que nous retrouvons dans le vocabulaire utilisé pour les nommer (discipline,

spécialité, théorie. . .). Les niveaux les plus grossiers peuvent peut-être être identifiés

en étudiant les départements universitaires, les laboratoires, les sociétés de spécialistes,

les revues spécialisées66. . . Il est plus difficile de repérer les niveaux d’organisation in-

férieurs67. Kuhn a proposé quelques critères propres pour repérer et délimiter ces plus

petites communautés : la participation aux mêmes conférences spécialisées, la circula-

tion de manuscrits ou d’articles non publiés et l’existence de réseaux de communication

officiels et officieux spécifiques (par exemple les correspondances68).

61Kuhn 1983 p.242.
62Kuhn 1983 p.241.
63Pour un exemple de l’utilisation de la notion de champ dans l’étude de la formation d’une disci-

pline voir Cambrosio et Keating 1983 qui s’intéressent à l’émergence de la chronobiologie.
64Bourdieu 2001 p.136.
65Bourdieu 1976 p.117.
66Bourdieu 2001 p.128, Kuhn 1983 p.242.
67Nous rencontrons ce type de problème méthodologique avec la géométrie des nombres, spécialité

de la théorie des nombres qui est elle-même une discipline des mathématiques.
68Kuhn 1983 p.242.
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0.3 La variation d’échelles comme principe d’analyse

Le niveau auquel se passent les phénomènes étudiés conduit ainsi à privilégier des

outils et des critères d’analyse spécifiques. La prise en compte de ces échelles est un

principe méthodologique plus large. En particulier, dans le cas de la géométrie des

nombres, il doit permettre de montrer que s’il s’agit d’une discipline, son image et son

contenu évolue entre le travail de Minkowski et celui de Mordell.

La variation d’échelles a déjà été théorisée en histoire. Il s’agit de faire varier l’échelle

d’observation des phénomènes au cours de l’analyse. Cette approche devait au départ

permettre de redonner de l’importance à l’expérience des individus et rendre compte

de la singularité de ces expériences par rapport aux processus sociaux « massifs69 ».

Le changement d’échelles n’a pas pour objectif d’observer les mêmes choses à des ni-

veaux différents mais de faire apparaître des phénomènes nouveaux. Cette démarche

« pose en principe que le choix d’une échelle particulière d’observation produit des ef-

fets de connaissance70 ». Une échelle plus petite permet de découvrir des phénomènes

que le choix de catégories d’analyse trop vastes rend invisibles71.

Deux courants principaux se distinguent parmi les historiens intéressés par cette ap-

proche méthodologique72. Certains accordent un privilège aux échelles microscopiques

par rapport aux macroscopiques. Pour eux les causes efficientes de ce qui est constaté

à tous les niveaux sont à l’oeuvre aux plus petites échelles. L’autre position principale

soutient au contraire que toutes les échelles sont équivalentes et que ce qui est fructueux

d’un point de vue heuristique, c’est la confrontation de tous les niveaux d’analyse73.

C’est ce second point de vue qui a été adopté ici pour aborder l’étude de la géométrie

des nombres.

Nous avons noté dans les commentaires sur la géométrie des nombres l’utilisation

d’un vocabulaire presque constant. Le principe de variation d’échelles paraît une ap-

proche possible pour rendre compte des réalités différentes qui se cachent derrière ce

vocabulaire employé par les mathématiciens

« il ne suffit pas que l’historien reprenne à son compte le langage des acteurs

qu’il étudie, mais qu’il en fasse l’indice d’un travail à la fois plus ample

et plus profond : celui de la construction d’identités sociales plurielles et

plastiques qui s’opère à travers un réseau serré de relations (de concurrence,

69Présentation de Revel 1996a p.12.
70Revel 1996b p.19.
71Lepetit 1996, p.92 ; Revel 1996b p.20.
72Présentation de Revel 1996a p.13 ; Lepetit 1996 p.92.
73Notons quand même que la micro-histoire est à l’origine une réaction à l’approche macro-sociale,

Revel 1996a p.10.
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de solidarité, d’alliance, etc.)74. »

Jacques Revel commente en guise d’exemple le travail de Simona Cerutti sur « les

métiers et les corporations turinois aux XVIIe et XVIIIe siècles » :

« Aucune historiographique n’est sans doute plus spontanément organiciste

que celle des métiers et des associations de métiers : il s’agirait là de com-

munautés évidentes, fonctionnelles, et qui sont supposées si puissamment

intégratrices qu’elles en deviendraient quasi naturelles dans la société d’An-

cien Régime. Le pari méthodologique de S. Cerutti consiste à révoquer ces

certitudes et à montrer, à partir du jeu des stratégies individuelles et fa-

miliales et de leurs interactions, que les identités professionnelles et leurs

traductions institutionnelles, loin d’être acquises, font l’objet d’un constant

travail d’élaboration et de redéfinition75. »

Cette situation semble transposable à l’histoire des mathématiques : comme la ter-

minologie banale des métiers est utilisée dans la société d’Ancien régime pour élabo-

rer, plus que simplement décrire, des identités professionnelles d’ailleurs mouvantes,

nous pouvons penser que les catégories spontanément données par les mathématiciens

comme « analyse », « arithmétique » ou « géométrie » sont elles aussi redéfinies par

leurs usages variés. Devant la stabilité des commentaires sur l’intervention de la géo-

métrie en arithmétique dans le cadre de la géométrie des nombres, le passage à une

échelle plus petite offre l’espoir de saisir et de comprendre des différences. Examiner

comment ces domaines sont mobilisés dans le travail des mathématiciens (dans leurs

cours, les séminaires, les articles publiés, les notes non publiées. . .) apporte un autre

éclairage sur les commentaires. Cela montre des redéfinitions et des reconfigurations de

ces disciplines au sein de la géométrie des nombres.

Qu’est-ce que ce principe méthodologique de variation d’échelles peut apporter dans

l’analyse de l’histoire de la géométrie des nombres telle qu’elle est racontée par les ac-

teurs ? Cette histoire produit une certaine image de la géométrie des nombres. Elle

décrit une discontinuité dans l’intérêt qui est porté au sujet et fait ressortir des mo-

ments importants pour le développement du domaine : les travaux de Minkowski, de

Blichfeldt et de Mordell. Parallèlement, elle témoigne aussi d’une certaine constance

dans les méthodes employées (la géométrie en arithmétique, le théorème de Minkowski),

une constance dans le vocabulaire (géométrie, arithmétique, analyse, volume, convexe,

formes, réseaux, continuité, discret. . .), une constance des objets étudiés (réseaux,

formes, fonctions distances). En effet, même si nous avons noté des différences selon

les commentaires, elles ne s’expliquent pas par une évolution dans le temps qui irait

74Revel 1996b p.23-24.
75Revel 1996b p.24.
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vers la disparition d’un objet ou d’un point de vue : nous retrouvons par exemple des

formes et des réseaux chez Minkowski et chez Mordell.

Or, comme nous le verrons plus en détail dans les chapitres suivants, se placer à diffé-

rentes échelles d’observation permet de rendre compte des continuités et discontinuités

suggérées par les remarques précédentes, et d’en comprendre la formation.

Un relevé quantitatif dans le Jahrbuch über die Fortschritte der Mathematik des travaux

publiés sur la géométrie des nombres témoigne d’une activité ininterrompue dans le do-

maine ainsi qu’une présence quasi-permanente dans les classifications à partir de 1916.

Ceci remet donc en cause les discontinuités des récits usuels. Par contre, en croisant

ce relevé avec d’autres sources (les livres sur la géométrie des nombres, l’Enzyklopädie

der mathematischen Wissenschaften), nous retrouvons les grandes étapes mentionnées

précédemment. La différence s’explique par la nature des sources. Une étude quanti-

tative dans le Jahrbuch prend en compte le point de vue des acteurs et la dimension

intellectuelle du domaine d’une manière globale, avec des effets de moyenne, contraire-

ment à des indicateurs comme les livres spécialisés dans lesquels l’auteur accorde une

importance plus ou moins grande à certains résultats ou certaines méthodes.

De même, pour mieux percevoir la signification opératoire des concepts, derrière le vo-

cabulaire commun utilisé, nous pouvons nous placer à l’échelle des mathématiques qui

sont produites : quelles sont les méthodes employées ? Quels résultats sont démontrés

et comment sont-ils énoncés ? Par exemple, si la géométrie des nombres se caractérise

par l’application de la géométrie dans un contexte arithmétique, de quelle géométrie

est-il question ? Comment intervient-elle ? Qu’est-ce qu’elle apporte ? Quelles sont les

motivations à faire appel à la géométrie ? Dans quel contexte est-elle mobilisée et pour-

quoi ?

Cette échelle d’observation, celle de la pratique individuelle de l’activité mathématique,

est différente de celle des commentaires, des discours des mathématiciens ; elle est aussi

différente de celles des pratiques collectives. Même si des changements apparaissent à

toutes ces échelles, ils ne s’ajustent pas nécessairement. Prendre en compte tous ces

niveaux de pratiques peut permettre de révéler différents sens pour un même énoncé.

« Les énoncés, d’une manière générale, ne peuvent être enfermés dans les

seules positions ou trajectoires des locuteurs. Il est patent qu’ils ouvrent

aussi, en entrant en communication les uns avec les autres, des espaces

sémantiques et donc sociaux dont la structure et la tonalité ne constituent

pas une copie conforme de ceux qui les ont précédés. Certes, la continuité

de la réalité sociale est assurée par des actes de langage, mais c’est en

ce que ceux-ci ne sont jamais certains, en ce qu’ils recèlent la capacité

de s’auto-agencer de plusieurs façons différentes et d’interpeller de manière

partiellement imprévisible leurs semblables qu’ils détiennent des possibilités
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de développement et de transformation76. »

Les énoncés ne prennent leur signification que lorsqu’ils sont replacés dans leurs « es-

paces sémantiques et sociaux » qui sont toujours singuliers. La continuité du langage

cache des relations différentes entre les énoncés qui en modifient le sens. Un des objec-

tifs de l’utilisation des échelles microscopiques est précisément de « reconstruire, autour

de quelques personnages précis, ce que fut leur espace social77 ».

Les approches que nous avons employées dans ce qui suit pour observer la géométrie

des nombres se mettent en oeuvre à des niveaux d’analyse variés : relevé des publica-

tions recensées par le Jahrbuch, relevé des citations dans les articles de mathémati-

ciens, relevé des définitions données par des mathématiciens, étude précise du travail

de certains mathématiciens engagés dans la recherche sur le sujet. Ces démarches se

complètent en fournissant chacune des informations diverses. Par exemple, le repérage

par le Jahrbuch donne une idée de qui sont les scientifiques s’intéressant au domaine,

de la quantité de publications produites sur le sujet ainsi que de l’évolution dans le

temps du nombre de ces publications. Les réseaux de citations permettent de mettre en

évidence des interactions entre scientifiques (relations effectives ou à travers la lecture

d’articles), de repérer des textes considérés comme plus importants que les autres, de

faire ressortir plusieurs traditions de recherche pour un même thème. L’étude des ma-

thématiques permet de préciser les définitions ou les commentaires des mathématiciens

– par exemple d’autres types de géométrisation que celle proposée dans le cadre de la

géométrie des nombres sont utilisés en théorie des nombres, comme l’interprétation des

équations diophantiennes en termes de points rationnels sur des courbes ; les rapports

établis entre géométrie et arithmétique dans ces autres traditions peuvent apparaître

très différents, malgré l’utilisation d’un descriptif superficiel commun78.

Un dernier intérêt pour nous du principe de variation d’échelles est lié aux sources

à notre disposition pour la géométrie des nombres. Les mathématiciens dont nous al-

lons parler dans la suite ont produit énormément de textes mathématiques et peu de

métacommentaires. Nous sommes donc dans certains cas devant un unique type de

sources : des mathématiques très techniques. Changer l’échelle d’analyse permet de

faire parler un seul document à différents niveaux. Dans un article de mathématiques,

la considération des résultats, des démonstrations, des méthodes utilisées donne des

76Bensa 1996 p.47.
77Bensa 1996 p.49.
78Ces autres traditions modifient parfois l’interprétation des travaux de Minkowski. Juste après son

commentaire sur la géométrie des nombres (voir page 15) Neukirch ajoute : « It seems appropriate,
however, to follow the current trend and call it [the Geometry of Numbers] “Minkowski Theory”
instead, because in the meantime a geometric approach to number theory has been developed which
is quite different in nature and much more comprehensive. » Neukirch 1999 p.28.
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informations de nature différente que le repérage des mathématiciens, les livres ou les

autres travaux qui y sont cités.

0.4 Le plan de la thèse

La présence d’une histoire du domaine dans le travail des scientifiques est un in-

dice de l’existence de la discipline. Or dans cette histoire Minkowski est toujours vu

comme à l’origine de la géométrie des nombres : la première partie de la thèse lui est

donc consacrée. Les contributions de Minkowski à la géométrie des nombres y sont

étudiées avec l’objectif de comprendre ainsi ce qui est considéré comme l’acte fonda-

teur de la géométrie des nombres : l’introduction d’un point de vue géométrique en

théorie des nombres. Nous verrons quelle géométrie il utilise et dans quels contextes.

Comment la géométrie des nombres s’organise autour d’un résultat et d’une méthode

fondamentale appliquée à des situations variées. Minkowski ayant écrit assez peu de

textes méthodologiques et de commentaires directs sur ces questions, c’est le passage

à une échelle d’observation plus fine de son travail mathématique lui-même qui nous

permettra d’obtenir des indications sur sa conception de la géométrie des nombres.

Nous reviendrons d’abord sur les travaux antérieurs à Minkowski considérés comme

ses précurseurs. Beaucoup de ces travaux ont effectivement été lus par Minkowski et

ce sera pour nous l’occasion de voir que la géométrie avait déjà été introduite dans

la théorie des formes quadratiques par d’autres mathématiciens comme Carl Friedrich

Gauss. L’originalité de Minkowski est donc davantage de systématiser certaines idées,

de leur donner une place et une signification différentes dans la théorie. Le travail de

Minkowski sur la géométrie des nombres est ensuite décrit en trois étapes. D’abord,

avant 1896, Minkowski élabore petit à petit ses idées sur la géométrie des nombres,

en particulier son théorème sur les points d’un réseau dans des parties convexes sy-

métriques par rapport à un point. Ces premières recherches se concrétisent en 1896

par la publication de son livre Geometrie der Zahlen dans lequel certains résultats qui

avaient été énoncés auparavant sont démontrés pour la première fois. Dans les travaux

qui suivent Minkowski systématise le recours à la géométrie, il la fait intervenir dans

divers contextes comme par exemple la théorie de la réduction des formes quadra-

tiques. Ces dernières recherches permettent de préciser la conception de la géométrie

de Minkowski. Finalement dans la dernière partie consacrée à Minkowski, nous nous

demanderons si avec la géométrie des nombres Minkowski crée une nouvelle discipline

des mathématiques (et quelle sorte de discipline). Pour répondre à cette question nous

revenons sur la nature de la géométrie à laquelle Minkowski fait appel dans son travail

qui apparaît comme caractéristique de son travail sur la géométrie des nombres.
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Nous avons dit que la façon dont la géométrie des nombres se développe après Min-

kowski est interprétée de manière variée par les mathématiciens. Un problème est alors

de repérer les travaux effectués sur ce sujet. Le chapitre suivant consiste à déterminer

qui s’intéresse à la géométrie des nombres après Minkowski. Nous utilisons pour cela

plusieurs sources : le Jahrbuch über die Fortschritte der Mathematik, les livres consacrés

à la géométrie des nombres et l’Enzyklopädie der Mathematischen Wissenschaften. Ces

trois sources sont exploitées en employant des méthodes quantitatives. Le croisement

des résultats obtenus met en évidence les contributions de Hans Frederik Blichfeldt et

Louis Mordell auxquelles nous nous intéressons particulièrement par la suite.

Blichfeldt est donc le sujet du chapitre suivant. Peu de documents sont disponibles

à propos de lui et, afin d’avoir quand même une idée de ses sources, nous commençons

par un relevé des citations dans ses articles sur la géométrie des nombres. Nous étudions

ensuite de manière détaillée certains de ces articles. Nous constaterons que Blichfeldt

a une vision différente de la géométrie des nombres par rapport à Minkowski, et qu’il

semble par exemple accorder une place moins importante à la géométrie.

Le travail de Mordell sur la géométrie des nombres a été abordé en deux temps. Un

premier chapitre est consacré à un examen détaillé de ses publications. Cette première

approche a montré que sa collaboration avec Harold Davenport a joué un rôle très

important dans l’élaboration de résultats qu’il juge fondamentaux pour la géométrie

des nombres. Nous avons donc été amené à considérer aussi le travail de Davenport.

Mordell est le premier de ces deux mathématiciens à s’intéresser à la géométrie des

nombres, nous regardons donc d’abord ces premiers travaux sur le sujet au cours des-

quels il alterne l’utilisation de méthodes analytiques et arithmétiques. À la fin des

années 1930, Davenport commence son travail sur la géométrie des nombres ; il colla-

bore alors avec Mordell, d’abord à propos du minimum de la valeur absolue du produit

de trois formes linéaires ternaires, puis du minimum des formes cubiques binaires. La

géométrie semble alors occuper une place plus importante dans le travail de Mordell.

De son côté Davenport alterne présentation arithmétique et présentation géométrique

dans ses publications, mais nous verrons que dans des sources non publiées, comme des

notes de cours, c’est l’approche géométrique qui est privilégiée.

Le second chapitre consacré à Mordell et Davenport se focalise cette fois sur le

fonctionnement du groupe de chercheurs spécialisés en théorie des nombres qui semble

s’être constitué autour de Mordell. Nous avons trouvé à plusieurs reprises des allusions

à une école de Manchester ou une école de Cambridge pour lesquelles Mordell serait

une figure emblématique. Ce groupe est étudié à travers les échanges qui se passent au
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sein de cette communauté, par exemple lors des cours ou des séminaires, mais aussi à

travers les échanges internationaux (voyages de Mordell à l’étranger, accueil de cher-

cheurs, correspondance de Mordell). Nous terminons cette partie par quelques aspects

du recrutement effectué par Mordell à Manchester puis Cambridge. Nous verrons à ce

sujet le rôle actif joué par Mordell dans l’accueil de mathématiciens réfugiés à partir

de 1933.

Cette partie permet de mettre en lumière comment se créée dans les années 30 et 40 la

discipline de la géométrie des nombres - mais, et c’est un des résultats principaux de

cette étude, les critères et la conception même d’une discipline sont alors très différents

de ce qu’ils pouvaient être pour Minkowski.

Dans une dernière partie, nous revenons à travers une étude de quelques manuels

sur les dimensions pédagogiques de la notion de discipline. Nous verrons comment, à

cette échelle, se trouvent confirmés certains des résultats obtenus précédemment, avec

des nuances importantes.
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Les commentaires sur la géométrie des nombres que nous avons rencontrés s’ac-

cordent tous pour fixer l’origine de cette théorie dans le travail de Hermann Minkowski

« The theme of this book is the geometry of numbers, a branch of the theory

of numbers that was discovered by Hermann Minkowski1 ».

Les travaux mathématiques de Minkowski paraissent donc être une entrée légitime dans

l’étude de la géométrie des nombres.

Nous commencerons par donner quelques éléments biographiques sur Minkowski ainsi

qu’un aperçu général de sa carrière scientifique. Dans un deuxième temps, nous pré-

senterons avec plus de détails la partie de ses travaux qui concerne la géométrie des

nombres. Enfin, nous reviendrons sur cette idée, présente dans la citation précédente,

de la création par Minkowski d’une « nouvelle branche » de la théorie des nombres :

qu’est-ce qui fait la nouveauté de cette discipline ? Qu’est-ce qui pour Minkowski lui

donne une identité disciplinaire ?

1Olds et al. 2000 p.3.
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1.1 Quelques éléments biographiques sur Minkowski

Les sources utilisées pour la rédaction de ce court paragraphe biographique sur

Minkowski ont des statuts assez différents : témoignages d’amis ou de membres de la

famille, reproduction de notices biographiques rédigées par Minkowski lui-même, cor-

respondance ou travaux d’historiens sur Minkowski.

En 1973, une des filles de Minkowski, Lily Rüdenberg et Hans Zassenhaus éditent sa

correspondance avec son ami David Hilbert2. Trois courts articles introduisent cette

correspondance, en particulier un de Zassenhaus qui donne des informations sur l’épi-

sode de la rédaction du Zahlbericht (nous y reviendrons) et un de Rüdenberg. Dans

cette préface, elle relate des souvenirs familiaux comme ceux de la soeur de Minkowski,

Fanny. Elle reproduit aussi deux curriculum vitae écrit par son père. Le premier fut

rédigé pour son recrutement à l’université de Königsberg et le second à son arrivée

comme professeur à Göttingen3.

Dans un discours prononcé après la mort de Minkowski en 1909, Hilbert4 livre aussi des

souvenirs sur son ami et il fait une description de ses travaux. Certaines des informa-

tions biographiques données par Hilbert à cette occasion sont reprises dans le livre de

Hans Opolka et Winfried Scharlau5, livre dans lequel sont présentés certains résultats

mathématiques de Minkowski.

Du fait de la grande amitié qui liait Minkowski et Hilbert, nous trouvons beaucoup d’in-

formations sur la vie de Minkowski dans la biographie de Hilbert écrite par Constance

Reid6. Comme cela est expliqué dans la préface, cette biographie a été rédigée pour

sa plus grande part à partir d’entretiens avec des personnes ayant été en contact avec

Hilbert (et donc parfois Minkowski) comme par exemple des anciens élèves, des col-

lègues, des membres de sa famille. . . En ce qui concerne Minkowski, Reid était aussi en

relation avec ses filles et a eu ainsi accès à sa correspondance avec Hilbert avant qu’elle

ne soit publiée.

Un article est consacré à Minkowski dans le Dictionary of Scientific Biography7. Ecrit

par Jean Dieudonné, nous y trouvons quelques éléments sur ses travaux mais assez peu

d’informations biographiques.

Enfin, des articles de recherche en histoire des sciences ont été consacrés à Minkowski.

La majorité d’entre eux traitent des travaux de Minkowski en physique et plus parti-

culièrement de sa contribution à la théorie de la relativité. Nous avons consultés à ce

sujet des articles de Leo Corry, Peter Galison, Lewis Pyenson et Scott Walter. Dans sa

2Rüdenberg et Zassenhaus 1973. Nous avons les lettres de Minkowski adressées à Hilbert entre
1885 et 1908.

3Rüdenberg et Zassenhaus 1973 p.9-10.
4Hilbert 1911 p.V-XXXI.
5Opolka et Scharlau 1985.
6Reid 1970.
7Dieudonné 1974.
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thèse, ce dernier fait un bilan historiographique de ce sujet et indique des références

supplémentaires8.

Les études sur le travail de Minkowski en mathématiques sont beaucoup moins nom-

breuses. L’article de Walter Strobl publié en 1985 décrit surtout les années de formation

de Minkowski9. Ses années au lycée puis à l’université de Königsberg, les mathématiques

qu’il a étudiées pendant cette période et le Grand Prix de l’Académie des sciences sont

les principaux thèmes abordés. Une lettre de Heinrich Weber à Richard Dedekind dans

laquelle Weber livre ses impressions sur le jeune Minkowski est aussi reproduite. Les

principaux travaux concernant les contributions de Minkowski à l’arithmétique sont

ceux de Joachim Schwermer publiés en 1991 et 2007. Schwermer revient en particu-

lier sur l’habilitation de Minkowski à Bonn10 et sur son travail concernant les formes

quadratiques et leur réduction11. Il soulève déjà le problème posé par l’intuition géo-

métrique dans ces recherches.

1.1.1 Les années de formation 1864-1885

Dans ses curriculum vitae, Hermann Minkowski indique qu’il est né le 22 juin 1864

à Alexotas12 en Russie et que ses parents s’appellent Lewin Minkowski et Rahel Taub-

mann13, ils étaient allemands14. D’après sa soeur, il est le quatrième d’une famille de

cinq enfants. Il avait trois frères Maxim l’ainé de la famille, Oscar (né en 1858), Toby

plus jeune que lui et une soeur Fanny née en 1863 15.

En 1872, alors que Hermann Minkowski à 8 ans, la famille Minkowski, fuyant les per-

sécutions contre les juifs, émigre en Prusse et s’installe à Königsberg16. Il fréquente

à partir d’octobre 1872 le Altstädtische Gymnasium de Königsberg. Elève très doué,

il termine très vite ses études secondaires et obtient son Abitur en mars 1880 alors

qu’il n’a pas encore 16 ans. Pendant cette période, il suit le conseil d’un de ses pro-

fesseurs du Gymnasium Louis Hübner et contacte Heinrich Weber alors professeur de

mathématiques à l’université de Königsberg17. Weber livre ses impressions sur le jeune

Minkowski dans une lettre à Richard Dedekind :

8Walter 1996.
9Strobl 1985.

10Schwermer 1991.
11Schwermer 2007.
12Il s’agit maintenant d’un quartier de la ville de Kaunas en Lituanie qui se situe à environ 100

kilomètres à l’ouest de Vilnius.
13Rüdenberg et Zassenhaus 1973 p.9-10.
14Dieudonné 1974.
15Oscar, qui était médecin, est connu pour la découverte de la relation entre le pancréas et le

diabète, voir Rüdenberg et Zassenhaus 1973 p.11-12.
16Aujourd’hui Kaliningrad en Russie. Voir Reid 1970 p.4.
17Schwermer 2007 p.485.
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Fig. 1.1 – Hermann Minkowski (1864-1909)
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« Ich will Dir bei dieser Gelegenheit von einem hier aufgetauchten ma-

thematischen u. speciell zahlentheoretischen Genie schreiben, welches viel

verspricht. Es ist ein Primaner18 eines hiesigen Gymnasiums, der erst in

einem Jahr zur Universität abgeht und sich ganz aus eigenem Antrieb in

die höhere Analysis und die Zahlentheorie eingearbeitet hat, die er nach der

ersten Auflage Deiner Dirichlet-Vorlesungen studiert hat. Jetzt hat er die

Disquisitiones vor19. »

Effectivement, c’est pendant ces années au Gymnasium que Minkowski découvre la

théorie des formes quadratiques qui sera le thème central de ses recherches en mathé-

matiques. Comme l’indique Weber, il étudie pour cela les Vorlesungen der Zahlentheorie

de Peter Gustav Lejeune-Dirichlet et les Disquisitiones Arithmeticae de Carl Friedrich

Gauss20.

Minkowski entre à l’université de Königsberg en avril 1880 ; il y passe cinq semestres

pendant lesquels il suit les cours de Weber, Woldemar Voigt, Johann Georg Rosenhain

et Louis Saalschütz. Ces cours concernent par exemple la théorie des déterminants,

le calcul différentiel et intégral, la géométrie analytique et synthétique, les équations

différentielles, les courbes algébriques, le calcul des variations, la théorie des équations

algébriques, la statique et la mécanique21. . .

À partir de l’hiver 1882-1883, Minkowski passe trois semestres à l’université de Berlin22

où il suit des cours de Ernst Eduard Kummer, Leopold Kronecker, Karl Weierstrass,

Hermann Ludwig Ferdinand von Helmholtz et de Gustav Robert Kirchhoff23. Il revient

ensuite à Königsberg où il obtient son doctorat le 30 juillet 1885 pour une thèse intitu-

lée24 Untersuchungen über quadratische Formen, Bestimmung der Anzahl verschiedener

Formen, welche ein gegebenes Genus enthält25.

C’est aussi pendant ses années d’études à Königsberg que Minkowski rencontre Adolf

Hurwitz et surtout David Hilbert avec lesquels il restera ami jusqu’à sa mort. Hilbert

18Un Primaner est à cette époque en Allemagne un élève de la classe la plus avancée du lycée.
19« Je veux t’écrire à cette occasion à propos d’un génie mathématique, et particulièrement arith-

métique, qui a fait son apparition ici et qui promet beaucoup. C’est un élève de Terminale du lycée
local qui n’ira à l’université que dans un an et s’est plongé complètement de sa propre initiative dans
l’analyse supérieure et dans la théorie des nombres, qu’il a étudié d’après la première édition de tes
Cours de Dirichlet. Maintenant, il pense faire les Disquisitiones. » Cette lettre est reproduite dans
Strobl 1985 p.144-145.

20Strobl 1985 p.144.
21Strobl 1985 p.149.
22Voir Schwermer 2007 p.487. Les sources que nous avons consultées indiquent des dates diffé-

rentes pour le séjour de Minkowski à Berlin. Dans Reid 1970 p.11, il est dit qu’il revient de Berlin
au printemps 1882. Minkowski confirme ce séjour à Berlin dans ses curriculum vitae reproduits en
introduction à sa correspondance avec Hilbert mais sans date précise.

23Hilbert 1911 p.V.
24Hilbert 1911; Rüdenberg et Zassenhaus 1973 p.9.
25Minkowski 1885.
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était lui aussi étudiant à Königsberg alors qu’Hurwitz y avait été nommé professeur

associé au printemps 1884. Tous les après-midi à cinq heures ils se retrouvaient pour

discuter de mathématiques au cours de longues promenades, tradition qui sera reprise

plus tard par Hilbert et Minkowski quand ils se retrouveront à Göttingen26 :

« On unending walks we engrossed ourselves in the actual problems of the

mathematics of the time ; exchanged our newly acquired understandings,

our thoughts and scientific plans ; and formed a friendship for life27. »

Minkowski se fait connaître de la communauté mathématique dès 1883 quand il

remporte alors qu’il n’a pas encore 19 ans le Grand Prix des sciences mathématiques

de l’Académie de Paris. L’histoire de ce prix a déjà été racontée à plusieurs reprises

d’une part parce que Minkowski est encore très jeune quand il rédige le mémoire vic-

torieux mais aussi à cause de la polémique autour de l’attribution du prix28.

Nous avons plus particulièrement utilisé ici la conférence à propos de cette anecdote

faite par Jean-Pierre Serre à l’Académie des sciences en 1983 et dont le texte a été

publié en 1993 29.

En avril 1881, l’Académie propose comme sujet pour ce prix la Théorie de la décom-

position des nombres entiers en une somme de cinq carrés30. Cette question est dans

la continuité des travaux effectués sur la décomposition des entiers naturels en somme

de carrés. Le critère pour savoir si un nombre est la somme de deux carrés est connu

depuis Pierre Fermat31. En terme moderne, il s’énonce de la façon suivante : un entier

naturel n peut s’écrire n = a2 + b2, avec a et b des entiers naturels, si et seulement

si dans la décomposition de n en facteurs premiers, les facteurs de la forme 4m + 3

interviennent avec un exposant pair32.

En 1798, Adrien-Marie Legendre a démontré qu’une condition nécessaire et suffisante

pour qu’un entier n soit la somme de trois carrés d’entiers33 est qu’il ne puisse pas

s’écrire sous la forme 4a(8m+ 7), où a et m sont des entiers.

Enfin Joseph-Louis Lagrange a publié pour la première fois en 1772 34 une démonstra-

tion du fait que tout nombre entier est la somme de quatre carrés d’entiers35. Ce dernier

résultat implique en particulier que tout entier est aussi la somme de cinq carrés. Le

problème posé par l’Académie ne porte donc pas sur l’existence d’une telle décomposi-

26Reid 1970 p.12-14.
27Hilbert cité dans Reid 1970 p.14.
28Voir par exemple Bayer-Fluckiger 2006a; Dieudonné 1974; Schwermer 1991; Strobl 1985.
29Serre 1993.
30Serre 1993 p.3.
31Dickson 1920, chapitre VI.
32Hardy et Wright 1960 p.299.
33Dickson 1920 p.ix.
34Lagrange 1772.
35Dickson 1920 p.279.
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tion mais sur le nombre de décompositions possibles.

Cette question du nombre de décompositions en somme de carrés avait aussi été étu-

diée dans un certain nombre de cas. Pour les sommes de deux carrés et trois carrés les

résultats sont dus respectivement à Legendre en 1798 et à Gauss en 1801 36. Pour la

décomposition d’un entier en une somme de quatre, six ou huit carrés, Carl Jacobi a

obtenu en 1829 des formules en utilisant la théorie des fonctions elliptiques mais sa mé-

thode ne peut pas s’appliquer pour des décompositions en somme d’un nombre impair

de carrés37. Au moment où le sujet pour le prix est proposé, les académiciens n’ont

connaissance que des formules données sans démonstration par Ferdinand Gotthold

Max Eisenstein en 1847 pour le nombre de décompositions d’un entier en somme de

cinq carrés38.

Minkowski, qui comme nous l’avons dit connaissait le travail de Gauss et Dirichlet39,

s’attaque au sujet proposé par l’Académie. Son travail le conduit à construire une

théorie assez générale des formes quadratiques de n variables et à coefficients entiers.

Il obtient pour ces formes des résultats plus généraux que ceux qui étaient nécessaires

pour répondre à la question posée pour le prix40.

En fait lorsque le sujet est proposé, les académiciens semblent ignorer que le problème

du nombre de décomposition des entiers en somme de cinq carrés a déjà été résolu

par un mathématicien anglais Henry John Stephen Smith qui était alors professeur à

l’université d’Oxford. Dans un article publié en 1867 41, Smith avait indiqué comment

les formules conjecturées par Eisenstein sont des conséquences de résultats qu’il venait

de démontrer42.

Nous avons des informations sur la réaction de Smith à la publication de ce sujet pour

le Grand Prix de l’Académie dans ses Oeuvres Complètes. L’éditeur des Oeuvres et

ami de Smith, James Whitbread Lee Glaisher, rédige une introduction dans laquelle il

revient sur ce prix. Il livre ses propres souvenirs ainsi que des extraits de la correspon-

dance de Smith à ce sujet.

D’après Glaisher, lorsqu’en 1882 il apprend quel est le sujet proposé par l’Académie,

Smith ne sait pas trop quelle attitude il doit adopter et il lui demande conseil dans une

lettre du 17 février 1882 :

« The Paris Academy have set for their Grand Prix for this year the theory

of the decomposition of numbers into five squares, referring to a note of

36Dickson 1920 p.ix.
37Serre 1993 p.3.
38Eisenstein 1847.
39Dirichlet s’était aussi intéressé au nombre de décompositions en somme de trois carrés, voir

Dickson 1920 p.263.
40Dieudonné 1974 p.411.
41Voir Smith 1867, dans cet article Smith traite aussi le cas du nombre de décompositions en

somme de sept carrés.
42Serre 1993 p.3-4.
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Eisenstein, Crelle, vol. xxxv, in which he gives without demonstration the

formulae for the case in which the number to be decomposed has no square

divisor. In the Royal Society’s Proceedings, vol. xvi, pp.207, 208, I have

given the complete theorems, not only for five, but also for seven squares :

and though I have not given my demonstrations, I have (in the paper be-

ginning at p. 197) described the general theory from which these theorems

are corollaries with some fulness of detail. Ought I to do anything in the

matter ? My first impression is that I ought to write to Hermite, and call

his attention to it. A line or two of advice would really oblige me, as I am

somewhat troubled and a little annoyed43 ».

Il finit effectivement par contacter Charles Hermite et ce dernier lui répond dans

une lettre datée du 26 février 1882 :

« Mon cher Monsieur,

Aucun des membres de la commission qui a proposé pour sujet du prix

des sciences mathématiques en 1882 la démonstration des théorèmes d’Ei-

senstein sur la décomposition des nombres en cinq carrés n’avait connais-

sance de vos travaux contenant depuis bien des années cette démonstration

et dont j’ai pour la première fois connaissance par votre lettre. L’embarras

n’est point pour vous, mais pour le rapporteur des mémoires envoyés au

concours, et si j’étais ce rapporteur je n’hésiterais pas un moment à faire

d’abord l’aveu complet de l’ignorance où il s’est trouvé de vos publications,

et ensuite à proclamer hautement que vous aviez donné la solution de la

question proposée. Une circonstance pourrait ôter tout embarras et rendre

sa tâche facile autant qu’agréable. S’il avait en effet à rendre compte d’un

mémoire adressé par vous-même dans lequel vous rappelleriez vos anciennes

recherches en les complétant, vous voyez que justice vous serait rendue en

même temps que les intentions de l’Académie seraient remplies puisqu’on

lui annoncerait la solution complète de la question proposée. Jusqu’ici je

n’ai pas eu connaissance qu’aucune pièce ait été envoyée, ce qui s’explique

par la direction du courant mathématique qui ne se porte plus maintenant

vers l’arithmétique. Vous êtes seul en Angleterre à marcher dans la voie

ouverte par Eisenstein. M. Kronecker est seul en Allemagne ; et chez nous

M. Poincaré qui a jeté en avant quelques idées heureuses sur ce qu’il ap-

pelle les invariants arithmétiques, semble maintenant ne plus songer qu’aux

fonctions Fuchsiennes et aux équations différentielles. Vous jugerez s’il vous

convient de répondre à l’appel de l’Académie à ceux qui aiment l’arithmé-

tique ; en tout cas soyez assuré que la commission aura par moi connaissance

43Glaisher 1894 p.lxvi.
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de vos travaux si elle a [à] se prononcer et à faire un rapport à l’Académie

sur des mémoires soumis à son examen . . . Je vous renouvelle, mon cher

Monsieur, l’expression de ma plus haute estime et de mes sentiments bien

sincérement dévoués.

CH. HERMITE44. »

Smith suit finalement les recommandations d’Hermite et soumet un mémoire à

l’Académie dans lequel il détaille ses travaux antérieurs45.

Minkowski envoie lui aussi son travail, il s’agit d’un long mémoire écrit en allemand

qu’il n’a pas eu le temps de traduire en français comme l’exigeait le règlement du

prix. Il suit donc le conseil de son frère ainé Max et ajoute au dernier moment une

courte introduction en français dans laquelle il demande l’indulgence des membres de

l’Académie sur ce point46.

Trois mémoires sont finalement envoyés pour concourir pour obtenir le prix : celui de

Smith, celui de Minkowski et un troisième dont l’auteur est Théophile Pépin47.

Au cours de la séance de l’Académie du 2 avril 1883, le prix est finalement attribué

conjointement à Smith et à Minkowski48, en ce qui concerne le troisième mémoire

Camille Jordan le rapporteur de ce travail écrit :

« . . .Le mémoire N̊ 2 montre chez son auteur des connaissances étendues et

renferme plusieurs résultats intéressants ; mais la question posée par l’Aca-

démie ne s’y trouve même pas abordée49. »

Smith qui décède le 9 février 1883 ne reçoit son prix qu’à titre posthume et l’attribution

conjointe du prix à Minkowski fait scandale50. La décision de l’Académie est contestée

pour différentes raisons. D’abord les mathématiciens anglais critiquent le fait que le

travail d’un mathématicien confirmé comme Smith soit mis au même niveau que celui

d’un jeune inconnu encore étudiant51. Ensuite contrairement à la promesse faite par

Hermite le rapport rédigé par l’Académie sur les mémoires présentés ne mentionne

jamais que Smith avait déjà résolu le problème seize ans plus tôt52. Glaisher rapporte

que la soeur de Smith écrivit alors à Hermite pour lui demander des explications et lui

44Cette lettre est reproduite dans Glaisher 1894 p.lxvi-lxvii.
45Serre 1993; Glaisher 1894 p.lxvii.
46Reid 1970 p.11. Cette introduction (reproduite dans Serre 1993 p.9) est datée du 29 mai 1882

alors que le dernier délai pour faire parvenir son travail pour concourir pour le prix était le 1er juin
1882.

47L’identité de l’auteur de ce troisième mémoire n’est connue que depuis 1989 lorsqu’à la demande
de Jean-Pierre Serre la lettre contenant son nom a été ouverte. Le règlement prévoyait en effet que les
auteurs restent anonymes à moins que leur travail ne soit primé. Voir à ce sujet les notes de Norbert
Schappacher dans Serre 1993 p.5.

48Les mémoires de Smith et Minkowski ont été publiés, voir Smith 1887; Minkowski 1887b.
49Cité dans Glaisher 1894 p.lxviii.
50Glaisher 1894 p.lxvii.
51Serre 1993 p.4.
52Ce rapport est intégralement reproduit dans Glaisher 1894 p.lxvii-lxix.
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rappeler sa promesse que le rapport devait faire mention de l’antériorité des travaux

de son frère. En réponse, Hermite justifie cette omission en précisant que « ce tort ne

consiste que dans un oubli, qui a été absolument involontaire53 ».

D’autres critiques viennent des journaux français de l’époque. D’abord ils s’étonnent

que les académiciens ne connaissaient pas le travail de Smith publié par la Royal Society

quand ils ont choisi le sujet du prix54, mais ils s’indignent aussi du fait que les membres

de l’Académie aient pu récompenser un mémoire rédigé en allemand. Cette entorse au

règlement était d’autant moins facilement excusée que les tensions causées par la guerre

de 1870 entre la France et la Prusse étaient encore très vives55.

Enfin, Glaisher explique que Minkowski était accusé d’avoir plagié le travail de Smith et

les similitudes entre les deux mémoires pointées par le rapport des académiciens étaient

prises comme des preuves que Minkowski connaissait l’article publié par Smith en 1867.

Ces critiques conduisirent Joseph Bertrand à s’expliquer sur cette décision au cours de

la séance du 16 avril 1883. Pour lui le prix a amené Smith à revenir sur son article de

1867 dans lequel il ne donnait finalement pas de preuve des formules d’Eisenstein mais

que de vagues indications difficiles à exploiter sans détails supplémentaires. Bertrand

défend aussi l’originalité du travail de Minkowski et note que les points communs entre

les mémoires récompensés ne sont pas étonnants vu que la question posée était assez

restreinte56.

Les académiciens persistent dans leur décision et Minkowski finit par recevoir son prix,

c’est à cette occasion que Jordan écrit à Minkowski

« Travaillez, je vous prie, à devenir un géomètre éminent57. »

Cette affaire du Grand Prix de l’Académie ressort en Angleterre pendant la Seconde

Guerre Mondiale. Le 16 avril 1943, un journal anglais, The Engineer, publie un article

intitulé « Sixty years ago : A Mathematical Prize ». Minkowski y est accusé d’avoir

plagié le travail de Smith allant jusqu’à « copier une petite erreur ». Toujours d’après

cet article, l’Académie a alors retiré le prix attribué à Minkowski. Mordell réagit à

ces affirmations dans une lettre du 11 juin 1943 et il prend la défense de Minkowski.

Il indique que le prix de Minkowski n’a jamais été annulé et conteste le fait que ce

dernier se soit approprié les résultats de Smith. Pour Mordell, il ne fait aucun doute

que Minkowski ait découvert sa démonstration indépendamment du travail de Smith

et que

« It is quite obvious that the writer of the article in your columns sixty

53Glaisher 1894 p.lxx.
54Glaisher 1894 p.lxx.
55Serre 1993 p.4.
56Glaisher 1894 p.lxx-lxxi.
57Cité Serre 1993 p.4.
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years ago did not confine himself to facts. »

Cette lettre, qui est reproduite dans le journal le 18 juin 1943, est accompagnée d’une

réponse de l’éditeur de The Engineer. Pour lui, d’une part, Mordell ne fournit aucune

preuve de qu’il avance et il est impossible de prouver que Minkowski n’ait pas eu

connaissance des travaux publiés de Smith, d’autre part, il renvoie à l’Encyclopaedia

Brittanica et au Dictionary of National Biography pour soutenir leur version de l’his-

toire. Mordell répond à nouveau en donnant davantage de détails issus des Comptes

rendus de l’Académie des sciences, des oeuvres complètes de Smith et de Minkowski58.

Il est particulièrement intéressant que Mordell, dont nous verrons l’importance dans

le développement de la géométrie des nombres au XXe siècle, se trouve ici défendre

l’originalité de Minkowski, et ce faisant contribue à l’établissement d’une mémoire ma-

thématique collective. Cet indice renvoie à la question importante du rôle de l’histoire

dans la constitution d’une discipline.

1.1.2 La carrière scientifique de Minkowski

Après son doctorat, entre 1885 et 1887, Minkowski entreprend quelques travaux de

recherche sur les formes quadratiques et les substitutions linéaires59 mais il regrette que

son service dans l’armée prussienne l’empêche de se consacrer davantage à son travail.

Il le déplore par exemple dans une lettre du 26 avril 1886 adressée à Hilbert qui se

trouve alors à Paris :

« Wenn einer der großen Herren, Jordan oder Hermite, sich vielleicht

einmal meiner erinnern sollte, so bitte empfehlen Sie mich bestens, und

machen Sie es klar, daß ich weniger von Natur, als durch die Umstände ein

Faullenzer bin60. »

Sa carrière universitaire va véritablement commencer en 1887 à l’université de Bonn

où il soutient son Habilitation61 le 15 mars 1887. La procédure d’Habilitation comporte

plusieurs étapes, d’abord Minkowski soumet deux articles62, ensuite il propose plusieurs

thèmes pour un exposé (Probevorlesung), celui qui a été finalement retenu est intitulé

Über einige Anwendungen der Arithmetik in der Analysis63.

Il semble que l’idée de faire venir Minkowski à Bonn n’était pas nouvelle puisque dès

1883 Rudolf Lipschitz demande l’avis d’Hermite sur le travail de Minkowski :
58Une copie de tous les documents cités à propos de cette polémique entre Mordell et The Engineer

est conservée dans les archives de Mordell à Cambridge, Mordell (St John’s), box 1, folder 5. Ces
documents sont reproduits en annexe.

59Schwermer 2007.
60« Si l’un des grands hommes, Jordan ou Hermite, devait peut-être se souvenir une fois de moi,

s’il vous plaît recommandez-moi au mieux et dites bien clairement que je suis un fainéant moins par
nature que par les circonstances. » Rüdenberg et Zassenhaus 1973 p.32.

61Pour une étude détaillée voir, Schwermer 1991.
62Il s’agit de Minkowski 1887a,c.
63Le texte de ce manuscrit est reproduit dans Schwermer 1991 p.85-88.
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« Quant au dernier [Minkowski] je vous serais très reconnaissant si vous vou-

liez me faire connaître les impressions que vous a faites le travail couronné.

Dans ce moment un professeur extraordinaire de mathématique laissé [ ?]

vacant par le décès de M. Radicke à notre université il m’est venu l’idée,

s’il serait par juste de le tenir ouvert tant que ce jeune homme le pourrait

obtenir.

. . .vous êtes le juge le plus compétent de la valeur de son travail j’attache

un prix très haut à savoir votre opinion64. »

La réponse d’Hermite est très élogieuse à l’égard de Minkowski :

« Le mémoire de M. Minkowski étant écrit en allemand, a été lu et étudié

par M. Camille Jordan, qui m’en a rendu compte. Ce n’est point à mon

jugement une oeuvre aussi considérable que les mémoires de Rosenhain et

de M. Kummer65, mais je ne doute point que le jeune géomètre n’ait devant

lui un grand avenir, et qu’il ne justifie pleinement votre confiance, si vous

réalisez votre intention de vous l’attacher comme professeur extraordinaire.

Son travail nous a paru plus complet et meilleur à certains égards que

celui de M. Smith ; il rélève une science algébrique profonde, et un talent

d’invention qui promet de belles et importantes découvertes dans l’avenir.

Je pense donc que vous servez la cause de la science en lui facilitant son

entrée dans la carrière universitaire, qu’il est digne de votre appui, dès à

présent et que plus tard il le sera encore davantage66. »

De 1887 à 1892, Minkowski est donc Privatdozent à l’université de Bonn puis il y

obtient un poste de professeur associé (ausserordentlicher Professor)67. Il semble que

Minkowski n’apprécie alors pas vraiment ses collègues mathématiciens à l’exception de

Lipschitz, il s’en plaint à Hilbert dans une lettre du 29 décembre 1887 :

« Er [Lipschitz] war der Einzige, dem ich eine mathematische Frage stel-

len oder mit dem ich überhaupt ein wissenschaftliches Thema besprechen

konnte. Mein College v. Lilienthal ist ein sehr liebenswürdiger Mensch ;

aber ich rede mit ihm von allem andern lieber als von Mathematik68. »

64Extrait d’une lettre de Lipschitz à Hermite du 9 mai 1883, cité dans Schwermer 1991 p.79.
65Ce sont des mémoires qui ont obtenus le Grand Prix de l’Académie des sciences, Ernst Eduard

Kummer en 1857 pour ses travaux sur le théorème de Fermat et Johann Rosenhain en 1851 pour ses
travaux sur les fonctions elliptiques.

66Extrait d’une lettre de Hermite à Lipschitz du 12 mai 1883, cité dans Schwermer 1991 p.80.
67D’après Minkowski dans Rüdenberg et Zassenhaus 1973 p.9-10.
68« Il [Lipchitz] est le seul à qui je peux poser une question mathématique ou avec qui je peux

discuter d’un sujet scientifique. Mon collègue v. Lilienthal est un homme très gentil ; mais je parle
avec lui de tout autre chose plutôt que de mathématiques. » Rüdenberg et Zassenhaus 1973 p.33.
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C’est peut-être la raison qui conduit Minkowski à se rapprocher des physiciens, il

rencontre en particulier Heinrich Hertz69 qui aura sur lui une grande influence et qui par

son intermédiaire influencera aussi Hilbert dans ses travaux sur l’axiomatisation de la

physique70. À cette époque Minkowski s’intéresse à la mécanique71, il publie en 1888 un

article sur l’hydrodynamique72. Il est intéressant de noter que les questions de physique

sur lesquelles Minkowski travaille à cette époque ne sont pas simplement théoriques

mais il s’investit au contraire dans des problèmes pratiques de physique expérimentale.

Voilà comment il décrit avec humour ces activités à Hilbert le 22 décembre 1890 :

« Ich weiß nicht, ob ich Sie deshalb trösten muß, noch auch, ob ich solches

thue, indem ich meine Meinung dahin äußere, daß Sie diesesmal an mir,

als einem gänzlich physikalisch Durchseuchten, wenig Freude erlebt hätten.

Vielleicht auch hätte ich sogar eine zehntägige Quarantaine durchmachen

müssen, ehe Sie mich wieder als mathematisch rein unangewandt73 zu Ihren

gemeinsamen Spaziergängen zugelassen hätten74. »

Un peu plus loin dans cette même lettre il ajoute :

« Ich habe meine praktischen Übungen im physikalischen Institut, zu Hause

studire ich Thomson, Helmholtz und Konsorten ; ja von Ende nächster

Woche an arbeite ich sogar an einigen Tagen der Woche in blauem Kit-

tel in einem Institut zur Herstellung physikalischer Instrumente, also ein

Praktikus, wie Sie ihn sich schändlicher gar nicht vorstellen können75. »

Cet engagement de Minkowski dans des recherches en physique ne l’empêche pas

pour autant de continuer son travail en mathématiques en particulier sur les formes

quadratiques. Vers la fin des années 1880, ses idées sur ce qui va devenir la géométrie des

nombres ont commencé à émerger, certaines d’entre elles transparaissaient déjà dans

son exposé pour son Habilitation qui marque selon Joachim Schwermer « a decisive

69Dans ses travaux Hertz opère une géométrisation de la mécanique, point de vue géométrique qui
sera adopté par Minkowski aussi bien en mathématique qu’en physique. Sur Hertz voir Lützen 1999.

70Voir à ce sujet les articles de Leo Corry à propos du travail de Hilbert en physique, par exemple
Corry 1997, 2000.

71Lettre à Hilbert du 29 décembre 1887, Rüdenberg et Zassenhaus 1973 p.33.
72Minkowski 1888.
73Minkowski plaisante ici autour du titre du Journal de Crelle, Journal für die reine und angewandte

Mathematik, parfois qualifié ironiquement de Journal für die reine unangewandte Mathematik.
74« Je ne sais pas si je dois donc vous consoler, ni si en exprimant ma pensée j’agis de sorte que vous

auriez éprouvé cette fois peu de joie avec moi qui suis complètement contaminé par la physique. Peut-
être aurais-je dû même passer par une quarantaine de dix jours avant que vous ne m’ayez à nouveau
admis à vos promenades en commun comme mathématiquement purement inappliqué. » Rüdenberg

et Zassenhaus 1973 p.39.
75« J’ai mes exercices pratiques à l’Institut de physique, à la maison j’étudie Thomson, Helmholtz

et consorts ; dès la fin de la semaine prochaine je travaille même quelques jours par semaine en blouse
bleue à l’institut pour installer des instruments de physique, oui, un préparateur comme vous ne
pourriez vous l’imaginer même pas de manière inavouable. » Rüdenberg et Zassenhaus 1973 p.39-
40.
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turning point in Minkowski’s approach to the theory of quadratic forms76 ». En effet,

c’est à cette occasion que Minkowski commence à faire appel à l’intuition spatiale

(« Räumliche Anschauung ») à différents niveaux dans son travail (nous y reviendrons).

Nous avons des traces de ce début d’intérêt à cette époque pour ce qui va devenir la

géométrie des nombres dans la correspondance de Minkowski avec Hilbert :

« Ich bin jetzt in der Theorie der positiven quadratischen Formen sehr viel

weiter gekommen, es wird in der That bei Formen mit größerer Variabeln-

zahl sehr vieles anders. Vielleicht interessirt Sie oder Hurwitz der folgende

Satz (den ich auf einer halben Seite beweisen kann) : In einer positiven

quadratischen Form von der Determinante D mit n (≥ 2) Variabeln kann

man stets den Variabeln solche ganzzahligen Werthe geben, daß die Form

< nD
1
n ausfällt. Hermite77 hat hier für den Coefficienten n nur

(
4
3

) 1
2
(n−1)

,

was offenbar im Allgemeinen eine sehr viel höhere Grenze ist78. »

Ces débuts dans cette direction de recherche se concrétisent au début des années

1890 avec ses premières publications qui sont recensées comme appartenant à la géo-

métrie des nombres dans les Gesammelte Abhandlungen de Minkowski79. C’est aussi

le moment où il commence la rédaction de son livre Geometrie der Zahlen80 qui sera

publié en 1896

« Mit meinem Buche bin ich soweit, daß ich mich in diesen Tagen an einen

Verleger wenden werde. Ich mochte [sic] es nicht thun, bevor Alles klipp und

klar war. Ich habe alles Principielle, was ich benutze, also beispielsweise die

Hülfssätze aus der Functionentheorie81 ».

Une anecdote qui montre l’engagement de Minkowski dans ses recherches sur la

géométrie des nombres est celle du rapport sur la théorie des nombres.

En 1893, se tient à Munich la réunion annuelle de la Deutsche Mathematiker-Vereinigung

récemment créée en 1890. Un des projets de l’association est de publier un état des

lieux d’un domaine des mathématiques chaque année. il est décidé à Munich de confier

76Schwermer 2007.
77Le résultat d’Hermite qui est cité se trouve dans une lettre adressée à Jacobi en 1847, voir

Hermite 1850.
78« Je suis maintenant allé beaucoup plus loin dans la théorie des formes quadratiques positives, il y

a en fait dans les formes d’un plus grand nombre de variables beaucoup d’autres choses. Le théorème
suivant (que je peux prouver en une demi-page) vous intéresse peut-être, vous ou Hurwitz : dans
une forme quadratique positive de déterminant D avec n (≥ 2) variables on peut toujours donner
aux variables des valeurs entières telles que la forme vaut moins que < nD

1

n . Hermite a ici pour le

coefficient n seulement
(

4
3

) 1

2
(n−1)

, ce qui en général est évidemment une borne bien trop haute. »
Lettre de Minkowski à Hilbert du 6 novembre 1889 Rüdenberg et Zassenhaus 1973 p.38.

79Minkowski 1911.
80Minkowski 1896a.
81« Avec mon livre je suis avancé au point que je vais m’adresser ces jours-ci à un éditeur. Je ne

souhaitais pas le faire avant que tout ne soit clair et net. J’ai tous les fondements dont j’ai besoin,
donc par exemple les lemmes de la théorie des fonctions. » Lettre de Minkowski à Hilbert du 30 août
1892, Rüdenberg et Zassenhaus 1973 p.48.
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à Hilbert (qui assistait à cette réunion) et à Minkowski la rédaction d’un rapport sur

l’état des connaissances en théorie des nombres, ce rapport devant être terminé en deux

ans. Minkowski et Hilbert décident de se partager le travail : le premier doit prendre

en charge tout ce qui concerne la théorie des nombres rationnels (ce qui comprend la

théorie arithmétique des formes), alors qu’Hilbert doit lui s’occuper de la théorie des

corps de nombres algébriques82.

Pendant qu’Hilbert se consacre à sa partie du Zahlbericht, Minkowski semble moins

motivé par ce projet et est davantage intéressé par la rédaction de son livre sur la

géométrie des nombres

« Während wir Beide im Stillen an der harten und gerade nicht allzusüssen

Nuss des gemeinsamen Referats knacken, Du Vielleicht noch mit schärferen

Zähnen und mehr Kraftaufwand wie ich83 ».

Minkowski regrette que le temps qu’il consacre au Zahlbericht l’empêche de se

consacrer pleinement à finaliser ses propres travaux :

« Die vollständige Darstellung meiner Untersuchungen über Kettenbrüche

hat schliesslich annähernd den Raum von 100 Druckseiten erfordert. Dabei

aber fehlte immer noch der allein befriedigende Abschluss, das unbestimmt

vorschwebende charakteristische Kriterium für cubische Irrationalzahlen.

[. . .] andererseits konnte ich nicht weiter an diesen Fragen arbeiten, da ich

wirklich ernstlich an das Referat ging84. »

Au début de l’année 1896 la partie d’Hilbert est presque terminée et ce dernier,

voyant que celle de Minkowski n’est pas aussi avancée, propose à son ami soit de la

publier dans l’état où elle se trouve, soit de repousser la publication de cette seconde

partie à l’année suivante85. Minkowski lui répond

« Ich gehe also auf Deinen zweiten Plan ein mit der Wirkung, dass mein

Theil erst in den nächstjährigen Bericht aufgenommen wird. Dieser Ent-

schluss wird mir, da ich über das Klapp machen an sich sehr resignirt

denke, hauptsächlich nur schwer, weil ich jetzt ein Jahr lang das beschä-

mende Gefühl behalten werde, in gewissem Grade Dich und die Vereinigung

im Stich gelassen zu haben. Du selbst hast freilich nicht die geringste dahin

82Voir Schappacher 2005; Reid 1970 p.44-45.
83« Pendant que tous les deux en silence croquons la noix dure et pas précisément trop sucrée du

rapport commun, toi peut-être avec des dents plus acérées et plus de déploiement de forces que moi. »
Lettre de Minkowski à Hilbert du 17 mai 1895, Rüdenberg et Zassenhaus 1973 p.65-66.

84« La présentation complète de mes recherches sur les fractions continues a finalement exigé près de
100 pages imprimées. Mais il y manque toujours la seule conclusion satisfaisante, le critère caractérisant
les irrationnelles cubiques confusément rêvé. [. . .] d’un autre côté, je ne pourrai plus continuer à
travailler sur ces questions, étant donné que je m’occupe vraiment sérieusement du rapport. » Lettre
de Minkowski à Hilbert du 10 février 1896, Rüdenberg et Zassenhaus 1973 p.77.

85Reid 1970 p.51.
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zielende Äusserung gemacht, es liegt aber dieser Gedanke zu nahe, und man-

cher wird wohl sagen, nach den Erfahrungen mit meinem Buche wäre von

mir Nichts anderes zu erwarten gewesen. Nun, etwas werden diese Vorwürfe

gemildert werden, wenn jetzt der grösste Theil meines Buchs herauskommt

und der Rest schnell folgt, und schliesslich kann ich mir einbilden, ich thue,

was ich im Interesse der Sache für das Beste halte.

Dich bitte ich jedenfalls sehr, in keiner Weise zu denken, dass ich Dich mit

meinem Referat im Stich gelassen hätte86. »

Finalement, alors que le Bericht über die Theorie der algebraischen Zahlkörper 87

est publié par Hilbert en 1897, Minkowski n’achèvera jamais sa part du projet mais

son livre Geometrie der Zahlen paraît en 189688.

En 1894, Minkowski quitte l’université de Bonn pour retourner à Königsberg où il

rejoint Hilbert en tant que professeur assistant. Dès 1895, Hilbert part à Göttingen et

Minkowski est nommé à sa place professeur le 18 mars 1895. Minkowski reste à Kö-

nigsberg jusqu’en 1896, pendant cette période il profite de sa nouvelle position pour

donner un cours sur la théorie de l’infini de Georg Cantor. En fait, Minkowski et Hilbert

furent parmi les premiers mathématiciens à apporter leur soutien à Cantor à propos

de son travail contreversé sur l’infini et la polémique qui l’oppose à Kronecker89.

Minkowski ne reste pas très longtemps à Königsberg, il démissionne le 12 octobre 1896

pour accepter un poste de professeur de mathématiques à l’école polytechnique de Zü-

rich90 où il retrouve cette fois Hurwitz91. Il continue à s’intéresser à la physique et

donne des cours sur la capillarité la théorie du potentiel et la mécanique analytique.

En ce qui concerne les mathématiques, il enseigne la théorie des nombres et l’analysis

situs et c’est aussi pendant cette période qu’il a parmi ses étudiants Albert Einstein92.

86« J’accepte donc ton deuxième plan avec la conséquence que ma partie ne sera reçue que dans
le rapport de l’an prochain. Alors que je pense au bouclage même avec un grand découragement,
cette décision ne m’a été vraiment difficile que j’ai depuis un an le sentiment humiliant de vous avoir
lâché dans une certaine mesure la Société [la DMV] et toi. Tu n’as toi-même assurément jamais fait
la moindre remarque dans cette direction, mais cette pensée n’est jamais loin et plus d’un dirait bien
qu’après les expériences avec mon livre il n’y aurait rien d’autre à attendre de moi. Bon, ces reproches
s’adouciront un peu si la plus grande partie de mon livre sort maintenant et si le reste suit rapidement
et finalement je peux m’imaginer que je fais ce que je tiens pour le mieux dans l’intérêt de la chose.
En tout cas, je prie vraiment de ne penser en aucune manière que je t’aurais laissé tomber avec mon
rapport. » Lettre de Minkowski à Hilbert du 10 février 1896, Rüdenberg et Zassenhaus 1973 p.78.

87Hilbert 1897.
88Pour des renseignements supplémentaires sur l’histoire du Zahlbericht voir aussi l’article de Zas-

senhaus qui introduit la correspondance entre Minkowski et Hilbert dans Rüdenberg et Zassenhaus

1973 p.17-21.
89D’après Minkowski dans Rüdenberg et Zassenhaus 1973 p.10. Voir aussi Reid 1970 p.44-50.
90D’après Minkowski dans Rüdenberg et Zassenhaus 1973 p.10.
91Reid 1970 p.52.
92Walter 1996 p.8.
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Minkowski se marie en 1897 avec Auguste Adler à Strasbourg93. Le couple a eu deux

filles, Lily née en 1898 et Ruth née en 1902 94.

Hilbert réussit à obtenir la création d’un nouveau poste de professeur de mathé-

matiques pour Minkowski à Göttingen. À l’automne 1902, Minkowski arrive donc à

Göttingen et il y restera jusqu’à son décès en 1909.

Il semble que ces années passées à Göttingen furent une période très heureuse pour

Minkowski et pour Hilbert ravis de se retrouver enfin dans la même ville95

« A telephone call, or a few steps down the street, a pebble tossed up against

the little corner window of his study, and there he was, always ready for

any mathematical or non-mathematical undertaking96. »

Du point de vue de leurs recherches, bien qu’ils ne travaillent pas nécessairement

sur les mêmes sujets, les échanges qu’ils ont pendant cette période influencent leurs

travaux respectifs.

Minkowski continue à s’intéresser conjointement aux mathématiques et à la physique.

Pour ce qui est des mathématiques, il donne des cours sur l’analysis situs, la théorie des

fonctions, la géométrie, les surfaces de Riemann et la théorie des nombres. Son cours

sur ce dernier thème du semestre d’hiver 1903-1904 porte plus particulièrement sur la

géométrie des nombres et il est repris dans son livre Diophantische Approximationen97

publié en 1907. Cet ouvrage, qui est en fait la continuation du travail de Minkowski

sur la géométrie des nombres, montre que ce sujet de recherche est toujours au premier

plan de ses préoccupations scientifiques. Ceci est aussi illustré par le congrès interna-

tional des mathématiciens en 1904 à Heidelberg au cours duquel Minkowski choisit de

donner une conférence sur le thème de la géométrie des nombres98.

Minkowski est toujours aussi actif en physique et cela plus particulièrement à partir de

1905. Il continue à professer des cours sur la mécanique ou l’électrodynamique99. En

1906, il est l’auteur du chapitre de l’Encyklopädie der mathematischen Wissenschaften

consacré à la capillarité100. Il conduit avec Hilbert un séminaire de physique dont le

thème est, à partir de 1905, la théorie de l’électron et à partir de 1907, les équations de

l’électrodynamique telles qu’elles avaient été formulées par Hendrik Antoon Lorentz en

1904 101. L’intérêt de Minkowski pour la théorie de l’électron est suscité en particulier
93Reid 1970 p.55.
94Rüdenberg et Zassenhaus 1973 p.111 et 150.
95Voir Reid 1970 p.88-92, où elle décrit leur vie à Göttingen pendant cette période. Elle raconte

par exemple les pique-niques du dimanche matin qui réunissent les deux familles, les réceptions chez
les Hilbert, la timidité de Minkowski et ses rapports avec ses filles.

96Hilbert cité dans Reid 1970 p.91.
97Minkowski 1907.
98Minkowski 1904b.
99Walter 1996 p.8.

100Minkowski 1906.
101Corry 1997 p.284.
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par son arrivée à l’université de Göttingen qui comptait alors dans ses rangs de très

bons spécialistes du sujet comme Gustav Herglotz, Emil Wiechert102, Max Abraham

et Walter Kaufmann103.

D’après les témoignages de Hilbert et de Max Born104, ce serait au cours de ces sémi-

naires que Minkowski élabore et développe ses idées sur la théorie de la relativité105,

sujet pour lequel il a le plus retenu l’attention des historiens106.

Minkowski présente son travail sur la théorie de la relativité principalement en trois

occasions. La première présentation a lieu le 5 novembre 1907, lors d’un exposé devant

la Göttingen Mathematische Gesellschaft dont le titre est das Relativitätsprinzip. Le

texte de cette conférence fut publié à titre posthume par Arnold Sommerfeld en 1915107.

Moins de deux mois plus tard le 21 décembre 1907 à la réunion de la königlichen Ge-

sellschaft der Wissenschaften zu Göttingen donne à nouveau une conférence intitulée

cette fois Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Kör-

pern108 et dont le texte est l’unique travail sur la relativité publié avant son décès109.

Dans ces deux conférences, Minkowski énonce le principe de relativité et il utilise déjà

une géométrie en dimension 4 sans pour autant que sa nouvelle conception de la re-

lation entre l’espace et le temps, caractéristique de son travail dans ce domaine, soit

encore pleinement développée110. C’est lors de la première présentation de son travail

en dehors de Göttingen, à l’occasion de la Versammlung Deutscher Naturforscher und

Ärzte qui se tient à Cologne, que Minkowski développe son idée d’un espace-temps à 4

dimensions. Cet exposé Raum und Zeit111, prononcé le 21 septembre 1908, est devenu

emblématique112 de la contribution de Minkowski à la théorie de la relativité

« La conception de l’espace et du temps que je voudrais développer devant

vous a grandi sur le sol de la Physique expérimentale. C’est ce qui fait sa

force. La tendance en est radicale. Dès maintenant, l’espace indépendant

du temps, le temps indépendant de l’espace ne sont plus que des ombres

vaines ; une sorte d’union des deux doit seule subsister encore113. »

102Walter 1996 p.8.
103Galison 1979 p.88.
104Born était étudiant à Göttingen, puis il fut l’assistant de Hilbert. Quand en 1908 Minkowski

recherche un collaborateur ayant des connaissances en optique expérimentale pour l’aider à combler
ses lacunes c’est à lui qu’il fait appel, voir Walter 1996 p.9.

105Galison 1979.
106Il existe de nombreux travaux sur Minkowski et la relativité voir par exemple Corry 1997;

Pyenson 1977; Galison 1979; Walter 1996, 1999a,b.
107Minkowski 1915.
108Minkowski 1908.
109Corry 1997; Galison 1979 p.89.
110Pour un commentaire détaillé du contenu de ces deux interventions de Minkowski voir Corry

1997 qui analyse ce travail de Minkowski dans le cadre du programme d’axiomatisation de la physique
de Hilbert.

111Minkowski 1909a,b.
112Pour des commentaires sur cette conférence voir par exemple Galison 1979; Walter 1996.
113Minkowski 1909a p.499-500.
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Ce qui caractérise la contribution de Minkowski à la théorie de la relativité c’est qu’il

opère une mathématisation de cette théorie par sa reformulation en termes géomé-

triques avec la notion d’espace-temps114. Ces rapports entre mathématiques et physique

que nous voyons dans le travail de Minkowski sont en fait caractéristiques de Göttingen

à cette époque. S’y côtoient en particulier au début du XXe siècle des mathématiciens

et des physiciens parmi les plus connus du moment115.

Minkowski décède brutalement le 12 janvier 1909 à Göttingen d’une rupture de

l’appendice. Il essayait alors d’approfondir ses recherches sur la relativité. D’après Hil-

bert116, conscient de son état de santé il corrigea jusqu’au dernier moment sur son lit

d’hôpital les épreuves de ses travaux les plus récents dont certains furent édités après

sa mort par Max Born117.

1.2 La préhistoire de la géométrie des nombres

Comme nous l’avons déjà évoqué, l’intérêt de Minkowski pour ce qu’il a baptisé

la géométrie des nombres vient de ses recherches pour répondre à certaines questions

issues de la théorie arithmétique des formes quadratiques. L’objectif de ce qui suit

est de donner un aperçu des problèmes posés par l’étude arithmétique des formes

mais aussi d’examiner quelles étaient les sources du travail de Minkowski. La géomé-

trie des nombres étant caractérisée par l’introduction d’un point de vue géométrique,

nous regarderons plus particulièrement les méthodes géométriques déjà employées dans

l’étude des formes avant que Minkowski ne commence à travailler sur ce thème. Nous

nous appuierons en particulier sur l’Encyclopédie des sciences mathématiques pures et

appliquées car elle offre un bilan contemporain du travail de Minkowski et elle reste

une référence sur toute la première moitié du XXe siècle.

1.2.1 Quelques éléments sur la théorie arithmétique des formes

Par forme nous entendons ici un polynôme homogène. Les mathématiciens se sont

surtout dans un premier temps intéressés aux formes quadratiques qui sont des poly-

114Walter 1996 p.154.
115Rowe 1989.
116Pour une description des activités de Minkowski pendant les derniers jours de la vie voir Hilbert

1911; Reid 1970 p.114-115.
117Pour des renseignements sur la vie et la carrière de Minkowski voir aussi Zassenhaus 1975 où

des extraits de la correspondance avec Hilbert son traduits en anglais.
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nômes homogènes de degré 2 et qui s’écrivent donc d’une façon générale

f(x1, x2, . . . , xn) =
n∑

i,j=1

aij xixj .

Cet intérêt s’explique par le fait que ces formes quadratiques sont des généralisations

des sommes de carrés qui étaient déjà étudiées avant le XIXe siècle. La question était

de savoir quels sont les nombres entiers qui peuvent s’écrire sous la forme d’une somme

d’un certain nombre de carrés118.

L’Encyclopédie consacre un long chapitre de 140 pages à la théorie arithmétique des

formes. Un problème fondamental de la théorie est la traduction pour les formes géné-

rales de cette question de la décomposition des entiers en somme de carrés

« On supposera, à moins d’indication contraire, que les formes et les sub-

stitutions linéaires dont il va être question sont à coefficients entiers.

Un des problèmes les plus importants à résoudre est de déterminer les

nombres représentables par une forme, c’est-à-dire les valeurs que peut

prendre la forme quand on donne aux variables des valeurs entières. La

théorie des formes est rattachée par là à la résolution des équations en

nombres entiers119. »

Etant donnée une forme f et un entier n, il s’agit donc de savoir si n est représentable

par f , c’est-à-dire s’il existe des valeurs entières des variables de f pour lesquelles f

prend la valeur n. Notons aussi que la définition de l’Encyclopédie se limite aux formes

dont les coefficients sont des nombres entiers. Historiquement, ce sont effectivement les

formes à coefficients entiers qui ont d’abord retenu l’attention ; pour les mathémati-

ciens contemporains leur étude est pourtant plus difficile que celle des formes dont les

coefficients sont réels ou bien complexes.

La notion d’équivalence entre formes a été introduite120 en liaison avec ce problème

de la représentation des nombres entiers par une forme. Deux formes F1(x1, . . . , xn) et

F2(x
′
1, . . . , x

′
n) sont dites équivalentes121 lorque l’on peut passer de l’une à l’autre par

une substitution linéaire à coefficients entiers de déterminant 1 ou −1, c’est-à-dire que

xi =
n∑

k=1

αik x
′
k (i = 1, 2, . . . , n),

118Pour des détails sur les résultats concernant la décomposition des entiers en sommes de carrés
voir Dickson 1920.

119Cahen et Vahlen 1908 p.76.
120Cette terminologie est issue du travail de Gauss mais la notion était déjà utilisée par Lagrange à

la fin du XVIIIe siècle.
121Nous suivons ici la présentation faite dans Cahen et Vahlen 1908 ; celle-ci reprend le vocabulaire

employé par Gauss.
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où le déterminant |αik| est égal à ±1.

La notion d’équivalence entre formes est liée à la représentation des nombres entiers

car deux formes équivalentes représentent les mêmes nombres122.

Les premières formes à avoir été étudiées de manière générale sont les formes quadra-

tiques binaires, nous allons donc maintenant nous y intéresser plus particulièrement123.

1.2.2 Les formes quadratiques binaires

1.2.2.1 Quelques résultats de Joseph-Louis Lagrange

Des mathématiciens comme Pierre Fermat ou Leonhard Euler ont étudié certaines

équations du type ax2 + by2 = m (a, b et m sont des entiers) qui sont en fait des

cas particuliers de représentation d’entiers par une forme quadratique binaire. Le pre-

mier à avoir présenté un traitement général de ces problèmes, qu’il applique ensuite

aux équations du type précédent, est Joseph-Louis Lagrange124 dans ses Recherches

d’arithmétiques125 :

« Ces recherches ont pour objet les nombres qui peuvent être représentés

par la formule

Bt2 + Ctu+Du2 ,

où B, C, D sont supposés des nombres entiers donnés, et t, u des nombres

aussi entiers, mais indéterminés126. »

Dans ce travail, Lagrange ne met pas encore en place tout le vocabulaire relatif

à l’étude des formes qui est maintenant utilisé. D’ailleurs le mot « forme » lui-même

n’est pas pris dans le sens moderne de polynôme homogène mais il est employé pour

dire qu’un nombre peut s’écrire sous une certaine « forme » : « Je donnerai enfin la

démonstration de plusieurs Théorèmes sur les nombres premiers de la même forme

Bt2 + Ctu + Du2 ». Néanmoins, nous avons pour la première fois chez Lagrange un

certain nombre d’idées et de résultats sur les formes quadratiques qui seront par la

suite à la base de cette théorie.

122La réciproque de ce résultat est fausse.
123Pour ce bref aperçu de l’histoire de la théorie arithmétique des formes quadratiques, nous repre-

nons les grandes étapes décrites dans Dickson 1923; Schwermer 2007.
124Schwermer 2007.
125Lagrange 1773 et 1775.
126Lagrange 1869 p.695.
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Lagrange commence par démontrer le théorème I 127 :

« Si le nombre A est un diviseur d’un nombre représenté par la formule

Bt2 + Ctu+Du2 ,

en supposant t et u premiers entre eux, je dis que ce nombre A sera néces-

sairement de la forme

A = Ls2 +Msx+Nx2 ,

où l’on aura

4LN −M2 = 4BD − C2 ,

s et x étant aussi premiers entre eux. »

Avec ce premier résultat, Lagrange met en évidence le rôle joué par ce que nous

avons appelé dans le paragraphe précédent les substitutions unimodulaires à coeffi-

cients entiers. Il fait le lien entre ces transformations des variables et la question de

la représentation des nombres entiers, mais aussi avec la quantité 4BD − C2 qui est

invariante pour de telles substitutions128.

Avec les résultats qui suivent ce premier théorème, Lagrange explore plus en détail

comment se comportent les coefficients des formes sous l’action des substitutions uni-

modulaires129 :

« Théorème II. Toute formule du second degré telle que celle-ci

Ls2 +Msx+Nx2 ,

dans laquelle M est plus grand que L ou N (abstraction faite des signes de

ces quantités), peut se transformer en une autre du même degré comme

L′s′2 +M ′s′x′ +N ′x′2 ,

dans laquelle on aura

4L′N ′ −M ′2 = 4LN −M2 ,

et où M ′ sera plus petit que M. »

127Tous les nombres considérés ici par Lagrange sont des entiers, Lagrange 1869 p.697.
128Dans ce qui suit cette quantité est supposée non nulle et non égale à un carré. Lagrange n’a pas

exploré ces cas, où la forme se factorise en produit de deux facteurs linéaires, voir Dickson 1923 p.6.
129Lagrange 1869 p.698.
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Ce théorème II lui permet de justifier qu’une expression Ls2 + Msx + Nx2 peut

toujours être transformée en une autre Py2 + Qyz + Rz2 telle que Q soit plus petit

que P et R (« abstraction faite des signes de ces quantités ») et telle que 4PR−Q2 =

4LN −M2. Il s’intéresse aussi à la question de savoir combien de formes vérifient les

conditions précédentes sur les coefficients parmi toutes celles que l’on peut déduire

les unes des autres par des substitutions unimodulaires. La réponse à cette question

dépend du signe de la quantité 4PR−Q2, Lagrange traite donc les deux cas séparément.

D’abord avec le problème III :

« Etant donnée la formule

py2 + 2qyz + rz2 ,

dans laquelle y et z sont des nombres indéterminés et p, q, r sont des

nombres positifs ou négatifs, déterminés par ces conditions, que

pr − q2 = a

(a étant un nombre positif donné) et que 2q ne soit ni > p ni > r, abs-

traction faite des signes de p, q et r ; trouver si cette formule peut se trans-

former en une autre de la même espèce et qui soit assujettie aux mêmes

conditions130. »

Lagrange répond par la négative à cette question131, il démontre que pour pr−q2 positif,

il ne peut y avoir plusieurs formes qui se déduisent par des subtitutions unimodulaires

dont les coefficients vérifient les inégalités précédentes.

L’autre cas est considéré ensuite :

« Problème IV. Etant donnée la formule

py2 + 2qyz − rz2 ,

dans laquelle y et z sont des nombres indéterminés, et p, q, r des nombres

positifs ou négatifs, déterminés par ces conditions, que

pr + q2 = a

(a étant un nombre positif donné) et que 2q ne soit ni > p ni> r, abstraction

faite des signes de p, q et r ; trouver si cette formule peut se transformer en

une autre semblable, et où les mêmes conditions soient observées132. »

130Lagrange 1869 p.723.
131Lagrange 1869 p.728.
132Lagrange 1869 p.728.
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Cette fois Lagrange montre qu’il est toujours possible de trouver plusieurs formes vé-

rifiant les conditions proposées dans le problème IV133. Etant donnée une telle forme,

il indique aussi comment, par un choix convenable de substitutions, il est possible d’en

déterminer une autre.

Nous voyons bien là en germe dans le travail de Lagrange les notions d’équivalence

et de formes réduites qui vont être approfondies par Carl Friedrich Gauss.

1.2.2.2 Un aperçu du travail de Carl Friedrich Gauss

Nous avons vu que les travaux de Gauss et surtout de Dirichlet ont fait partie de

l’apprentissage de Minkowski concernant les formes quadratiques. Nous donnons donc

ici quelques éléments sur les contributions de Gauss à cette théorie.

Dans la cinquième section des Disquisitiones Arithmeticae134 publiées en 1801, Gauss

développe une théorie générale des formes quadratiques binaires. Gauss n’y démontre

pas seulement beaucoup de résultats nouveaux mais il y propose aussi un vocabulaire

unifié pour cette théorie. Par exemple, il appelle « formes du second degré » les fonctions

de deux indéterminées qu’il note soit ax2 + 2bxy + cy2, soit (a, b, c), où a, b et c sont

des nombres entiers. La quantité b2−ac est appelée le déterminant de la forme (a, b, c).

Parmi les formes F = ax2+2bxy+cy2 et F ′ = a′x′2+2b′x′y′+c′y′2 qui sont équivalentes,

c’est-à-dire qu’elles sont liées par une substitution du type

x = αx′ + βy′ , y = γx′ + δy′ ,

où α, β, γ, δ sont des entiers tels que αδ − βγ = ±1 ; Gauss distingue celles qui sont

proprement équivalentes pour lesquelles αδ − βγ = 1, de celles qui sont improprement

équivalentes qui vérifient αδ − βγ = −1. Deux formes proprement équivalentes sont

dites de même classe.

Lorsque le déterminant de la forme ax2+2bxy+cy2 est strictement négatif135, a et c

sont nécessairement de même signe et il est toujours possible, quitte à étudier la forme

(−a,−b,−c), de se ramener au cas où ils sont tous les deux strictement positifs. Gauss

démontre que dans chaque classe il existe une unique forme (A,B,C) qui vérifie136

2|B| ≤ A < C ou 0 ≤ 2B ≤ A = C .

133Lagrange 1869 p.737.
134Une traduction en français est publiée dès 1807, voir Gauss 1807.
135On dira après Gauss que la forme est définie. Elle est définie positive si elle ne prend que des

valeurs positives et définie négative sinon. Voir Cahen et Vahlen 1908 p.103.
136Cahen et Vahlen 1908 p.103.
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Gauss appelle de telles formes (A,B,C) des formes réduites137. Remarquons que les cas

où le déterminant de la forme est nulle ou égal à un carré sont traités à part chez Gauss.

La notion de forme réduite au sens de Gauss diffère de celle qui avait été proposée par

Lagrange. Malgré cela le résultat de Gauss est analogue à un théorème de énoncé par

Lagrange et l’idée utilisée par les deux mathématiciens est la même, il s’agit de trouver

dans chaque classe de formes un représentant privilégié.

Dans le cas où le déterminant D est strictement positif, Gauss introduit aussi une

notion de réduction. Il appelle cette fois réduite une forme (A,B,C) pour laquelle138

0 ≤ B <
√
D et

√
D −B ≤ |A| ≤

√
D +B .

Il montre là encore que n’importe quelle forme de déterminant strictement positif est

proprement équivalente à une forme réduite. La difficulté dans ce deuxième cas est que

dans chaque classe il n’y a en général plus unicité de la forme réduite139. Lagrange

avait eu lui aussi le même problème d’unicité dans le Problème IV, en fait quand D

est strictement positif il n’est pas possible de trouver une notion de réduction permet-

tant d’assurer l’unicité de la forme réduite dans chaque classe de formes proprement

équivalentes. C’est pourquoi dans le cas des formes indéfinies de nombreuses notions

de réduction différentes ont été proposées140.

Même si nous ne donnons pas de détails ici, notons que Gauss poursuit l’étude des

formes quadratiques binaires par une classification plus fine. Il introduit par exemple

la notion de formes primitives qui sont telles que leurs coefficients a, b, c sont premiers

entre eux. Il étudie ensuite la distribution des formes en « ordres », deux formes (a, b, c)

et (a′, b′, c′) étant de même ordre si les plus grands communs diviseurs de a, b, c ; a′, b′, c′

et a, 2b, c ; a′, 2b′, c′ sont les mêmes. Il propose ensuite une classification par genres. Il

élabore au passage une théorie de la composition des formes, notion jugée difficile même

après qu’elle soit reprise par Dirichlet141.

137Gauss 1807 p.142.
138Gauss 1807 p.159.
139Gauss 1807 p.161.
140Voir par exemple Cahen et Vahlen 1908 p.105-106, où deux autres notions de formes réduites

sont mentionnées. Voir aussi Schwermer 2007.
141À propos de la composition des formes d’après Gauss, voir Fenster et Schwermer 2007;

Edwards 2007. En particulier, bien que l’on considère souvent le travail de Dirichlet à ce sujet
comme simplifiant celui de Gauss, Edwards note (voir p.131) que les deux théories ne sont en fait pas
équivalentes.
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1.2.2.3 Un résultat emblématique d’Hermite

Il semble que le travail de Charles Hermite sur la théorie des formes quadratiques

ait eu une grande influence sur les recherches de Minkowski. Ce dernier rendit hom-

mage au mathématicien français à de nombreuses occasions car il le considérait comme

étant à l’origine de ses propres recherches.

Une des idées d’Hermite que Minkowski continua à exploiter est l’utilisation de quan-

tités continues afin d’obtenir des résultats de nature arithmétique.

Une question importante de la théorie des formes quadratiques est d’étendre la

notion de réduction aux formes de n variables. Hermite142 écrit de telles formes

f(x1, x2, . . . , xn) =

n∑

j=1

n∑

i=1

aijxixj ,

où aij = aji et le déterminant de cette forme est noté D = |aij |. Il ramène le problème

de la réduction des formes indéfinies à celui des formes définies pour lesquelles il propose

plusieurs notions de formes réduites. Nous en donnons ici une seule qui est celle qui

sera par la suite simplifiée par Minkowski. Hermite appelle donc réduite les formes

quadratiques définies positives dont les coefficients vérifient les conditions suivantes143

0 < a11 < a22 ≤ . . . ≤ ann ,

a11 a22 . . . ann < λnD ,

−ahh ≤ 2 ahk ≤ ahh (h < k) ,

où λn ne dépend que de l’entier n. La valeur obtenue par Hermite pour λn est

λn =

(
4

3

)n(n−1)
2

.

Une difficulté importante de cette notion de réduction est qu’elle ne garantit pas l’uni-

cité de la forme réduite dans chaque classe, elle permet d’assurer uniquement que

chaque forme est équivalente à au plus un nombre fini de formes réduites144. Hermite

est conscient de ce problème

« Au reste les formes réduites auxquelles on est ainsi conduit, pour un

déterminant donné n’offrent plus ce caractère propre aux formes binaires,

de ne pouvoir être équivalentes entre elles, à moins d’être identiques, aux

142Voir les lettres à Jacobi de 1847 dans Hermite 1850.
143Cahen et Vahlen 1908 p.185.
144Schwermer 2007 p.12.
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signes près des coefficients145. »

Le coefficient a11 d’une forme réduite s’interprète comme le minimum de la forme

quand ses variables prennent des valeurs entières. La réduction des formes quadratiques

est donc liée à la détermination des meilleurs estimations possibles pour ce minimum

« j’ai dû reconnaître que ce qu’on devait se proposer avant tout, dans la théo-

rie de la réduction, était de découvrir les valeurs entières des indéterminées

pour lesquelles une forme définie donnée, était la plus petite possible146. »

Hermite démontre donc, par induction, que pour une forme quadratique définie positive

f(x1, . . . , xn) de n variables et de déterminant D, il existe des entiers α, β, . . . , λ non

tous nuls qui vérifient

f(α, β, ..., λ) <

(
4

3

)n−1
2

n
√

|D| .

Nous avons dit l’importance de cette estimation dans la théorie de la réduction mais

cette inégalité peut aussi avoir des conséquences intéressantes dans d’autres domaines.

Hermite l’utilise par exemple en approximation diophantienne et Minkowski approfon-

dira là encore les méthodes d’Hermite.

1.2.3 Géométrie et formes quadratiques avant Minkowski

Avant l’introduction systématique par Minkowski d’un point de vue géométrique

dans l’étude de la théorie arithmétique des formes, la géométrie avait déjà été utilisée

par d’autres mathématiciens. Nous verrons que certaines de ces idées ont influencé la

démarche employée par Minkowski.

1.2.3.1 Une première représentation géométrique

L’Encyclopédie des sciences mathématiques pures et appliquées attribue à Gauss

cette première manière de représenter les formes quadratiques binaires147. Cette re-

présentation élaborée en 1827148 n’est publiée qu’en 1876 après sa mort. Cette même

année Henry John Stephen Smith développe ce point de vue et contribue à sa plus

large diffusion149.

Nous suivons ici la présentation proposée par l’Encyclopédie150.

145Hermite 1850 p.285-286.
146Hermite 1850 p.295.
147Cahen et Vahlen 1908 p.116.
148Gauss 1827 p.477-478.
149Dickson 1923 p.31-32.
150Cahen et Vahlen 1908 p.116-119.
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Deux points du plan sont dits congruents si leurs affixes z et z′ sont liées par une

relation du type

z′ =
αz + β

γz + δ
,

où α, β, γ et δ sont des réels qui vérifient αδ − βγ = 1.

Si z est l’affixe d’un point situé strictement au-dessus de l’axe des abscisses, alors les

points qui lui sont congruents sont eux aussi strictement au-dessus de cet axe. De plus,

les points congruents à un point situé sur l’axe des abscisses sont aussi sur l’axe.

Supposons qu’un repère orthonormé d’origine O soit fixé. Considérons maintenant l’en-

semble des points d’ordonnée positive situés strictement entre les droites d’équation

x = −1
2

et x = 1
2

et strictement à l’extérieur du cercle de centre O et de rayon 1. À cet

ensemble, on ajoute d’une part les points dont l’ordonnée est positive, dont l’abscisse

est −1
2

et qui sont à l’extérieur du cercle de centre O et de rayon 1 ; d’autre part les

points sur ce cercle, d’ordonnée positive et dont l’abscisse x vérifie −1
2
≤ x < 0. L’en-

semble des points ainsi défini est appelé domaine fondamental (voir la figure 1.2).

−1 −1
2

O 1
2

1
x

y

Fig. 1.2 – Le domaine fondamental

Tout point du demi-plan situé au-dessus de l’axe des abscisses est alors congruent

à un unique point du domaine fondamental.

À une forme quadratique binaire ax2 +2bxy+ cy2 est associée l’équation du second

degré aω2 + 2bω + c = 0.

Lorsque la forme est définie cette équation admet deux racines complexes. La forme est
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réduite si le point dont l’affixe est la racine dont la partie imaginaire est strictement

positive est située dans le domaine fondamental.

Felix Klein151 reprend cette représentation géométrique dans les années 1890 afin de

traiter le cas plus difficile des formes indéfinies. Pour ces formes, les racines de l’équation

précédente sont sur l’axe des abscisses et la forme est réduite « quand le demi-cercle dé-

crit sur le segment qui joint les points représentatifs des deux racines comme diamètre,

traverse le domaine fondamental152 ». Cette méthode de réduction est en fait équiva-

lente à celle développée par Hermite et connue sous le nom de réduction continuelle153.

Hermite avait cependant présenté sa méthode de manière complètement analytique

sans aucun recours à la géométrie154.

1.2.3.2 L’utilisation des réseaux

Le deuxième mode de représentation des formes quadratiques qui va maintenant

être abordé est aussi dû à Gauss. Il est important du point de vue de la géométrie des

nombres car il utilise la notion de réseau qui sera un des objets à la base du travail de

Minkowski.

Dans les Disquisitiones Arithmeticae, Gauss a commencé l’étude des formes quadra-

tiques ternaires155. Il étudie en particulier la représentation des formes binaires par des

formes ternaires et il cherche à déterminer à quelle condition deux formes ternaires sont

équivalentes156. La théorie des formes quadratiques ternaires est ensuite approfondie en

1831 par Ludwig August Seeber dans sa thèse intitulée Untersuchungen über die Eigen-

schaften der positiven ternären quadratischen Formen. Seeber développe une théorie

de la réduction pour les formes ternaires définies analogue à celle des formes binaires.

Dans chaque classe de formes ternaires définies équivalentes, il y a une unique forme

réduite qui est caractérisée par des inégalités entre ses coefficients157. Seeber discute

aussi le problème de trouver toutes les formes réduites

f(x, x′, x′′) = ax2 + a′x′2 + a′′x′′2 + 2bx′x′′ + 2b′xx′′ + 2b′′xx′ ,

de déterminant D = ab2 +a′b′2 +a′′b′′2−aa′a′′−2bb′b′′ strictement négatif fixé. Il utilise

pour cela l’estimation158 aa′a′′ ≤ 3|D|. Il conjecture que cette dernière inégalité peut

151Klein 1895-1896.
152Cahen et Vahlen 1908 p.118.
153Hermite 1851.
154Cette méthode de réduction s’applique aussi à des formes de n variables. Pour des détails sur ce

travail d’Hermite voir Goldstein 2007 p.394-396.
155Pour une chronologie des principaux résultats de cette théorie voir Dickson 1923, chapitre IX.
156Cahen et Vahlen 1908 p.160-161.
157Ces conditions sont données dans Dickson 1923 p.210.
158Dickson 1923 p.210.
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être améliorée en aa′a′′ ≤ 2|D|.
Dès 1831, dans le compte rendu qu’il fait de la thèse de Seeber159, Gauss démontre

cette dernière inégalité. Il utilise pour cela sa nouvelle interprétation géométrique des

formes quadratiques binaires et ternaires160.

Gauss propose de représenter les formes quadratiques binaires et ternaires définies

positives par un réseau de la façon suivante. Pour une forme binaire définie positive

ax2 +2bxy+c2, où a et c sont strictement positifs, Gauss construit un parallélogramme

dont deux côtés consécutifs mesurent
√
a et

√
c, l’angle ϕ entre ces côtés vérifiant

cosϕ = b√
ac

. Les côtés de ce parallélogramme, appelé parallélogramme fondamental,

sont ensuite prolongés, puis on trace le système de droites parallèles et équidistantes à

ces côtés. Le plan est ainsi divisé par un réseau de parallélogrammes qui représente la

forme (a, b, c).
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√
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Fig. 1.3 – Représentation de la forme quadratique (a, b, c) par un réseau.

Les sommets des parallélogrammes précédents forment un réseau de points à l’aide

duquel Gauss interprète la notion d’équivalence entre formes

« Ein und dasselbe System solcher Punkte kann auf unendlich viele ver-

schiedene Arten parallelogrammatisch abgetheilt, und also auf ebenso viele

verschiedene Formen zurückgeführt werden : alle diese verschiedenen For-

men sind aber, was in der Kunstsprache equivalent heisst161 ».

Ainsi le réseau de points représente une classe d’équivalence dont chaque repré-

sentant correspond à un système de parallélogrammes définissant ce réseau de points.

159Gauss 1831.
160Schwermer 2007 p.9.
161« Un même système de tels points peut être divisé en parallélogrammes d’une infinité de manière

et donc être rattaché à autant de formes différentes : mais toutes ces formes différentes sont ce qu’en
langage technique on appelle équivalentes », Gauss 1831 p.194.
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Gauss donne aussi une interprétation géométrique du déterminant qui est négatif pour

une forme définie positive : l’aire des parallélogrammes d’un réseau est la même et est

égale à la racine carrée de l’opposé du déterminant. Enfin, si une origine est fixée dans

le réseau, les nombres entiers qui sont représentables par la forme (a, b, c) sont les carrés

des distances de cette origine aux points du réseau162.

De façon analogue, Gauss représente les formes quadratiques ternaires en considérant

des réseaux dans l’espace.

En 1848, Dirichlet poursuit ce travail en interprétant géométriquement la notion

de forme réduite163. Le parallélogramme d’une forme réduite est caractérisé par le fait

que ses côtés sont plus petits que ses diagonales. Dirichlet explique aussi comment,

étant donné le réseau de points, on peut déterminer le parallélogramme fondamental

qui correspond à la forme réduite. Pour cela, choisissons un point du réseau O comme

premier sommet du parallélogramme, le deuxième sommet P est tel que la distance OP

soit minimale parmi les distances de O aux autres points du réseau. Enfin le dernier

sommet Q est pris tel que OQ soit le minimum des distances entre O et les points du

réseau qui ne sont pas sur la droite OP 164.

Avant le début du travail de Minkowski sur les formes quadratiques, la représenta-

tion des formes quadratiques binaires et ternaires définies en termes de réseau est donc

en place. Cette représentation a aussi permis d’interpréter géométriquement certains

problèmes importants dans l’étude de ces formes comme la représentation des entiers,

l’équivalence entre formes ou la réduction.

1.2.3.3 Un autre résultat géométrique de Dirichlet

En 1863, Richard Dedekind publie les Vorlesungen über Zahlentheorie165 rédigés

d’après les cours professés par Dirichlet à Berlin et à Göttingen. Ces cours ont joué un

rôle très important dans le développement de la théorie des nombres car ils reprennent

très largement le contenu des Disquisitiones Arithmeticae en les simplifiant et rendent

ainsi accessible le travail de Gauss à une audience plus large. Dedekind ajoute à l’édi-

tion de ces cours des suppléments issus du travail de Dirichlet dès l’édition de 1863

et d’autres, issus de ses propres recherches, pour les éditions postérieures à 1871 166.

Parmi les suppléments de la première édition de 1863, c’est ici le numéro III, Ueber

162Pour une description modernisée de cette représentation géométrique voir Schwermer 2007 p.9.
163Lejeune-Dirichlet 1850.
164Le cas des formes ternaires se traite de la même façon, voir Dickson 1923 p.21 et 212.
165Lejeune-Dirichlet 1863.
166Goldstein 2002.
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einen geometrischen Satz, qui va nous intéresser.

Dedekind167 considère une partie bornée dans le plan F dont il note A l’aire. Soient

ensuite X et Y des axes perpendiculaires et le système de droites parallèles à ces axes

et équidistantes. Ce système de droites forme un réseau du plan et le côté d’un carré

de ce réseau est noté δ. Enfin, T désigne le nombre de points du réseau situé dans la

partie F .

Le résultat de Dirichlet dit alors que la quantité Tδ2 tend vers A lorsque δ tend vers 0.

Pour démontrer ce théorème, Dedekind commence par supposer que les droites paral-

lèles à Y coupent le bord de F en deux points (il explique à la fin pourquoi le résultat

ne dépend pas de cette hypothèse). Soit ensuite h la longueur d’une des lignes parallèles

à Y à l’intérieur de F , alors hδ est approximativement l’aire de F entre deux de ces

parallèles consécutives (voir la figure 1.4).

X

Y

F

h

δ

A

hδ

Fig. 1.4 – Le résultat géométrique de Dirichlet

Un théorème de la théorie de l’intégration lui permet de dire que

∑

hδ −−−−−−→
δ→0

A ,

où la somme du membre de gauche porte sur les segments dans F parallèles à Y . Si

maintenant n est le nombre de points du réseau sur un tel segment de longueur h, h

est divisé en n−1 segments de longueur δ plus un reste strictement inférieur à 2δ, ainsi

h = nδ + εδ avec −1 < ε < 1. Ceci implique que

∑

hδ =
∑

(nδ2 + εδ2) = Tδ2 + δ
∑

εδ ,

167Lejeune-Dirichlet 1999 p.215.
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les sommes portant toujours sur les segments dans F parallèles à Y . La somme
∑
εδ

est bornée car, comme ε est en valeur absolue inférieure à 1, elle est plus petite que la

longueur maximale d’un segment parallèle à X et inclus dans F qui est borné. D’autre

part, comme
∑
hδ −−−→

δ→0
A, l’égalité précédente permet de conclure que

Tδ2 −−−−−−→
δ→0

A .

Comme référence Dedekind renvoie à un article de Dirichlet de 1839 intitulé Re-

cherches sur diverses applications de l’analyse infinitésimale à la théorie des nombres.

Dans cet article nous retrouvons effectivement ce résultat mais énoncé de manière dif-

férente et sans la démonstration jugée « très facile » :

« Tous les points d’un plan infini étant rapportés à deux axes rectangulaires

des x et des y, concevons dans ce plan une courbe fermée assujettie à une

même loi analytique dans toutes ses parties, supposons que les dimensions

de cette courbe augmentent de plus en plus et au delà de toute limite, de

manière cependant que la courbe variable reste toujours semblable à elle-

même, et désignons par σ l’aire également variable à laquelle la courbe sert

de contour.

Soient maintenant a, b, α, β quatre constantes dont les deux premières ont

des valeurs positives, et supposons que l’on construise tous les points dont

les coordonnées x et y ont la forme

6. x = av + α , y = bw + β ,

où v et w désignent tous les entiers depuis −∞ jusqu’à ∞. Cela posé si

l’on désigne par F (σ) le nombre de ces points situés dans l’intérieur de la

courbe, on aura évidemment pour les valeurs infinies de σ,

F (σ) =
1

ab
σ ,

c’est à dire que le rapport des deux membres de cette équation convergera

vers l’unité lorsque σ croît au delà de toute limite positive168. »

Ce résultat est bien équivalent au précédent sauf que la maille du réseau n’est pas

un carré de côté δ mais un rectangle dont les côtés sont a et b.

Dirichlet utilise ce résultat afin de déterminer le nombre de classes de formes qua-

dratiques binaires ax2 + 2bxy + cy2 ayant un déterminant D = b2 − ac fixé. Dans sa

168Lejeune-Dirichlet 1839 p.329.
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démonstration, Dirichlet étudie la limite, quand s tend vers 1, de somme du type

(s− 1)
∑ 1

(ax2 + 2bxy + cy2)s
,

la sommation se faisant sur des points (x, y) qui appartiennent à un réseau du type de

celui décrit ci-dessus169. Dirichlet ramène le problème à la détermination du nombre

de points (x, y) de la forme x = av + α , y = bw + β situés dans un domaine délimité

par la courbe

ax2 + 2bxy + cy2 = σ

ce qui lui permet d’utiliser le résultat précédent170.

Dirichlet considère ce résultat comme un simple lemme technique de nature analy-

tique

« Nous aurons encore besoin de deux autres lemmes qui appartiennent,

comme le précédent, à l’analyse infinitésimale171. »

Mais ce théorème fait un lien entre la notion de réseau et une aire afin de résoudre une

question arithmétique. Avec Minkowski qui connaissait le travail de Dirichlet, ce lien

entre réseau et aire va acquérir un statut plus fondamental et être envisagé davantage

d’un point de vue géométrique sans pour autant que l’aspect analytique soit complè-

tement abandonné. Selon la présentation faite, Minkowski verra son travail de façon

géométrique ou analytique.

1.3 Le travail de Minkowski sur la géométrie des nombres

La date la plus souvent donnée pour la naissance de la géométrie des nombres

est 1896 qui est l’année de publication de la première édition du livre de Minkowski

Geometrie der Zahlen

« The geometry of numbers is a branch of number theory that originated

with the publication of Minkowski’s seminal work in 1896172 ».

Les indices montrant que Minkowski travaille sur ce thème depuis plusieurs années sont

en fait nombreux. Nous en avons déjà donné des exemples quand nous avons décrit les

grandes étapes de sa carrière scientifique. Nous avions cité en particulier son habilita-

tion à Bonn et la correspondance avec Hilbert qui permettent de dire que la géométrie

169Ce sont les conditions 6 données dans la citation de Dirichlet.
170La nature de la courbe dépend du signe du déterminant. Si D est strictement négatif, il s’agit

d’une ellipse et si D est strictement positif d’un secteur d’hyperbole.
171Lejeune-Dirichlet 1839 p.328.
172Olds et al. 2000 p.xiii.
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des nombres est en germe dès la fin des années 1880. De plus, si nous regardons les pu-

blications recensées dans la rubrique géométrie des nombres des oeuvres de Minkowski

éditées par Hilbert, nous voyons que des articles concernant ce thème sont publiés dès

1891. Parmi ces publications se trouvent des extraits de lettres adressées à Hermite

et des conférences faites en diverses occasions qui montrent que Minkowski diffuse ses

idées sur la géométrie des nombres avant 1896.

1.3.1 La géométrie des nombres avant 1896

1.3.1.1 Deux publications de 1891

En 1891, deux articles sur la géométrie des nombres sont publiés par Minkowski.

Dans le premier, Über die positiven quadratischen Formen und über kettenbruchähnliche

Algorithmen173, Minkowski expose les premiers résultats qu’il a obtenus concernant les

minima des formes quadratiques ainsi que des applications à la théorie des nombres

algébriques. La deuxième publication de l’année 1891 est un extrait d’une lettre de

Minkowski à Hermite publiée dans les Comptes rendus de l’Académie des sciences174.

Il s’agit d’une courte lettre dans laquelle Minkowski résume le contenu de l’article cité

précédemment. Les résultats y sont donc énoncés sans démonstration.

Le premier théorème que Minkowski énonce dans sa lettre est le suivant :

« Soit n un nombre plus grand que 1 ; soient ξ, η, ζ , . . . , n formes linéaires

indépendantes à n variables x, y, z . . . . Parmi ces formes, soient β paires

d’imaginaires conjuguées et les autres n − 2β = α formes réelles. L’un ou

l’autre des nombres α et β peut aussi être égal à zéro. Soit ∆ le déterminant

des formes ξ, η, ζ , . . .. Soit enfin p une quantité quelconque ≥ 1. On peut

toujours assigner à x, y, z . . . des valeurs entières, de sorte que la somme

(abs. ξ)p + (abs. η)p + (abs. ζ)p + . . .

soit différente de zéro et en même temps plus petite que la quantité







(
2

π

)β Γ
(

1 + n
p

)

[

Γ
(

1 + 1
p

)]α

2−
2β
p

[

Γ
(

1 + 2
p

)]β
abs. ∆







p
n

,

173Minkowski 1891b.
174Minkowski 1891a.
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qui est elle-même plus petite que

n (abs. ∆)
p
n .

Ici abs. signifie « valeur absolue de » et Γ désigne la fonction gamma175. »

Ce résultat énoncé sur n formes linéaires quelconques est ensuite appliqué au cas

où ces formes sont n formes conjuguées d’un corps de nombres algébriques. Pour cela,

dans un tel corps irréductible de degré n, Minkowski choisit une forme ξ qui décrit

tous les entiers algébriques de ce corps lorsque ses n variables prennent des valeurs

entières176. Les n− 1 autres formes sont alors les formes conjuguées à ξ. Si ∆ désigne

toujours le déterminant de ces formes alors le discriminant D du corps est le carré de

∆ et c’est un entier rationnel. Le théorème précédent entraîne l’existence d’entiers x,

y, z, . . . non tous nuls tels que

|ξ|p+ |η|p+ |ζ |p+ · · · <







(
2

π

)β Γ
(

1 + n
p

)

[

Γ
(

1 + 1
p

)]α

2−
2β
p

[

Γ
(

1 + 2
p

)]β
|∆|







p
n

< n |∆| p
n .

En utilisant en particulier le fait que

|ξηζ . . . |p ≤
[ |ξ|p + |η|p + |ζ |p + · · ·

n

]n

,

cette dernière inégalité implique

|ξ η ζ . . . | <
(

2

π

)β n−n
p Γ
(

1 + n
p

)

[

Γ
(

1 + 1
p

)]α

2−
2β
p

[

Γ
(

1 + 2
p

)]β
|∆| < |∆| .

De plus, Minkowski remarque que le produit |ξ η ζ . . . | est un entier supérieur ou égal

à 1 car x, y, z, . . . ne sont pas tous nuls177. Après avoir élevé au carré il en déduit donc

1 <







(
2

π

)β n−n
p Γ
(

1 + n
p

)

[

Γ
(

1 + 1
p

)]α

2−
2β
p

[

Γ
(

1 + 2
p

)]β







2

|D| < |D| .

Minkowski interprète ensuite ces deux inégalités. D’abord, laissant de côté le terme

du milieu, l’inégalité |D| > 1 lui permet de démontrer un résultat qui avait été conjec-

175Minkowski 1891a p.210. Pour x > 0, la fonction gamma est définie par Γ(x) =
∫ +∞

0
tx−1e−t dt.

176En termes actuels, il suffit de prendre pour ξ une forme linéaire dont les coefficients sont les
éléments d’une base de l’anneau des entiers du corps qui est un Z-module.

177Il s’agit en effet en terme moderne de la valeur absolue de la norme d’un entier algébrique non
nul.
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turé par Leopold Kronecker

« chaque discriminant contient des nombres premiers comme facteurs178. »

Ensuite, Minkowski obtient des informations supplémentaires sur le discriminant

grâce à l’autre inégalité

|D| >







(π

2

)β

[

Γ
(

1 + 1
p

)]α

2−
2β
p

[

Γ
(

1 + 2
p

)]β

n−n
p Γ
(

1 + n
p

)







2

.

Minkowski commence par remarquer que la borne précédente tend vers +∞ lorsque

n tend vers +∞179 et donc

« un nombre donné quelconque ne peut être discriminant que pour un

nombre fini d’ordres180 n 181. »

La minoration donnée pour |D| dépend du paramètre p qui est un entier supérieur

ou égal à 1. Minkowski note que cette minoration est en fait optimale lorsque p = 1 et

obtient ainsi le théorème suivant182

« Le discriminant d’un corps algébrique, faisant partie de n corps conjugués

dont 2β sont imaginaires et n−2β réels, est en valeur absolue toujours plus

grand que
[(π

4

)β nn

2.3 . . . n

]2

. »

La lettre à Hermite se termine par quelques applications numériques de ce dernier

résultat. Par exemple, le discriminant D d’un corps de nombres d’ordre n = 2 doit être

> 4 ou < −2 et celui d’un corps d’ordre n = 3 est > 20 ou < −12.

Avec ces applications à la théorie des corps de nombres algébriques, Minkowski se

place dans la continuité du travail effectué par Hermite sur le sujet

« En suivant une voie indiquée dans vos admirables lettres à Jacobi, je tirerai

du théorème que je viens d’exposer plusieurs conclusions fondamentales sur

les nombres algébriques183. »

Dans son travail sur les nombres algébriques, Hermite s’était placé du point de vue

des racines des équations polynomiales. La notion de corps de nombres est introduite

par Dedekind dans les suppléments des Vorlesungen de Dirichlet. Il est remarquable

178Minkowski 1891a p.211.
179On peut le vérifier en utilisant la formule Γ(x+ 1) = xΓ(x), puis le fait que la fonction Γ(x) est

équivalent en +∞ à
√

2π xx−
1

2 e−x. Voir par exemple Artin 1964.
180L’ordre d’un corps chez Minkowski est ce qui est maintenant appelé son degré.
181Minkowski 1891a p.211.
182Il utilise aussi le fait que pour un entier naturel n, Γ(n+ 1) = n!.
183Minkowski 1891a p.210.
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que Minkowski utilise ce vocabulaire des corps dans ce contexte dès 1891, car cette

approche reste marginale jusqu’à la publication du Zahlbericht de Hilbert en 1897. No-

tons que l’expression théorie algébrique des nombres employée pour désigner le domaine

de recherche ouvert par le Zahlbericht est plus tardive, Algebraische Zahlentheorie est

utilisé par Landau en 1927 dans ses Vorlesungen184.

Nous avons noté que cette lettre à Hermite est présentée par Minkowski comme un

résumé de son article publié en 1891 dans le Journal de Crelle. Cependant quelques

différences peuvent être remarquées. En particulier, lorsqu’il s’adresse à Hermite, Min-

kowski n’explique pas les méthodes géométriques qu’il a utilisées dans son travail. Il le

précise dès le début de sa lettre

« La méthode géométrique de mon travail, traduite en langue purement

analytique, conduit à ce théorème susceptible d’une application très éten-

due185 ».

Pourtant dans son article, bien que l’expression « Geometrie der Zahlen » n’apparaisse

pas encore, nous pouvons commencer à voir émerger le principe géométrique qui sera

à la base d’un théorème fondamental de la géométrie des nombres. Cette idée géomé-

trique est élaborée afin d’étudier les minima des formes quadratiques.

Minkowski reprend la représentation géométrique des formes quadratiques définies po-

sitives élaborée par Gauss mais la généralise aux formes de n variables. Tout comme

Gauss, il interprète la notion d’équivalence entre ces formes à l’aide du réseau de points

obtenu avec les valeurs prises par la forme sur les entiers et des systèmes de parallé-

lépipèdes engendrant ce même réseau de points. C’est ce que Minkowski appelle la

« anschauliche Auslegung des Aequivalenzbegriffs186 ». Ceci rappelé, Minkowski consi-

dère un tel système de parallélépipèdes dont les sommets donnent le réseau de points

parmi lesquels une origine O est fixée. Si f est la forme représentée par ce réseau alors

pour des entiers x1, x2, . . . , xn,

f(x1, x2, . . . , xn) = OP 2 ,

où P est un point du réseau. Si M désigne le minimum de f pour des entiers

x1, x2, . . . , xn non tous nuls, cela implique que
√
M est la distance minimale entre

l’origine O et un autre point du réseau, ou ce qui est la même chose, entre deux points

quelconques du réseau. Minkowski considère alors des hypercubes de côté
√
M√
n

centrés

en tous les points du réseau187 (voir la figure 1.5 188). Les sommets d’un tel hypercube

184Voir Goldstein et Schappacher 2007b p.91.
185Minkowski 1891a p.210.
186« l’interprétation visuelle du concept d’équivalence », Minkowski 1891b p.288.
187Voir aussi Hancock 1964 vol.I, p.311-312.
188Opolka et Scharlau 1985 p.157.
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sont ses points les plus éloignés de son centre et la distance entre ce centre et les

sommets est
√
M
2

. Ainsi deux hypercubes ne peuvent se rencontrer que sur un de leurs

sommets et l’ensemble des hypercubes ne remplit donc pas tout l’espace contrairement

aux parallélépipèdes du réseau.

Fig. 1.5 – Hypercubes centrés sur les points du réseau

Si ∆ désigne le discriminant de f , le volume de chaque parallélépipède est
√

∆, la

comparaison de ce volume à celui d’un hypercube donne :

(
1√
n

√
M

)n

<
√

∆ , et donc M < n
n
√

∆ .

Cette borne obtenue par Minkowski189 constitue déjà un résultat non trivial pour

l’époque car elle est meilleure que celle qu’avait donné Hermite et qui était alors la

référence sur ce sujet190. Minkowski ne s’arrête cependant pas à ce résultat et montre

qu’avec une petite modification de sa méthode il peut arriver à une estimation encore

meilleure.

Dans le raisonnement précédent, Minkowski remplace les hypercubes par des sphères

de rayon
√
M
2

. La suite de la démonstration ne change pas : ces sphères ne peuvent se

rencontrer que sur leur frontière et ne remplissent donc pas tout l’espace, leur volume191

est [
Γ
(

1
2

)]n

Γ
(
1 + n

2

)

(
1

2

√
M

)n

.

189Nous savons que Minkowski a démontré ce résultat dès 1889 grâce à la lettre à Hilbert du 6
novembre 1889 que nous avons déjà citée voir Rüdenberg et Zassenhaus 1973 p.38.

190Rappelons qu’Hermite avait obtenu
(

4
3

)n−1

2 à la place du n.
191Pour le calcul du volume voir par exemple Martinet 1996 p.52.
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En écrivant que ce volume est plus petit que
√

∆, il vient

M < 4

[
Γ
(
1 + n

2

)] 2
n

[
Γ
(

1
2

)]2 ∆
1
n .

Pour justifier que cette inégalité est meilleure que la précédente Minkowski utilise

une approximation asymptotique pour la fonction Γ ainsi que l’égalité192 Γ
(

1
2

)
=

√
π,

il obtient ainsi

M <
2n

πe

n
√

nπe
1
3n

n
√

∆ .

Comme 2
πe

≈ 0, 234 . . . , cette estimation est bien meilleure que la précédente quand n

tend vers +∞.

Nous voyons donc bien que lorsqu’il écrit à Hermite, Minkowski fait le choix de

laisser de côté les aspects géométriques de son travail qui sont pourtant très présents

dans son premier article sur la géométrie des nombres. Dans un cas, ce sont des figures

géométriques (hypercubes, sphères) qui varient pour obtenir des résultats différents,

dans l’autre c’est le paramètre p dans la somme |ξ|p+ |η|p+ |ζ |p+ · · · qui est laissé libre

(le cas des formes quadratiques étant celui où p = 2). Nous pouvons interpréter cela

comme les premiers pas de Minkowski vers l’utilisation de distances générales. Nous

reviendrons sur cette question qui est liée à la façon dont il envisage l’intervention de

la géométrie.

1.3.1.2 Deux exposés sur la géométrie des nombres

Dans cette partie nous allons étudier la suite du développement de la géométrie des

nombres à travers des textes issus de communications faites lors de deux conférences.

Nous les avons regroupées car ces deux exposés ont en commun de ne pas être adressés

a priori à des spécialistes de théorie des nombres.

Le premier de ces exposés est donné par Minkowski en 1891 à Halle lors de la 64e

réunion des naturalistes et des médecins. Un court rapport sur cette communication

est publié en 1891 dans les comptes rendus de cette réunion193.

Le deuxième est un texte de Minkowski lu par Felix Klein à l’occasion du Congrès inter-

national de mathématiques, qui s’est tenu à Chicago en 1893 en marge de l’Exposition

Universelle194.

192Voir Artin 1964 p.19.
193Minkowski 1891c.
194Pour des informations sur le déroulement des conférences lors de ce congrès voir Parshall et

Rowe 1994 chapitre 7.
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a) Le congrès des naturalistes et des médecins à Halle en 1891

Le rapport publié sur cette conférence de Minkowski est très court (moins de deux

pages dans ses oeuvres complètes). Il est cependant intéressant d’une part parce qu’à

notre connaissance, c’est la première fois que l’expression « Geometrie der Zahlen »

apparaît dans un texte publié. Cet article a d’ailleurs aussi pour titre Ueber Geometrie

der Zahlen. D’autre part, dans cet exposé, Minkowski fournit aussi une indication sur

ce qui est pour lui au coeur de son travail et donc sur ce qui l’amène à appeler sa

théorie la géométrie des nombres.

Il ouvre sa conférence de la manière suivante :

« Wenn man für den Raum rechtwinklige Coordinaten einführt, so entspre-

chen den Systemen von drei ganzen Zahlen discrete Punkte, welche derart

über den Raum versteut liegen, dass sie eine gewisse Nähe in Bezug auf

jede beliebige Raumstelle erreichen. Den Inbegriff aller dieser Punkte mit

lauter Coordinaten, die ganze Zahlen sind, neunt der Vortragende das drei-

dimensionale Zahlengitter ; unter dem Titel “Geometrie der Zahlen” begreift

er geometrische Studien über das dreidimensionale Zahlengitter und über

das entsprechende Gebilde in der Ebene, und in weiterem Sinne auch die

Ausdehnung der Ergebnisse solcher Studien auf Mannigfaltigkeiten belie-

biger Ordnung. Natürlich besitzt jede Aussage über die Zahlengitter einen

rein arithmetischen Kern. Das Wort “Geometrie” erscheint aber durchaus

am Platze im Hinblick auf Fragestellungen, zu welchen die geometrische

Anschauung verhilft, und auf Untersuchungsmethoden, welche fortwährend

durch geometrische Begriffe ihre Richtung angewiesen erhalten195. »

Au centre de l’étude de la géométrie des nombres se trouve donc la notion de réseau

de points, mais ce qui constitue l’originalité de sa démarche pour Minkowski est que les

propriétés arithmétiques de ces réseaux sont explorées au moyen de concepts géomé-

triques. Un éclairage sur le type de concepts géométriques intervenant dans cette étude

est donné ensuite. Il s’agit de considérer certains domaines dans l’espace contenant un

point du réseau (l’origine) et d’étudier selon le volume de ce domaine ses propriétés

par rapport au réseau.

195« Si on construit dans l’espace des coordonnées rectangulaires, alors le système de trois nombres
entiers correspond aux points discrets qui sont situés de telle façon qu’ils atteignent un certain voisinage
de n’importe quel lieu de l’espace. Le conférencier appelle l’ensemble de tous ces points dont les
coordonnées sont des nombres entiers le réseau des nombres entiers de dimension 3 ; sous le titre
“géométrie des nombres” il englobe des études géométriques sur le réseau des nombres entiers de
dimension 3, sur ce qui lui correspond dans le plan et dans un sens plus large la généralisation des
résultats de telles études aux espaces de dimension quelconque. Naturellement chaque affirmation sur le
réseau des nombres entiers possède un noyau purement arithmétique. Mais le mot “géométrie” apparaît
absolument approprié compte tenu des questions posées pour lesquelles l’intuition [nous reviendrons
sur le mot Anschauung plus loin] géométrique joue un rôle et compte tenu des méthodes de recherches
qui sont continuellement soumises et dirigées par des concepts géométriques. » Minkowski 1891c.
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Minkowski illustre cette problématique par deux résultats allant dans cette direction

de recherche.

Le premier concerne les corps convexes admettant l’origine du réseau comme centre. Si

le volume d’un tel corps est supérieur ou égal à 23, alors il contient un autre point du

réseau que l’origine.

Le second résultat concerne cette fois les corps que nous appelons en termes modernes

étoilés par rapport à l’origine du réseau196. Si le volume de ce corps est inférieur ou

égal à

1 +
1

23
+

1

33
+

1

43
+ · · · ,

alors il est toujours possible de “déformer” le domaine de telle façon que son volume

reste inchangé et qu’il ne contienne que l’origine comme point du réseau.

Des précisions sur ces deux résultats vont être données dans l’exposé fait à Chicago.

b) La conférence de Chicago de 1893

Cette conférence de Minkowski, intitulée Über Eigenschaften von ganzen Zahlen,

die durch räumliche Anschauung erschlossen sind, est présentée par Klein en 1893 au

congrès international de Chicago. Une traduction en français de Léonce Laugel est pu-

bliée en 1896 dans les Nouvelles Annales de Mathématiques, c’est elle que nous utilisons

ici197 pour décrire le contenu de ce texte.

Minkowski se place dans l’espace de dimension 3 et il considère le réseau des points

à coordonnées entières. Il précise que les résultats qu’il va énoncer sont en fait valables

en dimension n quelconque et que le cas général sera traité dans son livre à paraître

Geometrie der Zahlen.

L’article commence par des rappels sur le volume qu’il juge être « la notion la plus im-

portante en corrélation avec le réseau des nombres198 ». Il reprend sur ce sujet le travail

effectué par Camille Jordan199. Minkowski considère chaque point du réseau comme le

centre d’un cube dont les faces sont parallèles aux plans des coordonnées et d’arête

1. Soient maintenant K un ensemble borné et p un point quelconque de l’espace, Kp
Ω

désigne alors l’image de K par l’homothétie de centre p et de rapport Ω. Minkowski

note ensuite apΩ le nombre de cubes strictement inclus dans Kp
Ω et upΩ le nombre de

cubes qui contiennent au moins un point de Kp
Ω. Jordan a démontré que les quantités

Ω−3apΩ et Ω−3upΩ convergent indépendament de p vers respectivement A et U qui sont

196Un corps C est étoilé par rapport à l’origine O si pour tout point x de C, le segment [O, x] est
contenu dans C.

197Minkowski 1896c.
198Minkowski 1896c p.394.
199Jordan 1892.
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appelés volume intérieur et volume extérieur de K. Lorsque les volumes intérieur et

extérieur coincident, K est dit de volume A.

Dans la deuxième partie, Minkowski présente ce qu’il conçoit comme la « généra-

lisation de la définition de la longueur d’une ligne droite », c’est ce qu’il appelle une

« distance radiale (Strahldistanz)200 ». Une distance radiale est une fonction de deux

points a et b, notée S(ab) par Minkowski, qui vérifie les deux conditions suivantes :

1) Si a 6= b, S(ab) > 0 et si a = b, S(ab) = 0.

2) Si a, b, c, d sont quatre points tels que a 6= b et d− c = t(b− a) avec t ≥ 0,

alors S(cd) = tS(ab).

Soit une origine O prise dans le réseau, à la distance radiale S est associée son « corps

étalon (Eichkörper) » qui est l’ensemble des points u qui vérifient S(Ou) ≤ 1.

Dans la plupart des applications où elles vont intervenir les distances radiales utili-

sées vérifient des conditions supplémentaires. Minkowski appelle ainsi « concordante

(einhellig) » une distance radiale S telle que pour trois points quelconques a, b et c

S(ac) ≤ S(ab) + S(bc) .

Le corps étalon associé à une distance radiale concordante est convexe201. La réciproque

est aussi énoncée :

« tout corps dont l’encadrement n’est nulle part concave et à l’intérieur

duquel se trouve l’origine est corps étalon pour certaines distances radiales

concordantes. »

Minkowski propose ensuite ce qu’il juge être l’exemple le plus simple de distance radiale

concordante qu’il note E(ab) :

« Par E(ab) l’on désignera la moitié de l’arête du cube aux faces parallèles

aux plans des coordonnées qui a pour centre a et dont l’encadrement passe

par b. »

Cette définition géométrique signifie en termes analytiques que E(ab) est égal au maxi-

mum de la différence des coordonnées des points a et b.

Des propriétés des distances radiales concordantes sont données sans les preuves pour

lesquelles Minkowski renvoie à nouveau à son livre. D’abord une distance S(ab) est une

fonction continue des points a et b, de plus il existe des constantes positives g et G

telles que

gE(ab) ≤ S(ab) ≤ GE(ab) ,

200Minkowski 1896c p.395.
201Minkowski parle de corps dont « l’encadrement est nulle part concave ».
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pour tous les points a et b. Enfin, le volume du corps étalon associé à une distance

radiale concordante existe et est noté I dans la suite. Les démonstrations de ces propo-

sitions ne sont pas détaillées, en revanche, Minkowski interprète géométriquement les

constantes g et G. Le cube défini par l’inégalité E(Ou) ≤ 1
G

est inclus dans le corps

étalon associé à la distance radiale S qui est lui même inclus dans le cube E(Ou) ≤ 1
g
.

Une autre condition que vérifient les distances radiales utilisées par Minkowski est la

réversibilité. Une distance radiale est « réversible (Wechselseitig) » lorsque pour tous

les points a et b

S(ba) = S(ab) .

Comme pour la concordance cette dernière propriété est traduite géométriquement sur

le corps étalon : celui-ci est symétrique par rapport à l’origine pour une distance radiale

réversible202.

Ayant mis en place les notions qui lui sont nécessaires, Minkowski peut alors énoncer

et démontrer le théorème central de cet article.

Ce théorème, qui concerne les points du réseau dans un corps convexe symétrique

par rapport à l’origine, est sans doute le résultat le plus connu de Minkowski en ma-

thématiques. Mais il est surtout emblématique pour la géométrie des nombres car il

est souvent considéré comme le point de départ de cette théorie

« the “geometry of numbers”, the subject created by Minkowski on the

basis of his fundamental Theorem 37 and its generalization in space of n

dimensions203. »

Minkowski démontre donc que pour S, une distance radiale concordante et réversible

dont le volume du corps étalon associé est noté I, il existe « au moins un point q du

réseau, différent de O, pour lequel on ait

S(Oq) ≤ 2
3
√
I
. »

Ce résultat n’est pas énoncé d’un seul tenant dans l’article, mais les hypothèses néces-

saires sont précisées au fur et à mesure de la démonstration.

Minkowski commence par remarquer qu’il y a au moins un point r dans le réseau des

entiers tel que E(Or) = 1, cela implique que S(Or) ≤ G (les constantes G et g sont

définies comme ci-dessus). Soit maintenant M la distance minimale de l’origine O aux

autres points du réseau ; alors en particulier M ≤ S(Or) et donc M ≤ G. Comme un

réseau est invariant par changement d’origine M est aussi la distance minimale entre

202En termes actuels, une distance radiale concordante et réversible est une distance induite par
une norme. Ainsi le corps étalon correspond lui à la boule unité pour cette norme. Minkowski semble
donc être un des premiers mathématiciens à avoir introduit ces notions.

203Hardy et Wright 1960 p.394.
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deux points quelconques du réseau.

Pour deux points du réseau a et c, notons204 Aa (respectivement Ac) le corps constitué

des points u de l’espace pour lesquels S(au) ≤ M
2

(respectivement S(cu) ≤ M
2

). Ces

deux corps « ont en commun au plus des points de leurs encadrements ». En effet, si

un point u appartenait à la fois à Aa et Ac alors

S(au) ≤ M

2
et S(cu) ≤ M

2
.

En utilisant la réversibilité et la concordance de la distance radiale S il vient

S(ac) ≤ S(au) + S(uc) = S(au) + S(cu) ≤ M .

Or compte tenu de la définition de M , S(ac) ≥ M et par suite S(ac) = M . Finalement

S(au) = S(cu) = M
2

, ce qui signifie bien que u est sur la frontière de Aa et de Ac.

Pour un entier naturel pair Ω, Minkowski construit ensuite les corps A(x,y,z) où x, y et

z prennent toutes les valeurs entières −Ω
2
, . . . , −1, 0, 1, . . . , Ω

2
. Il y a exactement

(Ω + 1)3 corps ainsi définis et leurs centres sont tous dans le cube donné par l’inégalité

E(Ou) ≤ Ω
2

.

De plus, si a est un point du réseau et u est tel que S(au) ≤ M
2

alors S(au) ≤ G
2
, puis

E(au) ≤ 1
2
G
g
. Ceci permet de montrer que tous les corps A(x,y,z) sont inclus dans le

cube E(Ou) ≤ 1
2
(Ω + G

g
). Le volume de ce dernier cube, qui est (Ω + G

g
)3, est donc

plus grand que le volume total occupé par les A(x,y,z), ces corps étant disjoints et ayant

chacun un volume égal à
(
M
2

)3
I, Minkowski obtient

(

Ω +
G

g

)3

≥ (Ω + 1)3

(
M

2

)3

I .

Lorsque Ω tend vers +∞, cette dernière inégalité devient

1 ≥
(
M

2

)3

I .

Finalement, si q est un point du réseau tel que M = S(Oq) cela entraine bien

S(Oq) ≤ 2
3
√
I
.

Nous pouvons voir dans ce résultat l’étape supplémentaire franchie par Minkowski

par rapport au travail qu’il présentait en 1891. Il utilisait alors des cubes, puis de

sphères pour améliorer son estimation. Avec le théorème décrit ici, il a élucidé les

204Cette notation n’est pas utilisée par Minkowski.
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conditions sur le domaine à considérer qui permettent à sa méthode de fonctionner,

à savoir la symétrie par rapport à un point et la convexité, qui sont équivalentes du

point de vue des distances radiales à la réversibilité et à la concordance. Le reste de

la démonstration est similaire à celle de son article de 1891. D’ailleurs, il remarque

qu’il avait dans un premier temps prouvé ce résultat pour des figures géométriques

particulières (les ellipsoïdes).

Minkowski apporte enfin la confirmation que son travail est « inspiré par l’étude des

travaux de Dirichlet et ceux de M. Hermite, sur les formes quadratiques205 ».

Dans la suite de la conférence, Minkowski présente un certain nombre d’applications

de ce théorème. La première concerne l’estimation de sommes du type |ξ|p+ |η|p+ |ζ |p,
où ξ, η et ζ sont des formes linéaires de trois variables. Il s’agit d’un thème déjà abordé

dans la lettre à Hermite de 1891 mais au sujet duquel il donne ici un peu plus de détails.

Dans ce qui suit les trois formes linéaires peuvent être soit toutes réelles, soit ξ est réelle

et η, ζ sont à coefficients complexes et conjugués. Le déterminant D de ces formes est

supposé différent de 0. Minkowski note Kp le corps défini par l’inégalité

( |ξ|p + |η|p + |ζ |p
3

) 1
p

≤ 1 .

Lorsque p est un réel supérieur ou égal à 1, Kp est un corps convexe dont le volume Ip
est donné par Minkowski sans que le calcul soit détaillé

Ip =
23

λ3
p |D| ,

avec, dans le cas où les formes sont réelles,

λ3
p =

3−
3
p Γ
(

1 + 3
p

)

∣
∣
∣Γ
(

1 + 1
p

)∣
∣
∣

3 ,

ou bien, quand deux formes sont à coefficients complexes,

λ3
p =

2

π

3−
3
p Γ
(

1 + 3
p

)

Γ
(

1 + 1
p

)

2−
2
p Γ
(

1 + 2
p

) .

En appliquant le résultat vu précédemment, Minkowski obtient le théorème

« Lorsque p ≥ 1, il existe toujours des nombres entiers x, y, z, qui ne sont

205Minkowski 1896c p.398.

78



1.3 CHAPITRE 1

pas tous nuls et pour lesquels on a

( |ξ|p + |η|p + |ζ |p
3

) 1
p

< λp |D| 13 . »

Il discute ensuite ce résultat en commentant les cas limites pour des valeurs du

paramètre p, ce qui le conduit à énoncer le théorème suivant, qu’il obtient en faisant

tendre p vers 0 :

« Il existe toujours des nombres entiers, qui ne sont pas tous nuls et pour

lesquels on a |ξ η ζ | < λ3
1 |D| et par conséquent a fortiori < |D|. »

En effet,
(

|ξ|p + |η|p + |ζ|p
3

) 1
p

converge vers la moyenne géométrique 3
√

|ξ η ζ | lorsque p tend

vers 0 et la quantité λp est croissante avec p.

Nous retrouvons bien dans le cas particulier de trois formes linéaires les estimations

données dans la lettre à Hermite et Minkowski souligne à nouveau leur importance

dans la théorie des nombres algébriques. En plus des applications à ce domaine qu’il

indiquait déjà à Hermite en 1891, il signale que les théorèmes précédents lui ont per-

mis de redémontrer les théorèmes de Dirichlet sur les unités complexes et celui sur la

finitude du nombre des classes d’idéaux206.

Après la théorie des nombres algébriques, Minkowski passe à des applications de

son travail à l’approximation des nombres réels. Le problème auquel il s’intéresse est le

suivant : étant donnés a et b deux réels, il s’agit d’approcher a et b par des rationnels

de même dénominateur avec une erreur qui tend vers 0 quand ce dénominateur devient

grand.

Pour cela soit t > 0, Minkowski va dans un premier temps appliquer son théorème au

parallélépipède défini par les inégalités

−1 ≤ x− az ≤ 1 , −1 ≤ y − bz ≤ 1 , −1 ≤ z

t
≤ 1 .

206En termes actuels ces théorèmes s’énoncent de la manière suivante. Le premier donne la structure
du groupe des unités d’un corps de nombres : si K est un corps de nombres avec r1 plongements
réels, 2r2 plongements complexes, et si OK (respectivement O×

K) désigne son anneau des entiers
(respectivement son groupe des unités), alors

O×

K = µ× E

où µ est le groupe des racines de l’unité de K et E est un groupe libre de rang r = r1 + r2 − 1.
Si maintenant I(K) est l’ensemble des idéaux fractionnaires de K, l’ensemble des idéaux fractionnaires
non nuls I(K)∗ est un groupe pour la multiplication des idéaux dont l’ensemble des idéaux principaux
P(K) est un sous-groupe. Le groupe des classes d’idéaux C(K) est par définition le groupe quotient
de I(K)∗ par P(K), alors ce groupe C(K) est fini. Voir par exemple Duverney 1998; Samuel 2003.
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Le volume de ce parallélépipède étant 23 t, le théorème donne l’existence de nombres

entiers x, y, z non tous nuls tels que

|x− az| ≤ 2
3
√

23 t
, |y − bz| ≤ 2

3
√

23 t
,

∣
∣
∣
z

t

∣
∣
∣ ≤ 2

3
√

23 t
.

Quitte à supposer z > 0, ce qui est toujours possible car le domaine utilisé est symé-

trique par rapport à l’origine, nous obtenons

0 < z ≤ t
2
3 , |x− az| ≤ 1

t
1
3

, |y − bz| ≤ 1

t
1
3

.

Comme l’indique Minkowski, ce dernier résultat avait déjà été démontré par Kronecker

pour des valeurs entières de t en utilisant le principe de Dirichlet207.

Enfin, en éliminant t des deux dernières inégalités à l’aide de la première, nous arrivons

à l’approximation simultanée de a et b suivante

∣
∣
∣
x

z
− a
∣
∣
∣ ≤ 1

z
3
2

et
∣
∣
∣
y

z
− b
∣
∣
∣ ≤ 1

z
3
2

.

Minkowski prouve ensuite l’efficacité de sa méthode en montrant qu’il peut obtenir

une meilleure approximation en considérant un autre domaine qu’un parallélépipède.

Il utilise donc cette fois l’octaèdre défini par

|x− az| +
∣
∣
∣
z

t

∣
∣
∣ ≤ 1 et |y − bz| +

∣
∣
∣
z

t

∣
∣
∣ ≤ 1 .

Le calcul du volume de cet octaèdre se ramène après un changement de variable de

déterminant 1
t

au calcul du volume du domaine

|X| + |Z| ≤ 1 , |Y | + |Z| ≤ 1 .

Ce volume est donné par l’intégrale

∫ 1

−1

(∫∫

|X|≤1−|Z|, |Y |≤1−|Z|
dX dY

)

dZ =

∫ 1

−1

[2 (1 − |Z|)]2 dZ =
23

3
.

L’octaèdre considéré au départ a donc un volume égal à 23

3
t et d’après le théorème de

Minkowski, il existe des entiers x, y, z non tous nuls qui vérifient

|x− az| +
∣
∣
∣
z

t

∣
∣
∣ ≤ 2

3

√
23

3
t

et |y − bz| +
∣
∣
∣
z

t

∣
∣
∣ ≤ 2

3

√
23

3
t
,

207Si n+ 1 objets sont répartis dans n ensembles alors un de ces ensembles contient nécessairement
au moins deux objets.
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ou encore

|x− az| +
∣
∣
∣
z

t

∣
∣
∣ ≤

(
3

t

) 1
3

et |y − bz| +
∣
∣
∣
z

t

∣
∣
∣ ≤

(
3

t

) 1
3

.

D’après l’inégalité arithmético-géométrique208

[

|x− az|2 × 2|z|
t

] 1
3

≤ 2 |x− az| + 2|z|
t

3
,

ce qui implique

[

|x− az|2 × 2|z|
t

] 1
3

≤ 2

3

(
3

t

) 1
3

et

[

|y − bz|2 × 2|z|
t

] 1
3

≤ 2

3

(
3

t

) 1
3

.

Finalement, après simplification et en supposant z > 0, nous obtenons

∣
∣
∣
x

z
− a
∣
∣
∣ ≤ 2

3

1

z
3
2

et
∣
∣
∣
y

z
− b
∣
∣
∣ ≤ 2

3

1

z
3
2

,

ce qui constitue bien une meilleure approximation.

Minkowski se trouve à nouveau ici dans la continuité du travail d’Hermite qui avait

obtenu la borne
2
√

2
4
√

27 z3/2
en utilisant son théorème sur le minimum des formes qua-

dratiques et un raisonnement similaire au précédent209.

Minkowski termine sa conférence en remarquant que son théorème sur les corps

convexes peut être généralisé mais il ne donne pas plus de détails à cette occasion210.

1.3.1.3 Une autre lettre à Hermite

Minkowski adresse une seconde lettre à Hermite211 qui est cette fois publiée dans

le Bulletin des sciences mathématiques en 1893. Il s’agit à nouveau d’une lettre assez

courte (moins de 5 pages) que Minkowski présente comme un résumé de son livre et

dans laquelle les résultats sont énoncés sans démonstration. Nous y retrouvons un cer-

tain nombre de résultats rencontrés dans les publications précédentes, nous insisterons

donc davantage sur ceux qui apparaissent pour la première fois ou bien ceux qui sont

énoncés de manière différente. Contrairement à la conférence de Chicago, les théorèmes

208Voir Hancock 1964 vol.I, p.192 qui traite le cas général.
209Goldstein 2007 p.388.
210Minkowski fait ici allusion au théorème sur les minima successifs.
211Minkowski 1893.
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sont donnés ici dans le cas général (en dimension n quelconque) et Minkowski fait le

choix, comme dans sa première lettre, de ne pas mettre en avant les aspects géomé-

triques de son travail sur la géométrie des nombres.

Ce dernier point est bien illustré par le théorème sur les corps convexes qui est

énoncé au début de la lettre et dont Minkowski propose une présentation assez différente

de celle que nous avons vue. Minkowski commence par indiquer que

« La plus grande partie du livre traite des fonctions ϕ à n variables x1,

x2, . . ., xn, qui, comme la racine carré d’une forme quadratique positive,

satisfont aux conditions

(A)







ϕ(x1, x2, .., xn) > 0 , si l’on n’a pas x1 = 0, x2 = 0, . . . , xn = 0,

ϕ(0, 0, ..., 0) = 0 ,

ϕ(tx1, tx2, .., txn) = tϕ(x1, x2, .., xn), si t > 0,

(B) ϕ(x1 + y1, x2 + y2, ..., xn + yn) ≤ ϕ(x1, x2, .., xn) + ϕ(y1, y2, .., yn),

(C) ϕ(−x1,−x2, ...,−xn) = ϕ(x1, x2, ..., xn) . »

Cette définition des fonctions ϕ remplace ici toutes les notions développées dans

l’article précédent à propos des distances radiales. Nous reconnaissons dans les condi-

tions (A), (B) et (C) respectivement la définition d’une distance, la concordance et la

réversibilité mais Minkowski n’emploie pas ce vocabulaire géométrique, ne fait pas non

plus mention des corps étalons et se contente de cette caractérisation analytique. Dans

le même ordre d’idées, comme exemple d’une telle fonction ϕ, il propose la fonction

φ(x1, x2, . . . , xn) = max{|ξ1|, |ξ2|, . . . , |ξν|} ,

où ξ1, ξ2, . . . , ξn sont des formes linéaires à coefficients réels dont n ont un déter-

minant non nul. Après avoir justifié que « l’intégrale
∫∫

. . .
∫
dx1 dx2 . . . dxn étendue

sur le domaine ϕ(x1, x2, . . . , xn) ≤ 1 aura toujours une valeur déterminée », notée J ,

Minkowski passe à l’énoncé de son théorème :

« Je démontre alors que l’on peut toujours trouver des nombres entiers

x1, x2, . . . , xn pour lesquels on ait

(I) 0 < ϕ(x1, x2, . . . , xn) ≤ 2
n
√
J
. »

La suite de la lettre est consacrée aux applications de ce théorème.

D’abord l’application (jugée la plus simple par Minkowski) qui concerne n formes li-

néaires ξ1, ξ2, . . ., ξn à coefficients réels et dont le déterminant est égal à ±1. Sous ces
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hypothèses,

« on peut toujours donner à x1, x2, . . ., xn des valeurs entières qui ne

s’évanouissent pas toutes et de sorte que les valeurs absolues de ξ1, ξ2, . . .,

ξn soient toutes ≤ 1 ».

En effet, comme le déterminant des formes est ±1, l’intégrale
∫∫

. . .
∫
dx1 dx2 . . . dxn

calculée sur le domaine défini par les inégalités

−1 ≤ ξi ≤ 1 (i = 1, 2, . . . , n) ,

est égale à 23. L’application du théorème (I) donne alors bien le résultat annoncé.

Cet énoncé est immédiatement précisé par Minkowski. Il indique que les entiers x1,

x2, . . ., xn peuvent être choisis de telle sorte que l’inégalité précédente soit stricte

sauf si « les formes ξ1, ξ2, . . ., ξn, par une substitution linéaire à coefficients entiers

et à déterminant ±1, peuvent être transformées de manière que, abstraction faite de

l’ordre, elles deviennent

x1, a21x1 + x2, . . . , an1x1 + an2x2 + · · · + xn . »

Minkowski mentionne ensuite des applications déjà abordées dans la conférence de

Chicago, le théorème de Dirichlet sur les unités complexes mais aussi l’approximation

simultanée de nombres réels. Dans le cas général où il s’agit d’approcher n − 1 réels,

a1, a2, . . ., an−1, ce résultat d’approximation s’exprime de la manière suivante

« on peut toujours trouver des nombres entiers x1, x2, . . ., xn−1, xn, sans

diviseur commun et parmi lesquels xn est positif, de sorte que les valeurs

absolues de
x1

xn
− a1 ,

x2

xn
− a2 , . . . ,

xn−1

xn
− an−1

soient plus petites qu’une quantité positive ε choisie à volonté et en même

temps

<
n− 1

nx
n

n−1
n

. »

Pour n = 3, la borne précédente devient
2

3 x
3/2
3

qui est bien celle obtenue dans la confé-

rence donnée à Chicago.

Le théorème suivant est présenté comme une généralisation du théorème (I) (certaine-

ment celle annoncée dans cette même conférence) :

« Pour toute fonction ϕ, satisfaisant aux conditions (A), (B), (C), on peut

trouver n2 nombres entiers lhk à déterminant différent de zéro, de sorte que
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l’on ait

ϕ(l11, l21, . . . , ln1) ϕ(l12, l22, . . . , ln2) . . . ϕ(l1n, l2n, . . . , lnn) ≤ 2n

J
.

Le déterminant lhk sera alors toujours ≤ 1.2 . . . n. »

Nous pouvons voir que le théorème (I) est bien une conséquence de ce résultat en

nous rappelant que pour le théorème (I) la valeur ϕ(x1, x2, . . . , xn) dans la conclusion

correspond au minimum de la fonction ϕ sur les points à coordonnées entières non

toutes nulles, ainsi

ϕ(x1, x2, . . . , xn)
n ≤ ϕ(l11, l21, . . . , ln1) ϕ(l12, l22, . . . , ln2) . . . ϕ(l1n, l2n, . . . , lnn) ≤ 2n

J
,

ce qui implique

ϕ(x1, x2, . . . , xn) ≤ 2
n
√
J
.

Minkowski énonce ensuite des résultats obtenus en appliquant ce nouveau théorème.

Soient ahk (h, k = 1, 2, . . . , n) n2 nombres réels dont la valeur absolue du déterminant,

noté D, est différent de zéro, alors

« Il y aura ou n2 nombres entiers lhk à déterminant différent de zéro, de

sorte que le système composé









a11 . . . a1n

. . . . . . . . .

an1 . . . ann

















l11 . . . l1n

. . . . . . . . .

ln1 . . . lnn









=









b11 . . . b1n

. . . . . . . . .

bn1 . . . bnn









satisfasse à toutes les nn inégalités

±bh11bh22 . . . bhnn < D, (h1 = 1, 2, . . . , n; h2 = 1, 2, . . . , n; . . . ; hn = 1, 2, . . . , n),

ou n2 nombres entiers lhk à déterminant ±1, de sorte que ce système com-

posé après une permutation convenable des lignes, prenne une forme









c11 . . . c1n

. . . . . . . . .

cn1 . . . cnn









,
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satisfaisant aux conditions

chk = 0 , h > k ,

0 < c11 ≤ c22 ≤ . . . ≤ cnn ,

0 ≤ chk < chh , h < k . »

Les applications suivantes concernent la théorie de la réduction des formes qua-

dratiques positives de n variables dont le déterminant est noté D. Le premier résultat

donné par Minkowski à ce sujet dit qu’une telle forme

« peut toujours, par une substitution à coefficients entiers et à déterminant

différent de zéro

[

dont la valeur absolue est < 2n
Γ
(
1 + n

2

)

(
Γ
(

1
2

))n

]

, être trans-

formée en une forme
∑
bhk yh yk, satisfaisant aux conditions

0 < b11 ≤ b22 ≤ · · · ≤ bnn , ±2bhk ≤ bhh , (h < k),

b11 b22 . . . bnn <

[

2n Γ
(
1 + n

2

)

(
Γ
(

1
2

))n

]2

D . »

Bien que cela ne soit pas précisé par Minkowski, nous reconnaissons des conditions qui

ont déjà été vues à propos du travail d’Hermite sur la réduction. La constante
(

4
3

)n(n−1)
2

qu’obtenait Hermite est remplacée ici par

[
2n Γ(1+ n

2 )
(Γ( 1

2))
n

]2

.

Le théorème suivant traite toujours de la réduction des formes quadratiques posi-

tives et il s’agit à nouveau d’une amélioration d’un procédé de réduction proposé par

Hermite. Cette fois, Minkowski fait explicitement référence au travail de son aîné sur

ce thème et il précise qu’il est question de la dernière méthode de réduction qu’Hermite

avait donnée dans ses lettres à Jacobi212. Si f est une forme quadratique positive de n

variables, le travail d’Hermite entraîne que par une substitution à coefficients entiers

et de déterminant ±1, f peut se transformer en une forme
∑
bhk yh yk qui vérifie les

inégalités
∑

bhk ph pk ≥ bmm ,

où m est un entier compris entre 1 et n ; et où p1, p2, . . ., pn sont des entiers quelconques

tels que le plus grand diviseur commun de pm, pm+1, . . ., pn soit égal à 1. Les inégali-

tés précédentes donnent une infinité de conditions à vérifier sur la forme
∑
bhk yh yk.

Minkowski démontre « que parmi ces inégalités on trouve un nombre fini dont dérivent

toutes les autres. »

212Rappelons qu’Hermite avait proposé plusieurs théories de la réduction des formes quadratiques
positives de n variables.
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Pour une forme f , il y a plusieurs formes qui lui sont équivalentes et dont les coefficients

vérifient les inégalités précédentes. Minkowski précise qu’il y en a en général 2n−1 qui

se déduisent à partir d’une d’entre elles par les 2n substitutions

y1 = ±z1 , y2 = ±z2 , . . . , yn = ±zn .

Si χ(∆) est le nombre de classes de formes quadratiques à coefficients entiers et de

déterminant ∆, Minkowski déduit du théorème précédent que la somme

χ(D + 1) + χ(D + 2) + · · · + χ(D + d)

est équivalente à γ D
n−1

2 d, avec

γ =
Γ
(

2
2

)
Γ
(

3
2

)
. . . Γ

(
n
2

)

[
Γ
(

1
2

)]2+3+···+n S2 S3 . . . Sn .

Dans la constante γ, Sh désigne la somme

1 +
1

2h
+

1

3h
+

1

4h
+ · · · .

Pour terminer, Minkowski considère une fonction ψ(x1, . . . , xn) continue qui vérifie

la condition (A) de la définition des fonctions ϕ (ou les conditions (A) et (C)), alors

« on peut toujours trouver n2 quantités réelles ahk à déterminant 1, de sorte

que la relation

0 < ψ(a11y1+· · ·+a1nyn, . . . , an1y1+· · ·+annyn) ≤ n

√

Sn
J

(

ou ≤ n

√

2Sn
J

)

ne soit vérifiée par aucun système de nombres entiers y1, . . ., yn. »

Si maintenant βn
n
√
D désigne le minimum des formes quadratiques positives de

déterminant D pour des valeurs entières des variables non toutes nulles. L’application

de ce dernier théorème à la fonction ψ =
√

x2
1 + · · ·+ x2

n permet à Minkowski de

justifier que

lim
n→+∞

(
log βn
logn

)

= 1 .
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1.3.1.4 À propos des fractions continues

Le dernier article concernant la géométrie des nombres pendant cette période est

publié en français dans les Annales de l’Ecole Normale Supérieure en 1896 sous le titre

« Généralisation de la théorie des fractions continues213 ». Le manuscrit original en

allemand est reproduit dans les oeuvres complètes de Minkowski214, il est daté du 15

octobre 1894. Des théorèmes démontrés par Hermite sont à l’origine de la généralisa-

tion des fractions continues proposée. Mais nous allons voir que les fractions continues

ne sont pas l’unique thème développé dans cet article.

Ce sujet peut sembler a priori éloigné des thèmes que nous avons rencontrés jusque

là dans le travail de Minkowski. En fait, les fractions continues sont à l’époque une

des méthodes importantes dans l’approximation des nombres réels par des rationnels,

question qui fait partie des domaines d’application de la géométrie des nombres. Les

fractions continues interviennent aussi en théorie des formes. Par exemple, des notions

de réduction pour les formes quadratiques binaires indéfinies215 ax2 + 2bxy + cy2 sont

fondées sur le développement en fraction continue de la racine −b+
√
b2−ac
a

de l’équation

aω2 + 2bω+ c = 0. Enfin, comme nous allons le voir, Minkowski utilise dans cet article

son théorème sur les corps convexes.

Le texte de Minkowski commence effectivement par l’introduction d’une fraction

continue pn

qn
qui dépend d’un paramètre Ω ≥ 1. Soit a le nombre réel qui doit être

approché, a est supposé ne pas être un entier ni un demi-entier. Minkowski construit

alors pn et qn en posant d’abord p0 = 1 et q0 = 0, puis il note f0 l’entier le plus proche

de a et p1 = f0, q1 = 1. Il suppose ensuite avoir construit ces suites jusqu’au rang n, il

définit alors pn+1 et qn+1 de la façon suivante216

« Désignons ensuite, pour n ≥ 1 et tant que pn − aqn
>
< 0, par εn le signe

de pn−1−aqn−1

pn−aqn , quotient dont la valeur absolue sera désignée par cn + rn, cn
étant un nombre entier et rn satisfaisant à la condition 0 ≤ rn < 1 ; posons

ensuite sn = cn − εn
qn−1

qn
et posons, lorsque rn = 0, fn = cn, mais lorsque

rn > 0,

fn =







cn

ou bien

cn + 1 ,

213Minkowski 1896b.
214Voir « Zur Theorie der Kettenbrüche », Minkowski 1911 p.278-292.
215Voir par exemple Cahen et Vahlen 1908 p.105.
216Minkowski 1896b p.41-42.
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suivant que l’on a

(A)
(sn + 1)Ω − 1

1 − (1 − rn)Ω

>

ou bien

≤







sΩ
n − 1

1 − rΩ
n

,

et enfin

pn+1 = fnpn − εnpn−1 ,

qn+1 = fnqn − εnqn−1 .

Ceci posé on aura

pn

qn
= f0 −

ε1

f1 −
. . .

fn−2 −
εn−1

fn−1

(n = 1, 2, . . . ). »

Minkowski énonce ensuite des propriétés de la fraction continue ainsi définie. Puis il

examine des cas particuliers du paramètre Ω.

D’abord, pour Ω = ∞, il remarque que les termes de la suite pn

qn
sont en fait les

réduites du développement en fraction continue ordinaire217 de a (sauf éventuellement

la première réduite).

Ensuite, pour Ω = 2, Minkowski montre qu’il retrouve un développement en fraction

continue donné par Hermite. Enfin, l’étude du cas où Ω = 1 lui permet de démontrer

que pour des nombres réels a et b

« Lorsque aucune des équations x− ay = 0, x− b = 0, x− ay− b = 0 n’est

résoluble en nombres entiers x, y, il existe donc une infinité de nombres

entiers différents x, y pour lesquels on a

y >
< 0 , |x− ay − b| < 1

4 |y| . »

217Si α est un nombre réel, le développement en fraction continue ordinaire de α s’obtient en écrivant
α = q0 + 1

α1

, où q0 = [α] (la partie entière de α) et α1 > 1. On répète ce procédé α1 = q1 + 1
α2

, avec
q1 = [α1] et α2 > 1 etc . . . Si α ∈ Q l’algorithme s’arrête, sinon les réduites de la fraction continue

convergent vers α et α = q0 +
1

q1 +
1

q2 + · · ·

, voir par exemple Davenport 1952 p.89.
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À nouveau Hermite avait déjà démontré un résultat de ce type dans un article218 publié

en 1880, mais la borne qu’il avait obtenue était
√

2
27

, ce qui est une estimation moins

bonne que la précédente. En fait, Hermite indique dans son article qu’il s’agit d’une

question déjà abordée par le mathématicien Pafnuty Tchebychef qui avait donné l’in-

égalité |x−ay−b| < 1
2 |y| mais son article publié en russe était un peu passé inaperçu219.

Dans le paragraphe suivant, Minkowski considère la fonction

ϕ =

∣
∣
∣
∣

ξ

ρ

∣
∣
∣
∣

Ω

+
∣
∣
∣
η

σ

∣
∣
∣

Ω

+

∣
∣
∣
∣

ζ

τ

∣
∣
∣
∣

Ω

,

où ξ, η et ζ sont des formes linéaires de trois variables, à coefficients réels et de déter-

minant ∆ différent de 0. ρ, σ et τ sont des paramètres positifs. Il rappelle que pour

Ω ≥ 1, l’inégalité ϕ ≤ 1 définit un corps convexe, en particulier quand Ω = ∞ ce corps

convexe est un parallélépipède, noté (ρ, σ, τ), dont les faces sont données par

ξ = ±ρ , η = ±σ , ζ = ±τ .

Ce cas, qui correspond au développement en fraction continue ordinaire, est le seul

étudié dans la suite. Minkowski introduit ensuite du vocabulaire relatif à ces parallé-

lépipèdes. Un (ρ, σ, τ) est libre lorsqu’il ne contient aucun point du réseau dans son

intérieur220. Un (ρ, σ, τ) qui est libre et « qui perd cette propriété dans tous les cas

où l’un de ses paramètres éprouve une augmentation si petite qu’elle soit, sera dit un

parallélépipède extrême pour ξ, η, ζ . » Le théorème de Minkowski relatif aux corps

convexes et aux points d’un réseau implique que pour un (ρ, σ, τ) libre, ρστ ≤ ∆.

Minkowski énonce ensuite sans démonstration un théorème sur les parallélépipèdes ex-

trêmes221. Il explique comment à partir d’un parallélépipède extrême pour ξ, η, ζ , on

peut déterminer tous les autres, il appelle cet ensemble de parallélépipèdes extrêmes

pour ξ, η, ζ une chaîne de parallélépipèdes.

L’algorithme précédent est ensuite appliqué à la théorie des corps de nombres algé-

briques. Pour un corps de nombres réel de degré 3 dont les corps conjugués sont aussi

réels, Minkowski montre en effet comment sa méthode permet de déterminer deux uni-

tés de ce corps avec lesquelles toutes les autres peuvent être trouvées par multiplication

218Hermite 1880.
219Nous aurons l’occasion de revenir sur ce résultat qui joue un rôle important dans les développe-

ments ultérieurs de la géométrie des nombres. D’autres preuves seront données pour cette inégalité
et de nombreuses recherches seront consacrées à sa généralisation à des produits d’un nombre plus
important de formes linéaires non homogènes.

220Le réseau désigne ici les points à coordonnées entières.
221Des commentaires sur la démonstration de ce résultat ainsi que des références sont données dans

Hancock 1964, vol.I, p.380.
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et division. Il traite enfin l’exemple de la recherche des unités du corps engendré par

2 cos 2π
7

.

1.3.1.5 Bilan sur ces premiers travaux

Nous l’avons dit, le théorème de Minkowski sur les points d’un réseau dans un do-

maine convexe symétrique par rapport à un point est un des résultats fondamentaux,

voire peut être le résultat fondamental, de la géométrie des nombres. Ces premiers

travaux de Minkowski en géométrie des nombres permettent de se faire une idée sur

la genèse et l’élaboration progressive de ce théorème. D’abord, la méthode condui-

sant à ce résultat est mise en oeuvre sur des domaines particuliers comme le cube ou

la sphère dans l’article de 1891 qui concerne exclusivement les formes quadratiques.

C’est confirmé en 1893 lors de la conférence de Chicago où Minkowski indique que

son théorème a d’abord été découvert pour l’ellipsoïde. Dans un deuxième temps, il

semble que Minkowski ait examiné de plus près propriétés des domaines considérés qui

permettaient à sa méthode de fonctionner. Il s’est rendu compte que les hypothèses

de symétrie et de convexité sont essentielles, ce qui le conduit à l’énoncé général de

son théorème. Ce résultat devient alors indépendant des formes quadratiques qui ne

sont qu’un cas particulier des fonctions distances qu’il étudie. Minkowski s’exprime à

ce sujet dans une lettre à Hilbert222 du 22 décembre 1890 :

« Dagegen habe ich den von mir gegebenen Beweis für den Satz vom Mini-

mum einer positiven quadratischen Form außerordentlich verallgemeinert,

und bin dazu gekommen, daß der Vortheil speciell der quadratischen For-

men ein sehr illusorischer ist, indem andere definite Formen (allerdings nicht

gerade rationale) viel weitergehendere Folgerungen gestatten. So habe ich

folgendes Resultat gefunden, welches durch Benutzung quadratischer For-

men nicht gewonnen werden kann : Die Discriminante irgend eines Zahlkör-

pers, welcher aus einer ganzzahligen Gleichung mit n − 2β reellen und

2β complexen Wurzeln entspringt, ist dem absoluten Werthe nach immer

222« En revanche, j’ai extraordinairement généralisé la preuve que j’ai donnée du théorème sur le
minimum d’une forme quadratique positive et suit arrivé [à la conclusion que] l’avantage des formes
quadratiques est très illusoire, en ce que d’autres formes définies (bien entendu pas exactement ra-
tionnelle) permettent des conséquences bien plus étendues. Ainsi j’ai trouvé le résultat suivant qui ne
peut pas être obtenu en utilisant des formes quadratiques ; le discriminant de n’importe quel corps de
nombres, qui provient d’une équation à coefficients entiers avec n − 2β racines réelles et 2β racines
complexes, est en valeur absolue toujours plus grand que

(π

4

)2β n2n

(n!)2
. »

Lettre de Minkowski à Hilbert du 22 décembre 1890, Rüdenberg et Zassenhaus 1973 p.41.
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größer als
(π

4

)2β n2n

(n!)2
. »

Cette citation permet de voir que Minkowski avait très certainement démontré son

théorème à la fin de l’année 1890, il le cite dès 1891 dans la conférence de Halle, puis

des énoncés plus précis sont donnés en 1893.

Nous avons pu aussi voir dans les articles précédents que Minkowski ne présente pas

toujours de la même manière son travail sur la géométrie des nombres. En particulier,

le théorème sur les convexes est parfois exposé en des termes purement géométriques

et à d’autres occasions de façon plus analytique ou arithmétique. Si nous regardons par

exemple les conférences de Halle et de Chicago, le vocabulaire employé est : réseau,

volume, distance, corps étalon, symétrie et convexité. De plus, la distance radiale par-

ticulière E(ab) est définie géométriquement (voir cette définition page 75), la deuxième

condition dans la définition des distances radiales, S(cd) = tS(ab) pour d−c = t(b−a),
est interprété géométriquement223

« Cette relation doit être interprétée dans le sens du calcul barycentrique

et signifie que les droites cd et ab ont même direction et que leurs longueurs

(au sens ordinaire du mot) sont dans le rapport de t : 1. »

Dans l’application qu’il propose concernant l’approximation diophantienne, Minkowski

utilise un parallélépipède puis un octaèdre. L’interprétation géométrique de cette mé-

thode d’approximation simultanée de nombres réels par des rationnels n’est pas reprise

dans la lettre à Hermite de 1893 où elle est pourtant énoncée. Cette différence de

traitement se retrouve dans toute la correspondance adressée à Hermite dont nous

avons parlé. Le vocabulaire utilisé par Minkowski dans ces lettres est plus spécialisé.

Nous n’y trouvons pas le vocabulaire autour de la notion de distance radiale, mais ces

dernières sont remplacées par les fonctions ϕ auxquelles Minkowski ne donne pas de

nom particulier. De la même manière, la notion de réseau n’apparaît pas mais ce sont

des points à coordonnées entières qui sont utilisés et les volumes des corps sont devenus

des intégrales. Ces changements illustrent bien la traduction analytique de son travail

que Minkowski dit lui même vouloir faire dans une des lettres à Hermite.

Une première explication pour ces choix différents d’exposition est suggérée par les

publics auxquels s’adressent les communications dont nous venons de parler. Nous

avons d’une part des conférences effectuées dans des cadres où Minkowski ne s’adresse

pas nécessairement à des spécialistes de théorie des nombres. À Halle, il s’exprime

devant le congrès des naturalistes et des médecins et à Chicago les interventions sont

aussi prévues pour toucher un large public

223Minkowski 1896c p.395.
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« Strikingly modern and readable, the papers and lectures presented in Chi-

cago seemed crafted to communicate with the widest possible audience. [...]

If many of these mathematicians were specialists, they certainly knew how

to avoid the standard pitfalls that often plague the expert when addressing

a more general audience224. »

Il donne donc dans ces deux derniers cas un rôle pédagogique à la géométrie. Présenté

en termes géométriques son travail doit être plus simple et accessible. C’est une idée que

nous trouvons aussi chez Felix Klein. Par exemple en 1893, lorsque ce dernier commente

son traitement géométrique de la composition des formes quadratiques binaires c’est

la simplicité et la clarté qui sont mises en avant au sujet de la géométrie

« les considérations géométriques à l’aide desquelles je traite ces questions y

introduisent un degré de simplicité et de clarté si élevé que ceux qui ne sont

pas familiers avec l’ancienne exposition ne concevront qu’avec peine que l’on

ait regardé ce sujet comme si extraordinairement difficile et abstrait225. »

À l’inverse, Hermite est un spécialiste des sujets abordés par Minkowski. De plus,

ces recherches en théorie des nombres appartiennent à une tradition liée à l’analyse

et la géométrie n’intervient presque pas dans son travail. Hermite considère même la

géométrie comme un domaine à part du reste des mathématiques

« Les éléments des mathématiques présentent deux divisions bien tran-

chées : d’une part, l’Arithmétique et l’Algèbre ; de l’autre, la Géométrie226. »

Lorsqu’il s’adresse à Hermite, Minkowski choisit donc de se situer dans la continuité

du travail du mathématicien français et préfère insister sur les aspects analytiques de

sa théorie plus que sur la géométrie.

1.3.2 Description du livre Geometrie der Zahlen

1.3.2.1 Les différentes éditions

Le livre de Minkowski Geometrie der Zahlen227 est publié pour la première fois en

1896. En fait, l’ouvrage est en préparation depuis plusieurs années, nous avons pu voir

qu’il y fait de nombreuses fois références dans ces articles publiés entre 1891 et 1896.

Sa correspondance avec Hilbert permet aussi de se rendre compte que la rédaction lui

a demandé plus de temps que prévu et que la publication a été reportée à plusieurs

reprises. Dans un passage d’une lettre datée du 30 août 1892 que nous avons déjà citée

224Parshall et Rowe 1994 p.313.
225Klein 1898 p.59.
226Hermite 1873.
227Minkowski 1896a.
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(voir page 46), il annonce à son ami une publication prochaine. En juin 1893, il écrit

encore

« so muss ich dies schon zu Ende führen. Hoffentlich dauert es nicht mehr

lange. Das letzte, was ich in mein Opus eingefügt habe, war ein Beweis für

die periodische Entwicklung von quadratischen Irrationalzahlen in Ketten-

brüche228. »

Il semble que ce soit son travail sur des questions touchant les fractions continues qui

ne le satisfait pas et lui fait remettre la publication229. Il se résout finalement à publier,

l’état de son travail en 1896 doit faire l’objet d’un premier fascicule

« Wie ich nun jüngstens wiederum von Weber einen Mahnbrief erhielt mit

dem Vorschlage, doch wenigstens das bisher Gedruckte zu publiciren, ent-

schloss ich mich dazu und auch Teubner geht bereitwillig darauf ein, so

dass jedenfalls noch in diesem Monat 256 Seiten des Buches als eine erste

Lieferung erscheinen230. »

Minkowski a effectivement travaillé à la préparation du deuxième fascicule

« Ich habe seit unserer Trennung eifrig an meiner zweiten Lieferung weiter-

gearbeitet231. »

Cette seconde partie ne fut jamais publiée. D’après David Hilbert et Andreas Speiser232,

les recherches qui devaient apparaître dans ce fascicule se trouvent dans les articles nu-

mérotés XIII à XXI dans les oeuvres complètes de Minkowski233.

La deuxième édition de Geometrie der Zahlen est publiée en 1910. Les deux éditions

sont presque identiques, il est seulement ajouté dans la seconde une courte préface de

Hilbert et Speiser, un avertissement de l’éditeur rédigé en 1893 et une annonce de la

publication du premier fascicule datant de 1896, tous les deux rédigés par Minkowski.

Des suppléments de 14 pages sont aussi ajoutés au dernier chapitre dont un index234.

Le livre est édité à nouveau en 1953 par Chelsea Publishing Company235. Nous y re-

trouvons seulement l’annonce de Minkowski de 1896 ainsi que les suppléments à la fin

228« donc je dois bien conduire cela à bonne fin. Espérons que cela ne dure plus longtemps. La
dernière chose que j’ai introduite dans mon opus était une preuve pour le développement périodique
des irrationnelles quadratiques en fractions continues. » Lettre de Minkowski à Hilbert du 2 juin 1893,
Rüdenberg et Zassenhaus 1973 p.51-52.

229Voir par exemple la citation page 47.
230« Comme j’ai encore reçu dernièrement une sommation de Weber avec la proposition de publier

au moins ce qui a été imprimé jusqu’à présent, je m’y suis décidé et Teubner a accepté obligeamment
si bien qu’en tout cas ce mois-ci 256 pages du livre paraissent en tant que premier fascicule. » Lettre
de Minkowski à Hilbert du 10 février 1896, Rüdenberg et Zassenhaus 1973 p.77.

231« Depuis notre séparation, j’ai travaillé avec zèle au deuxième fascicule. » Lettre de Minkowski à
Hilbert du 22 juin 1900, Rüdenberg et Zassenhaus 1973 p.127.

232Voir la préface de Minkowski 1910.
233Minkowski 1911.
234Kjeldsen 2002 p.481.
235Minkowski 1953.
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du livre, le texte est donc celui de 1910. Remarquons toutefois que la table des matières

doit être celle de 1896 car les suppléments n’y figurent pas.

1.3.2.2 Un aperçu du contenu

Nous utilisons ici indifféremment les éditions de 1910 et 1953 de la Geometrie der

Zahlen qui ont la même pagination. Le livre comporte cinq chapitres dans lesquels nous

pouvons trouver les démonstrations qui ne sont pas toujours données dans les articles

publiés précédemment.

Dans la description qui suit nous nous sommes aussi servi du livre Development of

the Minkowski Geometry of Numbers de Harris Hancock236. La plus grande partie

de cet ouvrage est en fait une traduction plus ou moins fidèle des travaux publiés

de Minkowski, Geometrie der Zahlen y est en particulier repris dans son intégralité.

Le tableau suivant indique dans quels chapitres du livre de Hancock nous pouvons

retrouver les différentes parties de celui de Minkowski237.

Geometrie der Zahlen, Minkowski
Development of the Minkowski

Geometry of Numbers, Hancock

Chapitre I Chapitre II

Chapitre II Chapitre III

Chapitre III Chapitre IV

Chapitre IV, paragraphes 36 à 40 Chapitre V

Chapitre IV, paragraphes 41 à 44 Chapitre VI

Chapitre IV, paragraphe 45 Chapitre VII

Chapitre V, paragraphes 46 à 50 Chapitre XIII

Chapitre V, paragraphe 51 Chapitre XIV

Chapitre V, paragraphe 52 Chapitre XV

Chapitre V, paragraphes 53 à 54 Chapitre XVI

Chapitre V, paragraphes 55 à 57 Chapitre XVII

Tab. 1.1 – Correspondance entre les livres de Minkowski et de Hancock

Dans le premier chapitre qui a pour titre Von den nirgends concaven Flächen,

Minkowski étudie de manière approfondie la notion de distance radiale S(ab) telle que

236Hancock 1964.
237Même si c’est très rare, Hancock s’écarte parfois du texte de Minkowski, donne quelques détails

supplémentaires ou des applications numériques. La plus grande partie des ajouts sont faits dans des
chapitres à part.
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nous l’avons déjà rencontrée dans la conférence de Chicago. Il reprend en particulier

l’exemple de la distance E(ab), appelée « die Spanne von a nach b », démontre à son

sujet l’existence des constantes g et G vérifiant

gE(ab) ≤ S(ab) ≤ GE(ab)

pour n’importe quelle distance radiale concordante. Il prouve la continuité des distances

radiales concordantes simplement énoncée en 1893.

Les propriétés des corps étalons associés à des distances radiales sont aussi démontrées :

symétrie, convexité238, étude des plans tangents, caractérisation de l’intérieur, de la

frontière et de l’extérieur. . . Minkowski montre des résultats sur les distances radiales

mais aussi par exemple le théorème de Weierstrass en dimension n quelconque

« Eine Punktmenge, welche in einem gegebenen Würfel mit endlicher Kante

unendlich viele Punkte enthält, besitzt in dem Würfel mindestens eine Häu-

fungsstelle. (Ein Theorem von Weierstrass.)239 »

La fin du chapitre est consacré à l’étude de système d’inégalités linéaires. Le lien avec

le reste du chapitre vient du fait que les plans tangents aux corps étalons sont donnés

par des équations linéaires et séparent l’espace en deux demi-espaces qui sont donc

caractérisés par des inéquations linéaires240.

Le chapitre 2, Vom Volumen der Körper, commence par quelques résultats sur les

fonctions continues, par exemple, en termes modernes, le fait qu’une fonction continue

sur un ensemble fermé et borné de l’espace de dimension n est uniformément conti-

nue et qu’elle est bornée et atteint ses bornes. Minkowski fait ensuite le lien entre les

distances radiales S(ab) et les fonctions ϕ rencontrées dans les lettres à Hermite (fonc-

tions qui sont ici notées f)241. Il montre alors des propriétés du corps étalon lorsque la

distance est continue, en particulier qu’il est alors fermé. Dans la suite, Minkowski s’in-

téresse au volume242 des corps étalons associés à des distances radiales concordantes, il

justifie l’existence de ce volume puis donne des propriétés du volume d’une réunion de

corps étalons. Il traite ensuite l’exemple du calcul du volume de parallélépipèdes, puis

la modification du volume d’un corps lorsqu’on lui applique une substitution linéaire.

Toutes les démonstrations concernant le volume sont ici faites sans recours au calcul

238Minkowski parle de surface nulle part concave par rapport à un point, le terme convexe est réservé
à la stricte convexité.

239« Un ensemble de points qui contient une infinité de points à l’intérieur d’un cube donné de
côtés finis possède à l’intérieur du cube un point d’accumulation (Un théorème de Weierstrass) »,
Minkowski 1910 p.5-6.

240Pour une étude détaillée de cette fin de chapitre voir Kjeldsen 2002 p.483-486.
241Minkowski 1953.
242La notion de volume que Minkowski utilise est celle que nous avons rencontrée dans la conférence

de Chicago.
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intégral, Minkowski encadre les corps qu’il étudie par des hypercubes.

Le troisième chapitre est consacré au théorème sur les points d’un réseau dans un

domaine convexe et symétrique par rapport à un point. Il appelle réseau (« Zahlen-

gitter ») tout système de points x1, x2, . . . , xn où les xi sont des nombres entiers. Il

énonce et démontre ensuite son théorème, la présentation est assez proche de celle faite

à l’occasion de la conférence de Chicago. Mais il remarque que le résultat peut être

interprété analytiquement,

« Diesen Sätzen kann die folgende, rein analytische Fassung gegeben wer-

den243 ».

Il reprend alors le théorème tel que nous l’avons vu dans la lettre à Hermite. Il étudie

ensuite des cas limites du théorème. Par exemple, si M désigne la distance radiale mi-

nimale entre deux points quelconques dans le réseau, Minkowski s’intéresse aux points

du réseau se trouvant sur la frontière des corps définis par une inégalité du type

S(au) ≤ M ,

où a appartient au réseau, soit A le nombre de ces points. Il montre d’abord que

A ≤ 3n − 1

et que dans le cas d’un hypercube il y a égalité. Cette inégalité est ensuite affinée, pour

des corps qui sont strictement convexes elle devient

A ≤ 2n+1 − 2 .

Après cela Minkowski revient au théorème et se demande pour quels corps l’égalité a

lieu. Si nous reprenons la démonstration vue dans la conférence de Chicago, la démons-

tration conduit à l’inégalité
(
M

2

)3

J ≤ 1 ,

où J est le volume du corps étalon. Le cas d’égalité correspond à la situation où les

corps donnés par S(au) ≤ M
2

(pour a dans le réseau) sont tous de volume 1, des pro-

priétés et des caractérisations de ces corps sont alors proposées. D’abord, ils doivent

remplir tout l’espace et avoir au moins 2n+1 − 2 points du réseau sur leur frontière. Ils

peuvent être aussi caractérisés par une condition sur les points du réseau situés sur leur

frontière : pour être dans le cas d’égalité il faut et il suffit que les points du réseau sur la

frontière appartiennent au moins à deux corps S(au) ≤ M
2

. L’étude des plans tangents

243« À ces propositions peut être donnée la présentation suivante, purement analytique », Min-

kowski 1953 p.76.
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aux corps précédents amène Minkowski à montrer en particulier que leur frontière est

constituée d’au plus 2n+1 − 2 faces244.

Des applications du théorème énoncé au chapitre 3 sont données dans le quatrième

chapitre. Dans les paragraphes numérotés de 36 à 40, Minkowski revient sur les appli-

cations concernant les formes linéaires. Il s’intéresse d’abord à ν formes linéaires de n

variables et à coefficients réels ξ1, . . . , ξν du type

α1x1 + . . . + αnxn ,

n de ces formes sont supposées indépendantes. Il applique alors son théorème à la

fonction ϕ(x1, . . . , xn) définie comme étant le maximum de |ξ1|, . . . , |ξn| ce qui implique

l’existence d’entiers x1, . . . , xn non tous nuls et tels que245

|ξ1| ≤ 2
n
√
J
, . . . , |ξν | ≤ 2

n
√
J
.

Ce résultat est ensuite appliqué à des formes linéaires particulières afin de retrouver les

théorèmes relatifs à l’approximation simultanée de nombres réels par des rationnels déjà

évoqués dans les lettres à Hermite246. Minkowski traite ensuite le cas où certaines des

formes sont à coefficients complexes. Soient pour cela v1, v2, . . ., vn n formes linéaires

de déterminant ∆ 6= 0 telles que les r premières ξ1, . . ., ξr soient à coefficients réels et

que les 2s dernières (s > 0 et 2s < n) soient à coefficients complexes conjugués

η1 + iζ1√
2

,
η1 − iζ1√

2
; . . . ;

ηs + iζs√
2

,
ηs − iζs√

2
.

Comme le volume du domaine défini par les inégalités

|v1| ≤ 1 , . . . , |vn| ≤ 1

est égal à
2r (2π)s

|∆| , le théorème donne donc l’existence d’entiers x1, x2, . . ., xn non

tous nuls tels que

|v1| <
(

2

π

) s
n

|∆ 1
n | , |v2| <

(
2

π

) s
n

|∆ 1
n | , . . . , |vn| <

(
2

π

) s
n

|∆ 1
n | .

En suivant le modèle du cas où les formes sont toutes réelles, ce dernier résultat est

utilisé afin de réaliser l’approximation simultanée de nombres complexes. Soient bh+ich

244Ce résultat était déjà donné par Minkowski à Chicago dans le cas de la dimension 3, mais la
preuve n’était pas détaillée.

245J =
∫
dx1 . . . dxn, où l’intégrale est calculée sur le domaine −1 ≤ ξ1 ≤ 1, . . . ,−1 ≤ ξν ≤ 1.

246Voir par exemple page 83.
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(h = 1, . . . , m − 1) les nombres complexes à approcher, il existe toujours m entiers

complexes247 yh + izh (h = 1, . . . , m − 1, m) pour lesquels ym + izm est non nul, les

modules ∣
∣
∣
∣

yh + izh
ym + izm

− bh − ich

∣
∣
∣
∣

(h = 1, . . . , m− 1)

sont plus petits que n’importe quelle quantité positive fixée et pour tous les entiers h

compris entre 1 et m− 1 :

∣
∣
∣
∣

yh + izh
ym + izm

− bh − ich

∣
∣
∣
∣
<

m− 1

m

2√
π

(
2m− 1

m

4

π

) 1
2m−2 1

|ym + izm|
m

m−1

.

Les applications suivantes concernent les sommes de puissances de formes linéaires,

thème que nous avons déjà rencontré d’une part dans la lettre à Hermite de 1891 et

d’autre part dans la conférence de Chicago pour le cas de trois formes. Dans ce qui suit

nous gardons les formes vi telles qu’elles ont été définies précédemment et pour un réel

p, posons

f(x1, x2, . . . , xn) =

( |v1|p + |v2|p + · · ·+ |vn|p
n

) 1
p

.

Minkowski commence par étudier f en fonction du paramètre p. Pour p ≥ 1, cette

fonction est une distance radiale et concordante, plus précisément la surface f = 1 est

convexe (« nirgends concave ») pour p ≤ 1 et strictement convexe (« überall convex »)

si p > 1. f est une fonction croissante de p > 0, la suite Kp des corps étalons associés

aux fonctions f est donc décroissante pour l’inclusion et leur volume Jp décroit aussi.

Lorsque p tend vers 0, Minkowski remarque que f converge vers n
√

|v1v2 . . . vn| et si p

tend vers +∞ alors le corps Kp devient

|v1| ≤ 1 , |v2| ≤ 1 , . . . , |vn| ≤ 1 ,

K+∞ est donc le corps déjà rencontré ci-dessus. De l’expression du volume de Kp,

Minkowski déduit que pour n > 1, p ≥ 1, il existe des entiers x1, x2, . . ., xn non tous

nuls et qui vérifient

|v1|p + |v2|p + · · ·+ |vn|p
n

<





(
2

π

)s n−n
p Γ
(

1 + n
p

)

(

Γ
(

1 + 1
p

))r

2−
2s
p

(

Γ
(

1 + 2
p

))s |∆|





p
n

.

Il y a une exception au résultat précédent quand p = 1, s = 0, n = 2 et si une des

formes
v1 ± v2

(2|∆|) 1
2

a des coefficients entiers premiers entre eux, dans cette situation l’éga-

247C’est-à-dire que yh et zh sont des nombres entiers rationnels.
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lité peut se présenter248. Minkowski commente enfin la borne obtenue pour p = 2 qui

est le cas des formes quadratiques et fut le point de départ de ses recherches contenues

dans ce livre249.

Minkowski passe ensuite aux applications concernant la théorie des nombres algé-

briques et ce sont, pour la plupart, des résultats qui avaient été annoncés dans les tra-

vaux antérieurs de Minkowski. Il commence cette partie par quelques rappels sur cette

théorie, puis expose quelques conséquences des théorèmes précédents sur les formes

linéaires pour les corps de nombres. Il rappelle d’abord que le discriminant D d’un tel

corps est toujours divisible par un nombre premier250, puis à l’aide de la borne trouvée

pour la somme de puissances de formes linéaires il justifie que pour un corps de degré

n ayant 2s corps conjugués imaginaires251

|D| >
((π

4

)s nn

1.2 . . . n

)2

.

il en déduit qu’un nombre D fixé ne peut être le discriminant de corps que pour un

nombre fini de degré n. Une démonstration du théorème de Dirichlet sur les unités

complexes est ensuite proposée.

Le chapitre se termine par un long paragraphe dans lequel il introduit les notions de

parallélogramme libre (« frei ») et de parallélogramme extrême (« aüsserste »).

Soient ξ = αx + βy et η = γx + δy deux formes linéaires telles que αδ − βγ = 1.

Minkowski note {λ, µ} le parallélogramme défini par les inégalités

−λ ≤ ξ ≤ λ , −µ ≤ η ≤ µ

et il considère le réseau des nombres entiers. Un parallélogramme {λ, µ} qui ne contient

aucun point du réseau dans son intérieur est dit libre. Un parallélogramme libre {λ, µ}
qui perd cette propriété pour un petit accroissement de λ ou de µ est appelé extrême.

Minkowski introduit aussi les chaînes de parallélogrammes ou de substitutions. Après

avoir démontré des résultats sur ces notions, il les applique à différentes situations,

d’abord aux fractions continues, ensuite à la question de l’équivalence et de la réduc-

tion des formes quadratiques binaires définies et indéfinies.

248Un exemple du cas d’égalité est proposé dans Hancock 1964, vol.I, p.207.
249Minkowski 1953 p.122-123.
250Voir aussi la lettre à Hermite de 1891.
251Notons que dans ce passage Minkowski n’utilise pas le vocabulaire moderne de la théorie algé-

brique des nombres mais exprime ces résultats en termes de racines d’une équation.
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Le thème central du dernier chapitre, Eine weitere analytisch-arithmetische Unglei-

chung, est la généralisation du théorème sur les points d’un réseau dans les domaines

convexes déjà énoncée dans la lettre à Hermite de 1893 (voir page 83). Minkowski défi-

nit ce qui est maintenant appelé les minima successifs S1, S2, . . ., Sn pour une distance

radiale S, ces quantités vérifient alors l’inégalité

S1S2 . . . Sn ≤ 2n ,

où J est le volume du corps étalon associé à la distance S. Dans un premier temps,

une démonstration est donnée seulement dans le cas de l’ellipsoïde et l’étude de ce cas

particulier lui permet de retrouver la finitude du nombre de classes de formes quadra-

tiques à coefficients entiers définies positives pour un déterminant fixé. Un paragraphe

est ensuite consacré à des lemmes sur la notion de volume nécessaires à la preuve du

théorème. Il justifie par exemple qu’une intégrale du type

∫

dx1 dx2 . . . dxn ,

évaluée sur le corps étalon d’une distance radiale, peut se calculer en intégrant d’abord

par rapport aux m premières variables x1, . . ., xm, puis en intégrant par rapport aux

dernières xm+1, . . ., xn. La démonstration du théorème suit ainsi que l’énoncé tel qu’il

était donné dans la lettre écrite à Hermite. Le chapitre se termine par une discussion

du cas d’égalité dans le théorème et avec des applications de ce résultat.

Nous avons déjà remarqué la place importante occupée dans la géométrie des

nombres par le théorème des points d’un réseau dans les parties convexes symétriques

par rapport à un point. L’organisation du livre de Minkowski confirme la place cen-

trale de ce résultat dans cette théorie. L’importance du troisième chapitre dans lequel

le théorème est exposé est aussi relevé dans le compte rendu du livre fait par Cahen

dans le Bulletin des Sciences Mathématiques en 1897 :

« Le troisième chapitre est intitulé : Des corps qui dans leurs volumes

contiennent plus d’un point à coordonnées entières. C’est le plus important

de l’Ouvrage et, pour ainsi dire, le chapitre fondamental252. »

Le livre Geometrie der Zahlen semble en effet construit autour de ce théorème et

chaque partie a une fonction par rapport à lui. La première partie du livre (chapitres

I et II) introduit les notions préliminaires nécessaires à la présentation du théorème.

Le théorème lui-même est présenté dans le chapitre III avec sa démonstration et des

discussions sur ces cas limites. Le chapitre suivant est consacré aux applications du

théorème et enfin le dernier chapitre en donne un énoncé plus précis avec la notion de

minima successifs.
252Cahen 1897 p.26.
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1.3.3 La géométrie des nombres entre 1897 et 1909

Nous disposons pour la période 1897-1909 de différents types de sources pour rendre

compte du travail de Minkowski sur la géométrie des nombres. D’abord, la rubrique Zur

Geometrie der Zahlen de ses oeuvres complètes253 recensent 8 publications entre 1899

et 1905. Dans ces articles Minkowski aborde en liaison avec la géométrie des nombres

des thèmes comme la théorie algébrique des nombres, l’approximation, l’empilement

de corps centrés en des points d’un réseau et la question de l’équivalence entre formes.

D’autre part, Minkowski publie en 1907 un deuxième livre consacré à la géométrie des

nombres dont le titre est Diophantische Approximationen. Cet ouvrage est issu de cours

donnés à l’université de Göttingen durant le semestre d’hiver de l’année 1903-1904.

1.3.3.1 Géométrie des nombres et nombres algébriques

Trois des articles publiés par Minkowski entre 1897 et 1909 ont pour thème principal

la théorie des nombres algébriques254. Dans l’un d’entre eux publié en 1900, il revient

sur les unités dans un corps de nombres algébriques et démontre à nouveau le théorème

de Dirichlet énoncé sous la forme suivante :

« In einem Galois’schen Körper kann man stets eine solche Einheit angeben,

daß eine jede Einheit dieses Körpers ein Product aus einer Einheitswurzel

und aus Potenzen dieser Einheit und ihrer conjugirten Einheiten mit ratio-

nalen Exponenten ist255. »

Les deux autres articles qui concernent les nombres algébriques sont complémentai-

res. Ils sont publiés en 1899 puis en 1902 et ont pour point de départ un résultat de

Lagrange permettant de caractériser les nombres réels qui sont algébriques de degré 2.

Dans un mémoire publié en 1770 dans les Mémoires de l’Académie Royale des Sciences

et Belles-Lettres de Berlin, Lagrange avait en effet démontré qu’un nombre irrationnel

est solution d’une équation du second degré à coefficients entiers si et seulement si son

développement en fraction continue est périodique256. Reformulé dans le cadre de la

théorie algébrique des nombres de la fin du XIXe siècle, ce théorème fournit un critère

permettant de savoir si un nombre irrationnel est algébrique de degré 2. Minkowski se

propose de trouver un critère analogue pour déterminer si un nombre réel ou complexe

est algébrique de degré un entier n donné. Il s’agit d’un problème qui avait déjà été

envisagé par Hermite.

253Les autres parties de la classification des oeuvres complètes de Minkowski sont Zur Theorie der

quadratischen Formen, Zur Geometrie, Zur Physik, Rede auf Dirichlet.
254Minkowski 1899, 1900, 1902.
255« Dans un corps galoisien on peut toujours trouver une unité telle que toute unité de ce corps

est un produit d’une racine de l’unité et de puissances de cette unité et des unités conjuguées. »
Minkowski 1900 p.93.

256Lagrange 1770 ou Lagrange 1868 p.603.
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La première partie du mémoire de Minkowski de 1899 est consacrée à des définitions

et des résultats préliminaires qui lui seront utiles dans l’énoncé et la démonstration de

son critère. Il note ξ1, . . ., ξν des formes linéaires homogènes de n variables x1, . . ., xn
et à coefficients réels ou complexes et qui ne peuvent s’annuler toutes que quand tous

les xi sont égaux à 0. Il définit ensuite la fonction f en posant

f(x1, . . . , xn) = max
k=1,2,...,ν

|ξk(x1, . . . , xn)| .

Nous reconnaissons une fonction déjà utilisée par Minkowski dans Geometrie der Zahlen

et dans ses articles précédents257, il justifie cependant à nouveau qu’elle vérifie les

propriétés :

1) f(−x1, . . . ,−xn) = f(x1, . . . , xn),

2) f(tx1, . . . , txn) = t f(x1, . . . , xn) quand t > 0,

3) il existe des constantes positives g et G telles que

g max |xk| ≤ f(x1, . . . , xn) ≤ G max |xk| ,

4) pour deux systèmes quelconques de réels a1, . . . , an et b1, . . . , bn,

f(a1 + b1, . . . , an + bn) ≤ f(a1, . . . , an) + f(b1, . . . , bn) .

La nouvelle intervention de ces fonctions montre la place centrale qu’elles occupent

dans la théorie de Minkowski.

Ce dernier démontre ensuite un résultat relatif aux substitutions. Pour un entier h

compris entre 1 et n, si p(h)
1 , . . ., p(h)

n sont des points indépendants d’un réseau et tels

que la substitution P définie par

xk = p
(1)
k z1 + . . . + p

(n)
k zn (k = 1, . . . , n)

est entière et de déterminant non nul. Il montre qu’il existe une substitution A de

déterminant ±1 telle que la substitution P−1A soit donnée par







z1 = γ
(1)
1 y1 + γ

(2)
1 y2 + · · ·+ γ

(n)
1 yn ,

z2 = γ
(2)
2 y2 + · · · + γ

(n)
2 yn ,

...
. . . (γ

(k)
h = 0 si h > k),

zn = γ
(n)
n yn ,

257Elle correspond à la notion actuelle de norme infinie.
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où les coefficients γ(k)
h vérifient les conditions supplémentaires

0 < γ
(h)
h ≤ 1 et 0 ≤ γ

(k)
h < γ

(h)
h si h < k .

Minkowski définit ensuite une suite de minima associés à la fonction f . Il détermine

d’abord un point du réseau (p
(1)
1 , . . . , p

(n)
1 ) tel que f(p

(1)
1 , . . . , p

(n)
1 ) = F1 est la plus

petite valeur possible prise par f sur les points du réseau. Soit ensuite (p
(1)
2 , . . . , p

(n)
2 )

un point du réseau indépendant du premier et tel que f(p
(1)
2 , . . . , p

(n)
2 ) = F2 est la plus

petite valeur pour les points du réseau indépendants de (p
(1)
1 , . . . , p

(n)
1 ). En itérant ce

procédé, il arrive à un point (p
(1)
n , . . . , p

(n)
n ) du réseau tel que le déterminant des n points

obtenus est non nul et tel que f(p
(1)
n , . . . , p

(n)
n ) = Fn est la plus petite valeur possible

pour les points du réseau indépendants des n − 1 premiers. Les quantités F1, F2, . . .,

Fn sont déterminées de manière unique et elles vérifient

F1 ≤ F2 ≤ . . . ≤ Fn .

Il rappelle que dans le cinquième chapitre de son livre Geometrie der Zahlen, il avait

démontré que

F1 F2 . . . Fn J ≤ 2n ,

où J est le volume du domaine f(x1, x2, . . . , xn) ≤ 1. Dans cet article, il se contente de

montrer l’inégalité258

F1 F2 . . . Fn J ≤ n! 2n

qui est l’objet du lemme I et qui est suffisante pour les applications qu’il a en vue. Dans

le lemme II, il prouve en plus que la valeur absolue du déterminant |p(h)
k | est toujours

inférieure ou égale à n!.

Dans la seconde partie de l’article, Minkowski va appliquer les résultats précédents

pour donner un critère afin de reconnaître si un nombre est algébrique de degré n. Soit

donc a un nombre réel ou complexe, son critère est fondé sur l’étude de la fonction

ξ = x1 + x2a+ · · · + xna
n−1 ,

où x1, x2, . . ., xn sont des entiers rationnels.

Minkowski introduit ensuite la notion de substitution appartenant à un entier r (« eine

zur Zahl r gehörende Substitution259 »), puis de chaîne de substitutions appartenant à

a (« zu a gehörende Kette von Substitutionen260 »).

258Minkowski 1899 p.68.
259Minkowski 1899 p.75.
260Minkowski 1899 p.75.
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Soit pour cela r un entier rationnel, il considère les valeurs de ξ quand x1, x2, . . ., xn
sont compris entre −r et r, le cas où x1 = x2 = · · · = xn = 0 est exclus. Parmi ces

valeurs de x1, x2, . . ., xn, choisissons p(1)
1 , p(1)

2 , . . ., p(1)
n tels que |ξ| soit minimale et

posons alors

ξ(p
(1)
1 , p

(1)
2 , . . . , p(1)

n ) = α1 .

De plus, comme |ξ(−x1,−x2, . . . ,−xn)| = |ξ(x1, x2, . . . , xn)|, le système

(p
(1)
1 , p

(1)
2 , . . . , p(1)

n )

est pris de telle sorte que le dernier des p(1)
k non nul est strictement positif. Soit ensuite

(p
(2)
1 , p

(2)
2 , . . . , p

(2)
n ) indépendant de (p

(1)
1 , p

(1)
2 , . . . , p

(1)
n ) tel que

|ξ(p(2)
1 , p

(2)
2 , . . . , p(2)

n )| = |α2|

est minimale avec le dernier des p(2)
k non nul strictement positif, etc. . .

La substitution obtenue

xk = p
(1)
k z1 + p

(2)
k z2 + · · ·+ p

(n)
k zn

est notée P . Son déterminant est différent de 0 et elle est construite de telle manière

que

ξP = χ = α1z1 + α2z2 + · · ·+ αnzn ,

avec en plus |α1| ≤ |α2| ≤ · · · ≤ |αn|. P est une substitution appartenant à r, une telle

substitution n’est pas unique en général mais les quantités |α1|, |α2|, . . ., |αn| le sont.

Prenons r1 = 1 et P1 une substitution appartenant à r1. Il se peut que P1 appartienne

aussi aux entiers suivants 2, 3, . . . Si P1 n’appartient pas à tous les entiers suivants, soit

r2 le plus petit entier auquel P1 n’appartient pas, puis P2 une substitution appartenant

à r2. Par suite, P3 appartenant à r3, P4 appartenant à r4 . . . sont déterminées. Min-

kowski impose en fait une condition supplémentaire pour la construction de la suite

P1, P2, . . . Il est possible en effet que pour la substitution Pi certains coefficients, par

exemple α1, α2, . . ., αj , de l’expression χi = ξPi soient nuls. Dans ce cas, les colonnes

de Pi qui correspondent aux coefficients égaux à 0 sont gardées dans les substitutions

suivantes Pi+1, Pi+2, . . . Cette condition a pour effet de conserver les coefficients nuls

dans les expressions χi+1, χi+2, . . .

La suite de substitutions P1, P2, P3, . . ., qui peut être finie ou infinie, est appelée chaîne

de substitutions appartenant à a par Minkowski. Il note aussi que la suite d’entiers r1,

r2, r3 . . . est uniquement déterminée par la donnée de a, puis démontre que toutes les

substitutions d’une telle chaîne ont un déterminant dont la valeur absolue est inférieure

ou égale à n!.
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La fin de l’article est consacrée à l’énoncé puis la démonstration du critère pour

les nombres algébriques. Minkowski traite à part le cas où n = 2 et a est un nombre

complexe. a = b+ic est algébrique de degré 2 si et seulement si b et c2 sont des nombres

rationnels.

Si maintenant a est quelconque (le cas précédent étant exclu), posons σ = 1 lorsque a

est réel, σ = 2 quand il est complexe et supposons enfin n > σ. En gardant les mêmes

notations que précédemment, le critère proposé par Minkowski s’énonce de la manière

suivante261 :

1̊ ) Si a n’est pas algébrique de degré inférieur ou égal à n, la chaîne de substitu-

tions appartenant à a, P1, P2, . . . ne s’interrompt jamais, les équations χ1 = 0,

χ2 = 0, . . . sont toutes différentes et les coefficients de chaque forme χk sont non

nuls.

2̊ ) Si a est un nombre algébrique de degré n, la chaîne de substitutions appartenant

à a, P1, P2, . . . ne s’interrompt jamais, parmi les équations χ1 = 0, χ2 = 0, . . . il

n’y en a qu’un nombre fini qui sont différentes et toutes les formes χk ont tous

leurs coefficients non nuls.

3̊ ) Si a est algébrique de degré n − m, avec m > 0 et n − m > σ, la chaîne de

substitutions appartenant à a, P1, P2, . . . ne s’interrompt jamais, s’il n’y a qu’un

nombre fini des équations χ1 = 0, χ2 = 0, . . . qui sont différentes et s’il existe un

indice k0 à partir duquel les m premiers coefficients des formes χk sont égaux à

0 et les n−m suivants sont non nuls.

4̊ ) Si a est algébrique de degré σ, la chaîne de substitutions appartenant à a, P1,

P2, . . . s’interrompt après un nombre fini d’étapes.

Dans son article de 1902, Minkowski reprend la notion de chaîne de substitutions

afin d’étudier le problème suivant :

« Welche algebraische Zahlen besitzen analoge periodische Approximatio-

nen, wie sie die reellen algebraischen Zahlen zweiten Grades vermöge der

Periodizität ihrer Entwicklungen in gewöhnliche Kettenbrüche aufweisen262. »

261Minkowski 1899 p.77-78.
262« Indiquer quels nombres algébriques possèdent des approximations périodiques analogues à celles

des nombres algébriques réelles de degré 2 grâce à la périodicité de leur développement en fractions
continues ordinaires. » Minkowski 1902 p.333.
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Soit α un nombre algébrique de degré n > σ, où σ est défini comme dans l’article

précédent. Minkowski considère une chaîne de substitutions S1, S2, . . . appartenant à α.

À partir de cette chaîne de substitutions est construit une autre suite de substitutions

Q1, Q2, . . . définie par les égalités

S2 = S1Q1 , S3 = S2Q2 , . . . Sj+1 = SjQj .

La chaîne S1, S2, . . . est alors dite périodique s’il existe des indices j0 et p0 tels que

pour tout j ≥ j0, Qj = Qj+p0. Dans la suite ce sont les nombres algébriques α qui

admettent une chaîne de substitutions périodiques qui sont étudiés263.

Minkowski donne dans un premier temps une condition nécessaire à l’existence d’une

chaîne de substitutions périodique. Pour que α admette une chaîne périodique, il doit

exister dans le corps engendré par α une unité ϑ telle que :

(i) sa valeur absolue est strictement inférieure à 1,

(ii) les conjugués de cette unité dans les corps conjugués correspondants (à l’excep-

tion de ϑ̄ dans le corps engendré par ᾱ quand α est un nombre complexe) doivent

être égaux en valeur absolue.

Il prouve ensuite que cette condition est en fait aussi suffisante ce qui l’amène à appro-

fondir l’étude des cas où une telle unité existe dans le corps engendré par α. Il montre

finalement que les conditions ne sont vérifiées que dans six cas différents qui sont donc

les seules situations pour lesquelles il existe une chaîne de substitutions périodique pour

α. Ces cas sont les suivants :

a) α est réel et n = 2,

b) α est réel, n = 3 et le corps engendré par α a deux corps conjugués qui sont

complexes,

263Là-encore cette manière d’aborder le problème est très proche du programme de Hermite pour
les nombres algébriques, voir Goldstein 2007 p.391-394 et en particulier la citation de 1880 de Léon
Charve, élève de Hermite, à la page 393 :

« On sait que, si l’on développe en fraction continue une irrationnelle du second degré,
le calcul est périodique. Cette périodicité constitue une propriété très remarquable des
racines des équations du second degré, et elle peut même servir de définition à ces ir-
rationnelles. Or la théorie des fractions continues est liée étroitement à la théorie des
formes quadratiques binaires, de sorte que le développement en fraction continue d’une
racine α d’une équation du second degré est identique à la recherche des minima succes-
sifs de l’expression (x−αy)2 +∆(x−βy)2, où β désigne la deuxième racine de l’équation
considérée et ∆ une quantité qu’on fait croître positivement de 0 à ∞. D’un autre côté,
la recherche de ces minima revient à la réduction de la forme binaire
f = (x − αy)2 + ∆(x − βy)2 pour toute valeur de ∆. En opérant cette réduction, on
trouve alors que la suite des formes réduites équivalentes à f pour toute valeur de ∆
s’obtient par un calcul périodique. On est alors conduit à se demander si quelque mode
d’approximation des quantités ne donnerait pas une périodicité analogue pour les irra-
tionnelles d’un degré supérieur au second. C’est la considération des formes quadratiques
qui conduit à cette extension de la théorie des fractions continues, et donne ces nouvelles
méthodes d’approximation. »
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c) α est complexe et n = 3,

d) α est complexe, n = 4 et le corps engendré par α a tous ses corps conjugués

complexes,

e) α est complexe, n = 4 et le corps engendré par α possède un sous-corps réel de

degré 2,

f) α est complexe, n = 6 et le corps engendré par α possède un sous-corps réel de

degré 3 et deux sous-corps complexes conjugués entre eux.

Pour terminer, Minkowski se pose le problème de déterminer une chaîne de sub-

stitutions périodique (quand elle existe) connaissant α mais pas nécessairement ses

conjugués. Pour α réel et n = 2, c’est une question résolue par le développement en

fraction continue de α. Minkowski propose ici une méthode lorsque α est un nombre

complexe de degré 3. Il justifie en fait que dans cette situation le procédé donné pour

construire une chaîne de substitutions conduit à une chaîne qui est périodique.

Ce travail de Minkowski sur la théorie des nombres algébriques est en fait lié à celui

qu’il effectue dans la même période sur des questions d’approximations.

1.3.3.2 Géométrie des nombres et approximation

Nous avons regroupé deux articles de Minkowski sur ce thème de l’approximation264

publiés tous les deux en 1901. Le premier, daté de 1899 alors que Minkowski est à Zü-

rich, est publié en allemand. Il contient des résultats sur les formes linéaires homogènes

et non homogènes qui sont appliquées à l’approximation d’un nombre réel. Le point

de vue adopté est celui du développement en fraction continue et ce travail se rattache

ainsi aux articles précédents sur les nombres algébriques. Le second en français est

beaucoup plus court car les résultats sont énoncés sans démonstration. Minkowski y

expose des théorèmes sur l’estimation des formes linéaires qui sont cette fois appliquées

à l’approximation simultanée de deux réels ou bien à l’approximation de quantités com-

plexes dans des corps de nombres algébriques particuliers.

a) Approximation et fractions continues

Dans l’article intitulé Ueber die Annäherung an eine reelle Grösse durch rationale

Zahlen, Minkowski s’intéresse aux développements en fraction continue d’un réel a pour

lesquels les numérateurs partiels sont ±1, les dénominateurs partiels sont des entiers

positifs et les réduites
x

y
vérifient les conditions :

1̊ ) x et y sont premiers entre eux,

264Minkowski 1901b,a.
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2̊ ) y > 0,

3̊ ) |(x− ay) y| < 1

2
.

a est supposé ici ne pas être un demi-entier. Ces conditions avaient déjà été données

par Minkowski dans son article de 1896 sur ce sujet, mais il note qu’il n’avait pas

alors remarqué qu’elles caractérisent complètement le développement obtenu265. Tout

le début de l’article concerne des théorèmes sur le produit de deux formes linéaires à

coefficients réels ξ = αx + βy et η = γx + δy. Ces résultats sont dans un deuxième

temps appliqués aux deux formes particulières x− ay et y afin d’approcher le réel a.

Dans le théorème I, Minkowski démontre que si les coefficients des formes vérifient

αδ − βγ = 1, il existe des entiers x, y, non tous deux nuls, tels que266

|ξ η| ≤ 1

2
.

Il précise aussitôt les cas d’égalités dans cette dernière inégalité : si le produit ξη n’est

pas équivalent à XY ou à 1
2
(X2 − Y 2) alors il existe des entiers x, y, non tous deux

nuls, pour lesquels ξ 6= 0, η 6= 0 et

|ξ η| < 1

2
.

Les formes équivalentes sont par définition celles qui sont obtenues à partir de ξη par

des substitutions à coefficients entiers x = pX + p′Y , y = qX + q′Y et à déterminant

±1.

Minkowski choisit un système de coordonnées dont l’origine est notée O. Pour un point

A de coordonnées (x = p, y = q), A0 désigne le point dont les coordonnées sont

(x = −p, y = −q).

Les points du réseau sont ceux de coordonnées

(ξ = αx+ βy, η = γx+ δy)

avec x et y des nombres entiers. Soient maintenant ρ et σ des paramètres positifs, les

points R(ξ = ρ, η = 0), R0(ξ = −ρ, η = 0), S(ξ = 0, η = σ), S0(ξ = 0, η = −σ)

sont les sommets d’un parallélogramme centré en O dont les diagonales sont les droites

d’équation ξ = 0 et η = 0. Ce parallélogramme, noté B(ρ, σ), est aussi défini par

265C’est le cas où Ω = 1 dans Minkowski 1896b p.44.
266Minkowski 1901b p.92.
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l’inégalité ∣
∣
∣
∣

ξ

ρ

∣
∣
∣
∣
+

∣
∣
∣
∣

η

σ

∣
∣
∣
∣
≤ 1 .

Les paramètres ρ et σ sont ensuite choisis de telle sorte que le seul point du réseau

à l’intérieur du parallélogramme B(ρ, σ) soit O et qu’il ait un point A(x = p, y = q)

appartenant au réseau sur sa frontière. Par symétrie par rapport à l’origine, le point

A0(x = −p, y = −q) est aussi un point du réseau sur la frontière de B(ρ, σ), il est donc

possible de supposer pour A que η ≥ 0. Posons alors pour A, ξ = ελ et η = µ, où

λ ≥ 0, µ ≥ 0 et ε = ±1.

Le segment OA qui est inclus dans B(ρ, σ) ne peut contenir des points du réseau autres

que O et A. Par conséquent, p et q sont premiers entre eux et il existe donc deux entiers

r et s tels que ps − qr = ε. Minkowski effectue le changement de coordonnées défini

par

x = pX̄ + rY , y = qX̄ + sY .

En posant λ̄ = ε(αr + βs) et µ̄ = γr + δs, il obtient

εξ = λX̄ + λ̄Y et η = µX̄ + µ̄Y .

Or le déterminant de ces deux formes est égal à

∣
∣
∣
∣
∣
∣

λ λ̄

µ µ̄

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

ε(αp+ βq) ε(αr + βs)

pγ + δq γr + δs

∣
∣
∣
∣
∣
∣

= ε

∣
∣
∣
∣
∣
∣

α β

γ δ

∣
∣
∣
∣
∣
∣

.

∣
∣
∣
∣
∣
∣

p r

q s

∣
∣
∣
∣
∣
∣

= ε× 1 × ε = 1 ,

ce qui permet d’exprimer X̄ et Y en fonction de ξ et η, ainsi

X̄ = εξµ̄− λ̄η , Y = λη − µεξ .

De plus, comme le changement de variables est à coefficients entiers et de déterminant

ε = ±1, les points du réseau (x, y) correspondent à des points du réseau (X̄, Y ). En

particulier, la droite OA est la droite d’équation Y = 0 et le point A est donc le point

du réseau qui correspond à Y = 0 et X̄ = 1. Tous les points du réseau situés sur

cette droite sont obtenus pour X̄ = . . . ,−1, 0, 1, 2 . . . et sont à la distance OA les uns

des autres. Les autres points du réseau sont répartis sur les droites parallèles à OA

(Y = ±1, Y = ±2, . . .) de la même manière.

Dans la suite de la preuve, Minkowski sépare trois cas selon que le point A est un

sommet, le milieu d’un côté du parallélogramme B(ρ, σ), ou bien ni l’un ni l’autre.

Nous ne détaillons ici que ce dernier cas.

Soit maintenant le point F de coordonnées (ξ = −ελ, η = µ). Le parallélogramme
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FAF0A0 est défini par les inégalités

−λ ≤ ξ ≤ λ , −µ ≤ η ≤ µ

et il est contenu strictement (à part ses sommets) dans B(ρ, σ) (voir la figure 1.6 qui

est un dessin extrait de l’article de Minkowski267).

Fig. 1.6 – Illustration du premier cas dans la preuve du théorème I

La droite parallèle à OA passant par F coupe la frontière de B(ρ, σ) en un autre

point G. Par suite, FG est strictement plus grand que A0O et A0O = OA, donc

FG > OA. Nous avons vu que sur une droite parallèle à OA les points du réseau sont

à distance OA les uns des autres, ainsi les droites Y = ±1 ne peuvent être situées entre

les droites OA et FG sinon l’inégalité FG > OA impliquerait l’existence d’un point du

réseau distinct de O dans le parallélogramme B(ρ, σ). Minkowski en déduit que pour

tous les points entre les droites OA et FG, |Y | < 1. En particulier, pour le point F :

Y = λη − µεξ = λµ− µε(−ελ) = 2λµ ,

ce qui implique

|2λµ| < 1 , c’est-à-dire |ξη| < 1

2
.

Ceci termine le premier cas, c’est pour les deux autres cas pour lesquels A est un som-

met ou le milieu d’un côté de B(ρ, σ) que l’égalité peut se produire.

267Minkowski 1901b p.94.
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Dans le théorème II, Minkowski montre que lorsque x = p, y = q sont des entiers

premiers entre eux pour lesquels |ξ| > 0 et |ξη| < 1
2
, alors il est possible de trouver

deux autres entiers p′, q′ tels que pq′ − qp′ = ±1, |ξη| < 1
2

et |ξ| est plus petit que

pour p et q. Ces résultats lui permettent d’arriver au théorème IV qui est à la base du

développement en fraction continue qu’il veut proposer. Soit toujours ξ = αx + βy et

η = γx + δy deux formes linéaires à coefficients réels avec αδ − βγ = 1. Le produit

ξη est supposé ne pas être équivalent à la forme XY ni à 1
2
(X2 − Y 2). L’ensemble des

couples d’entiers x, y premiers entre eux, tels que |ξη| < 1
2

et η > 0, ou η = 0 et ξ > 0,

est rangé selon les valeurs croissantes de η. Deux couples successifs p, q et p′, q′ de cette

suite sont tels que

pq′ − qp′ = ±1 .

La suite de ces couples admet un premier terme si et seulement si δ
−γ est rationnel. Ce

couple est alors tel que η = 0, ξ > 0 et x
δ

= y
−γ > 0. La suite admet un dernier terme

pour lequel η > 0 et ξ = 0 si et seulement si −β
α

est rationnel, dans ce cas x
−β = y

α
> 0.

Enfin, si la suite n’a pas de dernier terme, |ξ| tend vers 0, |η| vers +∞ et si la suite n’a

pas de premier terme, |ξ| tend vers +∞ et |η| converge vers 0.

À la suite de ce théorème, nous retrouvons un vocabulaire déjà employé par Minkowski

dans ses articles précédents. La suite des points du réseau rangés selon les valeurs

croissantes de η est appelée la chaîne des formes ξ, η et est notée

pi , qi (i = . . . ,−2,−1, 0, 1, 2, . . . ) .

La substitution Ti définie avec deux termes successifs de la suite

x = pi−1Xi + piYi , y = qi−1Xi + qiYi

est appelée une substitution de la chaîne. Minkowski note aussi

Ti =




pi−1 , pi

qi−1 , qi



 .

Un peu plus loin dans l’article268, il applique ces théorèmes aux formes ξ = x − ay,

η = y, où a est un réel fixé, ce qui le conduit au théorème VI. Dans ce théorème a

est supposé ne pas être un entier ou un demi-entier et il construit une suite pi, qi en

posant :

– p0 = 1, q0 = 0 puis q1 = 1 et p1 = h0 où h0 est l’entier le plus proche de a, ainsi

|a− h0| < 1
2
.

– Si pi, qi sont définis et tels que pi− aqi est non nul, soient ϑi le signe du quotient

268Minkowski 1901b p.114-115.
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pi−1 − aqi−1

pi − aqi
et gi la partie entière de la valeur absolue de ce quotient. Posons

ensuite hi = gi ou hi = gi + 1 selon que

|((pi−1 − aqi−1) − ϑigi(pi − aqi))(giqi − ϑiqi−1)| < ou ≥ 1

2
.

– Enfin pi+1 et qi+1 sont donnés par

pi+1 = hipi − ϑipi−1 et qi+1 = hiqi − ϑiqi−1.

Cette suite pi, qi vérifie alors les propriétés suivantes :

1̊ . Si a est rationnel, la suite s’arrête avec des entiers pw, qw pour lesquels pw−aqw = 0

et si a est irrationnel la suite est infinie.

2̊ . Deux termes consécutifs de la suite vérifient la relation

piqi+1 − qipi+1 = ϑ1ϑ2 . . . ϑi = ±1 .

Les entiers pi et qi sont toujours premiers entre eux.

3̊ . Le rapport pk

qk
est donné par

pk
qk

= h0 −
ϑ1|
|h1

− ϑ2|
|h2

− · · · − ϑk−1|
|hk−1

, (k = 1, 2, . . .).

pk et qk sont alors égaux au numérateur et au dénominateur du membre de droite

de l’égalité précédente quand il est exprimé sous la forme d’un quotient de deux

fonctions de hi et ϑi.

4̊ . qi est une suite strictement croissante d’entiers strictement positifs, de plus

1

2
> |p1 − aq1| > |p2 − aq2| > |p3 − aq3| > · · · ,

ce qui implique que |pk

qk
−a| est strictement décroissante. Quand a est irrationnel,

les fractions
pk
qk

convergent vers a.

5̊ . Chaque couple d’entiers pk, qk satisfait à l’inégalité

|(pk − aqk)qk| <
1

2
.

Réciproquement, si x, y sont des entiers premiers entre eux avec y > 0 et

|(x− ay)y| < 1
2
, alors x, y est un couple d’entiers pi, qi de la suite précédente.

Ce développement en fraction continue est qualifié de « diagonal » par Minkowski, par

comparaison au développement ordinaire appelé « parallèle ».

La fin de l’article est consacré à la comparaison des deux développements. Par exemple,
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Minkowski justifie que les réduites du développement diagonal sont toutes des réduites

du développement parallèle, ainsi le développement diagonal converge plus rapidement

vers le réel a. Il montre enfin que comme pour le développement ordinaire, le dévelop-

pement en fraction continue diagonal est périodique si et seulement si a est la racine

d’une équation du second degré à coefficients rationnels.

Une partie de cet article concerne un résultat sur le produit de deux formes linéaires

non homogènes. Minkowski s’y intéresse en liaison directe avec les résultats déjà ob-

tenus. Mais ce thème deviendra un thème important pour la géométrie des nombres

repris par de nombreux successeurs de Minkowski.

Dans le théorème V, ξ = αx + βy, η = γx + δy sont toujours deux formes linéaires

à coefficients réels et de déterminant 1 et ξ0, η0 sont deux réels quelconques. Il existe

alors des entiers x et y pour lesquels

|(ξ − ξ0)(η − η0)| ≤ 1

4
.

Dans sa démonstration, Minkowski commence par traiter à part les cas où ξη est

équivalent à la forme XY ou à la forme 1
2
(X2 − Y 2), ces deux situations sont ensuite

exclues.

Soit x = pX+p′Y , y = qX+q′Y une substitution de la chaîne associée à ξ, η, où A(p, q)

et A′(p′, q′) sont deux points du réseau tels qu’ils étaient définis dans le théorème II

(voir page 111). Minkowski considère le parallélogramme RSR0S0, noté aussi B(ρ, σ),

pour lequel les points A et A′ sont sur sa frontière et qui ne contient pas de point du

réseau dans son intérieur autre que l’origine269. Rappelons que ce parallélogramme est

aussi défini par l’inégalité ∣
∣
∣
∣

ξ

ρ

∣
∣
∣
∣
+

∣
∣
∣
∣

η

σ

∣
∣
∣
∣
≤ 1 .

Pour le point A, ξ = ελ et η = µ avec ε = ±1, λ ≥ 0, µ ≥ 0. De même pour le point

A′, posons ξ = ε′λ′, η′ = µ′, où ε′ = ±1, λ′ ≥ 0 et µ′ ≥ 0. Les cas ε = ε′ et ε = −ε′
sont démontrés séparément, dans la suite nous donnons les grandes étapes de la preuve

pour ε = −ε′. Soient maintenant les milieux de deux côtés adjacents de B(ρ, σ) donnés

par M(ξ = ερ
2
, η = σ

2
) et M ′(ξ = −ερ

2
, η = σ

2
) (voir la figure 1.7 270).

Le fait que |ξη| ne soit pas équivalent àXY ou 1
2
(X2−Y 2) implique que nous ne pouvons

avoir λ′ = µ = 0 et nécessairement A 6= M , A′ 6= M ′. Minkowski justifie ensuite que

A′M ′ ≤ AM . Puis il construit les parallélogrammes B(ρ
2
, σ

2
) centrés en tous les points

du réseau. La frontière du parallélogramme B(ρ
2
, σ

2
) centré en O rencontre les frontières

269L’existence d’un tel parallélogramme a été justifiée dans la preuve d’un des théorèmes précédents.
270Minkowski 1901b p.110. Les parallélogrammes B(ρ, σ) sont sur ce dessin remplacés par des

carrés.
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Fig. 1.7 – Illustration pour la preuve du théorème V

de ceux qui sont centrés en A, A0, A′, A′
0 qui sont les points du réseau les plus proches

de O. Mais les côtés de ces parallélogrammes ne coincident pas complètement, ainsi

l’ensemble des B(ρ
2
, σ

2
) ne recouvre pas tout le plan. Il reste donc des “trous” qui sont

des parallélogrammes centrés aux points X + 1
2
, Y + 1

2
, c’est par exemple le rectangle

GHJK sur la figure 1.7. Nous avons alors

GH = MA ≤MS =
1

2
et GK = M ′A′ < M ′S =

1

2
RS ,

or A′M ′ ≤ AM et donc GK ≤ GH . En remarquant que les côtés de GHJK sont plus

petits que ceux de B(ρ
2
, σ

2
), il montre que l’aire de GHJK est strictement inférieure à

l’aire de B(ρ
2
, σ

2
) qui est égale à

1

2
ρ σ .

Minkowski veut ensuite transformer le parallélogramme B(ρ
2
, σ

2
) par une homothétie de

centre O de telle manière que l’ensemble des parallélogrammes ainsi obtenus recouvre

tout le plan. Pour cela il ajuste le rapport de l’homothétie k pour que chaque nouveau

parallélogramme prenne la moitié des GHJK qui sont les portions du plan non recou-

vertes. C’est-à-dire qu’il choisit que 1
k−1

soit égal au rapport de la distance du point O

à la droite GH à la distance du point L à la droite GH . Il vient en particulier que

1

k − 1
=

1
2
M ′S

1
2
GK

=
1
2
M ′S

1
2
M ′A′ =

M ′S

M ′A′ ,

or nous avons vu que M ′S > M ′A′ ce qui implique 1 < k < 2.

Minkowski construit donc les parallélogrammes B(kρ
2
, kσ

2
) centrés en tous les points du
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réseau (ils sont représentés en pointillés sur la figure 1.7). Comme ce dernier système de

parallélogrammes recouvre tout le plan, le point (ξ0, η0) appartient à l’un des B(kρ
2
, kσ

2
)

dont les coordonnées du centre (x, y), qui sont des entiers, vérifient

∣
∣
∣
∣

ξ − ξ0
ρ

∣
∣
∣
∣

+

∣
∣
∣
∣

η − η0

σ

∣
∣
∣
∣
≤ k

2
.

Les autres cas dans cette preuve sont traités par une méthode similaire à celle que nous

venons d’exposer.

Dans cet article, les problèmes sont abordés géométriquement : construction de pa-

rallélogrammes qui sont transformés par des homothéties, calculs d’aire, comparaisons

de distances etc. . . Bien que Minkowski ne s’exprime pas de façon explicite là-dessus,

il semble que les figures, auxquelles il renvoie dans certains passages, jouent un rôle

dans ces constructions géométriques. En effet, la rédaction de Minkowski paraît inté-

grer le fait que le lecteur a un dessin sous les yeux et s’y reporte. Les objets manipulés

par Minkowski (points, figures géométriques. . .) sont définis de manière parfaitement

rigoureuse dans le texte, il ne s’agit donc pas ici de pallier ce type d’ambiguïté271.

Cependant, beaucoup de points ou de notations sont introduits dans la preuve et le

dessin apparaît comme le moyen de saisir globalement les arguments de la démonstra-

tion. D’autre part, ces arguments ne sont pas toujours développés de façon précise et

il est souvent nécessaire de faire appel aux illustrations pour suivre le raisonnement.

De plus, Minkowski considère que ce traitement géométrique rend cette théorie plus

intuitive

« Im Folgenden gebe ich eine auf geometrischen Betrachtungen gegründete

und dadurch sehr anschauliche Theorie des Systems zweier linearer Formen

αx+ βy, γx+ δy mit beliebigen reellen Coefficienten und mit ganzzahligen

Unbestimmten272. »

b) De nouveaux théorèmes sur l’approximation

L’organisation du deuxième article de Minkowski publié en 1901 sur l’approxima-

tion273 ressemble à celle du précédent. D’abord sont démontrés des résultats sur les

« minima de formes algébriques », ainsi qu’à la détermination des formes réalisant ces

271Préciser la définition des objets est une des fonctions des figures dans les textes mathématiques
grecs de l’antiquité qui est relevée par Reviel Netz, voir Netz 1999.

272« Dans ce qui suit je donne une Théorie du système de deux formes linéaires αx + βy, γx +
δy à coefficients réels arbitraires et à indéterminées entières qui est fondée sur des considérations
géométriques et donc très intuitive. » Minkowski 1901b p.92.

273Minkowski 1901a.
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minima. Dans un deuxième temps, ces théorèmes sont utilisés dans la théorie de l’ap-

proximation. Les preuves des théorèmes ne figurent pas dans l’article et Minkowski

renvoie à la deuxième partie de sa Geometrie der Zahlen pour les consulter. Cette

deuxième partie correspond au livre Diophantische Approximationen274 publié en 1907.

Le premier théorème concerne quatre formes linéaires de trois variables275 :

« Théorème. — Soient ϕ, χ, ψ, ω quatre formes linéaires à trois variables

x, y, z, à coefficients réels quelconques et de sorte que l’on ait

ϕ+ χ+ ψ + ω = 0.

Supposons que le déterminant de trois de ces formes soit toujours différent

de zéro et désignons sa valeur absolue par 4D.

Alors il existe toujours trois nombres entiers x, y, z, qui ne sont pas tous

égaux à zéro et de sorte que toutes les quatre formes ϕ, χ, ψ, ω soient en

valeur absolue moindres que

3

√

4D

1 −
(

2
3

)3 .

La limite d =
3

√

108

19
D donnée ici est précise. »

Minkowski précise aussitôt que l’inégalité précédente est en général stricte et que l’éga-

lité se produit seulement lorsque les formes sont équivalentes276 à

d

(

X − 2

3
Y

)

, d

(

Y − 2

3
Z

)

, d

(

−2

3
X + Z

)

, −1

3
d (X + Y + Z) .

Après avoir mentionné les conséquences que peut avoir ce théorème en cristallogra-

phie, Minkowski l’applique à la somme des valeurs absolues de trois formes. Soient ξ,

η, ζ trois formes de trois variables à coefficients réels et de déterminant ±D, où D > 0.

Le théorème précédent, appliqué aux formes

ϕ = −ξ + η + ζ χ = ξ − η + ζ , ψ = ξ + η − ζ , ω = −ξ − η − ζ ,

donne l’existence d’entiers x, y, z différents de 0, 0, 0 tels que

|ξ| + |η| + |ζ | ≤ 3

√

108

19
D .

274Minkowski 1907.
275Minkowski 1901a p.72-73.
276L’équivalence est définie par des substitutions linéaires à coefficients entiers et de déterminant

±1.
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Il en déduit ensuite que

|ξ η ζ | < 4

19
D .

Minkowski remarque lui-même que l’inégalité précédente n’est pas la meilleure possible.

Nous aurons l’occasion de revenir sur cette question, la meilleure estimation pour le

produit de trois formes linéaires sera donnée dans les années 1930 par Harold Daven-

port.

En choisissant différemment les formes ϕ, χ, ψ, ω dans le théorème 1, il obtient aussi

|ξ| + |ζ | ≤ 3

√

54

19
D , |η| + |ζ | ≤ 3

√

54

19
D ,

ce qui lui permet de montrer que

|ξ2ζ | < 8

19
D , |η2ζ | < 8

19
D .

Dans ce résultat, Minkowski pose ensuite

ξ = x− az , η = y − bz , ζ =
z

t3
,

où a, b sont des nombres réels quelconques et t un paramètre strictement positif. Comme

le déterminant de ces trois formes est 1
t3

, il existe des entiers x, y, z, où z peut être choisi

strictement positif, pour lesquels

∣
∣
∣
x

z
− a
∣
∣
∣ <

√

8

19

1

z
3
2

,
∣
∣
∣
y

z
− b
∣
∣
∣ <

√

8

19

1

z
3
2

.

Nous reconnaissons un procédé déjà employé par Minkowski afin d’obtenir une ap-

proximation simultanée de deux nombres réels. Cependant l’amélioration de la borne

pour les sommes de valeurs absolues de deux formes linéaires le conduit à une meilleure

approximation que ce qu’il avait par exemple présenté à Chicago en 1893 (voir page

81) où il avait obtenu 2
3

à la place de
√

8
19

.

La fin de l’article concerne des formes linéaires complexes et l’approximation de

nombres complexes. Soient ξ = αx+βy, η = γx+δy deux formes linéaires à coefficients

complexes et D = |αδ − βγ| > 0.

« On peut toujours trouver, dans le corps algébrique de i =
√
−1 277, des

nombres entiers complexes278 x, y différents du système 0, 0 de sorte que

277C’est-à-dire Q(i).
278Ce sont les nombres complexes qui s’écrivent sous la forme a+ ib avec a et b des nombres entiers

rationnels. L’ensemble de ces nombres est maintenant appelé l’anneau des entiers de Gauss et il est
noté Z[i]. C’est aussi l’anneau des entiers du corps de nombres algébriques Q(i).
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l’on ait

|ξ| ≤

√√
3 + 1√

6
D , |η| ≤

√√
3 + 1√

6
D . »

L’égalité se produit « lorsqu’il existe une substitution

x = pX + rY , y = qX + sY ,

où p, q, r, s sont des nombres entiers dans le corps de i et le déterminant ps− qr = ±1

ou ±i, de sorte que, par cette substitution, ξ, η soient transformées en

λ d

{

X +

[

1

2
− i

(

1 −
√

3

2

)]

Y

}

, µ d

{[

i

2
+

(

1 −
√

3

2

)]

X + Y

}

,

λ et µ étant des quantités dont la valeur absolue est égale à 1. »

Ce théorème concerne le « corps algébrique de la quatrième racine de l’unité », Min-

kowski énonce ensuite un résultat similaire dans le « corps de la troisième racine de

l’unité »notée j =
−1 +

√
−3

2
. Puis en appliquant ce dernier théorème aux formes

ξ = x− ay , η =
y

t2
,

où a est un nombre complexe quelconque et t > 1, il obtient que279

« dans le corps de
−1 +

√
−3

2
(mais pas dans le corps de

√
−1), il y aura

toujours des nombres entiers complexes x, y tels que

0 < |y| ≤ t , |x− ay| < 1

t
,

d’où l’on tire encore

|(x− ay)y| < 1 . »

Avec ces résultats, Minkowski montre que les méthodes qui lui ont permis d’appro-

cher des nombres réels par des rationnels peuvent être généralisées pour élaborer une

théorie de l’approximation dans des corps de nombres algébriques. L’absence des dé-

monstrations dans cet article ne permet cependant pas de voir qu’elle est l’origine des

théorèmes présentés ici.

279Minkowski 1901a p.76.
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1.3.3.3 Empilements réguliers de corps congruents

Des éléments de réponse sur l’origine de ces résultats sont apportés dans un ar-

ticle publié en 1904 dans lequel Minkowski s’intéresse à l’empilement régulier de corps

convexes280. Etant donné un corps convexe K et un réseau, considérons l’ensemble des

corps qui sont l’image de K par une translation d’un vecteur à coordonnées entières par

rapport au réseau. Il s’agit alors de déterminer le réseau tel que tous les corps obtenus

ne puissent se rencontrer que sur leur frontière et qu’ils occupent la plus grande partie

possible de l’espace.

Dans la première partie de cette article Minkowski montre qu’il peut se ramener au cas

où K admet un point du réseau comme centre. Il étudie donc ensuite seulement des

corps convexes centrés dont les centres forment un réseau de l’espace de dimension 3.

Notons ξ = α1x + α2y + α3z, η = β1x + β2y + β3z, ζ = γ1x + γ2y + γ3z des substi-

tutions réelles dont la valeur absolue du déterminant est ∆. ∆ est aussi le volume du

parallélogramme défini par les inégalités

0 ≤ x < 1 , 0 ≤ y < 1 , 0 ≤ z < 1 .

Pour des valeurs entières des variables x, y, z les formes ξ, η, ζ définissent un réseau

dont le domaine fondamental est donné par les inégalités précédentes.

Minkowski introduit aussi la distance radiale associée au corps K,

ϕ(ξ, η, ζ) = f(x, y, z) .

Pour que les corps obtenus par translation de K soient disjoints, K ne peut contenir des

points du réseau dans son intérieur autre que O, ainsi tous les points de coordonnées

entières x, y, z différents de 0, 0, 0 doivent vérifier

f(x, y, z) ≥ 1 .

Enfin si J est le volume de K, la proportion de l’espace occupée par l’ensemble des

corps KG (corps dont le centre est le point G du réseau) est alors
J

∆
. Le problème

devient alors la détermination des coefficients des formes ξ, η, ζ tels que ∆ est le plus

petit possible et que f(x, y, z) ≥ 1 pour tous les entiers x, y, z.

Minkowski démontre en particulier le résultat suivant : pour un corps convexe K donné,

il pose R = K +K ′, où K ′ est le symétrique de K par rapport à O. Pour trouver les

déterminants minimaux ∆ pour K, il suffit d’étudier les réseaux pour lesquels281 :

(I) les points (1, 0, 0); (0, 1, 0); (0, 0, 1); (0, 1,−1); (−1, 0, 1); (1,−1, 0) sont sur la fron-

280Minkowski 1904a.
281Minkowski 1904a p.329.
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tière de R et les points (−1, 1, 1); (1,−1, 1); (1, 1,−1) est à l’extérieur de R,

(II) les points (1, 0, 0); (0, 1, 0); (0, 0, 1); (0, 1, 1); (1, 0, 1); (1, 1, 0) sont sur la frontière

de R et le point (1, 1, 1) à l’extérieur,

(III) les points (1, 0, 0); (0, 1, 0); (0, 0, 1); (0, 1, 1); (1, 0, 1); (1, 1, 0); (1, 1, 1) sont tous

sur la frontière de R.

Minkowski illustre ce dernier résultat avec les dessins de la figure 1.8 282. Le premier de

ces dessins montre le domaine obtenu avec les points du cas (I) et leurs symétriques

par rapport à O, le deuxième correspond au cas (III).

Fig. 1.8 – Illustration des cas (I) et (III)

Ce théorème permet de démontrer que pour des sphères la proportion maximale

d’espace occupé est
π
√

2

6
. L’étude des empilements de tétraèdres ou d’octaèdres en-

traîne aussi certains des théorèmes sur les formes linéaires énoncés sans démonstration

dans l’article précédent.

1.3.3.4 Retour sur l’équivalence des formes quadratiques

Dans son dernier article publié sur la géométrie des nombres283, Minkowski revient

sur l’étude de l’équivalence entre formes quadratiques de n variables et sur la notion

de forme réduite284. Il propose un traitement géométrique de ces questions.

Considérons une forme quadratique f de n variables, à coefficients réels et définie

282Minkowski 1904a p.330.
283Minkowski 1905.
284La notion de réduction chez Minkowski est discutée dans Schwermer 2007. Joachim Schwermer

en indique aussi des versions antérieures manuscrites.
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positive, notons

f(x1, x2, . . . , xn) =
∑

h,k

ahkxhxk (h, k = 1, 2, . . . , n),

où ahk = akh pour tous les indices h et k. Cette forme est représentée par le point de

coordonnées (ahk) dans un espace A de dimension n(n+1)
2

. Le problème de la réduction

de ces formes est alors reformulé géométriquement

« wir suchen in der Mannigfaltigkeit A einen Bereich B, in dem jede Klasse

positiver quadratischer Formen durch einen Punkt, und wenn der Punkt in

das Innere von B fällt, auch nur durch einen einzigen Punkt repräsentiert

wird285. »

Rappelons que deux formes

f =
∑

h,k

ahkxhxk , g =
∑

h,k

bhkyhyk (h, k = 1, 2, . . . , n)

sont dites équivalentes si elles sont déduites l’une de l’autre par une transformation

linéaire à coefficients entiers et de déterminant ±1. Minkowski introduit des notions

supplémentaires pour comparer f et g afin de définir une nouvelle notion de forme

réduite. Les deux formes sont également placées (« gleichgestellt286 ») si

a11 = b11 , a22 = b22 , . . . , ann = bnn .

Si maintenant pour l = 1, 2, . . . , n les coefficients des formes vérifient

a11 = b11 , . . . , al−1,l−1 = bl−1,l−1 , all > bll

alors f est supérieure à g à la l-ème place ou g est inférieure à f à la l-ème place.

Dans chaque classe, il existe des formes qui sont minimales pour la relation précé-

dente et toutes ces formes minimales sont également placées. Il existe certaines classes

de formes qui contiennent une unique forme minimale, ce sont les classes générales

(« allgemein287 »). Une forme f et sa classe sont dites générales si l’équation

f(x1, x2, . . . , xn) = f(y1, y2, . . . , yn),

285« nous cherchons dans la multiplicité A un domaine B dans lequel chaque classe de formes
quadratiques positives sera représentée par un point, et si le point tombe à l’intérieur de B, par un
point unique. » Minkowski 1905 p.221.

286Minkowski 1905 p.225.
287Minkowski 1905 p.226.
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où les xi et les yi sont des entiers, a pour seules solutions (y1, y2, . . . , yn) = (x1, x2, . . . , xn)

et (y1, y2, . . . , yn) = (−x1,−x2, . . . ,−xn).
Minkowski présente sa définition des formes réduites comme une simplification de celle

qu’avait donné Hermite. Les formes réduites sont des formes minimales dans la classe

avec des propriétés supplémentaires. Il appelle donc réduite une forme

f(x1, x2, . . . , xn) =
∑

ahkxhxk

qui vérifie les deux conditions suivantes288 :

(I) f(s
(l)
1 , s

(l)
2 , . . . , s

(l)
n ) ≥ all , pour tout l = 1, 2, . . . , n,

où s(l)
1 , s

(l)
2 , . . . , s

(l)
n est un système d’entiers quelconque pour lequel le plus grand com-

mun diviseur de s(l)
l , s

(l)
l+1, . . . , s

(l)
n vaut 1 ;

(II) a12 ≥ 0, a23 ≥ 0, . . . , an−1,n ≥ 0.

Les deux systèmes d’entiers s(l)
h = e

(l)
h et s(l)

h = −e(l)h , où e
(l)
h = 0 si h 6= l et 1 sinon,

sont exclus dans les inégalités (I).

Dans chaque classe de formes quadratiques définies positives, il existe alors une forme

réduite au sens précédent. Les conditions (I) des formes réduites sont en nombre infini

mais Minkowski montre qu’il est possible de vérifier ces inégalités seulement dans un

nombre fini de cas qui impliquent tous les autres.

La traduction en termes géométriques de ce qui précède permet de définir le domaine

B cherché comme étant l’ensemble des points f = (ahk) qui vérifient les conditions (I)

et (II). Minkowski démontre dans la suite un certain nombre de propriétés géométriques

de B qu’il appelle domaine réduit (« reduzierten Raum289 »). D’abord, il justifie que B

est un cône convexe dont le sommet est à l’origine f = 0 et qui est limité par un nombre

fini de plans passant par l’origine. Ensuite, il définit les formes arêtes (« Kantenform »)

comme étant des formes réduites non identiquement nulles qui ne peuvent pas s’écrire

comme la somme de deux formes réduites non nulles et non multiples l’une de l’autre.

Une telle forme est représentée par un point situé sur une arête de B. En choisissant

une forme arête sur chaque arête de B, Minkowski obtient un nombre fini de formes

arêtes ϕ1, ϕ2, . . ., ϕr telles que toute forme réduite f peut s’écrire

f = c1ϕ1 + c2ϕ2 + · · ·+ crϕr ,

288Minkowski 1905 p.228.
289Minkowski 1905 p.229.
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où les coefficients c1, c2, . . . , cr sont positifs. Réciproquement, une forme s’écrivant ainsi

est réduite.

Ce type de raisonnement n’est pas nouveau dans le travail de Minkowski. La fin du

premier chapitre de sa Geometrie der Zahlen était en effet consacrée à l’étude des

systèmes d’inéquations linéaires. Il avait alors introduit la notion de solution extrême

et démontré que toute solution du système peut s’exprimer comme une combinaison

linéaire à coefficients positifs d’un nombre fini de formes extrêmes. Minkowski fait lui-

même référence à ce passage de son livre de 1896, il semble d’ailleurs qu’il fut inclus

dans Geometrie der Zahlen afin que les résultats puissent être utilisés dans le cadre qui

est celui de l’article qui nous intéresse ici290. La question de la réduction des formes

quadratiques devait alors faire l’objet d’un chapitre du livre qui ne fut finalement ja-

mais publié291. Le lien entre systèmes d’inégalités linéaires et géométrie est qu’un tel

système définit un ensemble convexe, les propriétés précédentes sont en fait caractéris-

tiques des domaines convexes292.

Minkowski revient ensuite sur la question du minimum M(f) d’une forme qua-

dratique f pour des valeurs entières des variables. M(f) est un invariant de la classe

d’équivalence de f et pour une forme réduite M(f) = a11. Nous avons déjà vu qu’il

existe une constante λn telle que

D(f) ≥ λn[M(f)]n ,

où D(f) est le déterminant de f . La détermination de la borne supérieure de
M(f)
n
√

D(f)
est un problème important de la théorie déjà abordé par Hermite. Korkine et Zolota-

reff ont en particulier étudié les formes dites extrêmes pour lesquelles
M(f)

n
√

D(f)
est un

maximum local quand f est soumise à une variation infinitésimale. Minkowski prouve

par exemple qu’une forme extrême qui est dans le domaine réduit est nécessairement

une forme arête du domaine293. De plus, la forme arête située sur la surface D(f) = 1

et pour laquelle a11 est maximum représente une classe extrême et donne la borne

supérieure de toutes les valeurs possibles de
M(f)

n
√

D(f)
.

Notons maintenant B(D) le sous-domaine de B dont les formes f ont un déter-

minant D(f) plus petit qu’un réel strictement positif D donné. Une grande partie de

290Les liens entre la fin du chapitre I de la Geometrie der Zahlen et l’article de 1905 sont expliqués
dans Kjeldsen 2002 p.484-489.

291Voir la préface de Hilbert et Speiser dans Minkowski 1910.
292Les livres de géométrie actuels appellent parfois théorème de Minkowski le résultat qui dit qu’un

ensemble convexe et compact de Rn est l’enveloppe convexe de ses points extrêmaux, voir Berger

2006 p.43. Les points extrêmaux de B sont ici les formes arêtes.
293Minkowski 1905 p.248.
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l’article (presque 20 pages) est consacrée au calcul du volume de ce domaine B(D). Il

démontre que ce volume est égal à vnD
n+1

2 , où

vn =
2

n+ 1

Γ
(

2
2

)
Γ
(

3
2

)
. . .Γ

(
n
2

)

(
Γ
(

1
2

))2+3+···+n S2S3 . . . Sn .

Dans l’expression précédente, Sk désigne la série

1 +
1

2k
+

1

3k
+

1

4k
+ · · · .

L’article se termine par deux applications de ce calcul. D’abord, il permet de montrer

qu’il existe un empilement régulier de sphères dans l’espace de dimension n pour lequel

le rapport de l’espace occupé par ces sphères à l’espace total est au moins
1

2n−1
Sn.

Enfin, vn intervient dans une formule asymptotique pour le nombre de classe de formes

quadratiques à coefficients entiers déjà annoncée par Minkowski dans sa lettre à Hermite

de 1893 (voir page 86). Soit D un entier strictement positif, H(D) désigne le nombre

de classes d’équivalence de formes quadratiques définies positives, à coefficients entiers

et de déterminant D. H(D) est fini et Minkowski démontre que294

lim
D=∞

(
H(1) +H(2) + · · ·+H(D)

D
n+1

2

)

= vn .

Cet article est caractéristique du travail de Minkowski avec un va-et-vient perma-

nent entre arithmétique et géométrie. Des notions arithmétiques comme l’équivalence

ou la réduction sont interprétées géométriquement avec le domaine réduit et l’étude des

propriétés géométriques du domaine réduit permet d’obtenir de nouveaux théorèmes

arithmétiques, par exemple la possibilité d’exprimer n’importe quelle forme réduite

comme combinaison linéaire positive d’un nombre fini d’entre elles. Un calcul de volume

implique un résultat asymptotique pour le nombre de classes de formes quadratiques.

1.3.3.5 Un bref aperçu de Diophantische Approximationen

Comme nous l’avons déjà remarqué, Minkowski ne publia jamais la deuxième par-

tie de Geometrie der Zahlen. Il publie cependant un second livre sur la géométrie des

nombres en 1907 dont le statut est différent du premier de 1896. Il s’agit en effet d’un

livre qui est issus d’un cours donné à l’université de Göttingen pendant le semestre

d’hiver 1903-1904 qui doit être une introduction à la théorie des nombres, ce qui est

indiqué par le titre : Diophantische Approximationen ; eine Einführung in die Zahlen-

theorie. L’objectif principal de Minkowski n’est donc pas d’y présenter les tout derniers

294Minkowski 1905 p.269.
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développements de son travail (bien que certains s’y trouvent) et comme nous le ver-

rons il ne se place pas dans le cadre le plus général possible.

Dans la préface Minkowski remercie A. Axer qui l’a aidé dans la rédaction de l’ou-

vrage en particulier pour le dernier chapitre rédigé à partir de notes manuscrites de

Minkowski. Après la première édition295 de 1907, une deuxième édition296 identique est

publiée en 1957.

Nous donnons ici un aperçu très rapide du contenu du livre car il ne traite pas de

thèmes nouveaux par rapport aux articles publiés par Minkowski297.

Le livre comporte six chapitres, le premier prend comme point de départ le principe

de Dirichlet :

« Wenn n+ 1 Dinge auf n Fächer irgendwie verteilt werden, so muß es da-

runter mindestens ein Fach geben, welches mehr als ein Ding aufnimmt298. »

Minkowski montre en particulier comment utiliser ce résultat pour approcher un nombre

réel par un rationnel et pour l’approximation simultanée de deux nombres réels par des

rationnels de même dénominateur.

La suite du livre est construite autour du théorème sur les domaines convexes à centre

qui est appliqué à différentes situations.

Dans le deuxième chapitre qui traite des réseaux en dimension 2, Minkowski énonce

les théorèmes qu’il a obtenu pour deux formes linéaires de deux variables homogènes

ou non homogènes. Pour cela il applique le principe de la démonstration du théorème

sur les convexes à des parallélogrammes. Le théorème général est ensuite prouvé pour

n’importe quel convexe à centre en dimension 2. Cet énoncé est utilisé pour étudier

par exemple les domaines

|ξ|p + |η|p ≤ 1 ,

où ξ, η sont des formes linéaires homogènes et p ≥ 1. Quand p = 2, il obtient un

résultat pour les formes quadratiques définies positives qui est appliqué à l’empilement

régulier de disques dans le plan.

Le chapitre 3 suit un peu le même modèle que le précédent mais pour les réseaux en

dimension 3. Nous y trouvons donc les résultats relatifs à trois formes linéaires homo-

gènes (produit, somme. . .) à coefficients réels ou complexes.

Les deux chapitres qui suivent traitent de la théorie algébrique des nombres. Dans le

chapitre 4, après des rappels sur cette théorie Minkowski aborde la question du dis-

criminant des corps de nombres algébriques et le théorème des unités. Le chapitre 5

295Minkowski 1907.
296Minkowski 1957.
297Voir aussi Tannery 1908.
298« Si n+ 1 objets sont répartis n’importe comment dans n tiroirs, il doit nécessairement y avoir

parmi eux un tiroir qui reçoit plus qu’un objet. » Minkowski 1907 p.1.
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concerne les idéaux. Parmi les théorèmes importants qui y sont énoncés nous trouvons

par exemple la finitude du nombre de classes d’idéaux ou la décomposition de n’im-

porte quel idéal en produit d’idéaux premiers.

Enfin le dernier chapitre, Minkowski étudie des formes linéaires dont les variables ap-

partiennent au corps de nombres algébriques engendré par i (K(i)) ou bien à celui

engendré par j (K(j)). Il a pour cela besoin de considérer des réseaux en dimension 4.

Minkowski démontre en particulier les théorèmes sur K(i) et K(j) qu’il avait énoncés

sans preuve dans son article de 1901 (voir page 117) 299.

1.3.3.6 Quelques remarques sur le travail des années 1897-1909

À partir de 1897, Minkowski paraît davantage vouloir privilégier des preuves et des

méthodes constructives. Il donne des procédures pour construire certaines substitutions

ou bien des chaînes de substitutions. Il construit aussi géométriquement des solutions

aux inégalités qu’il étudie (en particulier sur les formes linéaires). Pour la théorie des

corps de nombres algébriques, il recherche des critères pour décider si un nombre est

algébrique de degré donné, il propose aussi un nouvel algorithme de développements

en fraction continue

« Ich habe mich in der letzten Zeit wieder mit Verallgemeinerungen der Ket-

tenbruchalgorithmen beschäftigt. Jeder Schritt erfordert dabei lange Rech-

nungen, zu denen die Resultate bisher nicht von dem Gegenstande loszu-

reissen. Im Hintergrunde verbergen sich da noch gewiss schöne Dinge300. »

Pour Minkowski, il ne s’agit pas seulement de donner des méthodes qui permettent de

calculer des solutions de manière explicite, mais aussi d’éclairer avec un point de vue

nouveau les aspects les plus théoriques des domaines étudiés

« Ich selbst rechne jetzt viele Beispiele mit meinen neuen Algorithmen, und

ich glaube, dass viel Licht namentlich für die Theorie der kubischen Körper

von diesen neuen rechnerischen Hülfsmitteln ausgehen wird301. »

Ceci semble confirmer le commentaire de Zassenhaus sur Minkowski qui selon lui « tried

hard to establish the fondations of constructive algebraic number theory302 ».

299Minkowski 1901a.
300« Je me suis encore occupé ces derniers temps de la généralisation de l’algorithme des fractions

continues. Chaque pas coûte de longs calculs, dont les résultats jusqu’ici ne se détachent pas de l’objet.
En arrière-plan se cachent encore néanmoins sûrement de jolies choses. » Lettre de Minkowski à Hilbert
du 13 avril 1898, Rüdenberg et Zassenhaus 1973 p.107.

301« Je calcule moi-même maintenant beaucoup d’exemples avec mes nouveaux algorithmes et je
crois que beaucoup de lumière va sortir de ces nouveaux modes de calculs pour la théorie des corps
cubiques. » Lettre de Minkowski à Hilbert du 20 juillet 1898, Rüdenberg et Zassenhaus 1973 p.109.

302Zassenhaus 1975 p.453, mais aussi p.444. Pour des exemples de l’utilisation du travail de Min-
kowski dans ce contexte voir Pohst 1993.
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Ces remarques amènent un commentaire plus général à propos de Minkowski. Sa

conception des mathématiques n’est pas facile à situer par rapport à celles de son

époque. Il semble par divers aspects au milieu de différents courants parfois perçus

comme antagonistes.

Une part importante de ses recherches portent sur des sujets mathématiques considérés

comme abstraits. Les développements des mathématiques parmi les plus conceptuels de

l’époque ne paraissent pas lui poser de problèmes : dès 1891, il commence à adopter le

vocabulaire des corps de nombres dans l’étude des nombres algébriques303, il est aussi

un des premiers mathématiciens, avec Hilbert, à défendre la théorie des ensembles de

Georg Cantor

« Die spätere Geschichte wird Cantor als einen der tiefsinnigsten Mathe-

matiker dieser Zeit bezeichnen ; es ist sehr zu bedauern, daß eine nicht

auf sachlichen Gründen allein beruhende Opposition, die von einem sehr

angesehenen Mathematiker ausging, Cantor die Freude an seinen wissen-

schaftlichen Forschungen trüben konnte304. »

Dans les premières années de son travail sur la géométrie des nombres, Minkowski

semble s’intéresser seulement à des résultats d’existence : que cela soit sous sa forme

géométrique ou analytique, le théorème sur les corps convexes à centre est de ce type.

En même temps, Minkowski laisse une place fondamentale à l’intuition. Après la publi-

cation en 1896 de Geometrie der Zahlen, nous venons de voir qu’il apparaît davantage

dans son travail un souci d’effectivité. Nous pouvons faire ici un parallèle avec le travail

d’Hilbert sur les invariants qui après avoir démontré de façon non-constructive l’exis-

tence d’une base d’invariants pour un système de formes algébriques se tourne ensuite

vers des méthodes permettant d’expliciter ces bases305. En revanche, Minkowski semble

beaucoup moins intéressé qu’Hilbert par le problème des fondements, à propos de son

collègue de Bonn, Lilienthal, il écrit

« Er wird mir bald zu tief und geht beständig auf die Begriffe und Grund-

lagen ein, wo ich bestimmte Facta haben möchte306 ».

Enfin, bien que beaucoup des travaux mathématiques de Minkowski appartiennent

à ce que nous appelerions aujourd’hui les mathématiques pures, il s’est aussi beau-

coup investi à la fois comme enseignant et comme chercheur dans les applications des

mathématiques à d’autres domaines comme la physique et la chimie
303Voir la lettre à Hermite de 1891.
304« L’histoire ultérieure décrira Cantor comme un des plus profonds mathématiciens de son temps ;

il est très regrettable qu’une opposition ne reposant pas toute entière sur des motifs factuels et prove-
nant d’un mathématicien très considéré puisse priver Cantor de la joie des recherches scientifiques. »
Minkowski cité dans Hilbert 1911 p.XXVII.

305Boniface 2004, chapitre II.
306« Il deviendra bientôt trop profond pour moi et plonge constamment vers les concepts et les

fondements, là où je voudrais avoir des faits définis », Lettre de Minkowski à Hilbert du 29 décembre
1887 dans Rüdenberg et Zassenhaus 1973 p.33.
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« Sonst beschäftige ich mich noch viel mit Anwendungen. Von der Ther-

modynamik bin ich auf Chemie gekommen. Ich denke immer, eines Tages

Klein gegen seine vielen Angreifer in der Weise beizuspringen, dass ich

zeige, dass die Mathematiker auch wirklich etwas für die Praxis leisten kön-

nen, und zwar besseres als die Bewegungen des Kreisels festzustellen307. »

Là encore, ses travaux dans ces domaines pouvent être théoriques (en relativité) mais

aussi de nature expérimentale comme pendant les années qu’il passe à Bonn.

1.4 La géométrie des nombres pour Minkowski : une

nouvelle discipline des mathématiques ?

Nous avons vu que Minkowski a baptisé lui-même Geometrie der Zahlen une partie

de ses travaux. Dans cette partie nous essayons de voir ce qui caractérise la géométrie

des nombres pour Minkowski. Par exemple, est-ce pour lui une nouvelle discipline des

mathématiques ? Si c’est le cas, qu’est-ce qui lui donne son identité, une unité ?

Une autre question qui nous intéresse ici est celle de la place que Minkowski entend

faire occuper à ce travail par rapport aux autres disciplines des mathématiques. Le

nom de géométrie des nombres suggère déjà qu’il s’agit d’une théorie en interaction

avec plusieurs disciplines (géométrie et arithmétique), ce qui est confirmé par les nom-

breux champs d’applications possibles que nous avons rencontrés. Nous verrons quelle

signification Minkowski donne à cette particularité de ce travail.

1.4.1 Des problèmes anciens abordés avec de nouvelles métho-

des

Si la géométrie des nombres est une nouvelle discipline des mathématiques, ce n’est

pas parce que Minkowski s’intéresse à l’origine à de nouvelles questions ou bien de

nouveaux objets d’étude. Les problèmes qui occupent Minkowski ont déjà été traités

par d’autres mathématiciens. Rappelons quelques exemples.

La théorie arithmétique des formes est un sujet important de la théorie des nombres du

XIXe siècle. La définition des formes réduites, la détermination d’estimations pour les

minima des formes sont des questions au centre de cette théorie et sur lesquelles Min-

307« Sinon je m’occupe encore beaucoup d’applications. De la thermodynamique je suis arrivé à
la chimie. Je pense toujours secourir un jour Klein de ses nombreux attaquants en montrant que
les mathématiciens peuvent aussi vraiment faire quelque chose pour la pratique et sans doute mieux
qu’établir les mouvements d’une toupie. » Lettre de Minkowski à Hilbert du 11 février 1899 dans
Rüdenberg et Zassenhaus 1973 p.113.
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kowski travaille très tôt dans sa carrière. La théorie des nombres algébriques a connu

aussi des développements importants avant Minkowski avec par exemple des travaux de

Hermite, Kummer, Kronecker ou Dedekind. En ce qui concerne les fractions continues,

les recherches de Minkowski se place dans la continuité des travaux de Lagrange et de

Hermite.

Minkowski cite particulièrement Hermite dans ses publications, en effet il a obtenu

beaucoup de résultats qui approfondissent les travaux du mathématicien français. Her-

mite est réciproquement très élogieux dans ses commentaires sur les avancées faites par

Minkowski. Dans son discours à l’occasion du décès de Minkowski, Hilbert cite deux

extraits de la correspondance de Hermite à Minkowski308 :

« Au premier coup d’oeil j’ai reconnu que vous avez été bien au delà de mes

recherches en nous ouvrant dans le domaine arithmétique des voies toutes

nouvelles. »

« Je me sens rempli d’étonnement et de plaisir devant vos principes et vos

résultats, ils m’ouvrent comme un monde arithmétique entièrement nou-

veau, où les questions fondamentales de notre science sont traitées avec un

éclatant succès auquel tous les géomètres rendront hommage. Vous voulez

bien, Monsieur, – et je vous en suis sincèrement reconnaissant – rapporter

à mes anciennes recherches le point de départ de vos beaux travaux, mais

vous les avez tant dépassées qu’elles ne gardent plus d’autre mérite que

d’avoir ouvert la voie dans laquelle vous êtes entré. »

Minkowski considère donc le travail de Hermite comme une source importante pour ses

recherches. Mais nous voyons aussi que pour Hermite, le travail de Minkowski n’est pas

seulement la continuation de ses « anciennes recherches » mais qu’il est aussi porteur

d’innovation. Mais où se trouvent les innovations dans le travail de Minkowski alors

qu’il n’aborde pas de nouveaux problèmes ?

Dans les commentaires, ce qui caractérise son travail c’est davantage le développe-

ment de nouvelles méthodes dans l’investigation des « questions fondamentales de notre

science ». Pour Jean-Pierre Serre par exemple, Minkowski est à l’origine de « l’ensemble

de méthodes appelé “géométrie des nombres”309 ». Parmi les outils importants utilisés

par Minkowski et qui avaient été peu ou pas utilisés dans le cadre de la théorie des

nombres nous avons rencontré par exemple une nouvelle notion de distance, les réseaux,

les corps convexes et la notion de volume. Dans leurs commentaires sur la géométrie

des nombres, les mathématiciens n’insistent pas toujours sur la même notion. En 1891

à Halle, Minkowski insiste davantage sur les réseaux de points (voir la citation page

73). En 1909, Hilbert choisit de mettre l’accent sur le concept de corps convexe

308Hilbert 1911 p.xiv. D’après Hilbert, le deuxième extrait vient d’une lettre de Hermite à Min-
kowski de novembre 1892 et le premier d’une lettre écrite deux ans plus tôt.

309Serre 1993 p.4.
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« Dieser Umstand führte Minkowski zum ersten Male zu der Erkenntnis,

daß überhaupt der Begriff des konvexen Körpers ein fundamentaler Begriff

in unserer Wissenschaft ist und zu deren fruchtbarsten Forschungsmitteln

gehört310. »

Un point commun des outils qui viennent d’être cités est qu’ils interviennent tous de

manière fondamentale dans le théorème sur les corps convexes centrés sur les points

d’un réseaux. Ce théorème est souvent considéré comme le résultat « qui fonde la géo-

métrie des nombres311. » En effet, dans toutes les publications de Minkowski sur la

géométrie des nombres soit ce théorème est utilisé directement, soit c’est le principe de

la démonstration de ce résultat qui est appliqué à une situation particulière. Il apparaît

donc que ce théorème caractérise le travail de Minkowski sur la géométrie des nombres.

Ce qui est mis en avant dans les commentaires plus tardifs sur la géométrie des

nombres c’est l’introduction de méthodes géométriques en théorie des nombres. Don-

nons en quelques exemples (dans l’ordre chronologique) :

« In der Geometrie der Zahlen ist von Gedankengängen die Rede, in denen

geometrische Begriffe und Methoden auf zahlentheoretische Fragen ange-

wandt werden312. »

« the geometry of numbers as such came into being only when Minkowski

brought in the geometric viewpoint313. »

« The geometry of numbers deals with the use of geometric notions314 »

« Where other mathematicians had attacked problems of certain types al-

gebraically, Minkowski’s genius was to approach them from a geometrical

point of view315. »

L’intervention de la géométrie dans des questions arithmétiques est certainement ce

qui est le plus représentatif de l’image de la géométrie des nombres et du travail de

310« Cette circonstance conduisit Minkowski pour la première fois vers la reconnaissance qu’en
général, le concept de corps convexe est un concept fondamental dans notre science et qu’il fait parti
des méthodes les plus fécondes pour la recherche. » Hilbert 1911 p.XI.

311Martinet 1996 p.61. Voir aussi à ce sujet la citation extraite de Hardy et Wright 1938 page
76.

312« Dans la Géométrie des nombres il est question de raisonnements dans lesquels des concepts et
des méthodes géométriques sont appliqués à des questions de théorie des nombres. » Keller 1954
p.27.

313Préface de Lekkerkerker 1969.
314Goldman 1998 p.440.
315Olds et al. 2000 p.3.
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Minkowski. L’originalité dans la géométrie des nombres ne réside donc pas tant dans

l’introduction de nouveaux objets ni de nouveaux problèmes, mais dans le développe-

ment de nouvelles méthodes. La géométrie des nombres serait donc chez Minkowski,

un ensemble de techniques de nature géométrique permettant d’étudier des questions

arithmétiques sous un angle nouveau. Mais à quel type de géométrie les commentaires

précédents font-ils référence ? Comment la caractériser et la situer par rapport à la

géométrie de l’époque ?

1.4.2 La géométrie dans la géométrie des nombres de Min-

kowski

1.4.2.1 Quelques éléments pour caractériser la géométrie

Dans son compte rendu sur le premier livre de Minkowski Geometrie der Zahlen,

Eugène Cahen écrit à propos de la géométrie qui y est employée :

« Comme le titre de l’Ouvrage l’indique, c’est par des considérations géomé-

triques que l’auteur arrive à ses théorèmes ; mais ce sont des considérations

géométriques d’une espèce particulière316. »

La géométrie utilisée dans la géométrie des nombres semble donc perçue comme spéci-

fique.

Pour avoir une idée des thèmes privilégiés dans les recherches en géométrie au tournant

des XIXe et XXe siècles, nous reproduisons d’une part la table des matières du tome

III de l’édition française de l’Encyclopédie des sciences mathématiques pures et appli-

quées317 qui concerne la géométrie (voir la figure 1.9) ; d’autre part, la classification des

chapitres de géométrie du volume 26 de l’année 1895 du Jahrbuch über die Fortschritte

der Mathematik (voir la figure 1.10). Nous avons choisi le volume de 1895 car c’est

celui qui correspond à l’année avant la publication du livre Geometrie der Zahlen, de

plus la classification pour les sections de géométrie ne change pas au moins jusqu’en

1902.

Une comparaison des deux montre que parmi les sujets importants se trouvent par

exemple la question des fondements, la géométrie analytique, la géométrie synthétique,

les coniques et les courbes dans le plan et l’espace (géométrie algébrique). Il est assez

difficile de placer la géométrie utilisée par Minkowski dans ce panorama. Il n’existe pas

de rubrique particulière pour l’étude de la convexité ou pour les questions de volume.

La nouvelle notion de distance introduite par Minkowski n’a pas non plus une place

316Cahen 1897 p.25.
317Molk 1911-1915.
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Fig. 1.9 – Table des matière du tome de géométrie de l’Encyclopédie

évidente dans ces différents thèmes. Dans l’Encyclopédie, les volumes 2, 3 et 4 traitent

de sujets différents de ceux de Minkowski et dans le volume 1 nous avons relevé seule-

ment 2 références à son travail318. Une concerne la définition de sa notion de distance,

l’autre rappelle les définitions qu’il a données de la convexité et d’une surface fermée.

Minkowski a aussi publié des articles classés comme de la géométrie dans ses oeuvres

complètes. En fait ces publications sont toutes postérieures à Geometrie der Zahlen et

les thèmes qui sont abordés sont tous liés aux notions géométriques qu’il a utilisées en

théorie des nombres. Pour essayer de préciser le statut de la géométrie de Minkowski,

nous pouvons donc regarder où ces articles sont classés dans le Jahrbuch. Sur les cinq

publications recensées dans ses oeuvres en géométrie, trois sont dans des sections de

géométrie du Jahrbuch : une dans la section 8 (Reine, elementare und synthetische

Geometrie) chapitre 1 (Prinzipien der Geometrie), une dans la section 8 chapitre 2

(Continuitätsbetrachtungen (Analysis Situs, Topologie)) et une dans la section 9 (Ana-

lytische Geometrie) chapitre 3 (Analytische Geometrie des Raumes). Les deux autres,

qui ne sont donc pas vues comme de la géométrie mais davantage de l’analyse, se

318Molk 1911-1915 p.124 et 183.
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Fig. 1.10 – Classification des chapitres de géométrie du tome 26 du Jahrbuch

trouvent dans la section 7, Differential -und Integralrechnung, chapitre 4 (Bestimmte

Integrale) et chapitre 7 (Variationrechnung). Ces situations diverses pour les articles

de géométrie de Minkowski témoignent bien de la difficulté à caractériser sa géométrie.

Leur place permet cependant de mettre en évidence le rôle de la continuité dans son

travail et la dimension analytique de sa géométrie.

Un autre aspect important de la géométrie de Minkowski est qu’il s’agit d’une géo-

métrie à n dimensions. Même lorqu’il se contente d’une présentation de ses résultats

en dimension 2 ou 3, il donne le plus souvent les indications nécessaires pour une gé-

néralisation en dimension quelconque. Tannery remarque dans son compte rendu sur

Diophantische Approximationen, après avoir dit que Minkowski présente sa méthode

en dimension 2 et 3 :

« Elle s’étend au cas de n variables, grâce au langage de la géométrie à n

dimensions, et M. Minkowski donne à l’occasion sur ce sujet des indications
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brèves et suffisantes319 ».

Ceci ne nous semble pas banal pour l’époque. En effet, comme le Jahrbuch et l’En-

cyclopédie le montrent, le traitement des dimensions 2 et 3 est un des principes qui

organise les classifications et leur étude occupe une grande place. D’autre part, la suite

du commentaire de Tannery à propos de la géométrie en dimension quelconque va aussi

dans ce sens

« il [Minkowski] a tenu à s’arrêter sur les deux cas [les dimensions 2 et 3]

où le langage géométrique n’est pas un simple verbalisme320. »

De même lorsque Cahen parle de « considérations géométriques d’une espèce particu-

lière » (voir la citation précédente de Cahen), il précise tout de suite « qu’il s’agit de

Géométrie à n dimensions321. »

Dans son étude sur les systèmes d’inégalités linéaires, Tinne Hoff Kjeldsen322 qua-

lifie aussi d’analytique la présentation que fait Minkowski de sa géométrie. Le travail

de Minkowski sur la convexité est décrit dans le contexte de la résolution des systèmes

d’inégalités linéaires, point de vue que Minkowski adopte lui-même à la fin du premier

chapitre de Geometrie der Zahlen. Minkowski relie l’étude des propriétés des convexes

à l’existence d’un hyperplan d’appui en tout point de leur frontière. Un tel hyperplan

sépare l’espace en deux, dont un contient tous les points du convexe, et chacun de ces

demi-espaces est défini par une inéquation linéaire. L’aspect analytique ne provient pas

dans ce cadre d’une insistance mise sur la continuité mais sur l’utilisation des équations

d’hyperplans323.

Le dernier point qui permet de qualifier d’analytique la géométrie développée par

Minkowski est l’introduction de sa nouvelle notion de distance. Des questions géomé-

triques sur un domaine convexe peuvent être ainsi reformulées de façon analytique avec

la fonction distance associée. Minkowski qualifie lui-même de traduction analytique le

passage aux fonctions distances dans sa lettre à Hermite de 1891 :

« La méthode géométrique de mon travail, traduite en langue purement

analytique, conduit à ce théorème324. . . »

En fait, pour Minkowski, ce qui caractérise le plus sa méthode géométrique n’est pas

l’application dans le cadre de la théorie des nombres des concepts et des méthodes qui

319Tannery 1908 p.314-315.
320Tannery 1908 p.315.
321Cahen 1897 p.25.
322Kjeldsen 2002 p.483.
323Dans cette tradition de la résolution des systèmes d’inégalités linéaires décrite dans Kjeldsen

2002, il semble que Minkowski ait une certaine postérité et ce problème finit par intégrer la théorie
de la convexité dans les années 1930.

324Minkowski 1891a p.209-210.
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sont fournis par le domaine des mathématiques qu’est la géométrie. C’est davantage

l’utilisation de la géométrie dans sa dimension intuitive et c’est ainsi que Minkowski

justifie le nom de géométrie des nombres donné à ce travail

« Geometrie der Zahlen habe ich diese Schrift betitelt, weil ich zu den Me-

thoden, die in ihr arithmetische Sätze liefern, durch räumliche Anschauung

geführt bin. Doch ist die Darstellung durchweg analytisch, wie dies schon

durch den Umstand geboten war, dass ich von Anfang an eine Mannigfal-

tigkeit belieger Ordnung betrachte325. »

1.4.2.2 Géométrie et Anschauung dans la géométrie des nombres

Le mot allemand Anschauung qui est utilisé par Minkowski pour caractériser l’em-

ploi qu’il fait de la géométrie pose des problèmes de traduction en français. Le plus

souvent il est traduit par intuition, mais venant du verbe anschauen qui signifie re-

garder, contempler, il s’agit en fait d’une intuition de nature visuelle. D’ailleurs il est

souvent associé chez Minkowski au terme raum et se traduit alors par intuition de

l’espace326.

D’après Joachim Schwermer327, l’importance de cette dimension intuitive apparaît déjà

en 1887 dans son discours pour son habilitation

« The ideas presented there were at the heart of Minkowski’s geometrical

thinking328. »

Cette pensée géométrique n’est pas seulement caractéristique de ses recherches mathé-

matiques mais semble traverser tout son travail. Peter Galison reprend cette idée de

« visual thinking » à propos du travail de Minkowski en mathématique et en physique

« Characteristic of Minkowski’s approach to scientific problems, both ma-

thematical and physical, is his visual-geometric Anschauung329. »

Les commentaires de Minkowski mettant en avant l’aspect intuitif de son travail

sont assez nombreux. Pensons d’abord au titre donné à l’exposé de la conférence de

Chicago en 1893 : Über Eigenschaften von ganzen Zahlen, die durch räumliche An-

schauung erschlossen sind330.

325« J’ai intitulé cet écrit ’Géométrie des nombres’ parce que j’ai été conduit aux méthodes qui y
fournissent des propositions arithmétiques grâce à l’intuition spatiale. Pourtant la représentation est
de bout en bout analytique comme c’était déjà offert par la circonstance que je considérais depuis le
début une multiplicité d’ordre quelconque. » Minkowski 1910 p.V.

326Il est d’usage dans la tradition philosophique kantienne de séparer Raumanschauung (intuition
de l’espace) de Zeitanschauung (intuition du temps). Les mathématiciens allemands du XIXe siècle
sont particulièrement imprégés de cette philosophie. Voir par exemple Rowe 1994 p.197.

327Voir Schwermer 1991, 2007.
328Schwermer 2007 p.487.
329Galison 1979 p.118.
330Sur les propriétés des nombres entiers qui sont dérivées de l’intuition de l’espace, Minkowski

1896c.
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Dès 1891, dans son article Über die positiven quadratischen Formen und über ketten-

bruchähnliche Algorithmen, alors que l’expression géométrie des nombres n’apparaît

pas encore, Minkowski parle de « anschauliche Auslegung des Aequivalenzbegriffs331 ».

Dans l’introduction d’un de ses cours le 28 octobre 1897, il remarque que la « geome-

trischer Anschauung » est la base de son approche de la théorie des nombres

« Zu ihr [die angewandte Zahlentheorie] kann man vielfach von geometri-

scher Anschauung zur leichteren Auffindung von Sätzen Gebrauch machen

und so entsteht ein Gebiet, welches zuerst in einzelnen Partien bei Gauss,

Dirichlet, Eisenstein, Hermite auftaucht und welchem ich den Namen Geo-

metrie der Zahlen gegeben habe. Es handelt sich von demselben also we-

sentlich um einen Gebrauch räumlicher Anschauung zur Aufdeckung von

Beziehungen für ganze Zahlen332 ».

Minkowski explique le nom de « Geometrie der Zahlen » donné à cette partie de son

travail par cette utilisation des possibilités de représentation qu’offre la géométrie

« Im folgenden möchte ich versuchen, in kurzen Zügen einen Bericht über ein

eigenartiges, zahlreicher Anwendungen fähiges Kapitel der Zahlentheorie zu

geben, ein Kapitel, vom dem Charles Hermite einmal als der “introduction

des variables continues dans la théorie des nombres" gesprochen hat. Einige

hervorstechende Probleme darin betreffen die Abschätzung der kleinsten

Beträge kontinuierlich veränderlicher Ausdrücke für ganzzahlige Werte der

Variablen.

Die in dieses Gebiet fallenden Tatsachen sind zumeist einer geometrischen

Darstellung fähig, und dieser Umstand ist für die in letzter Zeit hier erzielten

Fortschritte derart maßgebend gewesen, daß ich geradezu das ganze Gebiet

als die Geometrie der Zahlen bezeichnet habe333. »

Les réseaux, qui peuvent être représentés géométriquement et acquièrent ainsi un ca-

ractère intuitif, ont une place fondamentale dans la théorie développée par Minkowski

331« l’interprétation visuelle du concept d’équivalence », Minkowski 1891b p.288.
332« Pour elle (la théorie des nombres appliquée) on peut de multiples façons faire usage d’intuition

géométrique afin de trouver plus facilement des propositions et ainsi est né un domaine qui a d’abord
été initié pour des parties isolées par Gauss, Dirichlet, Eisenstein, Hermite et auquel j’ai donné le
nom de géométrie des nombres. Il s’agit donc essentiellement d’un usage de l’intuition spatiale pour
découvrir des relations sur les nombres entiers. » Minkowski cité dans Galison 1979 p.87.

333« Dans ce qui suit je voudrais essayer de donner à grands traits un rapport sur un chapitre spéci-
fique et susceptible de nombreuses applications de la théorie des nombres, un chapitre à propos duquel
Charles Hermite a parlé autrefois d’“introduction des variables continues dans la théorie des nombres”.
Certains problèmes importants concernent ici l’estimation des plus petites contributions d’expressions
variables continument pour des valeurs entières des variables.
Les faits intervenant dans ce domaine sont pour la plupart susceptibles d’une représentation géomé-
trique, et cette circonstance a été décisive pour les progrès obtenus ici dans les derniers temps, de sorte
que j’ai désigné le domaine entier comme la Géométrie des nombres. », Minkowski 1904b p.164.
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« In diesem und den nächsten Kapiteln sollen einige Eigenschaften des Zah-

lengitters entwickelt werden, die sich ebenso durch Anschaulichkeit aus-

zeichnen wie sie mannigfache wichtige Anwendungen zulassen334. »

Finalement, ce qui caractérise et donne une unité à l’ensemble des textes qui sont

regroupés sous le nom de géométrie des nombres est cette introduction de la géométrie

dans des questions de théorie des nombres. Mais ce que Minkowski entend ici par

géométrie est avant tout l’utilisation de représentations géométriques qui permettent

d’avoir une meilleure intuition des objets étudiés. Pour illustrer l’importance de cette

orientation dans le travail de Minkowski, citons une anecdote racontée par Galison

d’après un document que lui aurait fourni Lily Rüdenberg la fille de Minkowski. Vers

1907, un étudiant écrit une parodie du catalogue des cours proposés à Göttingen dans

lequel il se moque de Minkowski et de ses applications systématiques de la géométrie et

de la visualisation à de nombreuses disciplines scientifiques (particulièrement la théorie

des nombres) :

« H. Minkowski : Chemical Number Theory (self-advertisement). I can no

longer hold back from the mathematical world one of the most interes-

ting results of my application of number theory to chemistry. It concerns

the ‘periodic system’ of the elements which, as everybody knows, is vi-

sualized through the following curve. . . [Minkowski graphs atomic volume

against atomic weight.] The result becomes clear through the latest sur-

prising results of Hilbert. . .and draws on the function I introduce ear-

lier : ?(x), !(x), ;(x), = (x) which follows from. . .

∫ z(e)

z(a)

log
√

?(y)(z) dz .

My detailed textbook about these matters should appear in the course of

the century335. »

Cette dimension du travail de Minkowski prend sa place dans un mouvement plus

large en particulier à Göttingen336. Felix Klein prend position par rapport à ce qu’il

nomme l’arithmétisation des mathématiques

« il nous faut repousser cette idée que, dans la Science ainsi arithmétisée,

nous aurions, comme en un extrait concentré, l’ensemble total proprement

dit de la Mathématique existant déjà337. »

334« Dans ce chapitre et le suivant quelques propriétés du réseau de nombres doivent être développées
qui se laissent autant décrire intuitivement qu’elles offres de multiples et importantes applications. »
Minkowski 1910 p.73.

335Cité dans Galison 1979 p.111.
336Rowe 1989; Parshall et Rowe 1994, chapitre 4.
337Klein 1897 p.117.
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Il défend une conception des mathématiques dans lesquelles l’intuition a une place

importante à côté du raisonnement logique

« Les développements mathématiques qui tirent leur origine de l’intuition ne

peuvent d’autre part être admis comme possession définitive de la Science

que lorsqu’ils ont été ramenés à une forme logique rigoureuse. Réciproque-

ment, le traitement abstrait des relations logiques ne peut nous suffire, tant

que leur portée n’a pas été vivifiée à l’aide de chaque mode d’intuition

et tant que nous n’apercevons pas les combinaisons multiples qui relient

le schéma logique, dans le domaine que nous avons choisi, avec les autres

parties de nos connaissances338. »

Hilbert, souvent présenté comme formaliste, donne lui aussi un rôle à l’intuition par

exemple dans l’axiomatisation de la géométrie ou de la physique339.

Ce mode d’intervention de la géométrie conduit Minkowski à lui donner des fonc-

tions précises, dans certaines situations elle va être préférée à l’analyse. En effet, comme

le montre par exemple la comparaison du théorème sur les convexes dans les lettres à

Hermite et à l’occasion de la conférence de Chicago, Minkowski a le choix de présen-

ter son travail de façon géométrique ou plus analytique. Nous allons maintenant voir

qu’il semble que ce choix est guidé par les valeurs différentes que Minkowski attribue

à l’analyse et à la géométrie.

1.4.2.3 Les fonctions respectives de la géométrie et de l’analyse dans la

géométrie des nombres chez Minkowski

Nous avons déjà noté que les notions géométriques utilisées par Minkowski comme

les distances radiales, le volume, la convexité sont valables en dimension quelconque.

Cependant il fait une différence lorsqu’il expose son travail en dimension inférieure à

3 par rapport à une présentation faite en dimension n. Dans les petites dimensions

Minkowski préfère des présentations géométriques alors qu’il se tourne davantage vers

l’analyse lorsqu’il se place en toute généralité. Rappelons la fin de la citation de la page

135 extraite de Geometrie der Zahlen :

« Doch ist die Darstellung durchweg analytisch, wie dies schon durch den

Umstand geboten war, dass ich von Anfang an eine Mannigfaltigkeit belie-

ger Ordnung betrachte340. »

338Klein 1897 p.128.
339Voir Hilbert et Cohn-Vossen 1952; Boniface 2004; Corry 2000, 2002, 2006; Toepell 2005.
340Minkowski 1910 p.V.
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Toujours dans la Geometrie der Zahlen, il justifie de manière encore plus claire que la

nécessité d’une présentation analytique est liée à la question de la dimension :

« Ich bin zu meinen Sätzen durch räumliche Anschauungen gekommen [. . .]

Weil aber die Beschränkung auf eine Mannigfaltigkeit von drei Dimensionen

unthunlich erschien, so habe ich die Darstellung hier rein analytisch gefasst,

nur befleissige ich mich des Gebrauchs solcher Ausdrücke, die geeignet sind,

geometrische Vorstellungen wachzurufen341. »

Nous voyons que la question de la dimension est indissociable de celle de l’intuition.

Pour Minkowski, l’intuition de l’espace n’est possible qu’en dimension 3 d’où la présen-

tation analytique en dimension plus grande. Cependant, ce qui est exposé en dimension

quelconque est suggéré par l’intuition des phénomènes en dimension 3. Le vocabulaire

et les notions employées doivent donc rappeler cette origine intuitive qui se trouve dans

les représentations géométriques, possibles dans les dimensions 2 et 3. Cette remarque

est faite par Cahen dans son compte rendu sur le livre Geometrie der Zahlen :

« Dans le cas particulier de n = 3, la représentation géométrique rend

intuitif ce fait qu’il doit y avoir une relation entre le volume du corps et le

nombre maximum ou minimum de points du réseau qu’il contient342. »

La dimension plus intuitive qui est ainsi donnée à la théorie des nombres est aussi

soulignée par Klein en 1895

« la discipline qui, pendant bien longtemps, a semblé la plus étrangère à

l’intuition, je parle de la théorie des nombres, vient de prendre un nouvel

et brillant essor par l’introduction des méthodes intuitives entre les mains

de Minkowski et d’autres343. »

Nous avons déjà vu (voir page 92) que pour Klein une conséquence importante d’une

approche par des méthodes géométriques est qu’elles permettent de simplifier la théorie

à laquelle on s’intéresse.

Nous retrouvons ce thème de la simplicité dans le commentaire de Hilbert sur le théo-

rème de Minkowski sur les corps convexes. Hilbert met en avant la simplicité du principe

se trouvant derrière ce résultat par rapport à l’importance des problèmes qu’il permet

de traiter

« Minkowski succeeded in proving a theorem on lattices which has, despite

its simplicity, resolved many problems of Number Theory that could not be

treated by other methods344. »
341« Je suis arrivé à mes propositions par l’intuition spatiale [. . .] Mais parce que la limitation à une

multiplicité de dimension trois paraît inopportune, j’ai fait ici une présentation purement analytique,
je me suis seulement efforcé par l’usage d’expressions appropriées à rendre attentif aux représentations
géométriques. » Minkowski 1910 p.VI.

342Cahen 1897 p.26-27.
343Klein 1897 p.124.
344Hilbert et Cohn-Vossen 1952 p.41.
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Il est intéressant de noter dans cette citation que la simplicité n’est pas a priori une

valeur positive pour Hilbert. Il semble préférer juger de la qualité d’une méthode ou

d’une preuve par sa fécondité pour des recherches ultérieures :

« On ne juge pas en soi-même quelle est, parmi plusieurs démonstrations,

la plus simple et la plus naturelle ; il faut d’abord savoir si les principes in-

voqués sont susceptibles d’une généralisation et s’ils peuvent nous conduire

à d’autres recherches345. »

Minkowski commente aussi cet avantage des méthodes géométriques dans la conclusion

de Diophantische Approximationen

« die Einfachheit der später zu befolgenden geometrischen Methoden ins

rechte Licht zu setzen346. »

Cette simplicité vient en particulier du fait que les représentations géométriques per-

mettent de donner une image d’objets mathématiques abstraits

« Nunmehr entwarfen wir das geometrische Bild des Zahlengitters. [. . .]

Wir wandten uns weiter dem allgemeinen Begriffe der algebraischen ganzen

Zahlen zu. Wir erkannten das Zahlengitter als ein die Auffassung äußerst

erleichterndes Bild der Gesamtheit der ganzen Zahlen in einem algebrai-

schen Zahlkörper347 ».

Comme la géométrie permet de rendre plus simple et plus intuitive la théorie, Min-

kowski lui donne une fonction pédagogique. Le terme Anschauung porte en fait cette

dimension pédagogique depuis le début du XIXe siècle et la philosophie de l’éducation

de Johann Heinrich Pestalozzi348. L’utilisation de représentations géométriques permet

de faire comprendre des problèmes mathématiques difficiles même à des non spécialistes

« Daß Minkowski auch Nichtfachleuten durch die Heranziehung treffender

Gleichnisse und anschaulicher Bilder über schwierige mathematische Ge-

genstände vorzutragen und in ihnen eine Vorstellung von der Größe und

Erhabenheit unserer Wissenschaft zu erwecken wußte349 ».

La comparaison des présentations faites du théorème sur les convexes dans les lettres

à Hermite et à la conférence de Chicago et l’exposé de 1891 à Halle nous ont permis
345Hilbert 1991 p.VI.
346« de mettre dans leur vraie lumière la simplicité des méthodes géométriques à suivre ultérieure-

ment. » Minkowski 1907 p.234.
347« Jusqu’à présent nous esquissions l’image géométrique du réseau. [. . .] Nous nous tournions

ensuite vers le concept général des nombres entiers algébriques. Nous reconnaissions dans le réseau
une image de l’ensemble des entiers dans un corps de nombres algébriques facilitant extrêmement la
représentation », Minkowski 1907 p.234.

348Arnheim 1976; Bullynck 2006; Gray 1999 p.73.
349« que Minkowski savait exposer aussi à des non spécialistes des objets mathématiques difficiles

en ayant recours à des comparaisons frappantes et à des images intuitives et savait éveiller en eux une
représentation de la grandeur et du charme de notre science », Hilbert 1911 p.XXVIII.
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de voir que Minkowski fait le choix de la géométrie lorsqu’il s’adresse à des non spécia-

listes des thèmes qu’il traite (voir le paragraphe 1.3.1.5). Il se sert de la géométrie pour

communiquer sur son travail à une autre occasion, il s’agit du congrès international

des mathématiciens en 1904 à Heidelberg350. Il propose alors un exposé dans lequel sur

un certain nombre de théorèmes obtenus dans le cadre de la géométrie des nombres.

Chaque résultat présenté est systématiquement accompagné d’un dessin illustrant la

démarche employée pour sa démonstration, si bien que dans les oeuvres complètes de

Minkowski sur les 18 pages dans lesquelles est reproduit cette conférence 8 sont occu-

pées par ces représentations géométriques. Par exemple, la preuve du théorème sur les

corps convexes à centre est illustrée par la figure 1.11.

Fig. 1.11 – Illustration utilisée par Minkowski en 1904 à Heidelberg.

Minkowski rejoint à nouveau une préoccupation de Hilbert. Son livre Anschauliche

Geometrie, publié en 1932, est issu d’un cours donné à Göttingen dans les années 1920-

1921 et retravaillé ensuite par Cohn-Vossen. Dans la préface où il explique que son

objectif est justement de présenter la géométrie dans ses aspects visuels et intuitifs,

Hilbert remarque :

« Thus a presentation of geometry in large brushstrokes, so to speak, and

based on the approach through visual intuition, should contribute to a more
350Minkowski 1904b.
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just appreciation of mathematics by a wider range of people than just the

specialists351. »

Minkowski n’est donc pas le seul à voir dans la géométrie un moyen de rendre plus

intuitif et simplifier les mathématiques. Cependant sa démarche est perçue comme ori-

ginale à cause de la place qu’elle occupe dans l’heuristique. Cette originalité est relevée

dans l’Encyclopédie des sciences mathématiques où les auteurs comparent justement

l’emploi de la géométrie en théorie des nombres chez Klein et chez Minkowski :

« Comme H. Minkowski, F. Klein a cherché à représenter géométriquement

d’une façon systématique les principaux résultats de la théorie des nombres

en particulier ceux qui se rapportent aux formes quadratiques binaires. Ses

recherches diffèrent de celles de H. Minkowski en ce qu’elles ont moins servi

à trouver des résultats nouveaux qu’à rendre intuitifs et plus simples des

résultats déjà connus352. »

Nous retrouvons que l’idée commune aux deux mathématiciens que la géométrie facilite

l’intuition et simplifie mais pour Minkowski elle joue aussi un rôle dans la découverte

de « nouveaux résultats ». Cet aspect de l’intervention de la géométrie dans le travail

de Minkowski est aussi commenté par Klein qui note à propos de la conférence faite à

Chicago :

« La géométrie y est employée directement à développer de nouvelles vérités

arithmétiques353 ».

Cette idée que l’intuition apportée par la géométrie est à l’origine de la découverte

pour le mathématicien apparaît à plusieurs reprises chez Minkowski354. Par exemple,

Il ouvre sa conférence à Chicago avec la phrase

« Dans la théorie des nombres, comme dans chacun des autres domaines

de l’Analyse, la découverte a lieu fréquemment au moyen de considérations

géométriques, tandis qu’ensuite les vérifications analytiques sont peut-être

seules communiquées355. »

Dans un premier temps, la recherche de théorèmes nouveaux est donc guidée par la géo-

métrie qui intervient à travers la représentation qu’elle permet des problèmes étudiés.

Ensuite seulement la présentation analytique est élaborée pour donner des preuves des

résultats dans toute leur généralité (dimension quelconque) ou encore pour communi-

quer son travail à l’intention des spécialistes des mathématiques.

351Hilbert et Cohn-Vossen 1952 p.iii-iv.
352Cahen et Vahlen 1908 p.120.
353Klein 1898 p.58.
354Voir en particulier le début des citations déjà données page 136 et page 139.
355Minkowski 1896c p.393.
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1.4.3 La place de la géométrie des nombres dans les mathéma-

tiques

1.4.3.1 La géométrie des nombres à la frontière entre plusieurs disciplines

La géométrie des nombres est considérée comme appartenant à la théorie des

nombres. Nous le voyons à travers les commentaires des mathématiciens à son su-

jet mais aussi parce que les articles de Minkowski que nous avons présentés sont classés

dans la section du Jahrbuch qui concerne l’arithmétique. Mais nous avons vu que la

géométrie des nombres est en interaction avec de nombreux thèmes de la théorie des

nombres : la théorie arithmétique des formes, l’approximation diophantienne, les frac-

tions continues, les corps de nombres algébriques. . .

L’appartenance à l’arithmétique ne semble pas contestée certainement à cause des résul-

tats qu’elle permet d’obtenir et de son origine dans la théorie arithmétique des formes

quadratiques. Cependant la situation de la géométrie des nombres dans l’ensemble des

mathématiques n’est pas toujours aussi claire. Nous avons montré que la géométrie y

intervient de manière cruciale mais l’analyse aussi y trouve une place importante. C’est

d’ailleurs l’analyse qui est mis d’abord en avant par Minkowski quand il présente son

livre Geometrie der Zahlen

« Diese Schrift enthält eine neue Art Anwendungen der Analysis des Unend-

lichen auf die Zahlentheorie356 ».

Minkowski parle aussi de présentation analytique de son travail lorsqu’il est exprimé à

l’aide de fonctions ϕ vérifiant les trois propriétés énoncées par exemple dans les lettres

à Hermite (voir les conditions page 82).

En fait, quelle que soit la méthode employée, la présentation adoptée ou encore le pro-

blème étudié, la géométrie paraît être toujours présente dans le travail de Minkowski sur

la géométrie des nombres. Parfois parce qu’il s’agit de recherches qu’il exprime de façon

purement géométrique, c’est par exemple le cas lors de la conférence de Chicago357. Mais

le plus souvent nous l’avons vu, la géométrie est associée à un autre point de vue ana-

lytique ou arithmétique. La géométrie se trouve alors à l’arrière plan et peut toujours

être mobilisée pour donner un autre cadre dans lequel peut s’interpréter le travail en

cours. Quand Minkowski décrit à Hermite les fonctions ϕ (qu’il appelle à d’autres occa-

sions distances radiales) en termes analytiques, toutes les propriétés analytiques de ces

fonctions ont une interprétation géométrique : ϕ(x) = ϕ(−x) correspond à la symétrie

du corps étalon par rapport à un point, l’inégalité ϕ(x+y) ≤ ϕ(x)+ϕ(y) à sa convexité

etc. . . Quand il s’intéresse à des problèmes arithmétiques sur les formes quadratiques

là-encore la traduction géométrique n’est jamais loin. La question du minimum de ces

356« Cet écrit contient une nouvelle sorte d’applications de l’analyse de l’infini à la théorie des
nombres », Minkowski 1910 p.IV.

357Minkowski 1896c.

143



CHAPITRE 1 1.4

formes pour des valeurs entières des variables a une signification en termes de distance

entre les points d’un réseau. L’équivalence et la réduction sont étudiées en introduisant

un domaine dont les propriétés géométriques (la convexité) fournissent un cadre pour

travailler sur les formes quadratiques réduites.

Il apparaît donc que la géométrie des nombres est une théorie où se rencontrent ana-

lyse, arithmétique et géométrie mais où la géométrie occupe une place particulière en

étant toujours adossée aux autres domaines.

1.4.3.2 La question de l’unité des mathématiques

En 1893, Klein considère que la théorie des nombres est à part du reste des mathé-

matiques

« La théorie des nombres est regardée d’habitude comme quelque chose

d’excessivement difficile et abstrait, et n’ayant presque aucun rapport avec

les autres branches de la science mathématique358. »

Minkowski voit lui les mathématiques divisées en deux grandes parties : d’un côté le

domaine du continu avec la géométrie et l’analyse, d’autre part le domaine du discret

avec l’arithmétique359. Cette opposition entre discret et continu semble très importante

pour Minkowski. L’introduction des variables continues est pour lui une étape impor-

tante dans le travail en théorie des nombres360, dans les toutes premières phrases de

Diophantische Approximationen il revient sur cette question :

« Der Urquell aller Mathematik sind die ganzen Zahlen. Dies verstehe ich

nicht bloß in dem althergebrachten Sinne, daß auch der Begriff des Konti-

nuums sich aus der Betrachtung diskreter Mengen ableitet361. »

Mais Minkowski manifeste sa croyance en l’unité préétablie entre les disciplines des ma-

thématiques. Dans la géométrie des nombres, il fait un lien entre des objets du domaine

du continu (le volume, l’intégral) et des objets de nature discrète (les nombres entiers,

le réseau) et cela en particulier à travers le théorème sur les points d’un réseau dans

un corps convexe à centre. Ceci a donc pour conséquence pour Minkowski de rétablir

l’unité des mathématiques

358Klein 1898 p.58.
359Cette séparation entre ces deux domaines est en partie héritée de Gauss. Avant lui la théorie

des nombres était vue comme appartenant à l’analyse (analyse s’oppose ici à synthèse et ne désigne
pas le domaine des mathématiques qui se développe par la suite autour, par exemple, de la notion de
fonction). Voir Goldstein et Schappacher 2007a p.21-22.

360Voir la citation dans laquelle il revient sur cet aspect du travail d’Hermite page 136.
361« La source de toutes les mathématiques sont les nombres entiers. Je n’entends pas cela seulement

dans l’ancienne acception selon laquelle le concept de continu lui-même dérive de la considération
d’ensembles discrets. » Préface de Minkowski 1907.
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« daß es sich hier um Fragen handelt, welche die Fundamente der Größen-

lehre berühren, welche der Auffassung leicht zugänglich sind und welche

uns die Disziplinen der Algebra, Arithmetik, Geometrie in harmonischer

Wechselwirkung zeigen362. »

L’unité est donc obtenue par l’introduction d’un point de vue géométrique qui permet

de réunir des résultats arithmétiques dispersés

« welche Fülle der verschiedenartigsten und tiefliegendsten arithmetischen

Wahrheiten werden in diesem Hauptwerke Minkowskis durch das geome-

trische Band gehalten und verknüpft363 ! »

Minkowski n’est pas le seul mathématicien du XIXe siècle à poser la question de

l’unité des mathématiques. Dans la préface du Zahlbericht, Hilbert revient sur les liens

entretenus par différents domaines des mathématiques en plaçant au centre la notion

de corps de nombres algébriques. Hermite, qui est avant tout un analyste, pense que

c’est l’analyse qui permet de réaliser l’unité364

« Dans cette immense étendue de recherches qui nous a été ouverte par

M. Gauss, l’Algèbre et la Théorie des Nombres, me paraissent devoir se

confondre dans un même ordre de notions analytiques, dont nos connais-

sances actuelles ne nous permettent pas encore de nous faire une juste

idée365. »

Le fait qu’Hermite réussit à surmonter cette opposition entre discret et continu par

le recours à l’analyse est aussi souligné par Henri Poincaré lors du jubilé scientifique

d’Hermite en 1892 :

« La théorie des nombres cessait d’être un dédale grâce à l’introduction

des variables continues sur un terrain qui semblait réservé exclusivement à

la discontinuité. L’analyse sortant de son domaine vous amenait ainsi un

précieux renfort366. »

Cette recherche de l’unité peut cependant prendre différentes formes selon les mathé-

maticiens. Cela peut par exemple se traduire par des échanges de méthodes ou de

concepts entre les domaines367. Avec Minkowski, des notions empruntées à un domaine

(par exemple la convexité à la géométrie) sont utilisées dans un autre (la théorie des

362« qu’il s’agit ici de questions qui touchent aux fondements de la théorie des grandeurs qui sont
d’accès facile à la compréhension et qui nous montrent les disciplines de l’algèbre, de l’arithmétique
et de la géométrie en interaction harmonieuse. » Minkowski 1904b p.173.

363« quelle quantité de vérités arithmétiques variées et profondes sont contenues, entrelacées par le
lien géométrique, dans ce grand ouvrage de Minkowski ! » Hilbert 1911 p.XIV.

364Voir Goldstein 2008.
365Hermite 1850 p.291.
366Poincaré 1893.
367Goldstein et Schappacher 2007a p.53 où des exemples sont donnés.
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nombres). Mais ce qui caractérise surtout l’unité, c’est la présence constante de la géo-

métrie dans sa dimension intuitive qui englobe l’ensemble de la théorie.

Il est intéressant de noter que Minkowski croit aussi en l’harmonie préétablie entre les

mathématiques et la physique368 et que dans ce cas l’unité doit à nouveau provenir de

la géométrie. Il s’agit cette fois de géométriser la théorie de la relativité dans laquelle

Minkowski introduit la notion d’espace-temps369. Cette question de l’harmonie est une

conséquence de sa théorie qu’il met en avant dans la conférence de Cologne en 1908 :

« ceux qu’effraie ou que chagrine l’idée de changer quelque chose aux vieilles

conceptions habituelles pourront se réconcilier avec lui, à la pensée d’une

harmonie préétablie entre la Mathématique pure et la Physique370. »

Conclusion

Le résultat central de la géométrie des nombres chez Minkowski est le théorème

sur l’existence d’un point d’un réseau dans un corps convexe possédant un centre de

symétrie

« dasjenige Theorem, welches mit Recht als das Fundamentaltheorem der

Geometrie der Zahlen bezeichnet werden kann, weil es fast in jede Unter-

suchung auf diesem Gebiete hineinspielt371. »

Ce théorème est emblématique de la géométrie des nombres et lui donne en partie son

identité. C’est un résultat avec des applications nombreuses dans divers domaines de

la théorie des nombres, mais c’est aussi le paradigme pour une méthode. La démarche

utilisée dans sa preuve (illustrée par la figure 1.11) est en effet reprise dans d’autres

situations comme par exemple pour démontrer l’existence d’entiers x, y tels que

|(ξ − ξ0)(η − η0)| ≤ 1

4
,

où ξ et η sont des formes linéaires de déterminant 1 (voir page 113).

Un autre aspect essentiel de la géométrie des nombres de Minkowski est l’utilisation

qui est faite de la géométrie. La géométrie qui intervient dans le travail de Minkowski

est très spécifique. La notion de convexité est cruciale et d’une façon plus générale il

368Voir Galison 1979.
369Walter 1996 p.248.
370Minkowski 1909a p.517.
371« ce théorème qui peut avec droit être décrit comme le théorème fondamental de la géométrie

des nombres parce qu’il intervient dans presque toutes les recherches de ce domaine. » Minkowski

1904b p.164.
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utilise une géométrie qui peut être traduite analytiquement (par exemple en termes de

fonctions distances ou de systèmes d’inégalités). Mais ce qui est encore plus caracté-

ristique dans la géométrie des nombres de Minkowski, c’est l’emploi de représentations

géométriques pour les phénomènes qui sont étudiés. Ce mode d’intervention de la géo-

métrie amène Minkowski à l’utiliser dans des situations précises et en particulier pour

favoriser l’intuition. Finalement, tout ce discours autour de l’Anschauung fonde pour

Minkowski le lien de cette nouvelle discipline qu’il a baptisée géométrie des nombres.

Hilbert revient sur tous ces aspects du travail de Minkowski en 1909 :

« Dieser Beweis eines tiefliegenden zahlentheoretischen Satzes ohne rech-

nerische Hilfsmittel wesentlich auf Grund einer geometrisch anschaulichen

Betrachtung ist eine Perle Minkowskischer Erfindungskunst. [...]

Aber der obige Satz vom Volumen des Eichkörpers, den ich einen der an-

wendungsreichsten der Arithmetik nannte, bildet doch nur das Anfangsglied

einer Reihe weiterer auf geometrischer Anschauung fußender Schlußweisen

von weittragender Bedeutung372. »

Des critères de type internalistes apparaîssent donc bien adaptés à la définition de la

géométrie des nombres comme discipline. Elle est caractérisée par des objets (distances,

convexes), des résultats clés (les théorèmes sur les convexes), un système de preuves (le

raisonnement dans la démonstration du théorème de Minkowski sur les convexes), des

méthodes privilégiées (géométriques) et une systématique (théorème fondamental et

ses applications). De plus, la discipline est intégrée au reste de la théorie des nombres

par ses applications à des sujets variés comme l’approximation diophantienne ou les

nombres algébriques ; mais aussi au reste des mathématiques par ses liens avec la géo-

métrie, l’analyse et l’arithmétique.

Par contre, d’un point de vue social, la géométrie des nombres ne paraît pas être une

construction collective. Elle n’est pas élaborée par un groupe de mathématiciens qui

partageraient un paradigme commun, Minkowski participe seul au développement de

la discipline. Ceci est bien illustré par les sources de Minkowski sur la géométrie des

nombres que nous avons présentées au paragraphe 1.2. Les références de Minkowski sur

la géométrie des nombres sont des mathématiciens décédés quand il commence à tra-

vailler sur ce sujet (Gauss, Dirichlet), ou bien qui se sont tournés vers d’autres thèmes

de recherche (Hermite).

En revanche, Minkowski partage avec d’autres mathématiciens comme Hilbert ou Klein

372« Cette preuve d’un théorème profond de théorie des nombres sans moyen calculatoire, reposant
essentiellement sur une considération géométrique intuitive est une perle de l’art heuristique de Min-
kowski. [. . .]
Mais la proposition ci-dessus sur le volume d’un corps étalon, que je nomme l’une des riches en appli-
cation de l’arithmétique, ne forme pourtant que le début d’une série de plus vastes conclusions basées
sur l’intuition géométrique et d’une grande portée. » Hilbert 1911 p.X-XI et p.XIII.
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une conception commune sur l’organisation d’une discipline. Par exemple, dans le Zahl-

bericht, Hilbert met au centre de l’étude des nombres algébriques la notion de corps

de nombres. Il privilégie certaines méthodes (par exemple celle de Hurwitz-Kronecker

devant celle de Dedekind pour la preuve de la décomposition d’un idéal en produit

d’idéaux premiers) et il offre un traitement systématique de la théorie. Il y a aussi

des points communs dans la manière dont Hilbert et Minkowski envisagent l’enseigne-

ment de leurs travaux respectifs. Dans les cours, la théorie des corps de nombres est

développée dans les cas particuliers des corps quadratiques et cubiques par Hilbert et

ses élèves373. De même, dans Diophantische Approximationen, Minkowski insiste sur la

géométrie des nombres en dimension 2 et 3.

Les échelles d’analyse sont ici pertinentes pour voir à quels niveaux les facteurs collec-

tifs ou intellectuels agissent dans la construction de la géométrie des nombres en tant

que discipline.

Ce premier chapitre était centré sur la pratique mathématique de Minkowski. Avec

le chapitre suivant, nous passons à un autre niveau en analysant la production collective

de recherche sur la géométrie des nombres.

373Schappacher 2005 p.701 et 704.
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Chapitre 2

Trois terrains d’observation pour

repérer la géométrie des nombres

après Minkowski : le Jahrbuch, les

livres, l’Enzyklopädie

Sommaire

2.1 Un premier repérage dans le Jahrbuch . . . . . . . . . . . . 151

2.2 Les livres consacrés à la géométrie des nombres . . . . . . 164
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Une question qui surgit rapidement lorsque l’on essaie de faire l’histoire d’une disci-

pline scientifique est celle de ses limites. Nous devons délimiter la recherche pertinente

effectuée sur le sujet, repérer les thèmes mathématiques qui relèvent de la discipline ou

encore les mathématiciens qui participent à son développement.

Pour les mathématiques deux méthodes ont principalement été utilisées par les histo-

riens. Nous disposons de plusieurs classifications comme par exemple celle du Jahrbuch

über die Fortschritte der Mathematik entre 1868 et 1942, celle de l’index du répertoire

bibliographique des sciences mathématiques de 1893 à 1916 ou bien maintenant celle

des Mathematical Reviews. Ces classifications qui organisent les connaissances mathé-

matiques en disciplines, sous-disciplines etc, fournissent une première approche pour

aborder les questions précédentes.
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Ces classifications, qui sont en fait le reflet du point de vue d’un spécialiste ou d’un

groupe de spécialistes, posent cependant des problèmes : elles bougent dans le temps,

elles ne sont pas toutes équivalentes1 et un même vocabulaire à différentes époques

peut cacher des réalités diverses2.

Une autre stratégie consiste justement à regarder comment les spécialistes caracté-

risent la discipline. Le problème avec le point de vue des spécialistes est qu’il n’est pas

toujours le même : il change d’un mathématicien à l’autre, d’une époque à une autre

et pour un même scientifique il évolue aussi parfois au cours de sa carrière. De plus,

la manière avec laquelle le spécialiste se repère à l’intérieur des disciplines mathéma-

tiques n’est pas nécessairement opératoire pour l’analyse historique. Pour citer un cas

extrême, voyons ce que dit André Weil à propos de la théorie des nombres :

« Perhaps, before I go on, I ought to say something about what number-

theory is. Housman, the English poet, once got one of those silly letters

of inquiry from some literary magazine, asking him and others to define

poetry. His answer was “If you ask a fox-terrier to define a rat, he may

not be able to do it, but when he smells one he knows it." When I smell

number-theory I think I know it, and when I smell something else, I think

I know it too3. »

Tout cela témoigne de la difficulté à délimiter une discipline scientifique particulière.

Comme cela a été rappelé dans l’introduction, les travaux sur la notion de discipline

scientifique ont mis en évidence deux types de facteurs dans la définition d’une disci-

pline. D’une part, des facteurs sociaux et institutionnels (journaux spécialisés, postes

universitaires, organisation de séminaires ou de conférences, soutien financier alloué à

la discipline etc), d’autre part, des critères scientifiques : la discipline est caractérisée

par un certain nombre de concepts fondamentaux

« To mathematicians a theory is a collection of ideas relating to mathema-

tical objects4. »

Par exemple pour la théorie des nombres :

« The higher arithmetic, or the theory of numbers, is concerned with the

properties of the natural numbers 1, 2, 3, . . .5 »

C’est pour déterminer ces aspects de la définition de la discipline que l’opinion des

spécialistes est sollicitée et que les classifications des journaux sont utilisées.

1Voir Goldstein 1999 p.198-199 pour une illustration des différences entre des classifications.
2Gispert 1991 p.76-77.
3Weil 1974 p.280.
4Fisher 1966-1967 p.137.
5Davenport 1952 p.7.
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Dans ce chapitre, trois indicateurs sont mobilisés pour repérer la géométrie des

nombres après le travail de Minkowski : d’abord le Jahrbuch über die Fortschritte der

Mathematik qui doit donner un accès à la production de recherche sur ce sujet dans

la première moitié du XXe siècle ; ensuite, les manuels sur la géométrie des nombres

publiés après 1950 ; enfin la synthèse de l’Enzyklopädie der mathematischen Wissen-

schaften mit Einschluss ihrer Anwendungen. Les deux derniers fourniront un regard

rétrospectif sur la période de recherche qui nous intéresse ici.

2.1 Un premier repérage dans le Jahrbuch

La première source que nous utilisons pour étudier les développements de la géo-

métrie des nombres à partir du travail de Hermann Minkowski est le Jahrbuch über die

Fortschritte der Mathematik. En effet, il propose un recensement de tous les articles et

livres de mathématiques publiés à partir de 18686 et jusqu’en 1942. Les articles sont

classés par thèmes d’abord dans des « Abschnitte », comme par exemple Geschichte

und Philosophie ou bien Algebra7 qui sont elles-mêmes divisées en chapitres (Capitel

1 : Geschichte, Capitel 2 : Philosophie) qui peuvent être à leur tour organisés avec

différentes parties.

Le Jahrbuch semble donc être un outil particulièrement efficace pour repérer les

travaux effectués dans un domaine précis des mathématiques ce qui est ici notre ob-

jectif8. Nous allons cependant voir qu’un certain nombre de difficultés apparaissent et

qu’elles vont nous amener à faire des choix qui doivent conduire à s’interroger sur la

signification d’un tel recensement, ses limites et sur l’image qu’il produit de la géomé-

trie des nombres.

Le premier choix à faire, qui n’est pas spécifique à l’utilisation du Jahrbuch, est de

savoir en quelle année commencer le dépouillement. Si nous regardons les commentaires

faits par des mathématiciens sur la géométrie des nombres au cours du XXe siècle, tous

s’accordent pour situer sa naissance dans le travail de Minkowski. Dans ses Gesam-

melte Abhandlungen9, qui sont publiées en 1911, une partie regroupe ses travaux sur la

géométrie des nombres et le premier article sur ce sujet est de 1891, c’est donc à cette

date que nous avons choisi de débuter le recensement dans le Jahrbuch.

6Le premier volume est publié en 1871.
7Comme nous le verrons la classification change pendant la période où le Jahrbuch est publié, ces

exemples et les suivants sont issus pour l’instant du volume 1.
8Pour un autre exemple de repérage d’un courant de recherche scientifiques (les théories unitaires)

qui utilise entre autre le Jahrbuch voir Goldstein et Ritter 2003.
9Minkowski 1911.
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Nous devons ensuite déterminer dans quelles rubriques du Jahrbuch aller chercher les

textes qui concernent la géométrie des nombres. Voyons pour cela quelle classification

il propose en 1891.

2.1.1 La classification du Jahrbuch en 1891

Le premier niveau de classement est comme nous l’avons dit les « Abschnitte ». Le

volume de l’année 1891 en compte douze :

– Erster Abschnitt : Geschichte und Philosophie

– Zweiter Abschnitt : Algebra

– Dritter Abschnitt : Niedere und höhere Arithmetik

– Vierter Abschnitt : Combinationslehre und Wahrscheinlichkeitsrechnung

– Fünfter Abschnitt : Reihen

– Sechster Abschnitt : Differential- und Integralrechnung

– Siebenter Abschnitt : Functionentheorie

– Achter Abschnitt : Reine, elementare und synthetische Geometrie

– Neunter Abschnitt : Analytische Geometrie

– Zehnter Abschnitt : Mechanik

– Elfter Abschnitt : Mathematische Physik

– Zwölfter Abschnitt : Geodäsie, Astronomie, Meteorologie

Si nous regardons quelques définitions de la géométrie des nombres données par des

mathématiciens il apparait qu’elle est considérée comme faisant partie de la théorie des

nombres :

« The geometry of numbers is a branch of number theory10 ».

« The geometry of numbers deals essentially with an arithmetical ques-

tion11 ».

« In the geometry of numbers, we treat a general class of problems in number

theory12 ».

Nous nous intéressons donc plus particulièrement à la troisième section Niedere und

höhere Arithmetik qui est elle-même divisée en trois chapitres :

– Capitel 1 : Niedere Arithmetik

– Capitel 2 : Zahlentheorie

A. Allgemeines

B. Theorie der Formen

– Capitel 3 : Kettenbrüche

10Olds et al. 2000 p.xiii.
11Mordell 1961 p.89-90.
12Davenport 1948.
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Les travaux de Minkowski sur la géométrie des nombres étant issus de son intérêt

pour l’étude arithmétique des formes, nous nous attendons à trouver la géométrie des

nombres dans la section B du chapitre 2. Mais nous remarquons que la géométrie des

nombres n’apparait pas de façon explicite dans la classification de cette troisième partie

et elle est même absente de la classification de tout le volume de 1891. Cela n’a rien

d’étonnant car le travail de Minkowski sur ce sujet commence juste et c’est lui qui bap-

tise ainsi cette théorie. Ce qui est en revanche plus singulier, c’est que cette situation

va se prolonger jusqu’au volume 46 des années 1916-1918. Pendant cette période, il

n’est donc pas possible de trouver les textes concernant la géométrie des nombres en

cherchant ce thème dans la classification. Nous pouvons par contre essayer d’adopter

la démarche inverse : partir de textes considérés comme appartenant à la géométrie des

nombres et voir où ils sont classés dans le Jahrbuch et ainsi repérer les rubriques de la

classification pertinentes pour notre sujet.

Quels textes suffisamment représentatifs de la géométrie des nombres peuvent nous ser-

vir de témoins ? À nouveau nous pouvons utiliser le fait que Minkowski est vu comme

l’origine incontestée de la géométrie des nombres. Nous allons reprendre ses articles

classés comme de la géométrie des nombres dans ses Gesammelte Abhandlungen puis

les situer dans la classification du Jahrbuch.

2.1.2 Les articles de Minkowski sur la géométrie des nombres

Dans ses Gesammelte Abhandlungen le travail de Minkowski est séparé en cinq

grands thèmes de recherche :

– Zur Theorie der quadratischen Formen

– Zur Geometrie der Zahlen

– Zur Geometrie

– Zur Physik

– Rede auf Dirichlet

Les articles recensés dans la partie sur la géométrie des nombres sont les suivants :

(1) « Über die positiven quadratischen Formen und über kettenbruchähnliche Algo-

rithmen », Journal für die reine und angewandte Mathematik, Bd. 107, S.278-297,

1891.

(2) « Théorèmes arithmétiques (Extrait d’une lettre de M. H. Minkowski à M. Her-

mite », Comptes rendus de l’Académie des Sciences, Paris, t.112, p.209-212, 1891.
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(3) « Über Geometrie der Zahlen », Verhandlungen der 64. Naturforscher- und Ärz-

teversammlung zu Halle, 1891, S.13, und Jahresbericht der Deutschen Mathematiker-

Vereinigung, Bd. 1, S.64-65, 1892.

(4) « Extrait d’une lettre adressée à M. Hermite », Bulletin des Sciences mathéma-

tiques, 2e série, t.XVII, p.24-29, 1893.

(5) « Über Eigenschaften von ganzen Zahlen, die durch räumliche Anschauung

erschlossen sind », Mathematical Papers read at the international Mathemati-

cal Congress held in connection with the world’s Columbian Exposition Chicago,

1893, p.201-207 ; traduction en français : « Sur les propriétés des nombres entiers

qui sont dérivées de l’intuition de l’espace », de L. Laugel, Nouvelles Annales de

mathématiques, 3e série, t.XV, p.393-403, 1896.

(6) « Zur Theorie der Kettenbrüche », traduction en français de L. Laugel : « Gé-

néralisation de la théorie des fractions continues », Annales de l’Ecole Normale

supérieure, 3e série, t.XIII, p.41-60, 1896.

(7) « Ein Kriterium für die algebraischen Zahlen », Nachrichten der K. Gesellschaft

der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, 1899, S.64-

88.

(8) « Zur Theorie der Einheiten in den algebraischen Zahlkörpern », Nachrichten

der K. Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische

Klasse, 1900, S.90-93.

(9) « Über die Annäherung an eine reelle Größe durch rationale Zahlen », Mathe-

matische Annalen, Bd. 54, S.91-124, 1901.

(10) « Quelques nouveaux théorèmes sur l’approximation des quantités à l’aide de

nombres rationnels », Bulletin des Sciences mathématiques, 2e série, t.XXV, p.72-

76, 1901.

(11) « Über periodische Approximationen algebraischer Zahlen », Acta Mathema-

tica, Bd. 26, S.333-351, 1902.

(12) « Dichteste gitterförmige Lagerung kongruenter Körper », Nachrichten der

K. Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische

Klasse, 1904, S.311-355.
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(13) « Zur Geometrie der Zahlen », Verhandlungen des III. Internationalen Mathe-

matiker-Kongresses, Heidelberg, 1904, S.164-173.

(14) « Diskontinuitätsbereich für arithmetische Äquivalenz », Journal für die reine

und angewandte Mathematik, Bd. 129, S.220-274, 1905.

Remarquons d’abord que (12) ne semble pas avoir été recensé dans le Jahrbuch.

Tous les autres articles sont bien dans la troisième partie concernant l’arithmétique

conformément aux définitions de la géométrie des nombres que nous avons vues. En-

suite, 7 articles (3, 4, 5, 7, 8, 11 et 13) sont dans la section A. Allgemeines du chapitre

2 Zahlentheorie, 5 articles (1, 2, 9, 10 et 14) sont dans la section B. Theorie der Formen

de ce même chapitre et enfin 1 article (6) est dans le chapitre 3 Kettenbrüche.

Cette répartition n’est pas vraiment surprenante, les articles exposant des principes

généraux de la géométrie des nombres sont dans les généralités avec ceux qui sont

en liaison avec la théorie des corps de nombres algébriques, théorie qui n’a pas non

plus de rubrique autonome. Les articles traitant des formes quadratiques mais aussi

de l’approximation des nombres rationnels sont dans Théorie des formes. La présence

des résultats concernant l’approximation dans cette partie s’explique par le fait que

les méthodes développées par Minkowski sur ce sujet sont dans la tradition du travail

d’Hermite et utilisent les théorèmes sur les minima des formes quadratiques.

Ce premier repérage de quelques articles montre une première difficulté importante

pour ce recensement qui est la variété des thèmes pouvant être abordés en liaison avec

la géométrie des nombres, problème sur lequel nous aurons l’occasion de revenir.

2.1.3 La géométrie des nombres dans le Jahrbuch entre 1891 et

1915

Le relevé des articles de Minkowski nous amène à chercher les textes sur la géométrie

des nombres dans les chapitres 2 et 3 de la troisième partie du Jahrbuch, partie pour

laquelle la classification ne change pas sur la période 1891-1915. Dans ces chapitres,

nous avons relevé les articles ou les livres13 pour lesquels Minkowski ou la géométrie

des nombres sont cités soit dans le titre soit dans le résumé proposé par le Jahrbuch.

Les publications qui satisfont à ces critères sont données à la fin de ce chapitre (voir

page 171).

13Les ouvrages généraux sur les mathématiques ou la théorie des nombres mais qui ne sont pas
consacrés exclusivement à la géométrie des nombres ont été exclus.
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Cette première liste d’articles permet déjà de faire quelques commentaires. D’abord

pour une période qui s’étend sur 25 ans nous obtenons 17 articles consacrés à la géo-

métrie des nombres (hors ceux écrits par Minkowski lui-même) ce qui semble être assez

peu. Pour un point de comparaison les données fournies par Catherine Goldstein14

permettent d’estimer que le nombre total d’articles recensés par le Jahrbuch sur cette

période 1891-1915 dans les chapitres qui nous ont ici intéressés est d’environ 2100.

À nouveau nous pouvons voir la diversité des thèmes abordés en liaison avec la géomé-

trie des nombres, par exemple des questions sur les formes linéaires (Hurwitz, Levi B.,

Remak, Humbert-Got, Fujiwara), les formes quadratiques (Voronoï, Uspenskij, Bri-

card), la théorie des corps de nombres algébriques (Weber-Wellstein, Levi F.), l’ap-

proximation diophantienne (Kakeya). Enfin certains articles abordent plusieurs de ces

thèmes (Châtelet, Blichfeldt). Parmi ces articles, celui de Hans Frederik Blichfeldt res-

sort car comme son titre l’évoque bien, c’est le seul qui place la géométrie des nombres

au centre de l’étude sans être seulement une nouvelle preuve d’un résultat de Min-

kowski ou bien l’application d’un théorème de Minkowski dans un autre domaine.

2.1.4 La géométrie des nombres dans le Jahrbuch à partir de

1916

À partir de 1916, la situation semble être plus favorable pour repérer la géométrie

des nombres dans le Jahrbuch car elle apparaît explicitement dans la classification.

Pendant la période précédente il n’y a pas eu de grands changements dans cette classi-

fication (à part quelques modifications dans différentes sections) mais dans le volume

46 des années 1916-1918 elle est profondément remaniée. Elle passe de douze sections

à huit, en particulier une grande section d’analyse est créée (la quatrième) et inclus

par exemple les probabilités, les séries, le calcul différentiel et intégral et la théorie des

fonctions qui étaient dans des sections autonomes. De même, la section cinq regroupe

toute la géométrie qui était séparée en deux parties et la section deux réunit l’arith-

métique et l’algèbre. C’est bien entendu dans cette deuxième section que la géométrie

des nombres fait son apparition :

Zweiter Abschnitt. Arithmetik und Algebra.

Kapitel 1. Grundlagen der Arithmetik und der Algebra. Allgemeines.

Kapitel 2. Elementare Arithmetik und Algebra. Kombinationslehre.

Kapitel 3. Theorie der Polynome und der algebraischen Gleichungen. Algebraische

Eigenschaften der Polynome. Verteilung der Wurzeln. Galoissche Theorie.

14Goldstein 1999 p.196.
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Kapitel 4. Theorie der Formen.

Determinanten. Invariantentheorie. Symmetrische Funktionen und Verwandtes.

Bilineare und quadratische Formen. Lineare Substitutionen. Modulsysteme und

Elimination.

Kapitel 5. Gruppentheorie.

Abstrakte Theorie der Körper und Moduln. Gruppentheorie. Systeme hyperkom-

plexer

Zahlen.

Kapitel 6. Niedere Zahlentheorie. Additive Zahlentheorie. Diophantische Gleichungen.

Kapitel 7. Arithmetische Theorie der Formen.

Kapitel 8. Algebraische Zahlen. Analytische Zahlentheorie.

Kapitel 9. Transzendente Zahlen. Approximation reeller Zahlen durch rationale.

Geometrie der Zahlen.

La géométrie des nombres se trouve donc dans le chapitre 9 avec les nombres trans-

cendants et l’approximation des nombres réels par des rationnels. Ce chapitre ne bouge

pas jusqu’en 1925 où son titre change, Approximation reeller Zahlen durch rationale

est remplacé par Diophantische Approximationen, puis en 1928 Arithmetik und Alge-

bra devient la troisième section. La géométrie des nombres disparaît à nouveau de la

classification en 1935 et ne revient que dans le deuxième volume de l’année 1939. Dans

ce volume 65 II, la géométrie des nombres est dans le chapitre 7 - Zalhentheorie de la

section C - Arithmetik und Algebra et c’est le point l) intitulé Geometrie der Zahlen

qui lui est consacré. Ceci est modifié dès le volume suivant puisque que pour l’année

1940, Geometrie der Zahlen se trouve dans le point m) et elle perd son isolation dans

la classification car elle est regroupée avec les réseaux de points (Gitterpunkte). Elle ne

se trouve donc plus avec l’approximation diophantienne et les problèmes de transcen-

dance qui font l’objet du chapitre 8 dans les volumes 65 II et 66, puis qui sont eux aussi

séparés dans volume 67 de l’année 1941. L’approximation diophantienne est alors dans

une rubrique autonome du chapitre 7 et la transcendance devient le thème unique du

chapitre 8. La classification change à nouveau l’année suivante mais la géométrie des

nombres reste avec les réseaux de points.

Comme nous aurons l’occasion d’y revenir, ces changements de regroupement pour la

géométrie des nombres sont significatifs de l’évolution de ce domaine ; celui-ci semble

être de plus en plus assimilé au traitement des problèmes liés aux réseaux15.

Malgré l’apparition de la géométrie des nombres dans la classification, nous ne pou-

vons pas nous contenter de relever tous les articles présents dans la partie où elle se

trouve pour continuer le recensement. D’abord parce que, comme cela a été vu, la géo-

15Voir par exemple le travail de Mordell sur les formes cubiques binaires au chapitre 4.
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métrie des nombres est à nouveau absente de la classification pendant quelques années.

Mais aussi parce qu’elle n’est presque jamais dans une rubrique autonome et que, par

exemple, tous les articles concernant l’approximation diophantienne ou les questions

de transcendance ne sont pas liés à la géométrie des nombres. La seule exception où

la géométrie des nombres est seule dans une partie de la classification est le volume

II de 1939, mais dans ce volume un seul texte est recensé par le Jahrbuch dans cette

section. Il s’agit du livre de Harris Hancock Developments of the Minkowski Geometry

of Numbers.

Nous avons donc effectué le recensement de la manière suivante. Quand la géométrie des

nombres est dans la classification nous avons relevé les textes qui sont dans le chapitre

ou la partie où elle se trouve et qui vérifient les critères déjà utilisés pour la période

précédente. À savoir, Minkowski ou la géométrie des nombres doivent être cités dans le

titre de l’article ou dans le résumé du Jahrbuch, ou encore le résumé doit mentionner

l’utilisation du théorème de Minkowski sur les points d’un réseau dans un domaine

convexe. Lorsque la géométrie des nombres n’est plus dans la classification, des articles

concernant ce thème de façon évidente (car c’est dit explicitement dans le titre par

exemple) continuent à être classés dans le chapitre 8 Diophantische Approximationen

und Transzendenzprobleme. Nous avons donc continué à faire le recensement dans ce

chapitre avec les mêmes critères et pour homogénéiser ces choix sur toute la période,

quand la géométrie des nombres devient indépendante de ces deux thèmes (l’approxi-

mation diophantienne et la transcendance) les parties les concernant ont encore été

étudiées.

La liste des résultats obtenus est donnée en fin de chapitre (voir page 172).

2.1.5 Bilan et limites de ce recensement

Le recensement a été effectué sur une période de 52 ans (de 1891 à 1942) et 108

publications ont été relevés soit environ deux en moyenne par an ce qui semble fina-

lement assez peu. La géométrie des nombres apparaît donc comme un domaine plutôt

restreint quantitativement. Le nombre de publications est très faible avant les années

1930, entre 1891 et 1930 un peu moins d’un article par an est publié. Le sujet com-

mence à décoller petit à petit au cours des années 1930, la moyenne des publications

annuelles passant à presque six pour la période allant de 1931 à 1942 (voir la figure 2.1).

Ces conclusions sont cependant à prendre avec prudence, d’abord parce que les

chiffres sont ici très petits. Ensuite, cette tendance à la hausse des publications n’est

pas un phénomène isolé, elle est observée aussi par exemple à l’échelle de toutes les pu-
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Fig. 2.1 – Publications annuelles recensées en géométrie des nombres dans le Jahrbuch

blications en théorie des nombres16. À titre de comparaison nous donnons un graphique

(voir la figure 2.2) représentant l’évolution du nombre de publications en théorie des

nombres dans le Jahrbuch entre 1916 (année d’apparition de la géométrie des nombres

dans la classification) et 1942 17. À nouveau comme il n’existe pas de rubrique “théorie

des nombres” isolée et stable sur toute la période considérée, nous devons dire ce qui a

été regroupé sous cette catégorie.

Nous avons pris la section qui regroupe l’arithmétique et l’algèbre qui est la deuxième

entre 1916 et 1927 ; la troisième ensuite. À l’intérieur de cette section nous avons re-

levé toutes les publications des chapitres qui concernent l’arithmétique à l’exception de

celui sur les fondements quand il existe. Pour le tome 46 des années 1916-1918 cela cor-

respond aux chapitres 2 (Elementare Arithmetik und Algebra. Kombinationslehre), 6

(Niedere Zahlentheorie. Additive Zahlentheorie. Diophantische Gleichungen), 7 (Arith-

metische Theorie der Formen), 8 (Algebraische Zahlen. Analytische Zahlentheorie) et

9 (Transzendente Zahlen. Approximation reeller Zahlen durch rationale. Geometrie der

Zahlen). Cette répartition ne bouge presque pas jusqu’en 1934, à part des reformu-

16La chute observée sur les deux graphiques pour l’année 1942 est à relativiser car un seul volume
du Jahrbuch a été publié pour cette année là.

17Lorsque le même tome du Jahrbuch couvre plusieurs années nous avons pris pour chacune des
années la moyenne des publications recensées dans le tome.
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lations des titres de chapitres et le fait que l’arithmétique élémentaire passe dans le

chapitre 1, sur cette période nous avons donc relevé les publications des chapitres 1,

6, 7, 8 et 9. Certains de ces chapitres disparaissent ensuite et nous avons donc comp-

tabilisé alors seulement ceux qui restent : le chapitre 9 disparaît en 1935, le 1 en 1939

et le 8 en 1942. Ces disparitions correspondent en général à des remaniements dans les

autres chapitres.

Fig. 2.2 – Publications annuelles recensées en théorie des nombres dans le Jahrbuch

Même si la hausse du nombre de publications concernant la géométrie des nombres

est à nuancer, le recensement fait permet quand même de voir que la géométrie des

nombres n’est pas un thème de recherche qui disparaît et qu’il y a un intérêt continu

pour ce sujet même après la mort de Minkowski.

Pour ces 108 publications nous avons 57 auteurs différents ce qui donne en moyenne

un peu moins de deux articles par auteur. Sur ces 57 mathématiciens, 34 n’apparaissent

qu’une seule fois dans le recensement et 44 pas plus de deux fois. Ceci suggère que peu

de ces mathématiciens s’intéressent à la géométrie des nombres de manière continue.

Les 101 articles sont publiés dans 43 journaux différents. Parmi ces journaux, nous
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pouvons observer une forte représentation des journaux anglophones (9 journaux18 qui

publient 34 articles) devant les journaux allemands (21 articles dans 8 journaux diffé-

rents).

Parmi les auteurs les plus plus prolifiques six publient au moins 5 textes. D’abord,

Barend Meulenbeld, Matsusaburô Fujiwara, Oskar Perron et Hans Frederik Blichfeldt

apparaissent cinq fois comme auteur et Jurjen Ferdinand Koksma sept fois. Les articles

de Fujiwara concernent essentiellement des applications de la géométrie des nombres

aux formes quadratiques, ceux de Perron, Meulenbeld et Koksma (4 articles sont écrits

en collaboration) ont surtout pour thème l’approximation diophantienne et les formes

linéaires. Les articles de Blichfeldt semblent être particulièrement intéressants pour

étudier les développements de la géométrie des nombres, d’abord parce que de tous

les mathématiciens cités c’est lui qui publie en premier sur ce sujet, ensuite parce que

deux de ses articles annoncent de nouveaux principes en géométrie des nombres et deux

autres sont des articles généraux sur ce thème.

Enfin l’auteur le plus prolifique est Louis Joel Mordell avec 12 articles et ses publica-

tions semblent correspondre justement à la période où le sujet se développe. Il est en

particulier en grande partie responsable du pic de 1941, année pour laquelle il publie

presque un tiers des articles recensés. Il apparaît donc comme un mathématicien im-

portant pour l’étude de la géométrie des nombres.

Essayons de voir maintenant qu’elles sont les limites de ce recensement. Une pre-

mière limite évidente sont les oublis qui peuvent être dus par exemple à l’absence de

résumé dans le Jahrbuch, au choix des critères du recensement pouvant être trop res-

trictifs pour saisir toutes les publications concernant la géométrie des nombres etc. . .

Ensuite, l’absence de rubrique ou d’autonomie pour la géométrie des nombres dans la

classification nous a amené à choisir des critères afin de repérer les publications perti-

nentes. Mais si Minkowski ou la géométrie des nombres ne sont pas cités explicitement

dans le résumé du Jahrbuch cela ne signifie pas nécessairement qu’ils ne le sont pas

dans le texte dont il est question19 ni que, par exemple, le travail de Minkowski n’ai pas

eu une influence importante sur l’auteur de l’article. Inversement certaines références

à Minkowski pourraient être des citations de circonstance sans que la géométrie des

nombres ait eu une réelle influence sur l’auteur.

Afin de corriger en partie ce biais éventuel nous pouvons relever les citations faites dans

les articles relevés pour voir s’ils ne pointent vers des mathématiciens qui nous auraient

184 sont britanniques et 5 nord-américains.
19C’est le cas par exemple pour Mordell 1937a qui est un article recensé dans le Jahrbuch dans

une rubrique que nous avons prise en compte mais dont le résumé ne mentionne pas Minkowski alors
que Mordell y fait référence à plusieurs reprises.
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échappé par le Jahrbuch. Ce travail effectué dans 93 des articles relevés conduit aux

résultats donnés dans le tableau (2.1)20.

Nombre d’articles dans lequel il est cité

Minkowski 83

Mordell 16

Blichfeldt 15

Hurwitz 15

Remak 12

Dirichlet 11

Hermite 10

Kronecker 10

Siegel 9

Tchebycheff 9

Davenport 8

Hilbert 8

Perron 8

Furtwängler 7

Koksma 7

Tab. 2.1 – Mathématiciens cités dans les articles recensés dans le Jahrbuch

Nous observons que parmi les mathématiciens qui sont les plus cités nous avons

(Minkowski est à part), soit des auteurs qui ont été relevés au moins une fois dans

le Jahrbuch (ce sont ceux qui sont signalés en gras dans le tableau (2.1)), soit des

mathématiciens qui sont mentionnés pour des travaux antérieurs à ceux de Minkowski

(Dirichlet, Hermite, Kronecker, Tchebycheff). Hilbert apparaît pour des raisons autres

que la géométrie des nombres ou bien pour une preuve non publiée communiquée à

Minkowski21. Il reste donc seulement Carl Ludwig Siegel à n’être dans aucune des si-

tuations précédentes. Cette étude confirme donc plutôt le recensement du Jahrbuch

mais suggère aussi que Siegel devrait être pris en compte dans les développements de

la géométrie des nombres22.

Les publications que nous avons relevées montrent aussi que plusieurs autres thèmes

20Le tableau donne le nombre d’articles dans lesquels sont cités chaque mathématicien. Nous nous
sommes limités aux mathématiciens les plus cités.

21Il s’agit d’une preuve d’un théorème sur les formes linéaires sur lequel nous reviendrons.
22Nous verrons par exemple son travail cité par Mordell.
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des mathématiques sont en intéractions avec la géométrie des nombres. Citons par

exemple des problèmes liés aux formes linéaires, la théorie arithmétique des formes, la

théorie des corps de nombres algébriques, l’approximation diophantienne, la convexité

ou bien les réseaux de points. Ceci pose immédiatement la question du choix des cri-

tères que nous avons fait. En effet, certains de ces thèmes sont recensés dans d’autres

rubriques (parfois autonomes) du Jahrbuch que celles qui ont ici été considérées. C’est

le cas par exemple pour la théorie arithmétique des formes23, la théorie algébrique des

nombres qui apparaît dans la classification sous des titres divers comme Algebraische

Zahlen, Theorie der algebraischen Zahlen und ihrer Ideale ou Zahlkörper. Le choix, dans

les oeuvres complètes de Minkowski, de se limiter à ses articles classés en géométrie des

nombres peut donc lui aussi être discuté. Certains de ses articles en théorie arithmé-

tique des formes sont peut être aussi pertinents d’autant plus que ce sont des problèmes

liés aux formes qui ont conduit Minkowski à la géométrie des nombres24. Son travail en

géométrie, toujours lié aux notions de volume et de convexité qui sont des concepts clés

de la géométrie des nombres, pourrait lui aussi avoir sa pertinence dans le recensement

et nous amènerait à explorer la section de géométrie du Jahrbuch. D’autre part, ces

nouveaux thèmes suggèrent aussi que d’autres mots clés auraient pu être ajoutés à

« Minkowski » et « géométrie des nombres », par exemple « réseau » ou « convexité ».

La prise en compte de mots clés supplémentaires nous aurait permis d’attraper des

publications nous ayant peut être échappées. Cependant nous pensons que pour une

première approche du domaine il est plus prudent de considérer peu de mots clés (ici

nous avons le nom du domaine à repérer et le mathématicien vu comme à l’origine de

ce domaine) afin d’essayer de limiter le plus possible le biais dû à la représentation

que nous nous faisons de la géométrie des nombres, représentation qui nécessairement

influence le choix de critères. De plus, si nous ajoutons des mots clés pouvant sembler

pertinent à la suite d’un premier repérage, de nouveaux thèmes vont émerger qui vont

par suite suggérer de nouveaux mots clés etc... Ceci pose des problèmes opératoires :

quand faut-il s’arrêter ? La quantité de publications recensées permettrait difficilement

de bien appréhender le domaine pour un premier contact25.

Afin de confirmer ou infirmer les résultats obtenus à travers ce recensement nous allons

maintenant les croiser avec d’autres sources.

23Il y a aussi des rubriques qui concernent la théorie algébrique des formes.
24Schwermer 1991, 2007.
25Pour nous faire une idée de l’influence du changement de critères sur le nombre de publications

recensées, nous avons fait un recensement (pourtant certainement non exhaustif) avec des critères
élargis. Pour cela nous avons ajouté par exemple “réseau” parmi les mots clés, ainsi que des travaux
sur les formes cubiques ou les produits de formes linéaires (thèmes de recherche importants pour les
mathématiciens que nous étudierons par la suite). Nous avons relevé des publications dans toutes les
sections de théorie des nombres du Jahrbuch. Cela conduit à plus de 400 publications ce qui donne un
poids quantitatif beaucoup plus important au domaine (environ 4 fois plus).
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2.2 Les livres consacrés à la géométrie des nombres

2.2.1 Repérage des livres sur la géométrie des nombres

Pour trouver les livres dont le thème principal est la géométrie des nombres nous

avons utilisé le catalogue de la Bibliothèque Interuniversitaire Scientifique de Jussieu,

le catalogue fusionné du Réseau National des Bibliothèques de Mathématiques et le

catalogue SUDOC (Système Universitaire de Documentation), tous disponibles sur in-

ternet. Nous avons recherché les livres contenant dans leur titre l’expression « géométrie

des nombres », « geometry of numbers » ou « Geometrie der Zahlen26 ». Nous avons

ensuite éliminé les résultats sans rapports avec notre sujet comme par exemple tous les

ouvrages traitant de l’utilisation des nombres complexes en géométrie dont certains ont

dans leur titre l’expression « la géométrie des nombres complexes ». Les thèses, thèses

d’habilitation, monographies, conférences et comptes rendus de congrès ont eux aussi

été écartés.

Voici la liste des publications qui satisfont les critères précédents :

– CASSELS John William Scott, An Introduction to the Geometry of Numbers, Berlin-

Heidelberg, Springer-Verlag, 1959.

– GRUBER Peter Manfred et LEKKERKERKER Cornelis Gerrit, Geometry of numbers,

Amsterdam-New York, Elsevier Science Publishers, 1987.

– HANCOCK Harris, Development of the Minkowski geometry of numbers, New York,

Macmillan Company, 1939.

– LEKKERKERKER Cornelis Gerrit, Geometry of numbers, Groningen, Wolters-Noordhoff

Publishing, Amsterdam-London, North Holland Publishing Company, 1969.

– MINKOWSKI Hermann, Geometrie der Zahlen, Leipzig-Berlin, Teubner, 1910 (pre-

mière édition en 1896).

– SIEGEL Carl Ludwig, lectures on the Geometry of Numbers, Berlin-Heidelberg-New

York, Springer-Verlag, 1989.

– OLDS C.D., LAX Anneli et DAVIDOFF Giuliana, The geometry of Numbers, The Ma-

thematical Association of America, 2000.

26Nous nous sommes limités à une recherche dans ces trois langues car ce sont celles des publications
qui sont apparues par le recensement dans le Jahrbuch.
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Nous obtenons finalement très peu de résultats. D’autant plus que le livre de Gruber

et Lekkerkerker n’est qu’une seconde édition augmentée du premier de Lekkerkerker

publié en 1969.

Le livre de Hancock, comme son titre l’indique, a pour objectif de reprendre le travail

de Minkowski sur la géométrie des nombres. Hancock, qui déplore dans l’introduction

de son livre le manque de clarté de Minkowski dans l’exposition de son travail, donne

parfois de nouvelles preuves ou bien complète les démonstrations de Minkowski27 mais

la plus grande partie du livre est en fait une traduction des travaux de Minkowski. Nous

ne tiendrons pas compte de ce livre dans le relevé que nous allons faire car, comme

celui de Minkowski lui-même, il n’apporte pas d’information sur les développements de

la géométrie des nombres après Minkowski ce qui est notre objectif ici.

Le livre de Siegel est issu d’un cours donné à l’université de New York dans les années

1945-1946, les notes sont de B. Friedman et elles ont été révisées pour la publication

en 1989 par Komaravolu Chandrasekharan avec l’aide de Rudolf Suter.

Enfin, l’objectif affiché du livre de Olds, Lax et Davidoff est d’essayer de proposer une

introduction à la géométrie des nombres accessible à un large public n’ayant pas né-

cessairement des connaissances solides en mathématiques.

2.2.2 Etude des tables des matières

Comme il s’agit ici d’une première approche afin de repérer les développements

de la géométrie des nombres après Minkowski, nous avons choisi de nous concentrer

uniquement sur les tables des matières de ces livres pour voir quels mathématiciens

y sont cités. Pour cela nous ne tenons pas compte ni des livres de Minkowski ni de

Hancock qui, comme cela a été dit, ne reflète que le travail de Minkowski. De plus,

nous ne prenons en compte que la seconde édition du livre de Lekkerkerker pour ne

pas donner un poids double aux auteurs qu’il cite.

Le tableau suivant (2.2) résume les résultats obtenus28, seuls les mathématiciens cités

au moins deux fois ont été gardés.

Sans surprise, Minkowski est largement devant tous les autres en ce qui concerne

le nombre de citations et il est cité par tous les livres. Blichfeldt vient ensuite et il

est lui aussi cité par tous, cela confirme qu’il est un mathématicien important dans

la réception de la géométrie des nombres et ses développements après Minkowski. De

27Hancock n’effectue pas ce travail tout seul, il met à contribution ses étudiants de l’époque mais
il reçoit aussi l’aide d’autres mathématiciens comme Blichfeldt et Mordell qui sont cités dans l’intro-
duction.

28Le relevé est donc fait sur 4 livres différents
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Nombre de citations Nombre de livres dans lesquels il est cité

Minkowski H. 28 4

Blichfeldt H.F. 10 4

Mordell L. 5 2

Hlawka E. 5 2

Mahler K. 3 2

Rogers C.A. 2 2

Tab. 2.2 – Mathématiciens cités dans les tables des matières

même, le rôle de Mordell qui est apparu avec le relevé dans le Jahrbuch est conforté

par ses cinq citations mais aussi par le fait qu’il est à l’origine de l’intérêt de Cassels

pour la géométrie des nombres qui est l’auteur d’un des livres que nous avons recensé.

Cassels l’explique dans la préface de son livre et il remercie aussi Mahler et Rogers (qui

font partis des auteurs relevés) pour avoir relu les épreuves du livre. Il apparaît donc

un groupe de mathématiciens s’intéressant à la géométrie des nombres et Mordell est

en contact avec chacun d’entre eux29.

Edmund Hlawka est aussi cité à plusieurs reprises dans les tables des matières des livres

ce qui s’explique par le fait qu’un résultat de la géométrie des nombres est connu sous

le nom de théorème de Minkowski-Hlawka30. Il n’était apparu qu’une fois dans le Jahr-

buch car au début des années 1940, au moment où nous avons arrêté le recensement, il

n’est qu’au début de sa carrière de mathématicien et il se met à publier régulièrement

sur des thèmes liés à la géométrie des nombres qu’à partir de 1943.

Les résultats obtenus par cette étude des livres consacrés à la géométrie des nombres

confortent donc ceux qui étaient ressortis du recensement effectué dans le Jahrbuch :

Minkowski est confirmé comme étant l’initiateur de cette théorie, Blichfeldt est le pre-

mier à reprendre de manière continu ce sujet de recherche et Mordell se met à y consa-

crer de nombreux articles à partir des années 1930 et il est en relation avec d’autres

mathématiciens qui s’intéressent à ce thème.

29Voir la préface de Cassels 1959.
30Hlawka 1943-1944.
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2.3 Un repérage dans l’Enzyklopädie der mathema-

tischen Wissenschaften

2.3.1 Présentation de l’Enzyklopädie et de son fascicule 11

Une autre source intéressante pour se faire une idée des travaux effectués en géomé-

trie des nombres est l’Enzyklopädie der mathematischen Wissenschaften mit Einschluss

ihrer Anwendungen. L’objectif de ce projet encyclopédique initié par Felix Klein est

de faire un bilan par domaine des connaissances mathématiques31. La publication de

l’édition allemande débute en 1898 et elle est interrompue par la Première Guerre

Mondiale. Le fascicule consacré à la géométrie des nombres32 n’est publié qu’en 1954

dans le cadre du projet de seconde édition. Son auteur Ott-Heinrich Keller est alors

à l’université de Halle. Ce fascicule de 84 pages est divisé en 9 parties dans lesquelles

nous retrouvons les thèmes mathématiques déjà rencontrés en liaison avec la géométrie

des nombres, ces chapitres sont :

A. Die grundlegenden Sätze über konvexe Körper im Zahlengitter

B. Sternkörper

C. Lineare Formen

D. Das Minimum homogener Formen

E. Inhomogene Formen

F. Definite quadratische Formen

G. Kettenbrüche

H. Algebraische Zahlen

I. Partitionen und Gitterpunktsfiguren

Pour chacun de ces thèmes Keller revient sur des résultats de Minkowski et même

parfois des résultats antérieurs mais il présente aussi les développements plus récents de

ces sujets. Il est donc amené à citer les mathématiciens ayant travaillé sur la géométrie

des nombres depuis Minkowski et ce sont ces citations que nous avons relevées.

2.3.2 Les mathématiciens cités dans l’Enzyklopädie

Nous avons relevé pour chaque mathématicien le nombre total de citations mais

aussi le nombre de pages différentes dans lesquelles il est cité ce qui évite certaines

redondances dans les citations comme par exemple quand un auteur est cité pour le

même travail dans le corps du texte et en note de bas de page. Keller fait référence en

31Voir Gispert 1999. Notons qu’à l’origine le titre était Encyklopädie. . . (avec un “c”).
32Keller 1954.
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tout à 182 mathématiciens différents, dans le tableau suivant (2.3) nous avons gardé

les 10 les plus cités.

Nombre total de citations Nombre de pages où il est cité

Minkowski H. 119 51

Mahler K. 46 26

Mordell L. 35 19

Davenport H. 32 21

Rogers C.A. 23 11

Hermite C. 20 14

Hlawka E. 19 14

Remak R. 19 13

Blichfeldt H.F. 18 13

Voronoï G. 15 8

Tab. 2.3 – Mathématiciens cités dans l’Enzyklopädie

Le seul nom complètement nouveau à apparaitre avec ce nouveau recensement est

celui de Charles Hermite33. Il n’est pas très étonnant de le voir cité à de nombreuses

reprises, d’abord parce qu’il était considéré par Minkowski lui-même comme étant à

l’origine de son travail sur la géométrie des nombres34. mais aussi parce qu’une grande

partie de l’article de l’Enzyklopädie traite de la géométrie des nombres en liaison avec

la théorie des formes et Hermite a réalisé des travaux importants dans ce domaine. Il

est donc cité en particulier pour ses résultats sur les minima et la réduction des formes

quadratiques et cubiques.

Ensuite, Davenport, Remak et Voronoï étaient bien présents dans le recensement du

Jahrbuch mais n’étaient pas apparus alors comme des contributeurs importants pour la

géométrie des nombres car peu de publications avaient été retenues. Voronoï et Remak

sont cités ici à propos de leurs travaux sur les formes quadratiques mais aussi dans

le cas de Remak pour ses résultats sur le produit de formes linéaires non homogènes.

En ce qui concerne Davenport, bien qu’il commence à s’intéresser à la géométrie des

nombres à peu près en 1936 au contact de Mordell, c’est véritablement à partir du

début des années 1940 qu’il publie de façon intensive sur ce sujet, il est donc normal

33Nous l’avions vu uniquement pour l’instant dans les résultats du relevé dans le Jahrbuch pour
les lettres de Minkowski qui lui étaient adressées.

34Le livre de Minkowski Geometrie der Zahlen est d’ailleurs dédié à Hermite.
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que nous l’ayons peu vu dans le Jahrbuch.

Nous avions déjà rencontrés Hlawka, Rogers et Mahler dans les livres consacrés à

la géométrie des nombres, leur rôle dans le développement de ce domaine est donc

conforté par l’Enzyklopädie. Mahler ressort davantage ici pour les mêmes raisons que

Davenport. En effet, comme la lecture de la liste de ses publications permet de le voir35,

son travail en géométrie des nombres devient très important surtout entre 1940 et 1950,

il publie notamment son fameux « théorème de compacité36 » en 1946. Il est donc nor-

mal que l’Enzyklopädie rende compte de ces développements récents de la géométrie

des nombres.

Enfin, Blichfeldt qui apparaît dans les trois sources consultées est davantage en

retrait dans l’Enzyklopädie. Cela peut s’expliquer d’une part par le fait que Blichfeldt

cesse de publier en 1939 et d’autre part parce que Blichfeldt a peu publié par rapport à

d’autres mathématiciens comme par exemple Mordell, Davenport ou Mahler. Cela lui

donne donc un moindre poids dans l’Enzyklopädie qui vise à proposer une bibliographie

aussi précise que possible sur la géométrie des nombres.

Conclusion

Ce chapitre donne des éléments sur les développements de la géométrie des nombres

après Minkowski d’un point de vue collectif. Nous sommes donc à une autre échelle

que dans la partie consacrée à Minkowski qui est centrée sur un individu.

Le Jahrbuch, les manuels et l’Enzyklopädie sont tous exploités à une même échelle

d’observation : il s’agit de relever dans chaque cas des références à des mathématiciens.

Nous obtenons cependant des informations à des niveaux différents. Dans les limites des

critères choisis pour effectuer le recensement, le Jahrbuch fournit toute la production

mathématique concernant la géométrie des nombres sans jugement sur sa qualité ou

sa pertinence. Par contre avec les manuels et l’Enzyklopädie, une sélection est faite par

les auteurs. Le contenu mathématique des publications est évalué et seuls les travaux

considérés comme importants sont cités. La présence dans une table des matières de la

« méthode de Mordell37 » suggère qu’elle joue un rôle crucial dans la discipline.

Un changement d’échelle a quand même été effectué en relevant les mathématiciens

cités dans les articles recensés dans le Jahrbuch ce qui a eu pour effet de faire apparaître

35Coates et van der Poorten 1994.
36Mahler 1946.
37Cassels 1959.
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un nouveau protagoniste : Carl Ludwig Siegel. Même si cette nouvelle échelle n’a pas

été exploitée de façon systématique dans ce travail, cet exemple illustre bien les « effets

de connaissance » du choix d’une échelle particulière ainsi que le profit heuristique du

principe de variation d’échelles.

Trois mathématiciens sont ressortis dans chacune des sources consultées : Min-

kowski, Blichfeldt et Mordell. Par conséquent, Blichfeldt et Mordell seront l’objet des

chapitres suivants.
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Publications en géométrie des nombres relevées dans le Jahrbuch (1891-1915) :

– WEBER H., « Ueber einen in der Zahlentheorie angewandten Satz der Integralrech-

nung », Göttinger Nachrichten, 1896, p.275-281.

– HURWITZ A., « Ueber lineare Formen mit ganzzahligen Variabeln », Göttinger Na-

chrichten, 1897, p.139-145.

– VORONOÏ G., « Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Deuxième mémoire. Recherches sur les paralléloèdres primitifs », Journal

für die reine und angewandte Mathematik, vol. 134, 1908, p.198-287.

– TARRY G., « Propriétés fondamentales des angles de la géométrie modulaire », Comptes

rendus de la session de l’Association Française pour l’Avancement des Sciences, vol. 33,

1910, p.32-47.

– USPENSKIJ J., « Einige Anwendungen der kontinuierlichen Parameter in der Zahlen-

theorie », St. Petersburg, 1910.

– BRUNN H., « Zur Theorie der Eigebiete », Archiv der Mathematik und Physik, vol. 17,

1911, p.289-300.

– CHÂTELET A., « Sur certains ensembles de tableaux et leur application à la théorie des

nombres », Annales scientifiques de l’Ecole Normale supérieure, vol. 28, 1911, p.105-202.

– LEVI B., « Un teorema del Minkowski sui sistemi di forme lineari a variabili intere »,

Rendiconti del circolo matematico di Palermo, vol. 31, 1911, p.318-340.

– LUCAS E., « Les principes fondamentaux de la géométrie des tissus », Comptes rendus

de la session de l’Association Française pour l’Avancement des Sciences, vol. 40, 1912,

p.72-87.

– BRICARD R., « Sur un théorème connu d’arithmétique », Nouvelles annales de mathé-

matiques, vol. 13, 1913, p.558-562.

– KAKEYA S., « On a diophantine approximation », Science reports of the Tohoku im-

perial university, vol. 2, 1913, p.33-54.

– REMAK R., « Neuer Beweis eines Minkowskischen Satzes », Journal für die reine und

angewandte Mathematik, vol. 142, 1913, p.278-282.
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– WEBER H. et WELLSTEIN J., « Der Minkowskische Satz über die Körperdiskrimi-

nante », Mathematische Annalen, vol. 73, 1913, p.275-285.

– BLICHFELDT H.F., « A new principle in the geometry of numbers, with some appli-

cations », Transactions of the American Mathematical Society, vol. 15, 1914, p.227-235.

– LEVI F., « Kubische Zahlkörper und binäre kubische Formenklassen », Berichte ue-

ber die Verhandlungen der Koeniglich-Saechsischen Gesellschaft der Wissenschaften zu

Leipzig, Mathematisch-Physische Klasse, vol. 66, 1914, p.26-37.

– FUJIWARA M., « Eine Folgerung aus einem Satze von Minkowski in der Geometrie

der Zahlen », Science reports of the Tohoku imperial university, vol. 4, 1915, p.57-63.

– HUMBERT G. et GOT T., « Notes sur la théorie des corps de nombres algébriques de

M. D. Hilbert (note III) », Annales de la faculté des sciences de l’université de Toulouse,

vol. 3, 1911, p.1-62.

Publications en géométrie des nombres relevées dans le Jahrbuch (1916-1942) :

– HANCOCK H., « Problèmes de géométrie arithmétique », Journal de mathématiques

pures et appliquées (7), vol. 3, 1917, p.217-245.

– ZEISEL M., « Zur Minkowskischen Parallelepipedapproximationen », Sitzungsberichte

der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wis-

senschaften, vol. 126, 1917, p.1221-1247.

– BLICHFELDT H.F., « A second principle in the geometry of numbers », Bulletin of the

American mathematical Society, vol. 24, 1918, p.418.

– BLICHFELDT H.F., « Report on the theory of the geometry of numbers », Bulletin of

the American mathematical Society, vol. 25, 1919, p.449-453.

– GRACE J.H., « Note on a diophantine approximation », Proceedings of the London Ma-

thematical Society (2), vol. 17, 1918, p.316-319.

– FURTWÄNGLER P. et ZEISEL M., « Zur Minkowskischen Parallelepipedapproxima-

tion », Monatshefte für Mathematik und Physik, vol. 30, 1920, p.177-198.
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– BLICHFELDT H.F., « Notes on geometry of numbers », Bulletin of the American ma-

thematical Society, vol. 27, 1921, p.152-153.

– FUJIWARA M., « Anwendung der Geometrie der Zahlen auf indefinite ternäre quadra-

tische Formen », Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 30, 1921,

p.103.

– PERRON O., « Über diophantische Approximationen », Mathematische Annalen, vol.

83, 1921, p.77-84.

– FUJIWARA M., « Anwendung der Geometrie der Zahlen auf die bilinearen Formen »,

Science reports of the Tohoku imperial university, vol. 11, 1922, p.501-507.

– SCHERRER W., « Ein Satz über Gitter und Volumen », Mathematische Annalen, vol.

86, 1922, p.99-107.

– KOVNER S.S., « Über einen Satz von Tschebyscheff-Minkowski », Matematiceskij sbor-

nik, vol. 32, 1925, p.528-541.

– FUJIWARA M., « A new elementary proof of a theorem of Minkowski », Proceedings

of the Imperial Academy of Japan, vol. 2, 1926, p.97-99.

– FUJIWARA M., « An elementary proof of Minkowski’s theorem », Proceedings of the

Physico-Mathematical Society of Japan (3), vol. 8, 1926, p.119.

– FUKASAWA S., « On the extension of Klein’s geometrical interpretation of continued

fraction », Proceedings of the Imperial Academy of Japan, vol. 2, 1926, p.100-102.

– FUKASAWA S., « Über die Grössenordnung des absoluten Betrages von einer linearen

inhomogenen Form. I, II. », Japanese journal of mathematics, vol. 3, 1926, p.1-26 et

91-106.

– FUKASAWA S., « On the extension of a theorem of Minkowski », Proceedings of the

Imperial Academy of Japan, vol. 2, 1926, p.305-306.

– PIPPING N., « Einige Sätze über konvexe Körper in Beziehung zu Punktgittern », Er-

gebnisse der Mathematik und ihrer Grenzgebiete, vol. 27, 1926, p.14.

– REMAK R., « Vereinfachung eines Blichfeldtschen Beweises aus der Geometrie der Zah-

len », Mathematische Zeitschrift, vol. 26, 1927, p.694-699.
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– MORDELL L.J., « Minkowski’s theorem on the product of two linear forms », Journal

of the London Mathematical Society, vol. 3, 1928, p.19-22.

– PIPPING N., « Zur Theorie der Diophantischen Approximationen », Annales Acade-

miae Scientiarum Fennicae, vol. 32, 1929.

– MORDELL L.J., « Note on some linear Diophantine inequalities », Proceedings of the

Cambridge Philosophical Society, vol. 26, 1930, p.489-490.

– LANDAU E., « Neuer Beweis eines Minkowskischen Satzes », Journal für die reine und

angewandte Mathematik, vol. 165, 1931, p.1-3.

– OPPENHEIM A., « Note on some linear Diophantine inequalities », Proceedings of the

Cambridge Philosophical Society, vol. 27, 1931, p.24-25.

– PIPPING N., « Über konvexe Figuren mit Mittelpunkt in Beziehung zu Punktgittern »,

Acta Academiae Aboensis, vol. 6, 1932.

– USPENSKY J.V., « A problem in the geometry of numbers », Bulletin of the American

mathematical Society, vol. 37, 1931, p.352.

– DINES L.L. et Mc COY N.H., « On linear inequalities », Proceedings and transactions

of the Royal Society of Canada, vol. 27, 1933, p.37-70.

– HOFREITER N., « Zur Geometrie der Zahlen », Monatshefte für Mathematik und Phy-

sik, vol. 40, 1933, p.181-192.

– HOFREITER N., « Über einen Approximationssatz von Minkowski », Monatshefte für

Mathematik und Physik, vol. 40, 1933, p.351-392.

– MORDELL L.J., « Minkowski’s theorem on homogeneous linear forms », Journal of the

London Mathematical Society, vol. 8, 1933, p.179-182.

– HAJÓS G., « Ein neuer Beweis eines Satzes von Minkowski », Acta Universitatis Sze-

gediensis : Sectio scientiarum mathematicarum, vol. 6, 1934, p.224-225.

– JACOBSTHAL E., « Der Minkowskische Linearformensatz », Sitzungsberichte der Ber-

liner Mathematischen Gesellschaft, vol. 33, 1934, p.62-64.

– MORDELL L.J., « On some arithmetical results in the geometry of numbers », Com-

positio mathematica, vol. 1, 1934, p.248-253.
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– RADO R., « A proof of Minkowski’s theorem on homogeneous linear forms », Journal

of the London Mathematical Society, vol. 9, 1934, p.164-165.

– SEALE R.Q., « A new proof of Minkowski’s theorem on the product of two linear

forms », Bulletin of the American mathematical Society, vol. 41, 1935, p.419-426.

– BLICHFELDT H.F., « On geometry of numbers », Bulletin of the American mathema-

tical Society, vol. 41, 1935, p.196.

– PERRON O., « A remark on Minkowski’s theorem about linear forms », Journal of the

London Mathematical Society, vol. 10, 1935, p.275-276.

– RADO R., « A remark on Minkowski’s theorem about linear forms », Journal of the

London Mathematical Society, vol. 10, 1935, p.115.

– JULIA G., « Sur un problème de géométrie des nombres posé par la construction de

certaines surfaces de Riemann », Journal de mathématiques pures et appliquées (9), vol.

15, 1936, p.229-233.

– PEPPER P., « Application of geometry of numbers to a generalization of continued

fractions », Bulletin of the American mathematical Society, vol. 42, 1936, p.23.

– VAN DER CORPUT J.G., « Verallgemeinerung einer Mordellsehen Beweismethode in

der Geometrie der Zahlen. II », Acta arithmetica, vol. 2, 1936, p.145-146.

– VAN DER CORPUT J.G. et SCHAAKE G., « Anwendung einer Blichfeldtschen Be-

weismethode in der Geometrie der Zahlen », Acta arithmetica, vol. 2, 1936, p.152-160.

– MORDELL L.J., « A theorem of Khintchine on linear diophantine approximation »,

Journal of the London Mathematical Society, vol. 12, 1937, p.166-167.

– MORDELL L.J., « Homogeneous linear forms in algebraic fields », The quarterly jour-

nal of mathematics, vol. 8, 1937, p.54-57.

– MORDELL L.J., « Note on an arithmetical problem on linear forms », Journal of the

London Mathematical Society, vol. 12, 1937, p.34-36.

– SZEKERES G., « On a problem of the lattice-plane », Journal of the London Mathe-

matical Society, vol. 12, 1937, p.88-93.
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– PIPPING N., « Über konvexe Figuren K7 », Acta Academiae Aboensis, vol. 11, 1939.

– GELFOND A., « Sur une généralisation de l’inégalité de Minkowski », Bulletin de l’Aca-

démie des Sciences de l’URSS, vol. 17, 1937, p.447-449.

– MORDELL L.J., « Minkowski’s theorems and hypothesis on linear forms », Comptes

Rendus du Congrès international des Mathématiciens, Oslo, vol. 1, 1936, p.226-238.

– KOKSMA J.F., « Über einen Dirichlet-Minkowskischen Approximationssatz », Mathe-

matica B, vol. 6, 1938, p.113-131 et 171-181.

– HOFREITER N., « Über die Approximation von komplexen Linearformen », Monat-

shefte für Mathematik und Physik, vol. 46, 1938, p.313-316.

– HLAWKA E., « Über die Approximation von zwei komplexen inhomogenen Linearfor-

men », Monatshefte für Mathematik und Physik, vol. 46, 1938, p.324-334.

– DAVENPORT H., « On the product of three homogeneous linear forms. I », Journal of

the London Mathematical Society, vol. 13, 1938, p.139-145.

– DAVENPORT H., « On the product of three homogeneous linear forms. II », Procee-

dings of the London mathematical Society (2), vol. 44, 1938, p.412-431.

– MAHLER K., « A theorem on inhomogeneous Diophantine inequalities », Koninklijke

Akademie van Wetenschappente Amsterdam, vol. 41, 1938, p.634-637.

– PERRON O., « Neuer Beweis eines Satzes von Minkowski », Mathematische Annalen,

vol. 115, 1938, p.656-657.

– KOKSMA J.F., « Anwendung des Perronschen Beweises eines Satzes von Minkowski »,

Mathematische Annalen, vol. 116, 1939, p.464-468.

– HEINHOLD J., « Verallgemeinerung und Verschärfung eines Minkowskischen Satzes »,

Mathematische Zeitschrift, vol. 44, 1939, p.659-688.

– DAVENPORT H., « Minkowski’s inequality for the minima associated with a convex

body », The quarterly journal of mathematics, vol. 10, 1939, p.119-121.

– MAHLER K., « Ein Übertragungsprinzip für konvexe Körper », Casopis pro Péstováni

Matematiky a Fysiku, vol. 68, 1939, p.93-102.
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– JARNIK V., « Remarque à l’article précédent de M. Mahler », Casopis pro Péstováni

Matematiky a Fysiku, vol. 68, 1939, p.103-111.

– JARNIK V., « Sur un théorème de M. Mahler », Casopis pro Péstováni Matematiky a

Fysiku, vol. 68, 1939, p.59-60.

– MAHLER K., « Ein Übertragungsprinzip für lineare Ungleichungen », Casopis pro

Péstováni Matematiky a Fysiku, vol. 68, 1939, p.85-92.

– KELLER O.H., « Eine Bemerkung zu den verschiedenen Möglichkeiten, eine Zahl in

einen Kettenbruch zu entwickeln », Mathematische Annalen, vol. 116, 1939, p.733-741.

– PEPPER P., « Une application de la géométrie des nombres à une généralisation d’une

fraction continue », Annales scientifiques de l’École normale supérieure (3), vol. 56,

1939, p.1-70.

– HANCOCK H., Development of the Minkowski geometry of numbers, New York, The

Macmillan Company, 1939.

– ARAL H., Simultane diophantische Approximationen in imaginären quadratischen Zahl-

körpern, Dissertation, München, 1939.

– WEYL H., « Theory of reduction for arithmetical equivalence », Transactions of the

American Mathematical Society, vol. 48, 1940, p.126-164.

– PERRON O., « Modulartige lückenlose Ausfüllung des Rn mit kongruenten Würfeln.

I », Mathematische Annalen, vol. 117, 1940, p.415-447.

– DERRY D., « Remarks on a conjecture of Minkowski », American journal of mathema-

tics, vol. 62, 1940, p.61-66.

– TSCHEBOTARÖW N., « Beweis des Minkowskischen Satzes über lineare inhomogene

Formen », Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, vol. 85, 1940,

p.27-30.

– KOKSMA J.F., « Sätze und Vermutungen aus der Geometrie der Zahlen », Euclides :

maandblad voor de didactiek van de wiskunde. Bijvoegsel van het Nieuw Tijdschrift voor

Wiskunde, vol. 17, 1940, p.159-171.

– PERRON O., « Modulartige lückenlose Ausfüllung des Rn mit kongruenten Würfeln.

II », Mathematische Annalen, vol. 117, 1941, p.609-658.
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– HOFREITER N., « Gitterförmige lückenlose Ausfüllung des Rn mit kongruenten Wür-

feln », Monatshefte für Mathematik und Physik, vol. 50, 1941, p.48-64.

– HAJÓS G., « Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes

mit einem Würfelgitter », Mathematische Zeitschrift, vol. 47, 1941, p.427-467.

– HAJÓS G., « Einfache Bedeckung mehrdimensionaler Räume mit Würfelgittern », Mat.

fizik. Lapok, vol. 48, 1941, p.37-64.

– HEINHOLD J., « Zur Geometrie der Zahlen », Mathematische Zeitschrift, vol. 47, 1941,

p.199-214.

– JARNIK V., « Zwei Bemerkungen zur Geometrie der Zahlen », Vestnik Králevske Ceské

Spolecnosti Nauk., vol. II, 1941.

– MAHLER K., « An analogue to Minkowski’s geometry of numbers in a field of series »,

Annals of mathematics, vol. 42, 1941, p.488-522.

– KOKSMA J.F. et MEULENBELD B., « Über die Approximation einer homogenen Li-

nearform an die Null », Koninklijke Akademie van Wetenschappente Amsterdam, vol.

44, 1941, p.62-74.

– KOKSMA J.F. et MEULENBELD B., « Diophantische Approximationen homogener

Linearformen in imaginären quadratischen Zahlkörpern », Koninklijke Akademie van

Wetenschappente Amsterdam, vol. 44, 1941, p.426-434.

– KOKSMA J.F. et MEULENBELD B., « Simultane Approximationen in imaginären

quadratischen Zahlkörpern », Koninklijke Akademie van Wetenschappente Amsterdam,

vol. 44, 1941, p.310-323.

– MORDELL L.J., « The product of homogeneous linear forms », Journal of the London

Mathematical Society, vol. 16, 1941, p.4-12.

– ZILINSKAS G., « On the product of four homogeneous linear forms », Journal of the

London Mathematical Society, vol. 16, 1941, p.27-37.

– MORDELL L.J., « On the product of two non-homogeneous linear forms », Journal of

the London Mathematical Society, vol. 16, 1941, p.86-88.

– MORDELL L.J., « Some results in the geometry of numbers for non-convex regions »,
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– MORDELL L.J., « Lattice points in the region |Ax4 +By4| ≦ 1 », Journal of the Lon-

don Mathematical Society, vol. 16, 1941, p.152-156.

– WEYL H., « Theory of reduction for arithmetical equivalence. II », Transactions of the

American Mathematical Society, vol. 51, 1942, p.203-231.

– ESTERMANN T., « A new proof of a theorem of Minkowski », Journal of the London

Mathematical Society, vol. 17, 1942, p.158-161.

– KOKSMA J.F. et MEULENBELD B., « Sur le théorème de Minkowski, concernant un

système de formes linéaires réelles. I, II, III, IV », Koninklijke Akademie van Weten-

schappente Amsterdam, vol. 45, 1942, p.256-262,354-359,471-478 et 578-584.

– MEULENBELD B., « Des approximations diophantiques d’un système de formes li-

néaires complexes », Koninklijke Akademie van Wetenschappente Amsterdam, vol. 45,

1942, p.924-928.

179





Chapitre 3

Le travail de Blichfeldt en géométrie

des nombres

Sommaire

3.1 Présentation générale de Blichfeldt et de son travail . . . 181

3.2 Le travail publié de Blichfeldt en géométrie des nombres . 189

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

3.1 Présentation générale de Blichfeldt et de son tra-

vail

3.1.1 Eléments biographiques sur Blichfeldt

Peu de recherches ont été faites à propos de Blichfeldt et de son travail : nous dispo-

sons d’une « Memorial Resolution » rédigée par des membres de l’université de Stanford

lors de son décès, d’une nécrologie rédigée par Dickson, de quelques informations dans

un article de Royden sur l’université de Stanford et de deux articles biographiques.

Le premier de ces articles écrit par Miller est publié dans le Dictionary of Scientific

Biography et le second de Bell dans les Biographical Memoirs of the National Academy

of Sciences of the United States of America. Remarquons que la construction de la vie

de Blichfeldt dans ces sources tend à la faire apparaître comme une incarnation du rêve

américain1 ; nous avons laissé de côté cette interprétation.

Selon ces sources, Hans Frederik Blichfeldt est né le 9 janvier 1873 à Illar2, un

1D’autres biographies de mathématiciens contiennent des éléments contestables, c’est ce que
montre Constance Reid avec la biographie de Bell, voir Reid 1993.

2Ou bien Iller d’après Bacon et al. N.D..
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Fig. 3.1 – Hans Frederik Blichfeldt
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village danois3. Blichfeldt est d’origine sociale modeste, son père Erhard Christoffer

Laurentius Blichfeldt est fermier et le descendant d’une lignée de pasteurs4. Hans a

deux soeurs et un demi-frère que sa mère, Nielsine Marie Schlaper5, a eu d’un premier

mariage6. La famille déménage à Copenhague en 1881 et alors qu’il a 15 ans Blichfeldt

réussit l’examen d’entrée à l’université7. Ses parents n’ont cependant pas les moyens

de lui financer ses études et il n’entre donc pas à l’université de Copenhague8.

En 1888, sa famille émigre aux Etats Unis9, il vit alors dans les états du Nebraska, du

Wyoming, de l’Oregon puis de Washington10, là où le travail se présente11. Entre 1888

et 1892, il est ouvrier dans des fermes ou des scieries de l’ouest et du mid-ouest12, puis

entre 1892 et 1894, il travaille dans le département d’ingénierie du comté de Whatcom

dans l’état de Washington. Il y effectue un travail de géomètre qui l’amène à voyager

à travers tout le pays. C’est pendant cette période que ses collègues et ses supérieurs

remarquent ses capacités en mathématiques et qu’ils l’encouragent à essayer d’entrer

à l’université13. Il se présente donc pour être admis à l’université de Stanford en 1894

avec une lettre de recommandation du directeur des écoles du comté de Whatcom14. Il

est admis comme “special student” en septembre 1894 car la direction de l’université ne

sait pas trop comment prendre en compte l’examen réussi pour l’entrée à l’université

de Copenhague. Sa situation d’étudiant se normalise au cours des mois suivants

« In January of 1895 he was granted “full entrance standing, except for

English 1b, on the basis of work done before entering the University”, and

a month later he was granted an additional credit of sixty hours toward

graduation15. »

Il suit des cours d’anglais, d’allemand, de physique et de mathématiques sur les sujets

suivants : le calculus, les quaternions, les courbes planes , les équations différentielles,

l’analyse, la géométrie solide, la théorie des invariants, la géométrie projective, le tracé

de courbes, l’analyse vectorielle, la théorie des fonctions et la théorie des substitutions.

Il obtient son B.A. en 1896 et son M.A. en mathématiques en 1897. Blichfeldt finance
3Miller 1970; Dickson 1947.
4Miller 1970.
5D’après Miller 1970, le nom de sa mère est Scholer.
6Bell 1951 p.181.
7Bell 1951.
8Miller 1970.
9Miller 1970.

10La famille de Blichfeldt semble représentative des immigrés danois aux Etats Unis. D’après
Burma 1956, il s’agit d’une population composée surtout de fermiers avec un très bon niveau d’édu-
cation et qui s’installe principalement dans les états de l’Iowa, Minnesota, Nebraska et Winsconsin. Il
est intéressant de noter que Blichfeldt est cité dans cet article de Burma qui a pour objectif d’illustrer
l’impact de l’immigration sur les arts et la science aux Etats Unis.

11Bacon et al. N.D..
12Miller 1970.
13Miller 1970; Royden 1989 p.239.
14Cité dans Royden 1989 p.239.
15Royden 1989 p.239.
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ces trois années d’étude grâce à des économies faites les années précédentes et en assu-

rant des travaux dirigés (« teaching assistantship ») à l’université pendant les années

1896-1897 16.

Avec le soutien financier d’un professeur de Stanford, Rufus L. Green, il se rend l’an-

née suivante à Leipzig où il travaille sous la direction de Sophus Lie sur la théorie des

groupes continus. Il obtient son doctorat en 1898 à Leipzig avec une thèse intitulée On

a certain class of groups of transformations in space of three dimensions17.

Il retourne ensuite à l’université de Stanford où il effectue toute sa carrière de ma-

thématicien. À son retour en 1898 il est d’abord instructeur en mathématiques, puis

professeur assistant18 en 1901, professeur associé en 1906, professeur en 1913 et pro-

fesseur émérite en 1938. Il dirige le département de mathématiques à partir de 1927

jusqu’à sa retraite en 1938 19. Il est aussi professeur invité à l’université de Chicago

pour le semestre d’été 1911 et à l’université de Columbia pour les semestres d’été de

1924 et 1925 20. Pendant la Première Guerre Mondiale, il travaille sous la direction de

Oswald Veblen sur des questions de ballistique à l’Aberdeen Proving Ground21.

Dans la première partie de sa carrière, son travail porte essentiellement sur la théorie des

groupes, mais à partir de 1913 il se tourne vers des problèmes de théorie des nombres :

géométrie des nombres, approximation diophantienne et formes quadratiques. Blich-

feldt est un mathématicien qui a assez peu publié mais il s’est beaucoup investi dans

l’American Mathematical Society pour laquelle il a fait de nombreux exposés et dont

il a été vice-président en 1912 22. Il est aussi membre de The Mathematical Association

of America, élu à la National Academy of Sciences en 1920 et membre du National

Research Council entre 1924 et 1927 23. Il est d’ailleurs le représentant officiel de la

National Academy of Sciences au congrès international des mathématiciens à Zürich

en 1932 et celui du gouvernement américain et de l’American Mathematical Society en

1936 à Oslo. Blichfeldt a entretenu des liens avec son pays natal toute sa vie et le roi

du Danemark le fait Chevalier de l’ordre de Dannebrog en 1938 24.

Blichfeldt décède le 16 novembre 1945 à Palo Alto en Californie d’une attaque car-

diaque consécutive à une opération.

16À cette époque il n’y avait cependant pas de frais de scolarité à Stanford, Royden 1989 p.239.
17Miller 1970.
18Il est l’assistant de Miller, voir Royden 1989 p.241.
19Pendant la Seconde Guerre Mondiale, l’université le rappelle pour qu’il assure quelques cours,

Royden 1989 p.279.
20Dickson 1947; Bacon et al. N.D.. Bell indique des dates différentes pour ces visites : 1913

pour Chicago, 1925 et 1926 pour Columbia, voir Bell 1951 p.182-183.
21Dickson 1919b p.296.
22Miller 1970.
23Miller 1970; Bacon et al. N.D..
24Dickson 1947. Bell 1951 donne à nouveau une date différente, ici 1939, voir page 184.
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3.1.2 Les sources de Blichfeldt sur la géométrie des nombres

Quand son premier article sur la géométrie des nombres est publié en 1914, Blich-

feldt a travaillé presque exclusivement sur la théorie des groupes. Nous ne connaissons

pas de déclaration explicite de Blichfeld pour expliquer ce changement complet de su-

jet25. Cependant, quand Bell oppose les mathématiciens qui préfèrent les problèmes

liés à la continuité à ceux travaillant sur le discret, il classe Blichfeldt dans la première

catégorie à cause de son travail sur les groupes continus26. Il est donc intéressant de

remarquer que lorsque Blichfeldt se tourne vers la théorie des nombres, ses recherches

portent sur la géométrie des nombres, sujet qui manifestait pour Minkowski l’interven-

tion du continu dans le discret.

Comme les seules sources concernant Blichfeldt dont nous disposons sont ses publi-

cations mathématiques, deux échelles d’analyse vont être employées pour aborder ses

articles : celle des mathématiques qui y sont développées (énoncés, démonstrations)

et celle des références qui y sont citées. Les contenus mathématiques seront commen-

tés dans les paragraphes suivants. Nous allons relever ici les mathématiciens cités par

Blichfeldt dans son travail en géométrie des nombres. Même si cela ne nous donnera

pas vraiment d’explication pour l’intérêt nouveau de Blichfeldt pour ce sujet, nous au-

rons ainsi des indications sur les travaux qu’il a consultés au sujet de la géométrie des

nombres.

Dans la suite pour sélectionner la géométrie des nombres dans l’ensemble des tra-

vaux de Blichfeldt, nous choisissons les articles dans lesquels la géométrie des nombres

est explicitement mentionnée ou bien dont le thème est un des sujets que nous avons

rencontrés en liaison avec la géométrie des nombres dans le travail de Minkowski. Chez

Blichfeldt, Il s’agit des formes quadratiques définies positives et en particulier la ques-

tion du minimum pour des valeurs entières des variables, le discriminant d’un corps de

nombres algébriques, l’approximation diophantienne et la majoration d’une somme de

valeurs absolues de formes linéaires.

Nous trouvons 7 articles qui vérifient les critères précédents qui sont publiés entre 1914

et 1939, ce qui est finalement assez peu. Notons que nous n’avons pas comptabilisé les

résumés des interventions orales faites lors de rencontres de l’American Mathematical

Society et publiés dans le Bulletin de cette société. Ses résumés qui ne font en général

que quelques lignes ne sont pas tous rédigés par Blichfeldt et ne permettent pas tou-

jours de se faire une idée précise des résultats développés. Ils montrent cependant que

25Il semble abandonner complètement la théorie des groupes à partir de 1914 mis à part pour
la publication de deux livres sur ce thème en 1916 et 1917, mais ce sont plus des livres dédiés à
l’enseignement que des travaux de recherches.

26Reid 1993 p.104.
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Blichfeldt a souvent abordé le thème de la géométrie des nombres, nous en avons en

effet relevé 13 sur ce sujet entre 1913 et 1935. Dans ces exposés ont été annoncés des

résultats ou des travaux sur la géométrie des nombres qui n’ont jamais été publiés. Par

exemple, en 1919 il fait part de son projet de publier prochainement « An exposition

of the theory of the geometry of numbers27 » dans les Annals of Mathematics, mais

d’après Bell cette idée a ensuite été abandonnée28.

Le relevé des mathématiciens cités dans Blichfeldt 1914, 1919, 1921, 1929, 1935,

1936, 1939 conduit aux résultats donnés dans le tableau 3.1 29.

Mathématiciens nombre de citations

Minkowski 25

Korkine et Zolotareff 8

Hermite 4

Dickson 3

Gauss 2

Hurwitz 2

Kronecker 2

Remak 2

Bendersky 1

Bierberbach et Schur 1

Birkhoff 1

Hofreiter 1

Scholz 1

Seeber 1

Tab. 3.1 – Mathématiciens cités par Blichfeldt

Ce relevé met en évidence la place de Blichfeldt comme un des premiers successeurs

important de Minkowski en géométrie des nombres. Sans surprise, Minkowski est de

loin le plus cité des auteurs et constitue donc la source principale de Blichfeldt concer-

nant la géométrie des nombres. En dehors de quelques références techniques, la plupart

des autres articles sont antérieurs au travail de Minkowski ou ne relèvent pas direc-

tement de géométrie des nombres. Korkine et Zolotareff sont cités dans Blichfeldt

27Blichfeldt 1919 p.449.
28Bell 1951 p.187. Nous avons effectivement pas retrouvé de synthèse de la géométrie des nombres

dans les travaux publiés de Blichfeldt.
29Nous avons relevé le nombre d’occurrence pour chaque mathématicien cité.

186



3.1 CHAPITRE 3

1914 et Blichfeldt 1935 pour leurs articles sur les formes quadratiques définies po-

sitives publiés entre 1872 et 1877 dans les Mathematische Annalen. Ils y développent

en particulier une méthode de réduction pour ces formes qui est utilisée par Blichfeldt.

Cette méthode leur permet de déterminer la meilleure borne possible pour le mini-

mum sur les valeurs entières des variables des formes quadratiques définies positives

de 3, 4 et 5 variables. Hermite30 est aussi cité pour ce sujet ainsi que pour ses résul-

tats sur l’approximation simultanée de réels par des rationnels de même dénominateur.

Kronecker (dans Blichfeldt 1914, 1921) et Hurwitz (dans Blichfeldt 1914) sont

eux aussi cités pour leur travail sur ce thème d’approximation. Gauss (dans Blich-

feldt 1914, 1929) et Seeber (dans Blichfeldt 1914) sont mentionnés pour avoir

été parmi les premiers à s’être intéressés au problème du minimum des formes qua-

dratiques définies positives en particulier pour celles de 2 ou 3 variables. Bierberbach

et Schur (dans Blichfeldt 1935) et Hofreiter (dans Blichfeldt 1935) sont cités

eux aussi pour leur participation dans l’étude de ce problème : Bierberbach et Schur

pour un article de 1928 sur la réduction des formes quadratiques définies positives de

n variables, Hofreiter pour un travail publié 1933 dans lequel il détermine toutes les

classes de formes extrêmes (au sens de Korkine et Zolotareff) de 6 variables. Notons que

ces deux articles n’apparaissent pas dans le recensement que nous avons effectué dans

le Jahrbuch pour des raisons différentes. Alors que Minkowski apparaît explicitement

dans son titre, l’article de Bierberbach et Schur n’a pas été relevé car il est classé dans

Algebraische Theorie der Formen, rubrique que nous n’avons pas explorée. L’article de

Hofreiter est quant à lui bien classé dans le chapitre Diophantische Approximationen,

Geometrie der Zahlen mais ne mentionne pas Minkowski ou la géométrie des nombres

de manière explicite31. Scholz (dans Blichfeldt 1939) est cité pour un article de

1938 sur les discriminants minimaux des corps de nombres algébriques et la référence à

Bendersky (dans Blichfeldt 1939) concerne un long mémoire sur la fonction gamma

que Blichfeldt mentionne pour un point technique (le calcul d’une limite dans lequel Γ

intervient). Blichfeldt renvoie à l’History of the Theory of Numbers de Dickson pour

trouver des réferences à propos des sujets qu’il traite.

À côté de ces travaux qui ne sont pas directement liés à la géométrie des nombres

ou qui relèvent davantage de sa préhistoire (Gauss, Seeber, Hermite, Korkine, Zolo-

tareff, Kronecker, Hurwitz), les références à Birkhoff et Remak apparaissent comme

des exceptions. Ils sont en effet mentionnés pour des contributions qui sont issues d’un

contact avec le travail de Blichfeldt. La citation de George Birkhoff (dans Blichfeldt

1914) fait référence à une communication personnelle avec Blichfeldt où Birkhoff lui a

proposé une autre preuve de son théorème qui généralise le théorème de Minkowski sur

les convexes. Remak est cité (dans Blichfeldt 1929, 1935) pour son article publié en

30Hermite est cité dans Blichfeldt 1914, 1919, 1935.
31Hofreiter est cependant un mathématicien recensé pour d’autres articles.
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1927 et intitulé Vereinfachung eines Blichfeldtschen Beweises aus der Geometrie der

Zahlen, il se positionne donc directement dans la ligne du travail de Blichfeldt sur la

géométrie des nombres. Avec ces références au travail de Blichfeldt nous voyons déjà

s’amorcer la construction d’une généalogie de la géométrie des nombres dans laquelle

Blichfeldt occupe une place importante.

Notons que les travaux liés à la géométrie des nombres et effectués après Minkowski

sont cités par Blichfeldt après 1914 date de son premier article sur ce thème. Quand

il commence à s’intéresser à la géométrie des nombres, sa source unique sur ce sujet

est Minkowski. Cette remarque semble confirmer que Blichfeldt est parmi les premiers

mathématiciens à travailler sur la géométrie des nombres après Minkowski.

L’étude précédente ne nous éclaire cependant pas sur l’origine de cet intérêt pour la

géométrie des nombres. La première trace que nous en avons est une intervention que

Blichfeldt fait en 1913 lors d’une réunion de la section de San Francisco de l’American

Mathematical Society. Le résumé de 10 lignes32 de cette présentation montre seulement

que Blichfeldt y a proposé une amélioration de la borne de Minkowski pour le minimum

des formes quadratiques définies positives, estimation qui sera d’ailleurs encore amé-

liorée dans son article publié en 1914. Ce dernier point semble indiquer que l’intérêt

de Blichfeldt a commencé avec cette question du minimum des formes quadratiques,

thème auquel il consacre la plupart de ses articles par la suite.

Pour expliquer en partie le passage de recherches sur les groupes (en particulier finis)

à des recherches sur la géométrie des nombres, nous pourrions faire l’hypothèse que

le premier contact de Blichfeldt avec le travail de Minkowski a eu lieu sur le terrain

de la théorie des groupes de substitutions. En liaison avec son travail sur l’équivalence

des formes quadratiques, Minkowski s’est en effet aussi intéressé aux substitutions

linéaires homogènes à coefficients entiers de n variables33 et il a démontré34 en par-

ticulier en particulier que l’ordre d’un groupe fini de substitutions de ce type divise

2n(2n − 1)(2n − 2) . . . (2n − 2n−1). Nous n’avons cependant pas trouvé d’éléments qui

confirment cette hypothèse et si nous faisons l’étude des citations dans le travail de

Blichfeldt avec les articles concernant les groupes nous pouvons voir que Minkowski

n’y est jamais cité.

32Blichfeldt 1913.
33Voir Hilbert 1911 p.VIII-IX.
34Voir Minkowski 1887a.
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3.2 Le travail publié de Blichfeldt en géométrie des

nombres

3.2.1 Un nouveau principe pour la géométrie des nombres

Le premier article que Blichfeldt consacre à la géométrie des nombres est publié

en 1914 dans les Transactions of the American Mathematical Society35. Dans le début

de cet article, il revient sur le travail de Minkowski en géométrie des nombres ce qui

permet de voir comment il envisage l’organisation de cette théorie après Minkowski.

Pour lui la géométrie des nombres vient de la découverte par Minkowski d’un « geo-

metrical principle which he applied with success to certain important problems in the

theory of numbers36. » Le principe géométrique auquel il fait référence est le théorème

de Minkowski sur les points d’un réseau dans un domaine convexe dont le centre est

un point du réseau. Blichfeldt rappelle ce résultat sous sa forme géométrique

« A surface in n-dimensional space, nowhere concave, possessing a center

which coincides with one of the lattice-points of this n-space, and having a

volume ≥ 2n, will contain at least two more lattice-points, either inside the

surface or upon its boundary37. »

Il le rappelle aussi sous sa « forme analytique » telle que nous l’avons par exemple

rencontrée dans les lettres de Minkowski adressées à Hermite. Blichfeldt revient ensuite

sur deux applications données par Minkowski.

D’une part, si [f(x1, . . . , xn)]
2 est une forme quadratique définie positive et de déter-

minant D, alors il existe des entiers l1, . . ., ln non tous nuls tels que

0 < f 2 ≤ 4

π

[

Γ
(

1 +
n

2

)] 2
n

D
1
n .

D’autre part, si v1, . . ., vn sont des formes linéaires homogènes en x1, . . ., xn, de

déterminant ∆ non nul, telles que s paires de ces formes sont à coefficients complexes

conjugués et si f est définie par

f(x1, . . . , xn) = |v1| + · · ·+ |vn| ,

il existe alors des entiers l1, . . ., ln non tous nuls vérifiant

0 < f ≤
[(

4

π

)s

Γ (1 + n) .|∆|
] 1

n

.

35Blichfeldt 1914. Comme tous les articles de Blichfeldt, certains arguments ne sont pas donnés
nous les reconstituons dans ce qui suit.

36Blichfeldt 1914 p.227.
37Blichfeldt 1914 p.227.
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La description qui est ici faite par Blichfeldt de la géométrie des nombres confirme

ce que nous avons observé à propos du travail de Minkowski. La théorie s’organise

autour du résultat sur les points d’un réseau dans un corps convexe qui est ici érigé en

principe par Blichfeldt. Ce principe est ensuite appliqué à différentes situations (formes

quadratiques, somme de formes linéaires. . .) afin d’obtenir de nouveaux résultats.

Avec cette première contribution à la géométrie des nombres, il semble que Blichfeldt

veut donc revenir sur le fondement de cette théorie. En effet, comme le titre de son

article l’indique il veut proposer « a new principle in the geometry of numbers ».

La manière dont Blichfeldt aborde ici la géométrie des nombres semble cohérente avec

la description que fait Bell de l’enseignement à Stanford au début du XXe siècle :

« The instruction at Stanford was a curious mixture of the French, Ger-

man and American methods, but it was extremely effective. The professors

insisted on a thorough mastery of general principles rather than skill in

problem-solving. Their attitude was this : if a problem was worth the se-

rious effort of an advanced student, it should have at least the elements of

a research project in it, and not be merely a difficult puzzle whose solution

would add nothing to existing mathematics38. . . »

Blichfeldt commence par définir une notion plus générale de points d’un réseau.

Dans l’espace de dimension n muni d’un système de coordonnées rectangulaires

(x1, . . . , xn), il considère les plans

x1 = a1 + b1t, x2 = a2 + b2t, . . . , xn = an + bnt (t = 0, ±1, ±2, . . . ),

où a1, . . ., an, b1, . . ., bn sont des réels donnés. Ces plans partagent l’espace en paral-

lélépipèdes dits fondamentaux et on suppose que k points appartenant strictement à

chacun de ces parallélépipèdes sont fixés. Ce sont ces points qui sont appelés points de

réseau. Blichfeldt indique que la définition classique de réseau est retrouvée en prenant

ai = 1
2

et bi = 1, pour tous les entiers i entre 1 et n, et en choisissant dans chaque

parallélépipède le centre comme seul point du réseau (k = 1).

Soit maintenant S une partie ouverte et bornée de l’espace de dimension n dont

le volume est noté V . Le nouveau principe énoncé par Blichfeldt dans le théorème I

consiste en l’existence d’une translation

x′i = xi + δi (i = 1, . . . , n),

38Bell cité dans Reid 1993 p.101-102. L’organisation autour de principes étaient très importante
dans la tradition française du XIXe siècle en particulier chez Hermite, voir Goldstein 2008.
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qui permet de placer S de telle sorte que le nombre L de points de réseau dans l’adhé-

rence39 de S vérifie l’inégalité

L >
V k

W
,

où W est le volume d’un parallélépipède fondamental et k le nombre de points de

réseau dans chacun de ces parallélépipèdes.

Pour démontrer ce résultat, Blichfeldt commence par considérer un parallélépipède σ

dont les côtés sont parallèles aux axes de coordonnées et de longueur Ab1, . . ., Abn, où

A est un entier naturel fixé choisi assez grand pour qu’après une translation S puisse

être contenue dans σ (sur la figure 3.2 A est pris égal à 2). Il note (S, σ) la figure

obtenue après translation de S dans σ.

Fig. 3.2 – Illustration de la démonstration du théorème I

Soit Σ un autre parallélépipède construit comme σ mais dont les côtés mesurent

Bb1, . . ., Bbn avec B un entier naturel supérieur à 2A (8 sur la figure 3.2). Le volume

de Σ est

Bb1 × Bb2 × · · · ×Bbn = BnW ,

il est donc possible de placer Σ de telle sorte qu’il contienne exactement Bn parallé-

lépipèdes fondamentaux. Soit enfin Σ′ un troisième parallélépipède inclus dans Σ de

côtés parallèles aux axes de coordonnées et de longueur (B − 2A)b1, . . ., (B − 2A)bn.

Les faces de Σ′ sont supposées être à distance Ab1, . . ., Abn de celles de Σ.

(S, σ) est ensuite placée pour qu’un sommet O de σ coincide avec un sommet de Σ et

Blichfeldt définit des translations en posant

x′i = xi + ti
bi
C

(i = 1, . . . , n), (3.1)

39Blichfeldt n’utilise pas le terme adhérence mais parle du nombre de « lattice-points L contained
in the continuum or lying as near as we please to its boundary ».
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où C est un entier naturel fixé et les ti parcourent l’ensemble des entiers relatifs. Si

(x1, . . . , xn) désignent les coordonnées de O dans sa position initiale, x′1, . . ., x′n doivent

vérifier

xi ≤ x′i ≤ B.C × bi
C

︸ ︷︷ ︸

côté de Σ

− A.C × bi
C

︸ ︷︷ ︸

côté de σ

= xi + [(B − A)C]
bi
C

(i = 1, . . . , n)

pour qu’après translation (S, σ) reste dans Σ. Ceci implique que pour tous les indices

i, 0 ≤ ti ≤ (B −A)C et donc qu’il y a [(B −A)C + 1]n positions possibles pour (S, σ)

dans Σ en faisant opérer les translations définies ci-dessus.

En faisant le même raisonnement que pour Σ, Blichfeldt montre que Σ′ contient

(B − 2A)n parallélépipèdes fondamentaux et donc k (B − 2A)n points de réseau. Si

l’entier C est pris suffisamment grand, chacun de ces points de réseau appartient à

l’adhérence de un ou plusieurs translatés de S. Il s’agit maintenant de dénombrer ces

points en les comptant à chaque fois qu’ils sont dans l’adhérence d’une des parties S.

Notons N le résultat de ce dénombrement. Pour P un de ces points de réseau, nous

cherchons le nombre de parties S pour lesquelles P est à compter ; pour cela Blichfeldt

considère que S est fixe et que c’est le point P qui est translaté. Après chacune des

translations (3.1), le point P est le sommet d’un parallélépipède dont les côtés ont pour

longueur b1
C

, . . ., bn
C

. Notons MP le nombre de ces parallélépipèdes qui sont entièrement

contenus dans S. Un sommet de chacun d’entre eux est alors une position possible pour

le point P , donc si M est le minimum des MP pour P un des points de réseau dans Σ′,

il vient

N ≥
∑

P∈Σ′

MP ≥ k (B − 2A)n ×M .

Considérons maintenant S(j) les parties incluses dans Σ qui sont l’image de S par une

des translations (3.1) et α(j) le nombre de points de réseaux dans l’adhérence de S(j),

ainsi

N =

[(B−A)C+1]n
∑

j=1

α(j) .

Si nous avions pour tous les indices j,

α(j) < k
(B − 2A)nM

[(B −A)C + 1]n
,

alors :

N <

[(B−A)C+1]n
∑

j=1

k
(B − 2A)nM

[(B − A)C + 1]n
= k (B − 2A)n ×M ,
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ce qui est contradictoire. Il existe donc j0 pour lequel

α(j0) ≥ k
(B − 2A)nM

[(B − A)C + 1]n

et posons L = α(j0). Nous prenons ensuite la limite quand B puis C tendent vers +∞
dans l’inégalité précédente, le membre de droite devient

lim
C→+∞

kM

Cn
.

Or M est le nombre de parallélépipèdes inclus dans S et de côtés b1
C

, . . ., bn
C

, d’où

lim
C→+∞

(

M.
b1
C
. . .

bn
C

)

= V ,

ce qui implique

lim
C→+∞

M

Cn
=

V

b1 . . . bn
=

V

W
.

Finalement L ≥ kV
W

mais comme L est un entier, l’inégalité est en fait stricte à moins

que kV
W

soit aussi un entier. Dans ce dernier cas, Blichfeldt considère S ′ qui contient

S mais pas de point de réseau supplémentaire. Le volume V ′ de S ′ est plus grand que

celui de S et S ′ est choisi de telle sorte que kV ′

W
n’est plus entier. Le résultat démontré

précédemment s’applique à S ′ et donc L > kV ′

W
≥ kV

W
. Ceci montre bien que dans tous

les cas

L >
kV

W
.

Blichfeldt étend ensuite ce théorème au cas où la partie S est remplacée par un

nombre fini S1, . . ., Sm de parties ouvertes et bornées dont S̄ est la réunion (« net-

work »). Il suppose aussi donnés α1, . . ., αm des réels strictement positifs. Si Vi et

Li désignent respectivement le volume de Si et le nombre de points de réseau dans

l’adhérence de Si alors, quitte à translater S̄, nous avons l’inégalité

α1L1 + · · · + αmLm >
k (α1V1 + · · · + αmVm)

W
.

Après avoir indiqué les modifications à apporter à la preuve du théorème I pour

obtenir cette généralisation, Blichfeldt montre comment son nouveau principe, qu’il

présente comme géométrique, permet de retrouver le théorème de Minkowski.

Pour cela, il considère une fonction f qui vérifie les conditions des fonctions distances

de Minkowski, c’est-à-dire que :

1. f(x1, . . . , xn) ≥ 0 et f(x1, . . . , xn) = 0 si et seulement si x1 = · · · = xn = 0,
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2. si t > 0, f(tx1, . . . , txn) = t f(x1, . . . , xn),

3. f(y1 + z1, . . . , yn + zn) ≤ f(y1, . . . , yn) + f(z1, . . . , zn),

4. f(−x1, . . . ,−xn) = f(x1, . . . , xn).

Le théorème I est ensuite appliqué à la partie S qui est l’ensemble des points (x1, . . . , xn)

vérifiant l’inégalité

f(x1, . . . , xn) < J− 1
n ,

où J est l’intégrale
∫
dx1 . . . dxn calculée sur le domaine f(x1, . . . , xn) ≤ 1. Le volume

de S est donc V = 1 et pour le réseau (au sens usuel) des points à coordonnées entières

k = W = 1. Le théorème de Blichfeldt montre donc qu’il existe une translation, dont

les composantes sont notées δ1, . . . , δn, pour laquelle le nombre de points à coordonnées

entières L situés dans l’adhérence de l’image de S vérifie

L >
kV

W
= 1 , ou encore L ≥ 2 .

Soient alors y = (y1, . . . , yn) et −z = (−z1, . . . ,−zn) deux points distincts du réseau

donnés par le théorème et pout tout i dans {1, . . . , n}, li = yi + zi. (l1, . . . , ln) est bien

aussi un point du réseau. De plus, comme y− δ et −z− δ sont des points de S, il vient

0 < f(l1, . . . , ln) = f(y1 + z1, . . . , yn + zn)

= f [(y1 − δ1) − (−z1 − δ1), . . . , (yn − δn) − (−zn − δn)]

≤ f(y1 − δ1, . . . , yn − δn) + f(−z1 − δ1, . . . ,−zn − δn)

≤ J− 1
n + J− 1

n =
2

n
√
J
,

ce qui est bien la forme analytique du théorème de Minkowski.

Blichfeldt revient ensuite sur des applications déjà étudiées par Minkowski et montre

comment avec son théorème il peut obtenir de meilleures estimations.

Si F est une forme quadratique de n variables définie positive et de discriminant D,

Blichfeldt l’écrit

F = v2
1 + v2

2 + · · ·+ v2
n ,

où les vi sont des formes linéaires de déterminant ∆ ; alors D = ∆2. Prenons Sλ
l’ensemble défini par l’inégalité

F (x1, . . . , xn) < (λφ)
2
n ,

avec λ un entier compris entre 1 et m, φ = n+2
2mJ

et où J = π
n
2

∆.Γ(1+ n
2 )

est le volume de

l’ensemble des (x1, . . . , xn) tel que F (x1, . . . , xn) < 1. Si Vi désigne le volume de Si,
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alors

Vi = iφJ .

En gardant les notations précédentes, la généralisation du théorème I appliquée avec

le réseau des nombres entiers donne

α1L1 + · · ·+ αmLm > α1V1 + · · ·+ αmVm = φJ (α1 + 2α2 + · · · +mαm) .

En posant, g = 1 + 2
2
n + · · · + m

2
n , pi = Li − Li−1, αi = (i + 1)

2
n − i

2
n pour i < m et

αm = (n+2)g
nm

−m
2
n , l’inégalité précédente devient40

(n+ 2)g

nm
Lm −

(

p1 + 2
2
np2 + · · ·+m

2
npm

)

>
(n+ 2)g

nm
. (3.2)

Si (x′1, . . . , x
′
n) un point du réseau dans l’adhérence Sλ, alors v′i = vi(x

′
1−δ1, . . . , x′n−δn)

et donc

(v′1)
2 + · · · + (v′n)

2 < (λφ)
2
n + ε , (3.3)

pour ε > 0 aussi petit que l’on veut. De même, si (x′′1, . . . , x
′′
n) est un autre point du

réseau, v′i − v′′i = vi(x
′
1 − x′′1, . . . , x

′
n − x′′n), etc. Ainsi la quantité

(v′1 − v′′1)
2 + · · · + (v′n − v′′n)

2 (3.4)

est une valeur de F pour des valeurs entières de ses variables. P est le nombre des

points du réseau dans S1, . . ., Sm, donc aussi le nombre de points du réseau dans Sm,

donc P = Lm et de plus Lm = p1 + p2 + · · · + pm. Sommant les expressions (3.4) sur

toutes les 1
2
P (P − 1) paires de points distincts du réseau dans Sm, Blichfeldt obtient

∑

1≤j<l≤P

[(

v
(j)
1 − v

(l)
1

)2

+ · · ·+
(
v(j)
n − v(l)

n

)2
]

= P
P∑

j=1

[

(v
(j)
1 )2 + · · ·+ (v(j)

n )2
]

−
(

P∑

j=1

v
(j)
1

)2

− · · · −
(

P∑

j=1

v(j)
n

)2

< P

P∑

j=1

[

(v
(j)
1 )2 + · · ·+ (v(j)

n )2
]

.

Or p1 points du réseau sont dans S1, ils vérifient donc

(v
(j)
1 )2 + · · · + (v(j)

n )2 < φ
2
n + ε ,

40Blichfeldt 1914 p.232.
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p2 points du réseau sont dans S2 mais pas dans S1, ils sont tels que

(v
(j)
1 )2 + · · ·+ (v(j)

n )2 < (2φ)
2
n + ε . . .

pm points du réseau sont dans Sm mais pas dans Sm−1 donc pour ces points

(v
(j)
1 )2 + · · ·+ (v(j)

n )2 < (mφ)
2
n + ε .

Ainsi la somme
P∑

j=1

[

(v
(j)
1 )2 + · · ·+ (v(j)

n )2
]

est strictement inférieure à

P
[

p1(φ
2
n + ε) + p2((2φ)

2
n + ε) + · · ·+ pm((mφ)

2
n + ε)

]

et par suite

∑

1≤j<l≤P

[(

v
(j)
1 − v

(l)
1

)2

+ · · ·+
(
v(j)
n − v(l)

n

)2
]

< P
[

p1φ
2
n + p2(2φ)

2
n + · · · + pm(mφ)

2
n

]

+ εP 2 .

Avec (3.2) et Lm = P , cette dernière inégalité implique

∑

1≤j<l≤P

[(

v
(j)
1 − v

(l)
1

)2

+ · · ·+
(
v(j)
n − v(l)

n

)2
]

< P φ
2
n (P − 1)

(n+ 2) g

nm
+ P 2ε .

D’autre part,

∑

1≤j<l≤P

[(

v
(j)
1 − v

(l)
1

)2

+ · · ·+
(
v(j)
n − v(l)

n

)2
]

≥ 1

2
P (P − 1)

[(

v
(j0)
1 − v

(l0)
1

)2

+ · · · +
(
v(j0)
n − v(l0)

n

)2
]

,

où le couple (j0, l0) correspond au terme le plus petit dans la somme. Après avoir divisé

par 1
2
P (P − 1), les deux dernières inégalités impliquent

(

v
(j0)
1 − v

(l0)
1

)2

+ · · · +
(
v(j0)
n − v(l0)

n

)2
< 2φ

2
n

(n+ 2) g

nm
+ 2

P

P − 1
ε .

Enfin, en remplaçant φ par sa valeur et en faisant tendre m vers +∞, Blichfeldt obtient

le théorème II : il existe des entiers l1, . . ., ln non tous nuls et tels que

F (l1, . . . , ln) ≤ 2

π

[

Γ

(

1 +
n+ 2

2

)] 2
n

D
1
n .

196



3.2 CHAPITRE 3

Blichfeldt remarque que la valeur asymptotique de cette borne nD
1
n

πe
est meilleure que

celle qui avait été obtenue par Minkowski.

Ce dernier résultat permet de montrer que pour f = |v1|+· · ·+|vn|, il existe des valeurs

entières non toutes nulles des variables telles que

0 < f ≤
√

2n

π

[

Γ

(

1 +
n+ 2

2

)] 1
n

|∆| 1
n .

Quand n devient grand, cette estimation est à nouveau plus précise que celle donnée

par Minkowski.

Enfin, l’article se termine avec une dernière application du théorème I qui conduit

Blichfeldt à un résultat d’approximation simultanée de n− 1 réels positifs par des ra-

tionnels de même dénominateur. Dans le théorème IV, il améliore les approximations

démontrées auparavant à part dans le cas de deux réels41.

Cette présentation permet de comprendre le titre donné par Blichfeldt à son article :

« A new principle in the geometry of numbers, with some applications ». Nous avions

vu comment chez Minkowski la géométrie des nombres est organisée autour de son

théorème sur les domaines convexes. En appliquant ce résultat à des situations variées,

Minkowski démontre de nouveaux théorèmes, par exemple sur les formes quadratiques

ou les formes linéaires. Blichfeldt montre dans cet article que son théorème I peut se

substituer à celui de Minkowski au centre de la théorie. D’abord parce qu’il apparaît

plus général : le théorème de Blichfeldt implique le théorème de Minkowski. Ensuite

parce qu’il est susceptible d’être appliqué aux mêmes situations tout en améliorant les

résultats obtenus.

Nous pouvons aussi remarquer que le théorème de Blichfeldt est plus général parce qu’il

porte sur une notion de réseau plus large que celle utilisée par Minkowski. Cependant

quand il applique ce résultat, Blichfeldt revient à la notion traditionnelle de réseau et

à notre connaissance Blichfeldt n’a jamais exploité dans son travail cet aspect de son

résultat.

Cet article est aussi une étape importante pour la géométrie des nombres car il

influence la manière avec laquelle la théorie est transmise par la suite. Le point de vue

adopté par Blichfeldt pour démontrer le théorème de Minkowski est en effet celui qui

est le plus repris. Dans beaucoup de livres où ce théorème est présenté et en particulier

dans les plus récents, c’est la preuve de Blichfeldt en deux étapes qui est proposée42.

41Blichfeldt 1914 p.235.
42Voir par exemple Siegel 1989; Cassels 1959; Samuel 2003; Lekkerkerker 1969; Martinet

1996; Tauvel 2000 ainsi que l’énoncé du théorème de Minkowski proposé au début de l’introduction.
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La première étape est un lemme, parfois appelé lemme ou théorème de Blichfeldt43,

qui est en fait une version plus faible du théorème I. Voyons par exemple l’énoncé dans

Lekkerkerker 1969 page 35 :

« Theorem 2 (theorem of blichfeldt). Let M be a measurable set

in Rn. Suppose that V (M) > 1 or that M is bounded and closed and

V (M) ≥ 1. Then M contains two points x, y, such that x − y is a lattice

point 6= 0. »

Le théorème de Minkowski se démontre alors soit en suivant l’argument de Blichfeldt

que nous avons déjà présenté s’il est donné sous forme analytique, soit en appliquant

le résultat précédent à 1
2
M pour sa forme géométrique. En effet, si M est convexe,

symétrique par rapport à l’origine O et de volume strictement plus grand que 2n, alors
1
2
M a un volume strictement supérieur à 1. D’après le théorème précédent, 1

2
M contient

donc deux points x, y tels que x− y est un point du réseau différent de l’origine. Mais

la symétrie et la convexité de M impliquent que ce point du réseau

x− y =
1

2
[2x+ (−2y)]

appartient aussi à M , ce qui prouve le théorème de Minkowski dans sa forme géomé-

trique44.

3.2.2 Formes quadratiques et empilement de sphères

Un autre aspect des travaux de Blichfeldt en géométrie des nombres, souvent men-

tionné, est sa nouvelle méthode pour aborder le problème de l’empilement de sphères

de même rayon45. Cette méthode est présentée dans un article publié en 1929 46, cepen-

dant Blichfeldt avait annoncé un résultat sur ce sujet dès 1919 dans une communication

lue à Chicago à un symposium de The American Mathematical Society47.

Pour une forme quadratique de n variables definie positive de déterminant D, Bli-

chfeldt note γnD
1
n la meilleure borne possible pour le minimum de cette forme pour

des valeurs non toutes nulles des variables48. Après avoir rappelé la majoration qu’il

avait obtenue pour γn dans son article de 1914, il fait le lien entre cette question et

le problème de la détermination de l’empilement régulier de sphères le plus dense. Un

empilement régulier de sphères est un empilement pour lequel les centres des sphères

43Dans Samuel 2003 p.67, c’est ce lemme qui est même appelé théorème de Minkowski.
44Voir Siegel 1989 p.17.
45Voir Cassels 1959 p.248 ; Lekkerkerker 1969 p.261-262 ; Siegel 1989.
46Blichfeldt 1929.
47Un résumé de cette conférence est publié dans Blichfeldt 1919.
48Cette notation va s’imposer par la suite et la constante γn sera plus tard baptisée constante

d’Hermite. Voir par exemple Martinet 1996.
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forment un réseau. Dans ce cas, la densité maximale qu’il est possible d’obtenir est

ρ0 =

(
π γn

4

)n/2

Γ
(
1 + n

2

) .

L’objectif de Blichfeldt est de trouver ρ1 tel que la densité de n’importe quel empilement

de sphères (régulier ou non) soit strictement plus petite que ρ1. Si une telle constante

a été trouvée, comme ρ0 < ρ1, elle permet de déterminer une estimation pour γn :

γn <
π

4

[

ρ1 Γ
(

1 +
n

2

)] 2
n
.

Blichfeldt considère donc des sphères S1, . . ., Sm de rayon 1 dans l’espace de dimen-

sion n dont les coordonnées des centres sont notées (a1, b1, . . . , k1), . . ., (am, bm, . . . , km)

et une origine T = (0, 0, . . . , 0) fixée. Soit aussi ri = (a2
i + b2i + · · · + k2

i )
1/2 la distance

entre T et le centre de la sphère Si. La première étape consiste à minorer la somme

des r2
i . Pour cela, Blichfeldt remarque que pour que les sphères ne se rencontrent pas,

la distance entre deux centres quelconques doit être au moins 2, donc

(ai − aj)
2 + (bi − bj)

2 + · · ·+ (ki − kj)
2 ≥ 4 pour tout i 6= j .

En sommant ces inégalités sur toutes les paires de centres distincts (1 ≤ i < j ≤ m),

il obtient

m
m∑

i=1

(a2
i + b2i + · · ·+ k2

i )−
(

m∑

i=1

ai

)2

−
(

m∑

i=1

bi

)2

− · · · −
(

m∑

i=1

ki

)2

≥ 2m(m− 1) ,

ce qui implique
m∑

i=1

r2
i ≥ 2(m− 1) . (3.5)

Blichfeldt fait ensuite appel à une analogie avec la physique. L’idée fondamentale

derrière sa méthode est de remplacer les sphères abstraites par des sphères matérielles

« Leaving the centers fixed, we now replace the given geometrical spheres

by physical spheres of superposable matter49 ».

Blichfeldt garde donc les centres des sphères précédentes fixes mais considère des

sphères dont le rayon est plus grand afin qu’elles puissent s’intersecter. Il suppose

que ce sont des sphères matérielles avec une quantité de matière par unité de volume50

qui est telle que la densité de matière totale en n’importe quel point de l’espace soit

majorée par une constante.

49Blichfeldt 1929 p.606.
50Blichfeldt utilise le terme « density of the matter », nous utiliserons le mot densité dans la suite

bien qu’en français cela désigne une grandeur sans unité.
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Blichfeldt commence par choisir des sphères de rayon
√

2 avec comme densité de ma-

tière la fonction ϕ donnée par :

ϕ(r) =







2 − r2 si r ≤
√

2

0 si r >
√

2
,

où r désigne la distance au centre de la sphère. Si en un point m sphères se rencontrent,

quitte à faite un changement de coordonnées on peut supposer qu’il s’agit du point T ,

alors la densité totale en T vérifie

m∑

i=1

(2 − r2
i ) = 2m−

m∑

i=1

r2
i ≤ 2m− 2(m− 1) = 2 .

Soit un cube de côté E qui contient k sphères de rayon 1, alors il existe un cube de côté

E + 2(
√

2 − 1) qui contient k sphères de rayon
√

2. Si Q désigne la matière contenue

dans ce dernier cube, l’inégalité précédente donne

Q < 2 ×
[

E + 2(
√

2 − 1)
]n

.

D’autre part, en notant Sr la surface d’une sphère de rayon r, alors

Q = k

∫ √
2

0

Sr × (2 − r2) dr .

Comme Sr =
nπn/2 rn−1

Γ
(
1 + n

2

) , il vient donc

Q = k.n
π

n
2

Γ
(
1 + n

2

)

∫ √
2

0

rn−1 (2 − r2) dr

Q =
4 kK 2

n
2

n+ 2
,

où K =
πn/2

Γ
(
1 + n

2

) . Blichfeldt obtient donc

2 ×
[

E + 2(
√

2 − 1)
]n

>
4 kK 2

n
2

n + 2
.

Or la densité ρ2 de l’empilement est le rapport du volume occupé par les k sphères

dans le cube de côté E par le volume de ce cube, c’est-à-dire ρ2 = kK
En , ainsi

ρ2 <
n+ 2

2
n+2

2

(

1 +
2
√

2 − 2

E

)n

= ρ1 .
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En prenant E qui tend vers +∞, ρ1 se rapproche de
n+ 2

2
n+2

2

et cette limite conduit en

fait à la même estimation pour γn que celle qu’avait déjà trouvée Blichfeldt en 1914.

Pour réussir à améliorer la majoration de γn, Blichfeldt applique la même méthode

en modifiant la fonction ϕ. Il suppose maintenant que le rayon des sphères et les ri
sont inférieurs à

√
2. Ceci lui permet de démontrer que

m∑

i=1

ri ≥
√

2m (m− 1) . (3.6)

Cette dernière inégalité va jouer le même rôle que (3.5) par la suite. Il reprend les

sphères précédentes de rayon
√

2 avec une fonction densité de matière ϕ qui est nulle

à l’extérieur des sphères et à l’intérieur :

ϕ(r) =







2 si 0 ≤ r ≤ 2 −
√

2

(2 − r)2 si 2 −
√

2 ≤ r ≤ 1

2 − r2 si 1 ≤ r ≤
√

2

,

où r est toujours la distance au centre de la sphère. Les inégalités (3.5) et (3.6) implique

que la densité de matière en n’importe quel point est inférieure à 2. Si nous notons à

nouveau Q la matière contenue dans un cube de côté E + 2(
√

2 − 1) qui contient k

sphères alors

Q = k

[
∫ 2−

√
2

0

Sr × 2 dr +

∫ 1

2−
√

2

Sr × (2 − r)2 dr +

∫ √
2

1

Sr × (2 − r2) dr

]

Q =
4K k

n + 2

[

2
n
2 +

1

n+ 1
− (2 −

√
2)n+1

(√
2

2
+

1

n+ 1

)]

Q =
4K k 2

n
2

n + 2
(1 + g) .

Blichfeldt en déduit que

2 ×
(

E + 2(
√

2 − 1)
)n

>
4K k 2

n
2

n + 2
(1 + g) ,

c’est-à-dire :
kK

En
<

(

1 +
2(
√

2 − 1)

E

)n
n+ 2

2
n
2
+1 (1 + g)

.

En faisant tendre E vers +∞, il trouve cette fois

ρ1 =
n + 2

2
n+2

2 (1 + g)
,
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puis que

γn <
2

π

[

Γ
(
1 + n+2

2

)

1 + g

] 2
n

.

Comme g > 0, cette dernière estimation de γn est bien meilleure que celle précédemment

obtenue par Blichfeldt.

Il revient pour terminer sur la question de la détermination de γn pour n un entier

fixé. Après avoir rappelé les valeurs de γn pour n = 2, 3, 4, 5, Blichfeldt annonce avoir

démontré que

γ6 =
6

√

64

3
, γ7 =

7
√

64 et γ8 = 2 .

La méthode proposée ici par Blichfeldt est en fait très proche de celle utilisée par

Minkowski pour démontrer son théorème sur les convexes. L’idée de Minkowski consiste

à considérer des domaines convexes (comme des sphères) qui ne se rencontrent que sur

leurs frontières et qui sont tous inclus dans un parallélépipède. Minkowski compare en-

suite le volume de ce parallélépipède et le volume occupé par les convexes, puis il passe

à la limite. De manière analogue, Blichfeldt considère des sphères toutes incluses dans

un cube. Mais ces sphères ne sont plus nécessairement disjointes et elles sont supposées

matérielles. La matière contenue dans les sphères est donnée par une fonction densité

de matière. Blichfeldt compare alors la matière dans les sphères et dans le cube qui les

contient.

3.2.3 Minimum des formes quadratiques de 6, 7 et 8 variables

Dans son article51 publié en 1935, Blichfeldt revient sur l’étude de la constante γn.

Cette fois son objectif n’est pas de donner une estimation de cette constante valable

pour tout n, mais de déterminer les valeurs exactes de γ6, γ7 et γ8. Il rappelle d’abord

en introduction d’une part la définition de γn et d’autre part ses valeurs pour n égal 2,

3, 4 et 5 qui sont alors connues

γ2 =

√

4

3
, γ3 =

3
√

2 , γ4 =
√

2 , γ5 =
5
√

8 .

Les valeurs qu’il obtient pour n entre 6 et 8 sont celles qu’il avait annoncées dans son

article précédent, c’est-à-dire :

γ6 =
6

√

64

3
, γ7 =

7
√

64 , γ8 = 2 .

51Blichfeldt 1935.
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Pour démontrer ces résultats, Blichfeldt emploie la méthode de réduction des formes

quadratiques de n variables développée par Korkine et Zolotareff en 1873 et qu’ils

nomment « le développement des formes suivant les minima52 ». Ils ont démontré que

chaque forme quadratique définie positive de n variables est équivalente à une forme

qui s’écrit

f = A1(x1+αx2+· · ·+γxn)2+A2(x2+δx3+· · ·+ζxn)2+· · ·+An−1(xn−1+σxn)
2+Anx

2
n .

De plus, dans cette écriture, A1 est le minimum53 de f , qui est donc atteint pour

(x1, x2, . . . , xn) = (1, 0, . . . , 0). A2 est le minimum de la forme en x2, . . ., xn lorsque

le premier terme A1(x1 + αx2 + · · · + γxn)
2 est annulé, etc. . . Korkine et Zolotareff

montrent aussi un certain nombre d’inégalités sur les coefficients de f . D’abord, les

coefficients (dits intérieurs par Blichfeldt) α, β, . . ., δ, . . ., σ sont tous inférieurs à 1
2

en

valeur absolue. Ensuite, les coefficients A1, A2, . . ., An (coefficients extérieurs) vérifient

les relations suivantes :

Ai+1 ≥ 3

4
Ai , Ai+2 ≥ 2

3
Ai ; (3.7)

Ai+1Ai+2Ai+3Ai+4 ≥ 1

8
A4
i . (3.8)

Toutes ces inégalités permettent de déterminer γn pour 2 ≤ n ≤ 5, mais elles doivent

être raffinées pour obtenir γ6, γ7 et γ8.

Blichfeldt introduit la notation (i j . . . k | a b . . . c) qui désigne la valeur de f quand

tous les termes avant Ai(xi + . . . )2 sont annulés et que l’on substitue xi, xj , . . . , xk par

a, b, . . . c. Comme Ai est le minimum de f quand les termes précédents sont annulés, il

vient

(i j . . . k | a b . . . c) ≥ Ai .

Blichfeldt étudie ensuite

(i, i+ 1, i+ 2 | x y z) = Ai(x− sy ± tz)2 + Ai+1(y − vz)2 + Ai+2z
2 ,

ce qui lui permet de démontrer en particulier qu’en notant Ai+1 = (1 − λ2)Ai et

Ai+2 = (1 − µ2)Ai+1, alors

µ ≤ 1 − λ

1 + λ
,

52Korkine et Zolotareff 1873 p.370.
53Par minimum de f , il est entendu minimum pour des valeurs entières et non toutes nulles des

variables.
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ou encore, si V = 1 − 2(1 − λ)(1 − µ2) est positif :

v ≤ 1

2
(1 −

√
V ) et t ≥ 1

2
(1 − λ+ (1 + λ)

√
V ) .

Dans la suite, f est une forme de 6, 7 ou 8 variables et il se ramène à A1 = 1, A2 = A,

A3 = B, . . ., A8 = G. L’objectif est donc maintenant de démontrer que

ABCDE ≥ 3

64
, ABCDEF ≥ 1

64
et ABCDEFG ≥ 1

256
, (3.9)

ce qui implique

γ6 ≤ 6

√

64

3
, γ7 ≤ 7

√
64 , γ8 ≤ 2 .

En effet, comme A1 = 1 est le minimum de f , γ6 est telle que 1 = γ6∆
1/6, où ∆ est le

déterminant de la forme. Or ∆ = ABCDE, d’où γ6 = 1
(ABCDE)1/6 , ce qui conduit à l’in-

égalité cherchée pour γ6. Les autres cas se traitent de manière identique. Ces dernières

inégalités sont en faites suffisantes pour avoir des égalités car Korkine et Zolotareff

avaient donné des formes réalisant les valeurs 6

√
64
3
, 7
√

64 et 2 pour respectivement γ6,

γ7 et γ8.

Toute la suite de l’article consiste donc à démontrer les inégalités (3.9). Pour cela

Blichfeldt raisonne par l’absurde. Les contradictions sont obtenues en combinant les

inégalités précédentes et en distinguant différents cas selon les valeurs des coefficients.

Il s’agit d’un article très technique et calculatoire et qui, mis à part la notion de ré-

duction des formes quadratiques, n’utilise pas de connaissance théorique difficile.

C’est une remarque générale que nous pouvons faire sur le travail de Blichfeldt en

géométrie des nombres. Dans Blichfeldt 1914, la preuve du théorème principal est

la partie la plus théorique, les applications étant ensuite surtout de nature calcula-

toire. Dans l’article de 1929 qui concerne les formes quadratiques et l’empilement des

sphères, Blichfeldt présente une nouvelle méthode pour étudier ces empilements, mais

il se contente de présenter sa méthode à travers deux exemples différents sans faire

aucune heuristique un peu générale. Enfin dans l’article étudié dans ce paragraphe,

le point de départ de Blichfeldt est la réduction des formes quadratiques au sens de

Korkine et Zolotareff. Ensuite tout son travail consiste à chercher des inégalités plus

précises sur les coefficients des formes réduites. Pour cela il effectue uniquement un

travail technique sur des inégalités.
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Conclusion

Dans ce chapitre, le principe de variation de l’échelle d’observation a permis d’ob-

tenir des informations de natures différentes sur Blichfeldt à partir d’un unique type

de sources : ses articles de mathématiques. L’étude des citations dans ses publications

a par exemple confirmé qu’il est parmi les premiers mathématiciens à reprendre la géo-

métrie des nombres après Minkowski. L’examen des mathématiques pratiquées dans

certains articles a lui mis en évidence quelques caractéristiques du travail de Blichfeldt

en géométrie des nombres : il n’élabore pas de nouvelles constructions théoriques, il

n’introduit pas de nouveaux objets ou de nouveaux problèmes. Par contre, il propose

une nouvelle approche pour étudier l’empilement de sphères de même rayon ; il obtient

de nouveaux résultats ou il en améliore d’autres en approfondissant des méthodes déjà

connues.

Plus particulièrement, il semble que la géométrie occupe une place moins importante

dans la géométrie des nombres de Blichfeldt que chez Minkowski. Blichfeldt reconnaît

que l’utilisation de la géométrie est caractéristique du travail de Minkowski en géométrie

des nombres54

« We now introduce the powerful geometrical process of Minkowski (1864-

1909). This process, dating from about 1890, he named “Geometry of num-

bers”. He introduces a certain key figure (standard curve or surface). »

Mais le seul endroit où la géométrie est mise en avant dans son propre travail est

l’article de 1914 dans lequel il annonce que

« A new geometrical principle will now be stated and proved55. »

Cependant cette idée de nouveau principe géométrique n’est pas développée par la

suite.

En fait, la conception de Blichfeldt sur la géométrie est un point délicat car nous avons

très peu d’éléments qui pourraient nous éclairer sur son point de vue à ce sujet. Il

commente un peu l’aspect géométrique dans le travail de Minkowski dans une commu-

nication faite lors d’un symposium sur la géométrie des nombres organisé le 28 mars

1919 pendant une réunion de l’American Mathematical Society à Chicago. Dans cet

exposé, Blichfeldt revient sur le théorème de Minkowski sur les convexes

« It remained for Minkowski to discover a theorem bearing on the least va-

lues of a very general class of functions, by means of an elegant geometrical

interpretation of this minimum56. »

54Blichfeldt 1932 p.7.
55Blichfeldt 1914 p.228.
56Blichfeldt 1919 p.450.
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Ce que Blichfeldt semble souligner ici à propos de la géométrie est son seul caractère

esthétique, ce qui est beaucoup plus pauvre que l’utilisation qui en était faite par Min-

kowski. Rappelons en effet par exemple que Minkowski lui donnait un rôle crucial dans

l’heuristique et qu’il avait l’ambition de faire de la géométrisation le principe permet-

tant d’unifier les différents domaines des mathématiques.

La deuxième communication du symposium est faite par Dickson et elle concerne les

applications de la géométrie des nombres à l’étude des nombres algébriques. Le com-

mentaire de Dickson sur la géométrie est peut être plus fidèle aux idées de Minkowski

sur le sujet

« The geometry of numbers not only furnishes a concrete geometric image

of certain fundamental theorems on algebraic numbers, but also provides

a new and attractive method of proving important theorems on algebraic

fields57. »

L’intervention de Blichfeldt à cette occasion est aussi intéressante car il fait un bref

historique de la géométrie des nombres. Il trace les grandes lignes d’une histoire qui

seront celles reprises par la suite. Blichfeldt apparaît donc comme celui qui le premier

a commencé à façonner une histoire de la géométrie des nombres qui sera transmise

dans le milieu des mathématiciens travaillant sur ce sujet.

Pour lui la géométrie des nombres est issue « d’une classe de problèmes » dont le

meilleur exemple est la détermination du minimum (ou d’estimations du minimum),

pour des valeurs entières et non nulles des variables, de la forme quadratique définie

positive f = ax2 + 2bxy + cy2. Gauss et Seeber ont donné les premiers résultats dans

les cas particuliers de formes de deux ou trois variables58. Le premier résultat général

sur ce problème est celui d’Hermite qui montre que pour une forme de n variables de

déterminant D le minimum est plus petit que
(

4
3

)n−1
2 D

1
n . La citation précédente de

Blichfeldt montre que pour lui Minkowski intervient en élargissant la question à une

classe plus grande de fonctions dont les formes quadratiques sont un cas particulier.

C’est le sens qui est donné au théorème sur les convexes sous sa forme analytique.

Cette histoire présentée par Blichfeldt est un élément supplémentaire suggérant qu’il

est venu à la géométrie des nombres à partir des formes quadratiques.

L’étude du travail de Blichfeldt sur la géométrie des nombres montre aussi une image

différente de cette discipline par rapport à celle que nous avions avec Minkowski. La

différence n’apparaît pas dans les sujets qui sont abordés par les deux mathématiciens

mais dans ce qui caractérise pour chacun la géométrie des nombres.

Avec Blichfeldt, la géométrie des nombres se définit davantage par les problèmes qui y

sont traités. La discipline s’organise donc plus autour de questions clés et la nature des
57Dickson 1919a p.453.
58Blichfeldt 1914 p.233.
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méthodes employées pour les résoudre importe peu. Nous venons de commenter par

exemple l’importance moins grande accordée aux méthodes géométriques. Parmi ces

questions clés, nous avons en particulier : le minimum des formes quadratiques définies

positives, l’approximation simultanée de nombres réels par des rationnels, le minimum

de la somme de valeurs absolues de formes linéaires, l’empilement de sphères etc. . . Ces

problèmes ne sont pas reliés par l’appel à l’intuition géométrique qui donnait son unité

à la discipline chez Minkowski. Ceci peut conduire à s’interroger sur la pertinence à

inclure tous les articles de Blichfeldt cités au paragraphe 3.1.2 dans la géométrie des

nombres. Pour l’article de 1914 dont le titre renvoie explicitement à la géométrie des

nombres la question ne se pose pas mais c’est peut être moins clair pour les autres.

Malgré le point de vue différent parfois adopté par Blichfeldt dans ces autres travaux

nous pensons qu’ils doivent être pris en compte et cela pour plusieurs raisons. D’abord,

comme nous l’avons dit, ils ont tous pour thème des questions étudiées par Minkowski

dans le cadre de la géométrie des nombres et Blichfeldt semble les intégrer à la disci-

pline (par exemple à travers les citations qui y sont faites) sans que l’utilisation de la

géométrie soit une condition pour cette intégration. Ensuite, ces articles de Blichfeldt

sont eux aussi cités dans des travaux consacrés à la géométrie des nombres. Prenons

par exemple le fascicule sur la géométrie des nombres de l’Enzyklopädie der mathe-

matischen Wissenschaften mit Einschluss ihrer Anwendungen59. Blichfeldt y est cité

précisément pour les trois articles que nous avons un peu détaillés60. Nous pouvons

aussi regarder dans les bibliographies des livres sur la géométrie des nombres pour voir

quels sont les articles de Blichfedt qui y sont cités. Ainsi dans les bibliographies de

Cassels 1959; Lekkerkerker 1969; Siegel 1989; Olds et al. 2000 tous les ar-

ticles que nous avons recensés au paragraphe 3.1.2 sont cités à l’exception du rapport

sur la géométrie des nombres de 1919.

Certaines des remarques précédentes sont cependant à préciser. Chez Minkowski,

la géométrie des nombres s’organise autour de son théorème sur les parties convexes

et elle est caractérisée par l’utilisation d’une géométrie associée à l’intuition. Dans

son article publié en 1914, quand Blichfeldt commence à travailler sur ce sujet, il

donne l’impression de reprendre en partie cette conception du domaine. Les aspects

liés à l’intuition sont laissés de côté, mais nous avons noté son objectif de mettre un

nouveau principe géométrique au centre de la théorie. Ce nouveau résultat fondamental

est ensuite appliqué à divers problèmes et il occupe alors la place du théorème de

Minkowski. Mais cette organisation de la géométrie des nombres s’estompe dans les

travaux suivants de Blichfeldt. Dans les articles que nous avons commentés il n’utilise

59Keller 1954.
60Blichfeldt 1919 est aussi cité mais c’est un rapport sur le sujet et ne constitue donc pas un

travail original.
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pas son théorème de 1914 et la géométrie est absente du calcul des constantes γ6,

γ7 et γ8. Il applique ce théorème dans des articles plus tardifs61 mais cette manière

de travailler en géométrie des nombres consistant à utiliser un résultat central dans

différentes situations n’est pas aussi systématique avec Blichfeldt qu’elle l’était chez

Minkowski.

Il se dessine donc avec Blichfeldt un changement progressif de l’organisation interne de

la géométrie des nombres telle qu’elle a été observée chez Minkowski. Ce changement

va se confirmer dans les travaux de Mordell et Davenport.

61Blichfeldt 1936, 1939.
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Les travaux de Mordell en géométrie

des nombres (1923-1945) : une

nouvelle conception disciplinaire
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Le recensement de la géométrie des nombres effectué dans le Jahrbuch suggère que

Louis Mordell a joué un rôle important dans son développement. C’est d’abord le ma-

thématicien pour lequel le plus grand nombre de publications a été relevé (12). Ensuite,

le graphe représentant le nombre de publications consacrées à la géométrie des nombres

connaît justement un pic les années pour lesquelles Mordell a lui aussi publié de ma-

nière importante sur ce sujet. Les autres sources qui ont été utilisées pour repérer la

discipline, les livres sur la géométrie des nombres ainsi que l’Enzyklopädie, ont elles

aussi fait ressortir les contributions de Mordell.

Dans ce chapitre, son travail est examiné à la même échelle que celui de Minkowski et

Blichfeldt. Mais l’étude de ses articles montre que pour comprendre la dynamique de

ses recherches il est nécessaire de prendre en compte les travaux de Harold Davenport

sur la géométrie des nombres. À partir de la deuxième moitié des années 1930, les deux
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mathématiciens commencent à travailler en étroite collaboration sur ce sujet : ils se

citent, leurs articles circulent entre eux avant publication, leurs travaux se répondent. . .

Nous nous intéresserons d’abord aux premiers travaux de Mordell sur la géométrie des

nombres, puis aux débuts de Davenport sur ce sujet. Enfin, nous étudierons principale-

ment leur collaboration à travers deux thèmes de leurs recherches : le produit de trois

formes linéaires homogènes et les formes cubiques binaires.

4.1 Mordell et Davenport : leurs débuts en géométrie

des nombres

4.1.1 Louis Joel Mordell (1888-1972)

4.1.1.1 Eléments biographiques

Louis Joel Mordell est né le 28 janvier 1888 à Philadelphie1. Il est le troisième d’une

famille de huit enfants. Ses parents sont des immigrés lithuaniens arrivés aux Etats

Unis en 1881. Son père, Phinéas Mordell (1861-1934), a été un spécialiste reconnu en

hébreu2. Mordell raconte que, un peu avant l’âge de 14 ans, il lit de vieux livres d’algèbre

grâce auxquels il découvre la théorie des nombres3. Il explique que l’idée d’aller étudier

les mathématiques à Cambridge est venue de la lecture de ces ouvrages. Il remarque

en effet que beaucoup des problèmes qui y sont proposés sont issus de « scholarship

examinations » de Cambridge ou bien du « Mathematical Tripos4 ». Il part donc pour

Cambridge à la fin de l’année 1906 5 et il obtient finalement un scholarship à Saint

John’s College (voir la coupure de presse figure 4.1 6).

En octobre 1907, il commence donc sa préparation pour le Mathematical Tripos7.

Son directeur des études est alors le géomètre H.F. Baker avec qui il ne s’entend pas

très bien8. Mordell pense que Baker aurait voulu qu’il se spécialise aussi en géométrie ;

il lui fait en tout cas suivre des cours sur les courbes planes et la géométrie différentielle,

cours que Mordell abandonne9. Il réussit la première partie du Tripos en 1909, il est

« third Wrangler ». C’est après avoir réussi la seconde partie du Tripos que Mordell

1Mordell 1971b, p.953.
2Cassels 1973, p.493.
3Mordell 1971b, p.953.
4Mordell 1971b, p.954.
5Davenport 1964, p.3.
6Mordell (St John’s), box 4, folder 41. Reproduced by permission of the Master and Fellows of

St John’s College, Cambridge.
7En plus du scholarship de Saint John’s, il est soutenu financièrement par une bourse d’un lycée

de Philadelphie (« Philadelphia High ») Cassels 1973, p.494.
8Pour des informations sur Henry F. Baker voir Barrow-Green et Gray 2006.
9Mordell 1971b p.956.
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Fig. 4.1 – Article paru dans The Philadelphia Press le jeudi 10 janvier 1907
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commence réellement à s’intéresser à la théorie des nombres. Mordell se rappelle qu’il

s’agissait d’un sujet peu étudié à cette époque en Grande Bretagne et se considère donc

comme un autodidacte10. Son premier travail dans ce domaine concerne la résolution

en nombres entiers de l’équation11

y2 = x3 + k ,

où k est un entier fixé. Il arrive deuxième pour le prix Smith12 pour ce travail13.

Entre 1913 et 1920, Mordell occupe un lectureship au Birkbeck College de Londres.

Pendant la guerre, entre 1916 et 1919, il passe deux ans comme statisticien au ministère

des munitions14. Il est ensuite chargé de cours au Manchester College of Technology

entre 1920 et 1922. Puis il obtient un poste à l’université de Manchester, d’abord un

readership en 1922 et à partir de 1923 jusqu’en 1945 il occupe la Fielden Chair of Pure

Mathematics. En 1924, alors qu’il est encore citoyen américain, il est élu Fellow of

the Royal Society. Il obtient la nationalité britannique en 1929 15. Pendant ces années

à Manchester, il est président de la London Mathematical Society entre 1943 et 1945

et obtient la De Morgan Medal en 1941. D’après Cassels, il bâtit autour de lui à

Manchester une école performante en mathématiques, il accueille par exemple pour

des durées plus ou moins longues R. Baer, G. Billing, C. Chabauty, H. Davenport, P.

Erdös, H. Heilbronn, Chao Ko, D.H. Lehmer, K. Mahler, B. Segre, J.A. Todd, P. Du

Val, L.C. Young ou G. Z̆ilinskas16. Il aide aussi un certain nombre de réfugiés fuyant

le nazisme, en particulier Kurt Mahler qui lui aussi a travaillé sur la géométrie des

nombres.

En 1945, Mordell revient à Cambridge, il succède à Hardy à la Sadleirian Chair et

obtient un Fellowship à Saint John’s College. Il donne à Cambridge des cours de théorie

des nombres dont le sujet est souvent la géométrie des nombres, les nombres algébriques

ou les équations diophantiennes. Il y organise également un séminaire hebdomadaire17.

Davenport remarque sur ces années à Cambridge

« In the years that followed, he built up an active school of research in

10Comme mathématicien faisant exception et s’intéressant à la théorie des nombres Mordell cite
G.B. Mathews et J.H. Grace, voir Mordell 1971b, p.957, Cassels 1973 p.495. Dans le livre de Ma-
thews, Theory of Numbers (Mathews 1892), un chapitre est consacré à l’interprétation géométrique
de la théorie des formes mais il s’arrête avant Minkowski.

11Mordell 1914.
12Il n’y avait pas à cette époque en Angleterre de diplôme comme le PhD pour les étudiants se

destinant à la recherche. À Cambridge, le Smith Prize, qui était décerné au meilleur article soumis,
était pour ces étudiants un moyen de montrer leur capacité à poursuivre dans une carrière de chercheur.
Au sujet de ce prix voir Barrow-Green 1999.

13Cassels 1973, p.496.
14Davenport 1964, p.3.
15Cassels 1973, p.500-501.
16Cassels 1973, p.503, Davenport 1964 p.4.
17Cassels 1973, p.506.
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Cambridge, which specialized mainly, but not entirely, in the geometry of

numbers18. »

Mordell est professeur émérite à partir de 1953. On lui décerne le Senior Berwick Prize

en 1946 et la Sylvester Medal of the Royal Society en 1949. Il est membre étranger des

académies d’Oslo, d’Uppsala et de Bologne et au cours de sa carrière éditeur de Acta

Arithmetica et du Journal of Number Theory19. Après sa retraite en 1953 il visite de

nombreuses universités comme par exemple celles de Toronto, du Ghana, du Nigeria,

du Colorado. . .

Mordell décède le 12 mars 1972 à Cambridge20.

4.1.1.2 Aperçu général des travaux de Mordell

En 1964 le volume IX des Acta Arithmetica est dédié à Mordell. À cette occasion,

Davenport écrit un court article biographique sur Mordell dans lequel il revient sur ses

travaux.

À la différence avec ce que nous avions observé avec Blichfeldt, Mordell est un ma-

thématicien très prolifique. La liste de ses publications21 comporte 270 articles (ce qui

inclut les comptes rendus d’ouvrages) et 1 livre. Ce qui suit n’est qu’un résumé très

rapide des recherches effectuées par Mordell.

Davenport identifie quatre grands thèmes de recherche dans la carrière scientifique de

Mordell : les équations diophantiennes, les fonctions theta et les fonctions modulaires,

la géométrie des nombres et enfin les congruences et sommes exponentielles22.

Les premiers travaux de Mordell concernent les équations diophantiennes avec l’étude

en particulier de l’équation y2 = x3 + k. Ces premières recherches se caractérisent par

l’application de la théorie des invariants à la théorie des équations diophantiennes23.

Le résultat pour lequel Mordell est sans doute le plus célèbre est le théorème dit main-

tenant de Mordell-Weil. En utilisant le procédé de descente infinie, Mordell démontre24

en 1922 que le groupe des points rationnels d’une courbe elliptique est de type fini,

cette formulation actuelle du théorème n’est pas celle de Mordell qui n’utilise pas dans

son article le vocabulaire de la théorie des groupes25.

L’intérêt pour les fonctions modulaires date aussi du début de la carrière de Mordell. À

ce sujet il travaille sur des formules sur le nombre de classes ou encore sur le nombre de

18Davenport 1964, p.4.
19Cassels 1973, p.509-510.
20Cassels 1973, p.509.
21Cette liste est publiée dans les volumes IX et XXIII de Acta Arithmetica.
22Davenport 1964, p.6-12.
23Voir Cassels 1973, p.496-497 et Goldstein 1993 p.40-42.
24Mordell 1922.
25Voir Cassels 1986; Schappacher 1990; Goldstein 1993.

213



CHAPITRE 4 4.1

Fig. 4.2 – Louis Joel Mordell (1888-1972)

214



4.1 CHAPITRE 4

décompositions d’un entier en un nombre donné de carrés. Ces recherches portent aussi

sur des fonctions plus spécifiques. En 1917, il démontre26 par exemple la multiplicativité

de la fonction de Ramanujan notée τ et définie par

+∞∑

n=1

τ(n) xn = x

{
+∞∏

m=1

(1 − xm)

}24

.

D’autres travaux sur ce sujet concernent le calcul de l’intégrale

∫ +∞

−∞

eat
2
+ bt

ect + d
dt ,

problème lié à des sommes de Gauss et aux fonctions theta27.

Nous reviendrons par la suite en détails sur le thème de la géométrie des nombres.

La question des sommes exponentielles concerne l’estimation de sommes du type

∑

x

e
2πif(x)

p ,

où f est un polynôme défini modulo p et où la somme est faite sur un système complet

de résidus modulo p. Mordell travaille aussi sur l’estimation du nombre de solutions

d’équations

f(x, y) ≡ 0 (mod p) ,

avec f un polynôme.

Davenport présente à part certains travaux qui ne sont pas liés aux thèmes précédents.

Parmi eux, nous avons par exemple des articles sur la représentation comme somme

de carrés de formes linéaires des formes quadratiques binaires ou sur la résolution

simultanée de deux équations quadratiques

Q1(x1, . . . , xn) = 0 , Q2(x1, . . . , xn) = 0 .

Mordell a aussi laissé un certains nombres de conjectures, parmi lesquelles la plus cé-

lèbre est certainement celle qui affirme la finitude du nombre de points rationnels sur

une courbe de genre strictement plus grand que 1 28.

26Mordell 1917.
27Voir Davenport 1964 p.8-9, Cassels 1973 p.499-500.
28Conjecture démontrée par Gerd Faltings en 1983.
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4.1.2 Les premiers travaux de Mordell en géométrie des nom-

bres 1927-1937

La première mention publiée par Mordell du travail de Hermann Minkowski se

trouve dans un article publié en 1923. Cet article29 est en fait un compte rendu in-

troductif à la théorie des nombres algébriques et Mordell n’y développe donc pas de

recherches personnelles.

Mordell débute par une introduction historique, pour lui l’origine de cette théorie se

situe dans l’utilisation par Leonhard Euler de nombres de la forme a + b
√
−2. Euler

cherchait alors à démontrer que les seules solutions entières de l’équation y2 + 2 = x3

sont x = 3 et y = ±5, énoncé qu’il attribuait à Pierre Fermat. La théorie continue

ensuite à se développer avec des travaux concernant la loi de réciprocité quadratique

et ses généralisations aux lois de réciprocité cubique et biquadratique. L’étude de ces

questions amena Carl Friedrich Gauss à considérer les nombres complexes de la forme

a+ ib où a et b sont des entiers.

Toujours d’après Mordell, c’est ensuite le dernier théorème de Fermat et l’équation

xp + yp = zp qui conduisirent les mathématiciens à considérer les nombres a + ζb où

ζ est une racine p-ième de l’unité. La factorisation de tels nombres n’est pas toujours

unique comme c’est le cas pour les entiers de Gauss a + ib, ce problème était alors

la principale difficulté de la théorie à surmonter. Mordell signale le travail de Ernst

Eduard Kummer à ce sujet mais insiste surtout sur la théorie des idéaux de Richard

Dedekind qui illustre pour lui une idée « caractéristique » des mathématiques qui est

de travailler avec des objets plus généraux (les idéaux) que ceux qui sont étudiés au

départ (des nombres algébriques) pour résoudre un problème30.

Après cette introduction historique Mordell revient sur les notions de nombres algé-

briques, d’entiers algébriques, de corps de nombres algébriques, de bases entières, de

conjugués et de discriminant d’un corps. C’est à ce propos que Minkowski est cité pour

la première fois car il a démontré la formule asymptotique suivante pour le discriminant

d d’un corps de nombres algébriques K(θ) de degré n :

d ∼ 1

2πn

(π

4

)2r2
e2n−

1
6n .

29Mordell 1923.
30Comme c’est souvent le cas avec Mordell, il développe son point de vue en donnant un exemple.

Il choisit ici celui de n! = 1 × 2 × · · · × n qui se généralise avec la fonction Γ définie pour s > 0 par
Γ(s) =

∫∞

0
e−ssn−1 dx. Pour un entier n ≥ 1, on a alors Γ(n) = (n− 1)!. Cette manière d’envisager la

théorie des idéaux de Dedekind est différente de certaines autres interprétations pour lesquelles une
caractéristique importante de la solution de Dedekind est de rester dans le cadre de l’arithmétique.
Mordell ne semble pas attacher beaucoup d’importance à ce point comme le montre le parallèle fait
avec la fonction Γ qui fait intervenir l’analyse.
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Après avoir souligné l’importance des unités des corps de nombres algébriques, Mor-

dell énonce un autre théorème dû à Minkowski concernant les formes linéaires. Nous

reviendrons plus loin sur ce théorème car il semble occuper une place particulière dans

la théorie pour Mordell.

Mordell s’intéresse ensuite à des critères permettant de déterminer si un nombre θ est

algébrique de degré n. Il rappelle alors un résultat d’approximation : « θ ne peut être

un nombre algébrique de degré n s’il existe une infinité de rationnels p
q

tels que

∣
∣
∣
∣

p

q
− θ

∣
∣
∣
∣
<

c

qλ

où c est un nombre donné31 ». Joseph Liouville avait montré le résultat pour λ > n,

puis Axel Thue en 1908 avait obtenu λ ≥ n et enfin Carl L. Siegel en 1921, λ > 2
√
n.

Mordell présente un autre critère issu du travail de Minkowski qui consiste à étudier

les minima des formes x0 + x1θ + · · · + xn−1θ
n−1 où les xi sont des entiers plus petit

qu’un entier t fixé. Rappelons que Minkowski avait énoncé son critère en introduisant

la notion de chaîne de substitutions32. Mordell le donne ici en suivant la présentation

faite par Philipp Furtwängler33 en 1917 qui considérait les rapports m2

m1
, m3

m2
, . . . où mi

est le minimum pour l’entier t = i. Ces rapports sont en nombre fini pour un nombre

algébrique θ de degré n.

Mordell revient aussi sur les idéaux, en particulier sur le fait qu’il est possible d’« étendre

beaucoup de concepts arithmétiques aux idéaux » et sur le lien entre la factorisation

des idéaux et la factorisation des nombres algébriques.

Ensuite, la notion de congruence par rapport à un idéal permet à Mordell d’introduire

la norme N(A) d’un idéal A, puis la question du nombre de classe d’idéaux. À nouveau

un résultat de Minkowski joue un rôle important dans ce problème car il permet de

montrer que tout idéal A contient un élément a tel que

|N(a)| ≥ N(A)
√
d ,

ce qui a pour conséquence qu’il n’y a qu’un nombre fini de classes d’idéaux. Mordell

explique comment ce nombre de classes H est important dans la résolution de cer-

taines équations diophantiennes. Il rappelle le lien entre le calcul de H et la fonction

f(s) =
∑ 1

N(A)s
pour laquelle la sommation porte sur tous les idéaux du corps de

nombres algébriques K(θ) étudié et où la partie réelle de s est strictement supérieure

à 1.

Continuant avec des méthodes analytiques, Mordell note que la méthode de Hardy et

31Mordell 1923, p.451.
32Minkowski 1899.
33Furtwängler 1917.
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Littlewood pour le calcul de formules approchées pour le nombre de décomposition

d’un entier naturel n en somme de carrés se généralise pour des entiers algébriques

en utilisant des fonctions theta introduites par Erich Hecke. L’article se termine par

quelques remarques sur les lois de réciprocités générales.

Bien que la géométrie des nombres ne soit pas au centre de cet article, ce travail

montre la bonne connaissance et l’intérêt de Mordell pour les résultats obtenus par

Minkowski. Nous avons déjà cité certains d’entre eux, mais le résultat de Minkowski

sur lequel Mordell insiste le plus est celui concernant le produit de formes linéaires

qu’il juge « fondamental dans la théorie et a contribué largement à sa simplicité et à

son élégance34 ». Ce théorème de Minkowski est énoncé de la façon suivante : pour des

nombres réels a, b, c, d, p et q où p, q sont strictement positifs et vérifient

p q =

∣
∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
∣

,

il existe des entiers x, y qui ne sont pas nuls tous les deux et tels que

|ax+ by| ≤ p et |cx+ dy| < q .

Mordell semble déjà assez bien connaître ce problème et les différentes approches uti-

lisées pour l’aborder : l’approche géométrique de Minkowski avec le théorème sur les

parties convexes et symétriques par rapport à l’origine ; les approches jugées arithméti-

ques de David Hilbert et d’Adolf Hurwitz ; la preuve analytique de Carl Siegel, la plus

récente, utilisant des séries trigonométriques35. Nous verrons des travaux de Mordell

qui s’inscrivent dans chacune de ces trois approches, en particulier les méthodes ana-

lytiques sont l’objet de recherches importantes de Mordell dans les années 1928-1930

où il publie plusieurs articles sur la formule sommatoire de Poisson.

Le premier article original de Mordell en géométrie des nombres est rédigé en 1927 et

traite du produit de deux formes linéaires non homogènes36. En fait pendant la période

allant de 1927 à 1937, l’intérêt de Mordell en géométrie des nombres se porte presque

exclusivement sur ce problème des formes linéaires. De manière un peu générale ce

problème peut se formuler en disant qu’il s’agit d’étudier les plus petites valeurs prises

par un systèmes de n formes linéaires (parfois par leur produit ou la somme de leur

valeur absolue) quand les variables prennent des valeurs entières.

Le discours qu’il prononce le 15 novembre 1927 devant the Manchester Literary and

34Mordell 1923, p.450.
35Siegel 1922.
36Mordell 1928a.
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Philosophical Society et qui est publié dans Nature en 1928 témoigne de l’importance

qu’il accorde à ce problème37. À cette occasion, Mordell discute des six problèmes de

théorie des nombres qui ont pour lui le plus d’influence sur les recherches de l’époque

et parmi ces questions se trouve la conjecture de Minkowski sur le produit de n formes

linéaires non homogènes. Il aborde d’abord le problème des trois bicarrés d’Euler qui

consiste en l’étude de l’équation a4 + b4 + c4 = d4. Il rappelle ensuite l’importance du

dernier théorème de Fermat dans les premiers développements de la théorie algébrique

des nombres. Le problème suivant est celui de la détermination des nombres rationnels

x et y qui satisfont l’équation du troisième degré à coefficients rationnels suivante :

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ ky + i = 0

Il précise bien sûr qu’il a lui même démontré à l’aide du procédé de descente infinie

que toutes les solutions peuvent être obtenues à partir d’un nombre fini d’entre elles

par la méthode des tangentes et des sécantes. Mordell passe ensuite au problème du

nombre de classes de Gauss. Gauss avait conjecturé que pour un nombre de classes

H(D) de formes quadratiques de déterminant −D donné, il n’y a qu’un nombre fini de

valeurs de D possibles. Mordell aborde ensuite le problème des diviseurs de Dirichlet.

Il consiste en l’étude de la somme d(1) + d(2) + · · · + d(n) où d(i) désigne le nombre

de diviseurs de l’entier i. Mordell indique que Dirichlet avait montré en 1843 que

d(1) + d(2) + · · ·+ d(n) = n log n+ (2γ − 1)n+ R(n)

où γ = 0, 577 . . . est la constante d’Euler et le reste R(n) vérifie R(n) = O(
√
n). De

meilleures approximations furent données par Voronoï en 1903 (R(n) = O( 3
√
n logn))

et Van der Corput (R(n) = O( 3
√
n)). Bien que Mordell remarque la diversité des ap-

proches utilisées (géométriques, arithmétiques), pour lui ce sont les méthodes de théorie

analytique des nombres qui ont joué le plus grand rôle dans les développements récents.

Mordell termine avec la conjecture de Minkowski sur le produit de n formes linéaires

non homogènes qui nous intéresse plus particulièrement ici38. Il rappelle un énoncé de

cette conjecture : étant données des formes linéaires non homogènes

Li = ai1x1 + ai2x2 + ... + ainxn − ci (1 ≤ i ≤ n) ,

où les aij et les ci sont des nombres réels tels que le déterminant |aij| est égal à 1,

37Mordell 1928b.
38Bien que cette conjecture soit attribuée à Minkowski, nous n’avons pas trouvé cet énoncé dans le

travail de Minkowski que nous avons consulté. Freeman Dyson, qui démontre le cas du produit de 4
formes linéaires dans Dyson 1948, confirme qu’il n’en a trouvé aucune trace dans les travaux publiés
de Minkowski.
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existe-t-il des nombres entiers x1, x2, ..., xn tels que

|L1 L2 ... Ln| ≤ 2−n ?

Publié en 1928, le premier article de Mordell en liaison avec la géométrie des nombres

concerne justement cette conjecture de Minkowski sur le produit de formes linéaires

non homogènes39. Dans cet article Mordell commence par des rappels historiques à

propos de ce problème que nous reprenons ici.

Pour Mordell les premiers résultats pour le produit de deux formes L1 et L2 sont ceux

de Pafnuty Tchebychef qui démontra que pour des valeurs entières des variables

|L1L2| ≤ 1

2

et Hermite40 qui améliora la borne précédente avec

|L1L2| ≤
√

2

27
.

En fait, comme celui de Tchebychef, le théorème d’Hermite donne l’existence d’une

infinité d’entiers x et y tels que

|x− ay − b| <
√

2

27

1

y
,

où a et b sont deux nombres réels. La preuve d’Hermite utilisait la réduction des formes

quadratiques ternaires. Ces résultats étaient alors déjà envisagés en liaison avec des

problèmes d’approximations dans le cadre des fractions continues. C’est toujours dans

ce cadre mais en abordant la question avec des méthodes géométriques que Minkowski41

démontra que

|L1L2| ≤ 1

4
.

Enfin, en 1913, Robert Remak propose une démonstration plus simple pour le produit

de deux formes utilisant cette fois les formes quadratiques binaires42 et en 1923, il

réussit à prouver le résultat pour trois formes linéaires non homogènes43.

Mordell juge que la preuve de Remak pour n = 3 est « excessivement compliquée »,

il lui semble donc qu’il serait très difficile d’« étendre ses méthodes à plus de trois

39Mordell 1928a.
40Hermite 1880.
41Minkowski 1901b, 1907.
42Remak 1913.
43Remak 1923a,b.
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variables44 ». De plus, d’un point de vue méthodologique il pense que pour résoudre le

cas où n est quelconque, il est fructueux de multiplier les démontrations dans les cas

plus simples :

« An obvious method of attempting to deal with the general theorem is to

find new proofs for the case n = 2 45. »

Nous pouvons voir les effets de cette opinion de Mordell sur son travail. Nous constate-

rons à travers quelques exemples qu’il publie souvent plusieurs articles sur exactement

le même problème : il propose plusieurs approches, simplifie des preuves. . . L’exemple

le plus frappant est peut-être celui du produit de formes linéaires mais ce n’est pas le

seul, nous le verrons aussi pour la question du minimum des formes cubiques binaires.

Dans cet article de 1928, Mordell propose donc une nouvelle preuve du cas où n = 2

qu’il espère plus facile à généraliser que celle de Remak (bien qu’il indique ne pas encore

y être parvenu). Etant données deux formes linéaires non homogènes,

L1 = a11x1 + a12x2 − c1 et L2 = a21x1 + a22x2 − c2 ,

dont les coefficients sont réels et le déterminant égal à 1, le problème est de montrer

l’existence de deux entiers x1 et x2 qui vérifient

|L1 L2| ≤ 1

4
.

La preuve de Mordell est fondée sur deux lemmes. Dans le premier de ces lemmes, le

déterminant

∣
∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
∣

est supposé égal à 1, il existe alors des entiers x1 et x2, qui

sont non tous deux nuls et pour lesquels

|a11x1 + a12x2| |a21x1 + a22x2| ≤ 1 .

À propos de ce résultat qui est énoncé sans démonstration, Mordell indique à juste

titre qu’il s’agit d’un cas particulier d’un théorème sur les formes linéaires dû à Min-

kowski46. Minkowski avait démontré son théorème pour un nombre quelconque n de

formes linéaires, cette première étape de la preuve ne pose donc pas de difficulté pour

la généralisation de sa méthode que Mordell envisage afin de démontrer la conjecture

dans le cas du produit de n formes. C’est le deuxième lemme utilisé par Mordell dont

la généralisation pose problème :

44Mordell 1928a, p.20.
45Mordell 1928a p.20.
46Voir par exemple Minkowski 1896a chapitre 4.
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« Si 0 < A ≤ 1 et 0 ≤ |B| ≤ 1
2
, alors il existe un nombre N tel que

|AX2 +BX| ≤ 1

4

pour N ≤ X ≤ N + 1 ».

Pour démontrer ce lemme Mordell se ramène par un changement de variables à l’étude

de la fonction f(x) = ax2 − b où a et b dépendent de A et B. Ensuite en séparant les

cas où b ≤ 1
4

et où b > 1
4
, puis en utilisant les conditions vérifiées par A et B, Mordell

obtient par des inégalités successives que |f(x)| ≤ 1
4

pour un intervalle de valeurs de x

de longueur 1.

Le premier lemme permet à Mordell de justifier qu’il est possible de se ramener au cas

où

|a11 a21| ≤ 1 .

Il traite ensuite des cas particuliers où certains coefficients des formes sont nuls et dans

le cas général il suppose a11 6= 0 et a21 6= 0. Le calcul du produit des deux formes donne

L1L2 = a11a21

[

x1 − ξ1 +
a12

a11
(x2 − ξ2)

] [

x1 − ξ1 +
a22

a21
(x2 − ξ2)

]

,

où le couple (ξ1 = a22c1 − a12c2 , ξ2 = a11c2 − a21c1) est la solution du système







L1 = 0

L2 = 0
.

Mordell choisit pour x2 un entier tel que |x2−ξ2| ≤ 1
2

et pose X = x1−ξ1+ a12
a11

(x2 − ξ2),

il obtient alors

L1L2 = a11a21X
2 + (x2 − ξ2)X .

L’application du lemme 2 implique l’existence d’un intervalle I de longueur 1 tel que

∀X ∈ I, |L1 L2| ≤ 1

4
.

Or dans X seul x1 n’est pas fixé et comme la longueur de I est 1, x1 peut être choisi

entier.

Le point de vue adopté ici par Mordell n’a plus rien à voir avec celui de Minkowski.

Rappelons que Minkowski faisait une construction géométrique afin de trouver une

solution pour l’inégalité précédente47. Dans ses tentatives suivantes pour aborder ce

problème Mordell va s’éloigner de cette première idée et il va se tourner vers des

méthodes issues de la théorie analytique des nombres.

47Voir Minkowski 1901b.
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4.1.2.1 L’utilisation de la formule sommatoire de Poisson 1928-1929

À la fin des années 1920, Mordell consacre plusieurs articles à des applications de la

formule sommatoire de Poisson à des questions de théorie des nombres. Dans le premier

article de cette série il écrit

« It is a familiar fact that an important part is played in the Analytic

Theory of Numbers by Fourier series. There are, for example, applications

to Gauss’ sums, to the zeta functions, to lattice point problems, and to

formulae for the class number of quadratic fields48. »

Dans les travaux de Mordell qui vont nous intéresser ici les séries de Fourier inter-

viennent à travers la formule sommatoire de Poisson. L’idée d’appliquer cette formule

à des questions de théorie des nombres n’est pas nouvelle et remonte en fait à Dirichlet

qui l’emploie afin d’étudier les sommes de Gauss49. Cette approche analytique des an-

nées 1928-1929 sont aussi à rapprocher de la démontration déjà évoquée de Siegel de

1922 du théorème sur les formes linéaires qui utilisait des séries de Fourier.

Le premier article de Mordell qui concerne la formule sommatoire de Poisson com-

mence par une démontration de cette formule qu’il écrit

+∞∑

n=−∞

1

2
(f(n− 0) + f(n+ 0)) =

+∞∑

n=−∞

∫ +∞

−∞
e2nπixf(x) dx .

Mordell en donne une preuve sous les conditions suivantes :

(1) Pour N > 0, f(x) est absolument intégrable sur [−N,N ] ; pour 0 < ε < N ,

f(x) est à variations bornées sur [ε,N ] 50, pour N > 0 et x ≥ N , f(x) admet une

dérivée seconde f ′′(x).

(2) lim
|x|→+∞

f(x) = 0, lim
|x|→+∞

f ′(x) = 0 et les intégrales
∫ +∞

−∞
f(x) dx et

∫ +∞

−∞
|f ′′(x)| dx

sont convergentes.

48Mordell 1928c p.585.
49Pour des renseignements sur les sommes de Gauss ainsi que la première utilisation de la formule

sommatoire de Poisson dans ce contexte par Dirichlet, voir Patterson 2007.
50Soit f une fonction définie sur un intervalle [a, b] à valeurs dans R. Notons S([a, b]) l’ensemble

des subdivisions de [a, b]. Pour une subdivision σ = (a = x0, x1, . . . , xn = b) ∈ S([a, b]), on considère

V (f, σ) =

n∑

i=1

|f(xi) − f(xi−1)| .

La variation totale de f est alors
V (f) = sup

σ∈S([a,b])

V (f, σ) .

f est dite à variations bornées si V (f) est finie.
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(3) La série
+∞∑

n=−∞
(f(n− 0) + f(n+ 0)) converge.

Avec cette formule, Mordell redémontre dans un premier temps des résultats connus.

D’abord il revient sur l’équation fonctionnelle vérifiée par la fonction zêta de Riemann

qui est définie pour les nombres complexes s de partie réelle strictement plus grande

que 1 par

ζ(s) =
1

1s
+

1

2s
+

1

3s
+ · · · .

L’équation fonctionnelle démontrée par Mordell s’écrit alors

ζ(s) = Γ(1 − s) 2s πs−1 sin
(πs

2

)

ζ(1 − s) ,

où la fonction Γ est définie par

Γ(s) =

∫ +∞

0

ts−1e−t dt .

Mordell explique ensuite comment la même méthode permet d’obtenir aussi l’équation

fonctionnelle pour la fonction zeta plus générale définie pour les nombres complexes de

partie réelle strictement positive par

ζ(s, χ) =
χ(1)

1s
+
χ(2)

2s
+
χ(3)

3s
+ · · · ,

où χ désigne un caractère primitif modulo un entier k.

L’intérêt que Mordell porte alors à ce type de méthode semble venir de la possibilité

d’unifier avec un seul principe des résultats épars de la théorie des nombres :

« These formulae give instantaneous and simple proofs of so many impor-

tant and apparently disconnected results that it is rather surprising they

have been overlooked in the treatises in the Analytical Theory of Num-

bers51. »

Nous voyons à nouveau apparaître le thème de l’unité déjà développé par Minkowski.

Cependant l’unité ici ne passe pas par la géométrie mais par l’analyse, elle est obtenue

à travers une formule. Avec ces premiers travaux sur la formule sommatoire de Pois-

son, nous sommes donc davantage dans une tradition hermitienne. Cependant, cette

thématique de l’unité semble disparaître des préoccupations de Mordell par la suite.

Dans le deuxième article sur la formule sommatoire de Poisson52, publié en 1929,

Mordell démontre la formule sous des conditions qu’il pense mieux adaptées et plus

simples à vérifier pour son utilisation dans les applications

51Mordell 1928c p.587.
52Mordell 1929a.
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« These conditions make no pretence to any great generality, but they are so

simple and so easily applied that, as I am showing in a series of papers, Pois-

son’s formula furnishes obvious demonstrations of many theorems, which

can have only been overlooked owing to the lack of such a simple enuncia-

tion53. »

Ce n’est pas la formule dans sa plus grande généralité qui doit donc être recherchée pour

réussir à unifier ou encore organiser la théorie. Ce qui doit être visé c’est la simplicité

de manière à ce que les applications soient des conséquences presque immédiates. La

simplicité de la formule est ce qui assure sa fécondité54. Nous retrouvons en partie ces

idées dans la lecture de Davenport de l’utilisation de la formule de Poisson par Dirichlet

« The method used by Dirichlet in 1835 to evaluate G is probably the most

satisfactory of all that are known. It is based on Poisson’s summation for-

mula, and it has the advantage that once the proof has been embarked

upon, no special ingenuity is called for55. »

Dans son article de 1929, Mordell démontre cette fois la formule de Poisson sous la

forme56

+∞∑

n=−∞
f(n) =

+∞∑

n=−∞

∫ +∞

−∞
e2nπixf(x) dx

où la fonction f vérifie les conditions suivantes57 :

(α) pour toutes valeurs réelles de x, f(x) et f ′(x) sont continues et tendent vers

zéro quand |x| → ∞ ;

(β) f(x) et f ′′(x) sont telles que les intégrales
∫ ∞

−∞
f(x) dx et

∫ ∞

−∞
|f ′′(x)| dx

convergent, et f ′ est une intégrale de f ′′.

Puis il considère le cas où la sommation s’effectue entre deux bornes qui ne sont plus

nécessairement infinies, la formule devenant alors

b∑

n=a

′′

f(n) =

+∞∑

n=−∞

∫ b

a

e2nπixf(x) dx ,

le symbole
∑′′

indique que si a ou b est un entier le premier (respectivement le dernier

terme) dans la somme est 1
2
f(a) (respectivement 1

2
f(b)).

Comme nouvelle application, Mordell montre cette fois l’équation fonctionnelle vérifiée

53Mordell 1929a p.286.
54Là encore il s’agit de thématiques qui sont à l’oeuvre dans le travail d’Hermite. Voir à ce propos

Goldstein 2008 où l’articulation entre simplicité/clarté/fécondité chez Hermite est discutée.
55Davenport 1967 p.14, cité aussi dans Patterson 2007 p.513.
56Mordell 1929a.
57Mordell 1929a p.285-286.
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par la fonction

φ(s) =
1

as
+

1

(a + 1)s
+

1

(a + 2)s
+ · · · ,

qui s’écrit

φ(s) = 2 Γ(1 − s) (2π)s−1
+∞∑

n=1

sin(2nπa+ 1
2
πs)

n1−s .

Le lien des deux articles précédents avec la géométrie des nombres n’est pas évident.

Pourtant en 1964, quand Davenport évoque les travaux de Mordell58, il les classe parmi

les articles qui concernent la géométrie des nombres. Ce rapprochement entre géométrie

des nombres et formule sommatoire de Poisson fait par Davenport peut s’expliquer par

les applications possibles de cette formule aux questions concernant les points d’un ré-

seau ; ce dernier problème est évidemment relié à la géométrie des nombres. D’ailleurs,

Mordell souligne lui même les applications importantes des séries de Fourier aux points

d’un réseau59. En quoi consiste ce problème ?

Il s’agit d’obtenir des relations dans lesquelles intervient le nombre de points d’un réseau

dans un domaine fixé comme par exemple un disque ou un parallélogramme. Ce sujet de

recherche semble avoir pris de l’importance en théorie analytique des nombres à partir

du début des années 1920 comme en témoigne par exemple le fait que « Gitterpunkt-

probleme » apparaît dans l’intitulé d’un chapitre dans la classification du Jahrbuch über

die Fortschritte der Mathematik en 1921 60. Cette section du Jahrbuch est par ailleurs

indépendante de celle qui concerne la géométrie des nombres. Parmi les mathématiciens

s’intéressant à cette question nous trouvons par exemple Edmund Landau ou bien Carl

Siegel avec qui Mordell avait des contacts61.

L’intérêt de Mordell dans cette période pour ce problème apparait aussi dans sa cor-

respondance avec Davenport. Dans une lettre datée du 8 juillet 1929, Mordell donne

des conseils de lectures à Davenport alors mathématicien débutant62

« As you will soon be returning to Cambridge, there is my suggested rea-

dings for you.

Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funk-

tionentheorie

Landau, Einführung in die elementare und analytische Theorie der alge-

braischen Zahlen und Ideale

Landau, Vorlesungen über Zahlentheorie, vol.2-183 till end, Gitterpunkte63. »

58Davenport 1964.
59Mordell 1928c, p.585.
60Dans « Arithmetik und Algebra », il s’agit du chapitre 8 « Algebraische Zahlen, Asymptotische

Abschätzung von Zahlentheoretischen Funktionen, Gitterpunkt-probleme ».
61Dans sa correspondance avec Davenport, Mordell mentionne des rencontres avec Landau (lettres

à Davenport du 26 janvier 1932 et du 18 février 1932) et avec Siegel (lettre à Davenport du 3 mars
1932). Davenport (WL).

62Le premier article de Davenport fut publié en 1931.
63Lettre de Mordell à Davenport du 8 juillet 1929, Davenport (WL), G 208.
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Cette courte bibliographie concerne donc exclusivement Landau (bien que Hecke soit

aussi cité plus loin) et la question des points d’un réseau est mentionnée explicitement.

Dans d’autres lettres, Mordell et Davenport ont des échanges autour de la formule

de Poisson. Le 24 juillet 1929, Mordell fait allusion à une preuve plus courte de cette

formule que lui a communiqué Davenport et il lui conseille de rédiger une note à ce

sujet. Il indique aussi qu’un travail important pour lui serait de trouver les conditions

générales les plus simples sous lesquelles la formule reste vraie. Notons à nouveau l’in-

sistance de Mordell à propos de la simplicité.

Le 18 février 1930, il demande à Davenport la permission d’utiliser sa preuve simplifiée

de la formule de Poisson de deux variables dans un de ses articles, permission qui a dû

lui être accordée car le 26 mars Mordell envoie une copie de cet article à Davenport en

précisant où cette démonstration est mentionnée64.

Toujours dans cette lettre du 26 mars 1930, Mordell écrit

« It seems worth while writing up the explicit formula for the number of

lattice points in any domain D ».

Cette citation fait écho à deux articles de Mordell écrits en 1929 dans lesquelles il

applique la formule sommatoire de Poisson de deux variables au problème des points

d’un réseau dans certains domaines65.

Dans le premier de ces deux articles Mordell commence par énoncer et démontrer la

formule sommatoire de Poisson de deux variables qu’il écrit66

+∞∑

m=−∞

+∞∑

n=−∞
f(m,n) =

+∞∑

m=−∞

+∞∑

n=−∞

∫ +∞

−∞

∫ +∞

−∞
e2mπix+2nπiy f(x, y) dxdy , (4.1)

où la fonction f vérifie les conditions suivantes :

(1)
∂a+bf

∂xa∂yb
, pour a, b = 0, 1, 2 (sauf a = b = 2), sont des fonctions continues de x,

y pour toutes valeurs réelles de x et y ; et elles tendent toutes vers zéro quand

une des variables tend vers ±∞.

(2) f et ses dérivées sont telles que

+∞∫

−∞

+∞∫

−∞

(

|f | +
∣
∣
∣
∣

∂2f

∂x2

∣
∣
∣
∣
+

∣
∣
∣
∣

∂2f

∂y2

∣
∣
∣
∣
+

∣
∣
∣
∣

∂4f

∂x2∂y2

∣
∣
∣
∣

)

dx dy

converge.

Pour démontrer cette formule Mordell commence par justifier la convergence de la série

S =
+∞∑

m=−∞

+∞∑

n=−∞
Im,n ,

64Il semble que Davenport n’ait pas publié ces preuves de la formule de Poisson. L’article de Mordell
dont il est question dans ces lettres est Mordell 1930c.

65Mordell 1929b, 1930a.
66Mordell 1929b, p.412.

227



CHAPITRE 4 4.1

où Im,n est défini par

Im,n =

∫ +∞

−∞

∫ +∞

−∞
e2mπix+2nπiy f(x, y) dxdy .

Pour cela, il montre, avec deux intégrations par parties successives par rapport à l’une

ou l’autre des variables ou bien les deux variables et avec les conditions (1), (2), que

Im,0 =

∫ +∞

−∞

∫ +∞

−∞

e2mπix

(2miπ)2

∂2f

∂x2
dxdy , m 6= 0 ,

I0,n =

∫ +∞

−∞

∫ +∞

−∞

e2nπiy

(2niπ)2

∂2f

∂y2
dxdy , n 6= 0 ,

Im,n =

∫ +∞

−∞

∫ +∞

−∞

e2mπix+2nπiy

(2miπ)2 (2niπ)2

∂4f

∂x2∂y2
dxdy , m 6= 0, n 6= 0 .

Ces relations permettent de justifier la convergence absolue de S, ainsi que l’inversion

des sommes et des intégrales dans S. Pour démontrer ensuite que

S =

+∞∑

m=−∞

+∞∑

n=−∞
f(m,n) ,

Mordell remarque que la série
+∞∑

n=−∞

′ e2nπix

(2niπ)2

est le développement de la fonction P définie, pour 0 ≤ x < 1, par

P (x) = −1

2

(

x2 − x+
1

6

)

et pour tout x réel,

P (x+ 1) = P (x) .

Cela lui permet d’exprimer S sous la forme d’une somme de quatre intégrales

S =

+∞∫

−∞

+∞∫

−∞

f(x, y) dxdy +

+∞∫

−∞

+∞∫

−∞

P (x)
∂2f

∂x2
dxdy

+

+∞∫

−∞

+∞∫

−∞

P (y)
∂2f

∂y2
dxdy +

+∞∫

−∞

+∞∫

−∞

P (x)P (y)
∂4f

∂x2∂y2
dxdy ,

qui, une fois calculée, donne la formule sommatoire de Poisson de deux variables (4.1).
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Cette formule est ensuite utilisée pour étudier les points d’un réseau dans un cercle

de rayon ω
1
2 et centré en l’origine. Mordell applique la formule (4.1) à la fonction f

définie par

f(x, y) = (ω − x2 − y2)λ si x2 + y2 ≤ ω ,

f(x, y) = 0 si x2 + y2 > ω ,

où ω > 0 et λ > 3 pour que f vérifie les hypothèses sous lesquelles la formule (4.1)

a été démontrée. Mordell obtient alors une nouvelle relation qui, comme il le justifie

grâce à une dérivation, est encore vraie pour λ ≥ 1. En prenant alors λ = 1, il trouve

finalement que67 :

∑

(ω − x2 − y2) =
π

2
ω2 +

ω

π

+∞∑

n=1

R(n)

n
J2(2πω

1
2n

1
2 )

où la sommation du membre de gauche porte sur les entiers x et y tels que x2 +y2 ≤ ω.

R(n) est le nombre de couples d’entiers solutions de x2 + y2 = n et J2 la fonction de

Bessel qui est définie pour un nombre complexe x par

J2(x) =
(x

2

)2
+∞∑

k=0

(−1)k

k! Γ(k + 3)

(x

2

)2k

.

La deuxième application qui est donnée de la formule de Poisson nous intéresse davan-

tage car elle est directement liée à la géométrie des nombres et au problème des formes

linéaires. Soient a, b, c, a′, b′, c′, ω, ω′ des nombres réels avec ω et ω′ supposés positifs.

Mordell note ∆ = ab′ − a′b qui est supposé strictement positif, ∆µ = b′m − a′n et

∆µ′ = −bm + an, il obtient alors la relation68

∑

(ω − |am+ bn+ c|)(ω′ − |a′m+ b′n+ c′|)

=
1

∆

+∞∑

n=−∞

+∞∑

m=−∞
e−2πµic−2πµ′ic′ sin2(πµω) sin2(πµ′ω′)

π2µ2.π2µ′2 (4.2)

où la sommation du membre de gauche porte sur les entiers m et n tels que

|am+ bn + c| ≤ ω et |a′m+ b′n+ c′| ≤ ω′ ,

avec la convention que si aucun couple d’entiers ne vérifie ces inégalités la somme est

nulle. Ce dernier résultat est à nouveau une conséquence de la formule sommatoire de

67Mordell 1929b, p.415.
68Mordell 1929b, p.417.
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Poisson mais appliquée cette fois à la fonction donnée par

f(x, y) = (ω − |ax+ by + c|)p (ω′ − |a′x+ b′y + c′|)q

si |ax+ by + c| ≤ ω et |a′x+ b′y + c′| ≤ ω′ ,

f(x, y) = 0 sinon .

Les entiers p et q sont dans un premier temps supposés strictement supérieurs à 3 afin

de pouvoir appliquer (4.1), puis comme pour l’appliquation précédente au disque, Mor-

dell justifie la validité de la relation obtenue pour p et q plus grands que 1 en dérivant.

En prenant alors p = q = 1, il en déduit le résultat cherché.

Voyons maintenant quel est le lien avec la géométrie des nombres et le travail de

Minkowski. Comme les inégalités |ax+ by+ c| ≤ ω et |a′x+ b′y+ c′| ≤ ω′ définissent un

parallélogramme, compter les points à coordonnées entières dans un parallélogramme

revient à s’intéresser au problème de la majoration des formes linéaires et à la conjecture

de Minkowski. D’ailleurs comme le rappelle Mordell, c’est l’idée qu’avait déjà utilisée

Siegel pour traiter le cas homogène. En effet dans son article de 1922, Siegel avait

démontré le développement précédent dans le cas où c et c′ sont nuls, c’est-à-dire69

∑

(ω − |am+ bn|)(ω′ − |a′m+ b′n|) =
1

∆

+∞∑

n=−∞

+∞∑

m=−∞

sin2(πµω) sin2(πµ′ω′)

π2µ2.π2µ′2 . (4.3)

La preuve de Siegel de ce développement utilise les séries de Fourier ainsi que de

l’intégration complexe. Avec ce résultat il retrouve un théorème de Minkowski sur les

formes linéaires homogènes. Ce théorème70 donne l’existence d’entiers m et n, non tous

deux nuls, tels que

|am+ bn| ≤ ω et |a′m+ b′n| ≤ ω′

pour ω et ω′ qui vérifient ωω′ > ∆.

Comme le rappelle Mordell, la démonstration du théorème sur les formes linéaires à

partir du développement en séries de Siegel s’effectue en raisonnant par l’absurde. Si en

effet aucun couple d’entiers (m,n) autre que (0, 0) ne vérifie les inégalités précédentes,

69Voir Siegel 1922. Nous donnons ici le développement pour deux formes linéaires mais Siegel
traite en fait le cas général pour n formes.

70Bien qu’il s’agisse d’une conséquence immédiate du théorème de Minkowski sur les corps convexes
et que parfois la méthode employée l’amène à ce résultat au cours d’une preuve (par exemple voir
Minkowski 1896b), nous ne connaissons pas d’énoncé explicite de ce théorème dans le travail publié
de Minkowski. L’énoncé donné par Minkowski qui s’en approche le plus est le cas particulier où
ω = ω′ = n

√
∆, voir Minkowski 1896a chapitre 4.
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la relation (4.3) devient

∆ωω′ = ω2ω′2 +
+∞∑

n=−∞

+∞∑

m=−∞

′ sin2(πµω)

π2µ2
.
sin2(πµ′ω′)

π2µ′2 ,

ce qui implique ∆ωω′ ≥ ω2ω′2, ou encore ∆ ≥ ωω′ ce qui est contraire à l’hypothèse

faite sur ω et ω′. Mordell annonce aussi un résultat dont la démontration est publiée

en 1930 et qu’il semble voir comme la généralisation au cas des formes non homogènes

de la méthode de Siegel.

Dans ce nouvel article71, Mordell commence par redonner les énoncés des théorèmes

de Minkowki sur les formes linéaires homogènes et non homogènes dans le cas de deux

variables. Nous venons de rappeler le cas homogène ; dans le cas non homogène il s’agit

de montrer l’existence de deux entiers x et y tels que

|ax+ by + c| |a′x+ b′y + c′| ≤ 1

4
|∆| .

Mordell revient sur les développements en séries qu’il a obtenu avec la formule som-

matoire de Poisson, en particulier il compare sa méthode pour démontrer (4.2) avec

celle de Siegel pour (4.3) qui pour lui « does not reveal the real origin of (4.2)72 ». Ce

commentaire confirme le rôle central que Mordell entend faire jouer à la formule som-

matoire de Poisson qu’il présente ici comme plus fondamentale que les outils employés

par Siegel. Le résultat central de ce nouvel article de Mordell est la formule73

L =
1

∆

+∞∑

n=−∞

+∞∑

m=−∞
e−2πµic−2πµ′ic′ sin(2πµω)

πµ

sin(2πµ′ω′)

πµ′ . (4.4)

L est le nombre de points à coordonnées entières dans le parallélogramme défini par

les inégalités

|am+ bn + c| ≤ ω , |a′m+ b′n + c′| ≤ ω′ ;

et où les points sur les côtés du parallélogramme comptent pour 1
2

et les sommets pour
1
2

ou 0. Comme le développement dans le cas où c = c′ = 0 implique le théorème

sur les formes linéaires dans le cas homogène, Mordell pense que la nouvelle relation

qu’il a trouvée doit pouvoir lui permettre de montrer le théorème dans le cas non

homogène. Nous avons vu que Mordell a déjà proposé une autre démonstration de ce

théorème de Minkowski pour le produit de deux formes. Ainsi bien qu’il ne s’exprime

pas explicitement là-dessus, nous pouvons penser que l’intérêt de Mordell pour cette

71Mordell 1930a.
72Mordell 1930a, p.39.
73Mordell 1930a, p.39.
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nouvelle approche du problème vient du fait qu’il imagine que cette méthode doit

être généralisable afin de démontrer la conjecture pour le produit de n formes non

homogènes. Ce point de vue est certainement motivé par la formule de Poisson qui est

à la base de la méthode et qui est valable quelque soit le nombre de variables. Cette

approche n’a cependant pas été aussi fructueuse que prévue et Mordell n’a même pas

réussi à retrouver le résultat pour le produit de deux formes

« It is possible that the formulae (2), (3) may be useful in proving Min-

kowski’s second theorem and its generalisation, but this I cannot do74. »

Mordell n’est pas revenu dans la suite de ces travaux sur cette méthode utilisant la

formule sommatoire de Poisson pour démontrer la conjecture sur le produit de n formes

linéaires linéaires.

4.1.2.2 Retour à des méthodes arithmétiques 1930-1937

Après l’échec de ces tentatives pour démontrer la conjecture de Minkowski par des

voies analytiques, Mordell se tourne vers des méthodes arithmétiques.

D’abord dans un court article de trois pages publié en 1930, il revient sur le cas de

deux formes linéaires non homogènes. Il obtient un résultat qu’il juge intéressant car il

permet de contrôler la taille de chaque terme du produit75. Soient A,B,C,D, P,Q des

nombres réels, il suppose que ∆ = AD−BC est non nul et que ∆BC est positif, alors

il existe des entiers x et y tels que

|Ax+By + P | ≤ 1

2
|A| et |Cx+Dy +Q| ≤ 1

2
|D| . (4.5)

L’argument principal de la preuve consiste à considérer la fonction

φ(x, y) = ax2 + 2hxy + by2 + 2fy + 2gx ,

où les coefficients sont des réels avec a strictement positif et ab > h2. Mordell justifie

ensuite l’existence d’un minimum pour φ pour des valeurs entières des variables x, y et

note (ξ, η) le couple pour lequel ce minimum est atteint. Cela implique en particulier

φ(ξ ± 1, η) ≥ φ(ξ, η)

ou encore après simplification

±2(aξ + hη) ± 2g + a ≥ 0 .

74Mordell 1930a, p.39. Les relations (2) et (3) dont Mordell parle ici sont (4.2) et (4.4).
75Mordell 1930b.
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Finalement, après avoir fait la même chose avec φ(ξ, η ± 1), il vient

|aξ + hη + g| ≤ 1

2
a et |hξ + bη + f | ≤ 1

2
b .

Les inégalités (4.5) s’en déduisent en choisissant les coefficients a, b, h, f, g convenable-

ment en fonction de A,B,C,D, P,Q.

Cet article de Mordell est isolé par rapport à ses autres travaux, d’une part par le

résultat qui y est énoncé et d’autre part par la méthode employée qui ne paraît pas

liée aux autres tentatives de Mordell pour aborder ce sujet des formes linéaires non

homogènes. Cependant, il témoigne des recherches importantes sur ce thème faites par

Mordell qui essaie de diversifier les points de vue.

En 1933, Mordell revient sur le cas de n formes linéaires homogènes76. Il commence

par rappeler le théorème : soient n formes linéaires à coefficients réels

Lr(x) =
n∑

s=1

arsxs (r = 1, . . . , n),

dont la valeur absolue du déterminant D est strictement positive et n réels positifs λr
qui vérifient

n∏

r=1

λr ≥ D .

Il existe alors des entiers x1, x2, . . . , xn non tous nuls tels que

|Lr(x)| ≤ λr (r = 1, . . . , n).

Mordell souligne l’existence de preuves analytiques et arithmétiques de ce résultats. Les

preuves arithmétiques dues à David Hilbert et Adolf Hurwitz consistent à démontrer

d’abord le résultat pour des formes à coefficients entiers, puis rationnels et enfin par

un procédé d’approximation pour les formes réels77. L’objectif de Mordell est ici de

proposer une nouvelle démonstration dans le cas où les coefficients des formes sont

des entiers. Sa méthode, qu’il juge plus simple, repose sur une idée arithmétique qu’il

attribue à Henry John Stephen Smith et qu’il énonce dans un lemme : si les ars sont

des entiers alors le n-uplet (L1(x), ..., Ln(x)) prend exactement Dn−1 valeurs distinctes

76Mordell 1933.
77Voir Hurwitz 1897. D’après Hurwitz, Hilbert est le premier à avoir donné sa preuve qu’il a com-

muniquée à Minkowski. Ce dernier avait prévu de la publier dans le deuxième fascicule de Geometrie

der Zahlen qui n’a finalement jamais été achevé. Le principe d’approximation des formes à coefficients
réels par des formes à coefficients rationnels serait donc dû à Hilbert, c’est ce qui est indiqué par
Georges Humbert dans la note III de la traduction française du Zahlbericht de Hilbert, voir Hilbert

1991.
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modulo D quand les xs sont des entiers78.

Mordell commence donc par démontrer ce lemme. Pour cela il justifie que par une

substitution linéaire de déterminant 1 sur les variables des Lr, il est possible de se

ramener à des formes79

b11x1 , b21x1 + b22x2 , b31x1 + b32x2 + b33x3 , . . .

avec D = b11b22 . . . bnn. La forme b11x1 prend des valeurs distinctes modulo D quand

x1 parcourt les entiers compris entre 0 et D
b11

− 1. Ensuite x1 étant fixé dans l’ensemble

précédent, les valeurs de la forme b21x1 + b22x2 sont obtenues en faisant parcourir à

x2 les entiers 0, 1, . . . , D
b22

− 1. En faisant la même chose avec chaque forme, Mordell

montre qu’il y a
n∏

r=1

D

brr
= Dn−1

valeurs possibles modulo D pour le n−uplet (Lr)1≤r≤n. Il justifie que ces valeurs sont

en fait bien toutes distinctes.

A priori, chaque forme Lr peut prendre D valeurs modulo D, ainsi le système de formes

(Lr)1≤r≤n D
n valeurs modulo D. Comme nous venons de voir qu’il en prend en fait

Dn−1, Mordell en déduit qu’il y a Dn−Dn−1 = Dn−1(D− 1) n−uplets (i1, . . . , in) tels

que le système de congruences

Lr(x1, . . . , xn) = ir (mod D) (r = 1, . . . , n)

n’a pas de solution. Si (p1, . . . , pn) et (p′1, . . . , p
′
n) sont tels que les systèmes

Lr(x1, . . . , xn) = pr (mod D) et Lr(x1, . . . , xn) = p′r (mod D) (r = 1, . . . , n)

ont des solutions, Mordell remarque que

Lr(x1, . . . , xn) = pr − p′r (mod D) (r = 1, . . . , n)

a des solutions, alors que le système

Lr(x1, . . . , xn) = ir + pr (mod D) (r = 1, . . . , n)

n’en a pas. Ces préliminaires terminés, Mordell passe à la preuve du théorème.

Quitte à considérer les formes 2Lr de déterminant ±2nD et 2λr à la place de λr, Mordell

78Voir Smith 1861, p.325. Smith considère la question du point de vue de la résolution de systèmes
linéaires de congruences.

79Mordell 1933, p.180-181.
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suppose que les λr sont pairs. Il suppose aussi que les inégalités

−1

2
λr ≤ Lr(x1, . . . , xn) ≤ 1

2
λr (r = 1, . . . , n)

n’ont pas de solution autre que (0, . . . , 0) sinon le résultat est démontré. Ainsi les

n−uplets d’entiers (i1, . . . , in) 6= (0, . . . , 0) avec −1
2
λr ≤ ir ≤ 1

2
λr pour tout r sont tels

que le système

Lr(x1, . . . , xn) = ir (mod D) (r = 1, . . . , n)

n’a pas de solution ; de plus il y a

[
n∏

r=1

(1 + λr) − 1

]

n−uplets (i1, . . . , in) avec cette pro-

priété. Soit maintenant (p1, . . . , pn) une des Dn−1 valeurs prises par (Lr)1≤r≤n modulo

D, d’après une remarque précédente le système

Lr(x1, . . . , xn) = ir + pr (mod D) (r = 1, . . . , n)

n’a pas de solution. Or il est possible de construire Dn−1

[
n∏

r=1

(1 + λr) − 1

]

n−uplets

(i1 + p1, . . . , in + pn) tel que le système précédent n’ait pas de solution, mais

Dn−1

[
n∏

r=1

(1 + λr) − 1

]

> Dn−1

[(
n∏

r=1

λr

)

− 1

]

> Dn−1(D − 1) ,

car λ1λ2 . . . λn ≥ D. Comme il n’y a que Dn−1(D− 1) n−uplets tels que le système de

congruences précédent n’ait pas de solution, il existe (i1 + p1, . . . , in + pn) et

(i′1 + p′1, . . . , i
′
n + p′n) qui vérifient

∀r ∈ {1, 2, . . . , n} , ir + pr = i′r + p′r (mod D)

d’où ∀r ∈ {1, 2, . . . , n} , ir − i′r = p′r − pr (mod D) .

Comme le système de congruences

Lr(x1, . . . , xn) = p′r − pr (mod D) (r = 1, . . . , n)

admet des solutions, il existe (x1, . . . , xn) 6= (0, . . . , 0) des entiers tels que

∀r ∈ {1, 2, . . . , n} , Lr(x1, . . . , xn) = ir − i′r (mod D) ,

avec −λr ≤ ir − i′r ≤ λr pour tout r, ce qui montre le théorème.
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Mordell qualifie sa preuve d’arithmétique et il travaille ici avec des formes à coefficients

entiers, utilise des congruences et fait jouer un rôle central à ce qu’il appelle le lemme

de Smith. Ce lemme est l’élément unifiant certains de ses travaux sur la géométrie des

nombres qui seront décrits comme arithmétiques par Mordell.

Nous ne suivons pas ici tout à fait la chronologie des travaux de Mordell et regrou-

pons les articles qui concernent exclusivement les formes linéaires. Seul un article ne

traite pas uniquement de ce sujet avant 1937, nous le détaillerons dans un paragraphe

à part.

Dans son article suivant sur les formes linéaires80, publié en 1936, Mordell énonce un

résultat un peu plus général que le précédent. À nouveau, il note

Lr(x) =
n∑

s=1

arsxs

des formes linéaires homogènes à coefficients réels et de déterminant ∆ > 0. Il considère

en plus µ1, . . . , µn, ν1, . . . , νn des réels positifs tels que

µ1...µn + ν1...νn ≥ ∆

et c1, . . . , cn des réels quelconques. Mordell démontre qu’il existe des entiers x1, ..., xn

qui vérifient au moins un des systèmes d’inégalités suivants :

|Lr(x)| ≤ µr , |Lr(x)| ≤ νr , |Lr(x) + cr| ≤
1

2
(µr + νr) .

La solution où tous les xi sont nuls est exclue pour les deux premières inégalités.

La démarche suivie par Mordell est la même que précédemment : le lemme de Smith

occupe une place centrale, il démontre d’abord le cas où les coefficients des formes, les

µr, les νr et les cr sont entiers, il se contente enfin de rapides explications pour passer

au cas rationnel puis réel. L’importance du lemme de Smith conduit Mordell à qualifier

à nouveau sa méthode d’« arithmétique ». De plus, le peu d’insistance sur le passage

aux coefficients rationnels et réels suggère que Mordell voit le cas entier comme plus

fondamental et que c’est celui qui contient véritablement la difficulté.

Dans une courte note publiée dans le Journal of the London Mathematical Society81

rédigée en 1936, Mordell propose un problème qu’il présente comme une sorte de réci-

proque au théorème de Minkowski sur les formes linéaires homogènes. En notant Lr n

formes linéaires homogènes, à coefficients réels et de déterminant 1, λ1, λ2, . . . , λn, kn

80Mordell 1937a.
81Mordell 1937c.
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des réels positifs tels que

λ1λ2 . . . λn = kn ,

il rappelle que, si kn = 1, ce résultat de Minkowski montre l’existence d’entiers x1, . . . , xn,

non tous nuls, qui vérifient

|Lr(x1, . . . , xn)| ≤ λr (r = 1, . . . , n) .

De plus, le choix de kn = 1 est optimal dans le sens où si kn < 1, le théorème devient

faux. La question qui intéresse Mordell est alors de savoir si, étant donnée les formes

Lr, il existe kn, λ1, λ2, . . . , λn, avec λ1λ2 . . . λn = kn et tels que l’origine O soit le seul

point du réseau (c’est-à-dire ici à coordonnées entières) qui satisfait

|Lr(x1, . . . , xn)| ≤ λr (r = 1, . . . , n) .

Le théorème de Minkowski implique que si kn existe alors kn < 1. Là encore, l’intérêt

de Mordell pour cette question est motivé par la conjecture sur le produit des formes

linéaires non homogènes. En effet, comme il le montre, une réponse positive au problème

qui précède permettrait d’avancer dans la démonstration de cette conjecture. Rappelons

que si c1, . . . , cn sont des réels donnés, il s’agit de montrer l’existence d’une constante

Kn, indépendante des coefficients des formes, telle que des entiers x1, . . . , xn vérifient

n∏

r=1

|Lr(x1, . . . , xn) + cr| ≤ Kn .

La conjecture propose aussi Kn = 2−n, ce qui a été démontré par Minkowski pour

n = 2 et Remak quand n = 3. Mordell indique que pour n ≥ 4, l’existence d’une telle

constante n’a pas été établie.

Supposons que kn, λ1, . . . , λn soient tels que λ1 . . . λn = kn et que O est le seul point

du réseau qui vérifie

|Lr(x1, . . . , xn)| ≤ λr (r = 1, . . . , n) ,

soit aussi ln la partie entière de
1

kn
. Pour justifier l’existence de la constante Kn,

Mordell applique le théorème de Minkowski sur les formes homogènes et obtient des

entiers x1, . . . , xn, xn+1, non tous nuls, tels que

∀r ∈ {1, . . . , n} ,
∣
∣
∣
∣
Lr(x1, . . . , xn) +

cr
ln!

xn+1

∣
∣
∣
∣
≤ λr et |xn+1| ≤

1

kn
.

L’entier xn+1 est nécessairement non nul, sinon, par le choix de λ1, . . . , λn et kn, tous
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les xr sont nuls ce qui est exclu. Mordell pose donc yr =
xr ln!

xn+1
, chaque yr est un entier

à cause du choix de ln et de l’inégalité |xn+1| ≤ ln. De plus, d’après les inégalités

précédentes, les entiers y1, . . . , yn vérifient

n∏

r=1

|Lr(y1, . . . , yn) + cr| ≤ kn

(
ln!

xn+1

)n

,

ce qui montre Kn ≤ kn(ln!)
n.

Mordell propose ensuite une preuve pour le problème énoncé en début d’article dans

le cas où n = 2. Pour cela, la question est interprétée géométriquement car

« The proof for n = 2 is simplest when put in a geometrical form82. »

Nous retrouvons ainsi l’importance de la recherche de la simplicité pour Mordell. P

désigne le parallélogramme défini par les inégalités

|L1| ≤ λ1 et |L2| ≤ λ2 .

λ1 et λ2 sont d’abord choisis de telle sorte que P ne contient aucun point du réseau

autre que O. Ils sont ensuite augmentés jusqu’à ce que P possède un point du réseau

sur deux côtés adjacents et aucun autre à l’intérieur excepté O. Notons A et B ces deux

points, leurs symétriques par rapport à O, A′ et B′, sont aussi des points du réseau

sur des côtés de P . Comme O, A et B ont des coordonnées entières, l’aire du triangle

OAB est supérieure à 1
2
. En considérant de même les autres triangles OA′B, OA′B′

et OB′A qui sont tous inclus dans P , Mordell montre que l’aire de P est supérieure à

quatre fois celle de OAB. L’aire de P est 4λ1λ2 donc

λ1λ2 ≥ 1

2
.

Cela permet à Mordell de conclure que k2 = 1
2

convient.

Au cours de son article Mordell mentionne d’autres résultats récents sur ce thème ce qui

témoigne de l’intérêt d’autres mathématiciens pour ces questions. Il cite par exemple,

Szekeres qui a montré que la meilleure valeur possible de k2 est 1
2

(

1 + 1√
5

)

et que

k3 = 1
6

convient. Erdös et Grünwald ont amélioré ce dernier résultat avec k3 = 1
4
, ce

qui a été redémontré de façon arithmétique par Ko83.

Pendant cette période allant jusqu’en 1937, Mordell publie un dernier article en

liaison avec les formes linéaires84. Nous ne le détaillons pas car il concerne des formes

linéaires dont les coefficients appartiennent à un corps de nombres algébriques quel-

82Mordell 1937c p.35.
83Mordell 1937c, p.34-35.
84Mordell 1937b.
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conque, sujet sur lequel Mordell revient peu par la suite. Notons simplement que Mor-

dell est dans la continuité du travail de Minkowski dont il applique certains théorèmes

sur ce thème. Il mentionne aussi les recherches récentes de Hofreiter sur le cas des

corps imaginaires, Hofreiter étant un des mathématiciens repéré par l’étude faite dans

le Jahrbuch.

4.1.2.3 Le congrès d’Oslo : un premier bilan du travail sur les formes li-

néaires

Pour faire un bilan du travail de Mordell sur les formes linéaires pendant les an-

nées 1927-1936, nous pouvons suivre la présentation qu’il fait en 1936 lors du Congrès

international des mathématiciens à Oslo85. Le choix dans cette intervention, intitulée

« Minkowski’s Theorems and Hypotheses on Linear Forms », de présenter l’état des

recherches sur cette question n’est pas anodin et montre l’importance que ce problème

avait pris dans ses propres travaux.

Mordell commence par poser le problème de façon générale puis il énonce le théorème

démontré par Minkowski pour n formes linéaires homogènes. Il rappelle que différentes

preuves ont ensuite été données. Des preuves arithmétiques par Adolf Hurwitz86 et

David Hilbert ; une preuve de Hans Frederik Blichfeldt87 en 1914 qui a introduit une

« rather different geometric idea [. . .] which was presented arithmetically in a more

simple way by Remak88 in 1927 89 ». Mordell souligne ensuite plus particulièrement la

preuve donnée en 1922 par Carl Ludwig Siegel qui démontra que le théorème de Min-

kowski peut être retrouvé à partir d’un développement en série obtenu par intégration

complexe. Mordell revient alors sur ses propres travaux sur la formule sommatoire de

Poisson avec laquelle il a redémontré le développement qu’avait obtenu Siegel. Il pro-

pose une nouvelle démonstration de la formule de Siegel qui s’appuie sur le lemme de

Smith vu dans les articles précédents. Comme à chaque fois que ce lemme intervient,

Mordell considère sa preuve comme étant de nature arithmétique. L’utilisation du ré-

sultat de Smith lui permet de rappeler les théorèmes qu’il a déjà démontrés grâce à

cette méthode. Après avoir commenté un certain nombre de questions liées aux formes

linéaires, Mordell termine l’exposé avec le cas non homogène. Il reprend alors essentiel-

lement les développements déjà expliqués dans Mordell 1937c.

Il est intéressant de voir le type de méthodes que Mordell choisit de mettre en avant

85Mordell 1936.
86Hurwitz 1897.
87Blichfeldt 1914.
88Remak 1927.
89Mordell 1936 p.226-227.
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dans cette intervention alors qu’il dresse un panorama général du sujet. Pour classer

ces différentes méthodes, Mordell sépare celles qu’il juge géométriques, de celles qui

sont analytiques ou encore arithmétiques. Il voit ses travaux sur la formule sommatoire

de Poisson et ceux dans la tradition de Siegel comme analytiques. Les méthodes jugées

arithmétiques sont celles utilisant le lemme de Smith ou traitant d’abord le cas des

formes à coefficients entiers pour en déduire les cas rationnels puis réels. Il inclut

dans les méthodes géométriques le travail de Minkowski et nous avons dans Mordell

1937c un exemple où la démonstration est géométrique lorsqu’il reformule le problème

sur deux formes linéaires en termes de la recherche de points d’un réseau dans un

parallélogramme90. Cette manière de qualifier les différentes approches utilisées pour

aborder la question des formes linéaires permet de saisir avec davantage de précision

les méthodes privilégiées par Mordell pendant cette période.

Le premier constat est que, bien que ce type d’approches soit mentionné chez d’autres

mathématiciens dont bien sûr Minkowski, la géométrie est absente de ces premiers

travaux de Mordell sur la géométrie des nombres. Ce moindre intérêt pour la géométrie

au profit de l’analyse et de l’arithmétique ressort par exemple des choix des thèmes

exposés à ce congrès d’Oslo, choix précisés dès le début par Mordell :

« More emphasis, however, will be laid on arithmetic ideas and methods

than on geometric ones91. »

Comme nous l’avons déjà remarqué une place importante est attribuée aux méthodes

analytiques qui ont été le point de vue privilégié par Mordell à la fin des années 1920.

Mais la façon dont il rend compte de cet aspect de ses travaux intègre le fait que

son intérêt s’est déplacé vers des méthodes arithmétiques. Virage dont nous pouvons

peut être voir la justification a posteriori dans la recherche de ce qu’il nomme l’idée

arithmétique derrière la méthode analytique, recherche qu’il juge d’un grand intérêt :

« The ideas involved in Siegel’s proof and my variation are analytic. It is

often of considerable interest to investigate the arithmetic ideas underlying

analytic proofs of results in number theory and so to deduce arithmetical

demonstrations92. »

Cette recherche de l’arithmétique derrière l’analyse ne semblait pas l’intéresser alors

qu’il étudiait les applications possibles de la formule sommatoire de Poisson à la théorie

des nombres. Mais l’échec de cette approche pour réussir à obtenir des résultats sur

les formes linéaires non homogènes l’a amené à changer de stratégie et à revenir à des

méthodes arithmétiques. C’est en suivant cette voie que Mordell a trouvé sa nouvelle

90Nous reprenons ici la description qui est faite par Mordell pour repérer géométrie, arithmétique,
algèbre. Voir Herreman 2000 où une approche sémiotique est utilisée pour distinguer les éléments
arithmétique, géométrique et analytique dans des textes mathématiques.

91Mordell 1936 p.226.
92Mordell 1936 p.228.
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preuve arithmétique du développement en séries de Siegel dans laquelle le résultat de

Smith que nous avons déjà énoncé occupe une place importante. L’importance de cette

recherche de l’idée arithmétique revient lorsqu’il commente sa preuve du théorème de

Minkowski sur les formes homogènes qui est basée sur le lemme de Smith93 :

« It also had the great advantage of easy generalization, [...] and practically

laid bare the arithmetic ideas really underlying some of Minkowski’s work

of the Geometry of Numbers94. »

Toujours selon Mordell, cette idée arithmétique lui permit de donner une autre preuve

du théorème sur les formes linéaires homogènes qu’il explique rapidement. Cette dé-

monstration est en fait la réécriture dans le cas particulier d’un parallélépipède de

dimension n de la démonstration de Mordell du théorème de Minkowski sur les parties

convexes symétriques par rapport à un point95.

Certains commentaires sur des démonstrations de résultats en liaison avec les formes

linéaires semblent indiquer que l’objectif de Mordell est d’en faire disparaître la géo-

métrie. Par exemple, au sujet d’une preuve de Jansen96 de 1909 il écrit

« The demonstration is arithmetic but is not altogether free from geometric

presentation97. »

Il semble regretter que l’arithmétique ne soit pas complètement débarrassée de toute

considération géométrique comme si l’objectif était d’arriver aux méthodes arithmé-

tiques les plus pures possibles. Cette impression revient au sujet du travail de Beppo

Levi98 sur les formes linéaires

« Levi also gave for n = 2, 3, 4 arithmetic proofs not free from geometric

presentation99. »

Une première explication pour cette volonté de limiter l’intervention de la géométrie

est que Mordell semble considérer que la géométrie n’est pas toujours bien adaptée

pour travailler dans n’importe quelle dimension. À propos d’une méthode employée

par Minkowski, il note par exemple

« This is simple enough in two dimensions but geometric arguments in n

dimensions are sometimes not easily apprehended100. »

Non seulement cette dernière citation montre le désir de Mordell d’utiliser le moins

possible la géométrie, mais la raison invoquée, c’est-à-dire la difficulté à appréhender

93Voir Mordell 1933.
94Mordell 1936 p.230.
95Nous reviendrons en détails sur cette démonstration dans le paragraphe suivant.
96Il s’agit de la thèse de Hans Jansen sur la géométrie des nombres qui a été repérée dans le

Jahrbuch.
97Mordell 1936 p.231.
98Levi 1911.
99Mordell 1936 p.231.

100Mordell 1936 p.231-232.
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les raisonnements géométriques en grandes dimensions, nous informe sur la façon dont

il voit cette intervention de la géométrie. Cela suggère en effet qu’il n’envisage pas

une utilisation de la géométrie qui serait un simple jeu formel sur des concepts géomé-

triques, mais que comme pour Minkowski, la géométrie possède une dimension intuitive

qui doit être mise à profit. De plus, cette intuition est favorisée dans les petites dimen-

sions.

La suite va montrer que le point de vue de Mordell sur cette question de l’efficacité de

la géométrie pour traiter les problèmes en dimension quelconque a évolué. Mais pour

la période qui nous occupe ici ce sont bien les méthodes arithmétiques qui sont privi-

légiées. D’ailleurs, Mordell propose aussi une démonstration arithmétique du théorème

de Minkowski sur les parties convexes symétriques par rapport à un point.

4.1.2.4 Une nouvelle preuve du théorème de Minkowski sur les parties

convexes

L’article dont il va être maintenant question a très certainement été rédigé avant

certains travaux que nous avons commentés précédemment. Cependant nous avons

choisi de rompre la présentation chronologique du travail de Mordell et de commenter

à part cet article101 pour plusieurs raisons. D’abord, son thème principal n’est pas le

problème des formes linéaires mais il est lié au théorème de Minkowski sur les parties

convexes symétriques par rapport à l’origine, théorème que Mordell retrouve comme

une conséquence du résultat qu’il démontre. La question des formes linéaires est traitée

comme une application possible du théorème de Mordell qui apparaît donc comme étant

plus général. Ce travail est aussi à part car malgré une méthode de démonstration

jugée arithmétique, Mordell se livre à une discussion d’ordre géométrique à propos

de l’hypothèse de convexité dans le théorème de Minkowski alors que nous avons noté

que les considérations géométriques ne sont pourtant pas dans ses priorités de l’époque.

Cette dernière remarque peut sembler contradictoire avec ce qui a été dit au paragraphe

précédent sur les rapports de Mordell à la géométrie à cette époque. Cependant cela

peut être expliqué en regardant la chronologie du travail de Mordell du début des

années 1930.

L’article qui va nous intéresser maintenant est publié en 1935 mais il a en fait été rédigé

dès 1933 par Mordell. Nous pouvons dater ce travail d’une part parce que le journal

dans lequel il est publié indique que l’article a été reçu le 2 novembre 1933, mais aussi

parce qu’il en est question dans une lettre de Mordell adressée à Davenport qui est

datée du 25 septembre 1933

« I have recently found a new and even simpler proof for Minkowski theorem

101Mordell 1935.
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about lattice points in convex ovals of area 4 with centre at the origin102. »

Ainsi le raisonnement géométrique à propos du théorème de Minkowski est élaboré

avant septembre 1933, à ce moment Mordell n’a publié qu’un seul article où les mé-

thodes arithmétiques sont mises en avant. De plus, dans ce premier article dans lequel

il utilise le lemme de Smith, il n’y a pas encore de comparaisons entre géométrie, arith-

métique ou analyse. Nous pouvons donc penser que son engagement dans le choix de

méthodes exclusivement arithmétiques ne se fait qu’après 1933 et qu’il se traduit par

le point de vue adopté lors de la conférence d’Oslo ainsi que la publication de plusieurs

articles dans lesquels l’arithmétique occupe la place centrale.

La présentation de Mordell rappelle celle que Minkowski faisait pour son théorème

sur les convexes quand il l’énonçait sous sa forme analytique103. Il démontre un résultat

sur les valeurs prises par une certaine classe de fonctions de n variables quand ces

variables sont des entiers, puis il propose des applications de ce résultat principal. Les

fonctions considérées par Mordell, notées f(x1, ..., xn), sont en fait un peu plus générales

que les fonctions distances que Minkowski avait étudiées. Elles vérifient les conditions

suivantes104 :

« (A). Pour tout réel t > 0,

(1) f(tx1, tx2, . . . , txn) = tδ f(x1, x2, . . . , xn),

où δ ≥ 0 est une constante indépendante des x et de t »

« (B).

(2) f(x1 − y1, . . . , xn − yn) ≤ k{f(x1, x2, . . . , xn) + f(y1, y2, . . . , yn)},

où k > 0 est une constante indépendante des x et des y.

(C). Le nombre,N , de points réseau, c’est-à-dire, des ensembles d’entiers x1, x2, ..., xn

tels que

(3) f(x1, x2, . . . , xn) ≤ G,

où G > 0 est suffisament grand, satisfait à l’inégalité

(4) N > JG
n
δ ,

où J > 0 est indépendante de G. »

Mordell démontre que pour de telles fonctions, il existe des entiers x1, x2, ..., xn, non

102Lettre de Mordell à Davenport du 25 septembre 1933, Davenport (WL), G 211. Cette lettre est
reproduite en annexe.

103Voir par exemple Minkowski 1893.
104Mordell 1935, p.248.
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tous nuls, qui vérifient

f(x1, x2, . . . , xn) ≤ 2kJ− δ
n .

Avant de commencer sa preuve, Mordell remarque

« My proof is completely arithmetical and even simpler than Minkowski’s

geometric proof. It has its origin in my recent arithmetical demonstration

of Minkowski’s theorem for linear homogeneous forms105. »

Certaines idées de cet article sont en effet assez proches des méthodes utilisées à propos

des formes linéaires. Bien qu’il n’emploie pas le lemme de Smith, nous retrouvons la

même idée de dénombrer le nombre de n-uplets modulo un entier ainsi que le nombre

de points à coordonnées entières dans un domaine.

Mordell commence sa démonstration en remarquant que pour un entier naturel non

nul M , il y a M valeurs distinctes modulo M et donc Mn n−uplets (x1, x2, . . . , xn)

modulo M . Il considère ensuite l’ensemble défini par

f(x1, x2, . . . , xn) ≤ gM δ ,

où les constantes g et M sont choisies assez grandes. En prenant g plus grande que

J− δ
n , la condition (C) implique que cet ensemble contient au moins Mn + 1 points à

coordonnées entières. Deux d’entre eux, (y1, y2, . . . , yn) et (z1, z2, . . . , zn), ont donc les

mêmes coordonnées modulo M , ce qui s’exprime par l’existence d’entiers x1, x2, . . . , xn

tels que

yr − zr = Mxr (r = 1, 2 , . . . , n) .

D’après la condition (B),

f(y1 − z1, . . . , yn − zn) ≤ k [f(y1, . . . , yn) + · · · + f(z1, . . . , zn)]

≤ k
[
gM δ + gM δ

]
= 2kgM δ ,

d’autre part, d’après (A), nous avons aussi

f(y1 − z1, . . . , yn − zn) = f(Mx1, . . . ,Mxn) = M δf(x1, . . . , xn) .

En faisant tendre g vers J− δ
n , Mordell obtient bien finalement

f(x1, x2, . . . , xn) ≤ 2kJ− δ
n .

Ce théorème de Mordell permet de retrouver celui de Minkowski. En effet, si le

domaine défini par l’inégalité

f(x1, . . . , xn) ≤ 1

105Mordell 1935 p.249. Mordell fait référence ici à sa démonstration dans Mordell 1933.
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admet un volume noté V strictement positif, le volume de l’ensemble donné par

f(x1, . . . , xn) ≤ G

est alors V G
n
δ et donc

N

VG
n
δ

−−−−→
G→+∞

1 .

Ainsi pour V > J , la condition N > JG
n
δ est vérifiée et le théorème de Mordell donne

l’existence d’entiers x1, . . . , xn, non tous nuls, tels que

f(x1, x2, . . . , xn) ≤ 2kJ− δ
n .

Mordell justifie enfin le passage à la limite J → V et obtient

f(x1, x2, . . . , xn) ≤ 2kV − δ
n , (4.6)

ce qui est bien le théorème de Minkowski pour k = δ = 1.

Par la suite, Mordell compare les hypothèses sous lesquelles Minkowski avait dé-

montré son théorème avec celles utilisées dans cet article. C’est cette discussion de

Mordell qui est d’ordre géométrique. Il remarque d’abord qu’avec Minkowski les do-

maines étudiés devaient être convexes. Il analyse comment cette hypothèse intervient

dans le théorème de Minkowski

« The convexity condition really means that if P , Q, are two points within

S, then P +Q lies within 2S 106 ».

Cette remarque est reprise dans la lettre à Davenport déjà évoquée :

« A convex oval is one such that if P , Q are two points within or on it,

P +Q ∈ 2S (figure explains all)107. »

Dans cette lettre Mordell illustre son argument avec un dessin (voir la figure 4.3) qui,

selon lui, doit pouvoir se substituer à des explications. Il semble ainsi donner une place

forte à l’interprétation géométrique qui contient l’idée fondamentale, le principe à la

base du résultat étudié.

Ces considérations sur la convexité amènent Mordell à considérer les ensembles S,

qu’il appelle semi-convexes, qui sont tels que si P et Q sont des points de S alors le

point P +Q appartient à kS, où k est une constante fixée supérieure à 2. Pour de tels

ensembles Mordell énonce le résultat suivant :

106Mordell 1935 p.250.
107Lettre de Mordell à Davenport du 25 septembre 1933, Davenport (WL), G 211.
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Fig. 4.3 – Dessin de Mordell dans la lettre à Davenport du 25 septembre 1933.

« If S has a centre at O and a volume V ≥ kn, it contains within it at least

one lattice point in addition to the origin108. »

Mordell juge la méthode qu’il emploie pour obtenir ce théorème par comparaison à ce

que faisait Minkowski :

« The proof is nearly trivial and entirely different from Minkowski’s idea

applied to n dimension109. »

Il apparaît donc qu’un des enjeux est d’avoir des méthodes qui peuvent être généralisées

à n’importe quelle dimension. Cela fait écho à la réserve sur la géométrie exprimée plus

tard par Mordell lors de la conférence d’Oslo dans laquelle il pointe la difficulté à saisir

les arguments géométriques en dimension quelconque, réserve qu’il ne semble pas avoir

encore en 1933.

Pour démontrer ce nouveau théorème, Mordell procède de manière assez proche que

pour le premier résultat de cet article. Soit un entier naturel non nul M , le domaine
M
k
S a pour volume Mn

kn V et si N est le nombre de points du réseau qu’il contient alors

N

V
(
M
k

)n −−−−−→
M→+∞

1 ,

ou encore,

N ∼ Mn V

kn
.

Lorsque v est strictement plus grand que kn, Mordell en déduit que, pour M suffisam-

ment grand, N > Mn. Le même raisonnement que ci-dessus sur les valeurs prises par

108Mordell 1935, p.251.
109Lettre de Mordell à Davenport du 25 septembre 1933, Davenport (WL), G 211.
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des n-uplets d’entiers modulo M donne l’existence de deux points distincts du réseau

P , Q qui sont dans M
k
S et dont les coordonnées sont congruentes modulo M . Ainsi

le point P−Q
M

est aussi un point du réseau. Si maintenant Q′ est le symétrique de Q

par rapport à O, Q′ appartient à M
k
S et P −Q = P +Q′, ce qui implique, à cause de

la semi-convexité de S, que P−Q
M

appartient aussi à S. Le résultat est donc démontré

quand V > kn, le cas V = kn s’obtient par un passage à la limite comme dans les

preuves précédentes.

Mordell termine son article par des applications dans lesquelles il utilise son résultat

en prenant des fonctions f particulières. Ces applications sont essentiellement les mêmes

que celles déjà étudiées par Minkowski, mais l’exigence de simplicité de Mordell justifie

qu’il s’y intéresse à nouveau

« My form also simplifies some of the applications110. »

Il revient d’abord sur le résultat « bien connu » sur la majoration de n formes linéaires

homogènes. Il considère donc les formes

ξr =
n∑

s=1

arsxs , (r = 1, . . . , n),

et les fonctions

fr(x1, x2, . . . , xn) =

∣
∣
∣
∣
∣

n∑

s=1

arsxs

∣
∣
∣
∣
∣
, (r = 1, . . . , n).

Puis il justifie que le volume V du domaine défini par les inégalités |fr| ≤ 1, donné par

V =

∫ ∫

. . .

∫

|fr|≤1

dx1 dx2 . . . dxn ,

est égal à
2n

|∆| , où ∆ est le déterminant des formes ξ1, ξ2, . . . , ξn. L’inégalité (4.6)

implique alors l’existence d’entiers x1, x2, . . . , xn, non tous nuls, et tels que111

∣
∣
∣
∣
∣

n∑

s=1

ars xs

∣
∣
∣
∣
∣
≤ |∆| 1

n (r = 1, 2, . . . , n) .

110Mordell 1935 p.251.
111Mordell a justifié rapidement que son résultat est encore vrai lorsque le domaine S est défini par

plusieurs inégalités du type fr(x1, x2, . . . , xn) ≤ εr, où εr = 0,±1 et chaque fr vérifient les hypothèses
du théorème, l’inégalité dans la condition (C) étant remplacée par fr(x1, x2, . . . , xn) ≤ Gεr.
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Pour la seconde application, Mordell note p un nombre plus grand que 1 et α, β, γ, . . .

des entiers naturels dont la somme est n. Soient ensuite les fonctions

f1 =

α∑

r=1

∣
∣
∣
∣
∣

n∑

s=1

ars xs

∣
∣
∣
∣
∣

p

= ξp1 + ξp2 + · · · + ξpα ,

f2 =

α+β
∑

r=α+1

∣
∣
∣
∣
∣

n∑

s=1

ars xs

∣
∣
∣
∣
∣

p

= ηp1 + ηp2 + · · ·+ ηpβ , etc . . .

où les coefficients aij sont des réels. La condition (A) est vérifiée pour ces fonctions en

prenant δ = p et l’inégalité

|X + Y |p ≤ (|X| + |Y |)p ≤ 2p−1 (|X|p + |Y |p) (4.7)

permet de montrer (B) pour k = 2p−1.

Le volume du domaine défini par fr(x1, x2, . . . , xn) ≤ 1 (r = 1, 2, . . . , n) est alors

V =
2n

|∆|
Γ
(

1 + 1
p

)n

Γ
(

1 + α
p

)

Γ
(

1 + β
p

)

. . .
,

la borne de l’inégalité (4.6) s’écrit donc

2kV − δ
n = |∆| p

n

[

Γ
(

1 + α
p

)

Γ
(

1 + β
p

)

. . .
] p

n

Γ
(

1 + 1
p

)p .

Mordell note λ cette borne, le théorème implique l’existence d’entiers x1, x2, . . . , xn non

tous nuls et qui vérifient

|f1|p + · · ·+ |fα|p ≤ λ ,

|fα+1|p + · · ·+ |fα+β |p ≤ λ ,

|fα+β+1|p + · · ·+ |fα+β+γ |p ≤ λ , etc . . .

Pour terminer, Mordell remarque que dans le cas où α = n et β = γ = · · · = 0, il

retrouve le théorème de Minkowski qui conduit à une inégalité du type

|f1|p + · · · + |fn|p ≤ |∆| p
n

Γ
(

1 + n
p

) p
n

Γ
(

1 + 1
p

)p ,
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où les fr sont des formes linéaires homogènes. Revenant sur la question de la simplicité,

Mordell note que cette dernière inégalité due à Minkowski nécessite la démonstration

de

[(ξ1 + η1)
p + · · ·+ (ξn + ηn)

p]
1
p ≤ [ξp1 + · · · + ξpn]

1
p + [ηp1 + · · · + ηpn]

1
p ,

pour ξ1, . . . , ξn, η1, . . . , ηn positifs, qui est plus difficile à obtenir que l’inégalité (4.7)

qu’il utilise ici.

La présentation des résultats dans cet article de Mordell est finalement assez proche

de celle qu’adoptait Minkowski. Mordell énonce un théorème sur les valeurs prises par

des fonctions quand les variables sont des entiers, ces fonctions sont caractérisées par des

conditions rappelant pour certaines celles des fonctions distances de Minkowski. Nous

observons aussi un va-et-vient entre la formulation que Minkowski jugeait analytique

(en termes de fonctions) et sa traduction géométrique (sur des domaines). Mais alors

que Minkowski donnait des démonstrations qu’il jugeait analytiques ou géométriques,

Mordell propose des preuves qui sont de nature arithmétique. Cependant la discussion

sur la convexité et son illustration par le dessin laisse penser que la géométrie, via

des représentations visuelles, peut parfois aussi jouer un rôle heuristique pour Mordell

comme elle l’était pour Minkowski.

Revenons pour finir avec cet article sur la question de la convexité que Mordell aborde

quand il introduit les ensembles semi-convexes. Rappelons que ces ensembles S sont

tels que si P et Q appartiennent à S alors le point P + Q est dans kS, où k ≥ 2 est

une constante. Que cela soit dans son article ou dans la lettre à Davenport, Mordell

insiste sur son interprétation géométrique de la constante k, par exemple :

« My k above is a sort of measure of the concavity or lack of convexity of

an area112. »

Cette remarque le conduit à soumettre un problème qu’il juge intéressant à Davenport :

« It suggests an interesting question what is the largest convex area contai-

ned in a concave area, which you may care to pose on to the geometers113 ».

Mordell reviendra à cette idée de considérer un domaine convexe particulier dans un

ensemble concave. C’est une des idées importantes qu’il utilisera au début des années

1940 pour démontrer son théorème sur les formes cubiques binaires.

112Lettre de Mordell à Davenport du 25 septembre 1933. Voir aussi Mordell 1935 p.251.
113Lettre de Mordell à Davenport du 25 septembre 1933, Davenport (WL), G 211.
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4.1.2.5 Conclusion sur ces premiers travaux de Mordell en géométrie des

nombres

Après l’avoir mentionnée pour la première fois dans un article publié en 1923,

Mordell commence véritablement son travail sur la géométrie des nombres dans la

deuxième moitié des années 1920. Entre 1927 et 1937, l’intérêt de Mordell pour la

géométrie des nombres se porte presque exclusivement sur les formes linéaires. Plus

particulièrement, le problème qui est au centre de ses préoccupations est la conjecture

dite de Minkowski sur le produit de n formes linéaires non homogènes : existe-t-il des

entiers x1, x2, . . ., xn tels que

n∏

r=1

(ar1x1 + ar2x2 + · · ·+ arnxn + cr) ≤ 1

2n
,

où les coefficients des formes sont des nombres réels et le déterminant
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 . . . a1n

...
. . .

...

an1 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

est égal à 1 ? L’importance que Mordell accorde à cette conjecture est attestée par le

fait qu’il la place en 1928 parmi les problèmes qui influencent le plus les recherches en

théorie des nombres de cette époque114.

Cependant tous les articles sur la géométrie des nombres publiés par Mordell pendant

cette période ne sont pas directement consacrés à la démonstration de cette conjecture.

Dans certains d’entre eux, Mordell revient sur des résultats sur les formes linéaires

homogènes115 ; dans d’autres, il redémontre un cas particulier de la conjecture : le cas du

produit de deux formes, déjà démontré par Minkowski ou Remak, pour lequel il propose

plusieurs preuves116. Cette façon de travailler s’inscrit en fait dans une méthodologie

de recherche plus générale et tous ces travaux participent en fait de ses tentatives pour

résoudre le cas du produit de n formes non homogènes qui est son véritable objectif.

Pour lui, il est nécessaire de multiplier les preuves dans des cas particuliers du problème

étudié et de diversifier les approches

« It is important to have different proofs, one sometimes goes much further

than another and may also be useful elsewhere117. »

114Mordell 1928a.
115Voir par exemple Mordell 1929b, 1933.
116Mordell 1928a, 1937c.
117Lettre de Mordell à Davenport du 6 décembre 1931, Davenport (WL), G 211.
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En plus des conséquences sur d’autres problèmes que peut avoir le développement de

nouvelles méthodes, l’objectif est aussi pour Mordell d’arriver à atteindre le plus de

simplicité possible. Cette notion de simplicité est à prendre avec précaution car elle

est souvent mise en avant dans les textes mathématiques. Il s’agit d’une notion déjà

rencontrée à plusieurs reprises et que nous verrons apparaître encore de nombreuses

fois dans le travail de Mordell. Ce sont toutes ces occurences qui permettent de donner

à son emploi une certaine cohérence. D’abord, pour Mordell, la simplicité ne va pas de

soi, elle se cultive, il est nécessaire de travailler pour l’obtenir

« It is generally after many years that the simple and apparently natural

method is discovered. It is only then that the proofs can be appreciated by

greater numbers, just perhaps as the rough diamond only reveals its beauty

after it has been polished and cut118. »

Cette dernière citation nous amène à ce qui caractérise pour Mordell la méthode simple,

c’est celle qui doit dévoiler ce qui est à la base d’un résultat, l’idée essentielle qui le

fonde. Ainsi la découverte de la méthode la plus simple doit permettre d’ouvrir des

pistes de recherches pour réussir à démontrer la conjecture de Minkowski dans le cas

général.

Pendant la période 1927-1937, deux principales approches se succèdent dans le

travail de Mordell pour étudier cette question du produit des formes linéaires.

Jusqu’en 1930 ce sont des techniques analytiques qui sont privilégiées, Mordell faisant

jouer en particulier un rôle central à la formule sommatoire de Poisson

« During the later 1920s [. . .] perhaps the most important theme was the

Poisson Summation Formula and its applications119 »

Ces recherches se situent dans la tradition de Siegel qui avait abordé le cas des formes

homogènes par l’analyse, l’objectif de Mordell étant d’adapter la preuve de Siegel au

cas non homogène. Ce courant, que Mordell qualifie d’analytique, se caractérise par l’in-

tervention d’intégrales réelles ou complexes, des séries, des séries de Fourier. La place

fondamentale qu’occupe la formule de Poisson est encore une fois justifiée en partie

par un argument de simplicité. C’est la simplicité des hypothèses sous lesquelles cette

formule est démontrée devant la diversité des applications possibles qui lui donne tout

son intérêt. Mordell pense pouvoir, grâce à cette formule, réunir autour d’un principe

commun des résultats a priori non connectés de théorie des nombres.

Mordell se détourne finalement assez rapidement de ces travaux sur la formule de

Poisson avec lesquels il n’est pas parvenu à obtenir les résultats attendus, puisque dès

118Mordell 1928b p.138.
119Cassels 1973 p.502.
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le début des années 1930 il développe des techniques qu’il juge cette fois arithmétiques.

L’arithmétique est alors caractérisée par l’utilisation d’outils techniques. Parmi ces ou-

tils nous trouvons les congruences, le dénombrement de points à coordonnées entières

dans un domaine, ce qui aboutit à une application du principe de Dirichlet : il y a M

points dont les coordonnées diffèrent modulo M et M + 1 dans le domaine, donc deux

points ont les mêmes coordonnées modulo M . C’est l’application de cette démarche qui

donne une cohérence aux travaux de Mordell de cette période. Pour les articles sur les

formes linéaires, cette méthode repose aussi sur ce qui est appelé le lemme de Smith

par Mordell.

Lors de la conférence d’Oslo en 1936, Mordell fait le lien entre les méthodes analytiques

et les méthodes arithmétiques. Il faut chercher l’idée arithmétique derrière l’analyse et

nous pouvons aussi ajouter derrière la géométrie à cause de sa preuve arithmétique du

théorème de Minkowski sur les parties convexes. L’arithmétique apparaît donc comme

plus fondamentale que les autres domaines. C’est comme si, pour Mordell, analyse et

géométrie ne sont que des moyens techniques pour démontrer des résultats mais qu’ils

cachent la véritable origine de ces théorèmes qui est de nature arithmétique. Expliciter

ce noyau arithmétique doit justement permettre de percevoir le résultat dans toute sa

simplicité.

Nous notons ici la différence avec Minkowski qui adossait la géométrie à l’analyse et à

l’arithmétique pour favoriser l’intuition ce qui devait avoir pour effet de simplifier. Avec

Mordell la simplicité n’est pas nécessairement du côté de la géométrie, au contraire il

considère sa preuve arithmétique du théorème de Minkowski plus simple que la dé-

monstration géométrique de Minkowski.

La géométrie est peu présente dans ces premiers travaux de Mordell alors qu’elle

était une des caractéristiques de la géométrie des nombres de Minkowski. Un article fait

un peu exception, il s’agit de Mordell 1935 qui n’est pas consacré à la question du

produit de formes linéaires non homogènes et dans lequel une discussion géométrique

intervient. Cette discussion reste cependant assez limitée, la démonstration restant

d’ailleurs arithmétique, et n’est pas suffisamment explicite pour mesurer le point de

vue de Mordell sur la géométrie. Même s’il utilise un dessin pour communiquer avec

Davenport sur son résultat, il ne développe pas de discours sur l’emploi de représenta-

tions géométriques, ni sur le thème géométrie et intuition très présent chez Minkowski

ou encore sur la géométrie comme outil de communication.

Nous commençons à percevoir aussi chez Mordell une distinction qui peut sembler

vague en premier lieu mais qui là encore prend de la consistance au fur et à mesure

de son utilisation. Il s’agit de la distinction entre ce que Mordell nomme l’idée (d’une

démonstration, d’un théorème) et la partie purement technique de son travail. C’est

252



4.1 CHAPITRE 4

par exemple l’“idée arithmétique” qu’il faut rechercher derrière l’analyse, c’est l’“idée”

qui doit être simplifier au maximum. La preuve peut donc être jugée géométrique (c’est

le cas dans Mordell 1937c) alors que l’idée est arithmétique.

Nous verrons cette distinction apparaître à nouveau dans les commentaires de Mordell

et nous constaterons aussi que son point de vue sur les rapports entre analyse, arith-

métique et géométrie évolue.

Avec les débuts de Davenport en géométrie des nombres le travail de Mordell sur

ce thème s’est intensifié. Leur collaboration concerne d’abord le problème de la ma-

joration du produit de trois formes linéaires homogènes, puis le minimum des formes

cubiques binaires. Ces sujets occupent une place importante dans le travail de ces deux

mathématiciens pendant les années 1937-1943.

4.1.3 Harold Davenport (1907-1969)

4.1.3.1 Eléments biographiques sur Davenport

Harold Davenport est né le 30 octobre 1907 près d’Accrington120 en Angleterre121.

En 1923, Davenport entre à l’université de Manchester comme étudiant, il obtient son

“degree with First Class Honours” in 1927 122. C’est à cette période que Davenport

rencontre Mordell pour la première fois

« I came across Davenport as a first year student at Manchester123. »

Davenport suit alors les cours d’analyse complexe de Mordell. En 1927, il se rend à

Cambridge car il a obtenu un Scholarship à Trinity College. Il s’intéresse alors plus par-

ticulièrement aux cours de A.S. Besicovitch sur les fonctions quasi-périodiques et les

ensembles de points et de J.E. Littlewood sur les nombres premiers. Il reste par la suite

à Cambridge pour travailler sous la direction de Littlewood qui lui propose des sujets

d’analyse et de théorie des nombres, Davenport se tourne vers la théorie des nombres

et plus particulièrement la distribution des résidus quadratiques. Dans l’article biogra-

phique qu’il consacre à Davenport, Rogers rapporte que Littlewood voyait la direction

de Davenport comme formelle et que ce dernier travaillait de façon autonome124. Notons

cependant que Davenport travaille toute sa carrière sur des thèmes mêlant arithmétique

et analyse auxquels Littlewood s’est aussi intéressé. Le mathématicien ayant peut être

davantage influencé Davenport est Mordell. Les deux mathématiciens restent en contact

120Accrington se situe au nord de Manchester.
121Mordell 1971a, p.1.
122Rogers et al. 1971, p.159.
123Mordell 1971a p.2.
124Rogers et al. 1971, p.160.
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même après le départ de Davenport de Manchester, nous avons en effet une lettre de

Mordell adressée à Davenport datée de 1927. Dans ses lettres à la fin des années 1920,

Mordell donne parfois des conseils de lecture125, explique des points mathématiques

peu clairs pour Davenport126, etc. . . Mordell considère d’ailleurs Davenport comme un

de ses élèves

« This was perhaps the beginning of the new number theory school here

[Cambridge], now one of the best in the world under the leadership of (the

late) Professor Davenport and Professor Cassels, both of whom I am proud

to say were my former students127. »

En 1930, Mordell fait suivre une proposition de Helmut Hasse à Davenport :

« Dear Davenport,

I have received a letter from Prof. Hasse. [. . .] who says “In order to have fur-

ther occasion for applying and enriching my knowledge (English he means)

I would much like to get a young English fellow at home. It would be very

kind of you, if you could send me one of your student during the next

summer term (April-July). We would invite that student to dwell and eat

with us. He would be obliged to speak English with us at any time we are

together (at breakfast dinner tea lunch etc.) ; otherwise he would be allo-

wed naturally to speak German with every one else, in order to take some

advantage from his German sojourn for himself. From my point of view it

would be best, if he were student of pure maths out of an advanced course

of you. I would much like to hear from you, whether you know a clever and

handsome fellow for this purpose”.

[. . . ] It seems to me a splendid opportunity for you and I shouldn’t imagine

any difficulty would arise at Trinity with your scholarship128. »

Au début des années 1930, Davenport fait un séjour à Marbourg au cours duquel il

travaille avec Hasse129. Par la suite, il garde des contacts avec Hasse pendant de nom-

breuses années malgré les positions politiques prises par ce dernier. Pendant la période

nazie en Allemagne, Davenport comme Mordell continuent à avoir des relations avec

les mathématiciens allemands, même ceux qu’ils considèrent comme proches des nazis.

Mais en même temps, ils jouent un rôle actif dans l’accueil de mathématiciens réfugiés

parmi lesquels R. Rado, K.A. Hirsch, R. Courant, A. Walfisz, O. Taussky, H. Kober ou

K. Mahler130.

125Lettre du 8 juillet 1929, Davenport (WL), G 208.
126Lettre du 24 juillet 1929, Davenport (WL), G 208.
127Mordell 1971b p.958.
128Lettre de Mordell à Davenport du 27 novembre 1930, Davenport (WL), G 209.
129En fait, Davenport rend visite à Hasse à plusieurs reprises pendant cette période. Entre 1931 et

1934, les lettres qu’il adressent à Mordell sont envoyées alternativement d’Angleterre et d’Allemagne.
Mordell (St John’s), box 1, folder 4.

130Rogers et al. 1971 p.161.
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En 1937, son Trinity Fellowship, qui avait débuté en 1932, se termine et il est

recruté à Manchester comme assistant par Mordell. D’après lui, « he could not have

come to a better place or at a better time, for this was the beginning of the Manchester

school of number theory131. » Il côtoie alors Mahler, Erdös, Heilbronn, Segre, Chao Ko,

Z̆ilinskas ; ainsi que de nombreux visiteurs comme Chabauty, Lehmer ou Rankin.

Par la suite, Davenport est nommé, en octobre 1941, professeur de mathématiques à

l’University College of North Wales, puis Astor Professor of Mathematics à l’University

College de Londres en 1945, il devient directeur du département de mathématiques en

1950. Il termine sa carrière à Cambridge où il obtient le Rouse Ball Professorship en

1958.

Davenport a influencé de nombreux étudiants et il est décrit comme très disponible

pour ces étudiants. Parmi les jeunes mathématiciens qui ont été directement enca-

drés par Davenport ou qui ont assisté à son séminaire nous pouvons par exemple citer

J.H.H. Chalk, F.J. Dyson, C.A. Rogers, K.F. Roth132, D.A. Burgess, J.H. Conway, A.

Baker et H.L. Montgomery133. Davenport a aussi des contacts avec beaucoup de ma-

thématiciens, ce qui est illustré par le très grand nombre d’articles qu’il a publié en

collaboration : c’est le cas pour 76 articles, écrits avec 24 auteurs différents.

Parmi les responsabilités administratives et les distinctions qu’il a obtenues, nous

pouvons citer le Adams Prize de l’université de Cambridge en 1941, the Berwick Prize

of the London Mathematical Society en 1951, il devient Fellow of the Royal Society

en 1940 et obtient la Sylvester Medal en 1967 ; il est aussi président de la London

Mathematical Society entre 1957 et 1959. En 1953, il est à l’initiative de la création

d’un nouveau journal Mathematika édité par l’University College de Londres134.

Davenport, qui était un gros fumeur, doit se faire enlever un poumon en janvier 1969

et il décède quelques mois plus tard le 9 juin 1969.

4.1.3.2 Les travaux mathématiques de Davenport

Comme Mordell, Davenport est un mathématicien qui a publié de très nombreux

articles135, il n’est donc pas ici question d’en donner un compte rendu précis mais

seulement d’en présenter les grandes lignes ainsi que quelques résultats. Un aperçu des

travaux de Davenport est proposé par Mordell et par Rogers dans le volume d’Acta

131Mordell 1971a p.2.
132Il travaillait avant avec T. Estermann qui a publié des articles en liaison avec la géométrie des

nombres.
133Rogers et al. 1971, p.162-166.
134Rogers et al. 1971, p.163-168.
135La liste donnée dans ses oeuvres complètes en compte 198, voir Davenport 1977, p.430-439.
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Fig. 4.4 – Harold Davenport (1907-1969)
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Arithmetica de 1971 136, mais nous avons surtout utilisé l’article des Biographical Me-

moirs of Fellows of the Royal Society137. Dans cet article, le travail de Davenport

est séparé en trois thèmes principaux : la géométrie des nombres et l’approximation

diophantienne (sujet sur lequel nous reviendrons plus tard), la théorie analytique des

nombres et les équations diophantiennes, la théorie multiplicative des nombres.

En théorie analytique des nombres, une partie de son travail se place dans la tradition

d’Hardy et Littlewood, soit parce qu’il améliore certains de leurs résultats, soit parce

qu’il reprend certaines de leurs méthodes. Par exemple, en collaboration avec Heil-

bronn, il démontre que tout entier naturel est la somme de 17 puissances quatrièmes,

ce qui est le meilleure résultat possible. En 1937, toujours avec Heilbronn, il montre que

pour k fixé, presque tout entier est la somme d’un nombre premier et d’une puissance

k-ième. Il consacre aussi plusieurs articles au problème de Waring. Il démontre (avec

Heilbronn) en 1949, que si λ1, . . ., λ5 sont des réels qui ne sont pas tous de même signe,

alors il existe des entiers x1, . . ., x5, non tous nuls et tels que

∣
∣
∣
∣
∣

5∑

i=1

λix
2
i

∣
∣
∣
∣
∣
< 1 .

Il prouve ce théorème pour plus de 5 variables et s’intéresse ensuite à sa généralisation

à n’importe quelle forme quadratique indéfinie138.

Les premiers travaux de Davenport publiés portent sur le nombre des résidus qua-

dratiques modulo un nombre premier p, ce qui le conduit à estimer des sommes du

types
p−1
∑

n=0

(
(n+ a1)(n+ a2) . . . (n + ar)

p

)

,

où a1, a2, . . ., an sont des entiers distincts modulo p et
(
x
p

)

désigne le symbole de

Legendre. Les théorèmes obtenus sont ensuite interprétés dans le cadre de l’étude du

nombre de solutions de la congruence

y2 ≡ (n+ a1)(n+ a2) . . . (n+ ar) mod p

sous l’influence de Hasse à Marbourg. Il semble que Davenport suscite l’intérêt de

Mordell pour ce sujet comme le montre leur correspondence du début des années 1930.

Davenport a aussi étudié les équations diophantiennes du type f(x) = g(y), où f et g

sont des polynômes à coefficients entiers. Sur ce thème, il a par exemple montré avec

136Voir Mordell 1971d; Rogers 1871.
137Rogers et al. 1971, p.168-185.
138Rogers et al. 1971, p.171-176.
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D.J. Lewis que si

f(x) = xn + xn−1 + · · · + x , g(y) = ym + ym−1 + · · · + y ,

avec n > m > 1, alors l’équation f(x) = g(y) a au plus un nombre fini de solutions139.

Davenport a consacré des articles à l’étude de certaines séries en liaison avec des ques-

tions de théorie des nombres. Par exemple, à nouveau avec Heilbronn, il démontre en

1936, que la fonction

ζ(s, a) =
+∞∑

n=1

1

(n + a)s
(0 < a < 1, a 6= 1

2
)

a une infinité de zéros dans le domaine Re (s) ≥ 1 quand a est rationnel ou transcen-

dant.

4.1.3.3 Les premiers résultats de Davenport en géométrie des nombres

C.A. Rogers, dans ses articles biographiques sur Davenport, indique que ce dernier

commence à s’intéresser à la géométrie des nombres quand il arrive à Manchester en

1937 :

« When Davenport returned to Manchester to join Mordell’s staff, he began

to contribute to the Geometry of Numbers, a subject in which Mordell had

been greatly interested140. »

Cette citation souligne aussi le rôle de l’influence de Mordell dans ce choix de sujet

de recherche, influence que nous illustrerons pour chacun des premiers thèmes abordés

par Davenport.

Bien que Mordell et Davenport sont en contact depuis la fin des années 1920, leur

collaboration sur le thème de la géométrie des nombres ne débute réellement qu’en

1937. Leurs travaux entre 1937 et 1943 concernent essentiellement la question du pro-

duit de trois formes linéaires homogènes et l’approche de ce problème par l’étude des

formes cubiques binaires. Ces deux thèmes de recherche seront traités à part car ils

forment une partie importante du travail des deux mathématiciens en géométrie des

nombres. De plus, il semble qu’ils considèrent que les théorèmes obtenus sur chacun de

ces problèmes occupent une place particulière parmi leurs contributions à la géométrie

des nombres. Ce sont en effet souvent ceux sur lesquels ils insistent le plus lorsqu’ils

rendent compte de leur travail dans ce domaine.

Cependant, nous allons commencer par présenter deux articles de Davenport. Le pre-

139Rogers et al. 1971, p.182.
140Rogers 1871 p.14.
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mier concerne le produit de n formes linéaires non homogènes et dans le second Da-

venport propose une nouvelle preuve du théorème des minima successifs de Minkowski.

Ces deux articles sont présentés ici pour des raisons différentes. Celui sur la conjecture

de Minkowski pour les formes linéaires non homogènes montre comment Mordell amène

Davenport à s’intéresser à la géométrie des nombres. Il confirme aussi la place cruciale

de cette question dans leur travail à ce sujet. La preuve du théorème sur les minima

successifs est un peu isolée de leurs autres recherches de cette époque car la question

abordée n’est pas directement liée aux formes linéaires.

a) Le produit de n formes linéaires non homogènes d’après Siegel

Le premier article de Davenport sur la géométrie des nombres est publié en 1937 141.

Comme l’indique lui-même Davenport, dans une lettre adressée à Mordell du 10 octobre

1937 142, Siegel démontre que si L1, L2, . . ., Ln sont des formes linéaires à coefficients

réels, de déterminant 1 et c1, c2, . . ., cn sont des nombres réels, alors il existe des valeurs

entières de x1, x2, . . ., xn telles que

n∏

i=1

|Li + ci| ≤ γn ,

où γn ne dépend que de n 143. Mordell fait lire cette lettre à Davenport

« with the impertinence of youth I could not resist simplifying Siegel’s proof

and with great generosity Siegel insisted that I should publish my simplified

version instead of his publishing anything144 ».

Davenport suit donc la suggestion de Siegel en précisant dans son article que sa dé-

monstration reprend les mêmes idées que celle de Siegel mais qu’elles sont présentées de

manière différente. La méthode utilisée par Davenport conduit en plus à l’estimation

suivante pour γn :

γn ≤
[

n 2n−1 Γ

(

1 +
1

2
n

)
(n!)

n−1
2

Γ(1
2
)n

]n

.

La démonstration est basée sur la notion de minima successifs d’une forme quadratique

binaire définie positive, notion que Davenport commence par rappeler.

Etant donnée Q(x) = Q(x1, ..., xn) une telle forme dont le déterminant est noté D, les

minima successifs de Q sont définis de la manière suivante : S2
1 est le minimum de Q

(atteint pour χ1) pour les valeurs entières de x non nulles, S2
2 est le minimum de Q

141Davenport 1937.
142C’est la date donnée par Davenport, mais dans les archives de Mordell nous avons seulement

retrouvé une lettre de Siegel du 8 octobre 1937 qui correspond au contenu décrit ici par Davenport.
143Rappelons que Minkowski avait conjecturé que γn = 2−n.
144Davenport cité dans Rogers et al. 1971 p.168.
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(atteint pour χ2) pour les valeurs entières de x non nulles et non multiples de χ1, S2
3

est le minimum de Q (atteint pour χ3) pour les valeurs entières de x non combinaison

linéaire à coefficients entiers de χ1 et χ2, etc. . .

Le théorème de Minkowski sur les minima successifs s’applique à la fonction
√
Q qui

est un cas particulier des fonctions distances étudiées par Minkowski. Ce théorème

implique
√
D ≤ S1 S2 . . . Sn ≤ 2n

Γ(1 + 1
2
n)

Γ(1
2
)n

√
D .

Davenport considère les minima successifs associés à la forme quadratique

Q = L2
1 + L2

2 + · · ·+ L2
n ,

puis il applique le théorème de Minkowski à la forme

R =
L2

1

S2
1

+
L2

2

S2
2

+ · · ·+ L2
n

S2
n

.

L’application du théorème de Minkowski étant au centre de la méthode, Davenport

termine en remarquant que n’importe quelles formes convexes à la place de Q et R

peuvent être utilisées. Il donne l’exemple de la fonction

max(|L1|, |L2|, . . . , |Ln|)

qui peut être choisie à la place de la forme quadratique Q 145.

Cette démonstration est insuffisante pour obtenir la conjecture de Minkowski qui

donne aussi γn =
1

2n
. Cependant, Mordell remarquait dans son article sur ce sujet

publié en 1937 146 que les seuls résultats démontrés sur ce problème concernaient des

valeurs de n particulières. Cet article de Davenport est donc la première démonstra-

tion publiée de l’existence d’une constante qui ne dépend que de n et qui majore le

minimum sur les entiers du produit de n formes linéaires non homogènes.

b) Une nouvelle preuve du théorème sur les minima successifs

Avec le titre de son article Minkowski’s Inequality for the Minima Associated with a

Convex Body, Davenport place sa démonstration du théorème sur les minima successifs

dans un cadre géométrique147. Il considère K un ouvert convexe centré en l’origine O

dans un espace de dimension n. Il rappelle d’abord le premier théorème de Minkowski

145Davenport 1937 p.265.
146Mordell 1937c.
147Davenport 1939a.
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et donne le principe qui est pour lui à la base de toutes les démonstrations de ce

théorème : un domaine, pas nécessairement convexe, de volume strictement plus grand

que 2n contient deux points distincts x = (x1, x2, . . . , xn) et y = (y1, y2, . . . , yn) tels que

x1 ≡ y1 (mod 2) , x2 ≡ y2 (mod 2) , . . . , xn ≡ yn (mod 2) .

Si K est convexe, le point 1
2
(x−y) est alors un point du réseau différent de O et dans K.

Cette méthode de démonstration n’est cependant pas celle que donnait Minkowski, nous

avons vu qu’il s’agit en fait d’une idée héritée du travail de Blichfeldt et la formulation

en terme de congruences vient de Mordell.

Davenport utilise ici ce résultat afin de démontrer le théorème de Minkowski sur les

minima successifs d’une manière qu’il juge plus simple. Ces minima sont définis de la

façon suivante : λ1 est la borne inférieure des λ > 0 tels que λK possède un point du

réseau P1 sur sa frontière, λ2 la borne inférieure des λ > 0 tels que λ2K a un point du

réseau P2 sur sa frontière qui n’appartient pas à la droite OP1, λ3 la borne inférieure

des λ > 0 tels que λ3K a un point du réseau P3 sur sa frontière qui n’est pas dans

OP1P2, etc. . . D’après le théorème de Minkowski, λ1, λ2, . . ., λn vérifient

λ1 λ2 . . . λn V (K) ≤ 2n ,

où V (K) désigne le volume de K. Davenport considère ensuite les points du réseau

Q1, Q2, . . . Qn qui sont tels que Q1, Q2, . . . , Qi engendrent tous les points du réseau

de OP1 . . . Pi, puis il se ramène au cas où Q1, Q2, . . . Qn sont les points (1, 0, . . . , 0),

(0, 1, 0, . . . , 0), . . ., (0, 0, . . . , 1). Par définition de λn, tous les points du réseau dans λnK

sont tels que xn = 0, de même les points du réseau dans λn−1K vérifient xn = xn−1 = 0.

Plus généralement, si x et y appartiennent à λrK avec xi ≡ yi (mod 2) pour tout i,

alors 1
2
(x− y) est un point du réseau qui est aussi dans λrK et donc

xr = yr , xr+1 = yr+1 , . . . , xn = yn .

Davenport raisonne maintenant par l’absurde : si λ1 . . . λnV (K) > 2n, il justifie que

pour arriver à une contradiction il suffit de construire des domaines K1, K2, . . ., Kn

(non nécessairement convexes) qui vérifient les conditions suivantes

(a) Kr ⊂ λrK, pour tout r,

(b) si x, y sont dans Kr et tels que xi = yi pour tout i = r, r+1, . . . , n, alors il existe

x′, y′ appartenant à Kr−1 tels que x− y = x′ − y′,

(c) V (Kn) = λ1λ2 . . . λnV (K).

Supposons K1, K2, . . ., Kn donnés, la condition (c) implique V (Kn) > 2n, ainsi d’après

le lemme énoncé au début de son article, il existe deux points x, y distincts de Kn dont
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les coordonnées vérifient

x1 ≡ y1 (mod 2) , x2 ≡ y2 (mod 2) , . . . , xn ≡ yn (mod 2) .

D’après (a), 1
2
(x − y) est un point du réseau dans λnK, donc xn = yn. (b) donne

l’existence de deux points x′, y′ distincts dans Kn−1 tels que x − y = x′ − y′, leurs

coordonnées sont donc égales modulo 2 et Davenport réitère le même procédé jusqu’à

obtenir deux points X, Y distincts qui appartiennent à K1 et dont les coordonnées sont

les mêmes modulo 2. Ainsi le point 1
2
(X − Y ) est un point du réseau différent de O et

dans λ1K, ce qui contredit la définition de λ1.

La fin de l’article est donc consacrée à la construction par récurrence de K1, K2, . . .,

Kn qui est assez peu détaillée. D’après Rogers, cette preuve a été critiquée à cause de

ce manque de détails148.

4.2 Le produit de trois formes linéaires et les minima

des formes cubiques binaires 1937-1943

La collaboration entre Mordell et Davenport sur la géométrie des nombres com-

mence véritablement à partir de 1937. Si nous regardons le nombre d’articles qu’ils

publient sur ce sujet, nous pouvons voir que ce thème prend une place de plus en plus

importante dans leur travail de la fin des années 1930 au début des années 1940. Da-

venport publie son premier article sur les formes linéaires non homogènes en 1937 et la

part de ses publications en géométrie des nombres par rapport à toutes ses publications

augmente jusqu’en 1947 où elle atteint environ 57% 149. Pour Mordell, le thème de la

géométrie des nombres représente environ 53% de ses articles entre 1937 et 1943 contre

à peu près 26% pour la période 1927-1937 étudiée précédemment. Pour les deux mathé-

maticiens, la géométrie des nombres est le sujet d’environ la moitié des articles qu’ils

ont publiés entre 1937 et 1950. D’ailleurs, a posteriori, la période qui va nous intéresser

ici est identifiée comme un moment de grande activité en géométrie des nombres

« In the late 1930s and early 1940s the work of Mordell, Mahler and Daven-

port in this subject [la géométrie des nombres] saw the greatest development

since its initiation by Minkowski150. »

148Rogers indique que les critiques portaient en particulier sur l’utilisation par Davenport d’une
famille de fonctions vérifiant certaines conditions sans qu’il en démontre l’existence. Rogers juge ces
critiques non justifiées et il propose des fonctions qui conviennent. Voir Rogers et al. 1971, p.169-
170.

149Il s’agit de la part des articles sur la géométrie des nombres entre 1937-1947.
150Cassels 1973, p.504.
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Leur collaboration sur la géométrie des nombres pendant ces années 1937-1943

concerne principalement le problème du produit de trois formes linéaires homogènes

et le minimum des formes cubiques binaires. Les cubiques binaires ont en fait été

introduites par Mordell en liaison avec le produit de trois formes linéaires et constituent

donc une nouvelle approche de la question.

D’après Davenport, c’est Mordell qui est à l’origine de son intérêt pour le problème

et lui « a suggéré l’étude du problème analogue pour trois formes linéaires à trois

variables151. »

De plus, les échanges entre les deux mathématiciens sont facilités entre 1937 et 1941 car

ils sont tous les deux à l’université de Manchester. Mordell s’y trouve depuis 1922 152

et il y engage Davenport en tant qu’assistant en 1937, poste que ce dernier occupe

jusqu’en octobre 1941 153. D’après Rogers, c’est pendant cette période à Manchester

que

« Under Mordell’s influence Davenport acquired a lasting interest in the

Geometry of Numbers and in Diophantine Approximation154. »

Enfin, ces années marquent aussi un changement dans l’attitude de Mordell par

rapport à la géométrie. Elle prend en effet une place importante dans ses travaux

et l’arithmétique n’est plus seule mise en avant dans ses commentaires. En réalité il

semble qu’un rôle spécifique pour chacun de ces deux points de vue (arithmétique et

géométrique) se dessine peu à peu. La géométrie permettrait de traiter de problèmes

généraux alors que l’arithmétique serait plus adaptée aux cas particuliers. Mais leur

conception de cette séparation des rôles entre géométrie et arithmétique est certai-

nement encore plus subtile. La distinction précédente semble s’appliquer seulement à

ce qu’ils désignent « l’idée » de la preuve (que nous avons déjà évoquée), notion bien

subjective à saisir qui pourrait être du côté de l’heuristique, et pas nécessairement à sa

partie technique et aux vérifications formelles. Nous essaierons d’illustrer ce point par

la suite à travers les exemples que nous allons rencontrer.

4.2.1 Le produit de trois formes linéaires homogènes (1937-

1939)

4.2.1.1 Problème et conjecture

Dans un premier temps, nous allons voir d’où vient ce problème du produit de

trois formes linéaires homogènes de trois variables et de quelle façon il est abordé par

151Davenport 1946b.
152Cassels 1973 p.501.
153Rogers et al. 1971 p.161.
154Rogers et al. 1971 p.161.
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Davenport qui est le premier à le traiter. Ce sont des considérations sur les nombres

algébriques qui amènent Davenport à la conjecture de son premier résultat qu’il juge

important en géométrie des nombres.

La présentation qui suit s’inspire de deux textes non publiés de Davenport. Le premier

est une conférence en français faite à Bruxelles en 1946 155 et le second est un cours

donné à Stanford en 1950 156. À ces deux occasions il revient sur ses théorèmes sur le

produit de trois formes linéaires mais aussi sur la genèse de ces résultats.

a) Retour sur un théorème de Minkowski

Le point de départ du problème est un résultat de Minkowski sur n formes linéaires

homogènes. Supposons que ξ1, ξ2, . . . , ξn soient des formes linéaires réelles homogènes de

n variables x1, x2, . . . , xn et de déterminant ∆. Minkowski appliquait son théorème sur

les parties convexes symétriques par rapport à l’origine au domaine défini par l’inégalité

|ξ1| + · · ·+ |ξn| ≤ λ .

Le volume de ce domaine est 2nλn

n!
, ainsi en choisissant λ tel que λn = n!|∆|, Minkowski

a démontré qu’il existe des entiers x1, x2, . . . , xn non tous nuls et qui vérifient

|ξ1| + · · ·+ |ξn| ≤ (n!|∆|) 1
n .

L’inégalité arithmético-géométrique157 lui permettait alors d’en déduire une inégalité

pour la valeur absolue du produit des formes : il existe des entiers x1, x2, . . . , xn non

tous nuls qui vérifient

|ξ1ξ2 . . . ξn| ≤
n!

nn
|∆| .

Dans la conférence de Bruxelles, Davenport indique que

« Un des problèmes suggéré par ce dernier résultat forma le point de départ

de mes recherches dans la géométrie des nombres en 1937 158. »

Le problème auquel Davenport fait allusion dans cette citation est celui de la détermi-

nation de la meilleure constante possible dans l’inégalité précédente lorsque n est un

entier fixé ; la borne obtenue par le théorème de Minkowski n’est en effet pas optimale.

155Davenport 1946b.
156Davenport 1950b.
157Si y1, . . . , yn sont des nombres réels strictement positifs alors n

√
x1 . . . xn ≤ x1+···+xn

n
.

158Davenport 1946b, p.6.
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b) Le cas du produit de deux formes linéaires

Pour justifier que la constante trouvée par Minkowski n’est pas optimale Davenport

revient sur le cas où l’entier n est égal à 2.

Pour deux formes linéaires ξ = au+ bv et η = cu+ dv de déterminant ∆ = ad− bc non

nul, la borne de l’inégalité précédente vaut 2!
22 |∆| = 1

2
|∆|. Mais la meilleure constante

pour le produit de deux formes linéaires est connue depuis 1873 et les travaux de

Aleksander Nikolaevich Korkine et Egor Ivanovich Zolotareff159. Ils ont démontré qu’il

existe des entiers u et v non tous deux nuls tels que

|ξη| ≤ 1√
5
|∆| .

L’égalité est par exemple obtenue pour les formes

ξ = u+

√
5 + 1

2
v et η = u+

−
√

5 + 1

2
v .

En effet, la valeur absolue du déterminant de ces deux formes est |∆| =
√

5 et leur

produit est égal à

ξη =

(

u+

√
5 + 1

2
v

)(

u+
−
√

5 + 1

2
v

)

= u2 + uv − v2 .

Quand les variables sont des entiers non tout deux nuls, le produit ξη est aussi un

entier non nul sinon un des facteurs précédents serait égal à 0, ce qui contredirait

l’irrationnalité de
√

5. Pour tous les couples d’entiers (u, v), différent de (0, 0), il vient

donc

|ξη| ≥ 1 =
1√
5
× |∆| .

Ainsi quand l’entier n est fixé, cela conduit à se demander quelle est la meilleure

estimation possible, l’inégalité de Minkowski ne la donnant pas. C’est la recherche que

propose Mordell à Davenport dans le cas où n est égal à 3.

c) Conjecture pour n = 3

Une possibilité pour essayer de déterminer quelle est la meilleure constante possible

est de trouver un moyen de construire un produit de formes linéaires homogènes qui

159Dans sa conférence à Bruxelles (Davenport 1946b p.6), Davenport attribue ce résultat à Andrei
Andreyevich Markoff en 1879 et dans le cours à Stanford à Korkine et Zolotareff en 1873, d’après
lui le résultat était même déjà connu (Davenport 1950b p.47). Il se trouve effectivement dans un
article de 1873 de Korkine et Zolotareff sur la réduction des formes quadratiques, voir Korkine et
Zolotareff 1873. Pour des informations supplémentaires sur les travaux de Korkine, Zolotareff et
Markoff sur les formes quadratiques voir Ozhigova 2001, en particulier les pages 137 à 154.
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ne soit pas trop petit quand les variables sont des entiers. Davenport remarque qu’un

tel procédé est donné, par exemple, par la théorie algébrique des nombres :

« The only general construction we know for getting a set of n linear forms

whose product cannot be too small is by taking one of the linear forms to

have its coefficients in an algebraic number-field of degree n, and the other

linear forms to be the algebraic conjugates160. »

Soit en effet k(θ) un corps de nombres algébriques de degré n tel que θ et ses conjugués

soient tous des nombres réels. Notons aussi (ω1, ω2, . . . , ωn) une base des entiers du

corps k(θ), tous les entiers de ce corps s’écrivent donc sous la forme

ξ = u1ω1 + u2ω2 + · · ·+ unωn ,

où les ui sont des entiers relatifs.

Considérons maintenant les conjugués ω(2)
i , . . . , ω

(n)
i de ωi (ω(1)

i = ωi) et les n formes

linéaires conjuguées ξ(1), ξ(2), . . . , ξ(n) définies par :

ξ(j) = u1ω
(j)
1 + u2ω

(j)
2 + · · · + unω

(j)
n

Le déterminant au carré de ces formes linéaires est le discriminant d du corps et nous

avons donc construit n formes linéaires réelles de déterminant ±
√
d. Quand les variables

u1, u2, . . . , un prennent des valeurs entières non toutes nulles, le produit ξ(1)ξ(2) . . . ξ(n)

est un entier relatif différent de zéro car il s’agit de la norme de l’entier algébrique ξ(1),

donc

|ξ(1)ξ(2) . . . ξ(n)| ≥ 1 .

Le problème posé au départ est d’établir une inégalité du type161

min
(u)∈Zn\{(0)}

|ξ1ξ2 . . . ξn| ≤ k |∆| .

Dans le cas des formes ξ(j), la valeur absolue du déterminant |∆| est
√
d et le deuxième

membre de l’inégalité devient k
√
d. Cette inégalité est donc meilleure si on prend pour

d le discriminant minimum d’un corps algébrique de nombres totalement réel de degré

n. De plus, comme |ξ(1)ξ(2) . . . ξ(n)| ≥ 1, la constante k vérifie k ≥ 1√
d
.

Pour un corps de nombres algébriques réel de degré 2 le discriminant minimum est 5 et
1√
5

est comme nous l’avons vu la meilleure constante possible. Cette remarque conduit

Davenport à penser que la constante optimale pour n = 3 peut être obtenue de la même

manière. Alors que le théorème de Minkowski donne comme borne 3!
33 |∆| = 2

9
|∆|

avec le procédé précédent elle devient 1
7
|∆| conformément au fait que le discriminant

160Davenport 1950b p.21.
161Nous notons (u) le n-uplet (u1, ..., un).
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minimum d’un corps cubique réel est 49. Ainsi le résultat que Davenport va chercher

à démontrer est le suivant : pour ξ, η, ζ trois formes linéaires réelles et homogènes de

déterminant ∆, il existe des entiers x1, x2, x3 non tous nuls tels que

|ξ η ζ | ≤ 1

7
|∆| .

Davenport indique dans sa conférence à Bruxelles quelle fût sa stratégie pour essayer

de démontrer cette conjecture :

« Bien entendu, ceci n’est qu’une suggestion, et quoiqu’elle se soit mon-

trée être vraie, elle était bien difficile à établir. Mon premier pas était de

découvrir une démonstration du théorème de Markoff162 qui suggérait un

processus pour le cas n = 3 163. »

Nous retrouvons donc la même approche méthodologique que chez Mordell. Pour com-

prendre comment généraliser un théorème, un procédé consiste à multiplier les preuves

dans les cas déjà connus.

4.2.1.2 Les théorèmes de Davenport de 1937-1938

Les premiers résultats obtenus par Davenport sur le produit de trois formes linéaires

homogènes sont énoncés dans ce paragraphe. Des éléments sur leur démonstration se-

ront donnés dans le paragraphe suivant.

Les recherches de Davenport sur ce sujet commencent à la fin de l’année 1937, certai-

nement entre septembre et novembre 1937. Elles sont présentées dans une série de trois

articles publiés en 1938 et 1939 164, mais les premières démonstrations sont élaborées

dès 1937 :

« In 1937, I solved this problem, having taken it up at the suggestion of

Professor Mordell165 ».

Cela est confirmé par les dates de réception des articles par les journaux dans lesquels

ils sont publiés : le premier est reçu le 16 décembre 1937, le second le 20 janvier 1938

et le troisième le 18 mai 1938. Les premiers théorèmes sont donc démontrés assez ra-

pidement par Davenport.

Dans le premier article166, Davenport considère trois formes linéaires ξ, η, ζ de trois

variables x, y, z, à coefficients réels et de déterminant 1. Il note aussi M la borne

162C’est-à-dire du cas n = 2.
163Davenport 1946b p.7-8.
164Davenport 1938a,b, 1939b.
165Davenport 1946a, Inaugural Lecture at University College, Londres, 6 juin 1946.
166Davenport 1938a.
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inférieure de |ξηζ | pour des valeurs entières des variables non toutes nulles. Dans cet

article, il démontre que

M ≤ 8

[

(3 +
√

2)

√

2
√

2 − 1 + 1

]−2 (

≈ 1

6, 07 . . .

)

.

Il donne ensuite trois formes pour lesquelles M = 1
7

et il indique qu’il a conjecturé

M ≤ 1
7

. Même s’il n’obtient pas ce résultat dans cet article, Davenport semble penser

que la méthode utilisée doit pouvoir être améliorée car elle permet de démontrer la

meilleure estimation possible dans le cas de deux formes.

La conjecture M ≤ 1
7

est démontrée dans l’article suivant167. En fait, Davenport y

démontre un résultat un peu plus fort : il existe une constante µ strictement plus

petite que 1
7

telle que M ≤ µ ou bien M = 1
7
; dans le cas où M = 1

7
, les formes sont

équivalentes à

L1 = λ1 (θx+ φy + ψz),

L2 = λ2 (φx+ ψy + θz),

L2 = λ3 (ψx+ θy + φz),

où λ1λ2λ3 = 1
7

et θ = 2 cos 2π
7

, φ = 2 cos 4π
7

, ψ = 2 cos 6π
7

sont les racines de l’équation

t3 + t2 − 2t− 1 = 0.

Enfin, le dernier article traite du cas où une des formes L1 est à coefficients réels et les

deux autres L, L sont à coefficients complexes et conjugués. De plus, le déterminant

des trois formes a un module égal à 1. Davenport montre alors que M ≤ 1√
23

et qu’il

s’agit de la meilleure constante possible, le cas d’égalité ayant lieu pour les formes

L = λ (u+ vθ + wθ2),

L = λ (u+ vθ + wθ
2
),

L1 = µ (u+ vφ+ wφ2),

où λ est un nombre complexe, µ un réel tels que |λλµ| = 1√
23

et φ, θ, θ sont les racines

de l’équation t3 − t− 1 = 0.

Notons l’analogie avec le cas de trois formes réelles puisque à nouveau

« The problem is related to the cubic field of numerically least negative

discriminant in much the same way as the problem of |xyz| ≤ 1 is related to

the cubic field of least positive discriminant. The cubic field of numerically

least negative discriminant is in fact the field generated by t3−t−1 = 0 168. »

167Davenport 1938b.
168Davenport 1950b, p.61.
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4.2.1.3 Comparaison des preuves publiées avec des commentaires non pu-

bliés de Davenport

« Davenport took up the problem of finding the arithmetic minimum of a

product of three real linear forms, studying the problem by geometrical me-

thods and drawing diagrams on triangulated graph paper. When he came

to write up the work (24, 25)169 he eliminated all reference to the geometry

he has used as a guide and presented a severely analytic proof

[. . . ] Shortly after completing his ‘ 1
7

’ result, Davenport tackled the cor-

responding result for the product of three linear forms, one real and two

conjugate complex [. . . ] Although the proof is presented in an analytic form,

the geometry from which it was obtained is less well hidden, and indeed

this is one of the very few of Davenport’s papers that actually contains a

diagram170. »

L’objet de ce paragraphe est de confirmer ces commentaires de Rogers à propos du

travail de Davenport sur le produit de trois formes linéaires. Pour cela, nous allons

comparer les premiers articles qu’il publie sur ce sujet avec des sources non publiées.

Ces sources non publiées sont des notes de cours ou des notes pour des conférences,

des exposés dans lesquelles il donne parfois des morceaux des preuves avec des com-

mentaires sur la démarche employée pour les obtenir. Nous verrons, comme le suggère

Rogers, que la géométrie occupe une place importante dans la découverte des démons-

trations et des méthodes mais qu’elle disparaît presque complètement lors de la phase

de rédaction des travaux publiés. Comme le remarque aussi Rogers, nous constaterons

que le cas complexe laisse cependant apparaître un peu plus les aspects géométriques.

a) Quelques éléments sur les démonstrations publiées

Dans un premier temps, des éléments sur les démonstrations données par Davenport

dans ses articles sont présentés. L’objectif n’est pas ici d’en exposer tous les détails,

mais davantage d’essayer de faire ressortir le mode d’exposition choisi par Davenport.

Dans le premier article publié sur le produit de trois formes linéaires réelles, Da-

venport démontre que

M ≤ 8

[

(3 +
√

2)

√

2
√

2 − 1 + 1

]−2 (

≈ 1

6, 07 . . .

)

.

169C’est-à-dire Davenport 1938a,b.
170Rogers et al. 1971, p.168-169.
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La démonstration repose sur un lemme énoncé au début de l’article171 :

min
u,v>0

{

u+ v + max

(
1

uv
,

1

|(u− 1)(v − 1)| − 1

)}

=
1

2

(

(3 +
√

2)

√

2
√

2 − 1 + 1

)

(< 3, 5) .

Pour justifier ce résultat, Davenport introduit la fonction

φ(u, v) = u+ v + max

(
1

uv
,

1

|(u− 1)(v − 1)| − 1

)

.

Il suppose d’abord que u > 1 et v > 1, ou bien u < 1 et v < 1 et il pose t = 1
2
(u+ v).

En étudiant φ(t, t) selon les valeurs de t > 0, il montre que φ(t, t) ≥ 3, 5 et comme

φ(t, t) ≥ φ(u, v) ,

cela implique que φ(u, v) ≥ 3, 5. Il suppose ensuite que u > 1 > v, puis justifie qu’il

suffit d’étudier φ pour des valeurs de u et v qui vérifient

1

uv
=

1

(u− 1)(1 − v)
− 1 .

Soit alors p = (u− 1)(1 − v), la relation précédente donne 0 < p < 1 ainsi que

φ(u, v) = p+
1

1 − p
+

1

p
− 1 .

En dérivant par rapport à p, Davenport montre que le minimum pour φ est atteint

pour

p =
1

2

(√

2
√

2 − 1 + 1 −
√

2

)

et que pour cette valeur de p,

φ(u, v) =
1

2

(

(3 +
√

2)

√

2
√

2 − 1 + 1

)

,

ce qui termine la preuve du lemme.

Soient ξ, η, ζ les formes linéaires, si ε > 0, il existe des valeurs entières des variables

pour lesquelles ξ = ξ0, η = η0, ζ = ζ0 et

M ≤ |ξ0η0ζ0| < M(1 + ε) .

Posons P = 3
√

|ξ0η0ζ0|, quitte à prendre les formes ξP
|ξ0| ,

ηP
|η0| ,

ζP
|ζ0| , Davenport suppose que

|ξ0| = |η0| = |ζ0| = P . La deuxième étape de la preuve consiste alors à appliquer le

théorème des minima successifs de Minkowski à |ξ| + |η| + |ζ |. Soient 3Si (i = 1, 2, 3)

171Davenport 1938a p.140.
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ces minima, le volume du domaine défini par

|ξ| + |η| + |ζ | ≤ 1

est
8

6
, le théorème de Minkowski implique donc

(3S1) (3S2) (3S3) ×
8

6
≤ 8 .

Ce qui permet d’obtenir, d’une part172,

S1S
2
2 ≤ 2

9
(4.8)

et d’autre part, en utilisant l’inégalité arithmético-géométrique,

M ≤ S3
1 . (4.9)

Avec la définition de M , Davenport montre ensuite que173

(|ξi| − P )(|ηi| − P )(|ζi| + P ) ≥ M ,

puis il pose u = |ξi|
P
, v = |ηi|

P
, w = |ζi|

P
pour en déduire

uvw ≥ 1

1 + ε
et |(u− 1)(v − 1)|(w + 1) ≥ 1

1 + ε
. (4.10)

En utilisant les inégalités S1 ≤ S2, (4.8) et (4.9), il obtient174 :

u+ v + w ≤ 3

(
2

9

) 1
2 1

M
1
2

.

Finalement, en appliquant le lemme ainsi que (4.10), cela implique :

3

(
2

9

) 1
2 1

M
1
2

≥ min
u,v>0

φ(u, v) =
1

2

(

(3 +
√

2)

√

2
√

2 − 1 + 1

)

,

ce qui achève la démonstration.

Davenport termine son article en donnant quelques indications de modifications de sa

méthode permettant d’améliorer sensiblement l’estimation de M , mais cela ne conduit

pas à la démonstration de la conjecture M ≤ 1
7

.

Nous constatons que cette preuve ne fait pas appel à la géométrie. Elle semble ap-

172Davenport 1938a, p.143.
173Davenport 1938a, p.143.
174Davenport 1938a, p.144.
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paraître un peu dans le passage où le théorème de Minkowski est appliqué. Mais il

s’agit d’une application immédiate de ce théorème et non de la mise en oeuvre d’un

raisonnement géométrique.

La preuve de la conjecture M ≤ 1
7

est l’objet de l’article suivant175 dans lequel est

démontré un résultat un peu plus fort (voir le paragraphe 4.2.1.2). La démonstration

n’est pas très facile à suivre. Aucune notion vraiment difficile n’est utilisée, mais la

présentation des arguments, sous la forme d’une série de 15 lemmes et 2 théorèmes,

rend difficile la compréhension de la fonction de chaque étape dans l’ensemble de la

preuve. Nous ne donnons que des morceaux de la preuve, l’objectif étant seulement de

montrer quel est le style de rédaction adopté par Davenport.

Dans ce qui suit L1, L2, L3 désignent des formes linéaires à coefficients réels et de

déterminant 1 et θ, φ, ψ sont les solutions de l’équation t3 + t2 − 2t− 1 = 0. ε est un

réel strictement positif quelconque et les εi sont aussi strictement positifs, ne dépendent

que de ε et tendent vers 0 quand ε tend vers 0.

Dans la première partie de la démonstration, Davenport étudie les ensembles de trois

réels x, y, z qui vérifient les deux conditions suivantes :

• x ≥ y ≥ z ,

• ∀n ∈ Z , |(n+ x)(n + y)(n+ z)| ≥ 1 − ε .

Des réels de la forme x + m, y + m, z + m ou −x + m,−y + m,−z +m, où m est un

entier, sont des ensembles dits équivalents à x, y, z. L’objet des trois premiers lemmes

de l’article est de montrer que si x−z < 3+ 1
5
, quitte à prendre un ensemble équivalent,

il est possible de se ramener au cas où

−2 < z < −1 , −1 < y < 0 1 < x < 2 ,

un tel ensemble est alors dit normal. Remarquons que les trois racines θ, φ, ψ vérifient

également ces inégalités.

Les lemmes 4 à 9 sont tous du même type : étant donnés un ensemble normal et tel

que x, y, z vérifient des inégalités supplémentaires (le plus souvent qui permettent de

comparer x, y, z avec θ, φ, ψ), Davenport obtient une majoration pour

max(|x− θ|, |y − φ|, |z − ψ|) .

Par exemple, Davenport considère toutes les inégalités entre x, y, z et θ, φ, ψ, il appelle

(A) la condition (x ≤ θ, y ≤ φ, z ≤ ψ) ; (B) la condition (x ≤ θ, y ≤ φ, z ≥ ψ) ; etc. . .

175Davenport 1938b.

272



4.2 CHAPITRE 4

jusqu’à (H), les lemmes 5 et 6 sont alors énoncés de la façon suivante176 :

« Lemma 5. In cases (A), (B), (C), (D) we have

max(|x− θ|, |y − φ|, |z − ψ|) < ε2 . »

« Lemma 6. In cases (E), (G) we have (trivially) x− z ≥ θ − ψ.

If x− z < θ − ψ + 1
30

, then

max(|x− θ|, |y − φ|, |z − ψ|) <
1

30
+ ε . »

Ces différents lemmes sont démontrés grâce à des manipulations techniques d’inégalités,

en faisant appel aux lemmes ou inégalités précédemment démontrés et en utilisant aussi

les relations entre θ, φ, ψ qui sont les racines d’un polynôme. Nous reproduisons à titre

d’exemple la preuve du lemme 6 dont nous venons de donner l’énoncé (voir la figure

4.5).

Cette série de lemmes conduit Davenport au lemme 10 qu’il juge le lemme principal

de sa démonstration177 :

« Lemma 10. If ξ, η, ζ are real numbers satisfying

|(ξ + n)(η + n)(ζ + n)| > 1 − ε

for every integer n, and also satisfying

(15) |ξ − η| < θ − ψ − ε10 , |η − ζ | < θ − ψ − ε10 ,

(16) |ξ − ζ | < θ − ψ +
1

30
,

then there exist numbers ξ1, η1, ζ1, which are either of the form

ξ1 = ξ +m, η1 = η +m, ζ1 = ζ +m,

or of the form

ξ1 = −ξ +m, η1 = −η +m, ζ1 = −ζ +m,

where m is a integer such that either

max(|ξ1 − θ|, |η1 − φ|, |ζ1 − ψ|) <
1

10
+ ε11 ,

or max(|ξ1 − ψ|, |η1 − φ|, |ζ1 − θ|) <
1

10
+ ε11 .

176Davenport 1938b p.416 et p.417.
177Davenport 1938b p.420.
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Fig. 4.5 – Preuve du lemme 6.

Also ξ1, η1, ζ1 satisfy

ξ1 + η1 + ζ1 > −1 − ε ;

and, if ξ1 + η1 + ζ1 < −1 + 2ε

then either

max(|ξ1 − θ|, |η1 − φ|, |ζ1 − ψ|) < ε1 ,

or max(|ξ1 − ψ|, |η1 − φ|, |ζ1 − θ|) < ε1 . »

Les deux lemmes suivants permettent d’évaluer le volume du domaine convexe D1

défini par les inégalités

|ξ + η + ζ | < 3 , |ξ − η| < θ − ψ − ε10 , |η − ζ | < θ − ψ − ε10 , |ξ − ζ | < θ − ψ +
1

30
.
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D’après le lemme 12, le volume de D1 est strictement plus grand que 56, 1. Ce dernier

résultat est ensuite utilisé pour démontrer le théorème 1 : Si M ≥ 1
7,01

, alors M = 1
7

.

Nous donnons quelques détails sur la preuve de ce théorème car nous retrouverons par

la suite certaines des idées qui y sont développées.

Par définition de M , il existe des valeurs L∗
1, L

∗
2, L

∗
3 des trois formes telles que

M ≤ |L∗
1 L

∗
2 L

∗
3| <

M

1 − ε
.

Comme |L1L2L3| ≥M , il vient :

∣
∣
∣
∣

L1

L∗
1

L2

L∗
2

L3

L∗
3

∣
∣
∣
∣
> 1 − ε .

En posant maintenant ξ = L1

L∗

1
, η = L2

L∗

2
et ζ = L3

L∗

3
, Davenport obtient un réseau qui

vérifient les propriétés suivantes :

(a) (0, 0, 0) et (1, 1, 1) sont des points du réseau.

(b) Pour tous les points du réseau différents de (0, 0, 0), |ξηζ | > 1 − ε. Ainsi pour

tous les points du réseau différents de (l, l, l) (où l est un entier),

|(n+ ξ)(n+ η)(n+ ζ)| > 1 − ε ,

pour tout n entier.

(c) Le déterminant du réseau a pour valeur absolue

1

|L∗
1 L

∗
2 L

∗
3|

≤ 1

M
≤ 7, 01 .

Le volume de D1 est donc strictement plus grand que 56, 1, c’est-à-dire que 8×7, 01. Le

théorème de Minkowski implique l’existence d’un point du réseau dans D1 différent de

l’origine et qui n’est pas de la forme (l, l, l), où l est un entier, à cause de la définition de

D1. Par la condition (b) ci-dessus, ce point du réseau vérifie les hypothèses du lemme

10, Davenport obtient ainsi un point du réseau (ξ1, η1, ζ1) tel que

max(|ξ1−θ|, |η1−φ|, |ζ1−ψ|) <
1

10
+ε11 ou max(|ξ1−ψ|, |η1−φ|, |ζ1−θ|) <

1

10
+ε11 .

En échangeant les rôles de θ, φ, ψ et en appliquant la même méthode aux nouveaux

domaines ainsi définis, il démontre aussi qu’il existe des points du réseau (ξ2, η2, ζ2) et
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(ξ3, η3, ζ3) tels que

max(|ξ2 − φ|, |η2 − ψ|, |ζ2 − θ|) < 1

10
+ ε11 ou max(|ξ2 − φ|, |η2 − θ|, |ζ2 − ψ|) < 1

10
+ ε11,

max(|ξ3 − ψ|, |η3 − θ|, |ζ3 − φ|) < 1

10
+ ε11 ou max(|ξ3 − θ|, |η3 − ψ|, |ζ3 − φ|) < 1

10
+ ε11.

Davenport justifie ensuite que ces inégalités ne sont pas toutes compatibles entre elles.

En fait, seuls deux cas peuvent se présenter. Soit c’est la première inégalité pour chaque

point qui est vérifiée, soit c’est la seconde pour les trois points.

Il considère maintenant le point (ξ4, η4, ζ4) défini par

ξ4 = ξ1 + ξ2 + ξ3 , η4 = η1 + η2 + η3 , ζ4 = ζ1 + ζ2 + ζ3 .

Dans les deux cas décrits précédemment, comme θ + φ+ ψ = −1, il vient

max(|ξ4 + 1|, |η4 + 1|, |ζ4 + 1|) <
3

10
+ 3 ε11 ,

ce qui permet de montrer que

|(ξ4 + 1)(η4 + 1)(ζ4 + 1)| < 1 − ε .

Cette dernière inégalité implique ξ4 = η4 = ζ4 = −1 sinon elle contredirait la condition

(b). Ceci permet à Davenport de vérifier les hypothèses de la deuxième partie du lemme

10 qui donne alors

max







|ξ1 − θ|, |η1 − φ|, |ζ1 − ψ|,

|ξ2 − φ|, |η2 − ψ|, |ζ2 − θ|,

|ξ3 − ψ|, |η3 − θ|, |ζ3 − φ|







< ε1 .

La même inégalité en échangeant θ et ψ est aussi vérifiée. Après ces résultats prélimi-

naires, Davenport passe à la preuve du théorème 1, il pose d’abord

∆ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ1 η1 ζ1

ξ2 η2 ζ2

ξ3 η3 ζ3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, D =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ φ ψ

φ ψ θ

ψ θ φ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

D’une part, les relations entre θ, φ et ψ permettent de montrer que D = 7 et d’autre

part les inégalités précédentes impliquent

|∆ −D| = |∆ − 7| < ε14 .
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Comme (ξ1, η1, ζ1), (ξ2, η2, ζ2) et (ξ3, η3, ζ3) sont trois points du réseau, ∆ est un multiple

du déterminant du réseau
1

|L∗
1L

∗
2L

∗
3|

. Mais |L∗
1L

∗
2L

∗
3| <

M

1 − ε
, or par un théorème de

Minkowski M ≤ 2

9
, d’où

2

|L∗
1 L

∗
2 L

∗
3|

> 9 (1 − ε) > 7 + ε14 , pour ε assez petit.

Or 7 − ε14 < ∆ < 7 + ε14, Davenport en déduit que

∆ =
1

|L∗
1 L

∗
2 L

∗
3|
.

Finalement,

∣
∣
∣
∣

1

|L∗
1 L

∗
2 L

∗
3|

− 7

∣
∣
∣
∣
< ε14 et

1 − ε

M
<

1

|L∗
1 L

∗
2 L

∗
3|

<
1

M
,

donc M = 1
7
. Dans la fin de la démonstration, Davenport étudie en particulier le cas

où M = 1
7

.

Cet article commence donc par l’énoncé du théorème à démontrer. La preuve se

développe ensuite à travers une série de résultats intermédiaires dont la fonction n’est

pas explicitée au moment où ils sont démontrés. Chacune de ces preuves intermédiaires

renvoie à ce qui a été montré précédemment. À aucun moment dans la preuve Daven-

port ne présente une heuristique pour sa méthode. Comme le remarque Rogers dans

la citation donnée page 269, aucune interprétation géométrique n’est proposée dans

l’article, ni aucune allusion à la possibilité d’interpréter géométriquement certains pas-

sages de la démonstration. Le seul endroit où nous rencontrons un peu de vocabulaire

géométrique est celui où Davenport doit évaluer le volume de D1 mais il s’agit d’un

point purement technique de la preuve qui fait davantage intervenir le calcul intégral

que la géométrie.

Nous passons plus rapidement sur le cas où deux des formes dans le produit sont

à coefficients complexes conjugués, cas dont la première démonstration est publiée en

1939 178. Davenport souligne d’ailleurs lui-même que la méthode employée est proche

de celle du cas réel :

« The method used in this paper is similar to that of (II)179 only in so far

as the first steps in the argument are concerned. The subsequent analysis,

178Davenport 1939b.
179C’est-à-dire la méthode utilisée dans le cas réel.
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though elementary, is more complicated and of a different character180. »

Une autre raison pour laquelle nous ne détaillons pas cette preuve est que nous ne dis-

posons pas de sources non publiées contenant une preuve ou des commentaires précis

à comparer avec l’article publié comme c’est le cas avec le cas des formes réelles.

Nous pouvons cependant observer la différence avec l’exposition faite pour les formes

réelles relevée par Rogers (page 269). La présentation est en effet davantage géomé-

trique, en particulier contrairement à ce qu’il fait dans le cas réel, Davenport illustre

sa preuve par un dessin (voir la figure 4.6).

Fig. 4.6 – Illustration pour la preuve du cas complexe.

Comme dans l’article précédent, la démonstration du cas complexe comporte plusieurs

lemmes ou théorèmes intermédiaires et le vocabulaire employé dans certains d’entre eux

témoigne aussi de la place un peu plus grande accordée à la géométrie, par exemple181 :

« Theorem 3. If (x0, y0) is any point of Q, and 0 < λ < 1
2

√
23, then the

180Davenport 1939b p.99.
181Davenport 1939b p.106.
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straight line

xy0 − yx0 = λ

meets the boundary of E in exactly two points, say (x1, y1), (x2, y2), and

these satisfy the inequality

|y1 − y2| > y0 . »

b) Commentaires et preuves non publiés

Les sources utilisées ici sont des notes non publiées de Davenport pour des cours

ou des exposés qui ne sont pas toujours datées mais qui sont très certainement pour

la plupart des années 1940. Nous utilisons aussi la conférence faite à Bruxelles en 1946

déjà mentionnée.

Dans ces notes, Davenport commence par revenir sur le cas du produit de deux

formes linéaires homogènes. La preuve qu’il en donne est celle qui, d’après lui, l’a

conduit à la démonstration pour le produit de trois formes. Notons L1 = ax + by,

L2 = cx + dy deux formes linéaires à coefficients réels et de déterminant ad − bc = 1,

il existe alors un couple d’entiers (x, y), différent de (0, 0), pour lequel

|L1 L2| ≤ 1√
5
.

M désigne toujours la borne inférieure de |L1L2| pour des valeurs entières non nulles

des variables.

« First step, very simple and natural, helps with many problems. One might

call it the operation of standardising the lattice182 ».

Ce qui est considéré par Davenport comme la première étape a été rencontrée dans les

démonstrations publiées (voir par exemple page 275). Pour tout δ strictement positif,

il existe un couple d’entiers (x∗, y∗), différent de (0, 0), tel que

M ≤ |L∗
1 L

∗
2| < M + δ .

Davenport écrit |L∗
1 L

∗
2| = M

1−ε avec 0 ≤ ε < δ. Le réseau « standardisé » est obtenu en

posant ξ = L1

L∗

1
et η = L2

L∗

2
avec les variables x, y qui parcourent les entiers. Ce réseau,

dont le déterminant est 1−ε
M

, possède les propriétés suivantes :

(a) (1, 1) est un point du réseau,

(b) pour tous les points du réseau différents de l’origine |ξ η| ≥ 1 − ε.

182Davenport 1946a.
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« This suggests the investigation of the possible places in which lattice

points can lie, by drawing the hyperbolae |(ξ −m)(η −m)| < 1 − ε 183. »

De la même façon dans la conférence de Bruxelles, Davenport décrit ainsi la suite de

la démonstration :

« Nous nous demandons dans quelles parties du plan peuvent se trouver

des points du réseau. Il y a des points du réseau en les points (0, 0), (1, 1),

(−1,−1), . . ., et tout autre point du réseau doit satisfaire à

|xy| ≥ 1 , |(x− 1)(y − 1)| ≥ 1 , |(x+ 1)(y + 1)| ≥ 1 , . . .

Si l’on trace les aires hyperboliques, d’où les points du réseau sont exclus,

on trouve qu’elles couvrent toute la bande donnée par |x− y| <
√

5. Après

s’en être rendu compte, ce fait se démontre facilement par l’arithmétique.

Ainsi le rectangle défini par

|x+ y| < 2 , |x− y| <
√

5

ne contient aucun point du réseau sauf 0 184. »

L’aire du rectangle défini par |ξ + η| < 2 et |ξ − η| <
√

5 − ε est 4(
√

5 − ε), comme il

ne contient pas de point du réseau le théorème de Minkowski implique

4 (
√

5 − ε) ≤ 4
1 − ε

M
,

ce qui permet de conclure.

Nous voudrions souligner plusieurs points sur lesquels nous reviendrons. Contraire-

ment aux preuves publiées l’exposé précédent comporte du vocabulaire géométrique.

Ce vocabulaire, qui est employé de manière assez qualitative (« dans quelles parties du

plan ». . .), intervient plutôt dans la phase de la recherche de la démonstration. C’est

après avoir observé une propriété sur le dessin que la preuve arithmétique ou analy-

tique peut être développée. Ces deux constations sur la démarche de Davenport vont

apparaître encore plus clairement avec sa présentation du cas du produit de trois formes.

183Notes de cours Davenport (WL), C 179.
184Davenport 1946b. Les notations utilisées dans cette conférence ne sont pas les mêmes que celles

des notes de cours reprises auparavant. ξ, η sont remplacées ici par x, y. De plus, dans cet exposé
Davenport suppose que M est atteinte et ε n’apparaît donc pas dans les inégalités. Le raisonnement
est cependant identique en remplaçant le 1 des inégalités par 1 − ε et

√
5 par

√
5 − ε.
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Comme dans le cas de deux formes, la première étape consiste « standardiser le

réseau ». Davenport pose donc

|L∗
1 L

∗
2 L

∗
3| =

M

1 − ε
, ξ =

L1

L∗
1

, η =
L2

L∗
2

, ζ =
L3

L∗
3

.

Rappelons que ce réseau est tel que (1, 1, 1) est un point du réseau et tous les points

du réseau différents de l’origine sont tels que

|ξ η ζ | ≥ 1 − ε .

Davenport décrit la méthode employée pour élaborer sa démonstration de la manière

suivante185 :

« In examining the portions of space in which lattice points can lie, it

is sufficient to consider points satisfying 0 ≤ ξ + η + ζ ≤ 3/2. When I

first attacked the problem, I drew diagrams on triangulated graph paper

to represent the section of space by the planes ξ + η + ζ = 0, 1
2
, 1, 3

2

. These diagrams indicated that lattice points could lie in small regions

surrounding the 12 points (θ, φ, ψ) and all permutations, (−θ,−φ,−ψ) and

all permutations, or in certain other regions considerably further away from

the line ξ = η = ζ . It follows that there are no lattice points other than O

in the hexagonal prism

|ξ + η + ζ | < 3 , max(|ξ − η|, |η − ζ |, |ζ − ξ|) < θ − ψ − ε1 . »

L’évaluation du volume de ce prisme, puis l’application du théorème de Minkowski

permet à Davenport de montrer que

M <
1

6, 96 . . .
.

Davenport présente de façon générale cette même méthode dans la conférence de

Bruxelles186 :

« La première idée qui se présente, par analogie avec le cas précédent187,

est de trouver un domaine convexe qui ne peut contenir un point du réseau

autre que O, à volume aussi grand que possible, et d’y appliquer le théorème

fondamental de Minkowski. Ceci peut se faire, mais je me suis convaincu

qu’il n’existe pas de tel domaine qui permette de démontrer que 1
M

≥ 7. On

peut démontrer de cette façon que 1
M
> 6, 96 . . . , mais cela ne suffit pas. »

185Notes de cours Davenport (WL), C 179.
186Davenport 1946b p.9.
187C’est-à-dire le cas du produit de deux formes linéaires.
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Il explique ensuite comment il a surmonté cette difficulté188 :

« Au moyen d’un long raisonnement, à la fois compliqué et délicat, qui em-

ploie plusieurs domaines convexes, j’ai réussi à atteindre le résultat désiré. »

Le raisonnement auquel Davenport fait allusion ici est celui de son article Davenport

1938b dans lequel il applique le théorème de Minkowski à plusieurs domaines convexes

afin de déterminer des points du réseau qui vérifient certaines inégalités. Ces inégalités

interprétées géométriquement correspondent à la situation de ces points dans l’espace.

C’est dans ces termes qu’il décrit la modification de sa méthode pour améliorer l’esti-

mation M < 1
6,96...

et obtenir M ≤ 1
7

:

« Here the method seemed likely to come to a full stop. But further ins-

pection of the diagrams showed that a lattice point near (θ, φ, ψ) must also

satisfy ξ+η+ζ ≥ −1 (neglecting ε). By considering the expanded hexagonal

prisms, typified by

|ξ+η+ ζ | < 3 , |ξ−η| < θ−ψ , |η− ζ | < θ−ψ , |ζ− ξ| < θ−ψ+
1

30
,

I was able to establish the existence of lattice points near each of (θ, φ, ψ),

(φ, ψ, θ), (ψ, θ, φ) and lying within a distance 1
10

in each coordinate from

these. The sum of these three lattice points lies near (−1,−1,−1) and

therefore is (−1,−1,−1). The three points are therefore actually at (θ, φ, ψ),

(φ, ψ, θ), (ψ, θ, φ) if we neglect ε, and in this way the determinant of the

lattice is ≥ 7, ie M ≤ 1
7
.

The formal proof of the various points inferred from the diagrams, and the

formal presentation of the arguments, is somewhat long and tedious189. »

Chaque étape de la démonstration que Davenport décrit dans cette citation a été

rencontrée dans la preuve publiée. En particulier, le prisme dont il est question est le

domaine convexe D1 dont le volume est évalué dans l’article (voir page 274). Les points

du réseau situés près des points (θ, φ, ψ), (φ, ψ, θ), (ψ, θ, φ), à une distance au plus 1
10

sont les points (ξ1, η1, ζ1), (ξ2, η2, ζ2) et (ξ3, η3, ζ3). Ces trois points, qui sont obtenus

par l’application du lemme 10, sont caractérisés par des inégalités du type (voir page

275)

max(|ξ1 − θ|, |η1 − φ|, |ζ1 − ψ|) < 1

10
+ ε11 .

La somme de ces trois points est (ξ4, η4, ζ4), le fait que ce point est proche de (−1,−1,−1)

est traduit par les inégalités (voir page 276)

max(|ξ4 + 1|, |η4 + 1|, |ζ4 + 1|) < 3

10
+ 3 ε11 et |(ξ4 + 1)(η4 + 1)(ζ4 + 1)| < 1 − ε ,

188Davenport 1946b p.9.
189Notes de cours Davenport (WL), C 179.

282



4.2 CHAPITRE 4

ce qui permet effectivement à Davenport de montrer que (ξ4, η4, ζ4) = (−1,−1,−1).

Ainsi, que cela soit dans les démonstrations publiées ou les commentaires faits sur

ces preuves dans d’autres circonstances nous pouvons observer les mêmes étapes dans

le raisonnement. Cependant ces étapes ne sont pas décrites dans les mêmes termes.

Comme nous avons commencé à le dire les commentaires non publiés sont exprimés

avec un vocabulaire géométrique : « on trace des aires hyperboliques », « the section

of space by the planes », « no lattice points other than O in the hexagonal prism »,

« existence of lattice points near each of. . . », etc. . . Il s’agit en particulier de localiser

des points du réseau le plus précisément possible dans des domaines du plan ou de

l’espace. L’équivalent analytique ou arithmétique de cette question est étudié dans les

articles publiés à travers les inégalités vérifiées par certains points du réseau.

Une première explication pour ces choix de présentation est à rechercher dans les

objectifs et les fonctions différentes qu’elles doivent remplir. Cela rappelle d’ailleurs ce

qui avait été dit à propos de Minkowski quand il exposait son travail à Hermite ou à un

public moins spécialisé en théorie des nombres. D’un côté nous trouvons des preuves

publiées dans des journaux spécialisés. Davenport s’adresse alors à des mathématiciens

confirmés en utilisant un langage arithmétique, son objectif est bien entendu de donner

une démonstration achevée et rigoureuse de ses résultats. D’un autre côté, nous avons

relevé l’utilisation de la géométrie d’abord dans une conférence. Nous ne savons pas

à qui Davenport s’adressait dans cette conférence mais les impératifs de l’exposé oral

(comme par exemple la durée) peuvent peut être expliquer la différence de présenta-

tion. Un exposé de tous les arguments, avec de nombreux lemmes très techniques tel

que nous l’avons rencontré dans ses publications et qu’il juge lui même comme pouvant

être longue et ennuyeuse, n’est pas adaptée à cette situation de communication orale. Il

préfère alors l’emploi de la géométrie. Mais ce que Davenport utilise alors c’est davan-

tage un vocabulaire de nature géométrique avec lequel il décrit de manière qualitative

les idées directrices de ses démonstrations.

Les extraits que nous avons cités sont aussi issus de notes de cours. À nouveau il s’agit

donc de textes qui doivent occuper une autre fonction que des articles de recherche. Le

souci pédagogique y est plus important et la priorité est donnée à l’expression géomé-

trique des problèmes. De plus, dans ses notes de cours, Davenport fait explicitement

référence à des dessins qui représentent les questions étudiées. Malheureusement ces

illustrations n’ont pas été reproduites, mais elles étaient très certainement utilisées lors

des cours. Ainsi la traduction géométrique des preuves donne à voir à travers le dessin

les problèmes posés, elle permet aussi d’en faire une description. Nous retrouvons donc

la dimension visuelle de la géométrie qui est mis en oeuvre avec des objectifs pédago-

giques et de communication.
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Avec cette première explication qui consiste à regarder les circonstances différentes pour

lesquelles les discours sont produits, nous pouvons aussi remarquer que les vocabulaires

arithmétique et géométrique sont employés à des moments différents du processus de

recherche.

La géométrie intervient en amont, elle permet de trouver une méthode pour démontrer

le résultat qui est étudié. Il s’agit d’une fonction des dessins que Davenport met parti-

culièrement en avant : « When I first attacked the problem, I drew diagrams [...] These

diagrams indicated that lattice points could lie in small regions », « Here the method

seemed likely to come to a full stop. But further inspection of the diagrams showed

that. . . », « The formal proof of the various points inferred from the diagrams. . . ».

Ces considérations géométriques aident donc à déterminer les étapes de la démonstra-

tion et fournissent une heuristique, puis dans un deuxième temps l’arithmétique doit

venir valider ce qui a été constaté sur les dessins : « Après s’en être rendu compte, se

fait se démontre facilement par l’arithmétique ». Deux fonctions distinctes semblent

alors se dessiner pour la géométrie et l’arithmétique. La géométrie interviendrait dans

la phase de recherche et découverte de la preuve alors que l’arithmétique doit ensuite

sanctionner par un raisonnement rigoureux ce qui a été observé géométriquement. Elle

apparaît ainsi davantage dans la justification du travail de recherche.

Les mêmes observations peuvent être faites à propos d’une preuve plus simple de l’in-

égalité M ≤ 1
7

que Davenport publie en 1941.

c) Une simplification de la démonstration pour le produit de trois formes

linéaires à coefficients réels

Dans un article publié en 1941 190, Davenport propose une preuve qu’il juge plus

simple de l’inégalité M ≤ 1
7

et à nouveau dans ses notes de cours il souligne l’origine

géométrique de cette preuve :

« I have since obtained a much simpler proof, which is tantamount to using

the circular cylinder whose axis is ξ = η = ζ and whose surface passes

through the 12 points mentioned above191. »

Cette nouvelle démonstration repose sur un lemme que Davenport énonce et démontre

au début de son article192 :

« Suppose that 0 ≤ ε < 1
10

. Let α1, α2, α3 be real numbers such that

(2) |(n− α1)(n− α2)(n− α3)| ≥ 1 − ε

190Davenport 1941a.
191Notes de cours Davenport (WL), C 179.
192Davenport 1941a p.98.
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for all integers n. Then

(3) S = (α1 − α2)
2 + (α2 − α3)

2 + (α3 − α1)
2 ≥ 14 − 10 ε . »

Comme l’énoncé la preuve de ce lemme est complètement arithmétique (voir la figure

4.7) et aucun commentaire ne fait le lien entre le problème à résoudre et les quantités

introduites dans le lemme (en particulier S).

Là encore ce type de commentaires est à rechercher dans des textes non publiés de

Davenport. En fait l’idée sous-jacente à ce lemme est évoquée dans un extrait que nous

avons déjà cité sans qu’elle soit dans un premier temps exploitée par Davenport. Il

remarquait alors que les points du réseau « standardisé » ne peuvent être que près des

points dont les coordonnées sont formées à partir des solutions de l’équations t3 + t2 −
2t − 1 = 0 (ce qui a été approfondi dans la preuve précédente), ou bien « in certain

other regions considerably further away from the line ξ = η = ζ 193 ». Cette remarque

permet de faire le lien entre le théorème que Davenport souhaite démontré et le lemme

précédent. En effet, si (α1, α2, α3) est un point du réseau standardisé qui n’est pas de

la forme (k, k, k), il doit vérifier la condition (2) du lemme. Ce lemme porte bien sur

les points du réseau standardisé et Davenport donne précisément le sens de la quantité

S dans sa conférence à Bruxelles194 :

« nous pouvons nous attendre à ce qu’il n’y aura pas de points du réseau,

sauf ceux de la forme (k, k, k) dans un cylindre infini autour de la ligne

x = y = z. Ceci suggère que nous pourrions peut-être démontrer quelque

chose concernant le minimum de

(x− y)2 + (y − z)2 + (z − x)2 ,

expression qui est une mesure de la distance d’un point à la dite ligne195

pour tous les points du réseau qui ne sont pas de la forme (k, k, k). »

Le lemme permet donc en fait d’estimer quantitativement l’éloignement des points du

réseau à la droite x = y = z constaté sur les dessins.

Nous gardons ici les mêmes notations qu’auparavant (voir page 281). La première étape

de la démonstration consiste à se ramener à

L1 = L∗
1 (u+ α1v + β1w) , L2 = L∗

2 (u+ α2v + β2w) , L3 = L∗
3 (u+ α3v + β3w) ,

ce qui est fait en choisissant une base du réseau dont le premier vecteur est (L∗
1, L

∗
2, L

∗
3).

À cause de la définition de L∗
1, L

∗
2, L

∗
3, d’une part pour tout les triplets d’entiers (u, v, w)

193Les points de la forme (k, k, k), avec k entier, mis à part.
194Davenport 1946b p.9.
195Cette distance est exactement 1

3 [(x − y)2 + (y − z)2 + (z − x)2].

285



CHAPITRE 4 4.2

Fig. 4.7 – Preuve du lemme.

286



4.2 CHAPITRE 4

différent de (0, 0, 0)

|(u+ α1v + β1w)(u+ α2v + β2w)(u+ α3v + β3w)| ≥ 1 − ε (4.11)

et d’autre part le déterminant des trois formes u+α1v+β1w, u+α2v+β2w, u+α3v+β3w

est égal à
1 − ε

M
. Davenport introduit ensuite la forme quadratique

(α1v+β1w−α2v−β2w)2+(α1v+β1w−α3v−β3w)2+(α2v+β2w−α3v−β3w)2 = Av2+Bvw+Cw2 .

Elle peut aussi s’écrire X2 + (X + Y )2 + Y 2 où X = (α1 − α2)v + (β1 − β2)w et

Y = (α2−α3)v+(β2−β3)w. Le déterminant des formes X, Y est 1−ε
M

et le discriminant

de X2 + (X + Y )2 + Y 2 est 12, Davenport en déduit le discriminant de la forme

quadratique précédente

4AC − B2 = 12

(
1 − ε

M

)2

.

Il utilise ensuite la réduction des formes quadratiques : par une substitution unimodu-

laire, il se ramène à

|B| ≤ A ≤ C ,

avec l’expression du discriminant cette inégalité permet de montrer que

3A2 ≤ 12

(
1 − ε

M

)2

,

c’est-à-dire

A ≤ 2
1 − ε

M
.

En prenant v = −1 et w = 0 dans l’inégalité (4.11), nous voyons que α1, α2, α3 vérifient

l’hypothèse du lemme, ainsi

A = S ≥ 14 − 10 ε , ce qui implique 2
1 − ε

M
≥ 14 − 10 ε ,

finalement M ≤ 1
7

. Cette preuve concerne les formes linéaires réelles et Davenport

remarque

« The above simple proof (real case) seems to have no analogue in the

complexe case196. »

De plus, il considère que

« This proof makes no use of the geometry of numbers197 ».

196Notes de cours Davenport (WL), C 179.
197Notes de cours Davenport (WL), C 179.
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Ces deux citations suggèrent que dans ce cadre la géométrie des nombres est plus gé-

nérale car elle permet de démontrer avec les mêmes idées les cas réel et complexe, nous

y reviendrons. Mais que signifie ici « géométrie des nombres » pour Davenport ?

Dans la citation précédente, quand il dit que sa preuve n’utilise pas la géométrie des

nombres ce qu’il met en avant c’est que le théorème de Minkowski n’intervient pas.

Quand il explique sa démonstration à la conférence de Bruxelles, il fait la même re-

marque mais de manière un peu plus précise

« On verra que ce lemme en soi n’a rien à faire avec la géométrie des

nombres198. »

Seul le lemme ne serait pas de la géométrie des nombres et donc la seconde partie de la

preuve en ferait partie. Cette deuxième partie utilise la réduction des formes quadra-

tiques binaires, question qui est liée au minimum de ces formes pour des valeurs entières

des variables. Or pour Davenport, ce type de problème appartient à la géométrie des

nombres, cela est confirmé par d’autres définitions qu’il donne de la discipline199

« In the geometry of numbers, we treat a general class of problems in number

theory by methods which are suggested by a geometrical interpretation. The

problems in question relate to “Diophantine inequalities”, ie inequalities

which are to be satisfied by integral values of the variables. »

Ainsi l’utilisation de l’expression géométrie des nombres est locale, elle désigne par-

fois un des théorèmes de Minkowski sur les convexes ou bien la problématique plus

générale de la résolution d’inégalités diophantiennes. Dans ce cadre, les questions sont

interprétées géométriquement et la géométrie joue le rôle d’un guide pour l’élaboration

de méthodes permettant de résoudre le problème.

4.2.1.4 Une preuve de Mordell pour le produit de deux formes linéaires

homogènes

Mordell ne se contente pas de suggérer la question du produit des formes linéaires

homogènes à Davenport, il contribue aussi à son étude. En 1938, il publie une nouvelle

preuve pour le produit de deux formes linéaires homogènes200. Il redémontre que pour

deux formes linéaires homogènes réelles L et M , de déterminant 1, il existe un couple

d’entiers (x, y), différent de (0, 0), tel que

|LM | ≤ 1√
5
.

198Davenport 1946b p.10.
199Résumé d’un cours sur la géométrie des nombres, Berkeley, 24 janvier 1948, Davenport (WL),

C 165.
200Mordell 1938.
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Nous avons dit que de nombreuses démonstrations de ce résultat ont déjà été données

par exemple par Korkine et Zolotareff, Hurwitz201 et plus récemment Davenport202.

Mordell justifie donc l’intérêt d’en proposer une nouvelle preuve

« Though many proofs have been given, it may be worth while giving ano-

ther which seems to involve a minimum of calculation203. »

Dans cette preuve, Mordell commence par définir les formes U , V par

λ (θ − φ)
1
2L = U + θV

λ−1 (θ − φ)
1
2M = U + φV ,

où λ est un réel non nul, 2θ = 3 +
√

5 et 2φ = 3 −
√

5. Mordell en déduit que

√
5LM = U2 + 3UV + V 2

= (w2 + 3w + 1) max(U2, V 2) .

D’après le théorème de Minkowski, il existe des valeurs entières et non nulles des

variables pour lesquelles

|U | ≤ 1 , |V | ≤ 1 .

Mordell sépare ensuite le cas où le produit UV est négatif et le cas où U > 0,

V > 0. Par exemple, dans le premier cas, Mordell remarque que si −1 ≤ w ≤ 0

alors |w2 + 3w + 1| ≤ 1, ce qui implique le résultat.

Bien qu’il ne fasse pas de commentaire sur ce point, nous pouvons penser que cet ar-

ticle fait partie des recherches de nouvelles approches pour obtenir des résultats sur le

produit de plus de deux formes. Ce travail reste cependant isolé ce qui n’est pas le cas

avec la méthode que Mordell propose par la suite. Cette méthode consiste à étudier le

minimum des formes cubiques binaires.

4.2.2 L’étude du produit de trois formes linéaires homogènes

par les formes cubiques binaires

4.2.2.1 Lien entre les deux problèmes

« The present writer well recalls the time, early in 1940, when Mordell told

him that he was working on a most interesting problem in the geometry

of numbers, which would throw new light on recent results concerning the

201Hurwitz 1891. La preuve de Hurwitz utilise les fractions continues.
202Davenport 1938a.
203Mordell 1938 p.186.
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product of three homogeneous linear forms204. »

Le problème intéressant auquel Davenport fait référence est celui du minimum des

formes cubiques binaires pour des valeurs entières et non nulles de ses variables. Il

indique que Mordell commence à travailler sur cette question en liaison avec le produit

de trois formes linéaires homogènes. Explicitons tout de suite le rapport entre ces deux

problèmes. Mordell écrit une forme cubique binaire

f(x, y) = ax3 + bx2y + cxy2 + dy3 ,

où a, b, c, d sont des nombres réels. La quantité D = 27a2d2−18abcd−b2c2+4ac3+4db3

est appelée déterminant de la forme f . La forme cubique peut toujours se factoriser en

un produit de trois facteurs linéaires

f(x, y) =

3∏

i=1

(αix+ βiy) .

Quand le déterminant D est strictement négatif, les trois facteurs du produit précé-

dent sont réels, quand il est strictement positif deux de ces facteurs sont à coefficients

complexes et conjugués. Enfin, si D est nul, au moins deux facteurs du produit sont

identiques205. L’idée de Mordell pour étudier le minimum du produit de trois formes

linéaires homogènes de trois variables est donc d’abord de se ramener à des formes de

deux variables, puis d’utiliser une estimation du minimum de ces formes. C’est bien de

cette manière que Davenport décrit la démarche de Mordell dans des notes de cours :

« Essence of Mordell’s result is to establish first an inequality for the mi-

nimum of three linear forms in two variables. Say we put w = 0 in X, Y ,

Z

XY Z = (α11u+ α12v)(α21u+ α22v)(α31u+ α32v) = f(u, v)

is a binary cubic forms206 ».

Ainsi déterminer une borne pour le minimum des formes cubiques binaires doit donner

une borne pour le produit de trois formes de deux variables et par suite permettre de

retrouver une estimation pour le produit de trois formes de trois variables.

4.2.2.2 Enoncés des principaux résultats

Mordell commence à travailler sur le minimum des formes cubiques binaires en

1940. Cependant l’article qui correspond à ses premières recherches sur cette question

204Davenport 1964 p.9.
205Pour quelques détails supplémentaires voir par exemple Cassels 1959 p.51.
206Davenport (WL), C 180.
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n’est publié qu’en 1945 dans les Proceedings of the London Mathematical Society207.

Une courte note dans laquelle les théorèmes sont énoncés sans démonstration est quand

même publiée dès 1941 dans le Journal of the London mathematical society208.

Nous notons toujours D le déterminant de la forme cubique binaire à coefficients réels

f(x, y) = ax3 + bx2y + cxy2 + dy3 .

Pour D différent de 0, Mordell aborde le problème du point de vue de la détermination

d’une constante l telle qu’il existe des entiers x, y qui ne sont pas nuls tous les deux et

qui vérifient

|f(x, y)| ≤
( |D|

l

) 1
4

.

Mordell indique que les formes cubiques binaires avaient déjà été étudiées au XIXe

siècle par Ferdinand Gotthold Max Eisenstein, Peter Friedrich Arndt et Charles Her-

mite209. Il décrit leurs contributions à cette théorie en disant par exemple que Arndt

donna une valeur de l pour D strictement négatif en 1857 210 qui fut retrouvée en 1859

par Hermite. Ce dernier détermina aussi une valeur de l qui convient dans le cas où D

est strictement positif. Cependant le cadre théorique dans lequel ces mathématiciens

du XIXe siècle travaillent sur ce problème n’est pas la question de la détermination du

minimum mais celle plus générale de la réduction des formes cubiques binaires. Leurs

résultats ne sont donc pas exprimés comme le fait Mordell211. Dans ce contexte, Arndt

est celui qui a proposé une réduction pour les formes de déterminant strictement né-

gatif alors qu’Hermite a résolu la question de la réduction pour celles de déterminant

strictement positif.

Pour les formes dont le déterminant D est strictement négatif, Mordell démontre le

théorème 1 : il existe des valeurs entières des variables x et y, non toutes deux nulles,

telles que

|f(x, y)| ≤ 4

√

|D|
49

.

Le cas d’égalité se présente si et seulement si D = −49 e4 et e−1f(x, y) est équivalente

à x3 + x2y − 2xy2 − y3, e étant une constante quelconque212.

Dans le théorème 2 où le déterminant est strictement positif, l’inégalité précédente

207Mordell 1945a.
208Mordell 1941b.
209Mordell 1945a p.198.
210Mordell indique 1958.
211Pour les travaux d’Eisenstein, Arndt et Hermite sur les formes cubiques binaires voir par exemple

Eisenstein 1844; Arndt 1851b,a, 1852, 1857, 1858; Hermite 1851, 1859.
212Deux formes cubiques binaires sont équivalentes si elles sont liées par une substitution linéaire à

coefficients entiers et de déterminant ±1.
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devient

|f(x, y)| ≤ 4

√

|D|
23

avec cette fois égalité si et seulement si D = 23 e4 et e−1f(x, y) est équivalente à

x3 − xy2 − y3.

Mordell traite aussi le cas où D est nul (jugé presque trivial) qui utilise le théorème de

Minkowski sur la majoration simultanée de deux formes linéaires. Dans cette situation

la cubique f prend des valeurs arbitrairement petites pour des valeurs entières et non

nulles de ses variables213 :

« Theorem 3. If D = 0 then, for arbitrary ε > 0, integer values of x, y,

not both zero, exist such that

|f(x, y)| < ε . »

Après ces théorèmes principaux, Mordell donne différents énoncés qui leur sont équi-

valents, en particulier les théorèmes 3 et 4 qui nous intéressent davantage ici car c’est

sous cette forme que les résultats sont démontrés.

Considérons le réseau L d’origine O qui est l’ensemble des couples (x, y) tels que

x = αξ + βη et y = γξ + δη ,

où α, β, γ, δ sont des nombres réels qui vérifient αδ − βγ = 1 et ξ, η parcourent les

entiers.

Le théorème 3, équivalent au théorème 1, donne alors l’existence d’un point de L,

différent de l’origine O, tel que

|g(x, y)| = |x3 + x2y − 2xy2 − y3| ≤ 1 ,

avec égalité si et seulement si L est équivalent soit au réseau

x = ξ , y = η ,

soit à un des trois réseaux défini par

(θ − φ) x = θφ2ξ + ψη , (θ − φ) y = −θ2ξ − θφ2η ,

où θ, φ, ψ sont les solutions de l’équation t3 − t2 − 2t+ 1 = 0.

Le théorème 4 est le même type d’énoncé mais cette fois équivalent au théorème 2 : il

213Mordell 1945a p.200.
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existe un point (x, y) du réseau L, différent de l’origine O, tel que

|h(x, y)| = |x3 − xy2 − y3| ≤ 1 ,

avec égalité si et seulement si L est équivalent au réseau

x = ξ , y = η ,

ou bien au réseau défini par

(3θ2 − 1) x = −ξ − (θ + 3) η , (3θ2 − 1) y = −3θξ + η ,

où θ est l’unique solution réelle de l’équation t3 − t− 1 = 0.

L’équivalence entre les théorèmes 1 et 3, et les théorèmes 2 et 4 est une conséquence

d’un résultat sur les cubiques binaires. En effet, deux formes cubiques binaires quel-

conques de déterminant strictement négatif peuvent être déduites l’une de l’autre par

une substitution linéaire à coefficients réels. Ainsi pour n’importe quelle cubique binaire

de déterminant strictement négatif il est possible de se ramener à

g(x, y) = x3 + x2y − 2xy2 − y3

qui est de déterminant −49. De la même manière, une cubique binaire de déterminant

strictement positif peut être ramenée à la cubique

h(x, y) = x3 − xy2 − y3

de déterminant 23.

D’autres résultats équivalents sont énoncés par Mordell, parmi eux le théorème 5 est

celui qui permet de faire le rapprochement avec le minimum du produit de formes

linéaires214 :

« Theorem 5. Let p, q, r, p′, q′, r′ be six numbers, which in case (I)

are all real, while in case (II) p, p′ are real and q, r are conjugate complex

numbers, as are also q′, r′. Suppose also that

∏

(qr′ − q′r) 6= 0 .

Let K =
1

7
, 1/

√

(23) in the respective cases. Then integer values of x, y,

214Mordell 1945a p.201.
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not both zero, exist such that

|(px+ p′y) (qx+ q′y) (rx+ r′y)| ≤
∣
∣
∣K

∏

(q′r − qr′)
∣
∣
∣

1
2

. »

Nous pouvons déjà noter une différence avec les travaux précédents de Davenport. En

effet, avec ces énoncés nous voyons que la géométrie ne disparaît pas complètement

des publications de Mordell et c’est même sous la forme géométrique que les théorèmes

principaux sont démontrés.

4.2.2.3 Conséquence sur le produit de trois formes linéaires homogènes

Comme nous l’avons déjà remarqué, le travail de Mordell sur le minimum des cu-

biques binaires a été initialement suscité par son intérêt pour le problème du produit

de trois formes linéaires homogènes. Son théorème sur les cubiques lui permet effecti-

vement de donner une nouvelle démonstration des résultats qu’a obtenus Davenport

sur ce sujet. Cette preuve fait l’objet d’un article publié en 1942 mais dont la rédaction

date de 1940 à la suite de son premier article sur le minimum des cubiques215. Cela

confirme l’imbrication de ces deux problèmes dans les recherches de Mordell au début

des années 1940.

Mordell note les trois formes linéaires homogènes

Lr = arx1 + brx2 + crx3 (r = 1, 2, 3) .

Ces formes peuvent avoir des coefficients réels (cas (I)) ou deux d’entre elles peuvent

avoir des coefficients complexes et conjugués (cas (II)). Leur déterminant d est alors

1 ou i selon le cas étudié. Mordell suppose aussi qu’aucune des formes L1, L2, L3 ne

s’annule pour des valeurs entières de ses variables excepté pour x1 = x2 = x3 = 0. Il

rappelle alors le théorème de Davenport : pour tout ε strictement positif, il existe des

entiers x1, x2, x3, non tous nuls, tels que

|L1 L2 L3| <
1

K
+ ε ,

où K = 7 dans le cas (I) et K =
√

23 dans le cas (II). Mordell caractérise ensuite les

formes réalisant l’égalité. À nouveau, Mordell justifie l’intérêt de la nouvelle preuve de

ce résultat par sa simplicité

« The ideas involved in Davenport’s work are simple, but the details require

considerable calculation. The theorems are of such a nature as to suggest

215Mordell 1942.
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strongly the possibility of a simpler proof.

[...] This led further to the method of the present paper, which gives a

demonstration of Theorem 1 [celui de Davenport] as short and simple as

could be desired216. »

Nous revoyons aussi apparaître la distinction entre l’idée de la preuve et la rédaction

formelle des arguments. Selon Mordell, ce qui est en question dans la preuve de Daven-

port n’est pas la simplicité de l’idée qui est issue de considérations géométriques mais

la difficulté des vérifications à faire dans la rédaction rigoureuse de la démonstration.

Cependant comme Mordell le remarque lui-même

« My proof depends, however, upon a theorem (7) (the proof of which is not

short), naturally suggesting itself in my method, which is more fundamental

than Theorem 1 and which had surprisingly escaped the notice of other

investigators for more than eighty years217. »

Effectivement, dans cet article, Mordell admet et utilise son théorème sur les formes

cubiques binaires qui conduit à une inégalité du type

|f(x, y)| ≤
( |D|
K2

) 1
4

et dont la simplification de la démonstration fait aussi l’objet de nombreux échanges

entre les deux mathématiciens.

La première étape de la preuve de Mordell consiste à écrire la cubique f sous sa

forme factorisée

f(x, y) = (px+ p′y)(qx+ q′y)(rx+ r′y) .

Les coefficients p, p′, q, q′, r, r′ sont réels dans le cas (I) alors que q, r et q′, r′ sont com-

plexes et conjugués dans le cas (II). De plus, le produit

∏

(qr′ − q′r)

est différent de 0, ce qui assure que tous les facteurs dans f sont distincts. Le détermi-

nant D de f s’exprime alors en fonction de p, p′, q, q′, r, r′ de la façon suivante

D = [(qr′ − q′r)(rp′ − r′p)(pq′ − p′q)]2 .

216Mordell 1942 p.109.
217Mordell 1942 p.109. Les 80 ans auxquels Mordell fait référence renvoient aux articles de Arndt

et Hermite publiés à la fin des années 1850.
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Le théorème de Mordell sur les cubiques peut donc s’écrire

|(px+ p′y)(qx+ q′y)(rx+ r′y)| ≤ K− 1
2 |(qr′ − q′r)(rp′ − r′p)(pq′ − p′q)| 12 ,

où x, y sont toujours des entiers non tous deux nuls.

Comme le produit P = |L1L2L3| dépend des trois variables x1, x2, x3 et que l’inégalité

précédente concerne un produit de formes linéaires de deux variables, l’étape suivante

consiste à se ramener de 3 à 2 variables. Mordell effectue pour cela le changement de

variables218

x1 = ξ , x2 = yη , x3 = zη ,

où ξ, η, y, z sont des entiers avec y et z qui sont soit nuls tous les deux, soit premiers

entre eux. Cela implique que

P =
3∏

s=1

|asξ + (bsy + csz)η|

et P est vu comme une forme cubique binaire en les variables ξ et η. Pour le déterminant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Mordell note par exemple Bi le cofacteur pour lequel la i-ème ligne et la colonne des bj
ont été supprimées. La valeur absolue du déterminant de la forme cubique P est alors

3∏

i=1

(Ciy −Biz)
2 .

Si y, z sont tels que le produit précédent ne s’annule pas (ce cas est traité à part par

Mordell), le théorème sur les cubiques implique l’existence d’un couple d’entiers (ξ, η)

non nul tel que

P ≤ K− 1
2

3∏

i=1

|Ciy − Biz|
1
2 .

Mais
3∏

i=1

(Ciy −Biz) est aussi une forme cubique binaire en y, z, si ce n’est pas une

cubique critique (c’est-à-dire conduisant au cas d’égalité dans le théorème) en lui ap-

218Mordell 1942 p.110.
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pliquant le théorème, Mordell obtient pour y, z des entiers non tous deux nuls

3∏

i=1

|Ciy − Biz| < K− 1
2 |(B2C3 − B3C2) (B3C1 −B1C3) (B1C2 −B2C1)|

1
2 .

Comme le déterminant d des formes linéaires L1, L2, L3 est égal à 1 ou i, il vient que

|(B2C3 −B3C2) (B3C1 − B1C3) (B1C2 − B2C1)| = |a1a2a3| ,

ce qui permet de montrer finalement que219

KP < |K a1a2a3|
1
4 .

Mordell considère des entiers premiers entre eux x1, x2, x3 qui vérifient P > 1
K

, quitte

à faire une substitution, il suppose x1 = 1, x2 = x3 = 0 et donc P = |a1a2a3|. Cela lui

permet de construire une suite d’entiers x1, x2, x3 tels que

|K L1 L2 L3| < 1 + ε ,

pour tout ε strictement positif, ce qui implique le résultat. L’article continue avec

l’étude du cas d’égalité.

Pour Mordell, sa démonstration et celle de Davenport sont de natures différentes :

« The proof actually constructs, by means of a “descente infinie”, lattice

points satisfying the inequality (2), whereas Davenport’s results are in the

nature of existence theorems220. »

Cette remarque doit cependant être précisée. En effet, si la fin de la preuve donne un

« process [which] is an actual construction of sets of integers x1, x2, x3
221 » qui satisfont

l’inégalité du théorème de Davenport, le début utilise le théorème de Mordell sur les

formes cubiques binaires qui est un théorème d’existence. En particulier, la démonstra-

tion n’est pas effective. D’autre part, la méthode apparaît différente d’une preuve par

descente infinie. Même si une suite de solutions est construite, il ne s’agit pas d’une

suite de solutions de plus en plus petites qui conduirait à utiliser qu’il n’y a pas de

suite strictement décroissante d’entiers naturels222.

Mordell considère le théorème sur le minimum des cubiques binaires comme plus

fondamental que celui sur le produit de trois formes linéaires (voir la citation de Mor-

219Mordell 1942 p.111.
220Mordell 1942 p.109.
221Mordell 1942 p.111-112.
222Voir Goldstein 1993.
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dell page 295). Une première raison est bien entendu que le résultat sur les formes

linéaires est une conséquence de celui sur les formes cubiques. Mais comme le montre

la démonstration précédente, c’est aussi surtout parce que l’approche par les formes

cubiques binaires permet d’unifier le cas réel et le cas complexe du théorème de Da-

venport. En effet, même si les preuves des deux cas avec la méthode de Davenport

relèvent des mêmes grandes idées, elles font l’objet de deux publications différentes car

les détails techniques sont différents et plus compliqués dans le cas complexe. D’ailleurs

Davenport regrettait que la simplification de la preuve dans le cas réel que nous avons

évoquée n’ait pas d’analogue dans le cas complexe (voir la citation de Davenport page

287). Cet aspect de la méthode de Mordell est mis en avant par Davenport

« Mordell’s method deduces the result very simply in both cases from a

similar result for a binary cubic form, which however requires itself a proof

which is not as simple as one might wish223. »

Ainsi Mordell déduit de manière simple le théorème de Davenport de son théorème sur

les cubiques, une unique démonstration est nécessaire pour les cas réel et complexe et

donc la question de la simplicité va se déplacer sur le théorème à propos du minimum

des formes cubiques. Nous verrons qu’effectivement Mordell et Davenport travaillent à

obtenir la preuve la plus simple possible pour le théorème sur les formes cubiques.

Un autre problème auquel Mordell fait allusion à la fin de son article en proposant

quelques conjectures et qui va faire l’objet de recherches de la part de Mordell et Da-

venport est celui des « minima isolés224 ». Il s’agit de savoir si un résultat analogue pour

le minimum du produit de formes linéaires ou des formes cubiques peut être trouvé

quand les formes conduisant au cas d’égalité sont exclues.

4.2.2.4 La méthode de Mordell pour le théorème sur les formes cubiques

binaires

Entre 1941 et 1945, Mordell publie cinq articles consacrés aux théorèmes sur les

formes cubiques binaires. L’ordre des publications ne suit cependant pas la chronologie

du travail de Mordell sur cette question. Dans le premier de ces articles, Mordell énonce

une série de résultats sans démonstration225. La première démonstration du théorème

principal obtenue par Mordell dès 1940 se trouve dans un article publié en 1945 226. En

1943, deux articles proposent des preuves qu’il juge plus simples de son théorème227,

223Notes de cours Davenport (WL), C 179.
224Mordell 1971d p.10.
225Mordell 1941b.
226Mordell 1945a.
227Le cas où le déterminant est strictement positif dans Mordell 1943a et strictement négatif dans

Mordell 1943b.
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démonstrations à nouveau simplifiées en 1944 pour les formes de déterminant stricte-

ment positif228.

a) Résumé de la méthode de Mordell

À Bruxelles en 1946, Davenport résume de la manière suivante la méthode em-

ployée par Mordell pour démontrer les théorèmes sur le minimum des formes cubiques

binaires :

« M. Mordell a interprété le problème dans un plan obtenu à partir du

plan u, v par une transformation linéaire, qui réduit la forme cubique [à]

une forme spéciale, dépendant du signe de D. Le problème consiste alors à

démontrer que si un réseau n’a d’autre point que O dans un domaine fixe,

son déterminant a une certaine borne inférieure. Le domaine est limité par

une courbe cubique et son image par rapport à O, et s’étend à l’infini. Par

diverses applications du théorème fondamental de Minkowski, M. Mordell

a trouvé plusieurs petites régions, dont chacune doit contenir un point du

réseau. À la suite de combinaisons de ces points, et après un raisonnement

difficile et détaillé, il est arrivé à une contradiction si le déterminant du

réseau ne satisfait pas à son inégalité229. »

Mordell décrit lui aussi les grandes étapes de sa méthode à différentes occasions. Nous

suivons maintenant les présentations qu’il fait dans un article général sur la théorie des

nombres230 publié en 1946, un article sur la géométrie des nombres issu d’un exposé

au congrès canadien de mathématiques en 1945 231 et enfin d’un article reprenant un

exposé donné en 1948 sur la question des formes cubiques232.

Comme le remarque Davenport, pour une forme cubique binaire

f(x, y) = ax3 + bx2y + cxy2 + dy3 ,

la première étape de la méthode de Mordell est de se ramener à l’étude de formes

cubiques particulières par une substitution linéaire sur les variables. Notons maintenant

D = 18abcd− 27a2d2 + b2c2 − 4ac3 − 4db3

228Mordell 1944a.
229Davenport 1946b p.12-13.
230Mordell 1946b.
231Mordell 1946a.
232Mordell 1949.
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le discriminant233 de la cubique f . Pour D strictement négatif, Mordell écrit

f(X, Y ) = g(αX + βY, γX + δY ) ,

où α, β, γ, δ sont des réels tels que αδ − βγ = 1 et g(x, y) = x3 − xy2 − y3 est de

discriminant −23. De la même façon, si D est strictement positif,

f(X, Y ) = h(αX + βY, γX + δY ) ,

où h(x, y) = x3 + x2y − 2xy2 − y3 est de discriminant 49. Quand X, Y décrivent les

entiers, les points

x = αX + βY , y = γX + δY

définissent un réseau de déterminant 1 et d’origine notée O. Mordell se ramène ainsi

à démontrer que tout réseau de déterminant 1 possède un point différent de O dans

chacun des domaines définis par les inégalités

|g(x, y)| ≤ 1 , |h(x, y)| ≤ 1 .

En 1949, Mordell caractérise cette étape de la preuve en indiquant

« The problem of the minimum of a binary cubic can be reduced to a

question in the geometry of numbers234. »

Cette fois l’expression géométrie des nombres désigne la formulation géométrique, en

termes de la recherche de points d’un réseau dans un domaine, du problème arithmé-

tique de la détermination du minimum des formes cubiques binaires.

Dans la suite de la preuve, Mordell recherche des points du réseau. Son idée est d’uti-

liser le théorème de Minkowski, cependant les domaines |g(x, y)| ≤ 1 et |h(x, y)| ≤ 1,

que nous notons R, ne sont pas convexes. Il détermine donc des domaines convexes

d’aire assez grande et qui sont presque inclus dans R afin d’obtenir des points du ré-

seau. Par exemple, quand le domaine R est donné par g(x, y), seulement deux parties

du carré (symétriques par rapport à O) |x| ≤ 1, |y| ≤ 1 ne sont pas dans R, or par

le théorème de Minkowski ce carré contient un point du réseau. Si ce point est aussi

dans R le théorème est démontré, sinon il doit être dans les parties du carré qui ne

sont pas dans R. Mordell applique éventuellement le même raisonnement à d’autres

parallélogrammes pour trouver d’autres points du réseau.

Dans l’étape suivante, Mordell continue à déterminer des points du réseau mais cette

fois en exploitant les symétries du domaine R. Ce domaine est en effet invariant par

une substitution linéaire de déterminant 1 et l’image des parallélogrammes précédents

233C’est-à-dire l’opposé du déterminant.
234Mordell 1949 p.72.
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par cette transformation permet de trouver de nouveaux points du réseau.

Enfin la dernière partie de la démonstration consiste à déterminer une combinaison

linéaire des points du réseau trouvés afin d’en construire un nouveau qui est dans R,

la vérification de l’appartenance de ce point à R est assez technique et demande pas

mal de calculs

« In considering linear combinations of any of the points, a detailed nume-

rical knowledge of the regions involved is necessary235. »

Mordell résume la fin de sa preuve de la manière suivante

« After many efforts, I succeeded in finding smaller and smaller regions ex-

ternal to R and containing points of Λ236, and finally was able to show that

a linear combination of these points led to a point [of] Λ other than O and

lying in R 237. »

b) Les premières preuves de Mordell

Plusieurs articles de Mordell concernent la démonstration des résultats sur les

formes cubiques binaires : Mordell 1945a, Mordell 1943a et Mordell 1943b.

Dans les articles publiés en 1943, il propose des preuves qu’il juge plus simples que

dans son article publié en 1945 238 des cas où le déterminant des formes cubiques est

strictement positif ou strictement négatif. Cependant toutes ces démonstrations suivent

la démarche décrite dans le paragraphe précédent et les simplifications portent essentiel-

lement sur les parties les plus calculatoires des preuves (en particulier dans la dernière

étape de la preuve). Par ailleurs, tout ce qui est présenté dans l’article de 1945 n’est pas

repris dans les autres publications. Mordell y énonce plusieurs théorèmes qu’il présente

comme étant d’autres formes possibles de ses résultats, par exemple239

« Theorem 6. A point of L not O exists such that

|xy (x+ y)| ≤
√

1

7
. »

Mordell démontre d’abord à part le cas où le déterminant de la forme cubique

f(x, y) = ax3 + bx2y + cxy2 + cy3

235Mordell 1946a p.274.
236Mordell note Λ le réseau.
237Mordell 1946a p.274.
238Rappelons que cet article a été rédigé avant ceux de 1943.
239Mordell 1945a p.201.
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est de déterminant nul. Dans cette situation, le résultat à montrer est que pour tout

ε > 0, il existe des entiers x, y, non tous deux nuls tels que

|f(x, y)| < ε .

La méthode n’a aucun rapport avec celle employée pour les formes cubiques de déter-

minant non nul. Lorsque le déterminant est égal à 0, la forme f peut s’écrire

f(x, y) = a (x+ py)2 (x+ qy) ,

avec a, p, q des nombres réels. Mordell juge le résultat évident quand p = q, il suppose

donc p différent de q. Il applique alors le théorème de Minkowski dans le cas particulier

d’un parallélogramme du plan, il s’agit du lemme 5 dans son article240 :

« Lemma 5. Every parallelogram with area 4 and center at O contains a

point of L other than O. »

Soit maintenant N un entier naturel, Mordell applique le lemme précédent au parallé-

logramme

|x+ py| ≤ 1

N
, |x+ qy| ≤ N |p− q|

ce qui donne l’existence d’un couple d’entiers (x, y) non nul et tel que

|f(x, y)| ≤ a |p− q|
N

.

Le résultat suit en prenant N suffisamment grand.

La première étape de la démonstration qui consiste à passer de l’énoncé des théo-

rèmes sous leur forme arithmétique à la forme géométrique est expliquée dans l’article

de 1945 241 mais elle n’est pas reprise dans les articles de 1943. Dans le cas où le

discriminant de la forme cubique binaire est strictement négatif, Mordell doit donc

montrer qu’il existe un point du réseau différent de l’origine dans le domaine défini par

|x3 − xy2 − y3| ≤ 1 ,

ce qui est l’objet du premier des articles publiés en 1943 que nous reprenons ici242.

Mordell définit le réseau L comme l’ensemble des points dont les coordonnées s’écrivent

x = αξ + βη , y = γξ + δη ,

240Mordell 1945a p.205.
241Mordell 1945a p.202.
242Mordell 1943a.
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où ξ, η parcourent l’ensemble des entiers et α, β, γ, δ sont des réels tels que αδ−βγ = 1.

L’origine de ce réseau est noté O.

Mordell commence par rappeler sans démonstration des résultats relatifs aux réseaux

qui lui seront utiles par la suite de la preuve243 :

1. un parallélogramme d’aire 4 et centré en O contient un point du réseau L différent

de l’origine O (c’est un cas particulier du théorème de Minkowski).

2. Si P et Q sont des points du réseau L qui ne sont pas alignés avec O alors le

double de l’aire du triangle OPQ est un entier et donc

2 × aire(OPQ) ≥ 1 .

De plus, il y a égalité si et seulement si L est engendré par P et Q.

3. Si l’aire de OPQ est égal à 1 et si aucun point de L différent de O, P et Q

n’appartient à OP ou OQ, alors le milieu de PQ est un point de L.

4. Si F,G sont des points tels que FG = OP , les droites FG et OP sont parallèles

et l’aire de OPGF est égale à 1, alors FG contient au moins un point de L.

Mordell note h(x, y) = x3 − xy2 − y3 et R le domaine |h(x, y)| ≤ 1 (voir la figure 4.8).

Il examine dans un premier temps des propriétés de ce domaine. Il remarque que R est

symétrique par rapport à O (car h(−x,−y) = −h(x, y)) et que toute droite passant

par O coupe la frontière de R en exactement deux points sauf la droite x = θy qui est

asymptote à la courbe |h(x, y)| = 1 (θ est la racine réelle de l’équation t3 − t− 1 = 0).

Mordell cherche ensuite des parallélogrammes auxquels il va appliquer le théorème de

Minkowski dans sa forme rappelée dans la propriété 1 ci-dessus. Or la frontière de R
passe par les sommets et le milieu des côtés du carré (P1 sur la figure 4.8) défini par

les inégalités

|x| ≤ 1 , |y| ≤ 1 .

Ce carré est inclus dans R à part une partie dans le premier cadran et en-dessous de

la droite d’équation y = 1 (noté R1 sur la figure 4.8) ainsi que son symétrique par

rapport à O.

D’après le théorème de Minkowski, le carré |x| ≤ 1, |y| ≤ 1 contient un point P de L
différent de O. Mordell envisage ensuite quatre cas selon la position de P :

(I) P est un point intérieur de R,

(II) P est un sommet du carré |x| ≤ 1, |y| ≤ 1,

(III) P est le milieu d’un côté du carré |x| ≤ 1, |y| ≤ 1,

(IV) P est un point de R1 sauf (0, 1) et (1, 1) (ou de l’image de R1 par rapport à O).

243Mordell 1943a p.202.
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Fig. 4.8 – Le domaine |x3 − xy2 − y3| ≤ 1.

Dans la situation (I), le théorème est démontré. Si P est un sommet du carré P1,

par exemple P = (1, 1), Mordell suppose qu’aucun autre point de L se trouve sur le

segment OP à l’exception de O et de P , sinon il est ramené au cas (I). Soient alors les

points F = (−1, 0) et G = (0, 1), le parallélogramme OPGF est d’aire égale à 1 donc,

d’après une propriété des réseaux déjà rappelée, FG contient un point Q de L. Mais le

cas (I) étant exclu, Mordell en déduit que Q = F ou que Q = G. Le réseau L est alors

défini par

x = ξ , y = η .

Comme il n’y a pas de point à coordonnées entières dans l’intérieur de R

|ξ3 − ξη2 − η3| ≥ 1 ,
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pour tous les entiers ξ, η qui ne sont pas nuls tous les deux. De plus, l’égalité est réalisée

par exemple pour le point du réseau (1, 1), ce qui signifie que ce réseau est un réseau

critique. Le même raisonnement dans le cas (III) conduit aussi à ce réseau critique.

Mordell suppose donc maintenant que le point P = (X, Y ) du réseau ne satisfait pas

(I), (II) ou (III) mais qu’il appartient à R1 (cas (IV)). Il justifie d’abord que R1 ne

peut contenir deux points du réseau.

Mordell veut ensuite exploiter les symétries de R afin de trouver un deuxième point

du réseau, pour cela il détermine une substitution linéaire Σ pour laquelle le domaine

est invariant. Pour trouver cette substitution, il factorise h(x, y) :

x3 − xy2 − y3 = (x− θy)(x2 + θxy + θ−1y2) ,

où θ est le réel tel que θ3 − θ − 1 = 0. Il résout ensuite le système







x′ − θy′ = −(x− θy)

x′2 + θx′y′ + θ−1y′2 = x2 + θxy + θ−1y2 ,

et il obtient pour Σ

(3θ2 − 1) x′ = x+ (θ + 3) y , (3θ2 − 1) y′ = 3θx− y ,

notée aussi

x′ = λx+ µy , y′ = νx+ ρy .

Il explique ensuite ce qu’il appelle « l’argument de symétrie » qu’il énonce dans un

théorème244 :

« Theorem. Let R andD be any two given regions, not necessarily convex

or finite, of which R contains the origin and is transformed into itself by

a linear homogeneous substitution Σ of determinant 1, and D is such that

no point of D is contained in R. Suppose that a lattice L of determinant 1

exists such that no point of L except O is contained in R, and that further

every such lattice L has a point contained in D. Then the region ΣD, i. e.

the transform of D by Σ, will also contain a point of L other than O. »

Cet argument de symétrie appliqué à la situation présente245 où D = R1 donne l’exis-

tence d’un point P1 = (X1, Y1) du réseau L dans ΣR1. L’image par Σ du réseau critique

244Mordell 1943a p.205.
245Dans le théorème la substitution est supposée être de déterminant 1 alors que la substitution

Σ à laquelle Mordell applique ce résultat à un déterminant égal à −1. La démonstration donnée par
Mordell du théorème montre que le résultat reste vrai pour les substitutions dont le déterminant est
−1.
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x = ξ, y = η donne le deuxième réseau critique annoncé246 dans le théorème page 293

(3θ2 − 1) x = −ξ − (θ + 3) η , (3θ2 − 1) y = −3θξ + η .

Ainsi Mordell a déterminé deux points du réseau P et P1, il va maintenant montrer

que le point P + P1 est dans l’intérieur de R.

Un morceau de la frontière de ΣR1 est le segment noté B247 dont les extrêmités sont

les points Σ(0, 1) = (µ, ρ) et Σ(1, 1) = (λ+ µ, ν + ρ), c’est donc une partie de la droite

d’équation νx+ ρy = 1. Les abscisses des points (x, y) de ΣR1 vérifient

µ ≤ x ≤ λ+ µ .

Mordell fait maintenant l’hypothèse que n’importe quel réseau de déterminant 1 qui

n’a aucun point dans R autre que l’origine possède un point dans ΣR1 dont l’ordonnée

est strictement négative. Comme pour le domaine R1, ΣR1 ne contient qu’un seul

point du réseau, ainsi le point de L dans ΣR1 dont l’ordonnée est strictement négative

est nécessairement P1. Or l’image de l’ensemble des points d’ordonnées strictement

négatives par Σ est l’ensemble des points (x, y) tels que

νx+ ρy < 0 .

Comme P est le seul point du réseau dans R1, l’argument de symétrie appliqué au

domaine ΣR1∩{(x, y) , y < 0} implique que P appartient à R1∩{(x, y) , νx+ρy < 0}.
En particulier, les coordonnées des points P et P1 vérifient

νX + ρY < 0 , νX1 + ρY1 < 1 ,

c’est-à-dire

ν(X +X1) + ρ(Y + Y1) < 1 .

Le point P + P1 se situe donc à gauche de B (dans le même demi-plan que l’origine).

De plus, le point P est dans le carré P1 sans être un de ses sommets et dans le premier

cadran, d’où 0 ≤ Y < 1 et comme Y1 < 0, il vient

Y + Y1 < 1 ,

ce qui signifie que P + P1 est strictement en-dessous de la droite d’équation y = 1.

Ensuite, comme P1 est dans ΣR1 et que P est dans le premier cadran, X + X1 > 0.

Enfin, en regardant l’ordonnée minimale des points de R1 et ΣR1, Mordell justifie que

246Au signe près, mais il s’agit bien du même car un réseau est symétrique par rapport à O.
247Voir la figure 4.8. Sur ce dessin le domaine ΣR1 est noté Σ′′R1.
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Y + Y1 > 0. Finalement, le point P + P1 est dans l’intérieur du quadrilatère délimité

par les droites d’équation x = 0, y = 0, y = 1 et νx+ ρy = 1. Les seules parties de ce

quadrilatère qui ne sont pas dans R sont R1 et ΣR1, or P + P1 est différent de P et

de P1 donc P + P1 est un point du réseau, différent de O, et dans R.

Si maintenant le point P1 = (X1, Y1) ne vérifie pas Y1 < 0, Mordell construit un

nouveau point du réseau comme il l’a fait pour P1. Il remarque pour cela que les

droites d’équation x = ±1 et les tangentes à la frontière de R aux points (0,±1),

dont les équations sont x + 3y = ±3, forment un parallélogramme d’aire égale à 4 248

(il s’agit du parallélogramme P2 sur la figure 4.8). La partie R2 de P2 qui n’est pas

incluse dans R est le triangle curviligne de sommets A = (−d = − 9
25

; 1, 12), (−1, l = 4
3
)

(l’autre intersection de la tangente au point (0, 1) avec la frontière de R et avec la droite

x = −1) et (−1, 1) (ce dernier point est exclu de R2). Comme précédemment, il existe

un point P2 = (X2, Y2) du réseau L dans R2. Mordell prouve alors que L est engendré

par les points P et P2. Pour cela, il montre que l’aire du triangle OPP2 est égale à 1
2
.

De la même manière, il démontre ensuite que le réseau L est aussi engendré par les

points P et P1, ce qui lui permet d’écrire

P1 = pP − qP2 et P2 = rP − sP1 ,

où p, q, r, s sont des entiers strictement positifs. Comme les points O, P , P2 ne sont pas

alignés, ces deux relations impliquent

P1 + P2 = pP . (4.12)

Dans ce qui suit, Mordell montre que cette dernière égalité ne peut se produire ce qui

termine la preuve de l’existence d’un point du réseau dans R.

Pour cela il commence par considérer la transformation Σ′ définie par249

(3θ2 − 1)x′ = −x− (θ + 3)y , (3θ2 − 1)y′ = −3θx+ y ,

ou encore Σ′(x, y) = Σ(−x,−y). L’application de ce qui a été appelé précédemment

le principe de symétrie à la transformation Σ′ et au domaine R2 implique l’existence

d’un point du réseau P3 dans Σ′R2. En justifiant que le point du réseau P2 − P3 est

dans R et donc ne peut être que l’origine O, Mordell montre qu’en fait P2 = P3
250.

248Mordell 1943a p.206.
249Mordell 1943a p.207.
250Mordell rappelle qu’il a déjà démontré que P2 = P3 dans Mordell 1945a. Il propose ici une autre

démonstration. Cette remarque confirme que les preuves de ces différents articles sur les cubiques ne
diffèrent essentiellement que sur les aspects techniques mais que le principe des démonstrations est le
même.
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Revenons à la relation (4.12) et supposons d’abord que p = 1, c’est-à-dire que

P1 = P − P2. Comme Y ≤ 1 et Y2 > 1, P1 est strictement en-dessous de la droite

d’équation y = 0. De plus, le point P2 appartient à l’intersection de R2 et de Σ′R2

(car P2 = P3). Or Σ′ = −Σ, d’où −P2 appartient à ΣR2. Ainsi la même méthode que

pour la somme P + P1 permet de montrer que P1 = P + (−P2) est dans l’intérieur de

R ce qui est absurde car P1 est dans ΣR1 et donc p est différent de 1. Finalement, p

est supérieur à 2, ainsi (4.12) implique en particulier que

Y2 + Y1 ≥ 2Y .

Mordell désigne par h l’ordonnée minimale des points de R1, ainsi comme P est dans

R1 et P2 dans R2 il obtient que

Y1 ≥ 2h− l .

Ensuite, comme l’aire du triangle OPP2 est 1
2

alors XY2 − X2Y = 1. En utilisant les

inégalités suivantes

Y ≥ h , −1 ≤ X2 ≤ −d , 1 ≤ Y2 ≤ l

Mordell obtient

X ≤ 1 − dh .

Le point P1 est dans ΣR1 et donc il appartient à l’image par Σ du domaine défini par

l’inégalité x ≤ 1 − dh, par suite, ΣP1 est dans le domaine x ≤ 1 − dh car σ est son

propre inverse. Cette dernière condition se traduit par

λX1 + µY1 ≤ 1 − dh ,

ou encore, comme X1 est plus grand que 1,

Y1 ≤ 1 − dh− λ

µ
.

Les deux conditions sur Y1 conduisent à la nouvelle inégalité

dh+ λ+ µ (2h− l) ≤ 1 .

Les valeurs calculées par Mordell pour ces constantes impliquent 1, 0049 ≤ 1 ce qui est

absurde et termine la démonstration.

Mordell démontre en fait un peu plus que l’existence d’un point du réseau dans R.

Même si nous ne l’avons pas mentionné, sa preuve lui permet d’être plus précis sur

la localisation de ce point du réseau. Ce raffinement du résultat est énoncé dans un
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théorème au début de son article251

« Theorem 2a. The point of L in Theorem 2 lies in the finite part of R
cut off by the parts of the lines252

y = 1 , 3θ2x− y = 3θ − 1 ,

lying in the first quadrant, and their images in O. The point is a boundary

point of the modified region when and only when L is a critical lattice, and

then the equality sign is necessary in (5). »

Le cas où le discriminant de la forme cubique est strictement positif est traité dans

un article qui suit celui dont il vient d’être question253. Il s’agit cette fois de démontrer

l’existence d’un point du réseau dans le domaine R défini par l’inégalité

|x3 − x2y − 2xy2 + y3| ≤ 1 .

Le schéma général de la preuve est exactement le même que pour le domaine

|x3 − xy2 − y3| ≤ 1 ;

étude géométrique de la frontière de R, utilisation du carré |x| ≤ 1, |y| ≤ 1 pour

construire un premier point du réseau, construction de nouveaux points du réseau par

le principe de symétrie, combinaison de tous ces points etc. . . Par contre, les parties

techniques de la preuve sont plus difficiles à cause de la géométrie du nouveau domaine

R. D’abord, la frontière de R possède trois asymptotes d’équation respectives

x+ θy = 0, x+ φy = 0 et x+ ψy = 0.

Ensuite, lorsque Mordell considère le carré |x| ≤ 1, |y| ≤ 1 pour appliquer le théorème

de Minkowski, deux parties de ce carré ne sont pas incluses dans R (ces deux parties

sont notées R1 et R′
1 sur la figure 4.9).

Un peu plus tard en 1944, Mordell publie une nouvelle preuve du cas où le discri-

minant est strictement négatif254. À nouveau cette démonstration suit le même modèle

251Mordell 1943a p.202.
252Il y a très certainement une faute de frappe dans l’équation de la seconde droite. En effet, le point

qui répond au problème est P + P1 et ce qui précède montre que ce point est situé à gauche de la
droite B d’équation νx+ ρy = 1. Lorsque les coefficients de cette équation sont exprimés en fonction
de θ nous obtenons 3θx− y = 3θ2 − 1.

253Mordell 1943b.
254Mordell 1944a.
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Fig. 4.9 – Le domaine |x3 − x2y − 2xy2 + y3| ≤ 1.

que ce qui vient d’être exposé mais en utilisant cette fois le domaine défini par

|x3 + y3| ≤ 1 .

Pour Mordell, de ce nouveau domaine est qu’il lui permet de simplifier encore les

vérifications techniques de sa preuve

« I have also given a proof when D < 0 by considering the more symmetri-

cal region |x3 + y3| ≤ 1, and have thus reduced the numerical details to a

minimum255. »

255Mordell 1949 p.74.
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4.2.2.5 Les preuves de Davenport du théorème sur le minimum des cu-

biques binaires

Mordell voit les preuves précédentes de son théorème comme géométriques et lors-

qu’il présente les démonstrations proposées par Davenport il reprend les termes géo-

métriques et arithmétiques pour les qualifier :

« Subsequently much simpler geometrical proofs were given by Davenport

who clothed his proof in arithmetical form, and by myself. [. . .]

After these results were found, Davenport discovered arithmetical proofs

of surprising simplicity based on ideas related to those used by Hermite

nearly ninety years ago256. »

Cette description de Mordell nous ramène à la distinction entre les différents niveaux

auxquels géométrie ou arithmétique peuvent intervenir et invite à préciser ce qu’il en-

tend quand il qualifie de géométrique les démonstrations du paragraphe précédent. Ses

preuves sont pour lui géométriques à la fois par les idées qui y sont mises en oeuvres

et par les vérifications formelles qu’elles contiennent. Cette séparation apparaît plus

clairement dans son commentaire sur la première preuve de Davenport dont la mé-

thode sous-jacente est pour lui géométrique mais qui est présentée (ou habillée) sous

une forme arithmétique. La seconde preuve de Davenport évoquée dans la citation est

quant à elle complètement arithmétique.

a) Une preuve géométrique présentée sous forme arithmétique

Dans l’article où il donne sa première démonstration sur le théorème de Mordell du

minimum sur les formes cubiques binaires, Davenport reprend la description faite par

Mordell de son travail :

« The object of this paper is to give simple proofs of these theorems. The

method of the present proofs was first obtained in a geometrical form,

shortly after I had been privileged to read Mordell’s manuscript, but I give

them here in a purely arithmetical form, in order to avoid appealing to any

properties of diagrams257. »

Davenport commence par redonner les énoncés du théorème dans le cas où le dis-

criminant de la cubique est strictement négatif (théorème 1) et strictement positif

(théorème 2). Nous retrouvons dans cet article une exposition similaire aux autres tra-

vaux de Davenport que nous avons vus : il commence par énoncer des lemmes qu’il

256Mordell 1949 p.74.
257Davenport 1943a p.168.
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applique à la situation qu’il veut étudier.

La première partie de la preuve concerne une transformation linéaire T définie par







ξ′ + η′ = αξ + βη ,

ξ + η = αξ′ + βη′ ,

où α 6= β, α > 0, β > 0, α + β < 2. Cette transformation est son propre inverse. La

première étape consiste à démontrer le lemme 1 258 :

« Lemma 1. Let ξ, η be linear forms in x, y with real coefficients and

determinant 1, and let ξ′, η′ be the transforms of ξ, η by T . Then there

exist integral values of x, y, not both zero, which satisfy at least one of the

following conditions :

(I) |ξ| ≤ 1 , |η| ≤ 1 , |ξ + η| ≤ 1 ;

(I’) |ξ′| ≤ 1 , |η′| ≤ 1 , |ξ′ + η′| ≤ 1 ;

(II) 0 ≤ ξ ≤ 1 , 0 ≤ η ≤ 1 , ξ + η > 1 , ξ′ ≤ 1 ;

(II’) 0 ≤ ξ′ ≤ 1 , 0 ≤ η′ ≤ 1 , ξ′ + η′ > 1 , ξ ≤ 1 ;

(III) ξ + η > 0 , ξ′ < 0 , ξ + η − ξ′ ≤ β ;

(III’) ξ′ + η′ > 0 , ξ < 0 , ξ′ + η′ − ξ ≤ β ;

(IV) ξ > 1 , ξ′ > 1 , η ≤ 1 , η′ ≤ 1 . »

Pour démontrer ce lemme Davenport fait un raisonnement par l’absurde. Donnons le

début de la preuve. Le parallélogramme défini par |ξ| ≤ 1, |η| ≤ 1 est d’aire égale à 4,

d’après le théorème de Minkowski il existe des entiers x1, y1, non tous deux nuls, tels

que

|ξ(x1, y1)| = |ξ1| ≤ 1 et |η(x1, y1)| = |η1| ≤ 1 .

ξ1 et η1 ne peuvent pas être de même signe sinon, nous aurions par exemple

0 ≤ ξ1 ≤ 1 , −1 ≤ η1 ≤ 0 ,

ce qui implique −1 ≤ ξ1 + η1 ≤ 1, la condition (I) est alors vérifiée ce qui est contraire

à l’hypothèse. Les conditions (I) et (II) ne sont pas vérifiées donc

0 ≤ ξ1 ≤ 1 , 0 ≤ η1 ≤ 1 , ξ1 + η1 > 1 , ξ′1 > 1

258Davenport 1943a p.169.
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et le même raisonnement pour ξ′, η′ entraîne l’existence d’entiers x2, y2 tels que

0 ≤ ξ′2 ≤ 1 , 0 ≤ η′2 ≤ 1 , ξ′2 + η′2 > 1 ξ2 > 1 .

Si η′1 et η2 sont négatifs alors

ξ1 + ξ2 > 1 , ξ′1 + ξ′2 > 1 , η1 + η2 ≤ 1 , η′1 + η′2 ≤ 1 .

Ces conditions s’écrivent aussi

ξ(x1 + x2 , y1 + y2) > 1 , ξ′(x1 + x2 , y1 + y2) > 1 ,

η(x1 + x2 , y1 + y2) ≤ 1 , η′(x1 + x2 , y1 + y2) ≤ 1.

Ainsi la condition (IV) est vérifiée ce qui est absurde, Davenport suppose donc par

exemple que η2 > 0 etc. . . La suite de la preuve de ce lemme continue de la même

façon en combinant des inégalités pour aboutir à des contradictions.

Dans l’étape suivante de la démonstration, Davenport fait le lien entre le lemme 1

et la forme cubique binaire F = ξ3 − ξη2 − η3. Il montre (lemme 2) qu’il existe une

transformation T qui vérifie les mêmes hypothèses que dans le lemme 1 et telle que

chacune des conditions (I), (I’), . . ., (IV) implique |F | ≤ 1. L’égalité se produit pour

ξ = 0, η = 1 ; ξ = 1, η = 0 ; ξ = 1, η = −1 ;

ξ′ = 0, η′ = 1 ; ξ′ = 1, η′ = 0 ; ξ′ = 1, η′ = −1 ;

ainsi que pour les cas qui sont symétriques des précédents par rapport à l’origine.

Davenport construit la transformation T en factorisant la forme cubique F

F = (ξ − θη)(ξ − χη)(ξ − χ̄η) ,

où θ est la solution réelle de l’équation t3 − t − 1 = 0 et χ, χ̄ les solutions complexes

et conjuguées. T est alors définie par les relations

(χ− χ̄)(ξ′ − θη′) = −(χ− χ̄)(ξ − θη) ,

(χ̄− θ)(ξ′ − χη′) = −(θ − χ)(ξ − χ̄η) ,

(θ − χ)((ξ′ − χ̄η′) = −(χ̄− θ)(ξ − χη) .

Davenport justifie ensuite rapidement que T est ainsi bien définie, qu’elle est son propre

inverse et qu’elle transforme F en −F . En combinant les équations définissant T et en
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utilisant les relations entre les trois racines θ, χ, χ̄, il montre que T peut s’écrire

ξ′ + η′ = αξ + βη , ξ + η = αξ′ + βη′ ,

avec α =
3θ + 1

3θ2 − 1
et β =

θ + 2

3θ2 − 1
qui, après calcul, vérifient bien les conditions

α > 0 , β > 0 , α+ β < 2 .

Il s’agit ensuite de démontrer que chaque système d’inégalité (I), (I’), . . ., (IV) implique

|F | ≤ 1. Nous donnons à nouveau seulement quelques exemples.

Supposons d’abord que la condition (I) est vérifiée, c’est-à-dire que

|ξ| ≤ 1 , |η| ≤ 1 , |ξ + η| ≤ 1 .

Si ξ et ξ + η sont positifs alors 0 ≤ (ξ + η)η2 ≤ 1 et 0 ≤ ξ3 ≤ 1, ce qui entraîne bien

|F | ≤ 1. Si maintenant, ξ < 0 et ξ + η > 0 alors η > 0 et ξ − η < 0, donc ξ2 − η2 < 0.

D’autre part, comme −1 ≤ ξ < 0 et 0 < η ≤ 1, Davenport en déduit que

−1 ≤ ξ2 − η2 < 0

et par suite

0 < ξ(ξ2 − η2) ≤ 1 .

Or 0 < η3 ≤ 1 donc il obtient bien |F | ≤ 1.

Pour la condition (III), Davenport réécrit les inégalités

ξ + η > 0 , ξ′ < 0 , ξ + η − ξ′ ≤ β

en posant ξ + η = βu et ξ′ = −βv, où u et v sont strictement positifs.

Ainsi ξ + η − ξ′ = β(u + v) et il en déduit que u + v ≤ 1. Davenport exprime ensuite

F en fonction de u et de v. Pour cela, il utilise le fait que le changement de variables

T transforme F en −F ce qui permet d’écrire

F = (−ξ′)3 + ξ′η′2 + η′3 .

D’une part, ξ′ = −βv et d’autre part,

βu = ξ + η = αξ′ + βη′ = −αβv + βη′ ,

d’où η′ = u+ αv. En reportant dans F , il obtient

F = u3 + (β3 − α2β + α3)v3 + (3α− β)u2v + (3α2 − 2αβ)uv2 .
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En prenant u = 0 et v = 1 il détermine ensuite le coefficient devant v3 et finalement

F = u3 + v3 + γu2v + δuv2 ,

où γ = 3α− β < 3 et δ = 3α2 − 2αβ < 3. Ce qui implique enfin

|F | < u3 + v3 + 3u2v + 3uv2 = (u+ v)3 ≤ 1 .

Pour chaque condition, les cas primes s’obtiennent par symétrie.

Davenport passe ensuite à la démonstration du théorème quand le discriminant D

de la forme cubique f est strictement négatif. Il doit donc montrer que pour des valeurs

entières non nulles des variables

|f(x, y)| ≤
(−D

23

) 1
4

.

Comme Mordell, Davenport se ramène à la forme f(x, y) = ξ3 − ξη2 − η3 qui est de

discriminant −23. L’application des lemmes 1 et 2 donne l’existence d’entiers x, y non

tous les deux nuls et tels que

|f(x, y)| ≤ 1 .

Il discute pour terminer les cas d’égalité donnés dans le lemme 2.

Quand le discriminant de la forme cubique est strictement positif, Davenport pro-

cède de la même manière en montrant d’abord le lemme 3 259 :

« Lemma 3. Let F = ξ3 + ξ2η − 2ξη2 − η3. There exists a self-inverse

transformation T satisfying (2) such that any one of (I), (I’), (III), (III’),

(IV) implies |F | ≤ 1. This is true with strict inequality except for the cases

enumerated in Lemma 2. »

La difficulté par rapport au cas précédent est que les conditions (II) et (II’) n’implique

pas |F | ≤ 1. Davenport surmonte ce problème en considérant une transformation T

définie à partir des solutions de l’équation t3+t2−2t−1 = 0 mais aussi la transformation

U définie par

ξ̄ = −η , η̄ = ξ + η

qui transforme aussi F en −F .

En quoi cette démonstration est-elle géométrique malgré la présentation arithméti-

que qui est faite par Davenport ? Prenons par exemple le lemme 1 et comme point de

259Davenport 1943a p.173.
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comparaison les preuves de Mordell qui sont vues comme géométriques. Mordell essaie

de construire des points du réseau dans des domaines particuliers. Les points sont lo-

calisés en donnant leur position par rapport aux frontières de ces domaines (en-dessous

ou bien à gauche de la droite d’équation. . .). Le résultat énoncé par Davenport dans

le lemme 1 pourrait aussi être traduit de cette façon. Les systèmes d’inégalités (I),

(I’), . . ., (IV) peuvent s’interpréter comme l’appartenance de points d’un réseau à des

parties bien délimitées du plan. D’ailleurs, comme Mordell, Davenport commence sa

démonstration en appliquant le théorème de Minkowski à un parallélogramme d’aire

égale à 4, ce qui confirme la proximité des méthodes sous-jacentes.

b) Une preuve purement arithmétique

La deuxième démonstration de Davenport du théorème sur le minimum des formes

cubiques binaires est considérée par Mordell et Davenport comme arithmétique par

les idées qui y sont développées ainsi que par les parties techniques de la preuve. Les

deux cas où le discriminant des formes sont strictement positifs ou négatifs sont traités

dans des articles différents publiés dans le même volume du Journal of the London

Mathematical Society en 1945 260. Le titre de ces articles « The reduction of a binary

cubic form » confirme la place de ce travail dans un contexte arithmétique.

Davenport s’intéresse d’abord aux formes cubiques binaires de discriminant stricte-

ment positif. Il rappelle la notion de réduction introduite par Hermite pour ces formes.

Pour une forme

f(x, y) = ax3 + bx2y + cxy2 + dy3

de discriminant strictement positif, il introduit la forme quadratique

Ax2 +Bxy + Cy2 = (bx+ cy)2 − (3ax+ by)(cx+ 3dy)

qui est définie positive. La forme cubique f est dite réduite si la forme quadratique

précédente est réduite, c’est-à-dire si

C ≥ A ≥ B ≥ 0 .

Toute forme cubique peut être transformée en une forme réduite par une transformation

linéaire à coefficients entiers de déterminant ±1. Davenport utilise cette notion pour

démontrer l’existence d’entiers x, y non tous deux nuls et tels que

|f(x, y)| ≤
(
D

49

) 1
4

260Davenport 1945a,b.
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avec égalité si f est équivalente à

(
D

49

) 1
4

(x3 + x2y − 2xy2 − y3) .

Par homogénéité, on peut supposer que f a pour discriminant 49. Davenport énonce

alors le théorème 1 qui implique le résultat de Mordell261 :

« Theorem 1. Let f(x, y) be a reduced binary cubic form of discriminant

49. Than at least one of

f(1, 0) , f(0, 1) , f(1, 1) , f(1,−1)

does not exceed 1 numerically. One of them is numerically less than 1 except

when

±f(x, y) = x3 + x2y− 2xy2 − y3 or ± f(x, y) = x3 + 2x2y− xy2 − y3 . »

Davenport démontre aussi le « deeper result262 » où sous les mêmes hypothèses que le

théorème 1 la conclusion devient qu’au moins un des produits

f(1, 0)f(0, 1), f(1, 0)f(1, 1), f(1, 0)f(1,−1), f(0, 1)f(1, 1), f(0, 1)f(1,−1)

est inférieur à 1.

Davenport rappelle dans un premier temps des relations sur les coefficients de la forme

cubique f et la forme quadratique qui lui est associée263 :

A = b2 − 3ac, B = bc− 9ad, C = c2 − 3bd,

Bc− Cb = 3Ad, Bb− Ac = 3Ca,

Ac2 + Cb2 = AC +Bbc,

AC ≤ 49, 0 ≤ B ≤ A ≤ 7 .

Il raisonne ensuite par l’absurde, il suppose donc que

|f(1, 0)| = |a| ≥ 1 , |f(0, 1)| = |d| ≥ 1,

|f(1, 1)| = |a+ b+ c+ d| ≥ 1 , |f(1,−1)| = |a− b+ c− d| ≥ 1

261Davenport 1945a p.15.
262Davenport 1945a p.15.
263Davenport 1945a p.16.
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et montre que cela conduit à une contradiction à moins d’être dans un des cas cités

dans le théorème. Quitte à prendre −f , Davenport se ramène à a ≥ 1. En utilisant les

inégalités rappelées et l’inégalité arithmetico-géométrique, il obtient d’abord

2 |bc|
√
AC ≤ Ac2 + Cb2 = AC +Bbc ≤ AC + |bc|

√
AC ,

d’où il déduit

|bc| ≤
√
AC ≤ 7 .

Ainsi l’inégalité d ≥ 1 est impossible et d ≤ −1.

De plus, bc ≤ −9 + 7 = −2, ainsi la relation Bb − Ac = 3Ca entraîne b > 0 et

c < 0. Davenport écrit alors c = −γ et d = −δ. Comme la forme est supposée réduite

C(b+ γ) ≥ Bb− Ac = 3Ca, donc

b+ γ ≥ b
B

C
+ γ

A

C
= 3a .

Si a− b− γ + δ ≥ 1 alors δ ≥ 1 − a+ b+ γ ce qui implique δ ≥ 1 + 2a ≥ 3. Ensuite,

AC = (b2 + 3aγ)(γ2 + 3bδ) > 9aδbγ ≥ 18aδ ≥ 54 ,

ce qui est une contradiction, ainsi a− b− γ + δ ≤ −1.

Pour terminer, Davenport démontre avec des arguments similaires que si a+b−γ−δ ≥ 1

alors b = 2, γ = 1, a = 1 et δ = 1, c’est-à-dire que

f(x, y) = x3 + 2x2y − xy2 − y3 .

Enfin le cas où −(a + b− γ − δ) ≥ 1 conduit à la cubique

f(x, y) = x3 + x2y − 2xy2 − y3 .

La fin de l’article est consacrée à justifier que si la forme cubique f représente 0, il

n’existe pas d’inégalité du type de celle donnée par le théorème de Mordell.

Dans l’article suivant, Davenport s’intéresse au cas où le discriminant D de la forme

cubique binaire f est strictement négatif, la difficulté étant de définir une méthode de

réduction pour ces formes. f possède alors un facteur réel et deux facteurs complexes

et conjugués, elle peut donc s’écrire

f(x, y) = (x+ θy)(Px2 +Qxy +Ry2) ,

avec θ, P , Q, R des réels. La forme quadratique Px2 +Qxy +Ry2 est définie et quitte

à considérer −f , Davenport la suppose définie positive. f est dite réduite si elle vérifie
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les deux conditions264 :

1. Px2 +Qxy +Ry2 est réduite, c’est-à-dire −P ≤ Q ≤ P ≤ R,

2. θ ≥ 0.

Toute forme cubique f peut alors être transformée par une substitution linéaire à

coefficients entiers et de déterminant ±1 en une forme réduite qui est en général unique

à part dans quelques cas énumérés par Davenport. Pour les mêmes raisons que dans le

cas précédent le théorème suivant implique le théorème de Mordell265

« Theorem. Let f(x, y) be a reduced binary cubic form of discriminant

−23. Than one at least of

f(1, 0) , f(0, 1) , f(1,−1) , f(1,−2)

does not exceed 1 numerically. One of them is numerically less than 1 except

when

f(x, y) = x3 + x2y + 2xy2 + y3

(in which case all four values are ±1). »

La stratégie de Davenport pour démontrer ce théorème est la même que pour D > 0.

Il raisonne par l’absurde ce qui l’amène à supposer que

P ≥ 1, θR ≥ 1, |1 − θ|(P −Q+R) ≥ 1, |1 − 2θ|(P − 2Q+ 4R) ≥ 1,

il cherche alors à montrer que D = −D ≥ 23. Pour cela, il remarque que, pour θ fixé,

les inégalités précédentes sur P , Q, R ainsi que les conditions de réduction définissent

un domaine convexe R et il prouve dans un lemme que 4
√
D, qui est une fonction de

P,Q,R, est une fonction convexe. Davenport justifie ensuite que le minimum de D sur

le domaine R est atteint à un sommet de R. La fin de la preuve consiste alors à étudier

D à chaque sommet du domaine R.

Nous constatons que Davenport emploie un vocabulaire géométrique dans un travail

pourtant qualifié de purement arithmétique. La part de la géométrie reste cependant

assez faible. D’un point de vue technique, les justifications sont faites par un travail

sur des inégalités et la plus grande partie de la démonstration est l’étude de D aux

sommets de R qui est abordée par des méthodes proches de celles utilisées dans l’ar-

ticle où D est strictement positif. Du point de vue de l’idée de la preuve, Davenport

se place dans un contexte arithmétique qui est celui de la théorie arithmétique des

formes et de leur réduction. Il est d’ailleurs intéressant de noter que Davenport fait

référence dans cet article à Minkowski. Il cite d’abord l’article de Minkowski de 1905

264Davenport 1945b p.140.
265Davenport 1945b p.140-141.

319



CHAPITRE 4 4.2

dans lequel Minkowski étudie la réduction des formes quadratiques de n variables et

donne des conditions de réduction qui le conduisent à l’étude d’un domaine convexe ;

Minkowski utilise aussi dans cet article une propriété de convexité du déterminant de

formes quadratiques définies positives266. Davenport cite également le livre Geometrie

der Zahlen à propos de la convexité, plus précisément le dernier paragraphe du premier

chapitre qui concerne les systèmes d’inégalités linéaires267.

4.2.2.6 Les échanges entre Mordell et Davenport au sujet des formes cu-

biques

Selon les sources dont nous disposons, un des premiers mathématiciens auquel Mor-

dell communique son travail sur les formes cubiques binaires est Siegel. Dans une lettre

du 12 janvier 1941, Siegel remercie Mordell de lui avoir envoyé ses articles sur ces formes

et sur le produit de trois formes linéaires. Le jugement de Siegel sur les résultats obtenus

sur les cubiques est très positif :

« As a matter of fact, your theorem for the binary cubic is one of the most

beautiful results in the geometry of numbers268. »

Siegel note cependant la difficulté de certains calculs dans les preuves des théorèmes :

il a essayé de simplifier ces calculs sans y parvenir.

Une lettre de Mahler montre que Mordell l’a aussi sollicité à propos de son travail

sur les cubiques. Dans cette lettre datée du 9 août 1941, Mahler répond, semble-t-il, à

une question que lui a posé Mordell à propos du domaine dont la frontière est donnée

par

|x| |y| (|x|+ |y|) = constante.

Mahler énonce une conjecture sur « the best possible result for lattices without points

inside the domain269 ». Il décrit les réseaux critiques (ceux qui ont des points sur la

frontière du domaine mais pas à l’intérieur) de manière géométrique

« the critical lattice has as its basis two points P1, P2 in the first quadrant

on the curve C ; these are chosen that both P0 = P1−P2 and P3 = P2−3P1

lie on C 270. »

266Voir Minkowski 1905.
267Comme le remarque Davenport, le point de vue adopté par Minkowski n’est pas géométrique

dans cette partie du livre.
268Lettre de Siegel à Mordell du 12 janvier 1941, Mordell (St John’s), box 3, folder 28.
269Lettre de Mahler à Mordell du 9 août 1941, Mordell (St John’s), box 2, folder 17.
270Lettre de Mahler à Mordell du 9 août 1941, Mordell (St John’s), box 2, folder 17.
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Mahler accompagne son explication d’un dessin (voir la figure 4.10271).

Fig. 4.10 – Dessin de Mahler dans la lettre à Mordell du 9 août 1941.

Cette courte lettre de Mahler est caractéristique de la correspondance de Mordell.

Quand nous y trouvons des mathématiques, ce sont le plus souvent des points très pré-

cis et techniques qui sont abordés ; il est peu fréquent de trouver des commentaires sur

les méthodes employées ou bien encore l’heuristique. De plus, les échanges conservés

sont ponctuels, autour d’une question isolée272.

La correspondance entre Mordell et Davenport est un peu différente, certains thèmes

sont abordés de façon plus continue : c’est par exemple le cas pour les formes cubiques

binaires. Leur collaboration sur ce sujet qui apparaît dans leurs publications respec-

tives est donc confimée par leur correspondance. Huit lettres concernent les formes

cubiques : quatre écrites par Davenport et quatre par Mordell. Les commentaires que

nous trouvons dans ces lettres sont de natures diverses. Les deux mathématiciens com-

parent par exemple leurs méthodes sur un même problème et discutent de la manière

la plus juste de rendre compte de leur travail respectif dans leurs articles. Ils se font

parfois des suggestions pour des corrections dans un article ou encore ils communiquent

sur leur dernières découvertes sur le sujet.

Une question qu’ils débatent est la façon dont Mordell doit faire référence dans un

article à une démonstration de Davenport :

« I now use the phrase “a variation of my geometric methods”. I want to

use a phrase suggesting that your method was not completely independent

271Reproduced by permission of the Master and Fellows of St John’s College, Cambridge.
272Avant de déposer les papiers de Mordell à la bibliothèque de Saint John’s College, J.W.S. Cassels

a fait un tri dans les documents (communication personnelle avec Cassels, 25 avril 2005). Nous ne
connaissons pas exactement quels furent les critères employés pour faire ce tri mais cela explique certai-
nement en partie pourquoi les archives contiennent essentiellement des mathématiques très techniques
et peu d’informations personnelles.
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of mine so “another geometric method” does not appeal to me273. »

Mais cette formule ne convient toujours pas à Davenport

« I do not altogether like the phrase you have selected in referring to my

simplification, but will think further about this274. »

Finalement, la phrase choisie par Mordell est la suivante :

« Davenport has given an arithmetic proof of Theorems 2 and 3, which is,

however, based upon a simplification of my geometric methods275. »

Cet épisode montre d’abord la minutie avec laquelle ils veulent rendre compte de leur

collaboration. Mais cela traduit aussi l’importance qu’ils accordent à ces simplifications

successives qu’ils proposent pour un même résultat.

Dans la lettre suivante, Davenport compare justement les deux démonstrations aux-

quelles Mordell fait référence dans la citation précédente276. Pour lui, l’idée fondamen-

tale de leurs démonstrations est la même. Elle consiste à faire deux cas : « one in which

P +P1 lies in the little quadrilateral, which is trivial, the other in which it does not277 »

(voir la démonstration de Mordell page 306). Davenport indique qu’il traite le second

cas en montrant que le point P − P1 appartient à un domaine assez proche de celui

considéré par Mordell. Plus loin il ajoute que l’utilisation de la convexité d’une partie

de la frontière du domaine est cruciale. Il exprime cette convexité analytiquement par

u3 + v3 ≤ (u+ v)3 ,

où u et v sont positifs. Davenport explique la motivation qu’il la conduit à suivre cette

méthode :

« Actually my objective originally was to get a proof which should be sy-

metrical with respect to the linear transformation, and there I did not

succeed278. »

Ces courts extraits de cette lettre montrent bien la différence de présentation par

rapport à la démonstration publiée de Davenport (voir les grandes lignes de cette dé-

monstration dans le paragraphe 4.2.2.5), alors même que ce sont les mêmes idées qui

sont exprimées. Dans son article, Davenport présente son travail de façon arithmé-

tique alors que dans la discussion avec Mordell il fait le choix de la géométrie. Comme

Minkowski le faisait avec Hermite quand il lui présentait son travail sous une forme

273Lettre de Mordell à Davenport du 3 novembre 1942, Davenport (WL), G 214.
274Lettre de Davenport à Mordell du 13 novembre 1942, Mordell (St John’s), box 1, folder 4.
275Mordell 1943a p.202.
276Lettre de Davenport à Mordell du 26 novembre 1942, Mordell (St John’s), box 1, folder 4.
277Lettre de Davenport à Mordell du 26 novembre 1942, Mordell (St John’s), box 1, folder 4.
278Lettre de Davenport à Mordell du 26 novembre 1942, Mordell (St John’s), box 1, folder 4.
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analytique, Davenport choisit la géométrie peut être pour prendre le même point de

vue que celui adopté par son interlocuteur (Mordell) dans ses propres recherches. Mais

chez Davenport, cette différence de présentation entre ce qui est publié et ce qui ne l’est

pas apparaît comme une attitude générale. Cette constatation sur la correspondance

avec Mordell rejoint en effet ce que nous avions remarqué à propos de ses notes de

cours ou d’exposés non publiées (voir à ce sujet le paragraphe 4.2.1.3). En particulier,

nous retrouvons l’utilisation de la géométrie quand il s’agit de décrire les grandes idées

de la preuve, de la méthode ou une heuristique (voir à ce sujet la page 283).

Une question qui revient à plusieurs reprises dans leurs lettres et que nous avons

déjà mentionnée auparavant est celle de la simplicité. Le problème est évoqué quand

Mordell doit faire référence au travail de Davenport, Mordell y revient à propos d’une

nouvelle démonstration :

« Proof for the second case is now very simple. I have dispensed with the

9/14 and have presented it in a form which makes the result more intui-

tive279. »

Dans une lettre du 13 mai 1943, Davenport fait part de ses critiques sur un manuscrit

que Mordell lui a demandé de relire280. Après avoir signalé à Mordell des passages qu’il

juge peu clairs, Davenport conclut :

« I found the paper difficult reading, but I think the exposition is as clear

as the method permits. The numerous little calculations absorb a lot of the

reader’s energy. But it is a fine paper, especially when one thinks of the

further work it has led you to281. »

D’après Davenport, la complexité des preuves sur les cubiques est donc liée à la dé-

marche qu’ils utilisent. Comme le suggère aussi cette dernière citation, la difficulté se

trouve dans les aspects techniques des démonstrations. Les preuves ne contiennent pas

de notion théorique très élaborée, en revanche elles sont très sophistiquées technique-

ment.

279Lettre de Mordell à Davenport du 17 mars 1943, Davenport (WL), G 214.
280Il s’agit probablement de Mordell 1945a.
281Lettre de Davenport à Mordell du 13 mai 1943, Mordell (St John’s), box 1, folder 4.
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4.3 Les autres travaux en géométrie des nombres entre

1937 et 1943 et de nouvelles pistes de recherche

4.3.1 Le produit de formes linéaires homogènes

Pendant la période qui nous intéresse, le travail de Mordell et Davenport sur les

formes linéaires homogènes est focalisé sur la question du minimum du produit de trois

formes de trois variables. Mordell obtient cependant aussi des résultats sur des produits

plus généraux.

C’est en particulier le cas en 1941 dans un article282 où Mordell revient sur le produit

de n formes linéaires de n variables. Il note L1, . . . , Ln des formes linéaires homogènes

en les variables x1, . . . , xn et de déterminant 1. Soit aussi k une constante indépendante

des coefficients des formes et telle qu’il existe des valeurs entières des xi non toutes

nulles pour lesquelles

|L1L2 . . . Ln| ≤ k .

K désigne la borne inférieure de toutes les constantes k possibles. Le problème est de

calculer ou bien de majorer K et nous allons voir que Mordell déduit d’un théorème

général des améliorations pour des résultats connus dans les cas n = 4 et n = 5.

Mordell commence par un bref historique de ce problème qui le conduit à rappeler

que Davenport a récemment montré que, pour n = 3, la constante K est atteinte et

est égale à 1
7

alors que dans un article précédent il avait obtenu K < 1
6,07...

. Mordell

souligne ensuite qu’utilisant la méthode de Davenport de ce premier article, Z̆ilinskas

vient283 d’améliorer le résultat pour n = 4 en montrant que K < 1
14,9...

. Quand n = 5,

Mordell remarque que la borne de Minkowski, K ≤ 1
26,0...

, est alors la meilleure connue.

La méthode proposée ici par Mordell lui permet d’obtenir dans ces deux derniers cas

K ≤ 1

14, 9 . . .
(pour n = 4) , K ≤ 1

32, 4 . . .
(pour n = 5) .

Ces majorations pour la constante K sont des conséquences d’un théorème que Mordell

énonce de la façon suivante : s’il existe un ensemble convexe de dimension (n − 1),

symétrique par rapport à l’origine O(x1 = x2 = · · · = xn−1 = 0), de volume 2n−1V et

telle que tous ses points vérifient l’inégalité |x1x2 . . . xn−1(x1 + x2 + · · · + xn−1)| ≤ 1,

alors

K ≤ V
−n
n−2 .

282Mordell 1941d.
283Zilinskas 1941. Notons que ce résultat de Z̆ilinskas fut publié dans le même volume du Journal

of the London mathematical society que l’article de Mordell dont il est ici question.
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La preuve de ce théorème utilise en particulier un résultat que Mordell attribue à Kurt

Mahler284 et dont il rappelle la démonstration.

Avec ce théorème, le problème arithmétique à résoudre au départ est ramené à une

question que nous pouvons qualifier de géométrique285 :

« Concrete results now depend upon finding simple (n−1)-dimensional sets

satisfying (8) 286. »

Mordell détermine ensuite de tels ensembles convexes pour n = 3, n = 4 et n = 5.

Pour n = 3, sa méthode ne lui permet pas de retrouver la borne optimale obtenue

par Davenport. Mais pour n = 4 et n = 5 le calcul du volume des ensembles trouvés

implique les majorations pour K données ci-dessus.

Dans une note à la fin de l’article, Mordell indique que ce travail est celui qui l’a amené

à ses résultats sur les formes cubiques binaires.

En 1943, Mordell consacre un autre article au produit de formes linéaires homo-

gènes287. Pour X1, X2, . . . , Xn des formes linéaires de n variables x1, x2, . . . , xn, à coef-

ficients réels ou complexes et de déterminant 1, Mordell définit K(X) comme étant la

borne inférieure du produit |X1X2 . . .Xn| pour des valeurs entières des variables non

toutes nulles, puis K la borne supérieure des K(X) pour tous les systèmes de formes li-

néaires X1, X2, . . . , Xn de déterminant 1. En particulier, pour tout ε strictement positif,

il existe des entiers x1, x2, . . . , xn non tous nuls et tels que

|X1X2 . . .Xn| < K + ε .

Mordell considère ensuite n − 1 formes L1, L2, . . . , Ln−1 des variables x1, x2, . . . xn−1

qui vérifient les mêmes hypothèses que les formes Xi précédentes. La constante k est

définie de la même manière que K pour le produit

|L1L2 . . . Ln−1(L1 + L2 + · · · + Ln−1)| .

Pour n strictement plus grand que 2 et des hypothèses sur les formes Xi, Mordell

démontre que288

K ≤ k
n−1
n−2 .

Cassels classe ce dernier article parmi un ensemble de travaux dont l’idée commune

est de ramener un problème de dimension n à un problème de dimension n− 1 289. La

284Mahler 1938-1939.
285Mordell 1941d p.8.
286(8) est l’inégalité des hypothèses du théorème.
287Mordell 1943c.
288Mordell 1943c p.273.
289Cassels 1973 p.505 et Cassels 1959 p.269.
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méthode de Mordell pour démontrer le théorème de Davenport sur le produit de trois

formes linéaires homogènes ternaires peut être vue comme appartenant à ces travaux.

Il effectue un changement de variables pour se ramener de trois à deux variables. Son

travail entre 1937 et 1945 sur le minimum des formes quadratiques relève aussi de ce

type d’idée.

4.3.2 Les minima des formes quadratiques

Pour une forme quadratique définie positive, l’estimation du minimum pour des

valeurs entières des variables est un problème classique abordé dans le cadre de la

géométrie des nombres. Minkowski et Blichfeldt ont par exemple obtenu des résultats

sur cette question, Mordell et Davenport s’y sont aussi intéressés. Nous allons illustrer

leur travail à ce sujet par un résultat de Mordell plus particulièrement cité puisqu’il

permet de retrouver plus simplement un théorème dû à Blichfeldt. Avant de passer

au théorème de Mordell, voyons comment Davenport décrit le sujet dans des notes de

cours du début des années 1940. Pour une forme quadratique de n variables, définie

positive

f(x1, ..., xn) =
n∑

r=1

n∑

s=1

arsxrxs

de déterminant ∆, le problème est de déterminer la meilleure constante possible γn
telle qu’il existe (x1, ..., xn) des entiers non tous nuls et qui vérifient

f(x1, ..., xn) ≤ γn ∆
1
n .

Davenport envisage alors deux questions en liaison avec ce problème. La première

est d’essayer d’améliorer la constante γn pour un entier n quelconque. Hermite290 avait

donné γn =
(

4
3

)n−1
2 , Minkowski démontra ensuite en 1891 par des méthodes géomé-

triques que γn = 4
π

[
Γ(1 + n

2
)
] 2

n . Blichfeldt291 améliora encore ce dernier résultat en

1914 avec γn = 2
π

[
Γ(1 + n+2

2
)
] 2

n . La deuxième question est de trouver la meilleure

constante possible γn où cette fois l’entier n est fixé. Ces constantes sont connues pour

les entiers entre 1 et 8 :

γ2 =
2√
3

; γ3 =
3
√

2 ; γ4 =
√

2 ; γ5 =
5
√

8 ; γ6 =
6

√

64

3
; γ7 =

7
√

64 ; γ8 = 2 .

290Hermite 1850.
291Blichfeldt 1914.
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Dans son article publié en 1944, Mordell note292

« None of the proofs for n = 5, 6, 7, 8 are as simple as one could wish. Thus

Blichfeldt’s method involves considerable numerical work. »

Mordell fait référence au calcul de γ8 par Blichfeldt. Pour lui le principal intérêt de ce

nouvel article est de pouvoir déterminer plus simplement γ8 à partir de γ7 grâce à une

inégalité entre γn et γn−1 qui est valable pour tout n. Il démontre donc le théorème

γn ≤ γ
(n−1)/(n−2)
n−1 .

Comme γ7 = 7
√

64 = 26/7, cette inégalité implique γ8 ≤ 2. De plus, la forme

8∑

1

x2
r +

(
8∑

1

xr

)2

− 2x1x2 − 2x2x8 ,

qui est de déterminant 1, prend la valeur 2 pour x1 = 1, x2 = x3 = · · · = x8 = 0, d’où

γ8 = 2.

Après avoir démontré le théorème, Mordell fait le rapprochement entre la méthode

employée ici et celle qu’il a utilisée dans un article sur les formes linéaires (voir page

325). Il souligne aussi la similitude des inégalités obtenues

K ≤ k
n−1
n−2 , γn ≤ γ

(n−1)/(n−2)
n−1 .

La preuve de Mordell n’est pas géométrique. Cela semble confimer ce que Davenport

remarque à propos des démonstrations permettant de déterminer la constante γn pour

n entre 1 et 8

« It may be noted that the proofs of these mostly make no use of the

methods of the geometry of numbers. This is often the case with special

problems293. »

Pour Davenport, il apparaît donc que la géométrie des nombres et les méthodes géomé-

triques seraient mieux adaptées pour traiter le cas général que pour les cas particuliers

où l’entier n est fixé. Cette idée que la géométrie serait du côté de la généralité est

aussi reprise par Mordell en 1971 :

« It sometimes happens that arithmetical proofs are simpler but these may

not suggest the possibility of further application. The geometric method

often depends upon a simpler and more general idea, and this is often more

fruitful since obvious new problems can now be attacked294. »

292Mordell 1944b p.3.
293Notes non datées de Davenport sur la géométrie des nombres, Davenport (WL), C 179.
294Mordell 1971c p.612.
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Mordell exprime ici à la fois le fait que la géométrie serait plus générale295, mais aussi

son intérêt dans la découverte de nouveaux problèmes.

4.3.3 « Isolation Theorems »

Dès ses premiers travaux sur les formes cubiques binaires, Mordell énonce des

conjectures sur le comportement du minimum lorsque les cas d’égalités sont exclus.

Dans l’article dans lequel est exposé sa première démonstration de son théorème, il

fait une analogie avec les formes quadratiques binaires qui le conduit aux hypothèses

suivantes296 :

« Hypothesis 1. If D < 0 and f(x, y) is not equivalent to

x3 + x2y − 2xy2 − y3 ,

then integer values of x, y, not both zero, exist such that

|f(x, y)| ≤ 4

√

|D|
81

,

where the equality sign holds when and only when D = −81e4 and

e−1 f(x, y) ∼ x3 − 3xy2 + y3 ,

of determinant −81.

Hypothesis 2. If D > 0 and f(x, y) is not equivalent to x3 − xy2 − y3,

then integer values of x, y, not both zero, exist such that

|f(x, y)| ≤ 4

√

D

31
,

where the equality sign holds when and only when D = 31e4 and

e−1 f(x, y) ∼ x3 + xy2 + y3 ,

295Ce n’est pas la première mention de la généralité en liaison avec la géométrie que nous rencontrons
chez Mordell et Davenport. Ils mettent ici en avant qu’une idée de nature géométrique serait plus
générale pour aborder des problèmes dans n’importe quel domaine des mathématiques et en particulier
en théorie des nombres. Notons la différence avec la question de la généralité décrite dans Nabonnand

2008. Pour les mathématiciens du XIXe siècle qui y sont étudiés, il s’agit de proposer des principes
généraux ou des méthodes générales pour la géométrie. Ils restent donc dans le cadre de la géométrie,
l’objectif poursuivi étant de développer un traitement général pour les problèmes géométriques.

296Mordell 1945a p.203.
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of determinant 31. »

En 1940, Mordell énonce aussi des conjectures similaires pour le produit de trois formes

linéaires homogènes297 :

« Conjecture. If

(I) K ′ =
√

81, and KL1L2L3 is not equivalent to (3) 298 defined by (4) 299,

(II) K ′ =
√

31, and KL1L2L3 is not equivalent to (3) defined by (5) 300,

then integer values of x1, x2, x3, not all zero, exist such that

|L1 L2 L3| ≤ 1

K ′ + ε .

The least value of the product is 1/K ′ when, and only when,

K ′ L1 L2 L3 ∼
∏

θ′,φ′,ψ′

(x1 + θ′x2 + θ′2x3) ,

where for (I) θ′, φ′, ψ′ are the roots of the cubic

t3 − 3t+ 1 = 0 ,

of determinant −81 ; and for (II) of the cubic

t3 + t+ 1 = 0 ,

of determinant 31. »

Comme le précise Mordell, la première conjecture sur les formes cubiques binaires

implique la seconde sur le produit de trois formes linéaires.

C’est en fait Davenport qui répond à ces conjectures. Dans un article publié en 1941,

il démontre que la conjecture pour les formes cubiques binaires est fausse301. Il donne

un contre exemple pour l’hypothèse 2 énoncée par Mordell, mais il prouve un résultat

plus fort puisqu’il justifie qu’il n’existe pas de constantes, mêmes différentes de 4

√
1
81

et

4

√
1
31

proposées par Mordell, pour lesquelles la conjecture serait vraie. Les outils utilisés

par Davenport sont issus de l’approximation diophantienne. D’abord des résultats sur

les fractions continues, puis un cas particulier du théorème de Thue-Siegel : si θ est

un nombre algébrique de degré 3, pour tout ε strictement positif, il existe un nombre

297Mordell 1942 p.114.
298C’est-à-dire

∏

θ,φ,ψ

(x1 + θx2 + θ2x3).

299Il s’agit du cas où les formes sont à coefficients réels donc θ, φ, ψ sont les solutions de l’équation
t3 + t2 − 2t− 1 = 0.

300L1 est à coefficients réels et L2, L3 à coefficients complexes conjugués, donc θ, φ, ψ sont les
solutions de l’équation t3 − t− 1 = 0.

301Davenport 1941b.
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positif Kε tel que, pour tous les entiers x, y avec y > 0,

∣
∣
∣
∣
θ − x

y

∣
∣
∣
∣
>

Kε

y
5
2
+ε

.

Davenport aborde aussi le problème pour le produit de trois formes linéaires homogènes.

Dans le cas où deux des formes sont complexes conjuguées, il indique qu’un contre

exemple peut être construit comme il l’a fait dans le cas des formes cubiques binaires.

Par contre, Davenport annonce qu’il a démontré le cas réel.

Dans l’article dans lequel il propose une preuve simplifiée de son théorème sur le produit

de trois formes linéaires à coefficients réels (voir le paragraphe 4.2.1.3), Davenport

remarque302

« In a later paper the method will be developed to give a much deeper result

concerning the “second minimum” of |L1L2L3|. »

En 1943, Davenport montre le résultat sous la forme303

« Either (a) M = 1
7

and L1, L2, L3 are equivalent (in some order) to

λ1(u+ θv + φw) , λ2(u+ φv + ψw) , λ3(u+ ψv + θw) ,

where θ, φ, ψ are the roots of t3 + t2 − 2t− 1 = 0, and λ1λ2λ3 = 1
7
;

or (b) M = 1
9

and L1, L2, L3 are equivalent (in some order) to

λ1(u+ θ′v + φ′w) , λ2(u+ φ′v + ψ′w) , λ3(u+ ψ′v + θ′w) ,

where θ′, φ′, ψ′ are the roots of t3 − 3t− 1 = 0, and λ1λ2λ3 = 1
9
;

or (c) M < 1
9,1

. »

L1, L2, L3 sont ici des formes linéaires homogènes de trois variables, de déterminant 1,

à coefficients réels et M la borne inférieure de |L1L2L3| quand les variables prennent

des valeurs entières non toutes nulles. Nous retrouvons effectivement des notions déjà

employées dans Davenport 1941a (par exemple les ensembles normaux) ainsi que

des similitudes dans la démarche (utilisation de la réduction des formes quadratiques

binaires etc. . .).

L’étude de ce phénomène de “minima isolés304” fait partie des thèmes que Davenport,

ainsi que les élèves de Mordell et Davenport, vont continuer à développer par la suite

« This provides an analogous ‘isolation’ situation similar to the well-known

Markoff results for quadratic forms. In a joint paper with Rogers such isola-

tion results and results asserting the existence of infinitely many solutions
302Davenport 1941a p.98.
303Davenport 1943b p.1.
304Pour une présentation modernisée de cette question voir Cassels 1959, en particulier le chapitre

X.
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were discussed in a general setting. This work was taken further by Rogers

(1953) and J.W.S. Cassels & H.P.F. Swinnerton-Dyer (1955). Very recently

Swinnerton-Dyer, by very subtle use of an electronic computer, has found

a chain of 18 special forms so that the inequality |L1L2L3| ≤ (1/17)∆ can

be satisfied unless L1L2L3 is equivalent to one of the 18 forms305. »

4.3.4 Produit de formes linéaires non homogènes

Le problème du produit de formes linéaires non homogènes et la conjecture de Min-

kowski à ce sujet est un thème qui a intéressé Mordell depuis le début de son travail sur

la géométrie des nombres. Il a joué aussi un rôle important à la fin des années 1920 et

au début des années 1930 dans les choix de méthodes de Mordell. Entre 1937 et 1945,

la dynamique de la recherche de Mordell et Davenport sur la géométrie des nombres est

davantage guidée par la question du minimum des cubiques binaires et du produit de

trois formes linéaires ternaires. Cependant le travail sur les formes non homogènes n’est

pas abandonné pendant cette période et les deux mathématiciens consacrent quelques

articles à ce sujet. Nous résumons ici les résultats obtenus en suivant la chronologie des

publications.

D’abord en 1939, Davenport redémontre le résultat pour le produit de trois formes

linéaires non homogènes306. Ce cas avait déjà été prouvé par Remak en 1923 307. En

suivant les notations de Davenport, rappelons d’abord l’énoncé de ce théorème. Si ξ, η

et ζ sont trois formes linéaires à coefficients réels, de déterminant 1 et dont les variables

sont notées u, v, w, alors pour n’importe quels nombres réels α, β, γ il existe des valeurs

entières de u, v, w pour lesquelles

|ξ − α| |η − β| |ζ − γ| ≤ 1

8
.

La preuve proposée par Davenport commence par le rappel d’un résultat déjà présent

dans la démonstration originale de Remak : il existe des réels p, q, r tels que l’ellipsoïde

défini par

p2ξ2 + q2η2 + r2ζ2 = 1

ne contient aucun point à coordonnées entières dans son intérieur mais trois sur sa

frontière qui n’appartiennent pas à un plan passant par l’origine. Ce lemme ainsi qu’un

théorème sur le minimum des formes quadratiques quaternaires définies positives attri-

305Rogers et al. 1971 p.169.
306Davenport 1939c.
307Remak 1923b.
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bué à Korkine et Zolotareff308 lui permet d’obtenir l’existence d’un point à coordonnées

entières qui vérifie

p2(ξ − α)2 + q2(η − β)2 + r2(ζ − γ)2 ≤ 3

4
(pqr)

2
3 .

En appliquant enfin l’inégalité arithmético-géométrique, cela implique bien le résultat

sur le produit des trois formes.

Mordell revient sur le cas général de cette conjecture de Minkowski en 1940 309. Rap-

pelons que Minkowski avait conjecturé que pour n formes Lr(x) + cr =
n∑

s=1

arsxs + cr

à coefficients réels et de déterminant 1, il existe un n−uplet d’entiers (x) vérifiant

n∏

r=1

|Lr(x) + cr| ≤
1

2n
.

De plus, Minkowski avait démontré cette conjecture quand n = 2 et d’autres preuves

de ce cas ont ensuite été trouvées, par exemple par Mordell lui-même. Nous venons de

voir que Davenport a publié peu de temps auparavant une preuve plus simple que celle

de Remak pour n = 3. Mordell indique qu’à sa connaissance aucun résultat général

même plus faible n’a encore été trouvé pour n plus grand que quatre.

En ce qui concerne le cas où l’entier n est quelconque, Mordell revient sur la lettre

de Siegel d’octobre 1937 que nous avons déjà évoquée dans laquelle Siegel propose une

méthode qui lui permet de montrer l’existence d’une constante M(n), indépendante des

coefficients des formes, majorant le produit précédent. Mordell expose cette méthode

lors de son séminaire et cela conduit Davenport à écrire son premier article sur le

produit de formes linéaires310. Mordell rappelle ici l’estimation pour M(n) à laquelle

Davenport est parvenue :

M(n) ≤
[

n 2n−1 Γ(1 +
1

2
n)

(n!)
n−1

2

Γ(1
2
)n

]n

.

En fait, comme Mordell l’indique lui-même, une amélioration de cette inégalité a été

donnée en 1934. Mais publié en russe cet article avait échappé à Mordell et c’est son

auteur Nikolai Grigorievich Tschebotareff qui le lui signale. Tschebotareff a démontré

M(n) ≤ 2−
1
2
n .

308Korkine et Zolotareff 1872.
309Mordell 1940b.
310Davenport 1937.
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En reprenant la méthode de Tschebotareff, Mordell obtient une meilleure estimation

de la constante M(n) :

M(n) ≤ 2−
1
2
n

1 + (
√

2 − 1)n
.

Mordell précise aussi que quelques jours après lui, Davenport a retrouvé ce résultat puis

l’a même plus tard amélioré. Cela traduit une fois de plus le travail effectué en paral-

lèle par ces deux mathématiciens autour de la géométrie des nombres311. Remarquons

enfin que l’amélioration de l’estimation de Tschebotareff pour M(n) de Mordell repose

sur les majorations simultanées plus précises de formes linéaires qu’il avait démontrées

environ deux ans plus tôt312.

Les lettres de Tschebotareff à Mordell de cette période apportent des précisions sur

cet épisode. Les deux mathématiciens avaient déjà eu des contacts épistolaires en 1931

au sujet des points rationnels sur les courbes. L’échange de lettres reprend en 1938 à

propos de la conjecture de Minkowski sur les formes linéaires non homogènes. Dans

une lettre du 24 février 1938 313, Tschebotareff explique à Mordell qu’il vient de lire son

intervention de 1936 au congrès international d’Oslo intitulée Minkowski’s Theorems

and Hypotheses on Linear Forms314. Dans cet article que nous avons rencontré plus

haut, Mordell note l’absence de résultat pour n > 3. Tschebotareff écrit donc à Mordell

pour lui faire part de son travail de 1934 dans une publication de l’université de Kazan.

Il lui traduit en allemand quelques pages de son article afin que Mordell puisse prendre

connaissance de son résultat et de la méthode employée315 .

Fidèle à son idée que la diversité des points de vue sur des cas particuliers d’un

problème doit permettre de développer de nouvelles méthodes pour démontrer le cas

général, Mordell revient encore à deux reprises sur le produit de deux formes316 au début

des années 1940. Cette preuve, dont l’idée aurait aussi été découverte par Davenport

indépendamment, utilise le théorème de Minkowski sur les points d’un réseau dans une

partie convexes symétriques par rapport à un point. Pour Mordell, la preuve repose

sur une idée géométrique317

« The proof was suggested by geometric considerations and is essentially

based on the fact that the four hyperbolas

|(x− c)(y − c)| ≤ c2 , |(x+ c)(y + c)| ≤ c2 ,

311Nous avons pour l’instant pas trouvé à quel résultat de Davenport Mordell fait ici allusion.
312Voir Mordell 1937a.
313Mordell (St John’s) Box 3, Folder 19.
314Mordell 1936.
315La lettre est reproduite en annexe.
316Mordell 1941c, 1943d.
317Mordell 1941c p.88.
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enclose the parallelogram

|x− y| ≤ 2c , |x+ y| ≤ 4c ,

whose sides |x+y| = 4c each touch one hyperbola, while the sides |x−y| = 2c

each touch two of the hyperbolas. »

Il est rare que Mordell soit très explicite à ce sujet, mais nous pouvons noter ici qu’il

reconnaît à la géométrie un rôle heuristique. Cette dernière citation montre aussi que

la méthode employée par Mordell est la même que celle utilisée à propos des formes cu-

biques binaires. Il s’agit de déterminer un parallélogramme d’aire suffisamment grande

dans le domaine qu’il étudie afin d’appliquer le théorème de Minkowski et de trouver

ainsi des points du réseau. Dans des périodes précédentes, nous avons vu que le tra-

vail de Mordell était souvent guidée par une idée forte comme par exemple la formule

sommatoire de Poisson ou bien à un autre moment le lemme de Smith. Au début des

années 1940, il semble que cela soit ce principe de la recherche de parallélogrammes

permettant l’application du théorème de Minkowski qui occupe cette place. Cette mé-

thode est par ailleurs aussi utilisée par Davenport.

Nous donnons juste le résultat démontré par Mordell dans le dernier article sur les

formes non homogènes de la période qui nous occupe. Il redémontre donc que pour

L = ax + by, M = cx+ dy deux formes linéaires réelles de déterminant un et p, q des

nombres réels318

« Theorem. (A) Integer values of x, y exist such that

|L+ p| |M + q| ≤ 1

4
. (1)

(B) If a/b is not rational, there is, for given ε > 0, an integer solution

of (1) such that

0 < |L+ p| < ε .

(C) If a/b, c/d are both rational, there are only a finite number of solu-

tions of (1) unless L+ p = 0 or M + q = 0 for integers x, y, and these give

an infinity of trivial solutions of (1) in which one factor is zero.

(D) The result (A) is best possible, and the sign of equality in (1) is

required when and only when

(L+ p) (M + q) ∼
(

x+ r +
1

2

) (

y + s+
1

2

)

318Mordell 1943d p.218.
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for a unimodular substitution (i.e. one of the form

x′ = αx+ βy , y′ = γx+ δy ,

where α, β, γ, δ are integers, αδ − βγ = 1), and integers r, s. »

Il ne s’agit pas d’un nouveau résultat. Mordell attribue (A), (D) et (C) à Minkowski

et (B) à Blichfeldt. Il indique aussi que d’après R.Q. Seale, qui donne aussi une dé-

monstration319, la preuve de Blichfeldt apparaît dans son cours donné à l’université

de Stanford en 1932. Nous trouvons effectivement ce théorème dans ce cours, l’idée de

départ de Blichfeldt est de se ramener à un problème homogène en introduisant une

variable supplémentaire320.

Le produit de formes linéaires non homogènes est aussi un thème que Mordell et

Davenport vont continuer à travailler après 1945. Mordell y reviendra tout au long de sa

carrière, remarquons pour l’anecdote que le dernier article de Mordell recensé dans Acta

Arithmetica est une note sur le produit de n formes non homogènes publiée en 1972 321.

Davenport étudie ces produits de formes linéaires non homogènes en liaison avec les

corps de nombres algébriques322. L’algorithme d’Euclide est valable dans un corps de

nombres algébriques K, si pour tout élément λ de K, il existe un entier algébrique ξ tel

que |N(ξ − λ)| < 1 323. N , qui désigne la norme sur le corps K, est en fait un produit

de formes linéaires. Par exemple, pour un corps quadratique la condition précédente

s’écrit

|(ξ − λ)(ξ′ − λ′)| < 1 ,

où les primes désigne les conjugués. Le calcul ou l’estimation du minimum euclidien

M(K) = sup
x∈K

inf
c∈OK

|N(x− c)|

d’un corps de nombres K (OK est l’anneau des entiers de ce corps) est un sujet de

recherche encore actif. La conjecture de Minkowski sur le produit de n formes linéaires

non homogènes qui est liée à ce problème n’a pas encore été démontrée dans le cas

général mais des démonstrations ont été trouvées pour n ≤ 6 324.

319Seale 1935.
320Blichfeldt 1932 p.29-37. Des précisions sur ce cours sont données au chapitre 6.
321Mordell 1972.
322Rogers et al. 1971 p.170-171.
323Davenport 1949 p.883.
324Pour des détails sur ce problème ainsi que des références voir Bayer-Fluckiger et Suarez

2006; Bayer-Fluckiger 2006b.
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4.3.5 Vers la géométrie des nombres pour des domaines non

convexes

Une autre direction prise par les recherches de Mordell et Davenport sur la géométrie

des nombres est l’étude de problèmes qui conduisent à des domaines non convexes. Ce

nouvel intérêt va les amener à des résultats pour des domaines jusqu’alors peu étudiés

mais va aussi modifier la perception de la géométrie des nombres. Le réseau de points

est de plus en plus central dans la théorie. Le problème fondamental s’est déplacé de

l’estimation de minima d’une fonction (forme) à celui de l’existence de points du réseau

dans un domaine fixé. Cette existence est discutée selon les valeurs du déterminant du

réseau. Les titres des articles de Mordell illustrent ce changement : « Lattice points

in the region |Ax4 + By4| ≤ 1 », « Lattice points in some n-dimensional non-convex

regions ». . .

Dans ce nouveau cadre théorique, les théorèmes de Davenport sur le produit de trois

formes linéaires homogènes et de Mordell sur les formes cubiques binaires sont considé-

rés comme une première étape vers une théorie générale de la non convexité. Mordell

s’exprime à plusieurs reprises à ce propos ce qui montre l’importance qu’il accorde à

cet aspect de leur travail sur la géométrie des nombres :

« My method of proof is geometrical and gives the first simple instance of

best possible results for a non-convex plane region bounded by curves of

degree greater than two325. »

« The method of finding the results for the binary cubic meant that the

geometry of numbers for nonconvex regions was no longer a closed book326. »

« The emphasis, however, was on convex regions.

The first real approach to non-convex regions was made by Davenport when

the region R is defined by

f(x1, x2, x3) =

3∏

r=1

∣
∣
∣
∣
∣

3∑

s=1

arsxs

∣
∣
∣
∣
∣
≤ 1 ,

where either the ars are all real, or the a1s are real and the a2s, a3s are

conjugate complex numbers. He found the best possible result for the mi-

nimum of f(x1, x2, x3) by considering non-convex two-dimensional regions,

very complicated in the second case, but this did not lead to any similar

general results for non-convex regions.

The first vital breach was made by Mordell in 1940 when the region R

was defined by |f(x, y)| ≤ 1 where f(x, y) is a binary cubic form with real

325Mordell 1941b p.85.
326Mordell 1946a p.276.
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coefficients327. »

« The new method employed for the binary cubic led to great developments

in the Geometry of Numbers. Previously only convex regions had been

studied, but now the road was open to the study of non-convex regions328. »

Pour Mordell, cette théorie de la non convexité devient possible grâce à la méthode

de démonstration qu’il a développée pour les formes cubiques binaires. Comme il le

montre dans les travaux à ce sujet, elle permet en effet d’aborder des domaines non

convexes en utilisant des parallélogrammes auxquels il peut appliquer le théorème de

Minkowski sur les points d’un réseau dans des parties convexes. Dans un long article329

(52 pages) rédigé en 1941 et publié en 1945, il étudie par exemple le domaine

|x|p + |y|p ≤ 1

pour 0 < p < 1, il démontre aussi

« Theorem 3. Let

f(x, y) = x+ y + [(λ2 − 1)(x2 + y2) + 2xy]
1
2 ,

where 1 ≤ λ <
√

2. Then a point other than the origin of every lattice of

determinant ∆ > 0 lies in the region

f(|x|, |y|) ≤ [λ2 + 2 + (−λ4 + 12λ2 − 4)
1
2 ]

1
2 ∆

1
2 .

This is the best possible result. There are exactly two critical lattices330. »

Il obtient des résultats similaires pour

f(x, y) = min(x+my , y +mx) ,

1√
3
≤ m ≤ 1 ou encore f(x, y) = xy(x2 + y2). Dans un autre article331, il s’intéresse

au domaine |Ax4 + By4| ≤ 1 et il revient plus particulièrement sur |x4 − y4| ≤ 1 et

|x4 + y4| ≤ 1. Il montre le théorème

« Theorem. Let A, B be real numbers and AB 6= 0. Then a point, other

than the origin, of every lattice L, of determinant ∆ > 0, satisfies the

inequality332

|Ax4 +By4| ≤ K |AB| 12 ∆2 ,

327Mordell 1961 p.90-91.
328Mordell 1971d p.10.
329Mordell 1945b.
330Mordell 1945b p.361.
331Mordell 1941a.
332Mordell 1941a p.152.
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where K = 4/
√

17 if AB < 0, K = 2/(2
√

6 − 3) if AB > 0. »

Ces nouvelles questions sont réellement perçues comme étant à l’origine d’un nouveau

champ de recherche

« These remarks make clear that the geometry of numbers in non-convex

domains offers far more interesting possibilities than the theory for convex

regions, and has now become a most promising field for further investigation

and future research333. »

Dans ce nouveau courant de recherche, l’accent est mis sur l’existence de points de

réseau dans un domaine donné, sur la détermination de réseaux critiques et du dé-

terminant critique. Ces questions deviennent fondamentales alors qu’elles ne l’étaient

pas encore dans les premiers articles sur les formes cubiques binaires, où les problèmes

étaient formulés différemment. La traduction du problème du minimum des formes

cubiques binaires en terme de points d’un réseau dans le domaine |x3 − xy2 − y3| ≤ 1

n’était alors vue que comme une étape de la démonstration. D’ailleurs, que cela soit

dans les premiers articles sur les formes cubiques binaires ou dans ceux sur le produit

de trois formes linéaires homogènes, l’accent n’est pas mis sur la non convexité des

domaines étudiés. Il semble donc qu’il s’agisse d’une relecture de ces résultats et mé-

thodes a posteriori (bien que peu de temps après) qui conduit Mordell et Davenport à

les envisager dans le contexte plus général d’une géométrie des nombres des domaines

non-convexes - « géométrie des nombres » prenant alors le sens de la recherche des

conditions pour lesquelles un réseau possède un point différent de l’origine dans un

domaine fixé.

Conclusion

Cette étude du travail de Mordell et Davenport sur la géométrie des nombres fait

déjà apparaître une autre conception de cette discipline par rapport à celle de Min-

kowski. La géométrie des nombres n’est plus organisée avec Mordell et Davenport

autour d’un théorème fondamental ou d’une méthode qu’il s’agit d’appliquer dans des

situations variées. La discipline est structurée par un certain nombre de problèmes

à résoudre. Ces problèmes peuvent être étudiés de manière largement indépendante,

d’autres, comme par exemple le produit de trois formes linéaires homogènes et le mini-

mum des formes cubiques binaires, sont liés. Les objets fondamentaux dans la géométrie

des nombres de Mordell et Davenport sont par conséquent ceux qui interviennent dans

ces problèmes : les formes linéaires homogènes ou non homogènes, leurs produits, les

formes quadratiques, les formes cubiques. . . De l’image d’une discipline unifiée avec

333Mordell 1945b p.350.
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Minkowski, nous sommes donc passés, avec Mordell et Davenport, à l’image d’un do-

maine fractionné en différentes questions.

Pour Mordell et Davenport, l’introduction d’un point de vue géométrique en théorie

des nombres dans le cadre de la géométrie des nombres consiste en la traduction de

problèmes arithmétiques par la recherche de points d’un réseau dans un domaine fixé :

« Many questions in the theory of numbers can be expressed in the form :

Does a particular region contain a lattice point, or under what conditions is

this the case ? This geometrical approach led Minkowski to many important

theorems. It is also valuable in suggesting new and interesting questions,

even when it does not provide any means for answering them334. »

Cependant, la géométrie n’occupe pas non plus chez Mordell et Davenport le rôle cen-

tral qu’elle avait avec Minkowski. Ce changement est bien illustré par la succession des

points de vue adoptés par Mordell au cours de ces recherches : analytique, arithmétique

ou géométrique.

Des utilisations spécifiques de la géométrie ont pu quand même être constatées à tra-

vers plusieurs commentaires ponctuels et isolés de Mordell et Davenport, ainsi qu’en

comparant des articles publiés et des notes non publiées de Davenport.

Contrairement à ce qui a été observé chez Minkowski, quand elle intervient la géomé-

trie n’est presque jamais associée à l’intuition. Une seule mention de l’intuition a été

rencontrée dans le cadre de la géométrie des nombres chez Mordell :

« Geometrical intuition and ideas seem to be very relevant for some of the

problems and occasionally the arithmetic aspect seems to have disappea-

red335. »

Comme le suggère la fin de la citation précédente de Davenport, à certaines occasions, la

géométrie semble être employée à des fins heuristiques, en particulier dans la recherche

de l’« idée » d’une preuve. Rappelons à ce sujet que Mordell distingue souvent dans

une démonstration l’enchaînement logique des arguments de l’« idée principale » qui

permet « de voir la démonstration dans son ensemble336 », c’est cette idée qui renferme

« the why and wherefore of the procedure or [on] the origin of the proof or

why it succeeds337. »

Le rôle de la géométrie dans la découverte de l’idée de la preuve est apparu par exemple

dans la lettre de Mordell à Davenport du 25 septembre 1933 où il discute de l’hypothèse

de convexité dans le théorème de Minkowski à propos de la démonstration arithmé-

tique qu’il en donne. Davenport semble attribuer une place précise à la géométrie et à

334Davenport 1947a p.104.
335Mordell 1961 p.93.
336Mordell 1959 p.11.
337Mordell 1959 p.11.
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l’analyse ou l’arithmétique selon le moment du processus de recherche dans lequel il se

trouve. Cela a été illustré en particulier par son travail sur le théorème sur le produit de

trois formes linéaires homogènes pour lequel l’origine géométrique de certaines preuves

disparaît dans les publications.

La dimension heuristique qu’apporte la géométrie ou peut-être même plus générale-

ment une autre discipline dans la géométrie des nombres est reconnue dans le travail

de leurs prédecesseurs :

« the proofs of both Minkowski’s theorem and Blichfeldt’s theorem, when

expressed in the proper professional form, need no reference to the geome-

try or to matter338. They are expressed in terms which involve numbers

only but nevertheless that is where the idea come from339. »

Un autre aspect de la géométrie chez Minkowski souligné par Davenport est la

généralité :

« Minkowski found a semi-geometrical interpretation of the problem which

suggested to him arguments which proved to be of great generality and

power340. »

Le peu de commentaires sur cette question rend difficile leur interprétation, mais Mor-

dell et Davenport font référence à plusieurs reprises au caractère plus général des ar-

guments géométriques dans leur propre travail (voir page 327).

Tout cela montre que les critères pour caractériser la géométrie des nombres comme

discipline chez Minkowski ne peuvent être conservés dans le cas de Mordell. En par-

ticulier, l’étude de la géométrie des nombres chez Mordell à l’échelle de sa pratique

des mathématiques a mis en évidence sa collaboration avec Davenport. Cette observa-

tion suggère que dans leur cas, des phénomènes collectifs doivent être pris en compte

pour comprendre le développement de la géométrie des nombres comme discipline.

Nous sommes donc conduit à regarder le travail de Mordell à une autre échelle afin

d’approfondir ces facteurs collectifs.

338La référence à la matière renvoie à l’utilisation par Blichfeldt de sphères matérielles pour estimer
la constante γn intervenant dans l’étude du minimum des formes quadratiques.

339Davenport 1946a.
340Davenport 1946a.
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À travers la collaboration entre Mordell et Davenport, le chapitre précédent a mon-

tré que les facteurs sociaux sont pertinents pour rendre compte de la géométrie des

nombres telle qu’elle est développée par ces mathématiciens. Ces aspects sont abordés

maintenant en exploitant de nouvelles sources, en particulier leur correspondance. Cette

remarque sur l’importance des facteurs collectifs est confirmée par plusieurs commen-

taires sur la création autour de Mordell d’une école de recherche spécialisée en théorie

des nombres. Ces commentaires viennent de mathématiciens qui observent ce groupe

de l’extérieur (nous en donnerons des exemples dans la suite) mais aussi de Mordell

lui-même. Dans ses Reminiscenses of an Octogenarian Mathematician, il revient sur sa

carrière et en particulier sur ces années à Manchester puis à Cambridge :

« Fortune was kind to me, and in later years I gathered around myself some

brilliant young mathematicians as members of my staff or research stu-

dents. There were Professor H. Davenport, F.R.S., now at Cambridge (but

who recently died), Professor K. Mahler, F.R.S., Professor at Manchester,

Canberra, and Ohio State University, and Dr. P. Erdös, Professor at the

Hungarian Academy of Science, all of whom have acquired world wide re-

putations.
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[. . . ] It is not often that such a brilliant young trio could be found any-

where. We had also Professor B. Segre, an Italian emigré, now President

of the Lincei Academy at Rome, and H. Heilbronn, F.R.S., Professor at

Bristol and Toronto. It is not surprising that mathematics flourished and

that the Manchester School became well known. As a result, I shone with

a great deal of reflected glory.

[. . . ] I was very fortunate again at Cambridge in having some very bright

students. This was perhaps the beginning of the new number theory school

here, now one of the best in the world under the leadership of (the late)

Professor Davenport and Professor Cassels, both of whom I am proud to

say were my former students1. »

La notion d’« école », qui est utilisée par plusieurs mathématiciens à propos de la

carrière de Mordell, est aussi une catégorie d’analyse employée en histoire des sciences.

Un des articles considérés comme fondateurs de cette tradition historiographique est

celui sur Liebig et Thomson de Jack B. Morrell2.

Dans cet article publié en 1972, l’objectif de Morrell est de comparer deux écoles de

recherche en chimie : le laboratoire de Justus von Liebig à l’université de Giessen et

celui de Thomas Thomson à l’université de Glasgow3. Pour cela, il propose des critères

pour juger de la réussite d’une école de recherche. Ces critères sont à la fois intellec-

tuels, institutionnels, techniques, psychologiques et financiers. Pour Morrell, une école

doit avoir un directeur qui supervise un programme de recherche trop important pour

qu’il puisse être réalisé par une seule personne. Ce directeur doit posséder des moyens

institutionnels, du charisme et il est préférable qu’il ait une forte réputation dans son

domaine de recherche. L’école doit accueillir régulièrement de nouveaux étudiants qui

ont à leur disposition un petit ensemble de méthodes de recherche simples permettant

d’arriver rapidement à de nouveaux résultats. Enfin, les membres de l’école doivent

avoir des moyens de publication et des moyens financiers. Morrell indique lui-même

certaines limites du modèle qu’il propose : d’une part, il s’agit de critères adaptés

pour des « laboratory-based research school » dans la première moitié du XIXe siècle,

d’autre part, ils ont été construits pour rendre compte du succès de l’école de Liebig

en comparaison de celle de Thomson. Malgré ces réserves, Morrell juge que la notion

d’école ainsi que les critères qu’il propose est une approche fructueuse pour l’historien.

Cependant, Gerald Geison constate en 1981 que cette catégorie d’analyse a été négligée.

Geison revient sur les critères de Morrell mais donne aussi sa propre définition :

« small groups of mature scientists pursuing a reasonably coherent pro-

gramme of research side-by-side with advanced students in the same insti-

1Mordell 1971b p.958.
2Voir par exemple la synthèse de John Servos, Servos 1993.
3Morrell 1972.
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tutional context and engaging in direct, continuous social and intellectual

interaction4. »

Il insiste aussi sur la nécessité pour une école d’être ouverte sur l’extérieur5.

En 2004, Karen Parshall souligne que la notion d’école a souvent été utilisée en histoire

des mathématiques sans qu’elle ait été définie de manière précise. De plus, les caracté-

risations proposées pour les autres sciences concernent essentiellement les sciences de

laboratoires et les critères apparaissent comme peu adaptés aux mathématiques6. En

modifiant les critères de Morrell et de Geison, elle donne une caractérisation des écoles

de recherche en mathématiques qui tient compte des spécificités de cette discipline.

Pour Parshall, une école est définie par un leader qui défend une idée fondamentale

ou une approche particulière pour un ensemble de problèmes. Ensuite, ce leader doit

former des étudiants et leur inculquer son approche des problèmes et sa conception

de la recherche. Par la suite, ces étudiants doivent poursuivre leur propre travail de

recherche dans le même esprit. Enfin les publications des membres de l’école sont le

signe de la reconnaissance des recherches effectuées et elles valident le point de vue du

leader dont les idées peuvent être reprises plus largement7.

Dans ce qui suit nous verrons que cette définition ne rend pas compte de la dynamique

des recherches effectuées autour de Mordell. En particulier parce qu’elle ne décrit qu’un

seul type de relation entre les individus participant au développement de l’école : celle

du leader avec des étudiants. Ensuite, parce que la conception du rôle de ce leader qui

s’en dégage ne correspond pas à la place qu’occupe Mordell à Manchester et à Cam-

bridge.

5.1 Premiers indices de la reconnaissance de Man-

chester comme école de recherche

Dans son article biographique sur Mordell, Cassels revient longuement sur le rôle

qu’il tient d’abord à Manchester puis à Cambridge :

« During the thirties Mordell built up a strong school of mathematics

at Manchester and one which attracted many visitors [. . .] As Davenport

rightly says, ‘When one recalls the very small scale of mathematical acti-

vity in that age, both in England and in the world at large, as compared

with the activity today, one realizes that Mordell at Manchester exercised

4Geison 1981 p.23.
5Geison 1981 p.35.
6Parshall 2004 p.271-272.
7Parshall 2004 p.274.
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a notable influence’.

Davenport adds, ‘Those who served under him as junior members of staff

found him an admirable head of department. He was conscious of his res-

ponsibilities, and made us very conscious of ours, but at the same time

he did everything possible to encourage us in our researches, and this in-

dependently of whether their subject matter interested him personally or

not’. His usual morning greeting was ‘What’s your news ?’ so that one al-

most felt obliged to produce some new mathematical result for him. For

undergraduate courses he made the rule that after each lecture the lecturer

had to make a record of the material covered. This was not merely useful

in constructing the syllabus next year. If for some unavoidable reason the

lecturer was unable to continue then someone else was detailed to give the

missing lecture from the point reached8. »

Cette citation laisse entrevoir différentes caractéristiques de l’intervention de Mordell.

D’abord l’environnement qu’il a créé est reconnu non seulement en Angleterre mais

aussi à l’étranger, ce qui attire de nombreux visiteurs. Nous le verrons, ces visiteurs

sont aussi bien des étudiants voulant continuer leur formation que des chercheurs déjà

confirmés. Cassels et Davenport insistent aussi sur les encouragements de Mordell en-

vers ses collaborateurs qui influencent ainsi le développement de leurs recherches. À

un autre niveau, Mordell joue un rôle dans l’organisation de l’enseignement et comme

le montre l’anecdote racontée par Cassels pas seulement pour les étudiants les plus

avancés.

Mordell arrive à Manchester en 1920, d’abord au Manchester College of Technology

puis à partir de 1922 à l’université de Manchester où il reste jusqu’en 1945. Dès 1924

dans une lettre à Hardy, Mordell reconnaît lui-même la dynamique qui est en train

d’être créée à Manchester. Alors qu’il est à Chicago, il a entendu parlé de postes de

professeur à Liverpool, Sheffield et Londres, il confie son impression à ce sujet à Hardy :

« But I don’t think Liverpool or Sheffield are in the same class as Manchester

(i.e mathematically) which seems to be developing a large math school.

Further we are starting graduate work this coming year which we hope

may develop.

I am not so sure about London. I would rather be in Manchester University

than London University although of course Manchester is not so pleasant

a town (climatically etc) as London9. »

8Cassels 1973 p.502-503.
9Lettre de Mordell à Hardy du 24 juillet (1924), Mordell (St John’s), box 1, folder 8. L’année

n’est pas précisée sur la lettre, 1924 est celle attribuée par l’archiviste.
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Mordell a donc conscience de ce qui se met en place à Manchester et nous voyons le

volontarisme qui est mis dans l’enseignement pour y développer les mathématiques.

La réussite de Manchester dans les années 1920 est une source de fierté pour Mordell.

D’après Cassels10, il ressortait souvent à la fin de sa vie une photo de jeunes mathé-

maticiens de ces années à Manchester en insistant sur le fait qu’ils sont tous devenus

professeurs par la suite (voir la figure 5.1 11).

En 1931, Mordell envisage de quitter Manchester attiré par d’autres opportunités

à Oxford ou Cambridge. Dans une lettre à Hardy il explique les raisons pour lesquelles

il veut partir et ses arguments montrent ce qu’il juge important pour développer des

recherches dans de bonnes conditions12. Il voudrait d’abord plus de temps pour la

recherche et donc être moins pris par des tâches administratives. De plus, il juge que

son travail a atteint une certaine reconnaissance et qu’il serait profitable qu’il soit en

contact avec plus d’étudiants susceptibles de se diriger vers les mathématiques (« a

more mature class of students »). Il souhaiterait enfin pouvoir organiser un séminaire

centré sur ses recherches. En fait, cette lettre de Mordell apparaît comme un acte

de candidature officieux pour un poste à Oxford : il prend la peine de faire écrire la

lettre par quelqu’un d’autre (son écriture étant souvent presque illisible) et il donne

implicitement son autorisation pour que Hardy la fasse circuler. Mordell a en effet

conscience qu’il n’est pas favori pour ce poste ce qu’il semble attribuer à son manque

de connection avec Oxford par rapport à celui qu’il voit comme son principal concurrent

Edward C. Titchmarsh. Il n’obtient effectivement pas ce poste qui revient finalement

à Titchmarsh mais cet épisode montre que Mordell accorde une place importante à la

transmission dans son activité de chercheur.

Dans une lettre où il regrette que Mordell n’ait pas eu ce poste à Oxford, Edward

Arthur Milne note en guise de consolation

« But at any rate at Manchester you have a department of your own, and

all the world knows what a fine amount of original work you are turning

out13. »

Malgré les doutes exprimés par Mordell en 1931, Manchester finit par être recon-

nue comme centre de recherche en mathématiques et Mordell est associé à l’image de

Manchester :

10Cassels 1973 p.503.
11Mordell (St John’s), box 4, folder 41. Reproduced by permission of the Master and Fellows of St

John’s College, Cambridge. Nous avons trouvé cette photo dans les archives de Mordell à Cambridge
et il est très probable que c’est celle qui est mentionnée par Cassels. Le catalogue de la bibliothèque
indique qu’il s’agit d’une photo du personnel de Manchester en 1925. Mordell se trouve au premier
rang en quatrième position en partant de la gauche. On peut reconnaître Davenport à la gauche de
Mordell : c’est possible car en 1925 il était étudiant à Manchester. Ceci suggère qu’il doit y avoir sur
cette photo à la fois des étudiants et des enseignants.

12Lettre de Mordell à Hardy de 1931, Mordell (St John’s), box 1, folder 8.
13Lettre de Milne à Mordell du 10 septembre 1931, Mordell (St John’s), box 2, folder 18.
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Fig. 5.1 – Photo à Manchester en 1925
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« Hope all is well for you and the Manchester school14. »

D’ailleurs, c’est sur le terrain de la théorie des nombres, sujet préféré de Mordell, que

Manchester acquiert sa réputation. Par exemple, alors qu’il postule pour obtenir le

Bishop Harvey Goodwin Mathematical Scholarship pour l’année 1934-1935, Fritz John

remarque

« My special interests in the theory of numbers suggest that Manchester

would be a suitable place for me to continue my work15. »

En 1938, nous avons un autre témoignage de la reconnaissance de Manchester

comme centre important de recherches en théorie des nombres quand Salomon Lu-

belski demande à Mordell de faire parti du comité de rédaction de Acta Arithmetica

« Jetzt, sehr verehrter Herr Professor, ist es mir sehr angenehm zu betonen,

dass Ihre zahlentheoretische Schule in Mantchester (sic) heute zum grössten

zahlentheoretischen Collegium geworden ist. Es wird also ganz natürlich

sein, dass ich mich an Sie mit des Proposition wende, einzuwilligen dem

engeren Redaktionskomitee anzugehören16. »

Dans la suite nous essayons de donner des détails sur le fonctionnement de ce groupe

constitué autour de Mordell. D’abord en récoltant des indices sur la manière dont ensei-

gnement et recherche s’effectuent au sein du groupe, ensuite sur les contacts de Mordell

à l’extérieur. Enfin, nous donnerons quelques éléments sur le travail administratif de

Mordell.

5.2 Enseignement et recherche sous l’influence de Mor-

dell

5.2.1 Enseignement à Manchester et Cambridge

Nous avons en fait assez peu de traces des activités d’enseignement de Mordell à

Manchester. Il aurait donné entre 1923 et 1926 des cours d’analyse complexe qui aurait

été suivis par Davenport17 alors qu’il était étudiant. Nous avons aussi trouvé dans

les archives de Mordell des listes d’élèves datées de l’été 1923 pour des cours sur les

14Lettre de Herbert W. Richmond à Mordell du 6 juillet 1943, Mordell (St John’s), box 3, folder
25.

15Lettre de F. John à Mordell du 18 mai 1934, Mordell (St John’s), box 3, folder 19.
16« Maintenant, Monsieur le Professeur, il m’est très agréable de souligner que votre école arith-

métique à Mantchester (sic) est devenue maintenant le plus grand Collegium de théorie des nombres.
Il sera donc tout naturel que je me tourne vers vous avec la proposition que vous consentiez à faire
partie du comité de rédaction restreint. », lettre de Lubelski à Mordell du 7 avril 1938, Mordell (St
John’s), box 2, folder 16.

17Rogers et al. 1971 p.159.
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intégrales définies et la théorie analytique des nombres. Sur ces listes chaque étudiant

indique son nom ainsi que son université et il s’agit exclusivement ici d’universités

américaines. Ces cours ont donc été très certainement professés aux Etats Unis, il est

cependant possible qu’il ait abordé les mêmes thèmes à Manchester. Un témoignage de

John A. Todd atteste du bon niveau des étudiants de Manchester du début des années

1930. En 1931, Todd arrive à l’université de Manchester où il a obtenu un assistant

lectureship. Il se voit accorder en 1933 un Rockefeller Fellowship pour aller à Princeton

afin de travailler avec Lefchetz18. Le 26 octobre 1933, Todd écrit à Mordell pour lui

donner de ses nouvelles, il juge alors le niveau des étudiants à Manchester meilleur qu’à

Princeton

« I [. . .] have made amazing discoveries ( ?) the calibre of certain members

of his audience, to whom the notation “d2s” is a mystery and who have the

strangest idea on one parameter families of curves. Some of the questions

asked in class would shame many Manchester audiences - and these are

graduates19 ! »

Les étudiants en mathématiques à Manchester de cette époque suivent un cursus

Honours in Mathematics. La formation dure trois ans (Part I, II et III) et les étudiants

assistent à environ six heures de cours de sciences par semaine. Nous donnons la liste

de ces cours pour les années 1919-1920, 1929-1930 et 1939-1940 dans le tableau 5.1 20.

Nous ne savons pas si Mordell est responsable du cours de théorie des nombres

qui fait son apparition en 1939 ou encore s’il intègre dans ses cours la géométrie des

nombres. Cependant, le 28 novembre 1945, Freeman Dyson écrit à Mordell :

« I return with thanks your lecture on the geometry of numbers. It is cer-

tainly helpful in giving a better grasp of the present state of the subject as

a whole than is to be got from the published papers21. »

La date de cette lettre laisse penser que ce cours sur la géométrie des nombres de

Mordell a été donné alors qu’il se trouve encore à l’université de Manchester. À cette

époque, aucun cours ou livre portant exclusivement sur la géométrie des nombres n’a

encore été publié (à part ceux de Minkowski), ce qui explique la fin de la citation de

Dyson car les articles sont la seule source pour étudier les développements récents de

la théorie.

Davenport mentionne enfin un cours de Mordell à Cambridge pendant l’hiver 1933-1934

alors qu’il est encore à Manchester22, cette invitation est aussi un signe de reconnais-

18Lettre de Mordell à Hardy du 1er mai 1933, Mordell (St John’s), box 1, folder 8.
19Lettre de Todd à Mordell du 26 octobre 1933, Mordell (St John’s), box 3, folder 32.
20Ces informations sont extraites de la base de données Britmath réalisée par June Barrow-Green.
21Lettre de Dyson à Mordell du 28 novembre 1945, Mordell (St John’s), box 3, folder 19.
22Lettre de Davenport à Mordell du 11 juillet 1933, Mordell (St John’s), box 1, folder 4.
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Année 1919-1920

Part I
algebra ; plane and spherical trigonometry ; elementary solid geometry ;
analytical plane geometry ; infinitesimal calculus ; elementary mechanics
(without calculus)

Part II
analytical plane and solid geometry ; differential and integral calculus ;
ordinary differential equations ; statics and hydrostatics ; two-dimensional
dynamics

Part III

differential equations ; functions of a complex variable ; statics and dynamics
mainly 2 dimensional ; projective geometry ; higher plane curves ; differential
solid geometry ; theory of infinite series ; definite integrals ; theory of
functions ; statics and dynamics (3 dimensional) ; dynamics of material
systems in general ; theory of vibrations ; attractions ; elementary
hydrodynamics ; vibrations of strings ; bars and air columns

Année 1929-1930

Part I
algebra ; plane and spherical trigonometry ; elementary pure and analytical
geometry ; elementary infinitésimal calculus ; elementary statics ; dynamics
and hydrostatics

Part II
pure and analytical (plane and solid) geometry ; infinitesimal calculus ;
ordinary differential equations ; statics (2 and 3 dimensional) ; dynamics of a
particle (2 and 3 dimensional) ; rigid dynamics

Part III
higher geometry ; theory of functions ; differential equations ; rigid dynamics
(3 dimensional) ; theory of the potential (including gravitational and
electrostatics) ; elasticity and elementary hydrostatics

Année 1939-1940

Part I
elementary analysis comprising algebra, calculus, elementary differential
equations ; elementary pure analytical and differential geometry ; elementary
statics ; dynamics and hydrostatics

Part II
theory of functions of real and complex variables ; differential equations ;
plane, solid and differential geometry ; statics and dynamics (2 and 3
dimensional) ; mathematical theory of electricity and magnetism

Part III
theory of functions ; theory of numbers ; higher geometry ; differential
equations ; dynamics ; theory of vibrations and wave motions ;
hydrodynamics ; electromagnetic theory

Tab. 5.1: Cours de mathématiques à Manchester
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sance de son travail.

Il y a plus d’indices et de témoignages sur les activités d’enseignement de Mor-

dell à Cambridge à partir de 1945. D’après Cassels, Mordell propose alors des cours

sur les équations diophantiennes, les nombres algébriques et la géométrie des nombres.

Ces cours s’adressent à des étudiants avancés, ceux qui préparent la troisième partie

du Tripos, et sont aussi suivis par des Research Students23. Cela est confirmé par di-

vers documents trouvés dans les archives de Mordell. Nous avons d’abord des notes de

Mordell pour ce qui est certainement des questions pour des examens. Ces questions

portent justement sur les trois thèmes évoqués par Cassels (voir les figures 5.2, 5.3 et

5.4 24).

Ensuite, nous avons retrouvé des notes de cours manuscrites concernant la géomé-

trie des nombres. Ces notes ne sont pas datées mais la mention d’un résultat sur les

formes linéaires publié en 1948 permet de dire que ce cours a été donné à Cambridge.

Dans le même dossier contenant le cours sur la géométrie des nombres se trouvent aussi

plusieurs listes d’étudiants ayant certainement suivi des cours de Mordell et en par-

ticulier celui sur la géométrie des nombres25. Il s’agit de listes manuscrites où chaque

étudiant a inscrit lui-même son nom, le College auquel il est rattaché ainsi que son

niveau d’étude (pour un exemple voir la figure 5.5 26).

Une de ces listes est datée de 1946, une autre de 1947-1948 et enfin une seule

précise qu’il s’agit d’un cours sur les équations diophantiennes en 1951. Comme les

mêmes noms reviennent sur toutes les autres listes, elles sont probablement toutes de

la même époque.

Nous avons relevé tous les noms qui apparaissent au moins sur une des listes, nous les

donnons par ordre alphabétique27 :

1. A.J. Amin 2. A.O.L. Atkin 3. R.P. Bambah

4. E.S. Barnes 5. A.V. Boyd 6. M. Campbell

7. J.W.S. Cassels 8. J.H.H. Chalk 9. K.L. Chang

10. R.F. Churchhouse 11. L.E. Clarke 12. P.M. Cohn

13. C.S. Davis 14. G.A. Dirac 15. J.L. Dixon

16. M.P. Drazin 17. H.G. Eggleston 18. G.D. Findlay

23Cassels 1973 p.506.
24Mordell (St John’s), box 7. Reproduced by permission of the Master and Fellows of St John’s

College, Cambridge.
25Mordell (St John’s), box 7. Des détails sur ce cours sont donnés dans le chapitre 6.
26Reproduced by permission of the Master and Fellows of St John’s College, Cambridge.
2716 noms trop difficiles à lire n’ont pas été mentionnés.

350



5.2 CHAPITRE 5

Fig. 5.2 – Problèmes sur les équations diophantiennes
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Fig. 5.3 – Problèmes sur les nombres algébriques
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Fig. 5.4 – Problèmes sur la géométrie des nombres

353



CHAPITRE 5 5.2

Fig. 5.5 – Liste d’étudiants présents à un cours de Mordell

19. C.S. Fu 20. K.S. Gangadharan 21. F.W. Gehring

22. G. Gregory 23. J.S. Griffith 24. V.W.D. Hale

25. R. Harrop 26. C.B. Haselgrove 27. C.J. Heywood

28. H.E. Hogg 29. J. Hunter 30. D.R. Iaunt

31. O.S. Icen 32. H.A. Ihurston 33. A.J. Knight

34. M.J. Lighthill 35. G.B. Longden 36. G.S. Lowden

37. A.M. Macbeath 38. E.A. Mac Harg 39. G.F.M. Mayo

40. H. Meier 41. G.R. Morris 42. P. Matthews

43. P. Mullender 44. P.C. Parks 45. W.B. Pennington

46. A.J. Pillow 47. R.A. Rankin 48. K. Rogers

49. E. Rowland 50. P.A. Samet 51. D.B. Sawyer

52. E.S. Selmer 53. W.A.C. Smith 54. G.K. Stanley
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55. P. Swinnerton-Dyer 56. J.C. Tanner 57. G. Vincent

58. F.J. Walker 59. E.G. Watson 60. D.J. Wheeler

Certains des étudiants précédents ont pu être identifiés en utilisant le site Genealogy

Project28 ce qui permet d’avoir une idée des sujets de recherche qu’ils choisissent par

la suite. Quand ces informations sont disponibles, nous avons indiqué dans le tableau

5.2 l’année d’obtention et le titre de la thèse ainsi que l’université dans laquelle elle a

été soutenue29.

Nom Année/Univ. Titre de la thèse donné sur le site

Atkin A.O.L. 1952/Cambridge Two Problems of Additive Number Theory

Bambah R.P.

Barnes E.S. 1952/Cambridge Minimal Problems for Quadratic and Bilinear

Forms

Cassels J.W.S. 1949/Cambridge

Chalk J.H.H. 1952/Cambridge Diophantine Inequalities

Churchhouse R.F. 1952/Cambridge On the Geometry of Numbers in some non-

convex Regions

Clarke L.E. 1954/Cambridge Some Results in the Geometry of Numbers

Cohn P.M. 1952/Cambridge Integral Modules, Lie Rings and Free Groups

Davis S.D. 1949/Cambridge The Minimum of a binary Quartic Form

Dirac G.A. 1952/Londres On the Colouring of Graphs : Combinatorial to-

pology of Linear Complexes

Drazin M.P. 1953/Cambridge Contributions to Abstract Algebra

Findlay G.D. 1958/Cambridge A Class of Monomial Groups

Gangadharan K.S. 1953/Cambridge Two Classical Lattice-Point Problems

Gehring F.W. 1952/Cambridge A Study of the pth Power Variation

Hale V.W.D. 1952/Cambridge Quasi-Groups and Loops associated with Steiner

Systems

voir la suite page suivante

28L’adresse de ce site internet est http://www.genealogy.ams.org/.
29Ces informations sont cependant à prendre avec précaution. Il est par exemple étrange que le

titre des thèses de Cassels et de Swinnerton-Dyer ne soit pas indiqué alors qu’ils sont parmi les
mathématiciens les plus célèbres de cette liste.
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Nom Année/Univ. Titre de la thèse donné sur le site

Harrop R. 1953/Cambridge An Investigation of the Propositional Calculus

used in a Particular System of Logic

Haselgrove C.B. 1956/Cambridge Some Theorems in the Analytic Theory of Num-

bers

Higgins P.J. 1954/Cambridge Two Topics in Abstract Algebra

Hunter J. 1953/Cambridge Minimum Discriminants of Algebraic Number

Fields

Icen O.S. 1955/Göttingen Eine Verallgemeinerung und Uebertragung der

Schneider’schen Algebraizitaetskriterien ins p-

adische mit Anwendung auf einen Transzendenz-

beweis im p-adischen

Lighthill M.J.

Knight A.J. 1955/Cambridge Some New Contributions to the theory of Abelian

Varieties with Applications

Macbeath A.M. 1950/Princeton The Geometry of Non-Homogeneous Lattices

Morris G.R. 1953/Cambridge Some Topics on the Theory of Non-Linear Vi-

brations

Mullender P. 1945/Amsterdam Toepassingen van de meetkunde der getallen op

ongelijkheden in K(1) en K(i
√
m)

Pennington W.B. 1951/Cambridge Contributions to the Theory of Series and the

Analytical Theory of Numbers

Rankin R.A. 1940/Cambridge

Rogers K. 1955/Cambridge Some Results in the Geometry of Numbers

Samet P.A. 1953/Cambridge Algebraic Integers with Two Conjugates Outside

the Unit Circle

Swinnerton-Dyer P.

Walker F.J. 1952/Cambridge A Problem in the Theory of Numbers

Wheeler D.J.

Tab. 5.2: Thèses des étudiants de Mordell trouvés sur le site Genealogy Project
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La théorie des nombres apparaît donc comme un des premiers sujets de recherche

pour plus de la moitié des mathématiciens de ce recensement. Neuf s’intéressent à la

géométrie des nombres ou des thèmes que nous avons rencontrés en liaison avec la

géométrie des nombres. Nous pouvons certainement voir là l’influence de Mordell dans

le choix des sujets. C’est l’interprétation de Cassels qui remarque que Mordell attirait

de nombreux “research students” à Cambridge dont la plupart travaillaient sur des pro-

blèmes liés à la géométrie des nombres30.

Une dernière source permet de donner des informations sur les étudiants qui as-

sistent aux cours de Mordell à Cambridge. Ce dernier devait demander que chacun

d’entre eux remplisse une fiche indiquant quelle formation ils avaient en théorie des

nombres (cours déjà suivis, lectures). Certaines de ces fiches retrouvées dans les pa-

piers de Mordell permettent de se faire une idée sur les connaissances d’étudiants à

Cambridge désirant se spécialiser en théorie des nombres31. Le cours d’introduction à

la théorie des nombres d’Albert Ingham est cité à plusieurs reprises et le séminaire

de Davenport une fois. Le livre qui apparaît comme un classique est celui de Hardy

et Wright, Introduction to the Theory of Numbers, mentionné à plusieurs reprises. Les

ouvrages suivants sont aussi cités dans ces fiches :

– Bachmann, Zahlentheorie,

– Gauss, Disquisitiones Arithmeticae,

– Hecke, Algebraischen Zahlen,

– Ingham, Distribution of Prime Numbers,

– Landau, Vorlesungen über Zahlentheorie et Über einige neure Fortschritte der

additiven Zahlentheorie,

– Mathews, Theory of Numbers.

Les lectures de ces étudiants sont donc avant tout anglaises et ensuite allemandes.

Nous avions déjà remarqué que les sources de Mordell sont surtout allemandes, cela

donc semble être une caractéristique partagée dans le milieu des théoriciens des nombres

de Cambridge de la fin des années 1940 et du début des années 1950.

Mordell attire donc de nombreux étudiants sur lesquels il semble exercer une in-

fluence pour le choix de leur sujet de recherche32. À notre connaissance, Mordell a très

peu encadré de thèses dans le sens où nous l’entendons maintenant. Seuls Cassels et

Davis (qui figurent dans le tableau précédent) ont obtenu un doctorat sous sa direction.

30Cassels 1973 p.505.
31Mordell (St John’s), box 7.
32Pour confirmer que Mordell exerce bien ce type d’influence sur ses étudiants il serait utile de

reconstituer plus précisément le parcours d’un nombre significatif d’entre eux. Il est en effet possible
que le choix du sujet soit la raison de leur venue à Cambridge pour suivre les cours de Mordell. Ce
dernier n’en serait alors pas directement responsable.
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Mais cela n’est pas nécessairement un indicateur très fiable à propos de l’activité d’en-

seignement d’un chercheur à cette époque en Angleterre. Le PhD apparaît en Grande

Bretagne à la fin de la Première Guerre Mondiale mais il ne commence à devenir un

passage obligé pour les futurs chercheurs qu’après la Seconde33. De plus, ce système ne

se met en place que progressivement. Cassels témoigne cependant de la manière dont

Mordell intervenait dans la formation des jeunes chercheurs. Selon Cassels, Mordell

était très peu dirigiste pour les choix de thèmes de recherche et préférait au contraire

qu’ils trouvent eux-mêmes des problèmes à étudier34.

Cassels raconte que Mordell avait surtout pour habitude de relire minutieusement les

manuscrits des « research students » et leur demandait de les réécrire tant que chaque

phrase n’était pas complètement claire : « The process continued until he could read

right through35. » Cette manière de travailler a un impact sur l’exposition des recherches

et Cassels reconnaît avoir beaucoup appris « about the art of exposition in this way,

partly from explicit comments [. . .] but much more from observing his difficulties36 ».

La transmission entre le professeur et l’étudiant se passe ici lors d’entretiens privés au

cours desquels l’apprentissage de la recherche se fait non seulement à travers la discus-

sion mais aussi par l’observation du chercheur confirmé au travail.

Nous terminons ce paragraphe par deux anecdotes montrant que Mordell est perçu

à cette époque comme un des mathématiciens à consulter pour faire de la théorie des

nombres en Angleterre.

En 1943 alors qu’il est mobilisé par la guerre, Cassels rencontre Hardy et lui fait part

de son intention de s’orienter vers la recherche en théorie des nombres après la guerre.

Hardy contacte alors Mordell, il lui explique que Cassels a déjà lu Landau et le livre

de Hardy et Wright et il lui demande de faire des suggestions car

« He really wants some definite problem which he can think about it in his

(scanty) spare time37. »

Grâce à la lettre de remerciements que Cassels adresse à Mordell le 3 octobre 1943,

nous savons que Mordell lui a conseillé d’étudier un de ses articles (il ne précise pas

lequel) et de lire Minkowski38.

Un deuxième exemple où Mordell est sollicité pour conseiller un mathématicien débu-

tant est celui de Peter Swinnerton-Dyer. En août 1942, Mordell reçoit une lettre de

33Voir le site http://www.economics.soton.ac.uk/staff/aldrich/PhD.htm . Je remercie June
Barrow-Green pour cette référence et pour les informations qu’elle m’a communiquées sur le PhD en
Angleterre.

34Cassels 1973 p.506.
35Cassels 1973 p.506.
36Cassels 1973 p.506.
37Lettre de Hardy à Mordell du 25 août 1943, Mordell (St John’s), box 1, folder 8. Hardy indique

qu’il voulait d’abord consulté Davenport mais cela n’a finalement pas été possible.
38Lettre de Cassels à Mordell du 3 octobre 1943, Mordell (St John’s), box 3, folder 19.
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Thomas Merton39 dans laquelle il lui demande son avis à propos du travail sur l’équa-

tion diophantienne A4 +B4 = C4 +D4 qu’un ami de son fils lui a montré40. Cet ami,

Swinnerton-Dyer alors âgé de 15 ans, a développé une nouvelle méthode pour résoudre

l’équation précédente41. Mordell pense que la méthode est originale et se montre très

élogieux envers ce travail

« the boy must be congratulated on a very pretty piece of work which even

an old ( ?) like myself would be pleased to have discovered.

I think the method ought to be published and I am prepared to submit his

effort to the Journal of the London Mathematical Society.[. . .]

Can you tell me something about the boy and his attainments. I shall

follow his career with great interest for he will probably be the youngest

contributor to the publications of the London Math Soc42. »

Des lettres entre Mordell et Swinnerton-Dyer sont ensuite échangées pour discuter de

la publication de cette méthode43. Mordell lui conseille aussi de lire Landau, Hardy et

Wright, Ingham (sur les nombres premiers), Salmon (sur les coniques) et Mascheroni

(sur la géométrie du compas). Pour la théorie des nombres, nous retrouvons la littéra-

ture classique de l’étudiant anglais de cette époque déjà mentionnée.

5.2.2 Des exemples de pratiques de recherche dans cette com-

munauté de mathématiciens

Nous avons noté l’influence probable de Mordell dans le choix des thèmes de re-

cherche des jeunes chercheurs. De plus, il apporte émulation et motivation dans le

groupe en manifestant son intérêt pour le travail de chacun (voir la citation de Cas-

sels à la page 343). Il s’agit maintenant de donner des éléments plus concrets pour

comprendre comment s’exerce cette influence et à quelles occasions. Les contacts avec

Mordell ne sont pas les seuls à avoir des conséquences sur la recherche mais toutes les

interactions entre les membres peuvent avoir les mêmes effets.

Ces contacts peuvent prendre la forme d’échanges informels entre deux ou un petit

groupe de personnes. Ce sont parfois des rencontres institutionnalisées pour favoriser

les échanges entre les mathématiciens, le séminaire en est un exemple. Ces deux modes

de communications sont aussi complémentaires, une discussion lors d’un séminaire peut

39Nous ne savons pas s’il s’agit d’un ami de Mordell, il indique seulement qu’il n’est pas mathéma-
ticien.

40Lettre de Merton à Mordell du 15 août 1942, Mordell (St John’s), box 3, folder 31.
41Pour des éléments sur l’histoire de cette équation ainsi qu’une présentation de la méthode d’Euler

voir Dickson 1920 p.644.
42Lettre de Mordell à Merton du 20 août 1942, Mordell (St John’s), box 3, folder 31.
43Swinnerton-Dyer 1943.
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susciter une collaboration entre deux mathématiciens sur un problème précis. Nous es-

saierons enfin de donner des exemples de ce qui est échangé et circule au sein de ce

groupe de mathématiciens.

5.2.2.1 Les séminaires et les conférences comme lieux d’échanges officiels

En 1931 quand il envisage de quitter Manchester, Mordell met en avant l’importance

du séminaire comme outil pour la recherche. Nous verrons dans la suite qu’il a fini par

organiser un séminaire à Manchester au cours duquel certains de ses résultats sur la

géométrie des nombres ont été présentés. Cassels mentionne la tenue d’un séminaire

hebdomadaire alors qu’il se trouve à Cambridge44.

Dans un de ces articles sur les formes linéaires publié en 194145, Mordell mentionne

qu’il a présenté ce travail à son séminaire et que des suggestions lui ont été faites par

Davenport et Patrick Du Val pour simplifier un point de la démonstration.

Lors du conférence à Oxford en juin 1945, Mordell aborde la question du minimum

d’une forme quadratique de n variables et de la détermination de la constante γn telle

que

f(x1, . . . , xn) ≤ γn
n
√
D ,

où les xi sont des entiers non tous nuls. Nous avons vu que cette constante a été cal-

culée pour 2 ≤ n ≤ 8. Suite à cette conférence, T. W. Chaundy propose une nouvelle

méthode permettant de déterminer γn pour 3 ≤ n ≤ 10 46. La publication de la preuve

de Chaundy entraîne des réactions chez des mathématiciens intéressés par cette ques-

tion. Alexander Oppenheim pense avoir trouvé un problème dans la démonstration de

Chaundy, il consulte à ce sujet Davenport qui est d’accord avec ses critiques. Il écrit

donc à Mordell pour lui demander son avis47. À travers cette anecdote, nous voyons

comment une communication publique a pour conséquence une publication qui, à son

tour, suscite des échanges cette fois dans la sphère privée. C’est ici à ce niveau qu’ils

essaient de se mettre d’accord sur ce qui pose problème et éventuellement de trouver

une solution.

Il serait trop restrictif de limiter notre étude au seul lieu géographique où se trouve

Mordell pour rendre compte de l’activité en théorie des nombres et surtout en géométrie

des nombres en Angleterre à cette époque. Même lorsqu’il quitte Manchester en 1941,

Davenport maintient des contacts très étroits avec Mordell particulièrement au sujet de

44Cassels 1973 p.505.
45Mordell 1941d.
46Mordell 1946b p.66.
47Lettre de Oppenheim à Mordell du 8 novembre 1946, Mordell (St John’s), box 3, folder 19.
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la géométrie des nombres. Il donne lui aussi des cours sur ce thème48 et son Inaugural

Lecture à Londres le 6 juin 1946 porte sur la géométrie des nombres49. Une bonne

illustration de ces échanges est donnée par le séminaire que Davenport commence à

organiser à son arrivée à Londres en 1945 et où la géométrie des nombres est un

thème souvent abordé. D’autre part, Mordell vient assister parfois à ce séminaire et ses

travaux y sont présentés et Davenport intervient au séminaire de Cambridge. Donnons

des exemples de sujets traités lors du séminaire de Davenport à Londres ainsi que les

intervenants50 :

1. Minkowski’s Generalized Inequality, par M. Woodger. Il s’agit d’une présentation

du chapitre 5 de Geometrie der Zahlen dans lequel Minkowski démontre le théo-

rème des minima successifs.

2. Product of Three Homogeneous Linear Forms, par J.H.H. Chalk51. La méthode

de Davenport sur ce sujet est détaillée.

3. Binary Cubic Forms, par H. Davenport. C’est la méthode de Mordell qui est

présentée.

4. Product of non Homogeneous Linear Forms I, par H. Davenport.

5. Product of non Homogeneous Linear Forms II, par H. Davenport. Les travaux de

Remak et de Landau sont abordés.

La présence au premier exposé de Mordell et de Rogers (qui assistait régulièrement au

séminaire52) est indiquée.

La preuve de Dyson de la conjecture de Minkowski sur le produit de quatre formes

linéaires non homogènes est consécutive à une intervention sur le sujet à ce séminaire53.

Davenport s’intéresse à cette conjecture depuis plusieurs années

« I have not been successful with any research- have tried the 4 linear forms

again but there is still a real difficulty54. »

Dans l’article où cette démonstration est publiée, Dyson remercie d’ailleurs Davenport

pour lui avoir suggéré ce problème et signalé les travaux de Remak et Hofreiter sur le

sujet55.

Nous avons aussi une trace d’une intervention de Davenport au séminaire de Mordell

48Les archives contiennent des notes de cours dont le contenu indique qu’elles datent d’après 1943.
D’autres notes donnent le plan d’un cours à University college of London en 1946 toujours sur la
géométrie des nombres, Davenport (WL), C 167, C 179, C 180.

49Davenport (WL), A 59, C 164.
50Davenport (WL), C 167.
51Chalk qui est un des premiers étudiants de Davenport se rend ensuite à Cambridge pour travailler

avec Mordell, Rogers et al. 1971 p.162.
52Rogers et al. 1971 p.162.
53Rogers et al. 1971 p.162. Il s’agit peut être d’un des exposés de Davenport sur le produit des

formes non homogènes mentionnés dans la liste précédente.
54Lettre de Davenport à Mordell du 14 octobre 1941, Mordell (St John’s), box 1, folder 4.
55Dyson 1948 p.83.
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à Cambridge sur la géométrie des nombres. Le 8 février 1946 il fait un exposé intitulé

Non homogeneous problems in the geometry of numbers, il revient alors en particulier

sur la question du produit de formes linéaires non homogènes56.

Une autre anecdote racontée par Rogers sur le séminaire de Davenport concerne Klaus

F. Roth. Ce dernier arrive à Londres en 1946 et suit alors des cours et le séminaire de

Davenport. En 1954, Roth fait une conférence à Amsterdam « about his work on irre-

gularities of distribution ». Davenport, peu satisfait de cette intervention, lui explique

alors comment il aurait dû présenter son travail57. Consécutivement à cet épisode, Da-

venport met en place en 1954-1955 un « teaching seminar » dont un des objectifs est

de travailler la qualité de l’exposition. Les participants à ce séminaire doivent étudier

les travaux de Siegel et Dyson sur le théorème de Thue-Siegel pour les exposer ensuite

aux autres. Une grande partie du travail est alors effectuée par Roth. C’est semble-t-il

à cette occasion que Roth acquiert une très bonne connaissance de ce sujet, pour lequel

il obtient la médaille Fields en 1958 58.

5.2.2.2 Des traces de contacts informels

Il est bien entendu plus difficile d’avoir des informations sur les échanges directs

entre scientifiques qui se font en dehors des circuits académiques officiels. Mordell et

Davenport en ont cependant laissé quelques indices particulièrement dans leurs publi-

cations.

Les collaborations entre ces mathématiciens sont de natures diverses. Elles peuvent être

des relectures de manuscrits avant une publication. Ces relectures sont l’occasion de

corriger des erreurs éventuelles, de suggérer une simplication ou encore d’apporter une

précision sur un aspect de la preuve. Mordell mentionne des relectures de ses articles

par exemple par Davenport, Richard Rado, Kurt Mahler ou Kathleen Ollerenshaw59.

Parfois les collaborateurs apportent leur aide sur des points spécifiques dans l’élabo-

ration de l’article destiné à être publié. Par exemple, Mordell remercie à plusieurs

reprises Mahler pour avoir réalisé les dessins dans ses articles ou parfois des tables

numériques60. Dans un article publié en 1945, Mordell remplace sa version d’une partie

de la démonstration par une méthode due à Davenport car il la juge plus simple61.

L’aide peut aussi intervenir avant le moment de la publication, quand la recherche est

en train de se faire : Mordell remarque que les tables précédentes lui ont été utiles « in

56Davenport (WL), C 168.
57Roth raconte que peu de temps après sa discussion avec Davenport, Mordell l’a félicité pour son

exposé qui lui a rappelé le style de Davenport.
58Rogers et al. 1971 p.163.
59Mordell 1936, 1945b, 1944a.
60Mordell 1945b, 1944a.
61Mordell 1945b p.372.
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the first stages of this work62 », Mahler est aussi remercié pour « a very useful model

of the polyhedron63 ».

Au cours d’échanges privés se règlent aussi des détails sur la forme des publications.

Dans son article On the geometry of numbers in some non-convex regions, Mordell fait

référence à un résultat d’analyse de George Neville Watson qu’il utilise dans son tra-

vail64. Watson écrit en fait cet article après une suggestion de Mordell et ils veulent que

les deux articles soient publiés l’un après l’autre. Watson, alors éditeur des Proceedings

of the London Mathematical Society, arrange cette question et ils discutent entre eux la

manière de citer son travail dans l’article de Mordell65. Watson aborde aussi la question

de l’insertion des figures dans l’article de Mordell (les dessins ont d’abord été égarés),

problème auquel ce dernier semble attacher de l’importance.

Les références à des travaux non encore publiés sont un autre signe de collaboration.

Les exemples chez Mordell sont assez nombreux. Dans le texte de la conférence faite à

Oslo et publié en 1936 il cite des articles de George Szekeres et un article de Chao Ko66

sur les réseaux, tous les deux publiés en 1937 dans le Journal of the London Mathe-

matical Society67. Dans un article sur les formes linéaires homogènes, il fait référence

à un résultat de G. Z̆ilinskas publié dans le même volume et il remarque aussi

« While this paper was being written, Davenport found better results for

n = 4, 5 by a modification of his first method68. »

Tous ces éléments témoignent que plusieurs mathématiciens travaillent en même temps

sur le même sujet, ici la géométrie des nombres, mais aussi qu’ils communiquent direc-

tement sur l’avancement de leurs travaux.

Il semble que Mordell soit particulièrement efficace pour s’entourer de collaborateurs

de grandes qualités dont le travail commun et les échanges favorisent le développement

des recherches de chacun d’eux

« Es ist ja wirklich sehr schön, dass Sie jetzt in Manchester so tüchtige

Mitarbeiter wie Davenport, Mahler, Erdös und Ko besitzen. Sie alle arbei-

ten in verwandten Gebieten, und so wird aus dieser Arbeitsgemeinschaft

sicherlich viel Erspriessliches entstehen69 ! »

62Mordell 1945b p.339.
63Mordell 1941d p.8.
64Mordell 1945b p.349.
65Lettres de Watson à Mordell du 18 avril 1942, du 4 octobre 1942 et du 26 septembre 1943,

Mordell (St John’s), box 4, folder 36.
66Herbert William Richmond perçoit Chao Ko comme un élève de Mordell. Lettre de Richmond à

Mordell du 26 octobre 1936, Mordell (St John’s), box 3, folder 25.
67Mordell 1936 p.238.
68Mordell 1941d p.5.
69« Il est vraiment très beau que vous ayez maintenant à Manchester de si bons collaborateurs
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Les meilleurs exemples de ces échanges sont bien entendu ceux rencontrés entre

Mordell et Davenport en particulier au sujet des formes cubiques binaires où parfois

les simplications de la méthode de Mordell sont publiées avant la démonstration initiale.

La question des formes cubiques fournit aussi une illustration des idées qui circulent

entre les deux mathématiciens. Rappelons que la méthode de Mordell pour aborder

le problème est de montrer l’existence d’un point d’un réseau dans un domaine non

convexe. Pour cela, il détermine des parallélogrammes presque inclus dans les domaines

étudiés et qui contiennent au moins un point du réseau. Après avoir ainsi déterminé

plusieurs points du réseau il en construit un nouveau qui répond au problème en fai-

sant une combinaison linéaire des précédents. Nous avons constaté que cette idée de

Mordell passe dans le travail de Davenport où elle est exprimé sous une autre forme.

Chez Davenport la preuve est rédigée uniquement avec des inégalités mais derrière ce

changement de présentation nous avons détecté une méthode commune : la détermi-

nation de points du réseau dans différents parallélogrammes (en termes arithmétiques,

des entiers qui vérifient des systèmes d’inégalités) afin de construire un point particulier

permettant de conclure.

5.3 Les échanges internationaux

5.3.1 Voyages, cours et conférences à l’étranger

Le groupe constitué autour de Mordell a de très nombreux contacts internationaux,

c’est attesté par exemple par les voyages faits par Mordell à l’étranger mais aussi comme

nous le verrons plus tard par sa correspondance.

Au cours de sa carrière Mordell est intervenu (cours ou conférences) dans au moins

191 institutions différentes se trouvant dans 28 pays différents70. La région du monde

où Mordell s’est le plus rendu est l’Amérique du Nord avec 79 interventions aux Etats

Unis et 19 au Canada, vient ensuite l’Allemagne avec 17 institutions visitées. Nous

retrouvons les rapports privilégiés avec l’Allemagne alors qu’à titre de comparaison il

n’est venu que deux fois en France (à l’Institut Henri Poincaré les 5 et 6 juin 1963 et

à l’Institut des Hautes Etudes Scientifiques le 7 juin 196371).

Dans une lettre à Hardy certainement de 192372, Mordell annonce qu’il va donner

comme Davenport, Mahler, Erdös et Ko. Ils travaillent sur des domaines proches et de cette commu-
nauté de travail il adviendra sûrement beaucoup de choses productives ! », lettre de Walfisz à Mordell
du 17 février 1938, Mordell (St John’s), box 4, folder 35.

70Institutions at which Professor L. J. Mordell has lectured up to May 11, 1971, Mordell (St
John’s), box 5. Cette liste est reproduite en annexe.

71Mordell (St John’s), box5.
72Il s’agit d’une lettre non datée.
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des cours à l’université de Chicago

« I shall be giving a course of lectures on the theory of numbers at Chicago

University during the coming summer73. »

Dans une autre lettre envoyée de Chicago le 24 juillet, Mordell donne des précisions

sur les cours qu’il propose. Il explique à Hardy que les étudiants ont des connaissances

très hétérogènes donc

« I am given them a course on the T. of N. starting from the beginning74 ».

Les thèmes abordés sont par exemple le nombre de diviseurs d’un entier n, le problème

des diviseurs de Dirichlet, les congruences, les lois de réciprocité, les sommes de Gauss,

les formes quadratiques et la résolution d’équations comme y2 = x3 +k ou x4 +y4 = z4.

Mordell se rend aussi plusieurs fois à l’Institute for Advanced Study à Princeton. Le

4 janvier 1939, Hermann Weyl mentionne une visite de Mordell à l’automne prochain75.

Quelques mois plus tard en novembre, Weyl annonce à Mordell que l’introduction de

son séminaire sur la current literature qu’il a consacrée à la géométrie des nombres a

été soumis pour publication dans les Proceedings of the London Mathematical Society.

Il semble que cette séance du séminaire sur la géométrie des nombres aurait dû avoir

lieu en présence de Mordell, mais ce dernier a été obligé d’écourter son séjour. Weyl

demande si Mordell ou Davenport pourrait s’occuper de la relecture de l’article76. Cet

article a bien été publié dans les Proceedings en 1942 et Weyl mentionne la relecture

du manuscrit par Mordell qui lui a suggéré des références supplémentaires77.

Nous avons la trace d’une autre invitation à Princeton cette fois de John Von Neumann

en 1947. Il lui propose de faire un exposé sur le sujet de son choix tout en remarquant

que le thème qu’il a abordé à son Inaugural Lecture à Cambridge serait parfait78.

Au cours des années 1950-1960, Mordell est “Visiting Professeur” dans plusieurs

universités nord américaines (voir la figure 5.6). En particulier, il est à l’université

du Colorado en 1959-1960, puis à l’université d’Arizona de 1961 à 1964. Nous avons

plusieurs sources précisant les activités de Mordell pendant ces périodes. D’abord, une

proposition de programme de recherche datée du 20 décembre 1961 contient un court

curriculum vitae, quelques publications ainsi qu’une description détaillée des thèmes

73Lettre de Mordell à Hardy du 14 novembre (1923), Mordell (St John’s), box 1, folder 8.
74Lettre de Mordell à Hardy du 24 juillet (1924), Mordell (St John’s), box 1, folder 8.
75Lettre de Weyl à Mordell du 4 janvier 1939, Mordell (St John’s), box 4, folder 39.
76Lettre de Weyl à Mordell du 16 novembre 1939, Mordell (St John’s), box 4, folder 39.
77Weyl 1942. Weyl ne précise pas la raison de cet intérêt pour la géométrie des nombres, peut

être que c’est la venue de Mordell qui a motivé le choix de ce thème pour le séminaire. Weyl a publié
deux autres articles en liaison avec la géométrie des nombres au début des années 1940 concernant la
réduction des formes quadratiques.

78Lettre de J. Von Neumann à Mordell du 23 septembre 1947, Mordell (St John’s), box 3, folder
19.
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mathématiques qu’il compte aborder79. Il est intéressant de noter que Mordell se pré-

sente comme le « Founder of the Modern British School in the Geometry of Numbers »

(figure 5.6 80). Le titre de ce programme de recherche est Diophantine Equations - L-

Series, and Related Aspects of Analytic Number Theory. Mordell propose d’approfondir

ses recherches sur la finitude du nombre de points rationnels sur les courbes de genre

plus grand que 2 (étude de cas particuliers de genre 2 et 3), l’estimation de sommes

exponentielles
p−1
∑

x=0

e
2πi
p

(a0xn+···+an−1x) ,

le nombre de solutions de congruences f = 0 (mod p) et sur la distribution des résidus

quadratiques.

De cette période date aussi une demande à la U.S. National Science Foundation du 15

juillet 1962 pour proposer l’organisation d’un symposium à l’occasion du 75ème anni-

versaire de Mordell81. Ce symposium, qui doit durer 3 jours en mars 1963 à l’université

d’Arizona, a un double objectif, d’une part, promouvoir le développement du nouveau

département de mathématiques de cette université et d’autre part,

« to issue a mathematical volume to help perpetuate the legend of Mordell

(which happens to be real, but which would still have been worth inventing

for the purpose of morale and inspiration for future number theorists82). »

La fin de cette demande détaille tous les lieux de conférences de Mordell entre août

1961 et janvier 1964 et montre en particulier que le 5 et 6 juin 1963 il a fait des exposés

à l’Institut Henri Poincaré à Paris et le 7 juin 1963 une intervention à l’Institut des

Hautes Etudes Scientifiques.

Malgré les relations privilégiées que Mordell semble avoir avec son pays natal, une

difficulté apparaît en 1953 quand son visa pour entrer aux Etats Unis est refusé. Mordell

doit se rendre à l’université de Stanford pour y donner des cours pendant l’été 1953 et

ensuite à partir de septembre 1953 à l’université du Colorado pour faire de la recherche.

Il semble qu’au mois de mai 1953 Mordell commence à s’inquiéter de ne pas avoir

de nouvelles pour son visa et les premières démarches entreprises pour obtenir des

informations restent sans réponse, son cas étant « under consideration by the American

Embassy at London83 ». Malgré les multiples démarches pour débloquer la situation le

visa est officiellement refusé le 12 octobre 1953 en vertu de la « section 212(a) of The

79Mordell (St John’s), box 3, folder 19.
80Reproduced by permission of the Master and Fellows of St John’s College, Cambridge.
81Mordell (St John’s), box 5.
82Cette citation est extraite d’un document intitulé « Preliminary Form of Proposal to the U.S.

National Science Foundation for a symposium to commemorate the 75th birthday of profes-

sor louis j. mordell at the university of arizona ». Cette demande est signée par Harvey
Cohn, « Head, Department of Mathematics », Mordell (St John’s), box 5.

83Lettre de Maurice Mordell à Louis Mordell du 20 juin 1953, Mordell (St John’s), box 4, folder
34.
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Fig. 5.6 – Extrait du CV de Mordell pour le programme de recherche
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Immigration and Nationality Act84 ». En 1955 il apprend que c’est plus précisément le

paragraphe 27 de la loi précédente qui a motivé le refus, ce paragraphe vise à empêcher

l’entrée aux Etats Unis des étrangers

« who the consular officer or the Attorney General knows or has reason to

believe seek to enter the United States solely, principally, or incidentally

to engage in activities which would be prejudicial to the public interest, or

endanger the welfare, safety, or security of the United States85 ».

Mordell et sa famille (ses frères sont encore à Philadelphie) essaient de comprendre les

raisons d’une telle décision mais il semble qu’ils n’aient jamais eu d’explication officielle.

Dans les correspondances plusieurs hypothèses sont cependant avancées. Ils évoquent

la possibilité d’un homonyme mais aussi l’oubli de Mordell qui n’a pas signalé lors de sa

première demande qu’il avait déjà été arrété une fois86. Dans une lettre du 5 novembre

1953, son frère Albert suggère que le problème peut venir de l’abonnement qu’il a

souscrit pour lui à un journal qui publie des articles anti-catholiques et dont certains

collaborateurs sont communistes87. Avec son autre frère Maurice, Mordell discute du

fait que ses conférences dans des pays de l’Est peuvent être la cause du refus

« When I applied for a visa on March 16th, it was my visit in 1948 to

Czechoslovakia and Hungary that seemed to create difficulty. One of the

letters from Colorado in May referred to a security investigation about me ;

but as I have already said, I have never had anything to do with communism

or politics88. »

Mordell obtient finalement un visa pour entrer aux Etats Unis seulement en 195989.

Davenport s’est lui aussi rendu à plusieurs reprises aux Etats Unis, en particulier à

l’université de Stanford au cours des années 1947 et 1948 puis en 1950. À Stanford, Da-

venport enseigne la théorie des groupes, la théorie des nombres pour les “undergraduate

students” et les fractions continues, la géométrie des nombres, la théorie analytique des

nombres pour les “graduate students90”. Pendant l’année 1947-1948, il conduit le sémi-

84Lettre de Olive M. Jensen (American Vice Consul, American Ambassy, London) à Mordell du 12
octobre 1953, Mordell (St John’s), box 4, folder 34.

85Mordell (St John’s), box 4, folder 34.
86Nous ne connaissons pas ni la date ni les raisons de l’arrestation, son frère Albert fait allusion

à une destruction de photo d’identité. Lettre de Albert Mordell à Louis Mordell du 21 janvier 1954,
Mordell (St John’s), box 1, folder 7.

87Lettre de Albert Mordell à Louis Mordell du 5 novembre 1953, Mordell (St John’s), box 1,
folder 7.

88Louis Mordell cité par son frère Maurice dans une lettre du 21 septembre 1953 adressée à George
I. Bloom. Bloom est l’assistant d’un sénateur, Edward Martin, auquel ils auraient demandé de l’aide.
Mordell (St John’s), box 4, folder 34.

89Mordell n’a pas été le seul à avoir des problèmes de visa pour entrer aux Etats Unis dans les
années 1950, voir par exemple le cas d’Hadamard dans Maz’ya et Shaposhnikova 1998 p.271.

90Royden 1989 p.255. D’après Royden, Davenport aurait eu des propositions pour obtenir un poste

368



5.3 CHAPITRE 5

naire du département avec Pólya sur le thème de l’approximation diophantienne et la

théorie des nombres irrationnels91. De cette période nous avons aussi le résumé d’un

cours ou d’une conférence sur la géométrie des nombres à Berkeley en avril 1948. Les

thèmes abordés sont le produit de deux formes linéaires non homogènes, le théorème

de Minkowski et les formes quadratiques92.

Le deuxième pays avec lequel Mordell a de nombreux contacts est donc l’Allemagne,

cependant nous avons moins de détails sur les séjours qu’il y effectue. Il se trouve en

Allemagne au début de l’année 1932 pendant plusieurs mois. Il passe alors par Berlin93,

puis à la fin du mois de janvier il est à Göttingen. Mordell donne quelques informations

sur ses activités dans des lettres à Davenport. À Göttingen, il discute avec Landau sur

les problèmes de sommes exponentielles94, il rencontre aussi Van der Waerden et Siegel.

Il suit des cours d’Artin ainsi que des séances des séminaires de Noether sur la théorie

du corps de classe et de Landau sur le « circle problem ». À la fin du mois de février

1932, il fait un exposé sur les congruences à Frankfort95.

Le mathématicien allemand avec lequel les relations sont les plus importantes à la fin des

années 1920 et au début des années 1930 est Helmut Hasse. Nous avons déjà mentionné

les circonstances dans lesquelles Mordell recommande Davenport à Hasse pour aller

travailler avec lui à Marbourg. Quand Mordell les met en contact en 1930, tous les deux

notent qu’ils ont en fait peu d’intérêts mathématiques communs. Davenport s’inquiète

que

« There may be nobody at Marburg interested in the analytical theory of

numbers96. »

Hasse ne semble pas penser que cela soit réellement un problème

« Many thanks for your kind letter, particularly for your writing to Mr.

Davenport. Three days ago I received a very kind letter from him. I think

he will come, though I am not at all interested in lattice points and only

a little in Zetafunction. But I think that is no pity. We can learn from

another, each the interests of the other97. »

Effectivement comme le suggère Hasse, les thèmes de recherche ont circulé entre ces

mathématiciens. L’intérêt de Mordell et Davenport pour l’estimation du nombre de

permanent à Stanford à cette époque. Le cours sur la géométrie des nombres de 1950 est conservé
dans les archives de Davenport. Voir les commentaires sur ce cours dans le chapitre 6.

91Royden 1989 p.258.
92Davenport (WL), C165 et C 166.
93Lettre de Davenport à Mordell du 11 janvier 1932, Mordell (St John’s), box 1, folder 4.
94Lettre de Mordell à Davenport du 26 janvier 1932, Davenport (WL), G 211.
95Lettre de Mordell à Davenport du 3 mars 1932, Davenport (WL), G 211.
96Lettre de Davenport à Mordell du 30 novembre 1930, Mordell (St John’s), box 1, folder 4.
97Lettre de Hasse à Mordell du 10 décembre 1930, Mordell (St John’s), box 2, folder 9.
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solutions de certaines congruences a conduit Hasse à travailler sur l’hypothèse de Rie-

mann pour les fonctions zeta associées aux courbes elliptiques98. La correspondance

entre Davenport et Mordell témoigne de la collaboration entre Hasse et Davenport sur

ce thème quand ce dernier est en Allemagne99.

Mordell donne aussi une série de conférences dans plusieurs universités allemandes

en 1951. Il répond en fait à une invitation du Foreign Office (German Section) :

« Dear Professor Mordell,

Since the end of the war it has been our policy to exercise an in-

fluence on German educational and cultural life and to this end we have

made arrangements for a number of British teachers, scholars and people

distinguished in the political and cultural fields to give lectures to German

audiences and to meet German leaders.

Although the situation in the British Zone and the British Sector of

Berlin has changed materially over the past two years the need for contact

with the West is still a very real one, and we are anxious to continue our

programme over the coming year.

I am, therefore, writing to ask whether you would be able to help

us in this work by going to Germany for a week or so at some time in the

future convenient to you to give single lectures to German audiences and to

meet individual Germans. Bonn University has already asked if you would

be prepared to lecture at their University. If you can spare the time to go

we could arrange for you to lecture at one or two other University towns as

well as Bonn, and in addition I should be glad to know whether you would

also be prepared to lecture at British Centres100. »

Mordell accepte cette proposition et son séjour est prévu du 27 juin au 11 juillet 1951.

Il fait alors des conférences à Cologne, Bonn et Göttingen. Nous ne savons pas quels

sont les thèmes finalement retenus pour ces exposés mais il semble que Mordell ait eu

l’intention de parler de géométrie des nombres car il avait demandé des renseignements

sur les connaissances du public des conférences à ce sujet

« I will make enquiries from Bonn and Cologne about the audiences’ know-

98Roquette 2004.
99Voir par exemple les lettres de Davenport à Mordell du 9 avril 1933 et du 11 juillet 1933, Mordell

(St John’s), box 1, folder 4.
100Lettre de W. D. Rusbatch (from German Education and Information Department) à Mordell du

12 octobre 1950, Mordell (St John’s), box 2, folder 14.
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ledge of the geometry of numbers and will let you know as soon as I possibly

can101. »

Les contacts internationaux de Davenport sont aussi nombreux. Dans les années

1950 et 1960, citons par exemple ses collaborations avec D.J. Lewis et E. Bombieri qui

sont l’occasion pour Davenport de se rendre à l’université du Michigan et à Milan102.

Mordell et Davenport sont aussi intervenus lors de congrès internationaux et en

particulier au sujet de la géométrie des nombres.

Le contenu de la conférence de Mordell en 1936 à Oslo dont le thème central est le

produit de formes linéaires non homogènes103 a déjà été discuté en détails. Nous avons

mentionné comment cette communication publique (exposé oral et ensuite publication)

entraîne des échanges à un autre niveau (correspondance) entre Mordell et Tschebota-

reff. Ce dernier dans ses lettres informe Mordell des résultats qu’il a démontrés ainsi

que de la méthode employée104. En réaction à ces contacts privés, Mordell contribue à

la diffusion du travail de Tschebotareff en y faisant référence dans un article105.

Au congrès international de 1950 à Harvard, Davenport se propose de faire un bilan

des dernières avancées en géométrie des nombres et particulièrement sur les conjectures

discutées par Mordell dans son exposé de 1936 106. Davenport fait explicitement réfé-

rence à Tschebotareff quand il aborde la question du produit des formes linéaires non

homogènes et il mentionne le fait que la démonstration de l’estimation donnée par le

mathématicien russe est reproduite dans la seconde édition du livre Introduction to the

Theory of Numbers de Hardy et Wright107. Davenport renvoie à la seconde édition de

1945 et nous ne savons pas si le « théorème de Tschebotareff » faisait déjà partie de

l’édition originale de 1938. Cela semble cependant peu probable car la première lettre

de Tschebotareff à Mordell à ce sujet date de février 1938 mais cela montre qu’après

l’intervention de Mordell, Tschebotareff est intégré dans l’histoire de ce problème.

Un deuxième aspect intéressant de cette conférence est que Davenport intègre dans sa

présentation du sujet les transformations du domaine que nous avons déjà commen-

101Lettre de W. D. Rusbatch à Mordell du 24 avril 1951, Mordell (St John’s), box 2, folder 14.
102Rogers et al. 1971 p.164.
103Mordell 1936.
104Lettres de Tschebotareff à Mordell du 24 février 1938 et 19 mars 1938, Mordell (St John’s),

box 3, folder 19.
105Mordell 1940b.
106Davenport 1950a.
107Ce livre aborde largement la géométrie des nombres et il est intéressant de noter que la forme

du chapitre XXIV, Geometry of Numbers, doit beaucoup à l’intervention de Davenport, Rado et
Heilbronn : « Dr. H. Davenport and Dr. R. Rado have also read parts of the book, and in particular
the last chapter, which, after their suggestions and Dr. Heilbronn’s, bears very little resemblance to
the original draft », Hardy et Wright 1960. Ces trois mathématiciens font tous partie du cercle de
Mordell et cela montre bien que la compétence de ce groupe en géométrie des nombres est reconnue.
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tées. L’insistance est maintenant davantage mise sur la notion de réseau que sur celle de

forme. Davenport revient sur une conjecture exprimée en 1936 par Mordell en termes

d’inégalités sur des formes linéaires de la manière suivante :

« The first conjecture concerns what we should now call the critical lattices

of an n-dimensional cube108. »

De nombreux autres problèmes sont expliqués en utilisant les notions de déterminants

critiques et de réseaux critiques. En particulier rétrospectivement il traduit dans ces

termes son travail de la fin des années 1930 sur le produit de trois formes linéaires

homogènes

« In 1937 I found the critical determinant of another unbounded region,

namely the three-dimensional region defined by |xyz| ≤ 1 ; and this proved

to be the starting point for a good deal of new work. The value of the critical

determinant is 7, and the critical lattices are closely related (as indeed was

expected) to a particular cubic field. This is the cubic field of least positive

discriminant, 49, and is generated by the equation θ3 +θ2−2θ−1 = 0 109. »

Ces quelques exemples montrent que Mordell et Davenport110 participent très lar-

gement à la diffusion de leur travail sur la géométrie des nombres.

5.3.2 L’accueil de visiteurs étrangers

Mordell attire à Manchester et à Cambridge des étudiants ou des jeunes chercheurs

étrangers intéressés par la théorie des nombres.

Parmi les fiches d’étudiants avancés ayant suivi les cours de Mordell à Cambridge,

nous avons celle d’un jeune docteur de l’université de Lausanne, G. Vincent, qui a eu

connaissance des travaux de Mordell par François Châtelet111 de Lyon112.

En 1935, il semble que Mordell se prépare à recevoir un étudiant de Hambourg (Bü-

nemann). Il reçoit à ce sujet une lettre de remerciements d’Artin le 17 octobre dans

laquelle ce dernier précise les thèmes de recherche qui intéressent cet étudiant. Il vient

à Manchester pour faire de la théorie des nombres et il s’est pour l’instant plus parti-

culièrement consacré à la théorie du corps de classe113.

Après la guerre, les universités tchèques qui ont été fermées pendant six ans essaient

108Davenport 1950a p.166.
109Davenport 1950a p.171.
110Rappelons aussi la conférence sur la géométrie des nombres faite par Davenport en 1946 à

Bruxelles.
111Il s’agit du fils d’Albert Châtelet dont le cours au Collège de France en 1911 intègre des résultats

de Minkowski sur la géométrie des nombres. Ce cours est présenté dans le chapitre 6.
112Mordell (St John’s), box 7.
113Lettre de Artin à Mordell du 17 octobre 1935, Mordell (St John’s), box 3, folder 19.
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de se réorganiser, Jarnik écrit à Mordell en septembre 1946 afin d’étudier la possibilité

d’envoyer certains de leurs étudiants en Angleterre :

« After a long standstill of our educational and scientific activity we stand

before the task of raising the level of our young generation. For this purpose,

it will be very useful to send our young talented mathematicians abroad.

[. . . ] Now, as England is one of the leading countries in many branches of

the mathematical research-work, we were very happy if we could send our

young scientific workers to your country.

[. . . ] I hope you will be so kind as to aid me in order that I may attain the

aim explained above114. »

Cet épisode montre que Mordell fait partie des personnes qu’il est légitime de contacter

en Angleterre pour réussir à placer des étudiants. Il possède à la fois le poids institu-

tionnel pour trouver des solutions et la crédibilité en tant que chercheur pour que la

venue d’étudiants puisse être bénéfique pour eux.

Mordell n’accueille pas seulement des étudiants mais aussi des chercheurs plus

confirmés. D’après une lettre de remerciements qu’il envoie à Mordell en août 1939, G.

Z̆ilinskas fait partie de ces chercheurs. Il aurait passer environ deux ans à Manchester115

et nous avons vu qu’il a publié sur la géométrie des nombres.

En mai 1946, Johannes G. Van Der Corput doit se rendre en Angleterre avec une

délégation de scientifiques. Il veut en profiter pour rencontrer Mordell afin de parler

« about your discoveries in the war years and to speak about the Mathe-

matical Centre of the Netherlands, especially about the relations between

English and Dutch mathematicians and about the relations between pure

and applied Mathematics116. »

Van Der Corput apparaît ici s’intéresser à des questions administratives et d’organi-

sation de la recherche et c’est peut être de l’expérience de Mordell sur ces sujets qu’il

compte profiter.

Mordell reçoit deux visiteurs français pendant qu’il se trouve à Manchester. C’est

Jacques Hadamard qui introduit André Weil auprès de Mordell. Dans une lettre da-

tée du 5 janvier 1928, Hadamard explique que Weil s’intéresse maintenant aux points

rationnels sur les courbes algébriques et que

« His intention is precisely to take your own results as a starting point and

try to extend them ; this is the reason why he would be especially desirous

to see you117. »

114Lettre de Jarnik à Mordell du 21 septembre 1946, Mordell (St John’s), box 3, folder 19.
115Lettre de Z̆ilinskas à Mordell du 1er août 1939, Mordell (St John’s), box 3, folder 19.
116Lettre de Van Der Corput à Mordell du 15 mars 1946, Mordell (St John’s), box 3, folder 33.
117Lettre de Hadamard à Mordell du 5 janvier 1928, Mordell (St John’s), box 4, folder 37.
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Weil se rend à Manchester dès le mois de janvier 1928, il rapporte plus tard que Mor-

dell se serait en fait peu intéressé à la généralisation de son théorème sur les points

rationnels des courbes elliptiques sur laquelle Weil travaillait pour sa thèse118. Il fait

d’ailleurs part à Mordell des difficultés rencontrées pour trouver quelqu’un qui accepte

de rapporter sa thèse, Emile Picard a refusé (« because I spoke too much of ideals in

it ») et finalement René Garnier a accepté119. Weil a fait d’autres séjours par la suite

à Manchester, par exemple en juin 1932120.

Enfin nous avons la trace de la venue à Manchester de Claude Chabauty en 1938 juste

après la fin de sa thèse121.

5.3.3 La correspondance de Mordell

La correspondance de Mordell témoigne de son appartenance à un large réseau de

mathématiciens. Le nombre des correspondants différents de Mordell est important,

environ 130. Parmi eux 40 ont au moins trois lettres adressées à Mordell conservées

dans ses archives (voir le tableau 5.3 122).

Correspondants Nombre de lettres première - dernière lettre

Davenport Harold 77 03/02/1929 - 17/08/1956

Hardy Godfrey Harold 60 09/02/1920 - 29/12/1949

Erdös Paul 48 12/12/1933 - 23/11/1960

Mahler Kurt 41 03/05/1932 - 07/01/1957

Hasse Helmut 21 26/11/1928 - 21/01/1972

Siegel Carl Ludwig 19 24/03/1926 - 23/05/1967

Heilbronn Hans Arnold 16 28/07/1933 - 05/10/1936

Richmond Herbert William 14 02/12/1929 - 30/12/1943

voir la suite page suivante

118Weil 1991.
119Lettre de Weil à Mordell du 25 février 1928, Mordell (St John’s), box 4, folder 37.
120Lettre de Weil à Mordell du 6 juin 1928, Mordell (St John’s), box 4, folder 37.
121Lettre de Chabauty à Mordell du 12 janvier 1938, Mordell (St John’s), box 3, folder 19. Plus

tard Chabauty travaille aussi sur la géométrie des nombres.
122Dans ce tableau seules les correspondances avec des mathématiciens ont été indiquées, en par-

ticulier nous avons exclus la correspondance familiale. Parmi les mathématiciens en correspondance
avec Mordell nous avons gardé ici ceux dont au moins trois lettres adressées à Mordell sont conservées
dans les archives. La deuxième colonne donne donc le nombre de lettres adressées à Mordell et la
dernière les dates de la première et la dernière de ces lettres.
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Correspondants Nombre de lettres première - dernière lettre

Milne Edward Arthur 12 29/01/1932 - 29/05/1941

Rado Richard 11 23/01/1934 - 01/01/1943

Swinnerton Dyer Peter 11 1942 - 1963

Chapman Sydney 10 11/07/1925 - 27/06/1957

Hecke Erich 9 21/02/1924 - 01/04/1939

Stuart T. 9 27/12/1934 - 1938

Watson George Neville 9 12/05/1933 - 26/09/1943

Landau Edmund 8 22/11/1927 - 29/04/1937

Walfisz Arnold 8 04/06/1934 - 17/02/1938

Baer Reinhold 7 27/07/1933 - 20/10/1953

Hassé Henry Ronald 7 01/12/1933 - 23/01/1935

Lubelski Salomon 7 27/10/1937 - 25/07/1939

Weil André 6 25/02/1928 - 06/06/1932

Weyl Hermann 6 29/09/1936 - 16/11/1939

Whittaker Edmund Taylor 6 28/03/1924 - 11/04/1955

Hilbert David 5 05/02/1928 - 1931

Newman Maxwell H. A. 5 12/05/1933 - 1945

Remak Robert 5 23/09/1933 - 09/08/1939

Schur Issai 5 09/12/1931 - 10/05/1937

Segre Beniamino 5 24/06/1942 - 05/06/1949

Todd John Arthur 5 19/01/1933 - 17/04/1964

Van Der Corput Johannes G. 5 06/03/1935 - 30/05/1947

Western A. E. 5 10/02/1936 - 21/05/1938

Baker Henry Frederick 4 19/04/1922 - 24/01/1945

Littlewood John Edensor 4 15/10/1929 - 1933

Hua Loo Keng 4 19/03/1939 - 15/01/1957

Nagell Trygore 4 28/01/1923 - 16/11/1959

voir la suite page suivante
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Correspondants Nombre de lettres première - dernière lettre

Snow Charles Percy 4 18/05/1962 - 23/09/1969

Tschebotareff Nikolay 4 14/05/1931 - 19/03/1938

Veblen Oswald 4 04/09/1934 - 31/07/1939

Brun Viggo 3 15/06/1949 - 03/01/1958

Ko Chao 3 02/07/1936 - 09/09/1939

Oppenheim Alexander 3 21/12/1930 - 08/11/1946

Tab. 5.3: Correspondants de Mordell (au moins 3 lettres)

Ces correspondances sont de natures diverses. Certaines ne traitent que de questions

administratives, c’est le cas par exemple de celles de Whittaker, Lubelski. D’autres

concernent exclusivement des problèmes de postes et de recrutement : Veblen, Re-

mak, Hassé. Il y a aussi de brefs échanges sur un ou deux sujets mathématiques très

précis : Oppenheim (les formes quadratiques), Nagell (des équations diophantiennes

particulières), Tschebotareff (équations diophantiennes et produit de formes linéaires

non homogènes), Western (équations diophantiennes), Hecke (théorie analytique des

nombres, fonctions theta, fonctions zeta, fonctions modulaires). Les correspondances

plus importantes abordent divers aspects des thèmes précédents. Un point commun

qu’il est intéressant de noter est le type de discussions mathématiques que nous trou-

vons. Il n’y a pas de commentaires généraux sur une méthode, une démonstration, la

bonne manière d’aborder un problème, l’heuristique etc. . . Quand il est question de

mathématiques, il s’agit presque toujours de points très précis et le plus souvent as-

sez technique. La correspondance avec Davenport, pourtant assez volumineuse, illustre

bien cette observation.

Nous voulons revenir sur un épisode à propos de la correspondance déjà mentionné

mais qui prend une autre signification dans le contexte de ce chapitre. En effet, il

témoigne à nouveau du passage de communications dans la sphère privée à un tra-

vail publié. En 1937, Mordell fait part à Davenport d’une démonstration de Siegel qui

prouve l’existence d’une constante qui ne dépend que de n et qui majore le minimum

sur les entiers de la valeur absolue du produit de n formes linéaires non homogènes.

Il s’agit alors du premier résultat général (pour n formes) au sujet de la conjecture

de Minkowski. Siegel communique sa méthode à Mordell dans une longue lettre da-
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tée du 8 octobre 1937 123. Davenport s’intéresse alors à ce problème et en reprenant

les idées de Siegel il simplifie sa démonstration. Siegel réagit favorablement à ce tra-

vail de Davenport et donne son accord pour qu’il soit publié. Il note cependant que

l’estimation obtenue est encore assez éloignée de la borne 2−n de la conjecture de

Minkowski124. L’article de Davenport est publié finalement dans le volume de 1937 de

Acta Arithmetica125, c’est sa première contribution à la géométrie des nombres publiée.

5.4 Quelques aspects du travail administratif et ins-

titutionnel de Mordell

5.4.1 Le recrutement à Manchester

Nous avons vu que lorsqu’il envisage de quitter Manchester en 1931, Mordell se

plaint en particulier de ne pas pouvoir être en contact avec des étudiants se destinant

à la recherche en mathématiques. Effectivement, seuls deux PhD et deux Masters of

Sciences sont délivrés à l’université de Manchester avant 1940126 :

• PhD.

- E.J. Williams, The scattering of X-rays and the quantum theory, 1926

- A. Porter, The differential analyser and some applications, 1936

• MSc.

W. Smith, An investigation of the torsional stresses in prisms of irregular cross

section, by the soap film analogy, 1935

O. Buenemann127, A survey of the methods for the solution of non-linear oscilla-

tion equations, 1938.

Aucun de ces travaux ne concerne la théorie des nombres, un paradoxe pour ce qui est

perçu comme « the school of Manchester ».

En fait, comme nous avons commencer à le voir, l’intervention de Mordell auprès des

jeunes chercheurs prend assez peu la forme de la direction de leurs recherches. Il exerce

davantage son influence par ses conseils et la motivation qu’il apporte. Il semble que

cette influence soit particulièrement importante pour les collaborateurs qu’il a fait venir

pour travailler avec lui :

« The years in Manchester were very fruitful ones, both in respect of Mor-

dell’s own researches and in respect of the influence that he exercised

123Lettre de Siegel à Mordell du 8 octobre 1937, Mordell (St John’s), box 3, folder 28.
124Lettre de Siegel à Mordell du 7 novembre 1937, Mordell (St John’s), box 3, folder 28.
125Davenport 1937.
126D’après la base de données Britmath de June Barrow-Green.
127Buenemann est l’étudiant de Hambourg recommandé par Artin. Le titre de son mémoire semble

indiquer qu’il s’est finalement dirigé vers l’analyse.
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through his students and his younger colleagues. Many of these are now well-

known mathematicians, established in various parts of the world. Among

them may be mentioned R. Baer (Frankfurt), the late G. Billing (Stock-

holm), P. Erdös (Budapest), Chao Ko (China), K. Mahler (Canberra), B.

Segre (Rome), J.A. Todd (Cambridge), P. Du Val (London), L.C. Young

(Madison), and the present writer [. . .] Among those who came under his

influence, in varying degrees, at Cambridge may be mentioned R.P. Bambah

(Panjab), E.S. Barnes (Adelaide), B.J. Birch (Manchester), J.W.S. Cassels

(Cambridge), J.H.H. Chalk (Toronto), R.F. Churchhouse (Atlas Computer

Laboratory), C.S. Davis (Brisbane), S. Knapowski (Poznań), A.M. Mac-

beath (Birmingham), P. Mullender (Amsterdam), K. Rogers (Los Angeles),

P.A. Samet (Southampton), E.S. Selmer (Bergen), H.P.F. Swinnerton-Dyer

(Cambridge)128. »

Mordell a joué un rôle actif dans le recrutement d’un certain nombre des mathémati-

ciens cités par Davenport. Davenport lui-même est recruté à Manchester par Mordell

en 1937 et il y reste jusqu’en 1941.

Reinhold Baer arrive à Manchester en octobre 1933, grâce à Mordell il a obtenu un

Fellowship qui doit durer deux ans. Mais Mordell ne se contente pas d’intervenir au

niveau institutionnel pour qu’il ait ce poste, il le renseigne sur les questions financières,

il effectue les démarches administratives auprès de l’université pour l’obtention d’un

permis de séjour en Angleterre et il l’accueille chez lui avec toute sa famille pendant

les premiers jours à Manchester129. Par la suite, il l’aide à trouver un nouveau poste :

il le recommande à Horatio Scott Carslaw pour aller à Sydney et le conseille pour la

constitution du dossier de candidature en particulier en ce qui concerne les références

nécessaires130.

Le cas de Hans Heilbronn est un peu différent. C’est Davenport qui rencontre Heilbronn

alors qu’il se trouve à Göttingen et qui contacte Mordell pour lui demander s’il n’y au-

rait pas une possibilité pour le faire venir en Angleterre131. Un Fellowship temporaire

pourrait être disponible pour lui à Manchester132 mais au moment où Davenport doit

revenir d’Allemagne rien n’est encore sûr. Heilbronn rentre quand même en Angleterre

avec Davenport il reste quelques mois à Manchester avant de trouver un poste à Bristol

en 1934. Heilbronn doit quitter Bristol en juin 1935 et à nouveau il fait appel à Mordell

128Davenport 1964 p.4.
129Lettres de Baer à Mordell du 27 juillet 1933, du 14 août 1933 et du 24 septembre 1933, Mordell

(St John’s), box 1, folder 2.
130Lettre de Baer à Mordell du 20 août 1934, Mordell (St John’s), box 1, folder 2. Nous ne savons

pas si Baer a finalement obtenu ce poste.
131Lettre de Davenport à Mordell du 11 juillet 1933 Mordell (St John’s), box 1, folder 4.
132Lettre de Davenport à Mordell du 23 septembre 1933 Mordell (St John’s), box 1, folder 4.
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pour savoir s’il peut lui trouver quelque chose à Manchester133. Après des démarches

pour trouver un financement Mordell réussit finalement à le faire revenir à Manchester.

En 1934, c’est aussi Mordell qui recommande Paul Erdös pour qu’il obtienne le Bi-

shop Harvey Goodman Scholarship à Manchester. Encore une fois il prend les choses

en main : il lui envoie le dossier de candidature avec des recommandations pour la

constitution de son dossier134. Erdös reste à Manchester entre 1934 et 1938.

En 1938, le Bishop Harvey Goodman Scholarship est ensuite attribué à G. Billing qui

envoie une lettre de remerciements à Mordell pour la part active qu’il a pris dans son

recrutement

« I am very glad to get the opportunity to continue my mathematical studies

under your eminent tutorship and to profit by the excellent mathematical

milieu you have created at the Manchester university135. »

Les exemples où Mordell est sollicité pour trouver un poste pour quelqu’un sont

nombreux : Richard Courant lui recommande Fritz John136 qui postule finalement

pour le Bishop Harvey Goodwin Mathematical Scholarship à Manchester137, Benia-

mino Segre est recommandé par William Hodge et John G. Semple pour un Assistant

Lectureship à Manchester138, A.R. Richardson veut connaître les possibilité pour Ro-

senhead à Manchester139, Philipp Furtwängler demande son aide pour F. Pollaczek140.

On lui demande parfois son avis sur des recrutements hors de la théorie des nombres

ou dans d’autres universités que Manchester : Douglas R. Hartree (un de ses collègues

à Manchester) discute avec lui des candidatures de Hopf et Bhabha pour un poste

d’Assistant Lecturer en 1938 141, Thomas G. Cowling souhaite qu’il lui suggère des

candidats pour un poste d’Assistant Lecturer of pure Mathematics à l’university Col-

lege of North Wales142.

Mordell est aussi contacté directement par les intéressés : Heinrich Grell lui demande

son aide pour trouver un emploi143, Kurt Mahler fait part à Mordell de son intérêt pour

venir à Manchester dès le mois de mai 1932 144 et il arrive en Angleterre en 1933.

Le cas de Mahler est exemplaire d’un réseau dans lequel Mordell est particulièrement

133Lettre de Heilbronn à Mordell du 19 décembre 1934 Mordell (St John’s), box 2, folder 11.
134Lettres de Erdös à Mordell du 7 mars 1934 et du 22 mai 1934, Mordell (St John’s), box 1,

folder 6.
135Lettre de Billing à Mordell du 6 septembre 1938, Mordell (St John’s), box 3, folder 19.
136Lettre de Courant à Mordell du 12 mai 1934, Mordell (St John’s), box 3, folder 19.
137Lettre de John à Mordell du 18 mai 1934, Mordell (St John’s), box 3, folder 19.
138Lettre de Hodge à Mordell du 19 août 1941, lettre de Semple à Mordell du 26 août 1942, Mordell

(St John’s), box 3, folder 27.
139Lettre de Richardson à Mordell du 13 juin 1933, Mordell (St John’s), box 3, folder 19.
140Lettres de Furtwängler à Mordell du 10 novembre 1935 et du 29 décembre 1935, Mordell (St

John’s), box 3, folder 19.
141Lettre de Hartree à Mordell du 6 mai 1938, Mordell (St John’s), box 3, folder 19.
142Lettre de Cowling à Mordell du 14 juin 1946, Mordell (St John’s), box 3, folder 19.
143Lettre de Grell à Mordell du 14 décembre 1935, Mordell (St John’s), box 3, folder 19.
144Lettre de Mahler à Mordell du 3 mai 1932, Mordell (St John’s), box 2, folder 17.
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actif : celui des mathématiciens juifs qui fuient les persécutions. Un grand nombre des

mathématiciens cités précédemment sont dans ce cas et Mordell semble avoir joué un

rôle important dans l’accueil des mathématiciens réfugiés145.

5.4.2 Mordell et l’aide aux mathématiciens réfugiés

L’attitude de Mordell par rapport à la montée du nazisme et la Seconde Guerre

Mondiale peut apparaître comme assez paradoxale. Nous avons pu observer que Mordell

comme Davenport sont très productifs à la fin des années 1930 et pendant les années

1940, en particulier en ce qui concerne la géométrie des nombres. Leur rythme de

publication ne faiblit pas et ils démontrent des résultats importants comme par exemple

le théorème sur les formes cubiques binaires de Mordell. De plus, leurs contacts avec

l’Allemagne continuent pendant plusieurs années après l’arrivée de Hitler au pouvoir.

Dès le mois d’avril 1933 Davenport est à Marbourg avec Hasse et il reste en Allemagne

jusqu’à la fin du mois de septembre 1933 146. En août 1934, il est en vacances avec Hasse

à Partenkirche147. En mars 1935, c’est Hasse qui est à Cambridge avec Davenport148

et au début de l’année 1936, Hasse essaie d’arranger une conférence à Manchester avec

Mordell149.

Parallèlement, Davenport étant en Allemagne au début de l’année 1933, ils sont très

vite conscients des difficultés qui attendent les mathématiciens d’origine juive

« Term has been postponed at all the Prussian Universities until May 1. I

hope Landau, E. Noether, Heilbronn do not come to any harm150. »

« The outlook among Göttingen mathematicians151 is not very cheerful, but

I have had some interesting talks with Heilbronn152. »

Mordell se retrouve alors intégré dans un réseau de solidarité envers les mathéma-

ticiens réfugiés153 : il est mis à contribution pour trouver des postes, des financements

etc. . .

145Pour des éléments sur l’organisation de la communauté universitaire britannique face à l’arrivée
de mathématiciens réfugiés voir Fletcher 1986.

146Lettres de Davenport à Mordell d’avril 1933 et du 23 septembre 1933, Mordell (St John’s), box
1, folder 4.

147Carte postale de Davenport à Mordell du 12 août 1934, Mordell (St John’s), box 1, folder 4.
148Lettre de Hasse à Mordell du 10 mars 1935, Mordell (St John’s), box 2, folder 9.
149Lettre de Hasse à Mordell du 10 mars 1935, Mordell (St John’s), box 2, folder 9.
150Lettre de Davenport à Mordell « Good Friday » 1933, Mordell (St John’s), box 1, folder 4.
151Sur la situation des mathématiciens à Göttingen pendant la période nazie voir Schappacher

1987.
152Lettre de Davenport à Mordell du 6 juin 1933, Mordell (St John’s), box 1, folder 4.
153Pour des informations sur les mathématiciens réfugiés voir Siegmund-Schultze 1998.
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Tout cela donne l’impression qu’ils séparent complètement leur travail mathématique

et la situation politique de l’époque. En même temps, les activités de Mordell dans

l’aide aux réfugiés ont aussi des conséquences sur la recherche à travers les recrute-

ments effectués et les contacts qui se créent. Revenons sur le cas de Mahler qui est

emblématique.

En 1932, Mahler apprend par l’intermédiaire de Siegel que la fondation Rockefeller

lui a attribué un financement. Il semble qu’il ait été très intéressé par une conférence

de Mordell à Zürich154 sur la théorie des nombres (il ne précise pas sur quel sujet) et

il voudrait donc profiter de ce financement pour venir à Manchester155. La situation

politique en Allemagne vient cependant contrarier ce projet :

« In the last time I tried in vain to “habilitate”. The situation of today in my

country makes it now impossible, because I am a Jew. It follows that I shall

not be granted a fellowship of the Rockefeller-Foundation. But I should like

to come Manchester and learn from you something of “Zahlentheorie” ; in

Zurich your lecture was most interesting. Therefore I take the liberty to beg

you if there is no other possibility to come to your university, perhaps by

an English “Stipendium” ? Or when I come on my own expenses, will the

living very dear ? Must I pay much as a foreigner for the permission to hear

your lectures ? I should be glad if I could work as your assistent or hold

lectures of my own, especially on the theory of Diophantine equations and

transcendental numbers156. »

La suite de cette lettre donne une idée du thème de ses travaux mathématiques récents.

Il vient de faire un rapport pour le Jahrbuch de l’article d’André Weil L’arithmétique

sur les courbes algébriques. Il juge que ce travail a été difficile « because there are too

many definitions » mais il reconnaît que cela a été l’occasion pour lui d’apprendre en

particulier au sujet des fonctions algébriques. Il a aussi récemment terminer un article

sur l’approximation des nombres algébriques qu’il envoie à Mordell.

Dans la citation précédente Mahler est très insistant sur son envie de venir à Man-

chester. Son désir de quitter l’Allemagne n’y est certainement pas étranger, mais en

même temps il revient à plusieurs reprises dans sa correspondance sur son intérêt à

venir apprendre de la théorie des nombres auprès de Mordell. Par exemple, lorsqu’il

évoque l’éventualité de partir aux Etats Unis, il note

« I should prefer to have been previously for a time in England in order

to learn good English and from you as much as possible of the theory of

154D’après Coates et van der Poorten 1994 p.267, Mahler et Mordell se seraient aussi rencontrés
à Göttingen. Peut-être lors de la visite de Mordell en 1932.

155Lettre de Mahler à Mordell du 3 mai 1932, Mordell (St John’s), box 2, folder 17.
156Lettre de Mahler à Mordell du 4 avril 1933, Mordell (St John’s), box 2, folder 17.
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numbers157. »

Mordell obtient finalement pour lui le Bishop Harvey Godwin Fellowship pour l’année

universitaire 1933-1934 158. Dans ses lettres à Mordell de mai 1933 à octobre 1933, Mah-

ler le tient au courant de ses recherches, lui donne quelques nouvelles de la situation en

Allemagne (renvoie de Noether et Courant de Göttingen). Il discute enfin des derniers

détails administratifs pour préparer son arrivée à Manchester en octobre : obtention

d’un permis pour quitter l’Allemagne, problème pour faire sortir de l’argent de son

pays.

Les années universitaires suivantes de 1934 à 1936, Mahler se trouve à Groningen aux

Pays-bas pour un Fellowship arrangé par Van Der Corput grâce à une aide financière

d’une association juive néerlandaise. Il revient ensuite à Manchester en 1937 où jusqu’en

1941 mais il n’a pas de situation stable. Il occupe deux postes temporaires d’assistant,

il reçoit un peu d’argent d’un Fellowship et il vit pendant au moins deux ans sur ses

propres économies159. Mordell joue un rôle important dans le retour de Mahler à Man-

chester et dans l’obtention de soutiens financiés pendant cette période. Comme son

Fellowship à Groningen se termine en mai 1936, dès novembre 1935, Mahler cherche

un nouveau poste. Il a postulé à Saratow en Russie mais n’est pas très optimiste à ce

sujet, il demande donc à Mordell s’il peut le recommander auprès des mathématiciens

de Birmingham car un fond vient d’y être débloqué pour la création d’un Fellowship

temporaire destiné aux réfugiés160. Mordell contacte alors Watson à Birmingham161

mais Mahler n’y obtient pas de poste. Quand ils se rencontrent au congrès internatio-

nal de 1936 à Oslo, Mordell fait part à Mahler de la possibilité de le faire revenir pour

un nouveau Fellowship à Manchester162. En fait il semble que Mordell lance alors une

collecte d’argent pour financer ce poste pour Mahler

« I had not forgotten our conversation at Asgardstrand concerning the pos-

sibility of getting some money for getting a German refugee to Manchester

for a time. I have talked it over with Heilbronn and we are each sending you

£25 for the purpose. I hope it is not too small a sum to be of any use163. »

En plus de Davenport et Heilbronn, nous savons qu’Olga Taussky, alors à Cambridge,

envoie aussi un chèque de £5 164.

Mordell a aussi sollicité Hermann Weyl au sujet de Mahler, ils en avaient déjà discuté

à Oslo et le 29 septembre 1936, Weyl confirme à Mordell qu’il a contacté the German

157Lettre de Mahler à Mordell du 12 mai 1933, Mordell (St John’s), box 2, folder 17.
158Coates et van der Poorten 1994 p.267.
159Coates et van der Poorten 1994 p.268.
160Lettre de Mahler à Mordell du 3 novembre 1935, Mordell (St John’s), box 2, folder 17.
161Lettre de Mahler à Mordell du 8 novembre 1935, Mordell (St John’s), box 2, folder 17.
162Lettre de Mahler à Mordell du 1er septembre 1936, Mordell (St John’s), box 2, folder 17.
163Lettre de Davenport à Mordell du 29 septembre 1936, Mordell (St John’s), box 1, folder 4.
164Lettre de Taussky à Mordell du 27 novembre 1936, Mordell (St John’s), box 3, folder 19.
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Mathematicians’ Relief Fund d’obtenir $350 pour Mahler165. Quand à la fin de l’année

1936, la création du Fellowship est confirmée, Mordell veut renvoyer cet argent à Weyl

mais ce dernier refuse et il veut que Mahler le garde car

« If he is under shelter now, he is certain to have to face rainy days

again166. »

Cet argent a certainement été utile car comme nous l’avons dit Mahler n’a pas de poste

permanent avant 1941. Une lettre d’Erdös à Mordell de mars 1939 indique qu’il essayé

d’obtenir un Fellowship à Princeton mais cela n’aboutit pas167. Le début de la guerre

en 1939 l’aurait aussi obligé à renoncer à un poste à l’université de Szechuan en Chine

où il devait rejoindre Chao Ko168.

Au cours de l’année 1940, il est interné dans un camp pour réfugiés (voir la figure

5.7 169). Dans des lettres, Mahler décrit à Mordell les conditions de vie difficiles dans

ce camp et lui demande d’essayer de faire des démarches pour le faire sortir170.

En particulier, il voit dans une invitation de Chao Ko pour se rendre en Chine le moyen

de sortir du camp. Il demande à Mordell d’essayer d’organiser pour lui ce voyage, il

pense que cette conférence pourrait être un bon motif pour que les autorités britan-

niques lui permettent de sortir

« Since my lectures at Omei will be given in English and so will propagate

English culture, it can only be in the interest of the British Government to

help me171. »

La situation se stabilise pour Mahler en 1941 quand il succède à Davenport comme

Assistant Lecturer à Manchester. Il reste par la suite à Manchester où il occupe suc-

cessivement les postes de Lecturer (en 1944), Senior Lecturer (en 1947), Reader (en

1949) et en 1952 « the first personal chair in the history of the University172 ». Mahler

continue cependant à demander conseil à Mordell à propos de sa carrière. En 1946,

un poste plus avantageux financièrement lui est proposé en Afrique du Sud à Cape

Town173. Il semble que Mahler, qui préférerait rester à Manchester, suive alors les indi-

cations de Mordell pour négocier une promotion. Mahler passe Senior Lecturer en 1947

et remercie Mordell pour ses conseils

165Lettre de Weyl à Mordell du 29 septembre 1936, Mordell (St John’s), box 4, folder 39.
166Lettre de Weyl à Mordell du 27 octobre 1937, Mordell (St John’s), box 4, folder 39.
167Lettre de Erdös à Mordell du 18 mars 1939, Mordell (St John’s), box 1, folder 6.
168Coates et van der Poorten 1994 p.268.
169Carte de Mahler à Mordell du 18 juillet 1940, Mordell (St John’s), box 2, folder 17. Reproduced

by permission of the Master and Fellows of St John’s College, Cambridge.
170Lettres de Mahler à Mordell du 18 juillet 1940 et du 21 août 1940, Mordell (St John’s), box 2,

folder 17. Une de ces lettres est reproduite en annexe.
171Lettre de Mahler à Mordell du 12 septembre 1940, Mordell (St John’s), box 2, folder 17. Nous

ne savons pas si Mahler s’est finalement rendu en Chine pour faire cette conférence.
172Coates et van der Poorten 1994 p.268.
173Lettre de Mahler à Mordell du 11 mai 1946, Mordell (St John’s), box 2, folder 17.

383



CHAPITRE 5 5.4

Fig. 5.7 – Carte de Mahler du camp d’internement du 18 juillet 1940
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« Thanking you for your excellent lesson in departmental strategy174 ».

L’exemple de la solidarité de Mordell à l’égard de Mahler est aussi intéressant car

les nouvelles relations qui se tissent entre ces deux mathématiciens pourraient être à

l’origine du travail de Mahler sur la géométrie des nombres. Il n’y a pas de déclaration

explicite qui le confirme dans les lettres de Mahler à Mordell mais des coincidences de

dates entre le début des contacts entre Mordell et Mahler et l’apparition de nouveaux

thèmes de recherches sont frappantes.

D’après Coates et Van Der Pooten, Mahler commence à s’intéresser à la géométrie des

nombres alors qu’il se trouve aux Pays-Bas entre 1934 et 1936 175 juste après le premier

séjour de Mahler à Manchester et que les contacts avec Mordell se soient intensifiés. La

correspondance permet de préciser cette affirmation. Dans une lettre à Mordell du 12

avril 1936, il indique qu’il vient de commencer à étudier la géométrie des nombres

« At present I am studying the Minkowski theorem on the successive mi-

nima of a convex body, about which I intend to lecture after my return to

Groningen next week. His proof is very clear, but he has not represented it

so very well in the Geometrie der Zahlen, since he is too anxious to prove

every small particularity176. »

De plus, Mahler est à Manchester entre 1937 et 1941 alors que Mordell et Davenport

s’y trouve tous les deux. C’est la période pendant laquelle ils travaillent sur le produit

de trois formes linéaires homogènes et où Mordell commence à s’intéresser aux formes

cubiques binaires. Rappelons qu’ils voient ces résultats comme la première étape vers

une théorie de la géométrie des nombres pour des domaines non convexes. Une lettre de

Mahler à Mordell de 1941 montre que Mahler est intégré aux échanges sur ces thèmes177

et au début des années 1940 il commence lui aussi à publier sur ces questions

« Mahler developed a geometry of numbers of general sets in n-dimensional

space178 ».

Effectivement, ces premiers articles sur les domaines étoilés sont publiés dans le Jour-

nal of the London Mathematical Society en 1942 et 1943. Entre 1942 et 1946, sur les

20 articles qu’il publie, 14 ont pour thème central la géométrie des nombres.

B. Segre, F. John, F. Pollaczek, H. Grell que nous avons cités sont tous des exemples

de mathématiciens qui cherchent à quitter leur pays pour des raisons politiques et pour

lesquels Mordell est sollicité. À cette liste nous pouvons aussi ajouter Otto Szász179 et

174Lettre de Mahler à Mordell du 13 mai 1946, Mordell (St John’s), box 2, folder 17.
175Coates et van der Poorten 1994 p.268.
176Lettre de Mahler à Mordell du 12 avril 1936, Mordell (St John’s), box 2, folder 17.
177Lettre de Mahler à Mordell du 9 août 1941, Mordell (St John’s), box 2, folder 17.
178Coates et van der Poorten 1994 p.268.
179Lettre de Hannah Remak à Mordell du 22 juillet 1933, Mordell (St John’s), box 3, folder 19.
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Robert Remak. Entre septembre 1933 et août 1939 plusieurs lettres, de Remak lui-

même, de sa femme Hertha Remak et de Hans Freudenthal, informent Mordell de la

situation de Remak180. Nous avons mentionné le travail de Remak en géométrie des

nombres et en particulier sur les produits de formes linéaires, il a donc des intérêts

mathématiques communs avec Mordell. Mais contrairement à ce que nous avons ob-

servé avec Mahler, les échanges entre les deux mathématiciens ne sont pas l’occasion

de communiquer sur leurs travaux mathématiques.

Le cas de Heilbronn illustre les difficultés à recueillir des fonds afin d’accueillir

tous ces réfugiés ainsi que les réseaux qui sont mobilisés pour y parvenir. Après que

Davenport ait demandé à Mordell d’essayer de trouver un poste à Heilbronn, que

Landau181 lui ait aussi envoyé une recommandation à son sujet, Mordell pense le faire

venir à Manchester. D’ailleurs, en août 1933, c’est la solution qui paraît se dessiner et

Heilbronn exprime sa satisfaction de venir à Manchester

« Of course I would be very happy to stay at Manchester and to work with

you, since I am specially interested in analytic theory of numbers182. »

Pour financer la venue de Heilbronn, Mordell commence par s’adresser au Central Bri-

tish Fund for German Jewry qui lui indique qu’il doit contacter l’Academic Assistance

Committee183. Mais à nouveau, Mordell est orienté sur une autre association mieux

adaptée à la situation de Heilbronn

« the assistance given by the Academic Assistance Council and, to a great

extent, by this Committee, is being confined to people who have had high

academic standing in their country.

The case of students and people who have just completed their studies

is being dealt with by another Jewish Committee, which has just been

formed, and other organisations, such as the International Student Service,

are interesting themselves in this part of the work184. »

Mordell finit par trouver les bons interlocuteurs et le Committee of Assistance to Fo-

reign Scholars185 accepte de mettre Heilbronn sur la liste des réfugiés susceptibles d’être

180En particulier Mordell reçoit une lettre de Hertha Remak le 18 novembre 1938 pour lui demander
son aide pour quitter l’Allemagne, soit 9 jours après la nuit de cristal au cours de laquelle Remak
aurait été arrêté. Mordell (St John’s), box 3, folder 24. Nous ne savons pas si Mordell a effectué des
démarches pour Remak.

181Lettre de Landau à Mordell du 26 août 1933, Mordell (St John’s), box 2, folder 13. Il semble
que Landau ait aussi demandé le soutien de Littlewood.

182Lettre de Heilbronn à Mordell du 26 août 1933, Mordell (St John’s), box 2, folder 13.
183Lettre du Central British Fund for German Jewry à Mordell du 24 septembre 1933, Mordell

(St John’s), box 2, folder 11.
184Lettre du Joint Foreign Committee à Mordell du 27 septembre 1933, Mordell (St John’s), box

2, folder 11.
185Il s’agit d’un comité de l’université de Manchester.
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assistés sous réserve que l’Academic Assistance Council trouve les fonds nécessaires186.

Mais Mordell ne réussit pas à réunir suffisamment d’argent pour accueillir Heilbronn

à Manchester. Mordell prend alors contact avec Henry Ronald Hassé de Bristol. Ce

dernier avait engagé des démarches pour trouver différentes sources de financement

(en particulier auprès de la communauté juive locale) pour faire venir un mathéma-

ticien juif d’Allemagne. Il suggère donc que Heilbronn pourrait venir à Bristol quitte

à organiser pour lui la possibilité de s’absenter pendant plusieurs semaines pour tra-

vailler à Manchester où les mathématiciens ont des intérêts scientifiques plus proches

des siens187. Le poste de Heilbronn pour 1934-1935 est finalement arrangé mais dès

décembre 1934 la correspondance entre Mordell et Hassé reprend pour trouver de nou-

veaux financements en prévision de la fin du Fellowship à Bristol en juin 1935. Mordell

obtient en 1935 un scholarship pour Heilbronn à Manchester.

Dans les années 1930, Heilbronn commence une longue collaboration avec Davenport.

Des articles écrits en collaboration sont encore publiés en 1969 et 1971 alors que Da-

venport décède en 1969.

L’exemple de Heilbronn montre que plusieurs associations semblent avoir été cons-

tituées pour l’aide aux réfugiés. Beaucoup sont liées à la communauté juive et nous

pouvons penser que Mordell, qui est d’origine juive, est bien implanté dans cette com-

munauté188.

Dès août 1933, Mordell s’adresse aussi à la fondation Rockefeller pour demander une

aide pour K. Mahler, R. Baer, H. Heilbronn, B. Neumann et F. Behrend. Le règlement

de la fondation exige que les mathématiciens bénéficiant d’un de ses financements

puissent ensuite revenir en poste dans leur pays d’origine189. Ce point de règlement est

évidement impossible à satisfaire pour les réfugiés et Mordell demande s’il serait pos-

sible de faire des exceptions. Mais la fondation ne suit pas Mordell sur cette question et

l’informe que les mathématiciens qu’il a proposés ne pourront pas être aidés car ils ne

sont pas « mature enough to fall within the group of eminent deposed scholars whom

the officers in Paris are authorized to assist through the Special Research Aid Fund

appropriated from New York190. »

L’activisme de Mordell en ce qui concerne l’assistance aux mathématiciens réfugiés

semble reconnu. Il est invité en septembre 1933 à participer à une réunion de l’Academic

186Lettre du Vice Chancellor de l’université de Manchester à Mordell du 19 octobre 1933, Mordell

(St John’s), box 2, folder 11.
187Lettre de Hassé à Mordell du 1er décembre 1933 Mordell (St John’s), box 2, folder 11.
188Nous avons la trace d’un don de Mordell aux Amis de l’université juive de Jérusalem en 1943,

Mordell (St John’s), box 3, folder 19.
189Pour les différents critères requis pour obtenir un financement de la Fondation Rockefeller voir

Siegmund-Schultze 2001 p.79-81.
190Lettre de Lauder W. Jones à Mordell du 13 septembre 1933, Mordell (St John’s), box 3, folder

23.
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Assistance Council :

« Lord Rutherford, Sir Austen Chamberlain, Lord Hugh Cecil, Miss Maude

Royden and Professor Einstein have kindly agreed to speak at a meeting in

the Royal Albert Hall on Tuesday, October 3rd., at 8 p.m., organised un-

der the auspices of the Academic Assistance Council, International Student

Service, Germany Committee of the Society of Friends, and the Refugee

Professionals Committee.

The meeting - which is entirely non-political - is called to consider

plans for assisting the professional and academic workers displaced in Ger-

many191. »

Plusieurs correspondants de Mordell témoignent de l’épuisement rapide des fonds

de ces différentes associations et de la difficulté pour les mathématiciens d’obtenir des

financements de leur part. John C. Burkill s’adresse directement à Mordell pour recom-

mander Willy Feller car il sait que « Manchester has done a good deal for refugees »

et qu’il y a peu de chance qu’il obtienne de l’argent de l’Academic Assistance Council

qui manque de fonds192. Richard Rado, qui avait demandé en 1934 à Mordell de le

recommander auprès de l’Academic Assistance Council193, ironise en septembre 1936

sur les problèmes que semblent rencontrer plus particulièrement les mathématiciens

pour trouver des postes (voir la figure 5.8 194).

Le travail effectué par Mordell pour aider les réfugiés pendant cette période est

reconnu très rapidement. En août 1933, Selig Brodetsky profite de l’expérience de

Mordell et veut savoir comment la création d’un poste s’organise à Manchester car il

voudrait aussi inviter un mathématicien réfugié à l’université de Leeds195 sur le même

modèle196.

Il est aussi intéressant de remarquer que Mordell est contacté en 1942 par le ministère

de l’information pour obtenir des illustrations du travail des juifs pendant la guerre

« We have received a request from the British Press Service in New York for

a series of photographs illustrating the activities in war time of a number

of distinguished Jews in this country, and particular reference is made to

191Lettre de Walter Adams à Mordell du 28 septembre 1933, Mordell (St John’s), box 3, folder
23.

192Lettre de Burkill à Mordell du 28 juin 1934, Mordell (St John’s), box 3, folder 23. Voir aussi
à ce sujet la lettre de Mahler à Mordell du 3 novembre 1935, box 2, folder 17.

193Lettre de Rado à Mordell du 13 septembre 1934, Mordell (St John’s), box 3, folder 21.
194Lettre de Rado à Mordell du 6 septembre 1936, Mordell (St John’s), box 3, folder 21. Repro-

duced by permission of the Master and Fellows of St John’s College, Cambridge.
195Il est possible que l’idée initiale vienne de Mordell.
196Lettre de Brodetsky à Mordell du 5 août 1933, Mordell (St John’s), box 3, folder 19. Il semble

qu’un des candidats proposés par Mordell, B. Kaufmann, ait été recruté.
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Fig. 5.8 – Lettre de Richard Rado à Mordell du 6 septembre 1936
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yourself197. »

Dans les archives de Mordell est conservée une liste d’universités avec pour chacune

des informations sur le devenir de mathématiciens qui y étaient en poste. Ces infor-

mations ont été réunies par Franz Rellich certainement après la guerre, nous ne savons

pas comment elles ont été transmises à Mordell (voir les figures 5.9 et 5.10 198).

Conclusion

L’insistance qui est mise sur « Die Schule in Manchester um Mordell199 » par plu-

sieurs mathématiciens est intéressante car elle permet de voir que les acteurs identifient

un moment important qui influence les développements ultérieurs de la discipline pour

ce qui est de la géométrie des nombres ; et qui peut-être plus largement a un impact sur

la théorie des nombres telle qu’elle est pratiquée en Angleterre (choix des thèmes, mé-

thodes privilégiées etc. . .). Cependant la notion d’« école » comme catégorie d’analyse,

telle que historiens et sociologues ont essayé de la définir en reprenant cette catégorie

des acteurs, ne semble pas correspondre complètement à ce que nous avons décrit pré-

cédemment.

Deux aspects cruciaux de la définition d’une école de recherche sont l’existence d’un

lieu dans lequel sont réunis les membres du groupe et d’un leader dont le rôle est lui

aussi très spécifique. Les commentaires laissent penser que ces conditions sont remplies

dans le cas qui nous occupent avec l’association constante qui est faite entre Manchester

et Mordell. Nous pensons néanmoins que ce que nous avons vu du fonctionnement de

cette communauté de mathématiciens révèle une organisation différente de celle d’un

leader qui organise la recherche dans un lieu unique.

La question géographique apparaît en fait déjà problématique si nous revenons sur cer-

tains commentaires. Certes Manchester est le plus souvent mis en avant mais parfois le

nom de Mordell est aussi associé à Cambridge où il se trouve à partir de 1945. Cassels

qui est peut être le plus connu en tant qu’élève de Mordell n’a jamais été à Manchester

en tant qu’étudiant. De plus, si nous nous limitons à Manchester, nous perdons de

vue la majeure partie de la collaboration entre Mordell et Davenport qui joue un rôle

dynamique important dans leur propre recherche mais aussi dans celle des mathéma-

ticiens de leur entourage. L’influence de cette collaboration se voit par exemple dans

197Lettre de H.A. Goodman (Religion Division, Ministry of Information) à Mordell du 9 avril 1942,
Mordell (St John’s), box 3, folder 23.

198Mordell (St John’s), box 4, folder 41. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.

199Hlawka 1980 p.398.

390



5.4 CHAPITRE 5

Fig. 5.9 – Devenir de mathématiciens après la guerre (première partie)
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Fig. 5.10 – Devenir de mathématiciens après la guerre (fin)

les échanges très nombreux entre leurs séminaires respectifs qui se tiennent d’ailleurs

à Cambridge et à Londres. En fait, la période pendant laquelle Mordell et Davenport

sont tous les deux à Manchester s’étend seulement de 1937 à 1941 200, pourtant leur

collaboration commence bien plus tôt et dure jusqu’à la mort de Davenport en 1969.

La place occupée par Davenport au côté de Mordell est un premier indice du fait que

Mordell ne remplit pas les conditions attendues pour le leader d’une école de recherche.

Il est vrai qu’il joue un rôle de guide pour Davenport au début de sa carrière. Mais

les définitions de la notion d’« école » insiste sur un rapport hiérarchique fort entre

un leader et ses élèves ou collaborateurs qui ne nous semble pas exister dans le cas de

Mordell.

D’un point de vue institutionnel, Mordell ne montre pas réellement l’ambition de créer

un centre de recherche en mathématiques. À titre de comparaison, nous pouvons re-

garder quelques caractéristiques données par David Rowe sur ce qui s’est passé sous

l’ère de Klein et Hilbert à Göttingen201. Il y a en particulier chez Klein un volontarisme

politique fort pour implanter à Göttingen un centre de recherche en mathématiques.

Mais il poursuit un projet plus général en permettant le développement des mathéma-

tiques appliquées, en créant des instituts de recherche dans d’autres domaines comme

la physique ou la mécanique, en tissant des liens avec l’industrie ou encore en lançant

des grands projets comme celui de l’Encyklopädie der mathematischen Wissenschaften

mit Einschluss ihrer Anwendungen. Un des moyens utilisés par Klein est de faire ve-

nir à Göttingen parmi les scientifiques les plus prestigieux dans différentes spécialités.

Mordell ne suit pas un projet aussi ambitieux, la dynamique qu’il créée est limitée

200Nous ne parlons pas ici de l’époque où Davenport est étudiant à Manchester.
201Rowe 1989.
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à la théorie des nombres et à des thèmes mathématiques proches de ses intérêts. Ses

interventions dans des recrutements apparaissent plus comme des réactions au cas par

cas selon les opportunités qui se présentent. Les premiers contacts avec Mahler ou Heil-

bronn sont la conséquence de la situation politique en Allemagne, ce ne sont pas encore

à cette époque des mathématiciens reconnus mais leurs thèmes de recherche sont liés

à ceux de Davenport et Mordell. Ce dernier s’investit alors très fortement pour leur

venue en Angleterre.

Mordell n’impose pas un programme de recherche précis à ses collaborateurs, il inter-

vient de manière moins directive. Il sensibilise les étudiants aux sujets qui l’intéressent

dans ses cours et au cours de séminaires. Pour les jeunes chercheurs, il est une figure

qui encourage, motive et conseille. Son influence est peu transmise par des relations

du type étudiant/directeur comme Della Fenster le décrit au sujet de Leonard Eugene

Dickson. Pour rendre compte de l’influence de Dickson auprès de ses étudiants elle

reprend la distinction entre le mentor (qui désigne « older people in an organization or

profession who take younger colleagues under their wings and encourage and support

their career progress until they reach mid-life » ou quelqu’un « higher in the institution

or organization who coaches, teaches, advises, provides support and guidance, and help

mentee achieve his or her goals202 ») et le modèle (qui « possesses skills and displays

techniques which the student lacks . . . and from whom, by observation and comparison

with his own performance the student can learn203 »). Si la transmission avec Dickson

passe par l’exemple qu’il donne à ses étudiants204, Mordell présente lui davantage les

caratéristiques du mentor.

Le rôle social de Mordell prend diverses formes. Au sein du groupe il intervient avec

l’organisation de séminaires et le recrutement. Il est aussi un intermédiaire important

dans les relations à l’extérieur du groupe. Son réseau de contact est international et

il entretient ces échanges par sa correspondance, ses voyages et en faisant venir de

nombreux chercheurs étrangers.

Au cours des échanges au sein du groupe ou avec l’extérieur ce qui circule peut être très

concret comme de l’argent, des informations sur des postes, des problèmes liés à des

publications ou l’organisation de cours et de séminaires. Mais il circule aussi parfois un

intérêt pour un nouveau thème de recherche, de nouvelles démonstrations, de nouveaux

résultats, des méthodes ou des idées pour aborder un problème dont nous pouvons voir

la trace par la suite dans les publications.

La catégorie « école » apparaît donc trop rigide pour décrire ce qui se passe autour de

Mordell et de Davenport205. Nous avons un type de socialisation qui n’est pas organisé

202Fenster 1997 p.9.
203Fenster 1997 p.9.
204Fenster 1997 p.16.
205L’étude précédente se focalise sur la personnalité de Mordell mais le même travail sur Daven-

port montrerait certainement aussi qu’il exerce une grande influence sur la théorie des nombres en
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autour d’une personnalité unique et d’un lieu unique, mais dont les caractéristiques se

rapprochent davantage de ce que Diana Crane a appelé un « groupe de solidarité206 ».

Il s’agit d’un groupe de collaborateurs réunis autour d’un ou plusieurs professeurs in-

fluents qui recrutent et socialisent de nouveaux membres, définissent les problèmes

importants dans leurs spécialités et qui communiquent avec d’autres groupes. Le rôle

directif des leaders du groupe, bien que moins fort avec cette notion, est peut être

encore trop grand. Nous n’avons pas trouvé de déclaration de Mordell sur ce que sont

les questions les plus importantes, au contraire nous avons noté qu’il laissait le choix

de leurs thèmes de recherche à ses étudiants. Malgré cela nous avons pu remarquer les

liens entre le travail de Mordell et les thèmes choisis par beaucoup de ses collaborateurs,

l’influence de Mordell se passe certainement à un autre niveau, à travers les cours, les

séminaires ou bien des relations personnelles.

Nous constatons donc avec Mordell et Davenport une conception disciplinaire de

la géométrie des nombres qui est complètement différente de celle de Minkowski. Avec

Minkowski, la géométrie des nombres se définit bien par des caractéristiques internes

et Minkowski est le seul à participer à son développement. Le chapitre précédent a

montré qu’il est beaucoup plus difficile de caractériser la géométrie des nombres de

Mordell et Davenport comme discipline à l’aide de critères purement intellectuels à

cause de la variété des objets étudiés et des méthodes utilisées. Par contre, avec eux, il

est pertinent d’envisager la discipline comme une entreprise collective. La communauté

est soudée par l’étude de problèmes comme celui du produit de formes linéaires non

homogènes. Cette question est enseignée (voir le cours de Mordell dans le chapitre

suivant), elle est le sujet d’interventions lors de séminaires (voir celles de Davenport

page 361), plusieurs mathématiciens liés à ce groupe publient sur ce sujet (Mordell,

Davenport, Dyson, D.B. Sawyer, A.M. Macbeath, E.S. Barnes, L.E. Clarke, P.A. Samet

etc). Nous voyons là comment un énoncé mathématique peut jouer un rôle social qui

n’est pas sans rappeler celui attribué au microscope par Bruno Strasser207. Il s’agit d’un

objet intellectuel qui organise une variété de pratiques collectives. C’est dans ce sens

que la géométrie des nombres de Mordell et Davenport peut être caractérisée comme

un champ disciplinaire208. Pour appuyer cette idée, rappelons l’importance accordée à

Angleterre, qu’il possède un vaste réseau de relations etc. . .
206Crane 1972 p.35.
207Strasser 2002. Voir les commentaires sur cet article dans l’introduction à la page 20.
208Pour un autre exemple en histoire des mathématiques voir Goldstein et Schappacher 2007a où

l’ensemble des travaux liés aux Disquisitiones Arithmeticae de Gauss est caractérisé comme un champ
de recherche. Le rôle d’un ou plusieurs objets intellectuels dans l’organisation du champ apparaît
aussi dans cet exemple : « It [the Disquisitiones Arithmeticae] provided the field with technical tools,
and a stock of proofs to scrutinize and adapt. It also provided concrete examples of the very links
between different branches of mathematics that created the field, often articulated around richly
textured objects and formulae, such as the cyclotomic equation or Gauss sums. », Goldstein et
Schappacher 2007a p.58.
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l’histoire dans la définition de la notion de « champ » (voir l’introduction page 24). Les

nombreuses interventions de Mordell dans la construction d’une histoire collective de la

géométrie des nombres peuvent être interprétées dans ce cadre : ses articles comportent

souvent de brefs historiques des questions qu’il traite et il défend Minkowski quand le

journal anglais The Engineer conteste le Grand Prix de l’Académie des Sciences qui

lui a été attribué (voir le commentaire à ce sujet page 42).
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Chapitre 6

Les cours : retour sur les aspects

pédagogiques de la discipline

Sommaire
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Il a été indiqué dans l’introduction que certains historiens percevaient le rôle de

l’enseignement comme fondamental dans la définition d’une discipline. Les cours spé-

cialisés sur un sujet ont pour fonction de former de nouveaux scientifiques susceptibles

de participer à son développement. De plus, ce qui est transmis dans ces cours influence

les pratiques de recherche adoptées par ces nouveaux entrants dans la discipline.

L’objectif de ce chapitre est donc de donner un aperçu de la géométrie des nombres à

travers la manière dont elle est enseignée. Nous essayons de voir si la pédagogie mise en

oeuvre dans les cours montre une organisation différente de la géométrie des nombres

par rapport à ce qui a été observé dans le travail de recherche des mathématiciens.

Nous examinons pour cela des cours tous professés après la mort de Minkowski. Nous

avons retrouvé cinq cours donnés par Albert Châtelet, Hans Frederik Blichfeldt, Carl

Ludwig Siegel, Louis Mordell et Harold Davenport. Deux de ces cours ont été publiés

(Châtelet et Siegel), les trois autres sont des notes manuscrites ou dactylographiées

non publiées.

Pour comparer ces cours, nous reprenons certains critères proposés par Ralf Haubrich

que nous avons déjà mentionnés dans l’introduction. Nous relèverons dans chaque cas

quels sont les objets étudiés, quels sont les concepts ou les résultats clés, quelles sont

les méthodes employées et enfin s’il se dégage de l’organisation des cours une systéma-

tisation de la discipline.
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6.1 Présentation des cours

6.1.1 Les Leçons sur la théorie des nombres d’Albert Châtelet

Le travail d’Albert Châtelet (1883-1962) est perçu comme singulier en France. Il

est en effet vu comme l’un des rares mathématiciens français du début du XXe siècle à

s’intéresser à la théorie des nombres. Plusieurs témoignages de cette époque vont dans

ce sens. Emile Picard écrit dans son rapport sur la soutenance de thèse de Châtelet

« La thèse de M. Châtelet me paraît d’un très réel intérêt ; elle marquera

dans la théorie des nombres, théorie trop peu cultivée en France1. »

Gaston Julia, qui assiste aux cours de Châtelet, souligne

« À ton cours tu voyais défiler de jeunes camarades, empressés à connaître

ce phénomène qui pratiquait l’Arithmétique, quand tout le monde en France

s’adonnait à l’Analyse ou à la Géométrie2. »

Châtelet est chargé du cours de la Fondation Péccot au Collège de France au

deuxième semestre 1911-1912 et c’est ce cours qui est publié en 1913 sous le titre

Leçons sur la théorie des nombres3. L’objectif de Châtelet est de donner une intro-

duction aux développements de la théorie des nombres de la seconde moitié du XIXe

siècle. Ces développements sont présentés sous un point de vue personnel, celui de la

théorie des tableaux4. Il aborde ainsi par exemple la théorie des nombres algébriques

et la méthode de réduction continuelle d’Hermite.

Ce cours a un statut un peu différent de ceux que nous regarderons ensuite : il n’est pas

consacré exclusivement à la géométrie des nombres. Cependant c’est le premier cours

qui présente le travail de Minkowski de manière intégrée au reste de la théorie des

nombres. Les références au travail de Minkowski sont très nombreuses tout au long du

texte, des aspects de la géométrie des nombres sont présentés dans plusieurs chapitres,

en particulier les théorèmes de Minkowski sur les parties convexes. D’autre part, l’in-

terprétation en termes géométriques de beaucoup de problèmes est utilisée de manière

importante et à nouveau Minkowski est explicitement cité à ce sujet. Nous reviendrons

un peu plus précisément sur la manière dont la géométrie des nombres prend sa place

dans l’ensemble de la théorie des nombres dans le cours.

Ce travail de Châtelet est l’occasion de dire un mot sur la réception en France de la

géométrie des nombres. La réception immédiate de cette théorie par les mathématiciens

français semble très positive. Très rapidemment des travaux de Minkowski sont publiés

1Gispert 1991 p.410.
2Julia 1963.
3Châtelet 1913.
4Pour des précisions sur cet aspect du travail de Châtelet voir Brechenmacher 2006.
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en français : les lettres de Minkowski à Hermite et le texte de la conférence de Min-

kowski à Chicago. Nous avons aussi vu la réaction enthousiaste d’Hermite au travail

de Minkowski, Julia accueille favorablement le point de vue géométrique de Minkowski

ainsi il remarque à propos de la théorie des nombres

« À l’exemple de Minkowski, je l’ai toujours envisagée en liaison avec la

Géométrie5. »

Ce cours donné par Châtelet dès 1911 témoigne lui aussi de cette réception favorable

des idées de Minkowski.

Cependant, malgré ces premières réactions, la géométrie des nombres n’a pas été re-

prise par la suite en France et il faut attendre la fin des années 1940 avec le travail de

Claude Chabauty pour voir ce sujet redémarrer.

6.1.2 Un cours de Blichfeldt à Stanford

Dans un article sur le produit de deux formes linéaires non homogènes publié en

1943, Mordell fait référence à un cours de Blichfeldt donné en 1932 à l’université de

Stanford6. Mordell a très certainement eu connaissance de ce cours grâce à l’article de

Seale de 1935 sur le même sujet qui mentionne7

« a syllabus which Professor Blichfeldt distributed to a class in geometry

of numbers at Stanford University, winter and spring quarters, 1932. »

Seale obtient un PhD de l’université de Stanford en 1935 intitulé A simple proof of

Minkowski’s theorem on the product of two linear forms, il est donc probable qu’il est

suivi ce cours de Blichfeldt8. Des notes de cours de Blichfeldt, qui contiennent le résul-

tat auquel Mordell et Seale font référence, sont conservées à Stanford9. Ces notes de

cours ne sont pas datées mais le catalogue de la bibliothèque de l’université de Stanford

indique que le cours a été donné entre 1930 et 1932, c’est donc très certainement le

cours de 1932.

Ces notes, intitulées Geometry of Numbers. Diophantine Approximations, se composent

de 65 pages dont les 49 premières sont manuscrites et les autres dactylographiées. Nous

ne savons pas à quels étudiants ce cours était destiné.

Nous en donnons maintenant le plan. La numérotation est celle de Blichfeldt, mais

tous les paragraphes n’ont pas de titre nous avons donc indiqué entre crochets le thème

de ces parties.

5Julia 1933.
6Mordell 1943d p.218.
7Seale 1935 p.419.
8Ce PhD est recensé dans la base de données Dissertation Abstracts qui est consultable en ligne

http://proquest.umi.com/login.
9Blichfeldt 1932.
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Fig. 6.1 – Table des matières du cours de Châtelet
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Plan du cours de Blichfeldt :

1. Introductory remarks

2. Equation of the first degree in two unknowns

3. Equation of the first degree in three unknowns

4. Minkowski’s standard surface

Space of n dimensions Rn and lattice points

5. [Examples of a Minkowski’s standard surface]

7. [Théorème de Minkowski]

8. [Application du théorème à un parallélogramme]

9. [Produit de deux formes linéaires de deux variables]

10. [Application du théorème à un parallélépipède]

11. [Application du théorème à un octaèdre]

12. Note

13. [Produit de trois formes linéaires homogènes ternaires]

Certain non-homogeneous forms

14. [Théorème sur le produit de deux formes linéaires non-homogènes]

15. [Preuve du théorème (partie 1)]

16. [Preuve du théorème (partie 2)]

17. [Preuve du théorème (partie 3)]

18. [Preuve du théorème (partie 4)]

19. [Produit de n formes linéaires homogènes]

A new geometrical principle

20. [Théorème de Blichfeldt dans le plan]

21. [Preuve du théorème de Minkowski avec celui de Blichfeldt. Enoncé du théorème

de Blichfeldt en dimension n]

22. [Généralisation du théorème de Minkowski]

Linear Transformations

23. [Transformations linéaires de deux variables. Remarques]

24. [Transformations inverses]

25. [Propriétés des transformations linéaires]

25. [Transformations linéaires de n variables]

Quadratic Forms

26. [Formes quadratiques binaires : décomposition en somme de carrés]

27. [Application du théorème de Minkowski aux formes quadratiques binaires]
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28. [Calcul de γ2 par la méthode de Korkine et Zolotareff]

29. [La méthode de développement d’une forme quadratique par rapport à ses minima

d’après Korkine et Zolotareff]

30. [Théorème de Minkowski sur les formes quadratiques de n variables]

31. [Inégalités de Korkine et Zolotareff sur les coefficients des formes quadratiques]

32. [Calcul de γ3, γ4 et γ5]

33. [Estimation de Minkowski pour γn]

34. [Méthode de Blichfeldt pour améliorer l’estimation de Minkowski de γn]

6.1.3 Le cours de Siegel

Les Lectures on the Geometry of Numbers de Siegel ont été professées à l’université

de New York pendant l’année 1945-1946. Il s’agit d’un cours publié en 1989 d’après

des notes de Bernard Friedman10. Les notes de cours ayant été réécrites pour la publi-

cation sous forme de livre, nous avons un document de nature assez différente de celui

de Blichfeldt : rédaction plus soignée, plan plus précis etc. . . Nous reproduisons ici la

table des matières de ce livre.

Table des matières des Lectures on the Geometry of Numbers de Siegel :

Chapter I : Minkowski’s Two Theorems

Lecture I

1. Convex sets

2. Convex bodies

3. Gauge function of a convex body

4. Convex bodies with a center

Lecture II

1. Minkowski’s First Theorem

2. Lemma on bounded open sets in Rn

3. Proof of Minkowski’s First Theorem

4. Minkowski’s theorem for the gauge function

5. The minimum of the gauge function for an arbitrary lattice in Rn

6. Examples

10Siegel 1989.

402



6.1 CHAPITRE 6

Fig. 6.2 – Première page du cours de Blichfeldt
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Lecture III

1. Evaluation of a volume integral

2. Discriminant of an irreducible polynomial

3. Successive minima

4. Minkowski’s Second Theorem (Theorem 16)

Lecture IV

1. A possible method of proof

2. A simple example

3. A complicated transformation

4. Volume of the transformed body

5. Proof of Theorem 16 (Minkowski’s Second Theorem)

Chapter II : Linear Inequalities

Lecture V

1. Vector groups

2. Construction of a basis

3. Relation between different bases for a lattice

4. Sub-lattices

5. Congruences relative to a sub-lattice

6. The number of sub-lattices with given index

Lecture VI

1. Local rank of a vector group

2. Decomposition of a general vector group

3. Characters of vector groups

4. Conditions on characters

5. Duality theorem for character groups

6. Kronecker’s approximation theorem

Lecture VII

1. Periods of real functions

2. Periods of analytic functions

3. Periods of entire functions

4. Minkowski’s theorem on linear forms

Lecture VIII

1. Completing a given set of vectors to form a basis for a lattice
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2. Completing a matrix to a unimodular matrix

3. A slight extension of Minkowski’s theorem on linear forms

4. A limiting case

5. A theorem about parquets

6. Parquets formed by parallelepipeds

Lecture IX

1. Products of linear forms

2. Product of two linear forms

3. Approximation of irrationals

4. Product of three linear forms

5. Minimum of positive-definite quadratic forms

Chapter III : Theory of Reduction

Lecture X

1. The problem of reduction

2. Space of all matrices

3. Minimizing vectors

4. Primitive sets

5. Construction of a reduced basis

6. The First Finiteness Theorem

7. Criteria for reduction

8. Use of a quadratic gauge function

9. Reduction of positive-definite quadratic forms

Lecture XI

1. Space of symmetric matrices

2. Reduction of positive-definite quadratic forms

3. Consequences of the reduction conditions

4. The case n = 2

5. Reduction of lattices of rank two

6. The case n = 3

Lecture XII

1. Extrema of positive-definite quadratic forms

2. Closest packing of (solid) spheres

3. Closest packing in two, three, or four dimensions
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4. Blichfeldt’s method

Lecture XIII

1. The Second Finiteness Theorem

2. An inequality for positive-definite symmetric matrices

3. The space PK
4. Images of R

Lecture XIV

1. Boundary points

2. Non-overlapping of images

3. Space defined by a finite number of conditions

4. The Second Finiteness Theorem

5. Fundamental region of the space of all matrices

Lecture XV

1. Volume of a fundamental region

2. Outline of the proof

3. Change of variable

4. A new fundamental region

5. Integrals over fundamental regions are equal

6. Evaluation of the integral

7. Generalizations of Minkowski’s First Theorem

8. A lower bound for the packing of spheres

6.1.4 Un cours de Mordell à Cambridge

Nous avons retrouvé dans les archives de Mordell à Cambridge un dossier inti-

tulé Geometry of Numbers11. Ce dossier contient des notes manuscrites de Mordell sur

des thèmes variés : formes quadratiques, formes cubiques, produit de formes linéaires,

« Lattice points in astroidal region ». . . Certaines des listes d’étudiants données au cha-

pitre précédent se trouvent aussi dans ce dossier. Malheureusement les papiers dans ce

dossier sont dans le désordre et parfois visiblement incomplets. Nous avons cependant

reconstitué ce qui doit être des notes pour un cours sur la géométrie des nombres. Il

s’agit d’environ 110 pages manuscrites numérotées (à peu près) continûment, quelques

pages sont quand même manquantes alors que d’autres sont en plusieurs exemplaires

11Le titre est écrit de la main de Mordell ce qui permet de penser qu’il a lui même réuni les notes
contenues dans ce dossier. Mordell (St John’s), box 7.
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avec parfois des modifications.

Ces notes de cours ne sont pas datées mais plusieurs indices montrent qu’elles ont été

écrites après 1946 et probablement avant 1949. D’abord, Mordell donne la référence

d’un article de Davenport publié en 1946 et il cite Dyson sur le produit de quatre

formes linéaires non homogènes. Ce travail de Dyson, qui est publié en 1948 mais dont

la preuve est élaborée dès 1946, semble être le résultat le plus récent cité par Mordell.

Ensuite une des listes d’étudiants se trouvant dans le même dossier est datée de 1947-

1948.

Cette liste permet aussi de dire que le cours de Mordell était destiné à des étudiants

avancés. Ce sont des « Research students » ainsi que des étudiants préparant la « Part

III » du Mathematical Tripos.

Nous donnons maintenant le plan du cours, les titres sont ceux indiqués par Mordell

seule la numérotation a été ajoutée.

Plan du cours de Mordell à Cambridge :

1. Linear substitutions

2. Minimum of a binary quadratic form

3. Min. of a binary cubic form

4. Lattice points

5. Regions

6. Linear Forms

7. Non convex regions

8. Improvement of Minkowski’s theorem

9. Improved results for some non-convex regions R

10. Simultaneous approximations

11. Properties of two dimensional lattices

12. Best possible results

13. Binary cubic forms

14. Product of three ternary linear forms

15. Product of two non-homogeneous forms

16. The product of n non-homogeneous linear forms

17. The product of n homogeneous forms

18. Analytical methods. Poisson’s summation formula
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19. Successive minima for quadratic forms

20. Successive minima of a bounded star body

21. Product of n homogeneous linear forms continued

22. Related n dimensional problems

6.1.5 Le cours de Davenport à Stanford en 1950

À partir de la fin des années 1940, Davenport est invité à plusieurs reprises à l’uni-

versité de Stanford. D’après Royden, il y donne des cours, en particulier un cours pour

les graduates sur la géométrie des nombres12. Une version de ce cours est conservée

dans les archives de Davenport à Cambridge13. Il s’agit de 67 pages dactylographiées

datées de 1950.

Plan du cours de Davenport à Stanford :

1. Introduction

2. Minkowski’s fundamental theorem

3. Lattices

4. Applications of Minkowski’s Theorem to particular bodies

(a) The Sphere

(b) The box

(c) The octahedron

(d) A more general body

5. The closest packing of convex bodies

6. The closest packing of spheres

7. The theorem of Minkowski and Hlawka

8. Non-convex bodies

9. The regions |xy| ≤ 1 and |xyz| ≤ 1

10. Further developments

12Royden 1989 p.255.
13Davenport 1950b.
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Fig. 6.3 – Première page du cours de Mordell
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Fig. 6.4 – Première page du cours de Davenport
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6.2 La géométrie des nombres comme discipline à tra-

vers les cours

6.2.1 Les objets fondamentaux

Nous avons déjà mentionné certains des objets qui sont étudiés dans le cours de

Châtelet. D’abord, interviennent ce qu’il appelle les tableaux qui correspondent à la

notion actuelle de matrice carrée. Leurs propriétés sont introduites afin que les tableaux

soient appliqués à différentes situations. Les autres objets fondamentaux dans le cours

de Châtelet sont les « modules de points14 » dont les réseaux sont un cas particulier, les

nombres et les entiers algébriques et les « distances généralisées ». Les distances géné-

ralisées de Châtelet correspondent aux distances radiales, réversibles et concordantes

de Minkowski.

Les objets mis en avant dans le cours de Blichfeldt sont les réseaux, ce qu’il nomme

les « Minkowski’s standard surfaces » qui sont des domaines convexes et surtout les

formes : linéaires ou bien quadratiques.

Nous retrouvons chez Siegel les réseaux ainsi que les domaines convexes mais les formes

occupent une place beaucoup plus marginale. Siegel utilise aussi l’interprétation des

domaines convexes avec la notion de distance qu’il appelle la « gauge function of a

convex body ».

Les mêmes objets sont présents dans le cours de Mordell : les formes (linéaires, qua-

dratiques, cubiques), les réseaux et les domaines mais qui ne sont plus nécessairement

convexes. Cependant l’importance qui leur est accordée est différente, l’accent chez

Mordell est mis davantage sur les formes.

Enfin, avec Davenport, les formes disparaissent à nouveau pour laisser la place centrale

aux corps convexes dans la première partie du cours puis à des corps plus généraux

dans la seconde partie. Les réseaux ont eux aussi un rôle fondamental dans ce cours.

6.2.2 Les concepts et les résultats clés

Le théorème de Minkowski sur les points d’un réseau dans un domaine convexe est

énoncé et démontré dans tous les cours. Parfois le théorème sur les minima successifs

qui le généralise est également donné. Chaque cours contient des paragraphes dont la

fonction essentielle est de préparer le terrain pour la démonstration de ces théorèmes.

Parmi ces thèmes préliminaires nous avons les réseaux, les domaines convexes ou encore

parfois les substitutions linéaires. Ces sujets ne sont pas traités de la même façon et

avec la même importance selon les auteurs. Pour certains ils sont présentés seulement

14Il s’agit en termes modernes de groupes additifs.
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parce qu’ils apparaissent dans le théorème de Minkowski, pour d’autres ils prennent

un statut plus fondamental dans le cours. Par exemple, les réseaux sont fondamentaux

dans le cours de Siegel alors que Blichfeldt se contente d’une définition.

La preuve et l’énoncé du théorème ne sont pas non plus toujours identiques.

Châtelet énonce le théorème de Minkowski de la manière suivante15 :

« Théorème I : Etant donné un module type de dimension n, de base T

et formé par les points A(a1, a2, . . . , an), on a

[minimum f(a1, a2, . . . , an)]
n ≤ 2n |∆(T )|

J
,

J étant une constante qui ne dépend que de la fonction f . »

Pour Châtelet, un module type de dimension n correspond à la notion de réseau.

Il appelle alors base du module un tableau T inversible, de taille n et qui vérifie la

propriété : un point (p1, . . . , pn) appartient au module si et seulement si

‖p1 . . . pn‖ = ‖x1 . . . xn‖ × T ,

où les xi sont des nombres entiers16. ∆(T ) désigne le déterminant du tableau T et f est

une « distance généralisée », notion qu’il a définie dans le premier chapitre du livre17 :

« on appelle distance généralisée de deux points A, B, une fonction des

différences des coordonnées des points

S(AB) = f(αi − βi) ,

cette fonction étant réelle, définie pour deux points quelconques de l’espace

considéré et telle que







(1)







f(ui) ≥ 0 ,

f = 0 entraînant ui = 0 ,

(2) f(λui) = |λ| f(ui) (λ réel) ,

(3) f(ui + vi) ≤ f(ui) + f(vi) . »

15Châtelet 1913 p.108. La preuve de Châtelet est présentée en annexe.
16En termes modernes, les lignes de T sont donc les coordonnées des vecteurs d’une base du réseau

dans la base canonique. Remarquons que les conventions de Châtelet dans l’écriture des tableaux ne
sont pas celles qu’il est l’usage d’utiliser maintenant : les coordonnées des vecteurs sont notés en ligne
chez Châtelet.

17Châtelet 1913 p.17.
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La démonstration du théorème proposée par Châtelet est celle donnée par Min-

kowski dans le texte de la conférence de Chicago. La seule différence est que Châtelet

exprime les calculs de volumes avec des intégrales.

En reprenant lui aussi la preuve de Minkowski, Blichfeldt démontre uniquement le

théorème dans le cas de la dimension 2 :

« A M− curve of area 4 or more, having a center at the origin, must

contain on (or inside) its boundary one or more lattice points in addition

to (0, 0) 18. »

Il donne l’énoncé en dimension n sous cette forme mais sans preuve. Plus loin dans le

cours, Blichfeldt montre le théorème de Minkowski en utilisant son théorème démontré

en 1914.

Ce dernier point de vue est aussi celui adopté par Siegel. Ce dernier commence par

donner trois preuves du lemme

« Let M be a bounded open set in Rn, with volume greater than 1. Then

M contains two distinct points x and y, such that

xi − yi = an integer (for i = 1, . . . , n),

where xi and yi are the coordinates of the points x and y respectively19. »

Avec ce lemme, qui nous l’avons dit est une version plus faible du théorème de Blichfeldt,

Siegel démontre ensuite le théorème de Minkowski. Notons que Siegel donne le théorème

de Minkowski sous sa forme géométrique et analytique.

Mordell propose aussi les deux formes du théorème ainsi que plusieurs démonstrations.

D’abord une preuve où le théorème de Minkowski est vu comme un cas particulier du

résultat qu’il a montré en 1935 20 :

« Let R be any region and S the region derived from R by taking the set

of points (
x− y

k

)

=

(
x1 − y1

k1

, . . . ,
xn − yn
kn

)

,

where (x), (y) are any two points of R and (k) is a set of positive numbers.

Then if V = V (R) is the content of R and Λ is a lattice of determinant

∆ > 0 and if

V > k1k2 . . . kn∆ ,

the region S contains a point of Λ other than O 21. »

18Blichfeldt 1932 p.18.
19Siegel 1989 p.13.
20Mordell 1935.
21Mordell (St John’s), box 7.
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L’autre preuve donnée par Mordell est analytique et utilise les séries de Fourier.

Enfin, Davenport introduit le théorème de Minkowski de manière progressive. Il com-

mence par le montrer dans le cas de l’ellipsoïde et pour le réseau des nombres entiers.

Puis il remarque que seules les propriétés de convexité et de symétrie par rapport à

l’origine sont utiles, ce qui le conduit à l’énoncé du théorème pour n’importe quel do-

maine convexe et symétrique par rapport à un point. Enfin, après avoir défini la notion

de réseau, le théorème est donné sous sa forme générale.

Les autres résultats importants dans le cours de Châtelet sont ceux qui concernent

les tableaux car ils sont appliqués dans divers problèmes, en particulier

« Pour avancer plus loin dans cette théorie des entiers des corps algébriques

et des idéaux, il est utile et même nécessaire d’étudier d’un peu plus près

les systèmes de tableaux22 ».

Cet examen plus approfondi des propriétés des systèmes de tableaux conduit Châtelet

à développer une autre notion cruciale de son cours qui est la réduction. La méthode

de réduction qu’il présente est la réduction continuelle d’Hermite23 qu’il expose dans

le cadre de sa théorie des tableaux.

La question de la réduction est aussi fondamentale dans le cours de Siegel : c’est le

titre d’un des trois chapitres. Siegel s’intéresse au problème de la réduction des formes

quadratiques définies positives ainsi qu’à la construction de bases réduites pour un

réseau.

La réduction de certaines formes est aussi abordée par Mordell mais elle est traitée

dans le cadre d’une problématique plus générale qui est celle de la résolution d’inéga-

lités. À l’exception de celui Châtelet, les problèmes sur les inégalités jouent un rôle

fondamental dans tous les cours tout en étant déclinés sous des formes diverses. Avec

Blichfeldt, les inégalités apparaissent d’abord dans des questions d’approximations dio-

phantiennes, puis à la fin de son cours au sujet de l’estimation des minima pour des

valeurs entières des variables des formes quadratiques. Pour Siegel, l’objectif de son

chapitre sur les inégalités linéaires est de « résoudre approximativement des équations

linéaires au moyen d’entiers24 ».

Les inégalités sont au coeur des conceptions de la géométrie des nombres de Mordell

et Davenport, c’est dans ce cadre qu’ils décrivent la théorie et ses développements :

« It [the geometry of numbers] is concerned with the problem of determining

whether or not inequalities of various kinds are soluble in integers, and with

other problems that have arisen naturally out of this25. »

22Châtelet 1913 p.91.
23Goldstein 2007 p.394.
24Siegel 1989 p.43.
25Davenport 1950b p.1.
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Parmi les problèmes dans lesquels les inégalités interviennent, figure l’estimation de

minima que Davenport aborde pour les formes quadratiques mais que Mordell envisage

de façon plus générale

« The geometry of numbers was a subject, developed originally by Min-

kowski, which dealt with the application of geometric intuition and ideas

to certain arithmetic questions, but is now used in a more general sense for

questions of the following type. Let P with coordinates (x1, x2, . . . , xn) be

a real point in n dimensional Euclidean space Rn, and let

f(x) ≡ f(x1, x2, . . . , xn)

be a function of the x’s defined for all such x. The question is to find the

lower bound Mf of |f(x)| for integer values of the x’s26. »

Dans la suite du cours, Mordell étudie les minima de différents types de fonctions f :

formes quadratiques, formes cubiques binaires, produits de formes linéaires homogènes

ou non homogènes. Davenport traduit plus systématiquement que Mordell ce problème

géométriquement. Les inégalités f(x1, . . . , xn) ≤ 1 définissent un domaine et il s’agit de

savoir si ce domaine contient des points d’un réseau. Pour un domaine fixé, les résultats

recherchés sont la détermination du déterminant critique et des réseaux critiques27.

Un dernier ensemble de résultats qui occupe une place importante dans les cours de

Siegel et de Davenport concerne le problème de l’empilement de corps convexes. Les

deux mathématiciens s’intéressent plus particulièrement au cas des sphères pour lequel

ils exposent la méthode de Blichfeldt consistant à utiliser des sphères matérielles28.

6.2.3 Les méthodes utilisées

Les méthodes employées, les points de vue adoptés d’un cours à l’autre sont aussi

variés. Nous trouvons des approches arithmétiques, algébriques, analytiques et géomé-

triques qui se mélangent mais jamais de la même façon.

Avec sa théorie des tableaux, la démarche de Châtelet peut être caractérisée comme

algébrique, son premier chapitre est d’ailleurs une « introduction algébrique ». L’al-

gèbre cohabite avec un « langage géométrique » que Châtelet introduit dans le début

de son cours. Châtelet parle donc de points, de droites, de plans, de distances. . . Châ-

26Mordell (St John’s), box 7.
27Si K est un domaine, un réseau est admissible pour K s’il ne contient pas un point du réseau

autre que l’origine dans son intérieur. La borne inférieure du déterminant des réseaux admissibles
pour K est le déterminant critique de K noté ∆(K) par Davenport (par convention s’il n’y a pas de
réseau admissible pour K, ∆(K) = ∞). Un réseau critique pour K est alors un réseau admissible de
déterminant ∆(K).

28Cette méthode est présentée dans le chapitre 3.
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telet favorise des méthodes effectives. Par exemple, dans les parties où il s’intéresse aux

idéaux, il choisit des bases explicites pour travailler29.

Blichfeldt alterne des méthodes géométriques et arithmétiques. Quand il présente le

théorème sur les corps convexes et ses applications, il reprend l’exposition géométrique

de Minkowski. En revanche, il propose une preuve arithmétique pour le théorème sur

le produit de deux formes linéaires non homogènes. De même, dans la fin de son cours

consacrée aux formes quadratiques, Blichfeldt donne les méthodes arithmétiques de

Korkine et Zolotareff pour calculer les constantes γ2, γ3, γ4 et γ5.

Siegel présente le théorème de Minkowski géométriquement, mais il en donne plusieurs

preuves dont une qui est analytique. L’analyse intervient aussi dans des calculs d’in-

tégrales et dans la méthode de Blichfeldt pour l’empilement des sphères. Enfin, des

méthodes arithmétiques sont développées à propos de la réduction des formes quadra-

tiques.

Nous retrouvons arithmétique, géométrie et analyse chez Mordell. Ce dernier semble

attacher une importance toute particulière à montrer différentes approches possibles

pour un même problème. Par exemple, il présente son théorème sur le minimum des

formes cubiques binaires avec le point de vue géométrique qu’il avait lui-même adopté,

mais il donne aussi l’approche arithmétique par la théorie de la réduction élaborée par

Davenport. Il étudie les produits de formes linéaires homogènes par des méthodes géo-

métriques mais aussi en reprenant son travail sur la formule sommatoire de Poisson.

Il reprend le théorème de Minkowski avec la méthode arithmétique de son article de

1935 mais il propose en plus une preuve analytique utilisant des séries de Fourier.

S’il ne semble pas y avoir de point de vue dominant chez Mordell, la situation est

un peu différente dans le cours de Davenport. En effet, s’il présente sa démonstration

arithmétique du théorème sur le produit de trois formes linéaires homogènes, s’il utilise

un peu d’analyse dans la preuve du théorème de Minkowski-Hlawka et la méthode de

Blichfeldt sur l’empilement des sphères, ce qui domine quand même dans ce cours c’est

la géométrie. Davenport met au centre les notions de corps convexes ou de corps étoilés

ce qui l’amène à privilégier l’approche géométrique. Cela est bien illustré par la table

des matières du cours dans laquelle le vocabulaire géométrique domine (voir page 408).

6.2.4 Systématisation de la géométrie des nombres

Nous comparons maintenant l’organisation des cours pour essayer de voir s’il se

dégage une présentation standard de la géométrie des nombres.

Le travail de Minkowski est réparti dans l’ensemble du cours de Châtelet, la géomé-

29Voir en particulier la note II dans laquelle Châtelet traite un exemple de corps algébrique, Châ-

telet 1913 p.138.
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trie des nombres est complètement intégrée aux autres thèmes traités. Dans le premier

chapitre, ce que Châtelet appelle le « langage géométrique » est introduit grâce aux

distances généralisées. Le deuxième chapitre sur les modules de points contient les pro-

priétés sur les réseaux nécessaires pour l’énoncé des théorèmes de Minkowski sur les

parties convexes. Châtelet expose ensuite les bases de la théorie des nombres et en-

tiers algébriques. Les théorèmes de Minkowski figurent ensuite dans un chapitre avec

la réduction continuelle car ils sont vus comme un complément à cette théorie. Dans

ce même chapitre, Châtelet donne une application immédiate à l’approximation simul-

tanée de réels par des rationnels. Dans le dernier chapitre, le théorème de Minkowski

est utilisé pour démontrer des propriétés plus fines des corps de nombres algébriques :

propriétés des unités, du discriminant, finitude du nombre de classes d’idéaux.

Le cours de Blichfeldt progresse de problèmes du premier degré à des problèmes du

second degré. Plus précisément, Blichfeldt commence par quelques remarques sur les

équations du premier degré en liaison avec l’approximation diophantienne. Ensuite, il

présente le théorème de Minkowski qui est dans un premier temps appliqué aux formes

linéaires, à leur somme ou à leur produit. Après une parenthèse dans laquelle il donne

son théorème généralisant celui de Minkowski, Blichfeldt s’intéresse aux formes qua-

dratiques.

Le cours de Siegel est structuré autour de problèmes ou résultats clés qui fournissent

le thème de chacun des trois chapitres : les théorèmes de Minkowski, les inégalités li-

néaires et la réduction. Des résultats du chapitre I sont utilisés dans les deux derniers

chapitres qui sont quant à eux indépendants.

Avec Mordell, nous avons encore affaire un autre type d’organisation. Cette fois le cours

se présente comme une succession de problèmes à résoudre30. Les différentes parties ne

s’enchaînent pas nécessairement, elles sont le plus souvent indépendantes. Mordell re-

vient parfois à plusieurs reprises sur le même sujet qu’il aborde alors avec un nouveau

point de vue (les formes cubiques binaires, produit de n formes linéaires homogènes).

Enfin, le cours de Davenport se développe en partant de questions qui portent sur

des domaines convexes pour aller vers des problèmes non convexes. Il s’intéresse alors

essentiellement à des corps étoilés. Dans la première partie, il applique le théorème

de Minkowski à différents exemples de corps convexes, il étudie aussi l’empilement de

corps convexes et en particulier de sphères. Dans la fin du cours, l’objectif est de dé-

terminer le déterminant critique et les réseaux critiques de domaines fixés. Davenport

interprète alors les théorèmes qu’il avait obtenu avec Mordell sur les formes cubiques

binaires et le produit de trois formes linéaires dans ce cadre. Par exemple, le théorème

de Davenport sur le produit de trois formes linéaires homogènes réelles est équivalent

au fait que le déterminant critique du domaine défini par l’inégalité |x1x2x3| ≤ 1 est

30Il est intéressant de noter que c’est la critique que fait Serge Lang au sujet du livre de Mordell
sur les équations diophantiennes. Voir Lang 1983 p.349-358.
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7. Les réseaux critiques sont alors donnés par les cas d’égalités du théorèmes de Da-

venport. Ce cours illustre donc bien l’évolution de la géométrie des nombres que nous

avions déjà mentionnée à propos de ses travaux de recherche.

Conclusion

La description des cours montre donc une grande diversité dans la façon dont la

géométrie des nombres est enseignée. Les objets étudiés, les méthodes utilisées, les

résultats présentés changent dans tous ces cours. Lorsque nous trouvons des points

communs, un examen plus précis fait ressortir des différences de traitements, un agen-

cement différent de l’ensemble de la discipline. . . Nous l’avons constaté par exemple à

propos du théorème de Minkowski qui n’est jamais présenté de la même manière et qui

semble avoir des statuts divers dans ces cours. Les formes sont juste parfois un champ

d’application possible du théorème de Minkowski (Siegel) ou elles sont aux centre de

presque tous les problèmes dont s’occupe la géométrie des nombres (Mordell).

À travers ces cours, nous constatatons aussi qu’aucun consensus sur la manière dont

la géométrie des nombres doit être exposée ne semble avoir émergé dans la période

que nous regardons. En présentant une géométrie des nombres intégrée à la théorie

des nombres, le cours de Châtelet est celui qui reflète le mieux l’ambition qu’avait

Minkowski pour cette théorie. Elle apparaît en effet comme un cadre général permet-

tant d’unifier différentes disciplines arithmétiques. Avec Siegel, bien que les théorèmes

de Minkowski soient encore appliqués à plusieurs problèmes, nous perdons l’imbrica-

tion de la géométrie des nombres aux questions qu’elle permet d’aborder. L’exposé des

théorèmes de Minkowski au début du cours comme préliminaires et de façon indépen-

dante véhicule l’image d’une discipline au service de la résolution d’autres problèmes.

La géométrie des nombres du cours de Mordell est organisée en une succession de pro-

blèmes qu’il s’agit d’étudier par des méthodes variées. Ces problèmes sont reliés par

une question générale d’estimation de minimum pour des fonctions, mais la géométrie

des nombres apparaît quand même comme une discipline constituée de plusieurs sujets

qui sont traités indépendamment. Enfin, la géométrie des nombres dans le cours de

Davenport est structurée par les propriétés géométriques des domaines associés aux

questions étudiées (convexes, étoilés). Cette observation est paradoxale pour Daven-

port qui est davantage considéré comme un analyste et qui semble plutôt favoriser une

approche arithmétique dans son travail sur la géométrie des nombres. Cela suggère chez

Davenport des pratiques pédagogique et de recherche de la géométrie des nombres qui

sont différentes.

Du point de vue de la recherche, nous avons qualifié la géométrie des nombres de Mor-

418



6.2 CHAPITRE 6

dell et Davenport de champ disciplinaire, soulignant ainsi l’effort de travail collectif

effectué sur ce sujet. Mais ce chapitre montre que dans l’enseignement cela ne se tra-

duit pas par une manière unifiée de faire cours.

Cette absence de systématisation de la géométrie des nombres dans les cours traduit

des conceptions variées de la discipline ce qui est très proche de ce qui a été constaté

pour la géométrie des nombres comme activité de recherche.
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Conclusion

La géométrie des nombres apparaît au départ comme une discipline des mathémati-

ques qui surgit subitement du travail de Minkowski. Dans le début des années 1890,

les premiers résultats sont démontrés, Minkowski baptise lui-même la discipline qu’il

est en train de construire Geometrie der Zahlen et pendant une vingtaine d’années il

prend en charge seul son développement. La situation est par exemple complètement

différente pour un sujet de recherche comme les nombres algébriques. Ils sont étudiés

dès le XIXe, les approches du sujet sont profondément modifiées en particulier à travers

le Zahlbericht de Hilbert, mais l’expression théorie algébrique des nombres qui désigne

encore cette discipline actuellement n’est utilisée que dans les années 1920 31. L’élabo-

ration progressive mais aussi collective d’une discipline théorie algébrique des nombres

contraste donc avec ce qui a été observé pour les débuts de la géométrie des nombres.

Minkowski accompagne la création de son sujet d’une conception disciplinaire forte. Il

organise la géométrie des nombres autour d’un résultat fondamental, d’objets fonda-

mentaux ; il met en avant une approche méthodologique (l’utilisation de la géométrie) ;

il définit un certain nombre de champs d’applications importants. Minkowski semble

aussi avoir une grande ambition sur la place que doit occuper la géométrie des nombres

dans l’ensemble des mathématiques. Il l’envisage comme une discipline intégrée au reste

des mathématiques mais aussi comme un modèle pour unifier l’ensemble des domaines

des mathématiques. De plus, à la fin du XIXe siècle où du point de vue des fondements

se développe un mouvement d’« arithmétisation des mathématiques », un mathémati-

cien comme Klein présente la géométrie des nombres et la géométrisation comme une

alternative crédible.

Une telle origine pour la géométrie des nombres laisse penser que faire l’histoire de

cette discipline est un exercice bien balisé : il suffit de suivre ce que les mathémati-

ciens appellent géométrie des nombres pour en comprendre les développements, travail

d’autant plus facile qu’il existe à cette époque des journaux qui recensent tous les tra-

vaux mathématiques classés par disciplines. Mais la thèse a montré que si la discipline

géométrie des nombres perdure après Minkowski, les conceptions disciplinaires qui lui

sont associées changent. Ce qui est plus paradoxal encore, c’est que le moment qui

31Voir Goldstein et Schappacher 2007b p.91.
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est perçu comme un redémarrage du sujet avec Mordell et Davenport est aussi celui

où la discipline apparaît comme la plus dispersée avec un travail organisé autour de

différents problèmes plus ou moins isolés.

Une première tentation serait d’essayer d’expliquer ces différences en intégrant des

facteurs nationaux et d’opposer des organisations disciplinaires allemandes et britan-

niques. Mais les liens forts entretenus par Mordell et Davenport avec l’Allemagne, ainsi

que leurs nombreuses collaborations avec des mathématiciens de nationalités variées

suggèrent que ce n’est pas complètement satisfaisant.

La prise en compte de différentes échelles d’analyse a alors permis de mieux com-

prendre ces deux conceptions disciplinaires. En particulier, le changement d’échelles a

montré que les facteurs sociaux y sont plus ou moins déterminants mais surtout opèrent

à des niveaux différents. La conception disciplinaire de Minkowski est typique du mi-

lieu dans lequel il évolue (Klein, Hilbert), mais le collectif semble jouer un rôle moins

apparent dans l’élaboration conceptuelle de la géométrie des nombres, Minkowski en

assurant seul le développement. À l’inverse avec Mordell et Davenport, la géométrie

des nombres fait l’objet d’un effort de recherches en commun. Des problèmes, comme

celui du produit de formes linéaires, se trouvent alors au centre du travail de plusieurs

mathématiciens : ce sont des sujets abordés lors de séminaires, des publications leur

sont consacrées, ils sont enseignés. . .

Les deux conceptions disciplinaires se différencient aussi par plusieurs aspects du dévelop-

pement interne de la géométrie des nombres.

D’abord, pour Minkowski, la géométrie des nombres est un terrain important d’in-

novation conceptuelle, en particulier en ce qui concerne la géométrie. Son travail sur

la convexité avec l’introduction du point de vue des fonctions distances est jugé a

posteriori comme fondamental

« the geometry he [Minkowski] developed in the book [Geometrie der Zah-

len] laid the foundation for an analytical theory of convexity32 » ;

tout comme l’étude conjointe des corps convexes et des réseaux. L’impact du travail de

Minkowski sur ces domaines de recherche est illustré par la place importante qui lui est

accordée dans l’introduction historique du livre Handbook of Convex Geometry33. Au

cours de son travail sur la géométrie des nombres, Mordell n’introduit pas de nouveaux

objets. Ses contributions à la discipline consistent davantage à proposer de nouvelles

méthodes ou en adapter d’anciennes à de nouvelles situations. Beaucoup de démonstra-

tions n’utilisent que des notions assez élémentaires et n’intègrent pas d’éléments issus

de développement théoriques récents (en particulier en ce qui concerne la géométrie),

32Kjeldsen 2002 p.480.
33Voir Gruber et Wills 1993.
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mais elles sont le plus souvent extrêmement élaborées.

À l’échelle des commentaires des mathématiciens, la géométrie des nombres est le

plus souvent caractérisée par l’application de la géométrie à la théorie des nombres.

Mais les exemples étudiés dans la thèse ont montré que cela ne peut pas la caractéri-

ser sur la longue durée. D’ailleurs, a posteriori, certains travaux sur la géométrie des

nombres sont perçus comme laissant une moindre place à la géométrie :

« At present, the geometry of numbers appears to be much more geometric

than it was between 1920 and 1960 34. »

Dans les commentaires les disciplines arithmétique, géométrie, analyse sont utilisées

spontanément par les mathématiciens. Mais dans le cadre de la géométrie des nombres

le sens qui leur est donné est moins clair, il change. Si l’utilisation de la géométrie

dans un contexte arithmétique se traduit par l’opposition entre continu et discret chez

Minkowski, avec Mordell et Davenport il s’agit davantage d’interpréter la résolution

d’inégalités diophantiennes comme la recherche de points d’un réseau dans un do-

maine. Il y a aussi ce que géométrie désigne dans l’expression géométrie des nombres et

là ce que Minkowski visait lorsqu’il a baptisé ainsi la discipline, c’est très certainement

la géométrie dans sa dimension intuitive.

Des différences apparaîssent ensuite dans les emplois qui sont faits de la géométrie,

l’arithmétique et l’analyse. Alors que Minkowski privilégie l’un ou l’autre de ces points

de vue dans des situations précises, leur utilisation ne semble pas systématisée de la

même manière chez Mordell et Davenport. La géométrie dans le travail de Minkowski

a un statut fondamental, c’est par la géométrisation que doit passer l’unité des ma-

thématiques. Mordell et Davenport n’expriment pas une ambition aussi grande pour la

géométrie. Cependant, des commentaires dispersés et ponctuels montrent qu’eux aussi

lui attribuent certaines spécificités. C’est particulièrement frappant avec Davenport

qui utilise la géométrie à des fins heuristiques, qui lui laisse la place la plus importante

dans son cours, qui semble la considérer comme plus générale mais qui par contre la

fait disparaître de ses publications.

Les éléments perçus sur la géométrie des nombres ont dû être dégagés à partir de

courtes remarques faites le plus souvent au milieu d’un article de mathématiques, ou

encore dans le cas de Davenport en comparant les contenus de ses publications avec

des cours et des notes non publiés. Cette observation sur la géométrie des nombres

est en fait caractéristique et amène à un commentaire méthodologique plus général.

Mordell et Davenport sont des mathématiciens qui ont laissé principalement des textes

34Gruber 1993b p.9.
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mathématiques et ils sont nombreux dans leur cas. Ils n’ont pas produit de métadis-

cours sur leur travail ou sur les mathématiques en général. Tout ce que nous trouvons,

ce sont de brefs commentaires, souvent peu explicites, qui peuvent parfois apparaître

banals et par conséquent difficiles à interpréter de manière isolée. Cela peut expliquer

en partie pourquoi Mordell et Davenport, et plus généralement ce type de mathéma-

ticiens, ont été peu étudiés. Pourtant, comme l’a montré en particulier le chapitre sur

« l’école de Mordell », ce sont des figures incontournables de la théorie des nombres en

Angleterre au milieu du XXe siècle, il est donc nécessaire de développer des approches

méthodologiques pour rendre compte de leur travail ; d’autant plus que cette façon de

faire des mathématiques est certainement la plus représentative de cette communauté,

en particulier pour l’époque contemporaine. Faire varier les échelles d’analyse est la

méthode qui a été employée ici. Par exemple, l’examen à une échelle fine de certains

articles de Davenport a montré l’origine géométrique de certaines démonstrations ju-

gées arithmétiques dans leurs commentaires, ce qui a permis d’avancer des hypothèses

sur sa conception de l’intervention de la géométrie. À une autre échelle, de la lecture

de nombreux articles et de la répétition de petites remarques au milieu de leur travail

mathématique se dégage parfois un point de vue cohérent sur une question précise.

Les différences de conception disciplinaire décrites expliquent aussi en partie pourquoi

certaines généalogies oublient Mordell dans l’histoire de la géométrie des nombres. Le

développement des mathématiques structurales au cours du XXe siècle fait que Min-

kowski est plus facilement mobilisé comme repère historique car sa conception de la

géométrie des nombres est mieux adaptée à cette vision des mathématiques. Quand

il est cité, Mordell apparaît lui pour des contributions ponctuelles ou des points tech-

niques.

Du point de vue de la question des disciplines scientifiques comme catégorie histo-

rique, les variations d’échelles montrent que, pour la géométrie des nombres, le problème

n’est pas de savoir si la caractérisation de la notion de discipline doit laisser une plus

grande place au social ou aux critères internes. La comparaison entre les conceptions

de Minkowski et Mordell montrent que ces deux types de facteurs font l’objet de re-

définition et que le problème est de savoir à quels niveaux ils opèrent et comment ils

s’articulent. Ainsi la question n’est pas de déterminer si la géométrie des nombres est

une discipline car le sens que cela prend concrètement dans la pratique des mathé-

maticiens bouge. Il s’agit dans chaque cas de trouver les indicateurs pertinents et de

comprendre leur agencement pour rendre compte de la dynamique de la recherche tant

sur le plan social qu’intellectuel.

L’angle adopté ici est celui de l’histoire d’une discipline. Cette histoire croise des

notions et des théorèmes mathématiques qui auraient pu être choisis comme thème
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central. Mais faire l’histoire d’une notion ou d’un théorème aurait conduit à une autre

contextualisation, à mobiliser un autre corpus et donc à faire apparaître des phéno-

mènes et des protagonistes différents35. Par exemple, une histoire de la notion de ré-

seaux aurait certainement amené à s’intéresser à la cristallographie et à Poincaré ; une

histoire du théorème sur les formes cubiques binaires serait passée par les travaux

de Eisenstein, Hermite, Arndt et une étude plus précise de la théorie arithmétique

des formes ; alors que s’intéresser à la question de la convexité dans la géométrie des

nombres replacerait le travail de Minkowski dans le contexte de la géométrie au XIXe

siècle et par suite à prendre en compte des textes nouveaux. L’écriture de ces histoires

et leur articulation avec celle entamée ici permettrait une compréhension plus complète

de la géométrie des nombres.

C’est bien sûr à quoi invite ce travail. . .

35Pour un exemple des effets de nouvelles contextualisations voir Ritter 2004.
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Annexe A

La polémique sur le Grand Prix de

l’Académie de Minkowski

Nous reproduisons les documents à propos de la polémique entre Mordell et le

journal The Engineer au sujet du Grand Prix de l’Académie des Sciences attribué à

Minkowski. Ces documents sont des copies conservées par Mordell des articles publiés

par ce journal1.

1Mordell (St John’s), box 1, folder 5. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe B

Deux lettres de Mordell à Davenport

Nous reproduisons ici deux lettres écrites par Mordell et adressées à Davenport.

La première est datée du 3 mars 1932 1. Mordell se trouve alors en Allemagne et

il rend compte en particulier de ses contacts avec plusieurs mathématiciens allemands

(Landau, Siegel, Artin, Noether etc).

Dans la seconde du 25 septembre 1933 2, Mordell présente à Davenport certaines des

idées de son article dans lequel il propose une démonstration arithmétique du théorème

de Minkowski sur les domaines convexes.

1Davenport (WL), G 211.
2Davenport (WL), G 211.
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Annexe C

Une lettre de Siegel à Mordell

Nous reproduisons ici la lettre de Siegel à Mordell du 8 octobre 1937 qui concerne

le produit de n formes linéaires non homogènes1. Il s’agit de la lettre qui a inspiré le

premier article de Davenport sur la géométrie des nombres.

La lettre est retranscrite après le document original.

1Mordell (St John’s), box 3, folder 28. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe D

Une lettre de Tschebotareff à Mordell

Nous reproduisons maintenant la lettre de Tschebotareff à Mordell du 24 février

1938 à propos du produit de n formes linéaires non homogènes1. Suite à la conférence

de Mordell à Oslo en 1936 où il n’avait pas été cité, Tschebotareff lui fait part de ses

travaux sur ce sujet qui avaient été uniquement publiés en russe.

1Mordell (St John’s), box 3, folder 19. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe E

Une lettre de Mahler à Mordell

Lettre de Mahler à Mordell du 21 août 1940 alors que Mahler se trouve dans un

camp d’internement1.

La lettre est retranscrite après le document original.

1Mordell (St John’s), box 2, folder 17. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe F

Institutions visitées par Mordell

Liste des institutions où Mordell a fait des conférences1.

1Mordell (St John’s), box 5. Reproduced by permission of the Master and Fellows of St John’s
College, Cambridge. 465





Annexe G

Les théorèmes de Minkowski d’après

Albert Châtelet

Dans son cours mentionné dans le dernier chapitre1, Albert Châtelet énonce et dé-

montre les deux théorèmes de Minkowski sur les domaines convexes. Il s’agit à notre

connaissance du premier mathématicien à présenter les preuves de ces résultats après

Minkowski. Châtelet reprend en fait très largement les idées utilisées par Minkowski

dans ses démonstrations. Cependant, Châtelet les présente en employant la notion de

tableaux développée dans le début de son cours.

G.1 Définitions et notations préliminaires

Châtelet consacre le chapitre II de son cours à la Théorie des modules de points,

c’est-à-dire en termes actuels aux groupes additifs. Comme cas particulier de ces mo-

dules de points, il étudie les modules types de dimension n dans un espace de dimension

n qui correspondent à la notion de réseau. Châtelet appelle base d’un tel module un

tableau A inversible et de taille n tel qu’un point (p1, . . . , pn) est dans le module si et

seulement si

‖p1, . . . , pn‖ = ‖x1 . . . xn‖ ×A ,

où les xi sont des entiers. Deux bases A et B du module sont équivalentes2, c’est-à-dire

que A = Σ×B où Σ est un tableau unimodulaire3 (tableau à coefficients entiers et de

déterminant ±1).

Châtelet reprend aussi la notion de distance de Minkowski. Il définit la distance géné-

1Châtelet 1913.
2Châtelet 1913 p.36.
3Châtelet 1913 p.12.

469



ANNEXE G

ralisée4 entre deux points A(α1, . . . , αn) et B(β1, . . . , βn) par

S(AB) = f(αi − βi) ,

avec f une fonction réelle qui vérifie :

(1) f(ui) ≥ 0 et f = 0 entraîne ui = 0,

(2) pour tout λ réel, f(λui) = |λ| f(ui),

(3) f(ui + vi) ≤ f(ui) + f(vi).

Pour une distance généralisée S et T un module type de dimension n, Châtelet

démontre en particulier le résultat suivant5

« Dans tout module type de dimension n, il existe toujours un nombre fini

(non nul) de tableaux V , ∆(V ) 6= 0, formés de points A1, A2, A3, ..., An tels

que6







S(OA) ≥ S(OA1) (A quelconque de T )

S(OA) ≥ S(OA2) (A quelconque de T et non de OA1)

S(OA) ≥ S(OA3) (A quelconque de T et non de OA1A2)

...

en particulier S(OA1) ≤ S(OA2) ≤ · · · ≤ S(OAn). »

Les tableaux V avec cette propriété sont appelés par Châtelet tableaux minima et

S(OA1), S(OA2), . . ., S(OAn) est un système de distances minima.

Un tableau est sous forme réduite d’Hermite7 s’il s’écrit
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

a1
1 0 0 . . . 0

a1
2 a2

2 0 . . . 0

...
...

...
. . .

...

a1
n a2

n a3
n . . . ann

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

4Châtelet 1913 p.17.
5Châtelet 1913 p.92.
6C’est-à-dire que les lignes de V sont les coordonnées des points Ai. ∆(V ) désigne le déterminant

de V .
7Châtelet 1913 p.46-47.
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avec des coefficients qui vérifient aii > 0 et

0 ≤ a1
2 < a1

1 , 0 ≤ a1
3 < a1

1 , . . . , 0 ≤ a1
n < a1

1

0 ≤ a2
3 < a2

2 , . . . , 0 ≤ a2
n < a2

2

. . .

0 ≤ an−1
n < an−1

n−1 .

Pour T un module type de dimension n et V un tableau minimum, Châtelet démontre

qu’il existe une unique base U de T telle que

U = S × V ,

où S est à coefficients rationnels sous forme réduite8. Ces tableaux U sont les tableaux

réduits du système de distances minima.

G.2 Le premier théorème de Minkowski

Soit S une distance généralisée dans un espace de dimension n et f la fonction de n

variables qui lui est associée comme dans le paragraphe précédent. Châtelet démontre

le premier théorème de Minkowski sur les convexes sous la forme suivante9 :

« Théorème I. — Etant donné un module type de dimension n, de base

T et formé par les points A(a1, a2, . . . , an), on a

[minimum f(a1, a2, . . . , an)]
n ≤ 2n |∆(T )|

J
,

J étant une constante qui ne dépend que de la fonction f . »

Châtelet commence par remarquer que pour deux points du module A et A′, le point

A−A′ est aussi un point du module et S(AA′) = S(O(A−A′)), où O est l’origine du

module. Il en déduit que si m désigne le minimum de f pris sur les points du module,

l’inégalité S(AA′) < m est impossible quand A et A′ sont distincts. Il considère ensuite

les corps Γm
2
(A) qui sont définis par l’inégalité

S(AM) ≤ m

2
.

Pour deux points quelconques du module A et A′, les corps Γm
2
(A) et Γm

2
(A′) ne peuvent

se rencontrer que sur leur frontière. Sinon un point M vérifierait les deux inégalités

8Châtelet 1913 p.93.
9Châtelet 1913 p.108.
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S(AM) < m
2
, S(A′M) < m

2
et par suite

S(AA′) ≤ S(AM) + S(A′M) < m .

Soient maintenant les points E du module dont les coordonnées ei dans la base définie

par T vérifient |ei| ≤ ω, où ω est un entier naturel non nul. Pour chacun de ces

(2ω + 1)n points E, Châtelet considère Γm
2
(E) et Ω le domaine formé par tous ces

corps. Le volume de Ω est donc

(2ω + 1)n
(m

2

)n

J ,

où J est le volume de Γ1(O). Si (y1, . . . , yn) désigne les coordonnées dans la base T ,

Châtelet note ε une limite supérieure des |yi| pour les points (y1, . . . , yn) de Γm
2
(O),

ainsi pour n’importe quel point (y1, . . . , yn) de Ω,

|y1 − e1| ≤ ε , |y2 − e2| ≤ ε , . . . , |yn − en| ≤ ε ,

c’est-à-dire

|y1| ≤ ω + ε , |y2| ≤ ω + ε , . . . , |yn| ≤ ω + ε .

Ces dernières inégalités définissent un corps qui contient Ω et dont le volume est donné

par

∫

. . .

∫

dx1 . . . dxn = |∆(T )|
∫

. . .

∫

dy1 . . . dyn

= |∆(T )|
∫ ω+ǫ

−ω−ǫ
dy1

∫ ω+ǫ

−ω−ǫ
dy2 . . .

∫ ω+ǫ

−ω−ǫ
dyn

= |∆(T )| (2ω + 2ǫ)n .

En comparant ce volume avec celui de Ω, Châtelet obtient

(2ω + 1)n
(m

2

)n

J ≤ |∆(T )| (2ω + 2ǫ)n

ou encore : mn ≤ |∆(T )|
J

2n
(

2ω + 2ǫ

2ω + 1

)n

.

Quand ω tend vers +∞, cette inégalité conduit bien à

mn ≤ 2n |∆(T )|
J

.
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G.3 Le second théorème de Minkowski

Châtelet utilise les mêmes notations dans l’énoncé du deuxième théorème de Min-

kowski sur les corps convexes10 :

« Théorème II. — Si dans un module type de base T (tableau d’ordre n)

on considère un système de distances minima,

S(OA1) = m1 , S(OA2) = m2 , . . . , S(OAn) = mn ,

on a

m1m2 . . . mn ≤ 2n |∆(T )|
J

. »

Pour démontrer ce résultat Châtelet choisit comme base du module le tableau réduit

U déduit du tableau minimum V donné par le système de distances minima de l’énoncé

(voir le paragraphe G.1). Il considère ensuite les corps

Γm1
2

(E) = Γ1(E), Γm2
2

(E) = Γ2(E), . . . ,Γmn
2

(E) = Γn(E),

où les coordonnées de E vérifient |ei| ≤ ω avec ω un entier naturel non nul. Dans la

suite Ωi désigne la réunion sur les points tels que |ei| ≤ ω des corps Γi(E) et νi le

volume de Ωi. Dans la preuve du théorème I, Châtelet a déjà obtenu

ν1 = (2ω + 1)n
(m1

2

)n

J .

D’autre part, si ε′ est une limite supérieure de |yi| pour les points (y1, . . . , yn) de Γn(O),

le même raisonnement que pour le théorème I montre que

νn ≤ |∆(U)| (2ω + 2ε′)n .

En particulier, comme Γ1(O) = m1

mn
Γn(O), Châtelet remarque que ε′ = mn

m1
ε, où ε a

été défini dans le paragraphe précédent.

L’étape suivante consiste à déterminer des inégalités sur le rapport entre νk et νk−1.

Par définition de mk, pour un point A du module l’inégalité S(OA) < mk implique

que A appartient à OA1 . . . Ak−1 et donc que les (n− k + 1) dernières coordonnées de

A dans la base définie par U sont nulles. En effet, par définition de U , le sous-espace

engendré par les k − 1 premières lignes de U est le même que celui engendré par les

k − 1 premières lignes de V .

Châtelet répartit ensuite les corps Γk(E) de chaque Ωk en (2ω + 1)n−k+1 groupes de

(2ω + 1)k−1 corps, chaque groupe étant composé des corps dont les centres ont les

10Châtelet 1913 p.110.
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mêmes (n − k + 1) dernières coordonnées. Deux corps Γk(E) pris dans deux de ces

groupes ne peuvent se rencontrer que sur leur frontière. En effet, si un point M est

intérieur à Γk(E1) et à Γk(E2) alors

S(E1E2) ≤ S(E1M) + S(E2M) < mk .

Or S(E1E2) = S(O(E1−E2)) ce qui implique que les (n−k+1) dernières coordonnées

de E1 et E2 sont les mêmes et contredit le choix de Γk(E1) et Γk(E2) dans deux groupes

distincts. Châtelet déduit de cette dernière remarque que le volume de Ωk, noté νk, est

égal à la somme des volumes de chacun des groupes qui le compose. Comme les volumes

de ces groupes sont tous égaux, il vient

νk = (2ω + 1)n−k+1wk ,

où wk est le volume d’un des groupes. En choisissant le groupe pour lequel les (n−k+1)

dernières coordonnées sont nulles, wk s’écrit

wk =

∫

. . .

∫

dx1dx2 . . . dxn ,

où l’intégration porte sur les points (x1, . . . , xn) qui vérifient

f(x1 − e1, . . . , xk−1 − ek−1, xk, . . . , xn) ≤ mk

2
,

avec ei des entiers tels que |ei| ≤ ω. Châtelet évalue l’intégrale précédente « en deux

étapes » en intégrant d’abord par rapport aux (k − 1) premières variables, ainsi

wk =

∫

. . .

∫

S dtk . . . dtn ,

où S désigne l’intégrale
∫

. . .

∫

dx1 . . . dxk−1 sur le domaine

f(x1 − e1, . . . , xk−1 − ek−1, tk, . . . , tn) ≤ mk

2
.

En répartissant de la même manière les corps du domaine Ωk−1 en (2ω+1)n−k+1 groupes

qui ne se rencontrent pas (car mk−1 ≤ mk), Châtelet obtient







νk−1 = (2ω + 1)n−k+1 w′
k

w′
k =

∫

. . .

∫

S1 dt
′
k . . . dt

′
n

S1 =

∫

. . .

∫

dx′1 . . . dx
′
k−1

f(x′1 − e1, .., x
′
k−1 − ek−1, t

′
k, . . . , t

′
n) ≤

mk−1

2
.
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Pour comparer ce volume au précédent, Châtelet pose θ = mk

mk−1
et il multiplie la

dernière condition par θ, d’où

f
[
θ(x′1 − e1), .., θ(x

′
k−1 − ek−1), θt

′
k, . . . , θt

′
n

]
≤ mk

2
.

Il effectue alors le changement de variables θt′i = ti, donc







w′
k =

(
1

θ

)n−k+1 ∫

. . .

∫

S1 dtk . . . dtn

S1 =

∫

. . .

∫

dx′1 . . . dx
′
k−1

f
[
θ(x′1 − e1), .., θ(x

′
k−1 − ek−1), tk, . . . , tn

]
≤ mk

2
.

Pour comparer les volumes wk et w′
k, Châtelet compare S et S1 pour un système

de valeurs de tk, . . . , tn fixé. Les conditions f(x1 − e1, . . . , xk−1 − ek−1, tk, . . . , tn) ≤ mk

2

et f
[
θ(x′1 − e1), .., θ(x

′
k−1 − ek−1), tk, . . . , tn

]
≤ mk

2
définissent des domaines (respecti-

vement notés D1 et D2) dans le sous-espace de dimension k− 1 défini par les n− k+ 1

équations xi = ti, k ≤ i ≤ n. Pour comparer les volumes de ces deux domaines, Châ-

telet translate D1.

Soit (α1, α2, .., αk−1) vérifiant f(α1, α2, .., αk−1, tk, ..tn) ≤ mk

2
, il effectue dans S le chan-

gement de variables xi = x′i +
θ−1
θ
αi, alors

S =

∫

. . .

∫

dx′1 . . . dx
′
k−1

où l’intégrale est calculée sur le domaine D3 défini par

f

[

(x′1 − e1) +
θ − 1

θ
α1, . . . , (x

′
k−1 − ek−1) +

θ − 1

θ
αk−1, tk, . . . , tn

]

≤ mk

2
.

Mais le domaine D2 est inclus dans D3. En effet, la condition qui définit le domaine

D2 signifie que le point (θ(x′1 − e1), .., θ(x
′
k−1 − ek−1), tk, . . . , tn) appartient à Γk(O). Or

(α1, α2, .., αk−1, tk, ..tn) est aussi un point de Γk(O), donc par convexité

(
θ(x′1 − e1) + (θ − 1)α1

θ
, . . . ,

θ(x′k−1 − ek−1) + (θ − 1)αk−1

θ
, tk, . . . , tn

)

=

(

(x′1 − e1) +
θ − 1

θ
α1, . . . , (x

′
k−1 − ek−1) +

θ − 1

θ
αk−1, tk, . . . , tn

)

∈ Γk(O) .

Châtelet en déduit donc que S1 est inférieure ou égale à S, par suite θn−k+1w′
k ≤ wk,

puis θn−k+1νk−1 ≤ νk. Cette dernière inégalité s’écrit finalement

νk
νk−1

≥
(

mk

mk−1

)n−k+1

(k = 2, 3, . . . , n),
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ANNEXE G

ce qui implique
νn
ν1

≥ m2 m3 . . . mn

mn−1
1

.

Comme ν1 = (2ω + 1)n
(
m1

2

)n
J et νn ≤ |∆(U)| (2ω + 2ε′)n, il vient

m2 . . . mn

mn−1
1

(2ω + 1)n
(m1

2

)n

J ≤ |∆(U)| (2ω + 2ǫ′)n

et donc

m1 m2 . . . mn ≤ 2n |∆(U)|
J

(
2ω + 2ǫ′

2ω + 1

)n

.

Par passage à la limite, pour ω qui tend vers +∞, Châtelet obtient finalement l’esti-

mation cherchée

m1 m2 . . . mn ≤ 2n |∆(U)|
J

.

476



Bibliographie

Arndt Peter Friedrich, 1851a, «Ein Satz über binäre Formen von beliebigem Grade

und Anwendung desselben auf biquadratische Formen». Archiv der Mathematik und

Physik, vol. 17, p. 409–420.

Arndt Peter Friedrich, 1851b, «Versuch einer Theorie der homogenen Funktionen des

dritten Grades mit zwei Variabeln». Archiv der Mathematik und Physik, vol. 17, p.

1–53.

Arndt Peter Friedrich, 1852, «Untersuchungen über die Anzahl der kubischen Klassen,

welche zu einer determinirenden quadratischen Klasse gehören». Archiv der Mathe-

matik und Physik, vol. 19, p. 408–418.

Arndt Peter Friedrich, 1857, «Zur Theorie der binären kubischen Formen». Journal

für die reine und angewandte Mathematik, vol. 53, p. 309–321.

Arndt Peter Friedrich, 1858, «Tabellarische Berechnung der reducirten binären ku-

bischen Formen und Klassification derselben für alle successiven negativen Determi-

nanten (−D) von D = 3 bis D = 2000». Archiv der Mathematik und Physik, vol. 31,

p. 335–448.

Arnheim Rudolf, 1976, La pensée visuelle. Flammarion. Traduction de Visual Thin-

king, 1969.

Artin Emil, 1964, Gamma Function. New York-Chicago-San Francisco-Toronto-

London : Holt, Rinehart and Winston. Traduction par Michael Butler de Einführung

in die Theorie der Gammafunktion, 1931.

Bacon Harold, Jacobsen Lydik et Webster David L., N.D., «Hans Frederik Bli-

chfeldt (1873-1945)». Stanford University Faculty Memorials (en ligne), page mise

à jour le 15 mars 2007, <http ://histsoc.stanford.edu/alpha_list.shtml>

(consultée le 15 mars 2007).

Barrow-Green June, 1999, «A Corrective to the Spirit of too Exclusively Pure

Mathematics’ : Robert Smith (1689-1768) and his Prizes at Cambridge University».

Annals of Science, vol. 56, p. 271–316.

477



BIBLIOGRAPHIE

Barrow-Green June et Gray Jeremy, 2006, «Geometry at Cambridge, 1863-1940».

Historia Mathematica, vol. 33, p. 315–356.

Bayer-Fluckiger Eva, 2006a, «Hermann Minkowski, Grand Prix de l’Académie à

18 ans». Tangente, vol. 111, p. 28–31.

Bayer-Fluckiger Eva, 2006b, «Upper Bounds for Euclidean Minima of Algebraic

Number Fields». Journal of Number Theory, vol. 121, p. 305–323.

Bayer-Fluckiger Eva et Suarez Ivan, 2006, «Ideal Lattices over Totally Real Num-

ber Fields and Euclidean Minima». Archiv der Mathematik, vol. 86, p. 217–225.

Bell Eric Temple, 1951, «Hans Frederik Blichfeldt 1873-1945». Biographical Memoirs

of the National Academy of Sciences of the United States of America, vol. 26, p.

180–189.

Bensa Alban, 1996, «De la micro-histoire vers une anthropologie critique». Dans Re-

vel 1996a, p. 37–70.

Bergé Anne-Marie et Martinet Jacques, 1985-1986, «Sur la constante d’Hermite».

Séminaire de théorie des nombres de Bordeaux. Exposé n̊ 8.

Berger Marcel, 2006, Convexité dans le plan, dans l’espace et au-delà : de la puissance

et de la complexité d’une notion simple, vol. 1. Paris : Ellipses.

Blichfeldt Hans Frederik, 1913, «On the Arithmetic Value of Quadratic Forms».

Bulletin of the American Mathematical Society, vol. 19, p. 518.

Blichfeldt Hans Frederik, 1914, «A New Principle in the Geometry of Numbers, with

Some Applications». Transactions of the American Mathematical Society, vol. 15, p.

227–235.

Blichfeldt Hans Frederik, 1919, «Report on the Theory of the Geometry of Num-

bers». Bulletin of the American Mathematical Society, vol. 25, p. 449–453.

Blichfeldt Hans Frederik, 1921, «On the Approximate Solutions in Integers of a Set

of Linear Equations». Proceedings of the National Academy of Sciences of the United

States of America, vol. 7, p. 317–319.

Blichfeldt Hans Frederik, 1929, «The Minimum Value of Quadratic Forms, and the

Closest Packing of Spheres». Mathematische Annalen, vol. 101, p. 605–608.

Blichfeldt Hans Frederik, 1932, «Geometry of Numbers». Lectures delivered at Stan-

ford University, 1930-1932. Stanford Auxiliary Library.

478



BIBLIOGRAPHIE

Blichfeldt Hans Frederik, 1935, «The Minimum Values of Positive Quadratic Forms

in Six, Seven and Eight Variables». Mathematische Zeitschrift, vol. 39, p. 1–15.

Blichfeldt Hans Frederik, 1936, «A New Upper Bound to the Minimum Value of

the Sum of Linear Homogeneous Forms». Monatshefte für Mathematik und Physik,

vol. 43, p. 410–414.

Blichfeldt Hans Frederik, 1939, «Note on the Minimum Value of the Discriminant

of an Algebraic Field». Monatshefte für Mathematik und Physik, vol. 48, p. 531–533.

Boniface Jacqueline, 2004, Hilbert et la notion d’existence en mathématiques. Paris :

Vrin.

Bourdieu Pierre, 1976, «Quelques propriétés des champs». Dans Questions de so-

ciologie, Exposé à l’ENS, novembre 1976, Paris, 2002 : Les Editions de minuit, p.

113–120.

Bourdieu Pierre, 2001, Science de la science et réflexivité. Paris : Raisons d’agir.

Brechenmacher Frédéric, 2006, Histoire du théorème de Jordan de la décomposition

matricielle (1870-1930). Formes de représentations et méthodes de décompositions.

Thèse de doctorat, Ecole des Hautes Etudes en Sciences Sociales.

Bullynck Maarten, 2006, Vom Zeitalter der Formalen Wissenschaften. Anleitung zur

Verarbeitung von Erkenntnissen anno 1800, vermittelst einer parallelen Geschichte.

Thèse de doctorat, Université de Gand.

Burma John Harmon, 1956, «Some Cultural Aspects of Immigration : its Impact,

especially on our Arts and Sciences». Law and Contemporary Problems, vol. 21, p.

284–298.

Cahen Eugène, 1897, «Compte rendu de Geometrie der Zahlen de H. Minkowski».

Bulletin des Sciences Mathématiques, vol. 21, 2e série, p. 25–30.

Cahen Eugène et Vahlen Karl Theodor, 1908, «Théorie arithmétique des formes».

Encyclopédie des sciences mathématiques pures et appliquées, tome I, vol. 3, p. 76–

214.

Cambrosio Alberto et Keating Peter, 1983, «The Disciplinary Stake : The Case of

Chronobiology». Social Studies of Science, vol. 13, p. 323–353.

Cassels John William Scott, 1959, An Introduction to the Geometry of Numbers.

Berlin-Heidelberg : Springer-Verlag, 2e édition. 1971.

479



BIBLIOGRAPHIE

Cassels John William Scott, 1973, «Louis Joel Mordell 1888-1972». Biographical Me-

moirs of Fellows of the Royal Society, vol. 19, p. 493–510.

Cassels John William Scott, 1986, «Mordell’s finite basis theorem revisited». Mathe-

matical Proceedings of the Cambridge Philosophical Society, vol. 100, p. 31–41.

Châtelet Albert, 1913, Leçons sur la théorie des nombres. Paris : Gauthier-Villars.

Coates John Henry et van der Poorten Alfred Jacobus, 1994, «Kurt Mahler».

Biographical Memoirs of the Fellows of the Royal Society, vol. 39, p. 264–279.

Cohn Steven F., 1986, «The Effects of Funding Changes upon the Rate of Knowledge

Growth in Algebraic and Differential Topology, 1955-75». Social Studies of Science,

vol. 16, p. 23–59.

Corry Leo, 1997, «Hermann Minkowski and the Postulate of Relativity». Archive for

History of Exact Sciences, vol. 51, p. 281–314.

Corry Leo, 2000, «The Empiricist Roots of Hilbert’s Axiomatic Method». Dans Hen-

dricks Vincent F., Pedersen Stig Andur et Jørgensen Klaus Frovin (eds), Proof

Theory : History and Philosophical Signifiance, Dordrecht : Kluwer, p. 35–54.

Corry Leo, 2002, «David Hilbert y su Filosofia Empirista de la Geometria». Boletín

de la Asociación Matemática Venezolana, vol. 9, p. 27–44.

Corry Leo, 2006, «Axiomatics, Empirism, and Anschauung in Hilbert’s Conception

of Geometry : between Arithmetic and General Relativity». Dans Gray Jeremy et

Ferreirós José (eds), The Architecture of Modern Mathematics : Essays in History

and Philosophy, Oxford : Oxford University Press, p. 155–176.

Crane Diana, 1972, Invisible Colleges. Diffusion of Knowledge in Scientific Commu-

nities. Chicago-London : University of Chicago Press.

Davenport Harold, 1937, «Note on a Result of Siegel». Acta Arithmetica, vol. 2, p.

262–265.

Davenport Harold, 1938a, «On the Product of Three Homogeneous Linear Forms».

Journal of the London Mathematical Society, vol. 13, p. 139–145.

Davenport Harold, 1938b, «On the Product of Three Homogeneous Linear Forms

(II)». Proceedings of the London Mathematical Society, vol. 44, p. 412–431.

Davenport Harold, 1939a, «Minkowski’s Inequality for the Minima Associated with

a Convex Body». The Quaterly Journal of Mathematics, vol. 10, p. 119–121.

480



BIBLIOGRAPHIE

Davenport Harold, 1939b, «On the Product of Three Homogeneous Linear Forms

(III)». Proceedings of the London Mathematical Society, vol. 45, p. 98–125.

Davenport Harold, 1939c, «A Simple Proof of Remak’s Theorem on the Product of

Three Linear Forms». Journal of the London Mathematical Society, vol. 14, p. 47–51.

Davenport Harold, 1941a, «Note on the Product of Three Homogeneous Linear

Forms». Journal of the London Mathematical Society, vol. 16, p. 98–101.

Davenport Harold, 1941b, «On a Conjecture of Mordell Concerning Binary Cubic

Forms». Proceedings of the Cambridge Philosophical Society, vol. 37, p. 325–330.

Davenport Harold, 1943a, «The Minimum of a Binary Cubic Form». Journal of the

London Mathematical Society, vol. 18, p. 168–176.

Davenport Harold, 1943b, «On the Product of Three Homogeneous Linear Forms».

Proceedings of the Cambridge Philosophical Society, vol. 39, p. 1–21.

Davenport Harold, 1945a, «The Reduction of a Binary Cubic Form (I)». Journal of

the London Mathematical Society, vol. 20, p. 14–22.

Davenport Harold, 1945b, «The Reduction of a Binary Cubic Form (II)». Journal of

the London Mathematical Society, vol. 20, p. 139–147.

Davenport Harold, 1946a. Inaugural lecture at the University College, London, le 6

juin 1946. Davenport (WL), A 59 et C 164.

Davenport Harold, 1946b, «La géométrie des nombres». Conférence faite à Bruxelles.

Davenport (WL), C 130.

Davenport Harold, 1947a, «The Geometry of Numbers». Nature, vol. 159, p. 104–105.

Davenport Harold, 1947b, «The Geometry of Numbers». The Mathematical Gazette,

vol. 31, p. 206–210.

Davenport Harold, 1948. Résumé d’un cours à Berkeley de janvier 1948. Davenport

(WL), C 165.

Davenport Harold, 1949, «Sur les corps cubiques à discriminants négatifs». Comptes

Rendus de l’Académie des Sciences, vol. 228, p. 883–885.

Davenport Harold, 1950a, «Recent Progress in the Geometry of Numbers». Dans

Proceedings of the International Congress of Mathematicians, Harvard, Cambridge

USA, p. 166–174.

481



BIBLIOGRAPHIE

Davenport Harold, 1950b, «Selected Topics in the Geometry of Numbers». Cours

donné à l’université de Stanford pendant le semestre d’été 1950, notes de G. Hedrick.

Davenport (WL), C 104.

Davenport Harold, 1952, The Higher Arithmetic : an Introduction to the Theory of

Numbers. London-New York : Hutchinson’s University Library. 7e édition, Cambridge

University Press, 1999.

Davenport Harold, 1964, «L.J. Mordell». Acta Arithmetica, vol. 9, p. 3–12.

Davenport Harold, 1967, Multiplicative Number Theory. Chicago : Markham Publi-

shing Company, 1re édition.

Davenport Harold, 1977, The Collected Works of Harold Davenport, vol. I. London -

New York - San Francisco : Academic Press.

Davenport Harold, (WL). Personal Papers of Harold Davenport, Wren Library, Tri-

nity College, Cambridge.

Dickson Leonard Eugene, 1919a, «Applications of the Geometry of Numbers to Alge-

braic Numbers». Bulletin of the American Mathematical Society, vol. 25, p. 453–455.

Dickson Leonard Eugene, 1919b, «Mathematics in War Perspective». Bulletin of the

American Mathematical Society, vol. 25, p. 289–311.

Dickson Leonard Eugene, 1920, History of the Theory of Numbers - Diophantine

Analysis, vol. II. New York : Chelsea Publishing Company. Réimpression de 1971.

Dickson Leonard Eugene, 1923, History of the Theory of Numbers - Quadratic and

Higher Forms, vol. III. New York : Chelsea Publishing Company. Réimpression de

1992.

Dickson Leonard Eugene, 1947, «Hans Frederik Blichfeldt 1873-1945». Bulletin of the

American Mathematical Society, vol. 53, p. 382.

Dieudonné Jean, 1974, «MINKOWSKI Hermann». Dans Gillispie Charles Coulston

(ed.), Dictionary of Scientific Biography, vol. IX, New York : American Council of

Learned Societies, p. 411–414.

Duverney Daniel, 1998, Théorie des nombres. Paris : Dunod.

Dyson Freeman, 1948, «On the Product of Four Non-Homogeneous Linear Forms».

Annals of Mathematics, vol. 49, 2e série, p. 82–109.

482



BIBLIOGRAPHIE

Edwards Harold M., 2007, «Composition of Binary Quadratic Forms and the Foun-

dations of Mathematics». Dans Goldstein Catherine, Schappacher Norbert et

Schwermer Joachim (eds), The Shaping of Arithmetic after C. F. Gauss’s Disqui-

sitiones Arithmeticae, chapitre II.2, Berlin : Springer, p. 129–144.

Eisenstein Ferdinand Gotthold Max, 1844, «Untersuchungen über die cubischen For-

men mit zwei Variabeln». Journal fur die reine und angewandte Mathematik, vol. 27,

p. 89–104.

Eisenstein Ferdinand Gotthold Max, 1847, «Note sur la représentation d’un nombre

par la somme de cinq carrés». Journal fur die reine und angewandte Mathematik,

vol. 35, p. 368.

Engel Peter, 1993, «Geometric Crystallography». Dans Gruber P.M. et Wills J.M.

(eds), Handbook of Convex Geometry, vol. B, chapitre 3.7, Amsterdam : Elsevier

Science, p. 989–1043.

Fenster Della D., 1997, «Role Modeling in Mathematics : The Case of Leonard

Eugene Dickson (1874-1954)». Historia Mathematica, vol. 24, p. 7–24.

Fenster Della D. et Schwermer Joachim, 2007, «Composition of Quadratic Forms :

An Algebraic Perspective». Dans Goldstein Catherine, Schappacher Norbert et

Schwermer Joachim (eds), The Shaping of Arithmetic after C. F. Gauss’s Disqui-

sitiones Arithmeticae, chapitre II.3, Berlin : Springer, p. 145–158.

Fisher Charles S., 1966-1967, «The Death of a Mathematical Theory : a Study in the

Sociology of Knowledge». Archive for History of Exact Sciences, vol. 3, p. 137–159.

Fletcher Colin R., 1986, «Refugee Mathematicians : A German Crisis and a British

Response, 1933-1936». Historia Mathematica, vol. 13, p. 13–27.

Foucault Michel, 1969, L’Archéologie du savoir. Paris : Gallimard.

Foucault Michel, 1975, Surveiller et punir. Paris : Gallimard.

Foucault Michel, 2003, Le Pouvoir psychiatrique. Paris : Seuil/Gallimard. Cours au

Collège de France, 1973-1974.

Fuller Steve, 2000, «Discipline». Dans Hessenbruch Arne (ed.), Reader’s Guide to

the History of Science, London-Chicago : Fitzroy Dearborn Publishers, p. 176–177.

Furtwängler Philipp, 1917, «Über Kriterien für die algebraischen Zahlen». Sitzung-

sberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akade-

mie der Wissenschaften, vol. 126, p. 299–309.

483



BIBLIOGRAPHIE

Galison Peter Louis, 1979, «Minkowski’s Space-Time : From Visual Thinking to the

Absolute World». Historical Studies in the Physical Sciences, vol. 10, p. 85–121.

Gauss Carl Friedrich, 1807, Recherches Arithmétiques. Courcier, Paris. Traduction

française par A.C.M Poullet-Delisle des Disquisitiones Arithmeticae, 1801.

Gauss Carl Friedrich, 1827, «Fragments Posthumes». Werke, vol. III, p. 477–478. Pu-

blié en 1876.

Gauss Carl Friedrich, 1831, «Compte rendu de Untersuchungen über die Eigenschaften

der positiven ternären quadratischen Formen von Ludwig August Seeber». Göttin-

gische gelehrte Anzeigen. Reproduit dans Werke, vol. II, 1863, p.188-196.

Geison Gerald L., 1981, «Scientific Change, Emerging Specialties, and Research

Schools». History of Science, vol. 19, p. 20–40.

Gispert Hélène, 1991, La France mathématique. La société mathématique de France

(1870-1914). Paris : Société française d’histoire des sciences et des techniques et

Société mathématique de France.

Gispert Hélène, 1999, «Les débuts de l’histoire des mathématiques sur les scènes

internationales et le cas de l’entreprise encyclopédique de Felix Klein et Jules Molk».

Historia Mathematica, vol. 26, p. 344–360.

Glaisher James Whitbread Lee, 1894, «Introduction to the Collected Mathematical

Papers of Henry J. S. Smith». Dans Smith 1894, p.lxi-xcv.

Goldman Jay R., 1998, The Queen of Mathematics. A Historically Motivated Guide

to Number Theory. Wellesley Massachusetts : A K Peters.

Goldstein Catherine, 1993, «Descente infinie et analyse diophantienne : programmes

de travail et mises en oeuvre chez Fermat, Levi, Mordell et Weil». Cahiers du sémi-

naire d’histoire des mathématiques, vol. 3, 2e série, p. 25–49.

Goldstein Catherine, 1999, «Sur la question des méthodes quantitatives en histoire

des mathématiques : le cas de la théorie des nombres en France (1870-1914)». Acta

historiae rerum naturalium necnom technicarum, vol. 3, p. 187–214.

Goldstein Catherine, 2002, «Compte Rendu de Lectures on Number Theory, by P.G.

Lejeune-Dirichlet. Translated by J. Stillwell». Isis, vol. 93, p. 718.

Goldstein Catherine, 2007, «The Hermitian Form of Reading the Disquisitiones».

Dans Goldstein Catherine, Schappacher Norbert et Schwermer Joachim

(eds), The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae,

chapitre VI.1, Berlin : Springer, p. 377–410.

484



BIBLIOGRAPHIE

Goldstein Catherine, 2008, «Un arithméticien contre l’arithmétisation : les principes

de Charles Hermite». Dans Flament Dominique et Nabonnand Philippe (eds),

La justification en mathématiques, Paris : Maison des sciences de l’homme. Preprint.

Goldstein Catherine et Ritter Jim, 2003, «The Varieties of Unity. Sounding Unified

Theories (1920–1930)». Dans Ashtekar Abhay, Cohen Robert, Howard Don,

Renn Jürgen, Sarkar Sahotra et Shimony Abner (eds), Revisiting the Foundations

of Relativistic Physics, Dordrecht : Kluwer, p. 93–149.

Goldstein Catherine et Schappacher Norbert, 2007a, «A Book in Search of a

Discipline (1801-1860)». Dans Goldstein Catherine, Schappacher Norbert et

Schwermer Joachim (eds), The Shaping of Arithmetic after C. F. Gauss’s Disqui-

sitiones Arithmeticae, chapitre I.1, Berlin : Springer, p. 3–65.

Goldstein Catherine et Schappacher Norbert, 2007b, «Several Disciplines and

a Book (1860-1901)». Dans Goldstein Catherine, Schappacher Norbert et

Schwermer Joachim (eds), The Shaping of Arithmetic after C. F. Gauss’s Dis-

quisitiones Arithmeticae, chapitre I.2, Berlin : Springer, p. 67–103.

Goldstein Jan, 1984, «Foucault among the Sociologists : The “Disciplines” and the

History of the Professions». History and Theory, vol. 23, p. 170–192.

Gray Jeremy, 1999, «Geometry–Formalisms and Intuitions». Dans Gray Jeremy (ed.),

The Symbolic Universe. Geometry and Physics 1890-1930, New York : Oxford Uni-

versity Press, p. 58–83.

Gruber Peter M., 1993a, «Geometry of Numbers». Dans Gruber P.M. et Wills

J.M. (eds), Handbook of Convex Geometry, vol. B, chapitre 3.1, Amsterdam : Elsevier

Science, p. 740–763.

Gruber Peter M., 1993b, «History of Convexity». Dans Gruber P.M. et Wills

J.M. (eds), Handbook of Convex Geometry, vol. A, chapitre 0, Amsterdam : Elsevier

Science, p. 1–15.

Gruber Peter M., 2007, Convex and Discrete Geometry. Berlin-Heidelberg : Springer.

Gruber P.M. et Wills J.M. (eds), 1993, Handbook of Convex Geometry, vol. A.

Amsterdam : Elvesier Science.

Hancock Harris, 1964, Development of the Minkowski Geometry of Numbers, vol.

I et II. New York : Dover Publications. 1ère édition en 1 volume publiée par The

Macmillan Company, New York, 1939.

485



BIBLIOGRAPHIE

Hardy Godfrey Harold et Wright Edward Maitland, 1960, An Introduction to the

Theory of Numbers. Oxford Clarendon Press, 4e édition. 1ère édition publiée en 1938.

Hermite Charles, 1850, «Extraits de lettres de M. Ch. Hermite à M. Jacobi sur

différents objets de la théorie des nombres». Journal für die reine und angewandte

Mathematik, vol. 40, p. 261–315.

Hermite Charles, 1851, «Sur l’introduction des variables continues dans la théorie des

nombres». Journal für die reine und angewandte Mathematik, vol. 41, p. 191–216.

Hermite Charles, 1859, «Sur la réduction des formes cubiques à deux indéterminées».

Comptes rendus des séances de l’Académie des sciences, vol. 48, p. 351–357.

Hermite Charles, 1873, Cours d’analyse de l’Ecole Polytechnique. Paris : Gauthier-

Villars.

Hermite Charles, 1880, «Sur une extension donnée à la théorie des fractions continues

par M. Tchebychef». Journal für die reine und angewandte Mathematik, vol. 88, p.

10–15.

Herreman Alain, 2000, La topologie et ses signes. Eléments pour histoire sémiotique

des mathématiques. Paris : L’Harmattan.

Hilbert David, 1897, «Bericht über die Theorie der algebraischen Zahlkörper». Jah-

resbericht der Deutschen Mathematiker-Vereinigung, vol. 4, p. 177–535.

Hilbert David, 1911, «Gedächtnisrede auf Hermann Minkowski». Dans Hilbert Da-

vid, Speiser Andreas et Weyl Hermann (eds), Gesammelte Abhandlungen von

Hermann Minkowski, Teubner, p. V–XXXI.

Hilbert David, 1991, Théorie des corps de nombres algébriques. Sceaux : Gabay.

Reproduction de la traduction par Albert Levy et Théophile Got de Die Theorie der

algebraischen Zahlkörper, 1897 avec une préface et des notes de Georges Humbert et

Théophile Got. Cette traduction a été publiée la première fois dans les Annales de

la faculté des sciences de l’université de Toulouse, 3e série, tome I, 1909, tome II,

1910, tome III, 1911.

Hilbert David et Cohn-Vossen Stephen, 1952, Geometry and the Imagination. New

York : Chelsea Publishing Company. Traduction par P. Nemenyi de Anschauliche

Geometrie, 1932.

Hindry Marc et Silverman Joseph H., 2000, Diophantine Geometry. An Introduction.

New York : Springer-Verlag.

486



BIBLIOGRAPHIE

Hlawka Edmund, 1943-1944, «Zur Geometrie der Zahlen». Mathematische Zeitschrift,

vol. 49, p. 285–312.

Hlawka Edmund, 1980, «90 Jahre Geometrie der Zahlen». Dans Hlawka 1990, p.

398–430.

Hlawka Edmund, 1990, Selecta. Berlin-Heidelberg : Springer-Verlag.

Hurwitz Adolf, 1891, «Über die angenäherte Darstellung der Irrationalzahlen durch

rationale Brüche». Mathematische Annalen, vol. 39, p. 279–284.

Hurwitz Adolf, 1897, «Ueber lineare Formen mit ganzzahligen Variabeln». Nachrich-

ten von der Königl. Gesellschaft der Wissenschaften zu Göttingen, p. 139–145. Tra-

duction en français par L. Laugel dans les Nouvelles Annales de mathématiques, 3e

série, tome 17, 1898.

Jordan Camille, 1892, «Remarques sur les intégrales définies». Journal de mathéma-

tiques pures et appliquées, vol. 8, 4e série, p. 69–99.

Julia Gaston, 1933, Extraits de la notice sur les travaux scientifiques de M. Gaston

Julia. Paris : Gauthier-Villars. D’après l’exemplaire des archives de l’Académie des

Sciences de Paris.

Julia Gaston, 1963. Extrait de la plaquette hommage à Albert Châtelet à l’occasion

de la plaque au Centre des Oeuvres Universitaires.

Keller Ott-Heinrich, 1954, «Geometrie der Zahlen». Dans Enzyklopädie der mathe-

matischen Wissenschaften mit Einschluss ihrer Anwendungen, Tome I.2, fascicule

11, Leipzig, Teubner.

Kjeldsen Tinne Hoff, 2002, «Different Motivations and Goals in the Historical De-

velopment of the Theory of Systems of Linear Inequalities». Archive for History of

Exact Sciences, vol. 56, p. 469–538.

Klein Felix, 1895-1896, «Ausgewahlte Kapitel der Zahlentheorie», Zweistundige Vor-

lesung im Winter 1895-96 und Sommer 1896. Dans Klein 1921-1923, p.287-314.

Klein Felix, 1897, «Sur l’“arithmétization” des mathématiques». Nouvelles annales de

mathématiques, vol. 16, p. 114–128. Traduction de Vassilief et Laugel d’un discours

prononcé devant la société royale des sciences de Göttingen, Göttinger Nachrichten,

1895.

Klein Felix, 1898, «Les nombres idéaux». Dans Conférences sur les mathématiques,

Paris : Traduction de L. Laugel, Hermann, p. 58–66. Conférence faite au congrès de

mathématiques tenu à l’occasion de l’exposition de Chicago en 1893.

487



BIBLIOGRAPHIE

Klein Felix, 1921-1923, Gesammelte mathematische Abhandlungen, vol. III. Berlin-

New York : Springer-Verlag.

Kohler Robert E., 1982, From Medical Chemistry to Biochemistry. The Making of

a Biomedical Discipline. Cambridge-New York-Melbourne : Cambridge University

Press.

Korkine Aleksander Nikolaevich et Zolotareff Egor Ivanovich, 1872, «Sur les

formes quadratiques positives quaternaires». Mathematische Annalen, vol. 5, p. 581–

583.

Korkine Aleksander Nikolaevich et Zolotareff Egor Ivanovich, 1873, «Sur les

formes quadratiques». Mathematische Annalen, vol. 6, p. 366–389.

Kuhn Thomas S., 1983, La Structure des révolutions scientifiques. Flammarion. Tra-

duction de : The Structure of Scientific Revolutions, 2e édition augmentée, The Uni-

versity of Chicago Press, Chicago, 1970.

Lagrange Joseph Louis, 1770, «Additions au mémoire sur la résolution des équa-

tions numériques». Mémoires de l’Académie Royale des Sciences et Belles-Lettres de

Berlin, vol. 24. Reproduit dans Lagrange 1868, p. 581-652.

Lagrange Joseph-Louis, 1772, «Démonstration d’un Théorème d’Arithmétique».

Nouveaux Mémoires de l’Académie Royale des Sciences de Berlin, année 1770, p.

123–133. Reproduit dans Lagrange 1869, p.189-201.

Lagrange Joseph Louis, 1773 et 1775, «Recherches d’arithmétiques». Nouveaux Mé-

moires de l’Académie Royale des Sciences et des Belles-lettres de Berlin. Reproduit

dans Lagrange 1869, section 2, p.695-795.

Lagrange Joseph Louis, 1868, Oeuvres de Lagrange, vol. II. Paris : Gauthier-Villars.

Lagrange Joseph-Louis, 1869, Oeuvres de Lagrange, vol. III. Paris : Gauthier-Villars.

Lang Serge, 1983, Fundamentals of Diophantine Geometry. New York : Springer Ver-

lag.

Lejeune-Dirichlet Johann Peter Gustav, 1839, «Recherches sur diverses applica-

tions de l’analyse infinitésimale à la théorie des nombres». Journal fur die reine und

angewandte Mathematik, vol. 19, p. 324–369.

Lejeune-Dirichlet Johann Peter Gustav, 1850, «Über die Reduction der positiven

quadratischen Formen mit drei unbestimmten ganzen Zahlen». Journal fur die reine

und angewandte Mathematik, vol. 40, p. 209–227.

488



BIBLIOGRAPHIE

Lejeune-Dirichlet Johann Peter Gustav, 1863, Vorlesungen über Zahlentheorie.

Braunschweig : F. Vieweg und Sohn. Edition et suppléments de Richard Dedekind.

Lejeune-Dirichlet Johann Peter Gustav, 1999, Lectures on Number Theory, His-

tory of Mathematics, vol. 16. American Mathematical Society - London Mathema-

tical Society. Suppléments de Richard Dedekind. Traduction de John Stillwell des

Vorlesungen über Zahlentheorie.

Lekkerkerker Cornelis Gerrit, 1969, Geometry of Numbers. Groningen-Amsterdam-

London : Wolters-Noordhoff Publishing, North Holland Publishing Company.

Lepetit Bernard, 1996, «De l’échelle en histoire». Dans Revel 1996a, p. 71–94.

Levi Beppo, 1911, «Un teorema del Minkowski sui sistemi di forme lineari a variabili

intere». Rendiconti del circolo matematico di Palermo, vol. 31, p. 318–340.

Lützen Jesper, 1999, «Geometrizing Configurations. Heinrich Hertz and his Mathe-

matical Precursors». Dans Gray Jeremy (ed.), The Symbolic Universe. Geometry

and Physics 1890-1930, New York : Oxford University Press, p. 25–46.

Mahler Kurt, 1938-1939, «Ein Übertragungsprinzip für lineare Ungleichungen». Ca-

sopis pro pestovani matematiky a physiky, vol. 68, p. 85–102.

Mahler Kurt, 1946, «Lattice Points in Two-Dimensional Star Domains I». Proceedings

of the London Mathematical Society, vol. 49, p. 128–157.

Martinet Jacques, 1996, Les réseaux parfaits des espaces euclidiens. Paris : Masson.

Mathews George Ballard, 1892, Theory of Numbers. Cambridge : Deighton, Bell and

co.

Maz’ya Vladimir et Shaposhnikova Tatiana, 1998, Jacques Hadamard : A Univer-

sal Mathematician. History of Mathematics, Providence : American Mathematical

Society.

Miller G.H., 1970, «BLICHFELDT Hans Frederick». Dans Gillispie Charles Coul-

ston (ed.), Dictionary of Scientific Biography, vol. II, New York : American Council

of Learned Societies, p. 197.

Minkowski Hermann, 1885, «Untersuchungen über quadratische Formen, Bestim-

mung der Anzahl verschiedener Formen, welche ein gegebenes Genus enthält». Acta

Mathematica, vol. 7, p. 201–258.

489



BIBLIOGRAPHIE

Minkowski Hermann, 1887a, «Über den arithmetischen Begriff der Äquivalenz und

uber die endlichen Gruppen linearer ganzzahliger Substitutionen». Journal für die

reine und angewandte Mathematik, vol. 100, p. 449–458.

Minkowski Hermann, 1887b, «Mémoire sur la théorie des formes quadratiques à co-

efficients entiers». Mémoires présentés par divers savants à l’Académie des Sciences

de l’Institut de France, vol. 29, 2e série, p. 1–180.

Minkowski Hermann, 1887c, «Zur Theorie der positiven quadratischen Formen».

Journal für die reine und angewandte Mathematik, vol. 101, p. 196–202.

Minkowski Hermann, 1888, «Ueber die Bewegung eines festen Körpers in einer Flüs-

sigkeit». Sitzungsberichte der K. Preußischen Akademie der Wissenschaften zu Ber-

lin, vol. 40, p. 1095–1110.

Minkowski Hermann, 1891a, «Théorème arithmétiques». Comptes rendus de l’Acadé-

mie des sciences, vol. 112, p. 209–212. Extrait d’une lettre de Minkowski à Hermite.

Minkowski Hermann, 1891b, «Ueber die positiven quadratischen Formen und über

kettenbruchähnliche Algorithmen». Journal für die reine und angewandte Mathema-

tik, vol. 107, p. 278–297.

Minkowski Hermann, 1891c, «Ueber Geometrie der Zahlen». Verhandlungen der 64.

Naturforscher- und Ärzteversammlung zu Halle, p. 13. Reproduit dans Jahresbericht

der Deutschen Mathematiker-Vereinigung, vol.1, 1892, p. 64-65 et dans Minkowski

1911, p. 264-265.

Minkowski Hermann, 1893, «Extrait d’une lettre adressée à M. Hermite». Bulletin

des sciences mathématiques, vol. 17, 2e série, p. 24–29.

Minkowski Hermann, 1896a, Geometrie der Zahlen. Leipzig : Teubner.

Minkowski Hermann, 1896b, «Généralisation de la théorie des fractions continues».

Annales de l’Ecole Normale Supérieure, vol. 13, 3e série, p. 41–60.

Minkowski Hermann, 1896c, «Sur les propriétés des nombres entiers qui sont dérivées

de l’intuition de l’espace». Nouvelles Annales de mathématiques, vol. 15, 3e série, p.

393–403. Traduction de L. Laugel de la conférence faite à l’occasion de l’exposition

de Chicago en 1893.

Minkowski Hermann, 1899, «Ein Kriterium für die algebraischen Zahlen». Nachrich-

ten der königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-

Physikalische Klasse, p. 64–88.

490



BIBLIOGRAPHIE

Minkowski Hermann, 1900, «Zur Theorie der Einheiten in den algebraischen Zahlkör-

pern». Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen,

Mathematisch-Physikalische Klasse, p. 90–93.

Minkowski Hermann, 1901a, «Quelques nouveaux théorèmes sur l’approximation des

quantités à l’aide des nombres rationnels». Bulletin des Sciences Mathématiques,

vol. 25, p. 72–76.

Minkowski Hermann, 1901b, «Ueber die Annäherung an eine reelle Grösse durch

rationale Zahlen». Mathematische Annalen, vol. 54, p. 91–124.

Minkowski Hermann, 1902, «Über periodische Approximationen algebraischer Zah-

len». Acta Mathematica, vol. 26, p. 333–351.

Minkowski Hermann, 1904a, «Dichteste gitterförmige Lagerung kongruenter Kör-

per». Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen,

Mathematisch-Physikalische Klasse, p. 311–355.

Minkowski Hermann, 1904b, «Zur Geometrie der Zahlen». Verhandlungen des III-

Internationalen Mathematiker-Kongresses, Heidelberg, p. 164–173. Reproduit avec

les illustrations utilisées par Minkowski dans Minkowski 1911, p.43-52.

Minkowski Hermann, 1905, «Diskontinuitätsbereich für arithmetische Äquivalenz».

Journal für die reine und angewandte Mathematik, vol. 129, p. 220–274.

Minkowski Hermann, 1906, «Kapillarität». Dans Encyklopädie der mathematischen

Wissenschaften, vol. V 1, Heft 4, Leipzig-Berlin : Teubner, p. 558–613. Reproduit

dans Minkowski 1911, p.298-351.

Minkowski Hermann, 1907, Diophantische Approximationen. Eine Einführung in die

Zahlentheorie. Leipzig : Teubner.

Minkowski Hermann, 1908, «Die Grundgleichungen für die elektromagnetische

Vorgänge in bewegten Körpern». Nachrichten der königlichen Gesellschaft der Wis-

senschaften zu Göttingen, Mathematisch-Physikalische Klasse, p. 53–111. Reproduit

dans Minkowski 1911, p.352-404.

Minkowski Hermann, 1909a, «Espace et temps». Annales scientifiques de l’école nor-

male supérieure, vol. 26, 3e série, p. 499–517. Traduction de A. Hennequin et J. Marty

de « Raum und Zeit ».

Minkowski Hermann, 1909b, «Raum und Zeit». Jahresbericht der deutschen

Mathematiker-Vereinigung, vol. 18, p. 75–88. Voir aussi Physikalische Zeitschrift,

vol. 10 (1909), p.104-111. Reproduit dans Minkowski 1911, p.431-444.

491



BIBLIOGRAPHIE

Minkowski Hermann, 1910, Geometrie der Zahlen. Leipzig - Berlin : B. G. Teubner.

2e édition.

Minkowski Hermann, 1911, Gesammelte Abhandlungen, vol. I et II. Leipzig : Teubner.

Edité par David Hilbert avec la collaboration de Andreas Speiser et Hermann Weyl.

Minkowski Hermann, 1915, «Das Relativitätsprinzip». Annalen der Physik, vol. 47,

p. 927–938. Publié à titre posthume par Arnold Sommerfeld.

Minkowski Hermann, 1953, Geometrie der Zahlen. New York : Chelsea Publishing

Company. 3e édition.

Minkowski Hermann, 1957, Diophantische Approximationen. Eine Einführung in die

Zahlentheorie. New York : Chelsea Publishing Company. 2e édition.

Molk Jules (ed.), 1911-1915, Encyclopédie des sciences mathématiques pures et appli-

quées. tome III - Géométrie, Gabay. Edition de 1991.

Mordell Louis Joel, 1914, «The Diophantine Equation y2 − k = x3». Proceedings of

the London Mathematical Society, vol. 13, 2e série, p. 60–80.

Mordell Louis Joel, 1917, «On Mr. Ramanujan’s Empirical Expansion of Modular

Functions». Proceedings of the Cambridge Philosophical Society, vol. 19, p. 117–124.

Mordell Louis Joel, 1922, «On the Rational Solutions of the Indeterminate Equations

of the 3rd and 4th Degrees». Proceedings of the Cambridge Philosophical Society,

vol. 21, p. 179–192.

Mordell Louis Joel, 1923, «An Introductory Account of the Arithmetic Theory of

Algebraic Numbers and its Recent Developments». Bulletin of the American Mathe-

matical Society, vol. 29, p. 445–463.

Mordell Louis Joel, 1928a, «Minkowski’s Theorem on the Product of Two Linear

Forms». Journal of the London Mathematical Society, vol. 3, p. 19–22.

Mordell Louis Joel, 1928b, «The Present State of Some Problems in the Theory of

Numbers». Nature, vol. 121, p. 138–140.

Mordell Louis Joel, 1928c, «Some Applications of Fourier Series in the Analytic

Theory of Numbers». Proceedings of the Cambridge Philosophical Society, vol. 24, p.

585–596.

Mordell Louis Joel, 1929a, «Poisson’s Summation Formula and the Riemann Zeta-

Function». Journal of the London Mathematical Society, vol. 4, p. 285–291.

492



BIBLIOGRAPHIE

Mordell Louis Joel, 1929b, «Poisson’s Summation Formula in Several Variables and

Some Applications to the Theory of Numbers». Proceedings of the Cambridge Philo-

sophical Society, vol. 25, p. 412–420.

Mordell Louis Joel, 1930a, «The Lattice Points in a Parallelogram». Mathematische

Annalen, vol. 103, p. 38–47.

Mordell Louis Joel, 1930b, «Note on Some Linear Diophantine Inequalities». Pro-

ceedings of the Cambridge Philosophical Society, vol. 26, p. 489–490.

Mordell Louis Joel, 1930c, «The Zeta Functions Arising from Quadratic Forms, and

their Functional Equations». Quaterly Journal of Mathematics, vol. 1, p. 77–101.

Mordell Louis Joel, 1933, «Minkowski’s Theorem on Homogeneous Linear Forms».

Journal of the London Mathematical Society, vol. 8, p. 179–182.

Mordell Louis Joel, 1935, «On Some Arithmetical Results in the Geometry of Num-

bers». Compositio Mathematica, vol. 1, p. 248–253.

Mordell Louis Joel, 1936, «Minkowski’s Theorems and Hypotheses on Linear Forms».

Dans Comptes rendus du congrès international des mathématiciens, vol. I, Oslo, p.

226–238.

Mordell Louis Joel, 1937a, «An Arithmetical Theorem on Linear Forms». Acta Arith-

metica, vol. 2, p. 173–176.

Mordell Louis Joel, 1937b, «Homogeneous Linear Forms in Algebraic Fields». Qua-

terly Journal of Mathematics, vol. 8, p. 54–57.

Mordell Louis Joel, 1937c, «Note on an Arithmetical Problem on Linear Forms».

Journal of the London Mathematical Society, vol. 12, p. 34–36.

Mordell Louis Joel, 1938, «On the Product of Two Linear Homogeneous Forms».

Journal of the London Mathematical Society, vol. 13, p. 186–187.

Mordell Louis Joel, 1940a, «Reviews of Three Books on Elementary Number Theory

(Dickson, Uspensky and Heaslett, and Wright)». The Mathematical Gazette, vol. 24,

p. 295–298.

Mordell Louis Joel, 1940b, «Tschebotareff’s Theorem on the Product of Non-

Homogeneous Linear Forms». Vierteljahrsschrift der Naturforschenden Gesellschaft

in Zürich, vol. 85, p. 47–50.

Mordell Louis Joel, 1941a, «Lattice Points in the Region |Ax4 +By4| ≤ 1». Journal

of the London Mathematical Society, vol. 16, p. 152–156.

493



BIBLIOGRAPHIE

Mordell Louis Joel, 1941b, «On the Minimum of a Binary Cubic Form». Journal of

the London Mathematical Society, vol. 16, p. 83–85.

Mordell Louis Joel, 1941c, «On the Product of Two Non-Homogeneous Linear

Forms». Journal of the London Mathematical Society, vol. 16, p. 86–88.

Mordell Louis Joel, 1941d, «The Product of Homogeneous Linear Forms». Journal

of the London Mathematical Society, vol. 16, p. 4–12.

Mordell Louis Joel, 1942, «The Product of Three Homogeneous Linear Ternary

Forms». Journal of the London Mathematical Society, vol. 17, p. 107–115.

Mordell Louis Joel, 1943a, «The Minimum of a Binary Cubic Form (I)». Journal of

the London Mathematical Society, vol. 18, p. 201–210.

Mordell Louis Joel, 1943b, «The Minimum of a Binary Cubic Form (II)». Journal

of the London Mathematical Society, vol. 18, p. 210–217.

Mordell Louis Joel, 1943c, «The Product of n Homogeneous Forms». Recueil mathé-

matique, Moscow, vol. 12, p. 273–276.

Mordell Louis Joel, 1943d, «The Product of Two Non-Homogeneous Linear Forms

(III)». Journal of the London Mathematical Society, vol. 18, p. 218–221.

Mordell Louis Joel, 1944a, «Lattice Points in the Region |x3 + y3| ≤ 1». Journal of

the London Mathematical Society, vol. 19, p. 92–99.

Mordell Louis Joel, 1944b, «Observation on the Minimum of a Positive Quadratic

Form in Eight Variables». Journal of the London Mathematical Society, vol. 19, p.

3–6.

Mordell Louis Joel, 1945a, «On Numbers Represented by Binary Cubic Forms».

Proceedings of the London Mathematical Society, vol. 48, 2e série, p. 198–228.

Mordell Louis Joel, 1945b, «On the Geometry of Numbers in some non-convex Re-

gions». Proceedings of the London Mathematical Society, vol. 48, p. 339–390.

Mordell Louis Joel, 1946a, «Geometry of Numbers». Dans Comptes Rendus du Pre-

mier Congrès Canadien de Mathématiques, Montréal 1945 : University of Toronto

Press, p. 265–284.

Mordell Louis Joel, 1946b, «Thought on Number Theory». Journal of the London

Mathematical Society, vol. 21, p. 58–74.

Mordell Louis Joel, 1949, «The Minimum of a Binary Cubic Form». Acta Scientiarum

Mathematicarum, vol. 13, p. 69–76.

494



BIBLIOGRAPHIE

Mordell Louis Joel, 1959, Reflections of a Mathematician. Cambridge University

Press. (Discours prononcé en janvier 1955 à Toronto devant la Société Royale du

Canada à l’occasion du Canadian Mathematical Congress).

Mordell Louis Joel, 1961, «Review of An Introduction to the Geometry of Numbers

by J. W. S. Cassels». Bulletin of the American Mathematical Society, vol. 67, p.

89–94.

Mordell Louis Joel, 1971a, «Harold Davenport (1907-1969)». Acta Arithmetica,

vol. 18, p. 1–4.

Mordell Louis Joel, 1971b, «Reminiscences of an Octogenarian Mathematician». The

American Mathematical Monthly, vol. 78, p. 952–961.

Mordell Louis Joel, 1971c, «Review of Geometry of Numbers by C. G. Lekkerkerker».

Bulletin Canadien de Mathématiques, vol. 14, p. 611–613.

Mordell Louis Joel, 1971d, «Some Aspects of Davenport’s Work». Acta Arithmetica,

vol. 18, p. 5–11.

Mordell Louis Joel, 1972, «Note on the Product of n Inhomogeneous Linear Forms».

Journal of Number Theory, vol. 4, p. 405–407.

Mordell Louis Joel, (St John’s). St John’s College Library, Papers of Louis Joel Mor-

dell. The documents from these archives are quoted and reproduced by permission

of the Master and Fellows of St John’s College, Cambridge.

Morrell Jack B., 1972, «The Chemist Breeders : The Research Schools of Liebig and

Thomson». Ambix, vol. 19, p. 1–46.

Nabonnand Philippe, 2008, «L’argument de la généralité chez Carnot, Poncelet et

Chasles». Dans Flament Dominique et Nabonnand Philippe (eds), La justification

en mathématiques, Paris : Maison des sciences de l’homme. Preprint.

Netz Reviel, 1999, The Shaping of Deduction in Greek Mathematics : A Study in

Cognitive History. Cambridge-New York : Cambridge University Press.

Neukirch Jürgen, 1999, Algebraic Number Theory. Berlin-Heidelberg : Springer-

Verlag. Traduction par Norbert Schappacher de Algebraische Zahlentheorie, Berlin-

New York : Springer-Verlag, 1992.

Olds C.D., Lax Anneli et Davidoff Giuliana, 2000, The Geometry of Numbers,

vol. 41. Washington : The Mathematical Association of America.

495



BIBLIOGRAPHIE

Olesko Kathryn M., 1991, Physics as a Calling. Discipline and Practice in the Ko-

nigsberg Seminar for Physics. Ithaca-New York-London : Cornell University Press.

Opolka Hans et Scharlau Winfried, 1985, From Fermat to Minkowski. Lectures on

the Theory of Numbers and its Historical Development. New York-Berlin-London :

Springer-Verlag.

Ozhigova E. P., 2001, «Problems of Number Theory». Dans Kolmogorov A.N.

et Yushkevich A.P. (eds), Mathematics of the 19th Century - Mathematical Logic,

Algebra, Number theory, Probability Theory, vol. 1, chapitre III, Basel-Boston-Berlin :

Birkhäuser Verlag, 2e édition, p. 137–209.

Parshall Karen H., 2004, «Defining a Mathematical Research School : the Case of

Algebra at the University of Chicago». Historia Mathematica, vol. 31, p. 263–278.

Parshall Karen Hunger et Rowe David, 1994, The Emergence of the American Re-

search Community, 1876-1900 : J.J. Sylvester, Felix Klein, and E.H. Moore, History

of mathematics, vol. 8. Providence RI ; London : American Mathematical Society -

London Mathematical Society.

Patterson Samuel James, 2007, «Gauss Sums». Dans Goldstein Catherine, Schap-

pacher Norbert et Schwermer Joachim (eds), The Shaping of Arithmetic after C.

F. Gauss’s Disquisitiones Arithmeticae, chapitre VIII.2, Berlin : Springer, p. 505–

528.

Pohst Michael E., 1993, Computational Algebraic Number Theory. Basel-Boston-

Berlin : Birkhäuser verlag.

Poincaré Henri, 1893, «Au Jubilé Hermite». Dans Jubilé de M. Charles Hermite,

Paris : Gauthier-Villars, p. 6–8.

Pyenson Lewis, 1977, «Hermann Minkowski and Einstein’s Special Theory of Relati-

vity». Archive for History of Exact Sciences, vol. 17, p. 71–95.

Rüdenberg Lily et Zassenhaus Hans, 1973, Hermann Minkowski Briefe an David

Hilbert. Berlin-Heidelberg-New York : Springer-Verlag.

Reid Constance, 1970, Hilbert. New York : Springer-Verlag. [Edition de 1996].

Reid Constance, 1993, The Search for E.T. Bell also known as John Taine. Washing-

ton : The Mathematical Association of America.

Remak Robert, 1913, «Neuer Beweis eines Minkowskischen Satzes». Journal fur die

reine und angewandte Mathematik, vol. 142, p. 278–282.

496



BIBLIOGRAPHIE

Remak Robert, 1923a, «Verallgemeinerung eines Minkowskischen Satzes». Mathema-

tische Zeitschrift, vol. 17, p. 1–34.

Remak Robert, 1923b, «Verallgemeinerung eines Minkowskischen Satzes». Mathema-

tische Zeitschrift, vol. 18, p. 173–200.

Remak Robert, 1927, «Vereinfachung eines Blichfeldtschen Beweises aus der Geome-

trie des Zahlen». Mathematische Zeitschrift, vol. 26, p. 694–699.

Revel Jacques (ed.), 1996a, Jeux d’échelles. La micro-analyse à l’expérience. Paris :

Seuil/Gallimard.

Revel Jacques, 1996b, «Micro-analyse et construction du social». Dans Revel 1996a,

p. 15–36.

Ritter Jim, 2004, «Reading Strasbourg 368 : A Thrice-Told Tale». Dans Chemla

Karine (ed.), History of Science, History of Text, Dordrecht : Springer, p. 177–200.

Rogers C.A., Birch B.J., Burgess D.A. et Halberstam H., 1971, «Harold Daven-

port». Biographical Memoirs of Fellows of the Royal Society, vol. 17, p. 159–192.

Rogers Claude Ambrose, 1871, «A brief survey of the work of Harold Davenport».

Acta Arithmetica, vol. 18, p. 13–17.

Roquette Peter, 2004, «The Riemann Hypothesis in Characteristic p, its Origin and

Development. Part 2. The First Steps by Davenport and Hasse». Mitteilungen der

Mathematischen Gesellschaft in Hamburg, vol. 23, p. 5–74.

Rowe David E., 1989, «Klein, Hilbert, and the Göttingen Mathematical Tradition».

Osiris, vol. 5, p. 186–213.

Rowe David E., 1994, «The Philosophical Views of Klein and Hilbert». Dans Chi-

kara Sasaki, Mitsuo Sugiura et Dauben Joseph W. (eds), The Intersection of

History and Mathematics, Science Networks - Historical Studies, vol. 15, Basel-

Boston-Berlin : Birkhäuser Verlag, p. 187–202.

Royden Halsey, 1989, «The History of the Mathematics Department at Stanford».

Dans Duren Peter (ed.), A Century of Mathematics in America - Part II, Provi-

dence : American Mathematical Society, p. 237–281.

Samuel Pierre, 2003, Théorie algébrique des nombres. Hermann, réimpression de la 2e

édition. 1ère édition 1967.

497



BIBLIOGRAPHIE

Schappacher Norbert, 1987, «Das Mathematische Institut der Universität Göttingen

1929 - 1950». Dans Becker Heinrich, Dahms Hans-Joachim et Wegeler Cornelia

(eds), Die Universität Göttingen unter dem Nationalsozialismus, München : K.G.

Saur, p. 345–373.

Schappacher Norbert, 1990, «Développement de la loi de groupe sur une cubique».

Dans Goldstein Catherine (ed.), Séminaire de théorie des nombres Paris 1988/89,

Progress in Mathematics, vol. 91, Boston-Basel-Berlin : Birkhäuser, p. 159–184.

Schappacher Norbert, 2005, «David Hilbert, Report on Algebraic Number Fields

(‘Zahlbericht’) (1897)». Dans Grattan-Guinness Ivor (ed.), Landmark Writings

in Western Mathematics 1640-1940, chapitre 54, Amsterdam, Boston etc : Elsevier,

p. 700–709.

Schwermer Joachim, 1991, «Räumliche Anschauung und Minima positiv defini-

ter quadratischer Formen». Jahresbericht der Deutchen Mathematiker-Vereinigung,

vol. 93, p. 49–105.

Schwermer Joachim, 2007, «Theory of Quadratic Forms : Towards Räumliche An-

schauung in Minkowski’s Early Work». Dans Goldstein Catherine, Schappacher

Norbert et Schwermer Joachim (eds), The Shaping of Arithmetic after C. F.

Gauss’s Disquisitiones Arithmeticae, Berlin : Springer, p. 483–504.

Seale Roy Quincy, 1935, «A New Proof of Minkowski’s Theorem of the Product of Two

Linear Forms». Bulletin of the American Mathematical Society, vol. 41, p. 419–426.

Senechal Marjorie, 1992, «Introduction to Lattice Geometry». Dans Waldschmidt

Michel, Moussa Pierre, Luck Jean-Marc et Itzykson Claude (eds), From Number

Theory to Physics, chapitre 10, Berlin-Heidelberg-New York : Springer-Verlag, p.

476–495.

Serre Jean-Pierre, 1993, «Smith, Minkowski et l’Académie des sciences». Avec des

notes de Norbert Schappacher. Gazette des mathématiciens, vol. 56, p. 3–9.

Servos John W., 1993, «Research Schools and their Histories». Osiris, vol. 8, p. 3–15.

Siegel Carl Ludwig, 1922, «Neuer Beweis des Satzes von Minkowski über lineare

Formen». Mathematische Annalen, vol. 87, p. 36–38.

Siegel Carl Ludwig, 1989, Lectures on the Geometry of Numbers. Berlin-Heidelberg :

Springer-Verlag. Cours donnés à l’université de New York en 1945-1946, notes de B.

Friedman réécrites par K. Chandrasekharan avec l’aide de R. Suter.

498



BIBLIOGRAPHIE

Siegmund-Schultze Reinhard, 1998, Mathematiker auf der Flucht vor Hitler, Doku-

mente zur Geschichte der Mathematik, vol. 10. Wiesbaden : Vieweg.

Siegmund-Schultze Reinhard, 2001, Rockefeller and the Internationalization of

Mathematics Between the Two World Wars, Science Networks, Historical Studies,

vol. 25. Basel-Boston-Berlin : Birkhäuser Verlag.

Smith Henry John Stephen, 1861, «On Systems of Linear Indeterminate Equations

and Congruences». Philosophical Transactions of the Royal Society of London, vol.

151, p. 293–326. Reproduit dans smith 1894, p.367-409.

Smith Henry John Stephen, 1867, «On the Orders and Genera of Quadratic Forms

Containing more than Three Indeterminates». Proceedings of the Royal Society of

London, vol. 16, p. 197–208.

Smith Henry John Stephen, 1887, «Mémoire sur la représentation des nombres par

des sommes de cinq carrés». Mémoires présentés par divers savants à l’Académie des

Sciences de l’Institut de France, vol. 29, 2e série, p. 1–72.

Smith Henry John Stephen, 1894, Collected Mathematical Papers, vol. I. Oxford :

Clarendon Press.

Soulé Christophe, 2005, «La géométrie des nombres». Dans Kouneiher Joseph, Fla-

ment Dominique, Nabonnand Philippe et Szczeciniarz Jean-Jacques (eds), Géo-

métrie au XXe siècle. Histoire et horizons, Paris : Hermann, p. 45–51.

Strasser Bruno J., 2002, «Totems de laboratoires, microscopes électroniques et ré-

seaux scientifiques : L’émergence de la biologie moléculaire à Genève (1945-1960)».

Revue d’histoire des sciences, vol. 55, p. 5–43.

Strobl Walter, 1985, «Aus den wissenschaftlichen Anfängen Hermann Minkowskis».

Historia Mathematica, vol. 12, p. 142–156.

Swinnerton-Dyer Peter, 1943, «A Solution of A4 +B4 = C4 +D4». Journal of the

London Mathematical Society, vol. 18, p. 2–4.

Tannery Jules, 1908, «Compte Rendu de Diophantische Approximationen. Eine

Einführung in die Zahlentheorie de H. Minkowski». Bulletin des Sciences Mathé-

matiques, vol. 32, 2e série, p. 313–316.

Tauvel Patrice, 2000, Cours de géométrie. Paris : Dunod.

Toepell Michael, 2005, «David Hilbert, Grundlagen der Geometrie, first edition

(1899)». Dans Grattan-Guinness Ivor (ed.), Landmark Writings in Western Ma-

thematics 1640-1940, chapitre 55, Elvesier, p. 711–723.

499



BIBLIOGRAPHIE

Wagner-Döbler Roland et Berg Jan, 1996, «Nineteenth-Century Mathematics in

the Mirror of its Literature : A Quantitative Approach». Historia Mathematica,

vol. 23, p. 288–318.

Walter Scott, 1996, Hermann Minkowski et la mathématisation de la théorie de la

relativité restreinte 1905-1915. Thèse de doctorat, Université Paris VII.

Walter Scott, 1999a, «Minkowski, Mathematicians, and the Mathematical Theory

of Relativity». Dans Goenner H., Renn J., Ritter J. et Sauer T. (eds), The

Expanding Worlds of General Relativity, Boston-Basel : Birkhäuser, p. 45–86.

Walter Scott, 1999b, «The Non-Euclidean Style of Minkowskian Relativity». Dans

Gray Jeremy (ed.), The Symbolic Universe. Geometry and Physics 1890-1930, New

York : Oxford University Press, p. 91–127.

Warwick Andrew, 2003, Masters of Theory. Cambridge and the Rise of Mathematical

Physics. Chicago-London : The University of Chicago Press.

Weil André, 1974, «Two Lectures on Number Theory, Past and Present». voir Weil

1979, Vol.III, p. 279–302.

Weil André, 1979, Oeuvres Scientifiques 1964-1978. En 3 volumes, New York, Heidel-

berg, Berlin : Springer-Verlag.

Weil André, 1991, Souvenirs d’apprentissage. Bâle-Boston : Birkhäuser.

Weyl Hermann, 1942, «On Geometry of Numbers». Proceedings of the London Ma-

thematical Society, vol. 47, p. 268–289.

Woodward William R., 1991, «World Views and Scientific Discipline Formation :

How East German Science Studies Contributed to the Fall of the Cultural Wall».

Dans Woodward William R. et Cohen Robert S. (eds), World Views and Scientific

Discipline Formation, Dordrecht-Boston-London : Kluwer Academic Publishers, p.

1–15.

Zassenhaus Hans, 1975, «On the Minkowski-Hilbert Dialogue on Mathematization».

Bulletin Canadien de Mathématiques, vol. 18, p. 443–461.

Zilinskas G., 1941, «On the Product of Four Homogeneous Linear Forms». Journal

of the London Mathematical Society, vol. 16, p. 27–37.

500




