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0.1 Les paradoxes de la géométrie des nombres

Un étudiant en mathématiques entend parler de géométrie des nombres pour la
premiére fois assez tard dans sa formation. Ce constat apparait déja comme para-
doxal car beaucoup de mathématiciens ont insisté sur le caractére simple et intuitif
de la géométrie des nombres'. Ce premier contact se passe en général dans des cours
de théorie des nombres avancés? et la géométrie des nombres y est surtout présente
comme préliminaire, & travers un résultat servant a& démontrer certains théorémes plus
centraux pour ces cours. Ce résultat, attribué au mathématicien Hermann Minkowski,
est présenté actuellement de la facon suivante. Considérons R™ muni de sa structure
euclidienne, B une base orthonormée de R" et notons p la mesure de Lebesgue sur R".
Soit maintenant L un réseau de R™ d’origine O et dont une base est (e1,...,€e,). Une

maille du réseau L est alors

n
inei, 0<z; <1

i=1

1Ce paradoxe est souligné par Mordell dés 1940 : « The geometry of numbers, or Diophantine ap-
proximation, apart from classic results mostly associated with continued fractions, is still an uncommon
feature of elementary books despite the simplicity, the generality and the richness of application of
some of the results », MORDELL 1940a p.295.

2En France, la géométrie des nombres ne semble jamais apparaitre dans les programmes universi-
taires avant la premiére année de Master.
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INTRODUCTION

et le volume de cet ensemble |detg(ey,...,e,)| ne dépend pas de la base du réseau

choisie ; notons-le Vol(L). On a alors :

Lemme. Soit A C R" une partie mesurable et telle que p(A) > Vol(L), il existe a et

a’ dans A tels que la différence a — a' appartienne a L.
Ce lemme implique le théoréme dit de Minkowski :

Théoréme. Soit A C R"™ une partie convexe mesurable, symétrique par rapport a
Uorigine O et telle que u(A) > 2" Vol(L). 1l existe alors un point a différent de O dans

lintersection AN L.

Dans le livre de Pierre Samuel, Théorie algébrique des nombres, par exemple, ce théo-
réeme intervient dans un paragraphe intitulé « Préliminaires sur les groupes discrets de
R™ » ; il sert & établir la preuve de la finitude du groupe des classes d’idéaux et celle

du théoréme des unités?.

Pourtant, plusieurs indicateurs suggérent que la géométrie des nombres est un do-
maine de recherche autonome, stabilisé et qu’il est donc possible d’identifier et d’en-
seigner en soi. Méme s’ils sont peu nombreux, des livres consacrés spécifiquement a ce
sujet ont été publiés et témoignent de son existence en tant que discipline. Les com-
mentaires faits dans ces livres présentent la géométrie des nombres comme un domaine
a part entiere a l'intérieur de la théorie des nombres et dont 'origine est le travail de
Minkowski :

« This new branch of number theory, which Minkowski christened “The Geo-
metry of Numbers”, has developed into an independent branch of number-
theory which, indeed, has many applications elsewhere but which is well

worth studying for its own sake*. »

« Cette idée extrémement originale, fondamentale malgré sa simplicité,
constitue 'acte de naissance de la géométrie des nombres, branche nouvelle
des mathématiques dont 'existence autonome peut étre datée de 1896, an-

née de parution du livrte Geometrie der Zahlen de Minkowski®. »

« The geometry of numbers is a branch of number theory that originated
with the publication of Minkowski’s seminal work in 1896 and ultimately

established itself as an important field of study in its own right®. »

3SAMUEL 2003, chapitre IV.
4CASSELS 1959 p.1.
SMARTINET 1996 p.8.
S0LDS ET AL. 2000 p.xiii.

12



INTRODUCTION

Cette place de la géométrie des nombres au sein de la théorie des nombres est confirmée
par la classification des Mathematical Reviews. Dans cette classification, la géométrie
des nombres est la sous-section 11H — la théorie des nombres occupe toute la section
11 — et elle est mise au méme niveau par exemple que les équations diophantiennes
(section 11D) ou les corps de nombres globaux (section 11R).

En plus de ces indices explicites sur 'autonomie du sujet et de son importance, nous
trouvons aussi des références & un vocabulaire propre a la géométrie des nombres :
certains termes sont employés « conformément & I'usage de la géométrie des nombres” »,
ou parce qu’ils sont « traditionnels en géométrie des nombres® ». Dés 1948, Freeman

Dyson renvoie son lecteur a des conventions qui seraient alors bien intégrées

« The subject of this paper belongs to the “geometry of numbers”, and the

standard terminology of that branch of mathematics will be used®. »

Les définitions ou les caractérisations plus fines de la géométrie des nombres propo-
sées par les mathématiciens dénotent aussi une certaine stabilité. Voici quelques-unes

de ces caractérisations classées dans 1’ordre chronologique :

1. « Wenn man fiir den Raum rechtwinklige Coordinaten einfiihrt, so entsprechen
den Systemen von drei ganzen Zahlen discrete Punkte, welche derart iiber den
Raum verstreut liegen, dass sie eine gewisse Néahe in Bezug auf jede beliebige
Raumstelle erreichen. Den Inbegriff aller dieser Punkte mit lauter Coordinaten,
die ganze Zahlen sind, nennt der Vortragende das dreidimensionale Zahlengitter ;
unter dem Titel “Geometrie der Zahlen” begreift er geometrische Studien iiber das
dreidimensionale Zahlengitter und iiber das entsprechende Gebilde in der Ebene,
und in weiterem Sinne auch die Ausdehnung der Ergebnisse solcher Studien auf

Mannigfaltigkeiten beliebiger Ordnung!®. »

2. « Im folgenden mochte ich versuchen, in kurzen Ziigen einen Bericht iiber ein ei-
genartiges, zahlreicher Anwendungen fahiges Kapitel der Zahlentheorie zu geben,
ein Kapitel, vom dem Charles Hermite einmal als der “introduction des variables
continues dans la théorie des nombres” gesprochen hat. Einige hervorstehende

Probleme darin betreffen die Abschidtzung der kleinsten Betrdge kontinuierlich

"MARTINET 1996 p.7.
SMARTINET 1996 p.40.
9DYSON 1948 p.82.

10« Lorsqu’on introduit pour l’espace des coordonnées cartésiennes, aux systémes de trois entiers
correspondent des points discrets, qui sont répartis dans ’espace de telle sorte qu’ils atteignent une
certaine distance par rapport a n’importe quel endroit de I’espace. Le conférencier nomme 1’ensemble
de tous ces points a coordonnées entiéres le réseau de nombres a trois dimensions; sous le titre
de “Géométrie des nombres” il comprend des études géométriques sur le réseau de nombres a trois
dimensions et sur la figure correspondante dans le plan, et dans un sens plus général, aussi I’extension
des résultats de telles études aux variétés de dimension quelconque. », MINKOWSKI 1891c.
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verénderlicher Ausdriicke fiir ganzzahlige Werte der Variablen.

Die in dieses Gebiet fallenden Tatsachen sind zumeist einer geometrischen Dars-
tellung fahig, und dieser Umstand ist fiir die in letzter Zeit hier erzielten Fort-
schritte derart makgebend gewesen, dak ich geradezu das ganze Gebiet als die

Geometrie der Zahlen bezeichnet habe!l. »

3. « Le probléme fondamental de la géométrie des nombres est de trouver des condi-

tions sous lesquelles une inégalité

o(ug, ... uy) < A

2

(ou plusieurs inégalités de cette forme) posséde une solution entiére'?. »

4. « Parmi les théories les plus séduisantes nous avons celles qui combinent les idées
de I'analyse et de l'arithmétique. J’emploie le mot « analyse » ici dans le sens
le plus large, c’est-a-dire toute théorie ot I'on fait usage de variables continues.
Une de ces théories est la géométrie des nombres. |...| Une partie essentielle de la
démonstration des résultats arithmétiques dépend de I’emploi de variables conti-

nues et d’intégrations effectuées sur ces variables!3. »

5. « It [the geometry of numbers| consists in interpreting geometrically questions in
the theory of numbers, making use of points with integral co-ordinates, either in

14

the plane, or, more generally, in an n-dimensional space™*. »

6. « The geometry of numbers is an approach to problems of Diophantine approxi-
mation, suggested by interpreting them geometrically. The inequality
f(x1,...,x,) < X represents a certain region in n dimensional space. Under what

conditions does this region contain a point with integral coordinates' ? »

1« Dans ce qui suit je voudrais essayer de donner & grands traits un rapport sur un chapitre spéci-
fique et susceptible de nombreuses applications de la théorie des nombres, un chapitre & propos duquel
Charles Hermite a parlé autrefois d*introduction des variables continues dans la théorie des nombres”.
Certains problémes importants concernent ici I’estimation des plus petites contributions d’expressions
variables continument pour des valeurs entiéres des variables.

Les faits intervenant dans ce domaine sont pour la plupart susceptibles d’une représentation géomé-
trique, et cette circonstance a été décisive pour les progrés obtenus ici dans les derniers temps, de sorte
que j’ai désigné le domaine entier comme la Géométrie des nombres. », MINKOWSKI 1904b p.164.

12DAVENPORT 1946b p.1.

1311 s’agit d’un extrait de notes non datées de Davenport mais qui sont trés certainement de la
seconde moitié¢ des années 1940. DAVENPORT (WL), C 169.

14 DAVENPORT 1947a p.104.

15DAVENPORT 1947b p.206.
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7.

10.

« In the geometry of numbers, we treat a general class of problems in number
theory by methods which are suggested by a geometrical interpretation. The pro-
blems in question relate to “Diophantine inequalities”’, ie inequalities which are

to be satisfied by integral values of the variables!®. »

«In der Geometrie der Zahlen ist von Gedankengéngen die Rede, in denen geome-
trische Begriffe und Methoden auf zahlentheoretische Fragen angewandt werden.
Die Anféange solcher Betrachtungen gehen auf C. F. Gauf zuriick. Er und nach
ihm G. Dirichlet, F. Klein, H. Minkowski und andere hatten mit geometrischen
Methoden Erfolg bei Fragestellungen, bei denen ein System ganzer Zahlen eine
oder ein System von Ungleichungen zu erfiillen hatte, so vor allem in der Theorie

17

der definiten und indefiniten quadratischen Formen'‘. »

« This book deals with bodies and lattices in the n-dimensional euclidean space.
The bodies considered are convex bodies centered at the origin or, more generally
star bodies (with respect to the origin). With each star body there is associated
a continuous distance function; it is a positively homogeneous function assuming
the value 1 at the points of the boundary of the given body.

The correspondence between star bodies and distance function just sketched
brings on the interchange of the geometric and the arithmetic viewpoint that
is typical for the subject. Historically, the arithmetic viewpoint existed first. But
the geometry of numbers as such came into being only when MINKOWSKI brought

in the geometric viewpoint!®. »

« The geometry of numbers deals essentially with an arithmetical question. The
simplest one is to find the minimum value of f(x) = f(xy,...,x,) for integer
values of (), where f(z) is a real valued function of the variables (z). As this
is rather an ambitious aim, significant estimates for the minimum are of value.
[...] Only slight progress was made until the end of the century when Minkowski

19

found some very general results by geometric considerations™. »

16Résumé d’un cours sur la géométrie des nombres, Berkeley, 24 janvier 1948, DAVENPORT (WL),

C 165.

17« Dans la Géométrie des nombres il est question de raisonnements dans lesquels des concepts et
des méthodes géométriques sont appliqués & des questions de théorie des nombres. Les débuts de telles
considérations remontent & Gauss. Lui, et aprés lui, G. Dirichlet, F. Klein , H. Minkowski et d’autres
ont résolu avec succés par des méthodes géométriques des questions dans lesquelles un systéme de
nombres entiers devait satisfaire une ou un systéme d’inégalités, donc avant tout dans la théorie des
formes quadratiques définies ou indéfinies. », KELLER 1954 p.2.

BLEKKERKERKER 1969 p.vii.

1 MORDELL 1971c p.611.
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11. « The basic idea in Minkowski’s treatment of an algebraic number field K|Q of
degree n is to interpret its numbers as points in n-dimensional space. This ex-

20

plains why his theory has been called “Geometry of Numbers®”. »

12. « Il [Minkowski| s’illustra dans la suite, non seulement par d’autres travaux sur
les formes quadratiques, mais aussi par la création de I’ensemble de méthodes

21»

appelé “géométrie des nombres*”. »

13. « The term ‘Geometry of Numbers” was first used by Minkowski to describe ar-

guments based on considerations of packing and covering??. »

14. « The geometry of numbers deals with the use of geometric notions, especially
convexity and lattices, to solve problems in number theory, usually via the solu-

23

tions of inequalities in integers=. »

15. « The geometry of numbers is connected with the problem of determining whe-

ther inequalities of various kinds are solvable in integers®*. »

16. « La géométrie des nombres est une méthode inventée par Hermann Minkowski :
le but est d’étudier des objets arithmétiques, tels que des formes quadratiques ou

25

des corps de nombres, par des méthodes géométriques=. »

Beaucoup des commentaires précédents caractérisent la géométrie des nombres par
I’application d'un point de vue géométrique en théorie des nombres. Cette rencontre
entre géométrie et théorie des nombres, qui est « typique » de ce sujet (voir la définition
9), est exprimée de fagons diverses. D’abord en expliquant que la géométrie permet de
représenter ou bien interpréter dans un cadre nouveau des problémes arithmétiques :
la recherche de solutions en nombres entiers & des inégalités est traduite en termes
de recherche de points d’un réseau dans un domaine (voir par exemple la définition
5). La connexion entre géométrie et arithmétique peut aussi étre mise en évidence par
'utilisation de la continuité dans ’étude de phénoménes discrets (définition 2) et dans
ce contexte l'analyse vient parfois se substituer a la géométrie (définition 4).

Mais ces définitions donnent aussi les premiéres raisons de nuancer le statut de la géo-

20NEUKIRCH 1999 p.28. Je remercie Norbert Schappacher de m’avoir indiqué cette citation.
21SERRE 1993 p.4.

22COATES et VAN DER POORTEN 1994 p.273.

23GOLDMAN 1998 p.440.

240LDS ET AL. 2000 p.65.

25BAYER-FLUCKIGER 2006a p.31.
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métrie des nombres comme discipline clairement identifiée. D’abord, méme si employer
la géométrie en théorie des nombres est I'idée qui revient le plus souvent dans ces dé-
finitions, nous avons constaté que l'analyse peut se substituer a la géométrie et que
certaines définitions ne font aucune référence explicite a la géométrie.

Ensuite ces citations n’insistent pas sur les mémes points pour décrire ce qu’est la
géométrie des nombres. Elle est parfois définie par un ou des objets considérés comme
fondamentaux dans son étude (définitions 1, 9), parfois par le type de problémes qu’elle
doit résoudre (définitions 2, 3, 6, 7, 10, 15) ou encore elle est décrite comme un en-
semble de méthodes (définitions 4, 5, 8, 12, 13, 14, 16). Certaines définitions combinent
plusieurs des aspects précédents comme par exemple 6, 7 ou 9. De plus, les objets
qui sont mis en avant ne sont pas toujours les mémes. Nous trouvons par exemple
les réseaux, les formes quadratiques, les corps (convexes, étoilés ou quelconques) ou
alternativement les fonctions distances. Les problémes dont s’occupe la géométrie des
nombres sont eux aussi divers : estimation du minimum de fonctions pour des valeurs
entiéres des variables, recherche de solutions entiéres pour des inégalités, recherche de
points d’un réseau dans un domaine.

Enfin, méme si nous observons une certaine stabilité dans le vocabulaire utilisé dans ces
descriptions, en particulier avec les termes géométrie ou arithmétique qui reviennent
fréquemment, ces notions ont-elles la méme signification pour tous ces mathématiciens ?
Leur sens ne change-t-il pas selon les époques ? Si un aspect crucial de la géométrie des
nombres est 'emploi de méthodes géométriques en théorie des nombres, quelles sont
exactement ces méthodes? De quel type de géométrie est-il question et est-ce le méme
qui est visé dans toutes ces définitions ?

Ces questions sont d’autant plus pertinentes que plusieurs champs de recherche actuels
se présentent comme prolongement naturel des travaux sur la géométrie des nombres,
champs dont les objets et les techniques paraissent tres variés. En plus de la théorie
algébrique des nombres déja évoquée, citons les recherches sur les réseaux?®, la cristal-
lographie?”, les problémes d’empilement et de recouvrement par des corps convexes®,
la cryptologie, la géométrie convexe et discréte?®, la géométrie d’Arakelov®® ou la géo-
métrie diophantienne®'. Nous avons cette fois 'image d’un sujet éclaté, au carrefour
entre différentes spécialités.

Cette observation est confirmée par les repéres historiques fournis par les mathémati-
ciens au cours de leurs travaux. D’une part, ils racontent une préhistoire de la géométrie

des nombres qui est assez bien balisée. L’origine de la géométrie des nombres est tou-

26MARTINET 1996.

2"SENECHAL 1992; ENGEL 1993.
28 GRUBER 1993a p.741.

29 GRUBER 2007.

30SoULE 2005.

3IHINDRY et SILVERMAN 2000.
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jours située dans les recherches sur la théorie arithmétique des formes quadratiques.
Les mathématiciens cités sont alors dans un premier temps Lagrange, Gauss et Diri-
chlet pour leurs contributions a 1’étude des formes quadratiques binaires. Une étape
importante est ensuite la démonstration par Hermite en 1847 que si f est une forme
quadratique de n variables définie positive, alors il existe des entiers zi,...,x, non

tous nuls et tels que

n—1

AN\ T
flxy, ... 1) < <§) pn

ol D désigne la valeur absolue du déterminant de f. Ce résultat est jugé important
car il est considéré comme « the first important result of a general nature3? ». Aprés ce
travail d’Hermite les recherches de Korkine, Zolotareff sont souvent mentionnées par
exemple pour leur travail sur les formes quadratiques binaires indéfinies®® ou encore
pour la détermination de la meilleure estimation dans le théoréeme d’Hermite quand
n=3etn=43%,

Aprés ces grandes étapes de la préhistoire, Minkowski est unanimement considéré
comme le créateur de la géométrie des nombres, c¢’est d’ailleurs lui qui baptise ainsi cette
théorie. Le résultat emblématique de Minkowski est celui sur les domaines convexes qui
peut étre réinterprété pour obtenir un énoncé du méme type que celui d’Hermite. Si

f(z) = f(z1,...,2,) est maintenant une fonction qui vérifie
1. f(z) >0, f(z) = 0 si et seulement si (z) = 0,
2. f(tw) = [t|f(z),
3. fla+y) < flz)+ fly),

alors il existe des entiers (x1,...,z,) non tous nuls tels que

flze,.. . x,) <

ou V désigne le volume du domaine défini par l'inégalité f(z) < 13°.

Mais I'histoire des développements de la géométrie des nombres aprés Minkowski est
beaucoup moins consensuelle. Selon les mathématiciens ou les spécialités de recherche,
ce ne sont pas les mémes protagonistes qui sont mis en avant et leurs contributions ne
sont pas interprétées de la méme maniére. Mordell rend compte des développements de
la géométrie des nombres en se focalisant sur le probléme de la convexité*®. Selon lui,

avec Minkowski ou plus tard Blichfeldt, I’attention s’est d’abord portée sur I’étude des

32BLICHFELDT 1919 p.449.

33MORDELL 1946a p.266.

3 BERGE et MARTINET 1985-1986.

35MORDELL 1946a p.268.

36Comme nous le verrons, c’est un moyen d’intégrer ses propres recherches ainsi que celles de ses
collaborateurs dans I’histoire du sujet.
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domaines convexes, puis la discipline a évolué ensuite vers une théorie devant permettre

d’aborder aussi les domaines non convexes

« All this served as a tremendous stimulus and marked the beginning of
some of the great advances made soon after in the Geometry of Numbers by
Mahler, Davenport, C. A. Rogers and many others. In the past, practically
all the results dealt with convex regions, but now the new results for non-

convex regions constitute an important body of knowledge37. »

Quant aux mathématiciens s’intéressant aux réseaux, leur présentation insiste davan-
tage sur Hermite, Korkine, Zolotareff, en ce qui concerne la préhistoire du sujet, puis sur
Voronoi dont les travaux sur les formes quadratiques sont beaucoup moins citées dans
d’autres traditions de recherche®®. Ce n’est plus ici 'évolution convexité/non convexité
qui est vue comme pertinente pour décrire la dynamique du domaine; c’est le passage
d’une théorie ayant pour objet fondamental les formes & une théorie centrée sur la
notion de réseaux qui est alors souligné.

Dans la préface de son livre sur la géométrie des nombres, Lekkerkerker sépare quant
a lui les contributions a la géométrie des nombres aprés Minkowski selon leur nature
arithmétique ou géométrique®. Du coté des travaux arithmétiques nous trouvons cités
les mathématiciens Remak, Oppenheim, Davenport et Barnes; du coté géométrique,
Blichfeldt, Mordell, Mahler et Rogers.

En 1980, Edmund Hlawka®® mentionne lui aussi le travail de mathématiciens comme
Blichfeldt, Mordell, Siegel, Mahler, Cassels ou Rogers. Mais s’il signale une « école de
Manchester » autour de Mordell, il identifie aussi une « école de Vienne » dont des
représentants sont Furtwéngler, Hofreiter, Hlawka et W. Schmidt, des « écoles russe et

australienne », ainsi que de celle de Fejes-Toth spécialisée en géométrie discrete.

La variété des objets présentés comme fondamentaux, des résultats clés mis en va-
leur, des généalogies, remet en question le statut de la géométrie des nombres : est-ce
un ensemble de méthodes pour traiter des problémes posés dans d’autres domaines ou
bien une théorie autonome avec ses propres sujets d’étude? Si c’est le cas quelles en
sont les limites 7 Qu’est-ce qui la caractérise et lui donne son identité? Peut-on réelle-
ment considérer la géométrie des nombres comme une discipline mathématique 7 Cette
question conduit a s’interroger sur les critéres qui pourraient caractériser une discipline

scientifique.

3"MORDELL 1959 p.9.

38MARTINET 1996; BERGE et MARTINET 1985-1986.
39LEKKERKERKER 1969.

OHLAWKA 1980.
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0.2 La notion de discipline comme catégorie en his-

toire des sciences

La notion de discipline a été théorisée dans plusieurs sciences humaines. Elle est
cruciale par exemple dans les travaux de Michel Foucault sur I'histoire de la folie et
la naissance de la psychiatrie*!. C’est une unité d’analyse qui a aussi été employée en
histoire des sciences, surtout pour les sciences dites expérimentales, par exemple en

histoire de la physique®?.

Les historiens des sciences ont insisté sur deux types de facteurs dans la constitution

et la description d’une discipline scientifique*® : des facteurs sociaux qui ont surtout
été discutés dans le cas des sciences expérimentales et des facteurs intellectuels. L'im-
portance qui leur est accordée varie selon les auteurs.
Dans son livre de 1982 sur la constitution de la biochimie comme discipline, Robert
Kohler juge que I'histoire des disciplines scientifiques a négligé jusqu’alors les aspects
sociaux car elle était jusqu’alors écrite principalement par des scientifiques. Il choisit
alors de considérer les disciplines comme des institutions politiques qui organisent la
vie académique. Bien qu’il admette 'influence de critéres intellectuels au début de la
constitution d’une nouvelle discipline, ce sont les facteurs économiques et politiques
qu’il voit comme déterminants**.

Dans le travail de Bruno Strasser®

sur « I’émergence de la biologie moléculaire & Ge-
néve », le développement d’une nouvelle discipline est décrite en plusieurs étapes :
d’abord, l'apparition au sein d’un petit groupe de collaborateurs de nouvelles pra-
tiques de recherches, de nouveaux discours, de nouveaux facteurs explicatifs et de
nouveaux instruments; ensuite l'institutionnalisation de ces innovations & travers la
création d’instituts de recherche ou de journaux. Ces développements sont dans un pre-
mier temps ancrés dans la culture locale avant que ces nouvelles idées et ces nouvelles
pratiques ne circulent dans des réseaux de communications plus larges. Dans le cas
étudié, Strasser met l'accent sur le role particulier joué par un instrument scientifique
(ici le microscope électronique) dans la constitution de la discipline : le microscope,
montre Strasser, participe a la construction de nouvelles sociabilités, en favorisant par

exemple la collaboration entre disciplines déja établies*, mais il constitue aussi un

facteur intellectuel de développement de la discipline : ¢’est « un objet » de recherche,

41Voir par exemple FoucauLT 2003.

42Pour des pistes bibliographiques & ce sujet voir WALTER 1996 p.1-3.
43WOODWARD 1991 p.S.

44Voir I'introduction de KOHLER 1982.

45STRASSER 2002.

46STRASSER 2002 p.26.
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47 >

un « outil » appliqué a des problémes trés variés®” », et des expériences sont pensées

spécifiquement pour exploiter les nouvelles possibilités qu’il offre.

Regardons maintenant comment la question de discipline a été abordée dans le cas

des mathématiques.

Roland Wagner-Débler et Jan Berg ont essayé de mesurer le dynamisme de diffé-
rents domaines des mathématiques au XIX¢ siécle en utilisant des méthodes quantita-
tives. Dans un article publié en 1996, ils calculent pour chaque année le pourcentage
des articles publiés dans les journaux mathématiques dans un domaine par rapport
a I'ensemble des articles®®. Les publications sont repérées dans l'index mathématique
du Catalogue of Scientific Papers of the Royal Society of London qui fournit aussi une
classification. Ce sont les entrées de cette classification qui sont reprises pour délimiter
les domaines, sans que soient analysés ce que ces domaines recouvrent ou les procédés
qui affectent tel ou tel travail & une entrée de la classification. Cette situation est la plus
fréquente : le point de vue des acteurs est sollicité pour repérer les disciplines mathé-
matiques — l'utilisation des classifications des journaux, qui sont élaborées en général
par des scientifiques eux-mémes, entre dans ce cadre?®. Les caractérisations que nous
avons données de la géométrie des nombres montrent les limites de ce type d’approches,
les mathématiciens n’ayant pas tous la méme conception de leur spécialité.

Charles Fisher a précisément opposé ce qu’est une discipline pour les mathématiciens
et la nécessité de prendre en compte des facteurs sociaux pour en comprendre la consti-
tution et le développement. Fisher considére que si pour les mathématiciens une théorie
est un ensemble d’idées liées & des objets mathématiques, pour lui c¢’est une catégorie
sociale qui change avec le point de vue des mathématiciens. Pour le montrer, il re-
garde comment différents groupes de mathématiciens caractérisent une méme théorie,
a partir de I'exemple particulier de la théorie des invariants®®. Remarquons toutefois
que peu de facteurs sociaux sont réellement pris en compte. Des commentaires diffé-
rents sur la théorie des invariants sont relevés dans des contextes variés, mais il s’agit
essentiellement de changements de contextes mathématiques. Des indicateurs comme
les postes universitaires ou les comptes rendus dans des journaux spécialisés sont men-
tionnés mais ils ne servent qu’a décrire des évolutions quantitatives de la théorie des
invariants : 'impact de ces facteurs sociaux sur la théorie méme n’est pas discuté.

Une approche trés différente a été proposé par Ralf Haubrich : suivant Guntau et Laitko,

il propose une liste de critéres purement internalistes pour caractériser une discipline

47STRASSER 2002 p.19.

BWAGNER-DOBLER et BERG 1996.

49Voir aussi FISHER 1966-1967; CoHN 1986; CRANE 1972 p.14.
SOFISHER 1966-1967.
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mathématique® . Ces critéres sont par exemple I'identification d’un objet d’étude, d’un
noyau de concepts et de résultats clés, la systématisation de la discipline (reflétée par
son apparition dans les tables des matiéres des livres, les classifications de journaux),
son systéme de preuves (c’est-a-dire les moyens selon lesquels sont validées les solutions
des problémes posés), les valeurs mises en avant par les mathématiciens pour évaluer
les questions et les résultats obtenus.

Ce que nous avons vu au paragraphe précédent témoigne de la difficulté a mettre en
oeuvre ces critéres dans le cas de la géométrie des nombres : en particulier, différents
objets d’étude ont pu étre mis en avant et les résultats ne sont pas toujours interprétés
de la méme maniére.

Mais le principal probléme semble étre de réussir & articuler des caractéristiques in-
ternes du type précédent et des facteurs sociaux qui participent aussi a I’établissement
d’une discipline. Comme le suggére ’exemple du microscope, ces deux types de facteurs
ne sont pas nécessairement distincts mais peuvent étre au contraire fortement imbri-
qués 'un dans 'autre. Par exemple, les échanges entre scientifiques au cours desquels
circulent idées, méthodes, pratiques de recherche ou encore les rapports de forces dans
la vie académique (reflétés en particulier dans les recrutements) modélent la représen-
tation de la discipline, et ils peuvent aussi favoriser certains points de vue, définir les
problémes jugés les plus importants etc. Réciproquement, des proximités intellectuelles
entre des scientifiques peuvent contribuer & la formation de nouveaux réseaux de com-
munication ou a la création de nouvelles communautés. Mais cet exemple met aussi en
évidence les difficultés propres au cas des mathématiques : les facteurs proprement in-
tellectuels sont plus délicats a articuler a des facteurs sociaux, en particulier parce que
des énoncés apparemment identiques peuvent renvoyer a des réalités différentes selon
les époques. Foucault insiste déja sur la nécessité de ne pas prendre de tels énoncés

b33

comme des évidences mais comme des unités a problématiser®?. Est-ce qu™utiliser la
géométrie en arithmétique” recouvre la méme chose dans la géométrie des nombres de
Minkowski et de Mordell 7 Nous devons trouver le moyen d’analyser de tels termes (et
leur concaténation) dans la pratique de chacun, afin de comprendre comment ils sont

utilisés pour définir la discipline qu'’ils cherchent a instituer.

Une autre dimension a été souvent attachée a la notion de discipline : c’est celle de
I’enseignement et de la pédagogie. En particulier, certains travaux sur des disciplines
théoriques ont intégré le social en étudiant comment la transmission du savoir influence
le développement d’un domaine. L’importance de plus en plus grande accordée a l'en-

seignement dans la définition d’une discipline est soulignée dans les commentaires de

51Exposé a Oberwolfach en 2001 cité dans GOLDSTEIN et SCHAPPACHER 2007a p.54 et 57.
52FOUCAULT 1969 par exemple p.37-38.
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Steve Fuller sur cette notion®. Pour lui ancien sens de discipline, « a set of practices
that are cultivated and transmitted by a group of specially trained people », désigne
maintenant davantage la notion d’« école » des historiens alors que « discipline » se
rattacherait davantage a 1’ensemble des moyens de transmission du savoir.

Le role de 'enseignement dans la formation du « contour intellectuel » de la physique
théorique en Allemagne a été étudié par Kathryn Olesko a travers 'exemple du sémi-
naire de physique organisé¢ & Konigsberg par Franz Ernst Neumann®. Dans son livre,
le sens donné & « discipline » est proche de celui proposé par Foucault®. Chez Foucault
I'idée de « discipline » est associée a la notion de pouvoir et désigne un ensemble de
procédés agissant sur le corps afin de le rendre docile, exercé et d’accroitre son effi-
cacité®. Dans le cadre de son séminaire, Neumann entraine les étudiants & suivre des
régles, des protocoles et des techniques de recherche® et cet apprentissage contribue a
« I'émergence de la physique théorique en Allemagne®®. »

Andrew Warwick note lui aussi que les phénomeénes sociaux ont surtout été pris en
compte par les historiens pour étudier les sciences expérimentales alors qu’ils ont été
négligés pour les disciplines plus théoriques. Il avance deux raisons pour expliquer ce
déséquilibre de traitement : la premiére raison est que la circulation des concepts des
sciences théoriques n’est pas vue comme problématique et donc que les facteurs locaux
sont abandonnés. La seconde raison vient de 'opposition entre théorie et pratique et de
leurs images respectives, la théorie étant considérée comme une activité contemplative
et individuelle®. Pour Warwick, les arguments en faveur d'une différence de traitement
méthodologique entre disciplines théoriques et disciplines expérimentales ne tiennent
pas. Par exemple, il n’y a pas de raison pour que les concepts circulent mieux que les
pratiques, leur réception peut étre influencée par des particularismes locaux. Pour étu-
dier le développement de la physique mathématique & Cambridge, Warwick insiste sur
ces aspects locaux en s’intéressant aux caractéristiques de I'enseignement a Cambridge
et a son évolution. Il examine ensuite comment les compétences spécifiques issues de

cet enseignement ont un impact sur la maniére dont une théorie est recue®.

Avant de conclure ce bref tour d’horizon, il faut souligner que la question des dis-
ciplines scientifiques a pu étre abordée & travers des catégories alternatives d’analyse.

Thomas Kuhn, par exemple, a préféré s’intéresser aux communautés scientifiques plus

S3FULLER 2000.

54OLESKO 1991.

550lesko reprend le commentaire de Jan Goldstein sur Foucault et la notion de discipline, voir
GOLDSTEIN 1984.

56FoucAULT 1975 p.161.

57TOLESKO 1991 p.15.

58 OLESKO 1991 p.6.

SYWARWICK 2003 p.11.

60C’est ’exemple de la théorie de la relativité restreinte qui est développé dans son livre.
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qu’aux disciplines® . Pour Kuhn, « une communauté scientifique se compose de ceux qui
pratiquent une certaine spécialité scientifique®? ». Si les facteurs sociaux semblent alors
privilégiés, il faut se souvenir que certains éléments internes — la notion de paradigme
par exemple — interviennent de maniére importante pour délimiter et caractériser ces
communautés.

En sociologie, la notion de « champ » se substitue parfois a « discipline » dans les
analyses. Les disciplines sont alors vues comme des champs locaux appartenant au
champ scientifique. Le développement de ces disciplines (ou sous-champs) est en partie
la conséquence de la position (hiérarchisée) qu’elles occupent dans le champ scienti-
fique®. Cette tradition considére que la prise en compte de I'histoire intellectuelle et
de T'histoire sociale d’une discipline est fondamentale pour en comprendre les dévelop-
pements®. La présence dans les travaux des scientifiques de cette histoire est d’ailleurs
un témoignage important de l'existence méme du champ

« un autre indice du fonctionnement en tant que champ est la trace de

65

I’histoire du champ dans 'oeuvre® ».

Les éléments historiques que les mathématiciens incorporent & leur travail sur la géo-
métrie des nombres peuvent étre interprétés dans ce cadre.

Ces approches ont en commun d’identifier différents niveaux d’organisation des dis-
ciplines que nous retrouvons dans le vocabulaire utilisé pour les nommer (discipline,
spécialité, théorie...). Les niveaux les plus grossiers peuvent peut-étre étre identifiés
en étudiant les départements universitaires, les laboratoires, les sociétés de spécialistes,

66 . 11 est plus difficile de repérer les niveaux d’organisation in-

les revues spécialisées
ferieursS”. Kuhn a proposé quelques critéres propres pour repérer et délimiter ces plus
petites communautés : la participation aux mémes conférences spécialisées, la circula-
tion de manuscrits ou d’articles non publiés et 'existence de réseaux de communication

officiels et officieux spécifiques (par exemple les correspondances®®).

S1KUHN 1983 p.242.

62KunN 1983 p.241.

63Pour un exemple de I'utilisation de la notion de champ dans I’étude de la formation d’une disci-
pline voir CAMBROSIO et KEATING 1983 qui s’intéressent a ’émergence de la chronobiologie.

64BourbpIEU 2001 p.136.

65BOURDIEU 1976 p.117.

66 BoURDIEU 2001 p.128, KUHN 1983 p.242.

67Nous rencontrons ce type de probléme méthodologique avec la géométrie des nombres, spécialité
de la théorie des nombres qui est elle-méme une discipline des mathématiques.

68 KUHN 1983 p.242.
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0.3 La variation d’échelles comme principe d’analyse

Le niveau auquel se passent les phénoménes étudiés conduit ainsi & privilégier des
outils et des critéres d’analyse spécifiques. La prise en compte de ces échelles est un
principe méthodologique plus large. En particulier, dans le cas de la géométrie des
nombres, il doit permettre de montrer que s’il s’agit d’une discipline, son image et son

contenu évolue entre le travail de Minkowski et celui de Mordell.

La variation d’échelles a déja été théorisée en histoire. Il s’agit de faire varier I’échelle
d’observation des phénomeénes au cours de ’analyse. Cette approche devait au départ
permettre de redonner de I'importance a ’expérience des individus et rendre compte
de la singularité de ces expériences par rapport aux processus sociaux « massifs®® ».
Le changement d’échelles n’a pas pour objectif d’observer les mémes choses a des ni-
veaux différents mais de faire apparaitre des phénoménes nouveaux. Cette démarche
« pose en principe que le choix d'une échelle particuliére d’observation produit des ef-

70 5. Une échelle plus petite permet de découvrir des phénoménes

fets de connaissance
que le choix de catégories d’analyse trop vastes rend invisibles™.

Deux courants principaux se distinguent parmi les historiens intéressés par cette ap-
proche méthodologique™. Certains accordent un privilége aux échelles microscopiques
par rapport aux macroscopiques. Pour eux les causes efficientes de ce qui est constaté
a tous les niveaux sont a I'oeuvre aux plus petites échelles. L’autre position principale
soutient au contraire que toutes les échelles sont équivalentes et que ce qui est fructueux
d’un point de vue heuristique, c’est la confrontation de tous les niveaux d’analyse™.
C’est ce second point de vue qui a été adopté ici pour aborder ’étude de la géométrie

des nombres.

Nous avons noté dans les commentaires sur la géométrie des nombres 'utilisation
d’un vocabulaire presque constant. Le principe de variation d’échelles parait une ap-
proche possible pour rendre compte des réalités différentes qui se cachent derriére ce

vocabulaire employé par les mathématiciens

« il ne suffit pas que 'historien reprenne a son compte le langage des acteurs
qu’il étudie, mais qu’il en fasse l'indice d’un travail a la fois plus ample
et plus profond : celui de la construction d’identités sociales plurielles et

plastiques qui s’opére & travers un réseau serré de relations (de concurrence,

69Présentation de REVEL 1996a p.12.

"OREVEL 1996b p.19.

"'LEPETIT 1996, p.92; REVEL 1996b p.20.

"2Présentation de REVEL 1996a p.13 ; LEPETIT 1996 p.92.

73Notons quand méme que la micro-histoire est & I'origine une réaction a 'approche macro-sociale,

REVEL 1996a p.10.
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de solidarité, d’alliance, etc.)™. »

Jacques Revel commente en guise d’exemple le travail de Simona Cerutti sur « les

métiers et les corporations turinois aux XVII¢ et XVIII® siécles » :

« Aucune historiographique n’est sans doute plus spontanément organiciste
que celle des métiers et des associations de métiers : il s’agirait 1a de com-
munautés évidentes, fonctionnelles, et qui sont supposées si puissamment
intégratrices qu’elles en deviendraient quasi naturelles dans la société d’An-
cien Régime. Le pari méthodologique de S. Cerutti consiste a révoquer ces
certitudes et & montrer, & partir du jeu des stratégies individuelles et fa-
miliales et de leurs interactions, que les identités professionnelles et leurs
traductions institutionnelles, loin d’étre acquises, font ’'objet d’un constant

75

travail d’élaboration et de redéfinition’. »

Cette situation semble transposable a I’histoire des mathématiques : comme la ter-
minologie banale des métiers est utilisée dans la société d’Ancien régime pour élabo-
rer, plus que simplement décrire, des identités professionnelles d’ailleurs mouvantes,
nous pouvons penser que les catégories spontanément données par les mathématiciens
comme « analyse », « arithmétique » ou « géométrie » sont elles aussi redéfinies par
leurs usages variés. Devant la stabilité des commentaires sur 'intervention de la géo-
métrie en arithmétique dans le cadre de la géométrie des nombres, le passage & une
échelle plus petite offre 'espoir de saisir et de comprendre des différences. Examiner
comment ces domaines sont mobilisés dans le travail des mathématiciens (dans leurs
cours, les séminaires, les articles publiés, les notes non publiées...) apporte un autre
éclairage sur les commentaires. Cela montre des redéfinitions et des reconfigurations de

ces disciplines au sein de la géométrie des nombres.

Qu’est-ce que ce principe méthodologique de variation d’échelles peut apporter dans
I’analyse de I’histoire de la géométrie des nombres telle qu’elle est racontée par les ac-
teurs? Cette histoire produit une certaine image de la géométrie des nombres. Elle
décrit une discontinuité dans l'intérét qui est porté au sujet et fait ressortir des mo-
ments importants pour le développement du domaine : les travaux de Minkowski, de
Blichfeldt et de Mordell. Parallélement, elle témoigne aussi d’une certaine constance
dans les méthodes employées (la géométrie en arithmétique, le théoréme de Minkowski),
une constance dans le vocabulaire (géométrie, arithmétique, analyse, volume, convexe,
formes, réseaux, continuité, discret...), une constance des objets étudiés (réseaux,
formes, fonctions distances). En effet, méme si nous avons noté des différences selon

les commentaires, elles ne s’expliquent pas par une évolution dans le temps qui irait

"AREVEL 1996b p.23-24.
SREVEL 1996b p.24.
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vers la disparition d’'un objet ou d’un point de vue : nous retrouvons par exemple des
formes et des réseaux chez Minkowski et chez Mordell.

Or, comme nous le verrons plus en détail dans les chapitres suivants, se placer a diffé-
rentes échelles d’observation permet de rendre compte des continuités et discontinuités
suggérées par les remarques précédentes, et d’en comprendre la formation.

Un relevé quantitatif dans le Jahrbuch tiber die Fortschritte der Mathematik des travaux
publiés sur la géométrie des nombres témoigne d’une activité ininterrompue dans le do-
maine ainsi qu’une présence quasi-permanente dans les classifications a partir de 1916.
Ceci remet donc en cause les discontinuités des récits usuels. Par contre, en croisant
ce relevé avec d’autres sources (les livres sur la géométrie des nombres, " Enzyklopddie
der mathematischen Wissenschaften), nous retrouvons les grandes étapes mentionnées
précédemment. La différence s’explique par la nature des sources. Une étude quanti-
tative dans le Jahrbuch prend en compte le point de vue des acteurs et la dimension
intellectuelle du domaine d’une maniére globale, avec des effets de moyenne, contraire-
ment a des indicateurs comme les livres spécialisés dans lesquels ’auteur accorde une
importance plus ou moins grande a certains résultats ou certaines méthodes.

De méme, pour mieux percevoir la signification opératoire des concepts, derriére le vo-
cabulaire commun utilisé, nous pouvons nous placer a I’échelle des mathématiques qui
sont produites : quelles sont les méthodes employées ? Quels résultats sont démontrés
et comment sont-ils énoncés? Par exemple, si la géométrie des nombres se caractérise
par l'application de la géométrie dans un contexte arithmétique, de quelle géométrie
est-il question ? Comment intervient-elle 7 Qu’est-ce qu’elle apporte? Quelles sont les
motivations a faire appel a la géométrie ? Dans quel contexte est-elle mobilisée et pour-
quoi ?

Cette échelle d’observation, celle de la pratique individuelle de I'activité mathématique,
est différente de celle des commentaires, des discours des mathématiciens ; elle est aussi
différente de celles des pratiques collectives. Méme si des changements apparaissent a
toutes ces échelles, ils ne s’ajustent pas nécessairement. Prendre en compte tous ces

niveaux de pratiques peut permettre de révéler différents sens pour un méme énoncé.

« Les énoncés, d’'une maniére générale, ne peuvent étre enfermés dans les
seules positions ou trajectoires des locuteurs. Il est patent qu’ils ouvrent
aussi, en entrant en communication les uns avec les autres, des espaces
sémantiques et donc sociaux dont la structure et la tonalité ne constituent
pas une copie conforme de ceux qui les ont précédés. Certes, la continuité
de la réalité sociale est assurée par des actes de langage, mais c’est en
ce que ceux-ci ne sont jamais certains, en ce qu'’ils recelent la capacité
de s’auto-agencer de plusieurs facons différentes et d’interpeller de maniére

partiellement imprévisible leurs semblables qu’ils détiennent des possibilités
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76

de développement et de transformation™. »

Les énoncés ne prennent leur signification que lorsqu’ils sont replacés dans leurs « es-
paces sémantiques et sociaux » qui sont toujours singuliers. La continuité du langage
cache des relations différentes entre les énoncés qui en modifient le sens. Un des objec-
tifs de 1'utilisation des échelles microscopiques est précisément de « reconstruire, autour

de quelques personnages précis, ce que fut leur espace social”™ ».

Les approches que nous avons employées dans ce qui suit pour observer la géométrie
des nombres se mettent en ocuvre a des niveaux d’analyse variés : relevé des publica-
tions recensées par le Jahrbuch, relevé des citations dans les articles de mathémati-
ciens, relevé des définitions données par des mathématiciens, étude précise du travail
de certains mathématiciens engagés dans la recherche sur le sujet. Ces démarches se
complétent en fournissant chacune des informations diverses. Par exemple, le repérage
par le Jahrbuch donne une idée de qui sont les scientifiques s’intéressant au domaine,
de la quantité de publications produites sur le sujet ainsi que de 1’évolution dans le
temps du nombre de ces publications. Les réseaux de citations permettent de mettre en
évidence des interactions entre scientifiques (relations effectives ou a travers la lecture
d’articles), de repérer des textes considérés comme plus importants que les autres, de
faire ressortir plusieurs traditions de recherche pour un méme théme. L’étude des ma-
thématiques permet de préciser les définitions ou les commentaires des mathématiciens
— par exemple d’autres types de géométrisation que celle proposée dans le cadre de la
géométrie des nombres sont utilisés en théorie des nombres, comme 'interprétation des
équations diophantiennes en termes de points rationnels sur des courbes; les rapports
établis entre géométrie et arithmétique dans ces autres traditions peuvent apparaitre

trés différents, malgré 1'utilisation d’un descriptif superficiel commun®.

Un dernier intérét pour nous du principe de variation d’échelles est 1ié aux sources
a notre disposition pour la géométrie des nombres. Les mathématiciens dont nous al-
lons parler dans la suite ont produit énormément de textes mathématiques et peu de
métacommentaires. Nous sommes donc dans certains cas devant un unique type de
sources : des mathématiques tres techniques. Changer ’échelle d’analyse permet de
faire parler un seul document & différents niveaux. Dans un article de mathématiques,

la considération des résultats, des démonstrations, des méthodes utilisées donne des

"SBENSA 1996 p.47.

"TBENSA 1996 p.49.

"8(Ces autres traditions modifient parfois I'interprétation des travaux de Minkowski. Juste aprés son
commentaire sur la géométrie des nombres (voir page 15) Neukirch ajoute : « It seems appropriate,
however, to follow the current trend and call it [the Geometry of Numbers| “Minkowski Theory”
instead, because in the meantime a geometric approach to number theory has been developed which
is quite different in nature and much more comprehensive. » NEUKIRCH 1999 p.28.
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informations de nature différente que le repérage des mathématiciens, les livres ou les

autres travaux qui y sont cités.

0.4 Le plan de la thése

La présence d'une histoire du domaine dans le travail des scientifiques est un in-
dice de l'existence de la discipline. Or dans cette histoire Minkowski est toujours vu
comme a l'origine de la géométrie des nombres : la premiére partie de la thése lui est
donc consacrée. Les contributions de Minkowski a la géométrie des nombres y sont
étudiées avec 'objectif de comprendre ainsi ce qui est considéré comme l'acte fonda-
teur de la géométrie des nombres : 'introduction d'un point de vue géométrique en
théorie des nombres. Nous verrons quelle géométrie il utilise et dans quels contextes.
Comment la géométrie des nombres s’organise autour d’un résultat et d’'une méthode
fondamentale appliquée a des situations variées. Minkowski ayant écrit assez peu de
textes méthodologiques et de commentaires directs sur ces questions, c’est le passage
a une échelle d’observation plus fine de son travail mathématique lui-méme qui nous
permettra d’obtenir des indications sur sa conception de la géométrie des nombres.
Nous reviendrons d’abord sur les travaux antérieurs a Minkowski considérés comme
ses précurseurs. Beaucoup de ces travaux ont effectivement été lus par Minkowski et
ce sera pour nous l'occasion de voir que la géométrie avait déja été introduite dans
la théorie des formes quadratiques par d’autres mathématiciens comme Carl Friedrich
Gauss. L’originalité de Minkowski est donc davantage de systématiser certaines idées,
de leur donner une place et une signification différentes dans la théorie. Le travail de
Minkowski sur la géométrie des nombres est ensuite décrit en trois étapes. D’abord,
avant 1896, Minkowski élabore petit & petit ses idées sur la géométrie des nombres,
en particulier son théoréme sur les points d’un réseau dans des parties convexes sy-
métriques par rapport a un point. Ces premiéres recherches se concrétisent en 1896
par la publication de son livre Geometrie der Zahlen dans lequel certains résultats qui
avaient été énoncés auparavant sont démontrés pour la premiére fois. Dans les travaux
qui suivent Minkowski systématise le recours a la géométrie, il la fait intervenir dans
divers contextes comme par exemple la théorie de la réduction des formes quadra-
tiques. Ces derniéres recherches permettent de préciser la conception de la géométrie
de Minkowski. Finalement dans la derniére partie consacrée a Minkowski, nous nous
demanderons si avec la géométrie des nombres Minkowski crée une nouvelle discipline
des mathématiques (et quelle sorte de discipline). Pour répondre a cette question nous
revenons sur la nature de la géométrie a laquelle Minkowski fait appel dans son travail

qui apparait comme caractéristique de son travail sur la géométrie des nombres.
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Nous avons dit que la fagon dont la géométrie des nombres se développe aprés Min-
kowski est interprétée de maniére variée par les mathématiciens. Un probléme est alors
de repérer les travaux effectués sur ce sujet. Le chapitre suivant consiste a déterminer
qui s’'intéresse a la géométrie des nombres aprés Minkowski. Nous utilisons pour cela
plusieurs sources : le Jahrbuch tiber die Fortschritte der Mathematik, les livres consacrés
a la géométrie des nombres et I’ Enzyklopddie der Mathematischen Wissenschaften. Ces
trois sources sont exploitées en employant des méthodes quantitatives. Le croisement
des résultats obtenus met en évidence les contributions de Hans Frederik Blichfeldt et

Louis Mordell auxquelles nous nous intéressons particuliérement par la suite.

Blichfeldt est donc le sujet du chapitre suivant. Peu de documents sont disponibles
a propos de lui et, afin d’avoir quand méme une idée de ses sources, nous commengons
par un relevé des citations dans ses articles sur la géométrie des nombres. Nous étudions
ensuite de maniére détaillée certains de ces articles. Nous constaterons que Blichfeldt
a une vision différente de la géométrie des nombres par rapport & Minkowski, et qu’il

semble par exemple accorder une place moins importante a la géométrie.

Le travail de Mordell sur la géométrie des nombres a été abordé en deux temps. Un
premier chapitre est consacré & un examen détaillé de ses publications. Cette premiére
approche a montré que sa collaboration avec Harold Davenport a joué un role trés
important dans 1’élaboration de résultats qu’il juge fondamentaux pour la géométrie
des nombres. Nous avons donc été amené a considérer aussi le travail de Davenport.
Mordell est le premier de ces deux mathématiciens a s’intéresser a la géométrie des
nombres, nous regardons donc d’abord ces premiers travaux sur le sujet au cours des-
quels il alterne D'utilisation de méthodes analytiques et arithmétiques. A la fin des
années 1930, Davenport commence son travail sur la géométrie des nombres; il colla-
bore alors avec Mordell, d’abord a propos du minimum de la valeur absolue du produit
de trois formes linéaires ternaires, puis du minimum des formes cubiques binaires. La
géométrie semble alors occuper une place plus importante dans le travail de Mordell.
De son coté Davenport alterne présentation arithmétique et présentation géométrique
dans ses publications, mais nous verrons que dans des sources non publiées, comme des

notes de cours, c’est 'approche géométrique qui est privilégiée.

Le second chapitre consacré a Mordell et Davenport se focalise cette fois sur le
fonctionnement du groupe de chercheurs spécialisés en théorie des nombres qui semble
s’étre constitué autour de Mordell. Nous avons trouvé a plusieurs reprises des allusions
a une école de Manchester ou une école de Cambridge pour lesquelles Mordell serait

une figure emblématique. Ce groupe est étudié a travers les échanges qui se passent au
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sein de cette communauté, par exemple lors des cours ou des séminaires, mais aussi a
travers les échanges internationaux (voyages de Mordell a I’étranger, accueil de cher-
cheurs, correspondance de Mordell). Nous terminons cette partie par quelques aspects
du recrutement effectué par Mordell & Manchester puis Cambridge. Nous verrons a ce
sujet le role actif joué par Mordell dans 'accueil de mathématiciens réfugiés a partir
de 1933.

Cette partie permet de mettre en lumiére comment se créée dans les années 30 et 40 la
discipline de la géométrie des nombres - mais, et c¢’est un des résultats principaux de
cette étude, les critéres et la conception méme d’une discipline sont alors trés différents

de ce qu’ils pouvaient étre pour Minkowski.

Dans une derniére partie, nous revenons a travers une étude de quelques manuels
sur les dimensions pédagogiques de la notion de discipline. Nous verrons comment, a
cette échelle, se trouvent confirmés certains des résultats obtenus précédemment, avec

des nuances importantes.
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Chapitre 1

Minkowski comme point origine de la
géométrie des nombres : discipline et

Intuition
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Les commentaires sur la géométrie des nombres que nous avons rencontrés s’ac-

cordent tous pour fixer l'origine de cette théorie dans le travail de Hermann Minkowski

« The theme of this book is the geometry of numbers, a branch of the theory

of numbers that was discovered by Hermann Minkowski! ».

Les travaux mathématiques de Minkowski paraissent donc étre une entrée légitime dans
I’étude de la géométrie des nombres.

Nous commencerons par donner quelques éléments biographiques sur Minkowski ainsi
qu'un apercu général de sa carriére scientifique. Dans un deuxiéme temps, nous pré-
senterons avec plus de détails la partie de ses travaux qui concerne la géométrie des
nombres. Enfin, nous reviendrons sur cette idée, présente dans la citation précédente,
de la création par Minkowski d’une « nouvelle branche » de la théorie des nombres :
qu’est-ce qui fait la nouveauté de cette discipline? Qu’est-ce qui pour Minkowski lui

donne une identité disciplinaire ?

'OLDS ET AL. 2000 p.3. 23



CHAPITRE 1 1.1

1.1 Quelques éléments biographiques sur Minkowski

Les sources utilisées pour la rédaction de ce court paragraphe biographique sur
Minkowski ont des statuts assez différents : témoignages d’amis ou de membres de la
famille, reproduction de notices biographiques rédigées par Minkowski lui-méme, cor-
respondance ou travaux d’historiens sur Minkowski.

En 1973, une des filles de Minkowski, Lily Riidenberg et Hans Zassenhaus éditent sa
correspondance avec son ami David Hilbert?. Trois courts articles introduisent cette
correspondance, en particulier un de Zassenhaus qui donne des informations sur 1’épi-
sode de la rédaction du Zahlbericht (nous y reviendrons) et un de Riidenberg. Dans
cette préface, elle relate des souvenirs familiaux comme ceux de la soeur de Minkowski,
Fanny. Elle reproduit aussi deux curriculum vitae écrit par son pére. Le premier fut
rédigé pour son recrutement a l'université de Konigsberg et le second a son arrivée
comme professeur a Gottingen®.

Dans un discours prononcé aprés la mort de Minkowski en 1909, Hilbert? livre aussi des
souvenirs sur son ami et il fait une description de ses travaux. Certaines des informa-
tions biographiques données par Hilbert & cette occasion sont reprises dans le livre de
Hans Opolka et Winfried Scharlau®, livre dans lequel sont présentés certains résultats
mathématiques de Minkowski.

Du fait de la grande amitié qui liait Minkowski et Hilbert, nous trouvons beaucoup d’in-
formations sur la vie de Minkowski dans la biographie de Hilbert écrite par Constance
Reid®. Comme cela est expliqué dans la préface, cette biographie a été rédigée pour
sa plus grande part & partir d’entretiens avec des personnes ayant été en contact avec
Hilbert (et donc parfois Minkowski) comme par exemple des anciens éléves, des col-
legues, des membres de sa famille. .. En ce qui concerne Minkowski, Reid était aussi en
relation avec ses filles et a eu ainsi acceés a sa correspondance avec Hilbert avant qu’elle
ne soit publiée.

Un article est consacré a Minkowski dans le Dictionary of Scientific Biography”. Ecrit
par Jean Dieudonné, nous y trouvons quelques éléments sur ses travaux mais assez peu
d’informations biographiques.

Enfin, des articles de recherche en histoire des sciences ont été consacrés & Minkowski.
La majorité d’entre eux traitent des travaux de Minkowski en physique et plus parti-
culiérement de sa contribution a la théorie de la relativité. Nous avons consultés a ce

sujet des articles de Leo Corry, Peter Galison, Lewis Pyenson et Scott Walter. Dans sa

2RUDENBERG et ZASSENHAUS 1973. Nous avons les lettres de Minkowski adressées a Hilbert entre
1885 et 1908.

3RUDENBERG et ZASSENHAUS 1973 p.9-10.

4AHILBERT 1911 p.V-XXXI.

50POLKA et SCHARLAU 1985.

SREID 1970.

"DIEUDONNE 1974.
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these, ce dernier fait un bilan historiographique de ce sujet et indique des références
supplémentaires®.

Les études sur le travail de Minkowski en mathématiques sont beaucoup moins nom-
breuses. L’article de Walter Strobl publié en 1985 décrit surtout les années de formation
de Minkowski®. Ses années au lycée puis & l'université de Konigsberg, les mathématiques
qu’il a étudiées pendant cette période et le Grand Prix de I’Académie des sciences sont
les principaux thémes abordés. Une lettre de Heinrich Weber & Richard Dedekind dans
laquelle Weber livre ses impressions sur le jeune Minkowski est aussi reproduite. Les
principaux travaux concernant les contributions de Minkowski a ’arithmétique sont
ceux de Joachim Schwermer publiés en 1991 et 2007. Schwermer revient en particu-
lier sur I'habilitation de Minkowski a Bonn'® et sur son travail concernant les formes
quadratiques et leur réduction'!. Il souléve déja le probléme posé par 'intuition géo-

métrique dans ces recherches.

1.1.1 Les années de formation 1864-1885

Dans ses curriculum vitae, Hermann Minkowski indique qu’il est né le 22 juin 1864
a Alexotas'? en Russie et que ses parents s’appellent Lewin Minkowski et Rahel Taub-
mann'3, ils étaient allemands'. D’aprés sa soeur, il est le quatriéme d'une famille de
cinq enfants. Il avait trois fréres Maxim 1’ainé de la famille, Oscar (né en 1858), Toby
plus jeune que lui et une soeur Fanny née en 1863 15
En 1872, alors que Hermann Minkowski & 8 ans, la famille Minkowski, fuyant les per-
sécutions contre les juifs, émigre en Prusse et s’installe & Konigsberg!®. 11 fréquente
a partir d’octobre 1872 le Altstddtische Gymnasium de Konigsberg. Eléve trés doué,
il termine trés vite ses études secondaires et obtient son Abitur en mars 1880 alors
qu’il n’a pas encore 16 ans. Pendant cette période, il suit le conseil d’'un de ses pro-
fesseurs du Gymnasium Louis Hiibner et contacte Heinrich Weber alors professeur de
mathématiques & 'université de Konigsberg!”. Weber livre ses impressions sur le jeune
Minkowski dans une lettre a Richard Dedekind :

SWALTER 1996.

9STROBL 1985.

10ScHWERMER 1991.

HSCHWERMER 2007.

12]] s’agit maintenant d’un quartier de la ville de Kaunas en Lituanie qui se situe & environ 100
kilométres a ’ouest de Vilnius.

13SRUDENBERG et ZASSENHAUS 1973 p.9-10.

1 DIEUDONNE 1974.

150scar, qui était médecin, est connu pour la découverte de la relation entre le pancréas et le
diabéte, voir RUDENBERG et ZASSENHAUS 1973 p.11-12.

16 Aujourd’hui Kaliningrad en Russie. Voir REID 1970 p.4.

"SCHWERMER 2007 p.485.
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« Ich will Dir bei dieser Gelegenheit von einem hier aufgetauchten ma-
thematischen u. speciell zahlentheoretischen Genie schreiben, welches viel

8 cines hiesigen Gymnasiums, der erst in

verspricht. Es ist ein Primaner!
einem Jahr zur Universitdt abgeht und sich ganz aus eigenem Antrieb in
die hohere Analysis und die Zahlentheorie eingearbeitet hat, die er nach der
ersten Auflage Deiner Dirichlet-Vorlesungen studiert hat. Jetzt hat er die

19

Disquisitiones vor”. »

Effectivement, c’est pendant ces années au Gymnasium que Minkowski découvre la
théorie des formes quadratiques qui sera le théme central de ses recherches en mathé-
matiques. Comme l'indique Weber, il étudie pour cela les Vorlesungen der Zahlentheorie
de Peter Gustav Lejeune-Dirichlet et les Disquisitiones Arithmeticae de Carl Friedrich

Gauss?.

Minkowski entre a 'université de Konigsberg en avril 1880 ; il y passe cing semestres
pendant lesquels il suit les cours de Weber, Woldemar Voigt, Johann Georg Rosenhain
et Louis Saalschiitz. Ces cours concernent par exemple la théorie des déterminants,
le calcul différentiel et intégral, la géométrie analytique et synthétique, les équations
différentielles, les courbes algébriques, le calcul des variations, la théorie des équations
algébriques, la statique et la mécanique®!. ..

A partir de hiver 1882-1883, Minkowski passe trois semestres & I'université de Berlin??
ou il suit des cours de Ernst Eduard Kummer, Leopold Kronecker, Karl Weierstrass,
Hermann Ludwig Ferdinand von Helmholtz et de Gustav Robert Kirchhoff?3. Il revient
ensuite a Konigsberg ou il obtient son doctorat le 30 juillet 1885 pour une thése intitu-
16e?* Untersuchungen diber quadratische Formen, Bestimmung der Anzahl verschiedener
Formen, welche ein gegebenes Genus enthdlt®.

C’est aussi pendant ses années d’études & Konigsberg que Minkowski rencontre Adolf

Hurwitz et surtout David Hilbert avec lesquels il restera ami jusqu’a sa mort. Hilbert

18Un Primaner est & cette époque en Allemagne un éléve de la classe la plus avancée du lycée.

19« Je veux t’écrire a cette occasion & propos d’un génie mathématique, et particuliérement arith-
métique, qui a fait son apparition ici et qui promet beaucoup. C’est un éléve de Terminale du lycée
local qui n’ira a 'université que dans un an et s’est plongé complétement de sa propre initiative dans
I’analyse supérieure et dans la théorie des nombres, qu’il a étudié d’aprés la premiére édition de tes
Cours de Dirichlet. Maintenant, il pense faire les Disquisitiones. » Cette lettre est reproduite dans
STROBL 1985 p.144-145.

20STROBL 1985 p.144.

21STROBL 1985 p.149.

22Voir SCHWERMER 2007 p.487. Les sources que nous avons consultées indiquent des dates diffé-
rentes pour le séjour de Minkowski & Berlin. Dans REID 1970 p.11, il est dit qu’il revient de Berlin
au printemps 1882. Minkowski confirme ce séjour & Berlin dans ses curriculum vitae reproduits en
introduction & sa correspondance avec Hilbert mais sans date précise.

23HILBERT 1911 p.V.

24HILBERT 1911; RUDENBERG et ZASSENHAUS 1973 p.9.

25 MINKOWSKI 1885.
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était lui aussi étudiant a Konigsberg alors qu'Hurwitz y avait été nommé professeur
associé au printemps 1884. Tous les aprés-midi a cing heures ils se retrouvaient pour
discuter de mathématiques au cours de longues promenades, tradition qui sera reprise

plus tard par Hilbert et Minkowski quand ils se retrouveront a Goéttingen?® :

« On unending walks we engrossed ourselves in the actual problems of the
mathematics of the time; exchanged our newly acquired understandings,

our thoughts and scientific plans; and formed a friendship for life?”. »

Minkowski se fait connaitre de la communauté mathématique des 1883 quand il
remporte alors qu’il n’a pas encore 19 ans le Grand Prix des sciences mathématiques
de I’Académie de Paris. L’histoire de ce prix a déja été racontée & plusieurs reprises
d’une part parce que Minkowski est encore trés jeune quand il rédige le mémoire vic-
torieux mais aussi a cause de la polémique autour de 'attribution du prix?®.

Nous avons plus particuliérement utilisé ici la conférence & propos de cette anecdote
faite par Jean-Pierre Serre & I’Académie des sciences en 1983 et dont le texte a été
publié en 1993 2.

En avril 1881, I’Académie propose comme sujet pour ce prix la Théorie de la décom-
position des nombres entiers en une somme de cing carrés®®. Cette question est dans
la continuité des travaux effectués sur la décomposition des entiers naturels en somme
de carrés. Le critére pour savoir si un nombre est la somme de deux carrés est connu

t31. En terme moderne, il s’énonce de la facon suivante : un entier

depuis Pierre Ferma
naturel n peut s’écrire n = a® + b?, avec a et b des entiers naturels, si et seulement
si dans la décomposition de n en facteurs premiers, les facteurs de la forme 4m + 3
interviennent avec un exposant pair®?.

En 1798, Adrien-Marie Legendre a démontré qu’une condition nécessaire et suffisante
pour qu'un entier n soit la somme de trois carrés d’entiers®® est qu’il ne puisse pas
s’écrire sous la forme 4%(8m + 7), ot a et m sont des entiers.

Enfin Joseph-Louis Lagrange a publié¢ pour la premiére fois en 17723* une démonstra-
tion du fait que tout nombre entier est la somme de quatre carrés d’entiers®. Ce dernier
résultat implique en particulier que tout entier est aussi la somme de cinq carrés. Le

probléme posé par I’Académie ne porte donc pas sur 'existence d’une telle décomposi-

26REID 1970 p.12-14.

2"Hilbert cité dans REID 1970 p.14.

28Voir par exemple BAYER-FLUCKIGER 2006a; DIEUDONNE 1974; SCHWERMER 1991; STROBL 1985.
29SERRE 1993.

30SERRE 1993 p.3.

31D1cKSON 1920, chapitre VI.

32HARDY et WRIGHT 1960 p.299.

33D1cKSON 1920 p.ix.

34LAGRANGE 1772.

35DICcKSON 1920 p.279.
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tion mais sur le nombre de décompositions possibles.

Cette question du nombre de décompositions en somme de carrés avait aussi été étu-
diée dans un certain nombre de cas. Pour les sommes de deux carrés et trois carrés les
résultats sont dus respectivement a Legendre en 1798 et a Gauss en 180136, Pour la
décomposition d’un entier en une somme de quatre, six ou huit carrés, Carl Jacobi a
obtenu en 1829 des formules en utilisant la théorie des fonctions elliptiques mais sa mé-
thode ne peut pas s’appliquer pour des décompositions en somme d’un nombre impair
de carrés®”. Au moment ot le sujet pour le prix est proposé, les académiciens n’ont
connaissance que des formules données sans démonstration par Ferdinand Gotthold
Max FEisenstein en 1847 pour le nombre de décompositions d’un entier en somme de

cinq carrés’®.

Minkowski, qui comme nous 'avons dit connaissait le travail de Gauss et Dirichlet?,
s’attaque au sujet proposé par I’Académie. Son travail le conduit & construire une
théorie assez générale des formes quadratiques de n variables et & coefficients entiers.
Il obtient pour ces formes des résultats plus généraux que ceux qui étaient nécessaires
pour répondre & la question posée pour le prix?°.

En fait lorsque le sujet est proposé, les académiciens semblent ignorer que le probléme
du nombre de décomposition des entiers en somme de cing carrés a déja été résolu
par un mathématicien anglais Henry John Stephen Smith qui était alors professeur a
I'université d’Oxford. Dans un article publié¢ en 18674, Smith avait indiqué comment
les formules conjecturées par Eisenstein sont des conséquences de résultats qu’il venait
de démontrer?.

Nous avons des informations sur la réaction de Smith a la publication de ce sujet pour
le Grand Prix de I’Académie dans ses Oeuvres Complétes. L’éditeur des Oeuvres et
ami de Smith, James Whitbread Lee Glaisher, rédige une introduction dans laquelle il
revient sur ce prix. Il livre ses propres souvenirs ainsi que des extraits de la correspon-
dance de Smith & ce sujet.

D’aprés Glaisher, lorsqu’en 1882 il apprend quel est le sujet proposé par I’Académie,
Smith ne sait pas trop quelle attitude il doit adopter et il lui demande conseil dans une

lettre du 17 février 1882 :

« The Paris Academy have set for their Grand Prix for this year the theory

of the decomposition of numbers into five squares, referring to a note of

36D1cksoN 1920 p.ix.

3TSERRE 1993 p.3.

S8 EISENSTEIN 1847.

39Dirichlet s’était aussi intéressé au nombre de décompositions en somme de trois carrés, voir
DicksoN 1920 p.263.

4ODIEUDONNE 1974 p.411.

HVoir SMITH 1867, dans cet article Smith traite aussi le cas du nombre de décompositions en
somme de sept carrés.

42SERRE 1993 p.3-4.
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Eisenstein, Crelle, vol. xxxv, in which he gives without demonstration the
formulae for the case in which the number to be decomposed has no square
divisor. In the Royal Society’s Proceedings, vol. xvi, pp.207, 208, I have
given the complete theorems, not only for five, but also for seven squares :
and though I have not given my demonstrations, I have (in the paper be-
ginning at p. 197) described the general theory from which these theorems
are corollaries with some fulness of detail. Ought I to do anything in the
matter 7 My first impression is that I ought to write to Hermite, and call
his attention to it. A line or two of advice would really oblige me, as I am

somewhat troubled and a little annoyed?®3 ».

Il finit effectivement par contacter Charles Hermite et ce dernier lui répond dans
une lettre datée du 26 février 1882 :

« MON CHER MONSIEUR,

Aucun des membres de la commission qui a proposé pour sujet du prix
des sciences mathématiques en 1882 la démonstration des théorémes d’Ei-
senstein sur la décomposition des nombres en cing carrés n’avait connais-
sance de vos travaux contenant depuis bien des années cette démonstration
et dont j’ai pour la premiére fois connaissance par votre lettre. L’embarras
n’est point pour vous, mais pour le rapporteur des mémoires envoyés au
concours, et si j’étais ce rapporteur je n’hésiterais pas un moment a faire
d’abord 'aveu complet de I'ignorance ot il s’est trouvé de vos publications,
et ensuite & proclamer hautement que vous aviez donné la solution de la
question proposée. Une circonstance pourrait 6ter tout embarras et rendre
sa tache facile autant qu’agréable. S’il avait en effet a rendre compte d’un
mémoire adressé par vous-méme dans lequel vous rappelleriez vos anciennes
recherches en les complétant, vous voyez que justice vous serait rendue en
méme temps que les intentions de I’Académie seraient remplies puisqu’on
lui annoncerait la solution compléte de la question proposée. Jusqu’ici je
n’ai pas eu connaissance qu’aucune piéce ait été envoyée, ce qui s’explique
par la direction du courant mathématique qui ne se porte plus maintenant
vers larithmétique. Vous étes seul en Angleterre & marcher dans la voie
ouverte par Eisenstein. M. Kronecker est seul en Allemagne; et chez nous
M. Poincaré qui a jeté en avant quelques idées heureuses sur ce qu’il ap-
pelle les invariants arithmétiques, semble maintenant ne plus songer qu’aux
fonctions Fuchsiennes et aux équations différentielles. Vous jugerez s’il vous
convient de répondre & I'appel de I’Académie a ceux qui aiment I'arithmé-

tique ; en tout cas soyez assuré que la commission aura par moi connaissance

43GLAISHER 1894 p.Ixvi.
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de vos travaux si elle a [a] se prononcer et a faire un rapport a I’Académie
sur des mémoires soumis a son examen ... Je vous renouvelle, mon cher
Monsieur, I'expression de ma plus haute estime et de mes sentiments bien

sincérement dévoués.

CH. HERMITE*. »

Smith suit finalement les recommandations d’Hermite et soumet un mémoire a
I’Académie dans lequel il détaille ses travaux antérieurs®.
Minkowski envoie lui aussi son travail, il s’agit d’'un long mémoire écrit en allemand
qu’il n’a pas eu le temps de traduire en francais comme l'exigeait le réglement du
prix. Il suit donc le conseil de son frére ainé Max et ajoute au dernier moment une
courte introduction en francais dans laquelle il demande I'indulgence des membres de
I’Académie sur ce point®.
Trois mémoires sont finalement envoyés pour concourir pour obtenir le prix : celui de
Smith, celui de Minkowski et un troisiéme dont I'auteur est Théophile Pépin?7.
Au cours de la séance de I’Académie du 2 avril 1883, le prix est finalement attribué
conjointement & Smith et & Minkowski*®, en ce qui concerne le troisiéme mémoire

Camille Jordan le rapporteur de ce travail écrit :

« ...Le mémoire N°2 montre chez son auteur des connaissances étendues et
renferme plusieurs résultats intéressants ; mais la question posée par I’Aca-

démie ne s’y trouve méme pas abordée®?. »

Smith qui décéde le 9 février 1883 ne recoit son prix qu’a titre posthume et I’attribution
conjointe du prix & Minkowski fait scandale®. La décision de I’Académie est contestée
pour différentes raisons. D’abord les mathématiciens anglais critiquent le fait que le

travail d’'un mathématicien confirmé comme Smith soit mis au méme niveau que celui

t51

d’un jeune inconnu encore étudiant®’. Ensuite contrairement a la promesse faite par

Hermite le rapport rédigé par ’Académie sur les mémoires présentés ne mentionne

t52

jamais que Smith avait déja résolu le probléme seize ans plus t6t°“. Glaisher rapporte

que la soeur de Smith écrivit alors & Hermite pour lui demander des explications et lui

44 Cette lettre est reproduite dans GLAISHER 1894 p.lxvi-lxvii.

4SSERRE 1993; GLAISHER 1894 p.lxvii.

46REID 1970 p.11. Cette introduction (reproduite dans SERRE 1993 p.9) est datée du 29 mai 1882
alors que le dernier délai pour faire parvenir son travail pour concourir pour le prix était le 1" juin
1882.

471’{dentité de I’auteur de ce troisiéme mémoire n’est connue que depuis 1989 lorsqu’a la demande
de Jean-Pierre Serre la lettre contenant son nom a été ouverte. Le réglement prévoyait en effet que les
auteurs restent anonymes a moins que leur travail ne soit primé. Voir a ce sujet les notes de Norbert
Schappacher dans SERRE 1993 p.5.

48T,es mémoires de Smith et Minkowski ont été publiés, voir SMITH 1887; MINKOWSKI 1887b.

49Cité dans GLAISHER 1894 p.Ixviii.

SOGLAISHER 1894 p.Ixvii.

51SERRE 1993 p.4.

52Ce rapport est intégralement reproduit dans GLAISHER 1894 p.lxvii-Ixix.
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rappeler sa promesse que le rapport devait faire mention de I'antériorité des travaux
de son frére. En réponse, Hermite justifie cette omission en précisant que « ce tort ne

53

consiste que dans un oubli, qui a été absolument involontaire
D’autres critiques viennent des journaux francais de I’époque. D’abord ils s’étonnent
que les académiciens ne connaissaient pas le travail de Smith publié par la Royal Society
quand ils ont choisi le sujet du prix®, mais ils s'indignent aussi du fait que les membres
de I’Académie aient pu récompenser un mémoire rédigé en allemand. Cette entorse au
réglement était d’autant moins facilement excusée que les tensions causées par la guerre
de 1870 entre la France et la Prusse étaient encore trés vives®.

Enfin, Glaisher explique que Minkowski était accusé d’avoir plagié le travail de Smith et
les similitudes entre les deux mémoires pointées par le rapport des académiciens étaient
prises comme des preuves que Minkowski connaissait I’article publié par Smith en 1867.
Ces critiques conduisirent Joseph Bertrand & s’expliquer sur cette décision au cours de
la séance du 16 avril 1883. Pour lui le prix a amené Smith & revenir sur son article de
1867 dans lequel il ne donnait finalement pas de preuve des formules d’Eisenstein mais
que de vagues indications difficiles a exploiter sans détails supplémentaires. Bertrand
défend aussi l'originalité du travail de Minkowski et note que les points communs entre
les mémoires récompensés ne sont pas étonnants vu que la question posée était assez
restreinte®®.

Les académiciens persistent dans leur décision et Minkowski finit par recevoir son prix,

c’est a cette occasion que Jordan écrit & Minkowski

« Travaillez, je vous prie, a devenir un géométre éminent®” . »

Cette affaire du Grand Prix de I’Académie ressort en Angleterre pendant la Seconde
Guerre Mondiale. Le 16 avril 1943, un journal anglais, The Engineer, publie un article
intitulé « Sixty years ago : A Mathematical Prize ». Minkowski y est accusé d’avoir
plagié le travail de Smith allant jusqu’a « copier une petite erreur ». Toujours d’aprés
cet article, I’Académie a alors retiré le prix attribué a Minkowski. Mordell réagit a
ces affirmations dans une lettre du 11 juin 1943 et il prend la défense de Minkowski.
Il indique que le prix de Minkowski n’a jamais été annulé et conteste le fait que ce
dernier se soit approprié les résultats de Smith. Pour Mordell, il ne fait aucun doute
que Minkowski ait découvert sa démonstration indépendamment du travail de Smith

et que

« It is quite obvious that the writer of the article in your columns sixty

53GLAISHER 1894 p.Ixx.
54GLAISHER 1894 p.Ixx.
55SERRE 1993 p.4.

56 GLAISHER 1894 p.lxx-Ixxi.
57Cité SERRE 1993 p.4.
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years ago did not confine himself to facts. »

Cette lettre, qui est reproduite dans le journal le 18 juin 1943, est accompagnée d’une
réponse de I'éditeur de The Engineer. Pour lui, d’une part, Mordell ne fournit aucune
preuve de qu’il avance et il est impossible de prouver que Minkowski n’ait pas eu
connaissance des travaux publiés de Smith, d’autre part, il renvoie a I’ Encyclopaedia
Brittanica et au Dictionary of National Biography pour soutenir leur version de 1'his-
toire. Mordell répond & nouveau en donnant davantage de détails issus des Comptes
rendus de I’Académie des sciences, des oeuvres complétes de Smith et de Minkowski®®.
Il est particuliérement intéressant que Mordell, dont nous verrons l'importance dans
le développement de la géométrie des nombres au XX€ siécle, se trouve ici défendre
I'originalité de Minkowski, et ce faisant contribue a I’établissement d’une mémoire ma-
thématique collective. Cet indice renvoie a la question importante du role de I’histoire

dans la constitution d’une discipline.

1.1.2 La carriére scientifique de Minkowski

Aprés son doctorat, entre 1885 et 1887, Minkowski entreprend quelques travaux de

% mais il regrette que

recherche sur les formes quadratiques et les substitutions linéaires
son service dans I’armée prussienne 'empéche de se consacrer davantage a son travail.
Il le déplore par exemple dans une lettre du 26 avril 1886 adressée a Hilbert qui se

trouve alors a Paris :

« Wenn einer der grofen Herren, JORDAN oder HERMITE, sich vielleicht
einmal meiner erinnern sollte, so bitte empfehlen Sie mich bestens, und
machen Sie es klar, dafs ich weniger von Natur, als durch die Umsténde ein

Faullenzer bin%. »

Sa carriére universitaire va véritablement commencer en 1887 & I'université de Bonn
ot il soutient son Habilitation® le 15 mars 1887. La procédure d’Habilitation comporte
plusieurs étapes, d’abord Minkowski soumet deux articles®?, ensuite il propose plusieurs
thémes pour un exposé (Probevorlesung), celui qui a été finalement retenu est intitulé
Uber einige Anwendungen der Arithmetik in der Analysis®.

Il semble que l'idée de faire venir Minkowski a Bonn n’était pas nouvelle puisque dés
1883 Rudolf Lipschitz demande ’avis d’Hermite sur le travail de Minkowski :

58Une copie de tous les documents cités & propos de cette polémique entre Mordell et The Engineer
est conservée dans les archives de Mordell & Cambridge, MORDELL (St John’s), box 1, folder 5. Ces
documents sont reproduits en annexe.

59SCHWERMER 2007.

60« Si I'un des grands hommes, Jordan ou Hermite, devait peut-étre se souvenir une fois de moi,
s’il vous plait recommandez-moi au mieux et dites bien clairement que je suis un fainéant moins par
nature que par les circonstances. » RUDENBERG et ZASSENHAUS 1973 p.32.

61Pour une étude détaillée voir, SCHWERMER 1991.

621] s’agit de MINKOWSKI 1887a,c.

63Le texte de ce manuscrit est reproduit dans SCHWERMER 1991 p.85-88.
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« Quant au dernier [Minkowski| je vous serais trés reconnaissant si vous vou-
liez me faire connaitre les impressions que vous a faites le travail couronné.
Dans ce moment un professeur extraordinaire de mathématique laissé | 7]
vacant par le décés de M. Radicke & notre université il m’est venu l'idée,
s’il serait par juste de le tenir ouvert tant que ce jeune homme le pourrait
obtenir.

...vous étes le juge le plus compétent de la valeur de son travail j'attache

64

un prix trés haut a savoir votre opinion®*. »

La réponse d’Hermite est tres élogieuse a I’égard de Minkowski :

« Le mémoire de M. Minkowski étant écrit en allemand, a été lu et étudié
par M. Camille Jordan, qui m’en a rendu compte. Ce n’est point & mon
jugement une oeuvre aussi considérable que les mémoires de Rosenhain et

de M. Kummer®%®

, mais je ne doute point que le jeune géomeétre n’ait devant
lui un grand avenir, et qu’il ne justifie pleinement votre confiance, si vous
réalisez votre intention de vous 'attacher comme professeur extraordinaire.
Son travail nous a paru plus complet et meilleur a certains égards que
celui de M. Smith; il réléve une science algébrique profonde, et un talent
d’invention qui promet de belles et importantes découvertes dans ’avenir.
Je pense donc que vous servez la cause de la science en lui facilitant son
entrée dans la carriére universitaire, qu’il est digne de votre appui, dés a

présent et que plus tard il le sera encore davantage®. »

De 1887 a 1892, Minkowski est donc Privatdozent a 'université de Bonn puis il y
obtient un poste de professeur associé (ausserordentlicher Professor)®?. Il semble que
Minkowski n’apprécie alors pas vraiment ses collegues mathématiciens a ’exception de
Lipschitz, il s’en plaint a Hilbert dans une lettre du 29 décembre 1887 :

« Er [Lipschitz| war der Einzige, dem ich eine mathematische Frage stel-
len oder mit dem ich iberhaupt ein wissenschaftliches Thema besprechen
konnte. Mein College v. LILIENTHAL ist ein sehr liebenswiirdiger Mensch ;

aber ich rede mit ihm von allem andern lieber als von Mathematik%®. »

64Extrait d’une lettre de Lipschitz 4 Hermite du 9 mai 1883, cité dans SCHWERMER 1991 p.79.

65Ce sont des mémoires qui ont obtenus le Grand Prix de 1’Académie des sciences, Ernst Eduard
Kummer en 1857 pour ses travaux sur le théoréme de Fermat et Johann Rosenhain en 1851 pour ses
travaux sur les fonctions elliptiques.

66Extrait d’une lettre de Hermite & Lipschitz du 12 mai 1883, cité dans SCHWERMER 1991 p.80.

67D’aprés Minkowski dans RUDENBERG et ZASSENHAUS 1973 p.9-10.

68« 11 |Lipchitz| est le seul & qui je peux poser une question mathématique ou avec qui je peux
discuter d’un sujet scientifique. Mon collégue v. Lilienthal est un homme trés gentil ; mais je parle
avec lui de tout autre chose plutét que de mathématiques. » RUDENBERG et ZASSENHAUS 1973 p.33.
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C’est peut-étre la raison qui conduit Minkowski a se rapprocher des physiciens, il
rencontre en particulier Heinrich Hertz% qui aura sur lui une grande influence et qui par
son intermédiaire influencera aussi Hilbert dans ses travaux sur l'axiomatisation de la
physique™. A cette époque Minkowski s’intéresse a la mécanique™, il publie en 1888 un
article sur 'hydrodynamique™. Il est intéressant de noter que les questions de physique
sur lesquelles Minkowski travaille a cette époque ne sont pas simplement théoriques
mais il s’investit au contraire dans des problémes pratiques de physique expérimentale.

Voila comment il décrit avec humour ces activités & Hilbert le 22 décembre 1890 :

« Ich weifs nicht, ob ich Sie deshalb trésten mufs, noch auch, ob ich solches
thue, indem ich meine Meinung dahin &ufsere, daf Sie diesesmal an mir,
als einem génzlich physikalisch Durchseuchten, wenig Freude erlebt hétten.
Vielleicht auch hétte ich sogar eine zehntédgige Quarantaine durchmachen

t73

miissen, ehe Sie mich wieder als mathematisch rein unangewandt’ zu Ihren

gemeinsamen Spaziergingen zugelassen hitten™. »
Un peu plus loin dans cette méme lettre il ajoute :

« Ich habe meine praktischen Ubungen im physikalischen Institut, zu Hause
studire ich THOMSON, HELMHOLTZ und Konsorten ; ja von Ende néchster
Woche an arbeite ich sogar an einigen Tagen der Woche in blauem Kit-
tel in einem Institut zur Herstellung physikalischer Instrumente, also ein

75

Praktikus, wie Sie ihn sich schéndlicher gar nicht vorstellen kénnen™. »

Cet engagement de Minkowski dans des recherches en physique ne 'empéche pas
pour autant de continuer son travail en mathématiques en particulier sur les formes
quadratiques. Vers la fin des années 1880, ses idées sur ce qui va devenir la géométrie des
nombres ont commencé a émerger, certaines d’entre elles transparaissaient déja dans

son exposé pour son Habilitation qui marque selon Joachim Schwermer « a decisive

59Dans ses travaux Hertz opére une géométrisation de la mécanique, point de vue géométrique qui
sera adopté par Minkowski aussi bien en mathématique qu’en physique. Sur Hertz voir LUTZEN 1999.

"OVoir & ce sujet les articles de Leo Corry & propos du travail de Hilbert en physique, par exemple
CORRY 1997, 2000.

"ILettre & Hilbert du 29 décembre 1887, RUDENBERG et ZASSENHAUS 1973 p.33.

2MINKOWSKI 1888.

"3Minkowski plaisante ici autour du titre du Journal de Crelle, Journal fiir die reine und angewandte
Mathematik, parfois qualifié ironiquement de Journal fiir die reine unangewandte Mathematik.

74« Je ne sais pas si je dois donc vous consoler, ni si en exprimant ma pensée j’agis de sorte que vous
auriez éprouvé cette fois peu de joie avec moi qui suis complétement contaminé par la physique. Peut-
étre aurais-je dit méme passer par une quarantaine de dix jours avant que vous ne m’ayez & nouveau
admis & vos promenades en commun comme mathématiquement purement inappliqué. » RUDENBERG
et ZASSENHAUS 1973 p.39.

75« J’ai mes exercices pratiques & I'Institut de physique, & la maison j’étudie Thomson, Helmholtz
et consorts ; dés la fin de la semaine prochaine je travaille méme quelques jours par semaine en blouse
bleue a l'institut pour installer des instruments de physique, oui, un préparateur comme vous ne
pourriez vous I'imaginer méme pas de maniére inavouable. » RUDENBERG et ZASSENHAUS 1973 p.39-
40.
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turning point in Minkowski’s approach to the theory of quadratic forms™ ». En effet,
c’est & cette occasion que Minkowski commence a faire appel a l'intuition spatiale
(« Rdumliche Anschauung ») a différents niveaux dans son travail (nous y reviendrons).
Nous avons des traces de ce début d’intérét a cette époque pour ce qui va devenir la

géométrie des nombres dans la correspondance de Minkowski avec Hilbert :

« Ich bin jetzt in der Theorie der positiven quadratischen Formen sehr viel
weiter gekommen, es wird in der That bei Formen mit groferer Variabeln-
zahl sehr vieles anders. Vielleicht interessirt Sie oder HURWITZ der folgende
Satz (den ich auf einer halben Seite beweisen kann) : In einer positiven
quadratischen Form von der Determinante D mit n (> 2) Variabeln kann
man stets den Variabeln solche ganzzahligen Werthe geben, daf die Form

é) %(n—l)

< nDw ausfillt. HERMITE™ hat hier fiir den Coefficienten n nur (3

was offenbar im Allgemeinen eine sehr viel héhere Grenze ist™. »

Ces débuts dans cette direction de recherche se concrétisent au début des années
1890 avec ses premiéres publications qui sont recensées comme appartenant a la géo-
métrie des nombres dans les Gesammelte Abhandlungen de Minkowski™. C'est aussi
le moment ot il commence la rédaction de son livre Geometrie der Zahlen®® qui sera
publié en 1896

« Mit meinem Buche bin ich soweit, dafs ich mich in diesen Tagen an einen
Verleger wenden werde. Ich mochte [sic| es nicht thun, bevor Alles klipp und
klar war. Ich habe alles Principielle, was ich benutze, also beispielsweise die

81

Hiulfsséatze aus der Functionentheorie® ».

Une anecdote qui montre 'engagement de Minkowski dans ses recherches sur la
géométrie des nombres est celle du rapport sur la théorie des nombres.
En 1893, se tient & Munich la réunion annuelle de la Deutsche Mathematiker-Vereinigung
récemment créée en 1890. Un des projets de 'association est de publier un état des

lieux d’un domaine des mathématiques chaque année. il est décidé & Munich de confier

"6SCHWERMER 2007.

"TLe résultat d’Hermite qui est cité se trouve dans une lettre adressée & Jacobi en 1847, voir
HERMITE 1850.

8 « Je suis maintenant allé beaucoup plus loin dans la théorie des formes quadratiques positives, il y
a en fait dans les formes d’un plus grand nombre de variables beaucoup d’autres choses. Le théoréme
suivant (que je peux prouver en une demi-page) vous intéresse peut-étre, vous ou Hurwitz : dans
une forme quadratique positive de déterminant D avec n (> 2) variables on peut toujours donner
aux variables des valeurs entiéres telles que la forme vaut moins que < nDw . Hermite a ici pour le

coeflicient n seulement (%)%(nfl), ce qui en général est évidemment une borne bien trop haute. »
Lettre de Minkowski & Hilbert du 6 novembre 1889 RUDENBERG et ZASSENHAUS 1973 p.38.

O MINKOWSKI 1911.

8OMINKOWSKI 1896a.

81« Avec mon livre je suis avancé au point que je vais m’adresser ces jours-ci & un éditeur. Je ne
souhaitais pas le faire avant que tout ne soit clair et net. J’ai tous les fondements dont j’ai besoin,
donc par exemple les lemmes de la théorie des fonctions. » Lettre de Minkowski & Hilbert du 30 aofit
1892, RUDENBERG et ZASSENHAUS 1973 p.48.
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a Hilbert (qui assistait a cette réunion) et & Minkowski la rédaction d’un rapport sur
I’état des connaissances en théorie des nombres, ce rapport devant étre terminé en deux
ans. Minkowski et Hilbert décident de se partager le travail : le premier doit prendre
en charge tout ce qui concerne la théorie des nombres rationnels (ce qui comprend la
théorie arithmétique des formes), alors qu'Hilbert doit lui s’occuper de la théorie des
corps de nombres algébriques®?.

Pendant qu’Hilbert se consacre a sa partie du Zahlbericht, Minkowski semble moins
motivé par ce projet et est davantage intéressé par la rédaction de son livre sur la

géométrie des nombres

« Wahrend wir Beide im Stillen an der harten und gerade nicht allzusiissen
Nuss des gemeinsamen Referats knacken, Du Vielleicht noch mit schirferen

Zihnen und mehr Kraftaufwand wie ich®® ».

Minkowski regrette que le temps qu’il consacre au Zahlbericht 'empéche de se

consacrer pleinement a finaliser ses propres travaux :

« Die vollstdndige Darstellung meiner Untersuchungen iiber Kettenbriiche
hat schliesslich anndhernd den Raum von 100 Druckseiten erfordert. Dabei
aber fehlte immer noch der allein befriedigende Abschluss, das unbestimmt
vorschwebende charakteristische Kriterium fiir cubische Irrationalzahlen.
. ..] andererseits konnte ich nicht weiter an diesen Fragen arbeiten, da ich

wirklich ernstlich an das Referat ging®. »

Au début de I'année 1896 la partie d’Hilbert est presque terminée et ce dernier,
voyant que celle de Minkowski n’est pas aussi avancée, propose & son ami soit de la
publier dans I’état ou elle se trouve, soit de repousser la publication de cette seconde

partie a I'année suivante®. Minkowski lui répond

« Ich gehe also auf Deinen zweiten Plan ein mit der Wirkung, dass mein
Theil erst in den néchstjahrigen Bericht aufgenommen wird. Dieser Ent-
schluss wird mir, da ich iiber das Klapp machen an sich sehr resignirt
denke, hauptsichlich nur schwer, weil ich jetzt ein Jahr lang das bescha-
mende Gefiihl behalten werde, in gewissem Grade Dich und die Vereinigung

im Stich gelassen zu haben. Du selbst hast freilich nicht die geringste dahin

82Voir SCHAPPACHER 2005; REID 1970 p.44-45.

83« Pendant que tous les deux en silence croquons la noix dure et pas précisément trop sucrée du
rapport commun, toi peut-étre avec des dents plus acérées et plus de déploiement de forces que moi. »
Lettre de Minkowski & Hilbert du 17 mai 1895, RUDENBERG et ZASSENHAUS 1973 p.65-66.

84 « La présentation compléte de mes recherches sur les fractions continues a finalement exigé prés de
100 pages imprimées. Mais il y manque toujours la seule conclusion satisfaisante, le critére caractérisant
les irrationnelles cubiques confusément révé. [...] d'un autre coté, je ne pourrai plus continuer a
travailler sur ces questions, étant donné que je m’occupe vraiment sérieusement du rapport. » Lettre
de Minkowski a Hilbert du 10 février 1896, RUDENBERG et ZASSENHAUS 1973 p.77.

85REID 1970 p.51.
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zielende Ausserung gemacht, es liegt aber dieser Gedanke zu nahe, und man-
cher wird wohl sagen, nach den Erfahrungen mit meinem Buche wére von
mir Nichts anderes zu erwarten gewesen. Nun, etwas werden diese Vorwiirfe
gemildert werden, wenn jetzt der grosste Theil meines Buchs herauskommt
und der Rest schnell folgt, und schliesslich kann ich mir einbilden, ich thue,
was ich im Interesse der Sache fiir das Beste halte.

Dich bitte ich jedenfalls sehr, in keiner Weise zu denken, dass ich Dich mit

meinem Referat im Stich gelassen hétteS. »

Finalement, alors que le Bericht iiber die Theorie der algebraischen Zahlkérper®”
est publi¢ par Hilbert en 1897, Minkowski n’achévera jamais sa part du projet mais

son livre Geometrie der Zahlen parait en 1896%.

En 1894, Minkowski quitte 'université de Bonn pour retourner a Koénigsberg ot il
rejoint Hilbert en tant que professeur assistant. Dés 1895, Hilbert part a Gottingen et
Minkowski est nommé a sa place professeur le 18 mars 1895. Minkowski reste a Ko-
nigsberg jusqu’en 1896, pendant cette période il profite de sa nouvelle position pour
donner un cours sur la théorie de I'infini de Georg Cantor. En fait, Minkowski et Hilbert
furent parmi les premiers mathématiciens a apporter leur soutien a Cantor & propos
de son travail contreversé sur l'infini et la polémique qui 'oppose a Kronecker® .
Minkowski ne reste pas trés longtemps a Konigsberg, il démissionne le 12 octobre 1896
pour accepter un poste de professeur de mathématiques a I’école polytechnique de Zii-
rich® o1 il retrouve cette fois Hurwitz?!. Il continue & s’intéresser a la physique et
donne des cours sur la capillarité la théorie du potentiel et la mécanique analytique.
En ce qui concerne les mathématiques, il enseigne la théorie des nombres et I'analysis

situs et c’est aussi pendant cette période qu’il a parmi ses étudiants Albert Einstein®?.

86« J'accepte donc ton deuxiéme plan avec la conséquence que ma partie ne sera recue que dans
le rapport de I’an prochain. Alors que je pense au bouclage méme avec un grand découragement,
cette décision ne m’a été vraiment difficile que j’ai depuis un an le sentiment humiliant de vous avoir
laché dans une certaine mesure la Société [la DMV] et toi. Tu n’as toi-méme assurément jamais fait
la moindre remarque dans cette direction, mais cette pensée n’est jamais loin et plus d’un dirait bien
qu’apres les expériences avec mon livre il n’y aurait rien d’autre a attendre de moi. Bon, ces reproches
s’adouciront un peu si la plus grande partie de mon livre sort maintenant et si le reste suit rapidement
et finalement je peux m’imaginer que je fais ce que je tiens pour le mieux dans l'intérét de la chose.
En tout cas, je prie vraiment de ne penser en aucune maniére que je t’aurais laissé tomber avec mon
rapport. » Lettre de Minkowski & Hilbert du 10 février 1896, RUDENBERG et ZASSENHAUS 1973 p.78.

8THILBERT 1897.

88Pour des renseignements supplémentaires sur I’histoire du Zahlbericht voir aussi I'article de Zas-
senhaus qui introduit la correspondance entre Minkowski et Hilbert dans RUDENBERG et ZASSENHAUS
1973 p.17-21.

89D’aprés Minkowski dans RUDENBERG et ZASSENHAUS 1973 p.10. Voir aussi REID 1970 p.44-50.

99D aprés Minkowski dans RUDENBERG et ZASSENHAUS 1973 p.10.

91REID 1970 p.52.

92WALTER 1996 p.8.
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Minkowski se marie en 1897 avec Auguste Adler a Strasbourg®. Le couple a eu deux
filles, Lily née en 1898 et Ruth née en 1902 4.

Hilbert réussit a obtenir la création d’un nouveau poste de professeur de mathé-
matiques pour Minkowski a Gottingen. A 'automne 1902, Minkowski arrive donc a
Gottingen et il y restera jusqu’a son déces en 1909.

Il semble que ces années passées a Gottingen furent une période treés heureuse pour

Minkowski et pour Hilbert ravis de se retrouver enfin dans la méme ville®

« A telephone call, or a few steps down the street, a pebble tossed up against
the little corner window of his study, and there he was, always ready for

any mathematical or non-mathematical undertaking®. »

Du point de vue de leurs recherches, bien qu’ils ne travaillent pas nécessairement
sur les mémes sujets, les échanges qu’ils ont pendant cette période influencent leurs
travaux respectifs.

Minkowski continue a s’intéresser conjointement aux mathématiques et a la physique.
Pour ce qui est des mathématiques, il donne des cours sur ’analysis situs, la théorie des
fonctions, la géométrie, les surfaces de Riemann et la théorie des nombres. Son cours
sur ce dernier théme du semestre d’hiver 1903-1904 porte plus particuliéerement sur la
géométrie des nombres et il est repris dans son livre Diophantische Approzimationen®
publié en 1907. Cet ouvrage, qui est en fait la continuation du travail de Minkowski
sur la géométrie des nombres, montre que ce sujet de recherche est toujours au premier
plan de ses préoccupations scientifiques. Ceci est aussi illustré par le congrés interna-
tional des mathématiciens en 1904 a Heidelberg au cours duquel Minkowski choisit de
donner une conférence sur le théme de la géométrie des nombres®.

Minkowski est toujours aussi actif en physique et cela plus particuliérement a partir de
1905. 11 continue & professer des cours sur la mécanique ou ’électrodynamique®. En
1906, il est I'auteur du chapitre de I’ Encyklopddie der mathematischen Wissenschaften
consacré a la capillarité!?’. Il conduit avec Hilbert un séminaire de physique dont le
théme est, a partir de 1905, la théorie de I’électron et a partir de 1907, les équations de
I’électrodynamique telles qu’elles avaient été formulées par Hendrik Antoon Lorentz en

1904 1°1. L’intérét de Minkowski pour la théorie de 1’électron est suscité en particulier

9BREID 1970 p.55.

94RUDENBERG et ZASSENHAUS 1973 p.111 et 150.

9Voir REID 1970 p.88-92, ou elle décrit leur vie & Gottingen pendant cette période. Elle raconte
par exemple les pique-niques du dimanche matin qui réunissent les deux familles, les réceptions chez
les Hilbert, la timidité de Minkowski et ses rapports avec ses filles.

9 Hilbert cité dans REID 1970 p.91.

9T MINKOWSKT 1907.

98 MINKOWSKI 1904b.

99WALTER 1996 p.8.

100N INKOWSKI 1906.

101 CoRrRY 1997 p.284.
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par son arrivée a l'université de Gottingen qui comptait alors dans ses rangs de trés
bons spécialistes du sujet comme Gustav Herglotz, Emil Wiechert!??, Max Abraham
et Walter Kaufmann!®3.

D’aprés les témoignages de Hilbert et de Max Born!'®, ce serait au cours de ces sémi-

naires que Minkowski élabore et développe ses idées sur la théorie de la relativité!®?,

sujet pour lequel il a le plus retenu 1'attention des historiens'%.

Minkowski présente son travail sur la théorie de la relativité principalement en trois
occasions. La premiére présentation a lieu le 5 novembre 1907, lors d'un exposé devant
la Gottingen Mathematische Gesellschaft dont le titre est das Relativititsprinzip. Le
texte de cette conférence fut publié & titre posthume par Arnold Sommerfeld en 1915197,
Moins de deux mois plus tard le 21 décembre 1907 & la réunion de la kdéniglichen Ge-
sellschaft der Wissenschaften zu Gottingen donne a nouveau une conférence intitulée
cette fois Die Grundgleichungen fiir die elektromagnetischen Vorginge in bewegten Kor-
pernt® et dont le texte est 'unique travail sur la relativité publié avant son déces!®?.
Dans ces deux conférences, Minkowski énonce le principe de relativité et il utilise déja
une géométrie en dimension 4 sans pour autant que sa nouvelle conception de la re-
lation entre I'espace et le temps, caractéristique de son travail dans ce domaine, soit
encore pleinement développée!!?. C’est lors de la premiére présentation de son travail
en dehors de Gottingen, a l'occasion de la Versammlung Deutscher Naturforscher und
Arzte qui se tient a Cologne, que Minkowski développe son idée d’un espace-temps a 4
dimensions. Cet exposé Raum und Zeit''!, prononcé le 21 septembre 1908, est devenu

emblématique!'? de la contribution de Minkowski & la théorie de la relativité

« La conception de I'espace et du temps que je voudrais développer devant
vous a grandi sur le sol de la Physique expérimentale. C’est ce qui fait sa
force. La tendance en est radicale. Dés maintenant, ’espace indépendant
du temps, le temps indépendant de I’espace ne sont plus que des ombres

113

vaines ; une sorte d’'union des deux doit seule subsister encore °. »

102WALTER 1996 p.S.

103G ALISON 1979 p.88.

104Born était étudiant a Gottingen, puis il fut ’assistant de Hilbert. Quand en 1908 Minkowski
recherche un collaborateur ayant des connaissances en optique expérimentale pour ’aider & combler
ses lacunes c’est a lui qu’il fait appel, voir WALTER 1996 p.9.

105G ALISON 1979.

106]] existe de nombreux travaux sur Minkowski et la relativité voir par exemple CORRY 1997;
PYENSON 1977; GALISON 1979; WALTER 1996, 1999a,b.

107 MINKOWSKI 1915.

108 MINKOWSKI 1908.

199 CoRrRY 1997; GALISON 1979 p.89.

H0Pour un commentaire détaille du contenu de ces deux interventions de Minkowski voir CORRY
1997 qui analyse ce travail de Minkowski dans le cadre du programme d’axiomatisation de la physique
de Hilbert.

HIMINKOWSKI 1909a,b.

H2Pour des commentaires sur cette conférence voir par exemple GALISON 1979; WALTER 1996.

H3NMINKOWSKI 1909a, p.499-500.
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Ce qui caractérise la contribution de Minkowski a la théorie de la relativité c’est qu’il
opére une mathématisation de cette théorie par sa reformulation en termes géomé-
triques avec la notion d’espace-temps''4. Ces rapports entre mathématiques et physique
que nous voyons dans le travail de Minkowski sont en fait caractéristiques de Gottingen
a cette époque. S’y cotoient en particulier au début du XX¢ siécle des mathématiciens

et des physiciens parmi les plus connus du moment!!?.

Minkowski déceéde brutalement le 12 janvier 1909 a Goéttingen d’une rupture de
I’appendice. Il essayait alors d’approfondir ses recherches sur la relativité. D’apreés Hil-
bert!!, conscient de son état de santé il corrigea jusqu’au dernier moment sur son lit
d’hopital les épreuves de ses travaux les plus récents dont certains furent édités aprés

sa mort par Max Born!!7.

1.2 La préhistoire de la géométrie des nombres

Comme nous 'avons déja évoqué, 'intérét de Minkowski pour ce qu’il a baptisé
la géométrie des nombres vient de ses recherches pour répondre a certaines questions
issues de la théorie arithmétique des formes quadratiques. L’objectif de ce qui suit
est de donner un apercu des problémes posés par 1'étude arithmétique des formes
mais aussi d’examiner quelles étaient les sources du travail de Minkowski. La géomé-
trie des nombres étant caractérisée par 'introduction d’'un point de vue géométrique,
nous regarderons plus particuliérement les méthodes géométriques déja employées dans
I’étude des formes avant que Minkowski ne commence & travailler sur ce théme. Nous
nous appuierons en particulier sur I’ Encyclopédie des sciences mathématiques pures et
appliquées car elle offre un bilan contemporain du travail de Minkowski et elle reste

une référence sur toute la premiére moitié du XX€ siecle.

1.2.1 Quelques éléments sur la théorie arithmétique des formes

Par forme nous entendons ici un polynéme homogéne. Les mathématiciens se sont

surtout dans un premier temps intéressés aux formes quadratiques qui sont des poly-

HAWALTER 1996 p.154.

H5RoOWE 1989.

16Pour une description des activités de Minkowski pendant les derniers jours de la vie voir HILBERT
1911; REID 1970 p.114-115.

H7Pour des renseignements sur la vie et la carriére de Minkowski voir aussi ZASSENHAUS 1975 oi
des extraits de la correspondance avec Hilbert son traduits en anglais.
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nomes homogénes de degré 2 et qui s’écrivent donc d’une facon générale

n
f([L‘l,ZL'Q, Ce ,ZL‘n) = Z aij IL‘Z‘ZL‘j .

ij=1

Cet intérét s’explique par le fait que ces formes quadratiques sont des généralisations
des sommes de carrés qui étaient déja étudiées avant le XIX€ siécle. La question était
de savoir quels sont les nombres entiers qui peuvent s’écrire sous la forme d’une somme
d'un certain nombre de carrés''®.

L’ Encyclopédie consacre un long chapitre de 140 pages a la théorie arithmétique des
formes. Un probléeme fondamental de la théorie est la traduction pour les formes géné-

rales de cette question de la décomposition des entiers en somme de carrés

« On supposera, a moins d’indication contraire, que les formes et les sub-
stitutions linéaires dont il va étre question sont & coefficients entiers.

Un des problémes les plus importants a résoudre est de déterminer les
nombres représentables par une forme, c’est-a-dire les valeurs que peut
prendre la forme quand on donne aux variables des valeurs entiéres. La
théorie des formes est rattachée par la a la résolution des équations en

119

nombres entiers »

Etant donnée une forme f et un entier n, il s’agit donc de savoir si n est représentable
par f, c’est-a-dire s’il existe des valeurs entiéres des variables de f pour lesquelles f
prend la valeur n. Notons aussi que la définition de I’ Encyclopédie se limite aux formes
dont les coefficients sont des nombres entiers. Historiquement, ce sont effectivement les
formes a coefficients entiers qui ont d’abord retenu l’attention; pour les mathémati-
ciens contemporains leur étude est pourtant plus difficile que celle des formes dont les
coefficients sont réels ou bien complexes.

120 en liaison avec ce probléme

La notion d’équivalence entre formes a été introduite
de la représentation des nombres entiers par une forme. Deux formes F(z1,...,z,) et
Fy(xy,...,x!) sont dites équivalentes!?! lorque I'on peut passer de I'une a l'autre par

une substitution linéaire & coefficients entiers de déterminant 1 ou —1, c’est-a-dire que

n
/ .
x; = E Qg T, (1=1,2,...,n),
k=1

H8Pour des détails sur les résultats concernant la décomposition des entiers en sommes de carrés
voir DICKSON 1920.

H9CAHEN et VAHLEN 1908 p.76.

120Cette terminologie est issue du travail de Gauss mais la notion était déja utilisée par Lagrange a
la fin du XVIII® siecle.

121 Nous suivons ici la présentation faite dans CAHEN et VAHLEN 1908 ; celle-ci reprend le vocabulaire
employé par Gauss.
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ot le déterminant |ayi| est égal & £1.

La notion d’équivalence entre formes est liée a la représentation des nombres entiers
car deux formes équivalentes représentent les mémes nombres!??.

Les premiéres formes & avoir été étudiées de maniére générale sont les formes quadra-

tiques binaires, nous allons donc maintenant nous y intéresser plus particuliérement!23.

1.2.2 Les formes quadratiques binaires
1.2.2.1 Quelques résultats de Joseph-Louis Lagrange

Des mathématiciens comme Pierre Fermat ou Leonhard Euler ont étudié certaines
équations du type az? + by? = m (a, b et m sont des entiers) qui sont en fait des
cas particuliers de représentation d’entiers par une forme quadratique binaire. Le pre-
mier & avoir présenté un traitement général de ces problemes, qu’il applique ensuite
aux équations du type précédent, est Joseph-Louis Lagrange!'?* dans ses Recherches
d’arithmétiques'® :

« Ces recherches ont pour objet les nombres qui peuvent étre représentés
par la formule

Bt* + Ctu + Du?,

ou B, C, D sont supposés des nombres entiers donnés, et ¢, u des nombres

aussi entiers, mais indéterminés'?S. »

Dans ce travail, Lagrange ne met pas encore en place tout le vocabulaire relatif
a ’étude des formes qui est maintenant utilisé. D’ailleurs le mot « forme » lui-méme
n’est pas pris dans le sens moderne de polynéme homogéne mais il est employé pour
dire qu'un nombre peut s’écrire sous une certaine « forme » : « Je donnerai enfin la
démonstration de plusieurs Théorémes sur les nombres premiers de la méme forme
Bt? + Ctu + Du? ». Néanmoins, nous avons pour la premiére fois chez Lagrange un
certain nombre d’idées et de résultats sur les formes quadratiques qui seront par la

suite a la base de cette théorie.

1221 5, réciproque de ce résultat est fausse.

123Pour ce bref apercu de I’histoire de la théorie arithmétique des formes quadratiques, nous repre-
nons les grandes étapes décrites dans DICKSON 1923; SCHWERMER 2007.

124SCHWERMER 2007.

125, AGRANGE 1773 et 1775.

1261, A\GRANGE 1869 p.695.
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Lagrange commence par démontrer le théoréme 1127 :

« Si le nombre A est un diviseur d’'un nombre représenté par la formule
Bt* + Ctu + Du?,

en supposant ¢ et u premiers entre eux, je dis que ce nombre A sera néces-

sairement de la forme
A=Ls*+ Msx + Na?,

ou ’on aura

ALN — M? =4BD — C?,
s et x étant aussi premiers entre eux. »

Avec ce premier résultat, Lagrange met en évidence le role joué par ce que nous
avons appelé dans le paragraphe précédent les substitutions unimodulaires a coeffi-
cients entiers. Il fait le lien entre ces transformations des variables et la question de
la représentation des nombres entiers, mais aussi avec la quantité 4BD — C? qui est
invariante pour de telles substitutions!2®.

Avec les résultats qui suivent ce premier théoréme, Lagrange explore plus en détail
comment se comportent les coefficients des formes sous ’action des substitutions uni-

modulaires'® :

« THEOREME II. Toute formule du second degré telle que celle-ci
Ls* 4+ Msx + Nz?,

dans laquelle M est plus grand que L ou N (abstraction faite des signes de

ces quantités), peut se transformer en une autre du méme degré comme
LISIZ + M/Sllj + N,.Z'IQ
dans laquelle on aura
AL'N' — M = ALN — M?,

et ou M’ sera plus petit que M. »

127Tous les nombres considérés ici par Lagrange sont des entiers, LAGRANGE 1869 p.697.

128Dans ce qui suit cette quantité est supposée non nulle et non égale 4 un carré. Lagrange n’a pas
exploré ces cas, ou la forme se factorise en produit de deux facteurs linéaires, voir DICKSON 1923 p.6.

1297, AGRANGE 1869 p.698.

54



1.2 CHAPITRE 1

Ce théoréme II lui permet de justifier qu'une expression Ls? + Msx + Nxz? peut
toujours étre transformée en une autre Py? + Qyz + Rz? telle que Q soit plus petit
que P et R (« abstraction faite des signes de ces quantités ») et telle que 4PR — Q? =
4LN — M?. 1l s’'intéresse aussi a la question de savoir combien de formes vérifient les
conditions précédentes sur les coefficients parmi toutes celles que 'on peut déduire
les unes des autres par des substitutions unimodulaires. La réponse a cette question
dépend du signe de la quantité 4P R—(Q?, Lagrange traite donc les deux cas séparément.

D’abord avec le probléme IIT :

« Etant donnée la formule
py* + 2qyz +r2*,

dans laquelle y et z sont des nombres indéterminés et p, ¢, r sont des

nombres positifs ou négatifs, déterminés par ces conditions, que
pr—q¢ =a

(a étant un nombre positif donné) et que 2¢ ne soit ni > p ni > r, abs-
traction faite des signes de p, ¢ et r; trouver si cette formule peut se trans-
former en une autre de la méme espéce et qui soit assujettie aux mémes

130

conditions »

Lagrange répond par la négative a cette question'3!, il démontre que pour pr—g? positif,
il ne peut y avoir plusieurs formes qui se déduisent par des subtitutions unimodulaires
dont les coefficients vérifient les inégalités précédentes.

L’autre cas est considéré ensuite :

« PROBLEME IV. Etant donnée la formule
py® + 2qyz —r2”,

dans laquelle y et z sont des nombres indéterminés, et p, ¢, r des nombres

positifs ou négatifs, déterminés par ces conditions, que
pr+q¢®=a

(a étant un nombre positif donné) et que 2¢ ne soit ni > p ni > r, abstraction

faite des signes de p, ¢ et r; trouver si cette formule peut se transformer en

32

une autre semblable, et ot les mémes conditions soient observées!3?. »

130 LAGRANGE 1869 p.723.
131LAGRANGE 1869 p.728.
132LAGRANGE 1869 p.728.

95



CHAPITRE 1 1.2

Cette fois Lagrange montre qu’il est toujours possible de trouver plusieurs formes vé-
rifiant les conditions proposées dans le probléme IV133. Etant donnée une telle forme,
il indique aussi comment, par un choix convenable de substitutions, il est possible d’en

déterminer une autre.

Nous voyons bien la en germe dans le travail de Lagrange les notions d’équivalence

et de formes réduites qui vont étre approfondies par Carl Friedrich Gauss.

1.2.2.2 Un apercu du travail de Carl Friedrich Gauss

Nous avons vu que les travaux de Gauss et surtout de Dirichlet ont fait partie de
I’apprentissage de Minkowski concernant les formes quadratiques. Nous donnons donc
ici quelques éléments sur les contributions de Gauss a cette théorie.

Dans la cinquiéme section des Disquisitiones Arithmeticae'* publiées en 1801, Gauss
développe une théorie générale des formes quadratiques binaires. Gauss n’y démontre
pas seulement beaucoup de résultats nouveaux mais il y propose aussi un vocabulaire
unifié pour cette théorie. Par exemple, il appelle « formes du second degré » les fonctions
de deux indéterminées qu’il note soit ax?® + 2bxy + cy?, soit (a, b, c), ol a, b et ¢ sont
des nombres entiers. La quantité b? — ac est appelée le déterminant de la forme (a, b, c).
Parmi les formes F' = az?+2bxy+cy? et F' = o’z 2V 2"y’ +c'y’? qui sont équivalentes,

c’est-a-dire qu’elles sont liées par une substitution du type
r=ax' + By, y =z’ 40y,

ou a, (3, 7, ¢ sont des entiers tels que ad — [y = +1; Gauss distingue celles qui sont
proprement équivalentes pour lesquelles ad — vy = 1, de celles qui sont improprement
équivalentes qui vérifient ad — v = —1. Deux formes proprement équivalentes sont
dites de méme classe.

Lorsque le déterminant de la forme az? +2bxy + cy? est strictement négatif's®

,aetc
sont nécessairement de méme signe et il est toujours possible, quitte a étudier la forme
(—a,—b, —c), de se ramener au cas ou ils sont tous les deux strictement positifs. Gauss

démontre que dans chaque classe il existe une unique forme (4, B, C') qui vérifie!3°

2IB|<A<C ou 0<2B<A=C.

1331, AGRANGE 1869 p.737.

134Une traduction en francais est publiée dés 1807, voir GAUSs 1807.

1350n dira aprés Gauss que la forme est définie. Elle est définie positive si elle ne prend que des
valeurs positives et définie négative sinon. Voir CAHEN et VAHLEN 1908 p.103.

136 CAHEN et VAHLEN 1908 p.103.
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Gauss appelle de telles formes (A, B, C) des formes réduites'®”. Remarquons que les cas
ol le déterminant de la forme est nulle ou égal & un carré sont traités a part chez Gauss.
La notion de forme réduite au sens de Gauss différe de celle qui avait été proposée par
Lagrange. Malgré cela le résultat de Gauss est analogue a un théoréme de énoncé par
Lagrange et I'idée utilisée par les deux mathématiciens est la méme, il s’agit de trouver
dans chaque classe de formes un représentant privilégié.

Dans le cas ou le déterminant D est strictement positif, Gauss introduit aussi une

notion de réduction. Il appelle cette fois réduite une forme (A, B, C') pour laquelle!®®

0<B<vVD e VD-B<|A<VD+B.

Il montre 1a encore que n’importe quelle forme de déterminant strictement positif est
proprement équivalente a une forme réduite. La difficulté dans ce deuxiéme cas est que
dans chaque classe il n’y a en général plus unicité de la forme réduite!®®. Lagrange
avait eu lui aussi le méme probléme d’unicité dans le PROBLEME IV, en fait quand D
est strictement positif il n’est pas possible de trouver une notion de réduction permet-
tant d’assurer I'unicité de la forme réduite dans chaque classe de formes proprement
équivalentes. C’est pourquoi dans le cas des formes indéfinies de nombreuses notions

de réduction différentes ont été proposées'4?.

Méme si nous ne donnons pas de détails ici, notons que Gauss poursuit I’étude des
formes quadratiques binaires par une classification plus fine. Il introduit par exemple
la notion de formes primitives qui sont telles que leurs coefficients a, b, ¢ sont premiers
entre eux. Il étudie ensuite la distribution des formes en « ordres », deux formes (a, b, ¢)
et (a/, b, ) étant de méme ordre si les plus grands communs diviseurs de a, b, ¢; a’, 0, ¢
et a,2b,c; a’,2,c sont les mémes. Il propose ensuite une classification par genres. Il
élabore au passage une théorie de la composition des formes, notion jugée difficile méme

aprés qu’elle soit reprise par Dirichlet!4!.

137G AvUss 1807 p.142.

138G AUss 1807 p.159.

139G AuUss 1807 p.161.

140Voir par exemple CAHEN et VAHLEN 1908 p.105-106, ot deux autres notions de formes réduites
sont mentionnées. Voir aussi SCHWERMER 2007.

1A propos de la composition des formes d’aprés Gauss, voir FENSTER et SCHWERMER 2007;
EDWARDS 2007. En particulier, bien que l'on considére souvent le travail de Dirichlet & ce sujet
comme simplifiant celui de Gauss, Edwards note (voir p.131) que les deux théories ne sont en fait pas
équivalentes.
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1.2.2.3 Un résultat emblématique d’Hermite

Il semble que le travail de Charles Hermite sur la théorie des formes quadratiques
ait eu une grande influence sur les recherches de Minkowski. Ce dernier rendit hom-
mage au mathématicien francais a de nombreuses occasions car il le considérait comme
étant a 'origine de ses propres recherches.

Une des idées d’Hermite que Minkowski continua a exploiter est 1'utilisation de quan-

tités continues afin d’obtenir des résultats de nature arithmétique.

Une question importante de la théorie des formes quadratiques est d’étendre la

142

notion de réduction aux formes de n variables. Hermite'*“ écrit de telles formes

n n
f($1,!7€2, . ,$n) = Zzaiﬂﬂj )

j=1 i=1

ol a;; = aj; et le déterminant de cette forme est noté D = |a;;|. Il rameéne le probléme
de la réduction des formes indéfinies a celui des formes définies pour lesquelles il propose
plusieurs notions de formes réduites. Nous en donnons ici une seule qui est celle qui
sera par la suite simplifiée par Minkowski. Hermite appelle donc réduite les formes

quadratiques définies positives dont les coefficients vérifient les conditions suivantes!43

0 < ann < ap< ... < g,
a1 a2 ... Qpp < )\nD,

—apy, < 2apr < oapy (h<k),

oll A\, ne dépend que de l'entier n. La valeur obtenue par Hermite pour \, est

- ()

Une difficulté importante de cette notion de réduction est qu’elle ne garantit pas 'uni-

n(n—1)
2

cité de la forme réduite dans chaque classe, elle permet d’assurer uniquement que
chaque forme est équivalente a au plus un nombre fini de formes réduites!#*. Hermite

est conscient de ce probléme

« Au reste les formes réduites auxquelles on est ainsi conduit, pour un
déterminant donné n’offrent plus ce caractére propre aux formes binaires,

de ne pouvoir étre équivalentes entre elles, & moins d’étre identiques, aux

H42Voir les lettres a Jacobi de 1847 dans HERMITE 1850.
143CAHEN et VAHLEN 1908 p.185.
144ScHWERMER 2007 p.12.
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145

signes preés des coefficients'*. »

Le coefficient aq; d’une forme réduite s’interpréte comme le minimum de la forme
quand ses variables prennent des valeurs entiéres. La réduction des formes quadratiques

est donc liée a la détermination des meilleurs estimations possibles pour ce minimum

«j’ai dli reconnaitre que ce qu’on devait se proposer avant tout, dans la théo-
rie de la réduction, était de découvrir les valeurs entieres des indéterminées

146. N

pour lesquelles une forme définie donnée, était la plus petite possible >

Hermite démontre donc, par induction, que pour une forme quadratique définie positive
f(x1,...,x,) de n variables et de déterminant D, il existe des entiers «, (3,..., A non

tous nuls qui vérifient

n—1

fla,B,...,)0) < <§)T /D .

Nous avons dit I'importance de cette estimation dans la théorie de la réduction mais
cette inégalité peut aussi avoir des conséquences intéressantes dans d’autres domaines.
Hermite 'utilise par exemple en approximation diophantienne et Minkowski approfon-

dira 1a encore les méthodes d’Hermite.

1.2.3 Géométrie et formes quadratiques avant Minkowski

Avant l'introduction systématique par Minkowski d’un point de vue géométrique
dans I'étude de la théorie arithmétique des formes, la géométrie avait déja été utilisée
par d’autres mathématiciens. Nous verrons que certaines de ces idées ont influencé la

démarche employée par Minkowski.

1.2.3.1 Une premiére représentation géométrique

L’ Encyclopédie des sciences mathématiques pures et appliquées attribue a Gauss
cette premiére maniére de représenter les formes quadratiques binaires'”. Cette re-
présentation élaborée en 18278 n’est publiée qu’en 1876 aprés sa mort. Cette méme
année Henry John Stephen Smith développe ce point de vue et contribue a sa plus
large diffusion!4?.

Nous suivons ici la présentation proposée par I’ Encyclopédie*°.

MSHERMITE 1850 p.285-286.

M6 HERMITE 1850 p.295.

147TCAHEN et VAHLEN 1908 p.116.

48 GAUSS 1827 p.4TT7-478.
149D1cksoN 1923 p.31-32.

150 CAHEN et VAHLEN 1908 p.116-119.
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Deux points du plan sont dits congruents si leurs affixes z et 2’ sont liées par une

relation du type
g2 + 3 ’
¥z +0

ou «, 3, v et d sont des réels qui vérifient ad — Gy = 1.
Si z est I'affixe d’un point situé strictement au-dessus de I’axe des abscisses, alors les
points qui lui sont congruents sont eux aussi strictement au-dessus de cet axe. De plus,
les points congruents a un point situé sur 'axe des abscisses sont aussi sur l'axe.
Supposons qu’un repére orthonormé d’origine O soit fixé. Considérons maintenant ’en-
semble des points d’ordonnée positive situés strictement entre les droites d’équation
T = —% et x = % et strictement a I'extérieur du cercle de centre O et de rayon 1. A cet
ensemble, on ajoute d'une part les points dont I'ordonnée est positive, dont 1’abscisse
est —% et qui sont a l'extérieur du cercle de centre O et de rayon 1; d’autre part les
points sur ce cercle, d’ordonnée positive et dont ’abscisse x vérifie —% <z < 0. L'en-

semble des points ainsi défini est appelé domaine fondamental (voir la figure 1.2).

>
>

F1G. 1.2 — Le domaine fondamental

Tout point du demi-plan situé au-dessus de 1’axe des abscisses est alors congruent

a un unique point du domaine fondamental.
A une forme quadratique binaire ax? + 2bxy + cy? est associée I'équation du second

degré aw? + 2bw + ¢ = 0.

Lorsque la forme est définie cette équation admet deux racines complexes. La forme est
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réduite si le point dont 'affixe est la racine dont la partie imaginaire est strictement
positive est située dans le domaine fondamental.

Felix Klein'! reprend cette représentation géométrique dans les années 1890 afin de
traiter le cas plus difficile des formes indéfinies. Pour ces formes, les racines de I’équation
précédente sont sur I’axe des abscisses et la forme est réduite « quand le demi-cercle dé-
crit sur le segment qui joint les points représentatifs des deux racines comme diamétre,
traverse le domaine fondamental’®? ». Cette méthode de réduction est en fait équiva-
lente & celle développée par Hermite et connue sous le nom de réduction continuelle!®3.
Hermite avait cependant présenté sa méthode de maniére complétement analytique

sans aucun recours a la géométrie!®t.

1.2.3.2 L’utilisation des réseaux

Le deuxiéme mode de représentation des formes quadratiques qui va maintenant
étre abordé est aussi d & Gauss. Il est important du point de vue de la géométrie des
nombres car il utilise la notion de réseau qui sera un des objets a la base du travail de
Minkowski.

Dans les Disquisitiones Arithmeticae, Gauss a commencé 1’étude des formes quadra-

tiques ternaires!'®

. Il étudie en particulier la représentation des formes binaires par des
formes ternaires et il cherche & déterminer a quelle condition deux formes ternaires sont
équivalentes'®®. La théorie des formes quadratiques ternaires est ensuite approfondie en
1831 par Ludwig August Seeber dans sa thése intitulée Untersuchungen tiber die Figen-
schaften der positiven terndren quadratischen Formen. Seeber développe une théorie
de la réduction pour les formes ternaires définies analogue a celle des formes binaires.
Dans chaque classe de formes ternaires définies équivalentes, il y a une unique forme
réduite qui est caractérisée par des inégalités entre ses coefficients'®”. Seeber discute

aussi le probléme de trouver toutes les formes réduites
f(:z:,:c',x”) — a2+ d'2? + a2 + ' " + Wz + W' v :

de déterminant D = ab®+ a'b"? +a"b"? — ad’a” — 2bb'b" strictement négatif fixé. Il utilise

pour cela Pestimation®® aa’a” < 3|D|. 1l conjecture que cette derniére inégalité peut

BIKLEIN 1895-1896.

152CAHEN et VAHLEN 1908 p.118.

IS3HERMITE 1851.

154Cette méthode de réduction s’applique aussi a des formes de n variables. Pour des détails sur ce
travail d’Hermite voir GOLDSTEIN 2007 p.394-396.

155Pour une chronologie des principaux résultats de cette théorie voir DICKSON 1923, chapitre IX.

156 CAHEN et VAHLEN 1908 p.160-161.

157Ces conditions sont données dans DICKSON 1923 p.210.

138 D1cksoN 1923 p.210.
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étre améliorée en aa’a” < 2|D)|.
Dés 1831, dans le compte rendu qu’il fait de la thése de Seeber'® . Gauss démontre
cette derniere inégalité. Il utilise pour cela sa nouvelle interprétation géométrique des

formes quadratiques binaires et ternaires'®’.

Gauss propose de représenter les formes quadratiques binaires et ternaires définies
positives par un réseau de la fagon suivante. Pour une forme binaire définie positive
ax?+2bxy +c%, ol a et ¢ sont strictement positifs, Gauss construit un parallélogramme
dont deux cotés consécutifs mesurent y/a et /c, angle ¢ entre ces cotés vérifiant
cosp = \/% Les cotés de ce parallélogramme, appelé parallélogramme fondamental,
sont ensuite prolongés, puis on trace le systéme de droites paralléles et équidistantes a
ces cOtés. Le plan est ainsi divisé par un réseau de parallélogrammes qui représente la

forme (a, b, c).

R R
N
[ [ a [ [ ]
fS T
[ ] ] ]

F1G. 1.3 — Représentation de la forme quadratique (a, b, ¢) par un réseau.

Les sommets des parallélogrammes précédents forment un réseau de points a l'aide

duquel Gauss interpréte la notion d’équivalence entre formes

« Fin und dasselbe System solcher Punkte kann auf unendlich viele ver-
schiedene Arten parallelogrammatisch abgetheilt, und also auf ebenso viele
verschiedene Formen zuriickgefiihrt werden : alle diese verschiedenen For-

men sind aber, was in der Kunstsprache equivalent heisst!6! ».

Ainsi le réseau de points représente une classe d’équivalence dont chaque repré-

sentant correspond & un systéme de parallélogrammes définissant ce réseau de points.

159G Auss 1831.

160ScHWERMER 2007 p.9.

161 « Un méme systéme de tels points peut étre divisé en parallélogrammes d’une infinité de maniére
et donc étre rattaché a autant de formes différentes : mais toutes ces formes différentes sont ce qu’en
langage technique on appelle équivalentes », GAUSS 1831 p.194.
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Gauss donne aussi une interprétation géométrique du déterminant qui est négatif pour
une forme définie positive : l'aire des parallélogrammes d’un réseau est la méme et est
égale a la racine carrée de 'opposé du déterminant. Enfin, si une origine est fixée dans
le réseau, les nombres entiers qui sont représentables par la forme (a, b, ¢) sont les carrés
des distances de cette origine aux points du réseau'%?.

De fagon analogue, Gauss représente les formes quadratiques ternaires en considérant

des réseaux dans 'espace.

En 1848, Dirichlet poursuit ce travail en interprétant géométriquement la notion
de forme réduite!®®. Le parallélogramme d’une forme réduite est caractérisé par le fait
que ses cOtés sont plus petits que ses diagonales. Dirichlet explique aussi comment,
étant donné le réseau de points, on peut déterminer le parallélogramme fondamental
qui correspond a la forme réduite. Pour cela, choisissons un point du réseau O comme
premier sommet du parallélogramme, le deuxiéme sommet P est tel que la distance O P
soit minimale parmi les distances de O aux autres points du réseau. Enfin le dernier
sommet () est pris tel que OQ) soit le minimum des distances entre O et les points du

réseau qui ne sont pas sur la droite O P64,

Avant le début du travail de Minkowski sur les formes quadratiques, la représenta-
tion des formes quadratiques binaires et ternaires définies en termes de réseau est donc
en place. Cette représentation a aussi permis d’interpréter géométriquement certains
problémes importants dans I’étude de ces formes comme la représentation des entiers,

I’équivalence entre formes ou la réduction.

1.2.3.3 Un autre résultat géométrique de Dirichlet

En 1863, Richard Dedekind publie les Vorlesungen tiber Zahlentheorie'®® rédigés
d’apres les cours professés par Dirichlet a Berlin et & Gottingen. Ces cours ont joué un
role tres important dans le développement de la théorie des nombres car ils reprennent
trés largement le contenu des Disquisitiones Arithmeticae en les simplifiant et rendent
ainsi accessible le travail de Gauss & une audience plus large. Dedekind ajoute a I’édi-
tion de ces cours des suppléments issus du travail de Dirichlet dés I’édition de 1863
et d’autres, issus de ses propres recherches, pour les éditions postérieures a 1871 166,

Parmi les suppléments de la premiére édition de 1863, c’est ici le numéro III, Ueber

162Pour une description modernisée de cette représentation géométrique voir SCHWERMER 2007 p.9.
163, EJEUNE-DIRICHLET 1850.

164 e cas des formes ternaires se traite de la méme facon, voir DICKSON 1923 p.21 et 212.

165, EJEUNE-DIRICHLET 1863.

166 GOLDSTEIN 2002.
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einen geometrischen Satz, qui va nous intéresser.

Dedekind!%? considére une partie bornée dans le plan F dont il note A Daire. Soient
ensuite X et Y des axes perpendiculaires et le systéme de droites paralléles a ces axes
et équidistantes. Ce systéme de droites forme un réseau du plan et le c6té d'un carré
de ce réseau est noté . Enfin, T' désigne le nombre de points du réseau situé dans la
partie F.

Le résultat de Dirichlet dit alors que la quantité 702 tend vers A lorsque ¢ tend vers 0.
Pour démontrer ce théoréme, Dedekind commence par supposer que les droites paral-
leles & Y coupent le bord de F' en deux points (il explique a la fin pourquoi le résultat
ne dépend pas de cette hypothése). Soit ensuite h la longueur d’une des lignes paralléles
a Y a l'intérieur de F, alors hd est approximativement l'aire de F' entre deux de ces

paralléles consécutives (voir la figure 1.4).

YA
A
F/
/ P /h5
/ TN —
ML L —
h | D)
11—

A\

F1G. 1.4 — Le résultat géométrique de Dirichlet

Un théoréme de la théorie de I'intégration lui permet de dire que
> he —— A,
6—0

ol la somme du membre de gauche porte sur les segments dans F' paralléles & Y. Si
maintenant n est le nombre de points du réseau sur un tel segment de longueur A, h
est divisé en n — 1 segments de longueur § plus un reste strictement inférieur a 24, ainsi

h =nd +¢d avec —1 < e < 1. Ceci implique que

D hs=) (nd®+e8’) =T +45» eb,

167 EJEUNE-DIRICHLET 1999 p.215.
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les sommes portant toujours sur les segments dans F' paralléles & Y. La somme i
est bornée car, comme ¢ est en valeur absolue inférieure a 1, elle est plus petite que la
longueur maximale d’'un segment paralléle a X et inclus dans F' qui est borné. D’autre

part, comme > ho — A, T'égalité précédente permet de conclure que

T8 — L A
0—0

Comme référence Dedekind renvoie a un article de Dirichlet de 1839 intitulé Re-
cherches sur diverses applications de ’analyse infinitésimale a la théorie des nombres.
Dans cet article nous retrouvons effectivement ce résultat mais énoncé de maniére dif-

férente et sans la démonstration jugée « trés facile » :

« Tous les points d’un plan infini étant rapportés a deux axes rectangulaires
des x et des y, concevons dans ce plan une courbe fermée assujettie a une
méme loi analytique dans toutes ses parties, supposons que les dimensions
de cette courbe augmentent de plus en plus et au dela de toute limite, de
maniére cependant que la courbe variable reste toujours semblable a elle-
méme, et désignons par o l'aire également variable a laquelle la courbe sert
de contour.

Soient maintenant a, b, o, § quatre constantes dont les deux premiéres ont
des valeurs positives, et supposons que 1’on construise tous les points dont

les coordonnées x et y ont la forme
6. r=av+a, y=bw+[,

oll v et w désignent tous les entiers depuis —oo jusqu’a co. Cela posé si
I'on désigne par F(o) le nombre de ces points situés dans l'intérieur de la

courbe, on aura évidemment pour les valeurs infinies de o,

c’est a dire que le rapport des deux membres de cette équation convergera

168

vers 1'unité lorsque o croit au dela de toute limite positive'®®. »

Ce résultat est bien équivalent au précédent sauf que la maille du réseau n’est pas

un carré de coté 0 mais un rectangle dont les cotés sont a et b.

Dirichlet utilise ce résultat afin de déterminer le nombre de classes de formes qua-

dratiques binaires az? + 2bxy + cy? ayant un déterminant D = b? — ac fixé. Dans sa

168], gJEUNE-DIRICHLET 1839 p.329.
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démonstration, Dirichlet étudie la limite, quand s tend vers 1, de somme du type

1
—1
(s ) Z (ax? + 2bxy + cy?)s

la sommation se faisant sur des points (x,y) qui appartiennent a un réseau du type de
celui décrit ci-dessus'®’. Dirichlet rameéne le probléme & la détermination du nombre
de points (z,y) de la forme = = av + o , y = bw + [ situés dans un domaine délimité
par la courbe

ar? 4+ 2bzy +cy’ = o

ce qui lui permet d’utiliser le résultat précédent!™.

Dirichlet considére ce résultat comme un simple lemme technique de nature analy-
tique
« Nous aurons encore besoin de deux autres lemmes qui appartiennent,

171

comme le précédent, a I'analyse infinitésimale*. »

Mais ce théoréme fait un lien entre la notion de réseau et une aire afin de résoudre une
question arithmétique. Avec Minkowski qui connaissait le travail de Dirichlet, ce lien
entre réseau et aire va acquérir un statut plus fondamental et étre envisagé davantage
d'un point de vue géométrique sans pour autant que ’aspect analytique soit complé-
tement abandonné. Selon la présentation faite, Minkowski verra son travail de fagon

géométrique ou analytique.

1.3 Le travail de Minkowski sur la géométrie des nombres

La date la plus souvent donnée pour la naissance de la géométrie des nombres
est 1896 qui est l'année de publication de la premiére édition du livre de Minkowski

Geometrie der Zahlen

« The geometry of numbers is a branch of number theory that originated

with the publication of Minkowski’s seminal work in 189672 ».

Les indices montrant que Minkowski travaille sur ce théme depuis plusieurs années sont
en fait nombreux. Nous en avons déja donné des exemples quand nous avons décrit les
grandes étapes de sa carriére scientifique. Nous avions cité en particulier son habilita-

tion a Bonn et la correspondance avec Hilbert qui permettent de dire que la géométrie

169Ce sont les conditions 6 données dans la citation de Dirichlet.

70T, nature de la courbe dépend du signe du déterminant. Si D est strictement négatif, il s’agit
d’une ellipse et si D est strictement positif d’un secteur d’hyperbole.

" LEJEUNE-DIRICHLET 1839 p.328.

120LDS ET AL. 2000 p.xiii.
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des nombres est en germe dés la fin des années 1880. De plus, si nous regardons les pu-
blications recensées dans la rubrique géométrie des nombres des oeuvres de Minkowski
éditées par Hilbert, nous voyons que des articles concernant ce théme sont publiés des
1891. Parmi ces publications se trouvent des extraits de lettres adressées a Hermite
et des conférences faites en diverses occasions qui montrent que Minkowski diffuse ses

idées sur la géométrie des nombres avant 1896.

1.3.1 La géomeétrie des nombres avant 1896
1.3.1.1 Deux publications de 1891

En 1891, deux articles sur la géométrie des nombres sont publiés par Minkowski.
Dans le premier, Uber die positiven quadratischen Formen und tiber kettenbruchihnliche
Algorithmen'™, Minkowski expose les premiers résultats qu’il a obtenus concernant les
minima des formes quadratiques ainsi que des applications & la théorie des nombres
algébriques. La deuxiéme publication de I'année 1891 est un extrait d’une lettre de
Minkowski & Hermite publiée dans les Comptes rendus de I’Académie des sciences'™.
Il s’agit d'une courte lettre dans laquelle Minkowski résume le contenu de l'article cité

précédemment. Les résultats y sont donc énoncés sans démonstration.

Le premier théoréme que Minkowski énonce dans sa lettre est le suivant :

« Soit, m un nombre plus grand que 1; soient &, n, ¢, ..., n formes linéaires
indépendantes a n variables z, y, z ... . Parmi ces formes, soient [ paires
d’imaginaires conjuguées et les autres n — 20 = « formes réelles. L'un ou
l’autre des nombres « et 3 peut aussi étre égal a zéro. Soit A le déterminant
des formes &, n, C, .... Soit enfin p une quantité quelconque > 1. On peut

toujours assigner a x, y, z ... des valeurs entiéres, de sorte que la somme
(abs. )P + (abs.n)? + (abs. () + ...

soit différente de zéro et en méme temps plus petite que la quantité

Sk

— g (1 i %> abs. A

) e e

p

LT3 NVINKOWSKI 1891b.
ITANINKOWSKI 1891a.
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qui est elle-méme plus petite que

p
n

n (abs. A)

175

Ici abs. signifie « valeur absolue de » et I' désigne la fonction gamma . »

Ce résultat énoncé sur n formes linéaires quelconques est ensuite appliqué au cas
ol ces formes sont n formes conjuguées d’un corps de nombres algébriques. Pour cela,
dans un tel corps irréductible de degré n, Minkowski choisit une forme & qui décrit
tous les entiers algébriques de ce corps lorsque ses n variables prennent des valeurs
entiéres!™. Les n — 1 autres formes sont alors les formes conjuguées a £. Si A désigne
toujours le déterminant de ces formes alors le discriminant D du corps est le carré de
A et c’est un entier rationnel. Le théoréme précédent entraine 'existence d’entiers z,

Y, 2, ... non tous nuls tels que

Sk

p p p 2 . 1+E
€7+ Inf I+ < § (=

) r)l 2 ()]

En utilisant en particulier le fait que

5 [AD < n|Alx .

€17+ [nlP + ¢ +---1"
< | |
n

cette derniére inégalité implique

~N nr T (142)

Enc.. | < | = — 5 1Al <A
V()] e ()
p p

De plus, Minkowski remarque que le produit |7 ( ... | est un entier supérieur ou égal
alcarz,y, 2, ... nesont pas tous nuls'’". Aprés avoir élevé au carré il en déduit donc

2

217 n*EF(1+%> .
(”) r(1+4)] 2 [r(u%)]ﬁ ph=p

Minkowski interpréte ensuite ces deux inégalités. D’abord, laissant de coté le terme

du milieu, I'inégalité |D| > 1 lui permet de démontrer un résultat qui avait été conjec-

IS MINKOWSKI 1891a p.210. Pour 2 > 0, la fonction gamma est définie par I'(x) = 0+°o t*~le~tdt.

I76En termes actuels, il suffit de prendre pour ¢ une forme linéaire dont les coefficients sont les
éléments d’une base de I’anneau des entiers du corps qui est un Z-module.

IT7]] s’agit en effet en terme moderne de la valeur absolue de la norme d’un entier algébrique non
nul.
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turé par Leopold Kronecker

178

« chaque discriminant contient des nombres premiers comme facteurs ®. »

Ensuite, Minkowski obtient des informations supplémentaires sur le discriminant

grace a l'autre inégalité

D] > (f)ﬁ [F <1+%>r2*% [F <1+§>]5

2 n*%r(Hﬂ)

p

Minkowski commence par remarquer que la borne précédente tend vers +oo lorsque

179

n tend vers +oo*"” et donc

« un nombre donné quelconque ne peut étre discriminant que pour un

181

nombre fini d’ordres!8® n 181, »

La minoration donnée pour |D| dépend du paramétre p qui est un entier supérieur

ou égal & 1. Minkowski note que cette minoration est en fait optimale lorsque p =1 et

obtient ainsi le théoréme suivant!®?

« Le discriminant d’un corps algébrique, faisant partie de n corps conjugués

dont 2 sont imaginaires et n — 2 réels, est en valeur absolue toujours plus

@) ]

La lettre & Hermite se termine par quelques applications numériques de ce dernier

grand que

résultat. Par exemple, le discriminant D d’un corps de nombres d’ordre n = 2 doit étre

> 4 ou < —2 et celui d’un corps d’ordre n = 3 est > 20 ou < —12.

Avec ces applications a la théorie des corps de nombres algébriques, Minkowski se

place dans la continuité du travail effectué par Hermite sur le sujet

« En suivant une voie indiquée dans vos admirables lettres a Jacobi, je tirerai
du théoréme que je viens d’exposer plusieurs conclusions fondamentales sur

183

les nombres algébriques . »

Dans son travail sur les nombres algébriques, Hermite s’était placé du point de vue
des racines des équations polynomiales. La notion de corps de nombres est introduite

par Dedekind dans les suppléments des Vorlesungen de Dirichlet. Il est remarquable

T8 MINKOWSKI 1891a p.211.

1790n peut le vérifier en utilisant la formule I'(z + 1) = zI'(z), puis le fait que la fonction I'(x) est
équivalent en +o0 a V27272 e~ Voir par exemple ARTIN 1964.

180T ’ordre d’un corps chez Minkowski est ce qui est maintenant appelé son degré.

18I MINKOWSKI 1891a p.211.

1821] utilise aussi le fait que pour un entier naturel n, I'(n + 1) = n!.

183 MINKOWSKI 1891a p.210.
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que Minkowski utilise ce vocabulaire des corps dans ce contexte deés 1891, car cette
approche reste marginale jusqu’a la publication du Zahlbericht de Hilbert en 1897. No-
tons que 'expression théorie algébrique des nombres employée pour désigner le domaine
de recherche ouvert par le Zahlbericht est plus tardive, Algebraische Zahlentheorie est

utilisé par Landau en 1927 dans ses Vorlesungen's?.

Nous avons noté que cette lettre & Hermite est présentée par Minkowski comme un
résumé de son article publié en 1891 dans le Journal de Crelle. Cependant quelques
différences peuvent étre remarquées. En particulier, lorsqu’il s’adresse a Hermite, Min-
kowski n’explique pas les méthodes géométriques qu’il a utilisées dans son travail. Il le

précise dés le début de sa lettre

« La méthode géométrique de mon travail, traduite en langue purement
analytique, conduit a ce théoréme susceptible d’'une application trés éten-

due!® ».

Pourtant dans son article, bien que ’expression « Geometrie der Zahlen » n’apparaisse
pas encore, nous pouvons commencer a voir émerger le principe géométrique qui sera
a la base d’'un théoréme fondamental de la géométrie des nombres. Cette idée géomé-
trique est élaborée afin d’étudier les minima des formes quadratiques.

Minkowski reprend la représentation géométrique des formes quadratiques définies po-
sitives élaborée par Gauss mais la généralise aux formes de n variables. Tout comme
Gauss, il interprete la notion d’équivalence entre ces formes a ’aide du réseau de points
obtenu avec les valeurs prises par la forme sur les entiers et des systémes de parallé-
lépipédes engendrant ce méme réseau de points. C’est ce que Minkowski appelle la

186 5 Ceci rappelé, Minkowski consi-

« anschauliche Auslegung des Aequivalenzbegriffs
dére un tel systéme de parallélépipédes dont les sommets donnent le réseau de points
parmi lesquels une origine O est fixée. Si f est la forme représentée par ce réseau alors

pour des entiers x1, T3, ..., Tp,
= OP?
flxy, 2o, .. ) ,

ol P est un point du réseau. Si M désigne le minimum de f pour des entiers

Ty, Ta, ..., T, non tous nuls, cela implique que v/M est la distance minimale entre
I'origine O et un autre point du réseau, ou ce qui est la méme chose, entre deux points
quelconques du réseau. Minkowski considére alors des hypercubes de coté % centrés

en tous les points du réseau'®” (voir la figure 1.51%8). Les sommets d’un tel hypercube

184Voir GOLDSTEIN et SCHAPPACHER 2007b p.91.

185 MINKOWSKI 1891a p.210.

186 « Vinterprétation visuelle du concept d’équivalence », MINKOWSKI 1891b p.288.
187Voir aussi HANCOCK 1964 vol.I, p.311-312.

188 OPOLKA et SCHARLAU 1985 p.157.
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sont ses points les plus éloignés de son centre et la distance entre ce centre et les
sommets est @ Ainsi deux hypercubes ne peuvent se rencontrer que sur un de leurs
sommets et 'ensemble des hypercubes ne remplit donc pas tout I'espace contrairement

aux parallélépipédes du réseau.

F1G. 1.5 — Hypercubes centrés sur les points du réseau

Si A désigne le discriminant de f, le volume de chaque parallélépipede est VA, la

comparaison de ce volume a celui d’un hypercube donne :

(\%\/M) <\/K, et donc M < nVA.
n

Cette borne obtenue par Minkowski'®

constitue déja un résultat non trivial pour
I’époque car elle est meilleure que celle qu’avait donné Hermite et qui était alors la
référence sur ce sujet'®. Minkowski ne s’arréte cependant pas a ce résultat et montre
qu’avec une petite modification de sa méthode il peut arriver a une estimation encore
meilleure.

Dans le raisonnement précédent, Minkowski remplace les hypercubes par des sphéres

de rayon YM 14 suite de la démonstration ne change pas : ces sphéres ne peuvent se

2
rencontrer que sur leur frontiére et ne remplissent donc pas tout I'espace, leur volume!®!

S oy

est

189Nous savons que Minkowski a démontré ce résultat dés 1889 grace & la lettre a Hilbert du 6
novembre 1889 que nous avons déja citée voir RUDENBERG et ZASSENHAUS 1973 p.38.

n—1
19Rappelons qu'Hermite avait obtenu (3) * & la place du n.

91Pour le calcul du volume voir par exemple MARTINET 1996 p.52.
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En écrivant que ce volume est plus petit que VA, il vient

M<4[F(1+§)2 )

It
T

Pour justifier que cette inégalité est meilleure que la précédente Minkowski utilise

une approximation asymptotique pour la fonction I' ainsi que I’égalité!®? T (%) = /7,

2N n
M < il Vnwe% \77&
Te

Comme % ~ 0,234 ..., cette estimation est bien meilleure que la précédente quand n

il obtient ainsi

tend vers +oo.

Nous voyons donc bien que lorsqu’il écrit & Hermite, Minkowski fait le choix de
laisser de coté les aspects géométriques de son travail qui sont pourtant trés présents
dans son premier article sur la géométrie des nombres. Dans un cas, ce sont des figures
géométriques (hypercubes, sphéres) qui varient pour obtenir des résultats différents,
dans lautre c’est le paramétre p dans la somme |£|P + |n|P + |C|P+- - - qui est laissé libre
(le cas des formes quadratiques étant celui ou p = 2). Nous pouvons interpréter cela
comme les premiers pas de Minkowski vers 1'utilisation de distances générales. Nous
reviendrons sur cette question qui est liée a la fagon dont il envisage 'intervention de

la géométrie.

1.3.1.2 Deux exposés sur la géométrie des nombres

Dans cette partie nous allons étudier la suite du développement de la géométrie des
nombres & travers des textes issus de communications faites lors de deux conférences.
Nous les avons regroupées car ces deux exposés ont en commun de ne pas étre adressés
a priort & des spécialistes de théorie des nombres.

Le premier de ces exposés est donné par Minkowski en 1891 a Halle lors de la 64°¢
réunion des naturalistes et des médecins. Un court rapport sur cette communication
est publié en 1891 dans les comptes rendus de cette réunion'®s.

Le deuxiéme est un texte de Minkowski lu par Felix Klein a I'occasion du Congres inter-
national de mathématiques, qui s’est tenu & Chicago en 1893 en marge de 1" Exposition

Universellet®*.

192Voir ARTIN 1964 p.19.

L93MINKOWSKI 1891c.

94Pour des informations sur le déroulement des conférences lors de ce congrés voir PARSHALL et
ROWE 1994 chapitre 7.
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a) Le congrés des naturalistes et des médecins a4 Halle en 1891

Le rapport publié sur cette conférence de Minkowski est trés court (moins de deux
pages dans ses oeuvres complétes). Il est cependant intéressant d’une part parce qu’a
notre connaissance, c’est la premiére fois que 'expression « Geometrie der Zahlen »
apparait dans un texte publié. Cet article a d’ailleurs aussi pour titre Ueber Geometrie
der Zahlen. D’autre part, dans cet exposé, Minkowski fournit aussi une indication sur
ce qui est pour lui au coeur de son travail et donc sur ce qui 'améne a appeler sa
théorie la géométrie des nombres.

11 ouvre sa conférence de la maniére suivante :

« Wenn man fiir den Raum rechtwinklige Coordinaten einfiihrt, so entspre-
chen den Systemen von drei ganzen Zahlen discrete Punkte, welche derart
iiber den Raum versteut liegen, dass sie eine gewisse Nahe in Bezug auf
jede beliebige Raumstelle erreichen. Den Inbegriff aller dieser Punkte mit
lauter Coordinaten, die ganze Zahlen sind, neunt der Vortragende das drei-
dimensionale Zahlengitter ; unter dem Titel “Geometrie der Zahlen” begreift
er geometrische Studien iiber das dreidimensionale Zahlengitter und iiber
das entsprechende Gebilde in der Ebene, und in weiterem Sinne auch die
Ausdehnung der Ergebnisse solcher Studien auf Mannigfaltigkeiten belie-
biger Ordnung. Natiirlich besitzt jede Aussage iiber die Zahlengitter einen
rein arithmetischen Kern. Das Wort “Geometrie” erscheint aber durchaus
am Platze im Hinblick auf Fragestellungen, zu welchen die geometrische
Anschauung verhilft, und auf Untersuchungsmethoden, welche fortwéihrend

195

durch geometrische Begriffe ihre Richtung angewiesen erhalten ™. »

Au centre de I’étude de la géométrie des nombres se trouve donc la notion de réseau
de points, mais ce qui constitue l'originalité de sa démarche pour Minkowski est que les
propriétés arithmétiques de ces réseaux sont explorées au moyen de concepts géomé-
triques. Un éclairage sur le type de concepts géométriques intervenant dans cette étude
est donné ensuite. Il s’agit de considérer certains domaines dans I’espace contenant un
point du réseau (l'origine) et d’étudier selon le volume de ce domaine ses propriétés

par rapport au réseau.

195 ¢ Si on construit dans Iespace des coordonnées rectangulaires, alors le systéme de trois nombres

entiers correspond aux points discrets qui sont situés de telle fagon qu’ils atteignent un certain voisinage
de n’importe quel lieu de I'espace. Le conférencier appelle I'ensemble de tous ces points dont les
coordonnées sont des nombres entiers le réseau des nombres entiers de dimension 3; sous le titre
“géométrie des nombres” il englobe des études géométriques sur le réseau des nombres entiers de
dimension 3, sur ce qui lui correspond dans le plan et dans un sens plus large la généralisation des
résultats de telles études aux espaces de dimension quelconque. Naturellement chaque affirmation sur le
réseau des nombres entiers posséde un noyau purement arithmétique. Mais le mot “géométrie” apparait
absolument approprié compte tenu des questions posées pour lesquelles I'intuition [nous reviendrons
sur le mot Anschauung plus loin| géométrique joue un role et compte tenu des méthodes de recherches
qui sont continuellement soumises et dirigées par des concepts géométriques. » MINKOWSKI 1891c.
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Minkowski illustre cette problématique par deux résultats allant dans cette direction
de recherche.

Le premier concerne les corps convexes admettant 1'origine du réseau comme centre. Si
le volume d’un tel corps est supérieur ou égal a 22, alors il contient un autre point du
réseau que l'origine.

Le second résultat concerne cette fois les corps que nous appelons en termes modernes
étoilés par rapport & lorigine du réseau'®®. Si le volume de ce corps est inférieur ou

égal a

alors il est toujours possible de “déformer” le domaine de telle facon que son volume
reste inchangé et qu’il ne contienne que l'origine comme point du réseau.

Des précisions sur ces deux résultats vont étre données dans 'exposé fait & Chicago.

b) La conférence de Chicago de 1893

Cette conférence de Minkowski, intitulée Uber Eigenschaften von ganzen Zahlen,
die durch raumliche Anschauung erschlossen sind, est présentée par Klein en 1893 au
congrés international de Chicago. Une traduction en francais de Léonce Laugel est pu-
bliée en 1896 dans les Nouvelles Annales de Mathématiques, c’est elle que nous utilisons

ici'®” pour décrire le contenu de ce texte.

Minkowski se place dans ’espace de dimension 3 et il considére le réseau des points
a coordonnées entiéres. Il précise que les résultats qu’il va énoncer sont en fait valables
en dimension n quelconque et que le cas général sera traité dans son livre a paraitre
Geometrie der Zahlen.
L’article commence par des rappels sur le volume qu’il juge étre « la notion la plus im-

198 5 1l reprend sur ce sujet le travail

portante en corrélation avec le réseau des nombres
effectué par Camille Jordan'’. Minkowski considére chaque point du réseau comme le
centre d'un cube dont les faces sont paralléles aux plans des coordonnées et d’aréte
1. Soient maintenant K un ensemble borné et p un point quelconque de 'espace, K§
désigne alors I'image de K par ’homothétie de centre p et de rapport 2. Minkowski
note ensuite af, le nombre de cubes strictement inclus dans K§ et ug, le nombre de
cubes qui contiennent au moins un point de K§. Jordan a démontré que les quantités

Q7 3ah, et Q7 3ub) convergent indépendament de p vers respectivement A et U qui sont

196Un corps C est étoilé par rapport a l’'origine O si pour tout point z de C, le segment [0, ] est
contenu dans C.

9TMINKOWSKI 1896¢.

198 MINKOWSKI 1896¢ p.394.

199 JoRDAN 1892.
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appelés volume intérieur et volume extérieur de K. Lorsque les volumes intérieur et

extérieur coincident, K est dit de volume A.

Dans la deuxiéme partie, Minkowski présente ce qu’il congoit comme la « généra-
lisation de la définition de la longueur d’une ligne droite », c’est ce qu’il appelle une

200

« distance radiale (Strahldistanz)®” ». Une distance radiale est une fonction de deux

points a et b, notée S(ab) par Minkowski, qui vérifie les deux conditions suivantes :

1) Sia#b, S(ab) >0etsia=0>b, S(ab) =0.

2) Si a, b, ¢, d sont quatre points tels que a # b et d —c =t(b— a) avec t > 0,

alors S(cd) = tS(ab).

Soit une origine O prise dans le réseau, a la distance radiale S est associée son « corps
étalon (Eichkorper) » qui est 'ensemble des points u qui vérifient S(Ou) < 1.
Dans la plupart des applications ou elles vont intervenir les distances radiales utili-
sées vérifient des conditions supplémentaires. Minkowski appelle ainsi « concordante

(einhellig) » une distance radiale S telle que pour trois points quelconques a, b et ¢

S(ac) < S(ab) + S(be) .

201

Le corps étalon associé a une distance radiale concordante est convexe®*. La réciproque

est aussl énoncée :

« tout corps dont I’encadrement n’est nulle part concave et a l'intérieur
duquel se trouve l'origine est corps étalon pour certaines distances radiales

concordantes. »

Minkowski propose ensuite ce qu’il juge étre I’exemple le plus simple de distance radiale

concordante qu’il note E(ab) :

« Par E(ab) 'on désignera la moiti¢ de l'aréte du cube aux faces paralléles
aux plans des coordonnées qui a pour centre a et dont I'encadrement passe

par b. »

Cette définition géométrique signifie en termes analytiques que E(ab) est égal au maxi-
mum de la différence des coordonnées des points a et b.

Des propriétés des distances radiales concordantes sont données sans les preuves pour
lesquelles Minkowski renvoie a nouveau a son livre. D’abord une distance S(ab) est une
fonction continue des points a et b, de plus il existe des constantes positives g et G

telles que
gE(ab) < S(ab) < GE(ab)

200MINKOWSKI 1896¢ p.395.
201Minkowski parle de corps dont « I’encadrement est nulle part concave ».
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CHAPITRE 1 1.3

pour tous les points a et b. Enfin, le volume du corps étalon associé a une distance
radiale concordante existe et est noté I dans la suite. Les démonstrations de ces propo-
sitions ne sont pas détaillées, en revanche, Minkowski interpréte géométriquement les
constantes g et GG. Le cube défini par I'inégalité F(Ou) < é est inclus dans le corps
étalon associ¢ a la distance radiale S qui est lui méme inclus dans le cube E(Ou) < é.
Une autre condition que vérifient les distances radiales utilisées par Minkowski est la
réversibilité. Une distance radiale est « réversible (Wechselseitig) » lorsque pour tous

les points a et b

S(ba) = S(ab) .

Comme pour la concordance cette derniére propriété est traduite géométriquement sur
le corps étalon : celui-ci est symétrique par rapport a l’origine pour une distance radiale
réversible?92.

Ayant mis en place les notions qui lui sont nécessaires, Minkowski peut alors énoncer

et démontrer le théoréme central de cet article.

Ce théoréme, qui concerne les points du réseau dans un corps convexe symétrique
par rapport a l'origine, est sans doute le résultat le plus connu de Minkowski en ma-
thématiques. Mais il est surtout emblématique pour la géométrie des nombres car il

est souvent considéré comme le point de départ de cette théorie

« the “geometry of numbers”, the subject created by Minkowski on the
basis of his fundamental Theorem 37 and its generalization in space of n

203

dimensions »

Minkowski démontre donc que pour S, une distance radiale concordante et réversible
dont le volume du corps étalon associé est noté I, il existe « au moins un point ¢ du

réseau, différent de O, pour lequel on ait

S(0q) < % Sy
Ce résultat n’est pas énoncé d’un seul tenant dans l'article, mais les hypothéses néces-
saires sont précisées au fur et & mesure de la démonstration.
Minkowski commence par remarquer qu’il y a au moins un point r dans le réseau des
entiers tel que E(Or) = 1, cela implique que S(Or) < G (les constantes G et g sont
définies comme ci-dessus). Soit maintenant M la distance minimale de 'origine O aux
autres points du réseau; alors en particulier M < S(Or) et donc M < G. Comme un

réseau est invariant par changement d’origine M est aussi la distance minimale entre

202En termes actuels, une distance radiale concordante et réversible est une distance induite par
une norme. Ainsi le corps étalon correspond lui & la boule unité pour cette norme. Minkowski semble
donc étre un des premiers mathématiciens a avoir introduit ces notions.

203HARDY et WRIGHT 1960 p.394.
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1.3 CHAPITRE 1

deux points quelconques du réseau.

Pour deux points du réseau a et ¢, notons?®* A, (respectivement A,) le corps constitué
des points u de l'espace pour lesquels S(au) < % (respectivement S(cu) < &). Ces
deux corps « ont en commun au plus des points de leurs encadrements ». En effet, si

un point u appartenait a la fois a A, et A. alors

S(au) < % et S(cu) <

| S

En utilisant la réversibilité et la concordance de la distance radiale S il vient
S(ac) < S(au) + S(uc) = S(au) + S(cu) < M .

Or compte tenu de la définition de M, S(ac) > M et par suite S(ac) = M. Finalement

S(au) = S(cu) = &, ce qui signifie bien que u est sur la frontiere de A, et de A..

Pour un entier naturel pair 2, Minkowski construit ensuite les corps A, .y ot x, y et

Q
DRI

(2 +1)3 corps ainsi définis et leurs centres sont tous dans le cube donné par I'inégalité
E(Ou) < 2.

De plus, si a est un point du réseau et u est tel que S(au) < % alors S(au) < %, puis

z prennent toutes les valeurs entiéres — ,—1,0,1, ..., % . Il y a exactement

E(au) < %% Ceci permet de montrer que tous les corps A, ) sont inclus dans le

cube E(Ou) < £ (Q + %) Le volume de ce dernier cube, qui est (2 + %)3, est donc

plus grand que le volume total occupé par les A, ., ces corps étant disjoints et ayant
M

chacun un volume égal a (7)3 I, Minkowski obtient

(Q+§)3 > (Q+1)° (%)31.

Lorsque 2 tend vers +o00, cette derniére inégalité devient

M3
1= (5) 1
2

Finalement, si ¢ est un point du réseau tel que M = S(Ogq) cela entraine bien

2
S(0Oq) < —.
(Oq) < 7T
Nous pouvons voir dans ce résultat I’étape supplémentaire franchie par Minkowski
par rapport au travail qu’il présentait en 1891. Il utilisait alors des cubes, puis de

sphéres pour améliorer son estimation. Avec le théoréme décrit ici, il a élucidé les

204Cette notation n’est pas utilisée par Minkowski.
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CHAPITRE 1 1.3

conditions sur le domaine & considérer qui permettent & sa méthode de fonctionner,
a savoir la symétrie par rapport a un point et la convexité, qui sont équivalentes du
point de vue des distances radiales a la réversibilité et a la concordance. Le reste de
la démonstration est similaire & celle de son article de 1891. D’ailleurs, il remarque
qu’il avait dans un premier temps prouvé ce résultat pour des figures géométriques
particuliéres (les ellipsoides).

Minkowski apporte enfin la confirmation que son travail est « inspiré par I’étude des

05

travaux de Dirichlet et ceux de M. Hermite, sur les formes quadratiques?

Dans la suite de la conférence, Minkowski présente un certain nombre d’applications
de ce théoréme. La premiére concerne l'estimation de sommes du type [£[P + || + |C|?,
ou &, n et ¢ sont des formes linéaires de trois variables. Il s’agit d’un théme déja abordé
dans la lettre & Hermite de 1891 mais au sujet duquel il donne ici un peu plus de détails.
Dans ce qui suit les trois formes linéaires peuvent étre soit toutes réelles, soit £ est réelle
et m, ¢ sont a coefficients complexes et conjugués. Le déterminant D de ces formes est

supposé différent de 0. Minkowski note K, le corps défini par 'inégalité

<mw+wmp+KV)i<l
! <1,

Lorsque p est un réel supérieur ou égal a 1, K, est un corps convexe dont le volume I,

est donné par Minkowski sans que le calcul soit détaillé

23
I = ——
TooxIDY

avec, dans le cas ou les formes sont réelles,
3
3707 (1+2)
X = -
P VER
()]

ou bien, quand deux formes sont a coefficients complexes,

,  3r(1+2)
xo= = d
s

1) -2 2)
P(1+2) 27 (1+2)
En appliquant le résultat vu précédemment, Minkowski obtient le théoréme

« Lorsque p > 1, il existe toujours des nombres entiers x, y, z, qui ne sont

205 MINKOWSKI 1896¢ p.398.
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1.3 CHAPITRE 1

pas tous nuls et pour lesquels on a

<|£|p + [l + ¢

3 )p <)\p|D|%.>>

Il discute ensuite ce résultat en commentant les cas limites pour des valeurs du
paramétre p, ce qui le conduit a énoncer le théoréme suivant, qu’il obtient en faisant

tendre p vers 0 :

« Il existe toujours des nombres entiers, qui ne sont pas tous nuls et pour

lesquels on a |7 (| < A3 |D] et par conséquent a fortiori < |D|. »

1
En effet, (W) g converge vers la moyenne géométrique S’/m lorsque p tend
vers 0 et la quantité A\, est croissante avec p.

Nous retrouvons bien dans le cas particulier de trois formes linéaires les estimations
données dans la lettre & Hermite et Minkowski souligne & nouveau leur importance
dans la théorie des nombres algébriques. En plus des applications a ce domaine qu’il
indiquait déja & Hermite en 1891, il signale que les théorémes précédents lui ont per-
mis de redémontrer les théorémes de Dirichlet sur les unités complexes et celui sur la

finitude du nombre des classes d’idéaux?%.

Aprés la théorie des nombres algébriques, Minkowski passe & des applications de
son travail & I'approximation des nombres réels. Le probléme auquel il s’intéresse est le
suivant : étant donnés a et b deux réels, il s’agit d’approcher a et b par des rationnels
de méme dénominateur avec une erreur qui tend vers 0 quand ce dénominateur devient
grand.

Pour cela soit t > 0, Minkowski va dans un premier temps appliquer son théoréme au

parallélépipéde défini par les inégalités

-1 < z—az <1, -1 <y—-0bz <1, -1

IA
|

IN

—_

206En termes actuels ces théorémes s’énoncent de la maniére suivante. Le premier donne la structure
du groupe des unités d’un corps de nombres : si K est un corps de nombres avec r; plongements
réels, 2r, plongements complexes, et si Ok (respectivement Oj;) désigne son anneau des entiers
(respectivement son groupe des unités), alors

Op=pxFE

ol i est le groupe des racines de I'unité de K et E est un groupe libre de rang r = ry +ro — 1.

Si maintenant Z(K) est 'ensemble des idéaux fractionnaires de K, ’ensemble des idéaux fractionnaires
non nuls Z(K)* est un groupe pour la multiplication des idéaux dont ’ensemble des idéaux principaux
P(K) est un sous-groupe. Le groupe des classes d’idéaux C(K) est par définition le groupe quotient
de Z(K)* par P(K), alors ce groupe C(K) est fini. Voir par exemple DUVERNEY 1998; SAMUEL 2003.
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Le volume de ce parallélépipéde étant 23 ¢, le théoréme donne l'existence de nombres

entiers x, y, z non tous nuls tels que

2 2 ‘z) < 2
V23t T2t

Quitte a supposer z > 0, ce qui est toujours possible car le domaine utilisé est symé-

|r —az| <

trique par rapport a l'origine, nous obtenons

| =

1

0< 2z < ts, |z —az] < - .
t3

) |y—b2’| S

ol

t

Comme l'indique Minkowski, ce dernier résultat avait déja été démontré par Kronecker
pour des valeurs entiéres de ¢ en utilisant le principe de Dirichlet?°7.
Enfin, en éliminant ¢ des deux derniéres inégalités a ’aide de la premiére, nous arrivons

a I'approximation simultanée de a et b suivante

<% -y

et =

z2 z

Minkowski prouve ensuite l'efficacité de sa méthode en montrant qu’il peut obtenir
une meilleure approximation en considérant un autre domaine qu’un parallélépipéde.

I1 utilise donc cette fois 'octaeédre défini par
z z
|x—az|+’;’ <1 et |y—bz|+’;’§1.

Le calcul du volume de cet octaédre se raméne aprés un changement de variable de

déterminant % au calcul du volume du domaine
I X|+1Z] <1, Y|+ 1Z] < 1.

Ce volume est donné par 'intégrale

/11 <//X|s1z|,|y|s1z| dXdY) = /11[2(1 ~12DFdz = 233 '

~ : 7 2 2 2 ~ 3 ~ 2 ~
L’octaedre considéré au départ a donc un volume égal a % t et d’apres le théoréme de

Minkowski, il existe des entiers x, ¥, z non tous nuls qui vérifient

z 2 z 2
|x—az|—|—’—’§— et |y—bz\—|—’—’§—,
t gzt t 32—3t
3 3

207Si n + 1 objets sont répartis dans n ensembles alors un de ces ensembles contient nécessairement
au moins deux objets.
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ou encore

z

|r —az| +

<3% t | b\+’z’<3%
-\t ¢ gl =AY

D’aprés I'inégalité arithmético-géométrique®®®

1 2|z|
1z — azf? x 2|z] 13 < 2|z —az| + 77
t - 3 ’

ce qui implique

et x 2T L 2 (3 <2 (3
t -3\t —3\t)

Finalement, aprés simplification et en supposant z > 0, nous obtenons

=
ol
=

2
et [\y — bz|* x %]

ce qui constitue bien une meilleure approximation.

Minkowski se trouve a nouveau ici dans la continuité du travail d’Hermite qui avait

2v2 . P .
obtenu la borne ———— en utilisant son théoréme sur le minimum des formes qua-
V27 23/2

dratiques et un raisonnement similaire au précédent®®.

Minkowski termine sa conférence en remarquant que son théoréme sur les corps

convexes peut étre généralisé mais il ne donne pas plus de détails & cette occasion®!?.

1.3.1.3 Une autre lettre & Hermite

Minkowski adresse une seconde lettre a Hermite?!!

qui est cette fois publiée dans
le Bulletin des sciences mathématiques en 1893. Il s’agit & nouveau d’une lettre assez
courte (moins de 5 pages) que Minkowski présente comme un résumé de son livre et
dans laquelle les résultats sont énoncés sans démonstration. Nous y retrouvons un cer-
tain nombre de résultats rencontrés dans les publications précédentes, nous insisterons
donc davantage sur ceux qui apparaissent pour la premiére fois ou bien ceux qui sont

énoncés de manieére différente. Contrairement a la conférence de Chicago, les théorémes

208Voir HANCOCK 1964 vol.I, p.192 qui traite le cas général.

209G oLDSTEIN 2007 p.388.

210Minkowski fait ici allusion au théoréme sur les minima successifs.
2LIMINKOWSKI 1893.
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sont donnés ici dans le cas général (en dimension n quelconque) et Minkowski fait le
choix, comme dans sa premiére lettre, de ne pas mettre en avant les aspects géomé-

triques de son travail sur la géométrie des nombres.

Ce dernier point est bien illustré par le théoréme sur les corps convexes qui est
énoncé au début de la lettre et dont Minkowski propose une présentation assez différente

de celle que nous avons vue. Minkowski commence par indiquer que
« La plus grande partie du livre traite des fonctions ¢ a n variables xq,

Zo, ..., Tpn, qui, comme la racine carré d’une forme quadratique positive,

satisfont aux conditions

o(x1, 29, ..,x,) >0, silonn’apas 1 =0, 20=0, ..., x, =0,
(A) ©(0,0,...,0) =0,

o(txy, try, .. txy,) = tp(xy, o, .., 2y), si t >0,
(B) @@y 22+ Y2,y Tn £ Yn) < 021,22, -, 2n) + (Y1, Y2, - Yn),

(C) o=z, =29, ..., —2p) = p(T1, T2y ...y Ty) - »

Cette définition des fonctions ¢ remplace ici toutes les notions développées dans
I’article précédent a propos des distances radiales. Nous reconnaissons dans les condi-
tions (A), (B) et (C) respectivement la définition d’une distance, la concordance et la
réversibilité mais Minkowski n’emploie pas ce vocabulaire géométrique, ne fait pas non
plus mention des corps étalons et se contente de cette caractérisation analytique. Dans

le méme ordre d’idées, comme exemple d’une telle fonction ¢, il propose la fonction

¢($1>x27 : "7xn) = maX{|§1|v |§2|77|§V|} )

ou &, &, ..., &, sont des formes linéaires a coefficients réels dont n ont un déter-
minant non nul. Aprés avoir justifié que « l'intégrale [[ ... [dx;dzs ... dx, étendue
sur le domaine ¢(x1,x9, ... ,2,) < 1 aura toujours une valeur déterminée », notée J,

Minkowski passe a I’énoncé de son théoréme :

« Je démontre alors que 'on peut toujours trouver des nombres entiers

1, Ta, ..., T, pour lesquels on ait

2
(I) 0 < 90(1‘171‘27 73771) S -
Vo

La suite de la lettre est consacrée aux applications de ce théoréme.
D’abord I'application (jugée la plus simple par Minkowski) qui concerne n formes li-

néaires &1, &, ..., &, a coeflicients réels et dont le déterminant est égal a 1. Sous ces
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hypothéses,

« on peut toujours donner a x1, xo, ..., x, des valeurs entiéres qui ne
s’évanouissent pas toutes et de sorte que les valeurs absolues de &, &, .. .,

&, soient toutes < 1 ».

En effet, comme le déterminant des formes est £1, intégrale [[ ... [dxidzs ... dx,

calculée sur le domaine défini par les inégalités
-1 <¢ <1 (i=1,2, ...,n),

est égale a 23. L’application du théoréme (I) donne alors bien le résultat annonceé.

Cet énoncé est immédiatement précisé par Minkowski. Il indique que les entiers xy,
Zo, ..., T, peuvent étre choisis de telle sorte que l'inégalité précédente soit stricte
sauf si « les formes &1, &, ..., &,, par une substitution linéaire a coefficients entiers
et a déterminant +1, peuvent étre transformées de maniére que, abstraction faite de

I'ordre, elles deviennent
T1, 211 —|—.§L’2, sy, A1 + QpoXo + -+ 2, . »

Minkowski mentionne ensuite des applications déja abordées dans la conférence de
Chicago, le théoréme de Dirichlet sur les unités complexes mais aussi I’approximation
simultanée de nombres réels. Dans le cas général ou il s’agit d’approcher n — 1 réels,

ai, as, ..., a,_1, ce résultat d’approximation s’exprime de la maniére suivante

« on peut toujours trouver des nombres entiers xi, xs, ..., T,_1, Tn, Sans
diviseur commun et parmi lesquels x,, est positif, de sorte que les valeurs

absolues de
X X2 Tn—1
— =, — —QAy, ..., — Q1
T T T

soient plus petites quune quantité positive € choisie & volonté et en méme

temps
n—1
—_— . »

nay

2
Pour n = 3, la borne précédente devient ST qui est bien celle obtenue dans la confé-
3x3
rence donnée & Chicago.

Le théoréme suivant est présenté comme une généralisation du théoréme (I) (certaine-

ment celle annoncée dans cette méme conférence) :

« Pour toute fonction ¢, satisfaisant aux conditions (A), (B), (C), on peut

2

trouver n* nombres entiers [, & déterminant différent de zéro, de sorte que
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I’on ait
@(lllalﬂ;---;lnl) ¢<l127l227---7ln2) Sp(llnal2n7---7lnn) S 7 .

Le déterminant [y, sera alors toujours < 1.2...n.»

Nous pouvons voir que le théoréme (I) est bien une conséquence de ce résultat en
nous rappelant que pour le théoréme (I) la valeur ¢(z1, 2o, ..., x,) dans la conclusion
correspond au minimum de la fonction ¢ sur les points & coordonnées entiéres non

toutes nulles, ainsi

QO(.Tl,SUQ,...,.Tn)n S ¢<l1171217---7ln1) Q0<l12,122,...,ln2) So(llnal2n7---7lnn) S —

ce qui implique
2
(1, T, ..., x,) < T

Minkowski énonce ensuite des résultats obtenus en appliquant ce nouveau théoréme.
Soient ani, (h,k =1,2,...,n) n? nombres réels dont la valeur absolue du déterminant,

noté D, est différent de zéro, alors

2

« Il y aura ou n® nombres entiers I, a déterminant différent de zéro, de

sorte que le systéme composé

ayy ... Qip l11 e lln b11 e bln

Ap1 .- Qpp lnl ce lnn bnl Ce bnn

satisfasse a toutes les n™ inégalités
+bp,1bny2 b < D, (1 =1,2,....n5he =1,2,...,n;...;h, =1,2,...,n),

ou n? nombres entiers l;;, & déterminant 41, de sorte que ce systéme com-

posé aprés une permutation convenable des lignes, prenne une forme
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satisfaisant aux conditions

e =0, h>k,
0 <cp < ep < o0 < Gy

0 < e < cpp, h<k.»

Les applications suivantes concernent la théorie de la réduction des formes qua-
dratiques positives de n variables dont le déterminant est noté D. Le premier résultat

donné par Minkowski a ce sujet dit qu'une telle forme

« peut toujours, par une substitution a coefficients entiers et & déterminant
I(1+4%)

(rG)"

formée en une forme Y byi, yp, yi, satisfaisant aux conditions

différent de zéro |dont la valeur absolue est < 2" , étre trans-

0<byp <byp <+ < by, 20, < bpp, (b < k),
2° T (1+2) ’
(' (3)"

Bien que cela ne soit pas précisé par Minkowski, nous reconnaissons des conditions qui
n(n—1)

ont déja été vues a propos du travail d’Hermite sur la réduction. La constante (%) 2

S

qu’obtenait Hermite est remplacée ici par {W

bllbgg...bnn < D.»

2

Le théoréme suivant traite toujours de la réduction des formes quadratiques posi-
tives et il s’agit & nouveau d’'une amélioration d’un procédé de réduction proposé par
Hermite. Cette fois, Minkowski fait explicitement référence au travail de son ainé sur
ce théme et il précise qu’il est question de la derniére méthode de réduction qu’Hermite
avait donnée dans ses lettres a Jacobi?!2. Si f est une forme quadratique positive de n
variables, le travail d’Hermite entraine que par une substitution a coefficients entiers

et de déterminant 1, f peut se transformer en une forme > bur yp yx qui vérifie les

inégalités

thkphpk > bmm ,
ol m est un entier compris entre 1 et n; et ot py, po, ..., P, sont des entiers quelconques
tels que le plus grand diviseur commun de p,,, Pmi1, - -, Pn s0it égal & 1. Les inégali-

tés précédentes donnent une infinité de conditions & vérifier sur la forme Y byx yn Y-
Minkowski démontre « que parmi ces inégalités on trouve un nombre fini dont dérivent

toutes les autres. »

212Rappelons qu'Hermite avait proposé plusieurs théories de la réduction des formes quadratiques
positives de n variables.
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Pour une forme f, il y a plusieurs formes qui lui sont équivalentes et dont les coefficients
vérifient les inégalités précédentes. Minkowski précise qu’il y en a en général 2"~ qui

se déduisent a partir d’'une d’entre elles par les 2" substitutions
Y1 ==z, Yo="TF29, ..., Y= T2, .

Si x(A) est le nombre de classes de formes quadratiques a coefficients entiers et de

déterminant A, Minkowski déduit du théoréme précédent que la somme
x(D+1) + x(D+2) + -+ + x(D+d)

. N n=1
est équivalente & v D™ 2 d, avec

Pour terminer, Minkowski considére une fonction ¥ (xy, ..., x,) continue qui vérifie

la condition (A) de la définition des fonctions ¢ (ou les conditions (A) et (C)), alors

« on peut toujours trouver n? quantités réelles ayy, a déterminant 1, de sorte

que la relation

| Sn 2]2S,,
0 < ¢(a11y1+' : '+a1nyna s 7an1y1+' : +annyn) S 7 ou S 7

ne soit vérifiée par aucun systéme de nombres entiers vy, ..., y,. »

Si maintenant (3, v D désigne le minimum des formes quadratiques positives de
déterminant D pour des valeurs entiéres des variables non toutes nulles. L’application
de ce dernier théoréme a la fonction ¢ = /2% + -+ + 22 permet a Minkowski de

justifier que
log (3,
MH<%5):L
n—-+00 log n
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1.3.1.4 A propos des fractions continues

Le dernier article concernant la géométrie des nombres pendant cette période est
publié en francais dans les Annales de I’Ecole Normale Supérieure en 1896 sous le titre

« Généralisation de la théorie des fractions continues?!?

». Le manuscrit original en
allemand est reproduit dans les oeuvres complétes de Minkowski?!, il est daté du 15
octobre 1894. Des théorémes démontrés par Hermite sont a l'origine de la généralisa-
tion des fractions continues proposée. Mais nous allons voir que les fractions continues
ne sont pas I'unique théme développé dans cet article.

Ce sujet peut sembler a priori éloigné des thémes que nous avons rencontrés jusque
la dans le travail de Minkowski. En fait, les fractions continues sont & I’époque une
des méthodes importantes dans I'approximation des nombres réels par des rationnels,
question qui fait partie des domaines d’application de la géométrie des nombres. Les
fractions continues interviennent aussi en théorie des formes. Par exemple, des notions
de réduction pour les formes quadratiques binaires indéfinies®'® ax? + 2bxy + cy? sont

_ /b2 — . .
W de I’équation

fondées sur le développement en fraction continue de la racine
aw? 4 2bw + ¢ = 0. Enfin, comme nous allons le voir, Minkowski utilise dans cet article

son théoréme sur les corps convexes.

Le texte de Minkowski commence effectivement par l'introduction d’une fraction
continue ’;—: qui dépend d’un paramétre €2 > 1. Soit a le nombre réel qui doit étre
approché, a est supposé ne pas étre un entier ni un demi-entier. Minkowski construit
alors p,, et ¢, en posant d’abord pyg = 1 et gy = 0, puis il note fy I'entier le plus proche
de a et p; = fo, ¢1 = 1. Il suppose ensuite avoir construit ces suites jusqu’au rang n, il

définit alors p,41 et g4 de la facon suivante®!®

« Désignons ensuite, pour n > 1 et tant que p, — ag, Z 0, par ¢, le signe

de % , quotient dont la valeur absolue sera désignée par ¢, +1,, ¢,
n n

étant un nombre entier et r, satisfaisant a la condition 0 < r, < 1; posons

1

. _ q _ _ _ .
ensuite s, = ¢, — €, Z—n et posons, lorsque 7, = 0, f, = ¢,, mais lorsque

> 0,

fn= ou bien

cn+1,

ZI3MINKOWSKI 1896b.

214Voir « Zur Theorie der Kettenbriiche », MINKOWSKI 1911 p.278-292.
215Voir par exemple CAHEN et VAHLEN 1908 p.105.

216 N[INKOWSKI 1896b p.41-42.
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suivant que 1'on a

>
(s, +1)% —1 st 1
A . n
<

et enfin

Pny1 = fnpn — &nPn—1,

Gn+1 = ann — &nGn—1 -

Ceci posé on aura

En—1

- fn—l

fn—2

(n=1,2...).»

Minkowski énonce ensuite des propriétés de la fraction continue ainsi définie. Puis il
examine des cas particuliers du parameétre €.

D’abord, pour €2 = oo, il remarque que les termes de la suite Z—Z sont en fait les
réduites du développement en fraction continue ordinaire?!” de a (sauf éventuellement
la premiére réduite).

Ensuite, pour 2 = 2, Minkowski montre qu’il retrouve un développement en fraction
continue donné par Hermite. Enfin, I’étude du cas ou 2 = 1 lui permet de démontrer

que pour des nombres réels a et b
« Lorsque aucune des équations r —ay =0,z —b =0, x —ay — b =0 n’est
résoluble en nombres entiers x, y, il existe donc une infinité de nombres

entiers différents x, y pour lesquels on a

1
>

y2 0, |t —ay—b < — . »
- 4yl

217G o est un nombre réel, le développement en fraction continue ordinaire de o s’obtient en écrivant
a=qy+ a—ll, ol o = [ (la partie entiére de «) et oy > 1. On répéte ce procédé ay = ¢ + a%, avec

g1 = [oa] et ae > 1 etc ... Si o € Q lalgorithme s’arréte, sinon les réduites de la fraction continue
1
convergent vers a et a = qg + — 1 voir par exemple DAVENPORT 1952 p.89.
q1 +
q2 + e
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218

A nouveau Hermite avait déja démontré un résultat de ce type dans un article?'® publié

2
277

bonne que la précédente. En fait, Hermite indique dans son article qu’il s’agit d’une

en 1880, mais la borne qu’il avait obtenue était ce qui est une estimation moins

question déja abordée par le mathématicien Pafnuty Tchebychef qui avait donné I'in-

égalité |z —ay—b| < ﬁ mais son article publié en russe était un peu passé inapercu®'.

Dans le paragraphe suivant, Minkowski considére la fonction

o= [f[ +[2" <

ou &, n et ¢ sont des formes linéaires de trois variables, a coefficients réels et de déter-
minant A différent de 0. p, o et 7 sont des parameétres positifs. Il rappelle que pour
Q) > 1, l'inégalité ¢ < 1 définit un corps convexe, en particulier quand €2 = oo ce corps

convexe est un parallélépipede, noté (p, o, 7), dont les faces sont données par
==+p, n==%0, (==%7.

Ce cas, qui correspond au développement en fraction continue ordinaire, est le seul
étudié dans la suite. Minkowski introduit ensuite du vocabulaire relatif a ces parallé-
lépipedes. Un (p, o, 7) est libre lorsqu’il ne contient aucun point du réseau dans son
intérieur?°. Un (p, 0, 7) qui est libre et « qui perd cette propriété dans tous les cas
ou l'un de ses paramétres éprouve une augmentation si petite qu’elle soit, sera dit un
parallélépipéde extréme pour &, n, (. » Le théoréme de Minkowski relatif aux corps
convexes et aux points d’un réseau implique que pour un (p,o,7) libre, por < A.
Minkowski énonce ensuite sans démonstration un théoréme sur les parallélépipédes ex-
trémes??!. Il explique comment & partir d’un parallélépipéde extréme pour &, 7, ¢, on
peut déterminer tous les autres, il appelle cet ensemble de parallélépipédes extrémes

pour &, 1, ¢ une chaine de parallélépipédes.

L’algorithme précédent est ensuite appliqué a la théorie des corps de nombres algé-
briques. Pour un corps de nombres réel de degré 3 dont les corps conjugués sont aussi
réels, Minkowski montre en effet comment sa méthode permet de déterminer deux uni-

tés de ce corps avec lesquelles toutes les autres peuvent étre trouvées par multiplication

ZIBHERMITE 1880.

219Nous aurons 'occasion de revenir sur ce résultat qui joue un réle important dans les développe-
ments ultérieurs de la géométrie des nombres. D’autres preuves seront données pour cette inégalité
et de nombreuses recherches seront consacrées a sa généralisation & des produits d’un nombre plus
important de formes linéaires non homogénes.

220Te réseau désigne ici les points & coordonnées entiéres.

221Des commentaires sur la démonstration de ce résultat ainsi que des références sont données dans
HaNcocK 1964, vol.I, p.380.
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et division. Il traite enfin I’exemple de la recherche des unités du corps engendré par

27
2 cos =

1.3.1.5 Bilan sur ces premiers travaux

Nous I’avons dit, le théoréme de Minkowski sur les points d’un réseau dans un do-
maine convexe symétrique par rapport & un point est un des résultats fondamentaux,
voire peut étre le résultat fondamental, de la géométrie des nombres. Ces premiers
travaux de Minkowski en géométrie des nombres permettent de se faire une idée sur
la genése et 1’élaboration progressive de ce théoréme. D’abord, la méthode condui-
sant & ce résultat est mise en oeuvre sur des domaines particuliers comme le cube ou
la sphére dans l'article de 1891 qui concerne exclusivement les formes quadratiques.
C’est confirmé en 1893 lors de la conférence de Chicago ot Minkowski indique que
son théoréeme a d’abord été découvert pour 'ellipsoide. Dans un deuxiéme temps, il
semble que Minkowski ait examiné de plus prés propriétés des domaines considérés qui
permettaient a sa méthode de fonctionner. Il s’est rendu compte que les hypotheéses
de symétrie et de convexité sont essentielles, ce qui le conduit a I’énoncé général de
son théoréme. Ce résultat devient alors indépendant des formes quadratiques qui ne
sont qu’un cas particulier des fonctions distances qu’il étudie. Minkowski s’exprime a

ce sujet dans une lettre a Hilbert?*? du 22 décembre 1890 :

« Dagegen habe ich den von mir gegebenen Beweis fiir den Satz vom Mini-
mum einer positiven quadratischen Form aufserordentlich verallgemeinert,
und bin dazu gekommen, dafs der Vortheil speciell der quadratischen For-
men ein sehr illusorischer ist, indem andere definite Formen (allerdings nicht
gerade rationale) viel weitergehendere Folgerungen gestatten. So habe ich
folgendes Resultat gefunden, welches durch Benutzung quadratischer For-
men nicht gewonnen werden kann : Die Discriminante irgend eines Zahlkor-
pers, welcher aus einer ganzzahligen Gleichung mit n — 23 reellen und

23 complexen Wurzeln entspringt, ist dem absoluten Werthe nach immer

222 ¢ En revanche, j’ai extraordinairement généralisé la preuve que j’ai donnée du théoréme sur le
minimum d’une forme quadratique positive et suit arrivé [a la conclusion que] Pavantage des formes
quadratiques est trés illusoire, en ce que d’autres formes définies (bien entendu pas exactement ra-
tionnelle) permettent des conséquences bien plus étendues. Ainsi j’ai trouvé le résultat suivant qui ne
peut pas étre obtenu en utilisant des formes quadratiques; le discriminant de n’importe quel corps de
nombres, qui provient d’une équation & coefficients entiers avec n — 20 racines réelles et 23 racines
complexes, est en valeur absolue toujours plus grand que

(%)w (Z!; .

Lettre de Minkowski & Hilbert du 22 décembre 1890, RUDENBERG et ZASSENHAUS 1973 p.41.
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grofer als

7\ 28 n2n
(%) »
4 (n!)?
Cette citation permet de voir que Minkowski avait trés certainement démontré son

théoréme a la fin de I'année 1890, il le cite dés 1891 dans la conférence de Halle, puis

des énoncés plus précis sont donnés en 1893.

Nous avons pu aussi voir dans les articles précédents que Minkowski ne présente pas
toujours de la méme maniére son travail sur la géométrie des nombres. En particulier,
le théoréme sur les convexes est parfois exposé en des termes purement géométriques
et a d’autres occasions de fagon plus analytique ou arithmétique. Si nous regardons par
exemple les conférences de Halle et de Chicago, le vocabulaire employé est : réseau,
volume, distance, corps étalon, symétrie et convexité. De plus, la distance radiale par-
ticuliére E(ab) est définie géométriquement (voir cette définition page 75), la deuxiéme
condition dans la définition des distances radiales, S(cd) = tS(ab) pour d—c = t(b—a),

est interprété géométriquement??3

« Cette relation doit étre interprétée dans le sens du calcul barycentrique
et signifie que les droites cd et ab ont méme direction et que leurs longueurs

(au sens ordinaire du mot) sont dans le rapport de ¢ : 1. »

Dans I'application qu’il propose concernant I’approximation diophantienne, Minkowski
utilise un parallélépipéde puis un octaédre. L’interprétation géométrique de cette mé-
thode d’approximation simultanée de nombres réels par des rationnels n’est pas reprise
dans la lettre & Hermite de 1893 ou elle est pourtant énoncée. Cette différence de
traitement se retrouve dans toute la correspondance adressée a Hermite dont nous
avons parlé. Le vocabulaire utilisé par Minkowski dans ces lettres est plus spécialisé.
Nous n’y trouvons pas le vocabulaire autour de la notion de distance radiale, mais ces
derniéres sont remplacées par les fonctions ¢ auxquelles Minkowski ne donne pas de
nom particulier. De la méme maniére, la notion de réseau n’apparait pas mais ce sont
des points & coordonnées entiéres qui sont utilisés et les volumes des corps sont devenus
des intégrales. Ces changements illustrent bien la traduction analytique de son travail
que Minkowski dit lui méme vouloir faire dans une des lettres & Hermite.

Une premiére explication pour ces choix différents d’exposition est suggérée par les
publics auxquels s’adressent les communications dont nous venons de parler. Nous
avons d’une part des conférences effectuées dans des cadres ou Minkowski ne s’adresse
pas nécessairement a des spécialistes de théorie des nombres. A Halle, il s’exprime
devant le congrés des naturalistes et des médecins et & Chicago les interventions sont

aussi prévues pour toucher un large public

223MINKOWSKI 1896¢ p.395.
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« Strikingly modern and readable, the papers and lectures presented in Chi-
cago seemed crafted to communicate with the widest possible audience. |...]
If many of these mathematicians were specialists, they certainly knew how
to avoid the standard pitfalls that often plague the expert when addressing

a more general audience??. »

Il donne donc dans ces deux derniers cas un role pédagogique a la géométrie. Présenté
en termes géométriques son travail doit étre plus simple et accessible. C’est une idée que
nous trouvons aussi chez Felix Klein. Par exemple en 1893, lorsque ce dernier commente
son traitement géométrique de la composition des formes quadratiques binaires c’est

la simplicité et la clarté qui sont mises en avant au sujet de la géométrie

« les considérations géométriques a ’aide desquelles je traite ces questions y
introduisent un degré de simplicité et de clarté si élevé que ceux qui ne sont
pas familiers avec ’ancienne exposition ne concevront qu’avec peine que ’'on

ait regardé ce sujet comme si extraordinairement difficile et abstrait®?°. »

A Tinverse, Hermite est un spécialiste des sujets abordés par Minkowski. De plus,
ces recherches en théorie des nombres appartiennent & une tradition liée a 'analyse
et la géométrie n’intervient presque pas dans son travail. Hermite considére méme la

géométrie comme un domaine & part du reste des mathématiques

« Les éléments des mathématiques présentent deux divisions bien tran-

chées : d'une part, I’ Arithmétique et 1’ Algébre ; de 'autre, la Géométrie??S. »

Lorsqu’il s’adresse a Hermite, Minkowski choisit donc de se situer dans la continuité
du travail du mathématicien frangais et préfére insister sur les aspects analytiques de

sa théorie plus que sur la géométrie.

1.3.2 Description du livre Geometrie der Zahlen
1.3.2.1 Les différentes éditions

Le livre de Minkowski Geometrie der Zahlen®?" est publié pour la premiére fois en
1896. En fait, 'ouvrage est en préparation depuis plusieurs années, nous avons pu voir
qu’il y fait de nombreuses fois références dans ces articles publiés entre 1891 et 1896.
Sa correspondance avec Hilbert permet aussi de se rendre compte que la rédaction lui
a demandé plus de temps que prévu et que la publication a été reportée a plusieurs

reprises. Dans un passage d’'une lettre datée du 30 aotit 1892 que nous avons déja citée

224PARSHALL et ROWE 1994 p.313.
2P KLEIN 1898 p.59.

226HERMITE 1873.

22TV INKOWSKI 1896a.
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(voir page 46), il annonce a son ami une publication prochaine. En juin 1893, il écrit

encore

« so muss ich dies schon zu Ende fithren. Hoffentlich dauert es nicht mehr
lange. Das letzte, was ich in mein Opus eingefiigt habe, war ein Beweis fiir
die periodische Entwicklung von quadratischen Irrationalzahlen in Ketten-

228. N

briiche >

Il semble que ce soit son travail sur des questions touchant les fractions continues qui
ne le satisfait pas et lui fait remettre la publication??”. Il se résout finalement & publier,

I’état de son travail en 1896 doit faire I'objet d’un premier fascicule

« Wie ich nun jiingstens wiederum von Weber einen Mahnbrief erhielt mit
dem Vorschlage, doch wenigstens das bisher Gedruckte zu publiciren, ent-
schloss ich mich dazu und auch Teubner geht bereitwillig darauf ein, so
dass jedenfalls noch in diesem Monat 256 Seiten des Buches als eine erste

230

Lieferung erscheinen="". »

Minkowski a effectivement travaillé & la préparation du deuxiéme fascicule

« Ich habe seit unserer Trennung eifrig an meiner zweiten Lieferung weiter-
gearbeitet?!. »
Cette seconde partie ne fut jamais publiée. D’aprés David Hilbert et Andreas Speiser?3?,
les recherches qui devaient apparaitre dans ce fascicule se trouvent dans les articles nu-
mérotés XIII a XXI dans les oeuvres complétes de Minkowski?33.
La deuxieme édition de Geometrie der Zahlen est publiée en 1910. Les deux éditions
sont presque identiques, il est seulement ajouté dans la seconde une courte préface de
Hilbert et Speiser, un avertissement de 1’éditeur rédigé en 1893 et une annonce de la
publication du premier fascicule datant de 1896, tous les deux rédigés par Minkowski.
Des suppléments de 14 pages sont aussi ajoutés au dernier chapitre dont un index?3.
Le livre est édité & nouveau en 1953 par Chelsea Publishing Company?*>. Nous y re-

trouvons seulement ’annonce de Minkowski de 1896 ainsi que les suppléments a la fin

228 ¢ donc je dois bien conduire cela & bonne fin. Espérons que cela ne dure plus longtemps. La
derniére chose que j’ai introduite dans mon opus était une preuve pour le développement périodique
des irrationnelles quadratiques en fractions continues. » Lettre de Minkowski & Hilbert du 2 juin 1893,
RUDENBERG et ZASSENHAUS 1973 p.51-52.

229Voir par exemple la citation page 47.

230 ¢ Comme j’ai encore recu derniérement une sommation de Weber avec la proposition de publier
au moins ce qui a été imprimé jusqu’a présent, je m’y suis décidé et Teubner a accepté obligeamment
si bien qu’en tout cas ce mois-ci 256 pages du livre paraissent en tant que premier fascicule. » Lettre
de Minkowski a Hilbert du 10 février 1896, RUDENBERG et ZASSENHAUS 1973 p.77.

231 « Depuis notre séparation, j’ai travaillé avec zéle au deuxiéme fascicule. » Lettre de Minkowski &
Hilbert du 22 juin 1900, RUDENBERG et ZASSENHAUS 1973 p.127.

232V/oir la préface de MINKOWSKI 1910.

233 MINKOWSKI 1911.

234K JELDSEN 2002 p.481.

235 MINKOWSKI 1953.
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du livre, le texte est donc celui de 1910. Remarquons toutefois que la table des matiéres

doit étre celle de 1896 car les suppléments n’y figurent pas.

1.3.2.2 Un apergu du contenu

Nous utilisons ici indifféeremment les éditions de 1910 et 1953 de la Geometrie der
Zahlen qui ont la méme pagination. Le livre comporte cing chapitres dans lesquels nous
pouvons trouver les démonstrations qui ne sont pas toujours données dans les articles
publiés précédemment.

Dans la description qui suit nous nous sommes aussi servi du livre Development of
the Minkowski Geometry of Numbers de Harris Hancock?*®. La plus grande partie
de cet ouvrage est en fait une traduction plus ou moins fidéle des travaux publiés
de Minkowski, Geometrie der Zahlen y est en particulier repris dans son intégralité.
Le tableau suivant indique dans quels chapitres du livre de Hancock nous pouvons

retrouver les différentes parties de celui de Minkowski?37.

. ) . Development of the Minkowsk:
Geometrie der Zahlen, Minkowski

Geometry of Numbers, Hancock

Chapitre 1

Chapitre II

Chapitre 11

Chapitre III

Chapitre III

Chapitre IV

Chapitre IV, paragraphes 36 a 40

Chapitre V

Chapitre IV, paragraphes 41 a 44

Chapitre VI

Chapitre IV, paragraphe 45

Chapitre VII

Chapitre V, paragraphes 46 a 50

Chapitre XIII

Chapitre V, paragraphe 51

Chapitre XIV

Chapitre V, paragraphe 52

Chapitre XV

Chapitre V, paragraphes 53 a 54

Chapitre XVI

Chapitre V, paragraphes 55 a 57

Chapitre XVII

TAB. 1.1 — Correspondance entre les livres de Minkowski et de Hancock

Dans le premier chapitre qui a pour titre Von den nirgends concaven Fldichen,

Minkowski étudie de maniére approfondie la notion de distance radiale S(ab) telle que

236 HANCOCK 1964.

28TMéme si c’est trés rare, Hancock s’écarte parfois du texte de Minkowski, donne quelques détails
supplémentaires ou des applications numériques. La plus grande partie des ajouts sont faits dans des

chapitres & part.




1.3 CHAPITRE 1

nous ’avons déja rencontrée dans la conférence de Chicago. Il reprend en particulier
I'exemple de la distance E(ab), appelée « die Spanne von a nach b », démontre a son

sujet I'existence des constantes g et GG vérifiant
gE(ab) < S(ab) < GE(ab)

pour n’importe quelle distance radiale concordante. Il prouve la continuité des distances
radiales concordantes simplement énoncée en 1893.

Les propriétés des corps étalons associés a des distances radiales sont aussi démontrées :
symétrie, convexité?®®, étude des plans tangents, caractérisation de l'intérieur, de la
frontiére et de I'extérieur. .. Minkowski montre des résultats sur les distances radiales

mais aussi par exemple le théoréme de Weierstrass en dimension n quelconque

« Eine Punktmenge, welche in einem gegebenen Wiirfel mit endlicher Kante
unendlich viele Punkte enthilt, besitzt in dem Wiirfel mindestens eine Hau-

fungsstelle. (Ein Theorem von Weierstrass.)*? »

La fin du chapitre est consacré a I’étude de systéme d’inégalités linéaires. Le lien avec
le reste du chapitre vient du fait que les plans tangents aux corps étalons sont donnés
par des équations linéaires et séparent ’espace en deux demi-espaces qui sont donc

caractérisés par des inéquations linéaires?4°.

Le chapitre 2, Vom Volumen der Kérper, commence par quelques résultats sur les
fonctions continues, par exemple, en termes modernes, le fait qu'une fonction continue
sur un ensemble fermé et borné de l'espace de dimension n est uniformément conti-
nue et qu’elle est bornée et atteint ses bornes. Minkowski fait ensuite le lien entre les
distances radiales S(ab) et les fonctions ¢ rencontrées dans les lettres & Hermite (fonc-
tions qui sont ici notées f)*4!. Il montre alors des propriétés du corps étalon lorsque la
distance est continue, en particulier qu’il est alors fermé. Dans la suite, Minkowski s’in-
téresse au volume?*? des corps étalons associés a des distances radiales concordantes, il
justifie 'existence de ce volume puis donne des propriétés du volume d’une réunion de
corps étalons. Il traite ensuite I’exemple du calcul du volume de parallélépipédes, puis
la modification du volume d’un corps lorsqu’on lui applique une substitution linéaire.

Toutes les démonstrations concernant le volume sont ici faites sans recours au calcul

238 Minkowski parle de surface nulle part concave par rapport & un point, le terme convexe est réservé
a la stricte convexité.

239« Un ensemble de points qui contient une infinité de points & l'intérieur d'un cube donné de
cotés finis posséde a 'intérieur du cube un point d’accumulation (Un théoréme de Weierstrass) »,
MINKOWSKI 1910 p.5-6.

240Pour une étude détaillée de cette fin de chapitre voir KJELDSEN 2002 p.483-486.

2 MINKOWSKT 1953.

24213 notion de volume que Minkowski utilise est celle que nous avons rencontrée dans la conférence
de Chicago.
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intégral, Minkowski encadre les corps qu’il étudie par des hypercubes.

Le troisiéme chapitre est consacré au théoréme sur les points d’un réseau dans un
domaine convexe et symétrique par rapport & un point. Il appelle réseau (« Zahlen-
gitter ») tout systéme de points z1, xo, ... , T, ou les x; sont des nombres entiers. Il
énonce et démontre ensuite son théoréme, la présentation est assez proche de celle faite
a 'occasion de la conférence de Chicago. Mais il remarque que le résultat peut étre
interprété analytiquement,

« Diesen Sétzen kann die folgende, rein analytische Fassung gegeben wer-

den?*3 3.

Il reprend alors le théoréme tel que nous 'avons vu dans la lettre & Hermite. Il étudie
ensuite des cas limites du théoréme. Par exemple, si M désigne la distance radiale mi-
nimale entre deux points quelconques dans le réseau, Minkowski s’intéresse aux points

du réseau se trouvant sur la frontiére des corps définis par une inégalité du type
S(au) < M,

ol a appartient au réseau, soit A le nombre de ces points. Il montre d’abord que
A< 3"—-1

et que dans le cas d’un hypercube il y a égalité. Cette inégalité est ensuite affinée, pour

des corps qui sont strictement convexes elle devient
A< vt 2.

Aprés cela Minkowski revient au théoréme et se demande pour quels corps 'égalité a

lieu. Si nous reprenons la démonstration vue dans la conférence de Chicago, la démons-

M3
— <

ou J est le volume du corps étalon. Le cas d’égalité correspond a la situation ou les

tration conduit a l'inégalité

corps donnés par S(au) < % (pour a dans le réseau) sont tous de volume 1, des pro-
priétés et des caractérisations de ces corps sont alors proposées. D’abord, ils doivent
remplir tout I'espace et avoir au moins 2"*! — 2 points du réseau sur leur frontiére. Ils
peuvent étre aussi caractérisés par une condition sur les points du réseau situés sur leur
frontiére : pour étre dans le cas d’égalité il faut et il suffit que les points du réseau sur la

frontiére appartiennent au moins & deux corps S(au) < % L’étude des plans tangents

243« A ces propositions peut étre donnée la présentation suivante, purement analytique », MIN-
KOWSKI 1953 p.76.
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aux corps précédents améne Minkowski & montrer en particulier que leur frontiére est

constituée d’au plus 27! — 2 faces?*.

Des applications du théoréme énoncé au chapitre 3 sont données dans le quatriéme
chapitre. Dans les paragraphes numérotés de 36 a 40, Minkowski revient sur les appli-
cations concernant les formes linéaires. Il s'intéresse d’abord & v formes linéaires de n

variables et a coefficients réels &1, ..., &, du type
o1ry + ..+ Ty,

n de ces formes sont supposées indépendantes. Il applique alors son théoréme a la

fonction ¢(x1, ..., z,) définie comme étant le maximum de |& ], ..., |£,| ce qui implique
'existence d’entiers x, ..., , non tous nuls et tels que?*
2 2

% 9 ey \n/j .

Ce résultat est ensuite appliqué & des formes linéaires particuliéres afin de retrouver les
théorémes relatifs a 'approximation simultanée de nombres réels par des rationnels déja
évoqués dans les lettres & Hermite?*®. Minkowski traite ensuite le cas ol certaines des
formes sont & coefficients complexes. Soient pour cela vy, vg, ..., v, n formes linéaires
de déterminant A # 0 telles que les r premiéres &1, ..., & soient a coefficients réels et

que les 2s derniéres (s > 0 et 2s < n) soient a coefficients complexes conjugués

771+iC1 7)1—1'(1 . ns+2§s ns_iCs
\/i , \/5 Do \/5 , \/5 .

Comme le volume du domaine défini par les inégalités
lor| <1, .0 Joa] <1
2" (2)

A
tous nuls tels que

2\ 2\ 2\
PARS (-) IA=],  |w| < (—) IA=], ..., o] < (—) |A=] .
v v v

En suivant le modéle du cas ou les formes sont toutes réelles, ce dernier résultat est

est égal a , le théoreme donne donc l'existence d’entiers xy, o, ..., &, non

utilisé afin de réaliser 'approximation simultanée de nombres complexes. Soient by, +icy,

244Ce résultat était déja donné par Minkowski & Chicago dans le cas de la dimension 3, mais la
preuve n’était pas détaillée.

5] = [dxy ... dz,, ou l'intégrale est calculée sur le domaine —1 < & <1,...,-1<¢, <1

246Voir par exemple page 83.
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(h = 1,...,m — 1) les nombres complexes a approcher, il existe toujours m entiers
complexes®” y;, + iz, (h = 1,...,m — 1,m) pour lesquels y,, + iz, est non nul, les
modules ,

Ut e (h=1,...,m—1)

Ym + 12m

sont plus petits que n’importe quelle quantité positive fixée et pour tous les entiers h

compris entre 1 et m — 1 :

m—1 2 <2m—1 4)2#—2 1

m ™

m o \ym+izm|% ’

Les applications suivantes concernent les sommes de puissances de formes linéaires,
théme que nous avons déja rencontré d'une part dans la lettre & Hermite de 1891 et
d’autre part dans la conférence de Chicago pour le cas de trois formes. Dans ce qui suit
nous gardons les formes v; telles qu’elles ont été définies précédemment et pour un réel

P, posons

fz1,20,...,2,) = <|U1|p el ¥ |vn|p)% .

n
Minkowski commence par étudier f en fonction du paramétre p. Pour p > 1, cette
fonction est une distance radiale et concordante, plus précisément la surface f =1 est
convexe (« nirgends concave ») pour p < 1 et strictement convexe (« iiberall convex »)
si p > 1. f est une fonction croissante de p > 0, la suite K, des corps étalons associés
aux fonctions f est donc décroissante pour l'inclusion et leur volume .J, décroit aussi.
Lorsque p tend vers 0, Minkowski remarque que f converge vers m et sip

tend vers +oo alors le corps K, devient
o] <1, fuo| <1, o fu| <1,

K est donc le corps déja rencontré ci-dessus. De l'expression du volume de K,
Minkowski déduit que pour n > 1, p > 1, il existe des entiers z1, 9, ..., x,, non tous

nuls et qui vérifient

3k

_)s n—%rr(wg)
() 2 ((+3))

Il y a une jgxception au résultat précédent quand p = 1, s = 0, n = 2 et si une des

vy v

17|)? a des coefficients entiers premiers entre eux, dans cette situation 1’éga-
2

s 4]

ol ol -l | (2
n

formes

247 (est-a-dire que yp, et zj, sont des nombres entiers rationnels.
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1.3 CHAPITRE 1

lité peut se présenter?®. Minkowski commente enfin la borne obtenue pour p = 2 qui
est le cas des formes quadratiques et fut le point de départ de ses recherches contenues

dans ce livre2*,

Minkowski passe ensuite aux applications concernant la théorie des nombres algé-
briques et ce sont, pour la plupart, des résultats qui avaient été annoncés dans les tra-
vaux antérieurs de Minkowski. Il commence cette partie par quelques rappels sur cette
théorie, puis expose quelques conséquences des théorémes précédents sur les formes
linéaires pour les corps de nombres. Il rappelle d’abord que le discriminant D d’un tel

2

corps est toujours divisible par un nombre premier?°, puis a I’aide de la borne trouvée

pour la somme de puissances de formes linéaires il justifie que pour un corps de degré

n ayant 2s corps conjugués imaginaires®!

o> (5 o)

il en déduit qu’un nombre D fixé ne peut étre le discriminant de corps que pour un
nombre fini de degré n. Une démonstration du théoréme de Dirichlet sur les unités

complexes est ensuite proposée.

Le chapitre se termine par un long paragraphe dans lequel il introduit les notions de
parallélogramme libre (« frei ») et de parallélogramme extréme (« atisserste » ).
Soient & = ax + [y et n = vr + dy deux formes linéaires telles que ad — vy = 1.

Minkowski note {\, u} le parallélogramme défini par les inégalités
—A < <A, —pu<n<p

et il considére le réseau des nombres entiers. Un parallélogramme {\, 1} qui ne contient
aucun point du réseau dans son intérieur est dit libre. Un parallélogramme libre {\, i}
qui perd cette propriété pour un petit accroissement de A ou de p est appelé extréme.
Minkowski introduit aussi les chaines de parallélogrammes ou de substitutions. Apres
avoir démontré des résultats sur ces notions, il les applique a différentes situations,
d’abord aux fractions continues, ensuite a la question de ’équivalence et de la réduc-

tion des formes quadratiques binaires définies et indéfinies.

248Un exemple du cas d’égalité est proposé dans HANCOCK 1964, vol.I, p.207.

249N[INKOWSKI 1953 p.122-123.

250Voir aussi la lettre a Hermite de 1891.

251Notons que dans ce passage Minkowski n’utilise pas le vocabulaire moderne de la théorie algé-
brique des nombres mais exprime ces résultats en termes de racines d’une équation.
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Le théme central du dernier chapitre, Fine weitere analytisch-arithmetische Unglei-
chung, est la généralisation du théoréme sur les points d’un réseau dans les domaines
convexes déja énoncée dans la lettre & Hermite de 1893 (voir page 83). Minkowski défi-
nit ce qui est maintenant appelé les minima successifs S1, Ss, ..., S, pour une distance

radiale S, ces quantités vérifient alors 'inégalité
S15y...5, < 2™,

ou J est le volume du corps étalon associé a la distance S. Dans un premier temps,
une démonstration est donnée seulement dans le cas de l'ellipsoide et 1’étude de ce cas
particulier lui permet de retrouver la finitude du nombre de classes de formes quadra-
tiques a coeflicients entiers définies positives pour un déterminant fixé. Un paragraphe
est ensuite consacré a des lemmes sur la notion de volume nécessaires a la preuve du

théoréme. Il justifie par exemple qu’une intégrale du type

/dﬂfldﬂfg d.I‘n,

évaluée sur le corps étalon d’une distance radiale, peut se calculer en intégrant d’abord
par rapport aux m premiéres variables x1, ..., x,,, puis en intégrant par rapport aux
derniéres T, 1, ..., T,. La démonstration du théoréme suit ainsi que I’énoncé tel qu’il
était donné dans la lettre écrite & Hermite. Le chapitre se termine par une discussion

du cas d’égalité dans le théoréme et avec des applications de ce résultat.

Nous avons déja remarqué la place importante occupée dans la géométrie des
nombres par le théoréme des points d’un réseau dans les parties convexes symétriques
par rapport a un point. L’organisation du livre de Minkowski confirme la place cen-
trale de ce résultat dans cette théorie. L'importance du troisiéme chapitre dans lequel
le théoréme est exposé est aussi relevé dans le compte rendu du livre fait par Cahen

dans le Bulletin des Sciences Mathématiques en 1897 :

« Le troisiéme chapitre est intitulé : Des corps qui dans leurs volumes
contiennent plus d’un point a coordonnées entiéres. C’est le plus important

de ’Ouvrage et, pour ainsi dire, le chapitre fondamental?2. »

Le livre Geometrie der Zahlen semble en effet construit autour de ce théoréme et
chaque partie a une fonction par rapport a lui. La premiére partie du livre (chapitres
[ et II) introduit les notions préliminaires nécessaires a la présentation du théoréme.
Le théoréme lui-méme est présenté dans le chapitre III avec sa démonstration et des
discussions sur ces cas limites. Le chapitre suivant est consacré aux applications du
théoréme et enfin le dernier chapitre en donne un énoncé plus précis avec la notion de

minima successifs.

252CAHEN 1897 p.26.
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1.3.3 La géométrie des nombres entre 1897 et 1909

Nous disposons pour la période 1897-1909 de différents types de sources pour rendre
compte du travail de Minkowski sur la géométrie des nombres. D’abord, la rubrique Zur
Geometrie der Zahlen de ses oeuvres complétes?® recensent 8 publications entre 1899
et 1905. Dans ces articles Minkowski aborde en liaison avec la géométrie des nombres
des thémes comme la théorie algébrique des nombres, I’approximation, ’empilement
de corps centrés en des points d’un réseau et la question de ’équivalence entre formes.
D’autre part, Minkowski publie en 1907 un deuxiéme livre consacré a la géométrie des
nombres dont le titre est Diophantische Approzimationen. Cet ouvrage est issu de cours

donnés a 'université de Gottingen durant le semestre d’hiver de 'année 1903-1904.

1.3.3.1 Géométrie des nombres et nombres algébriques

Trois des articles publiés par Minkowski entre 1897 et 1909 ont pour théme principal
la théorie des nombres algébriques®®*. Dans 'un d’entre eux publié¢ en 1900, il revient
sur les unités dans un corps de nombres algébriques et démontre a nouveau le théoréme

de Dirichlet énoncé sous la forme suivante :

« In einem Galois’schen Korper kann man stets eine solche Einheit angeben,
dak eine jede Einheit dieses Korpers ein Product aus einer Einheitswurzel
und aus Potenzen dieser Einheit und ihrer conjugirten Einheiten mit ratio-

nalen Exponenten ist?®°. »

Les deux autres articles qui concernent les nombres algébriques sont complémentai-
res. Ils sont publiés en 1899 puis en 1902 et ont pour point de départ un résultat de
Lagrange permettant de caractériser les nombres réels qui sont algébriques de degré 2.
Dans un mémoire publié en 1770 dans les Mémoires de I’Académie Royale des Sciences
et Belles-Lettres de Berlin, Lagrange avait en effet démontré qu’un nombre irrationnel
est solution d’'une équation du second degré a coefficients entiers si et seulement si son
développement en fraction continue est périodique®®®. Reformulé dans le cadre de la
théorie algébrique des nombres de la fin du XIX¢ siécle, ce théoréme fournit un critére
permettant de savoir si un nombre irrationnel est algébrique de degré 2. Minkowski se
propose de trouver un critére analogue pour déterminer si un nombre réel ou complexe
est algébrique de degré un entier n donné. Il s’agit d'un probléme qui avait déja été

envisagé par Hermite.

253Les autres parties de la classification des oeuvres complétes de Minkowski sont Zur Theorie der
quadratischen Formen, Zur Geometrie, Zur Physik, Rede auf Dirichlet.

254 MINKOWSKI 1899, 1900, 1902.

255« Dans un corps galoisien on peut toujours trouver une unité telle que toute unité de ce corps
est un produit d’une racine de I'unité et de puissances de cette unité et des unités conjuguées. »
MINKOWSKI 1900 p.93.

256, AGRANGE 1770 ou LAGRANGE 1868 p.603.
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La premiére partie du mémoire de Minkowski de 1899 est consacrée a des définitions
et des résultats préliminaires qui lui seront utiles dans 1’énoncé et la démonstration de
son critére. Il note &, ..., &, des formes linéaires homogénes de n variables x4, ..., =,
et a coefficients réels ou complexes et qui ne peuvent s’annuler toutes que quand tous

les x; sont égaux a 0. Il définit ensuite la fonction f en posant

flxy,...,z,) = max |&x(zq,..., 7).
k=1,2,....v

Nous reconnaissons une fonction déja utilisée par Minkowski dans Geometrie der Zahlen

et dans ses articles précédents®”

, il justifie cependant & nouveau qu’elle vérifie les
propriétés :

1) f<—371,..-,—.77n) = f<x17"'7xn)7

2) f(twy, ... te,) =t f(x1,...,2,) quand t > 0,

3) il existe des constantes positives g et G telles que
g max |zg| < f(xy,...,2,) < G max |z,
4) pour deux systémes quelconques de réels ay,...,a, et by, ..., by,

f(a1+b1,...,an+bn) gf(al,...,an)+f(bl,...,bn) .

La nouvelle intervention de ces fonctions montre la place centrale qu’elles occupent
dans la théorie de Minkowski.

Ce dernier démontre ensuite un résultat relatif aux substitutions. Pour un entier A
compris entre 1 et n, si pgh), ey pgh) sont des points indépendants d’un réseau et tels
que la substitution P définie par

est entiére et de déterminant non nul. Il montre qu’il existe une substitution A de

déterminant £1 telle que la substitution P~'A soit donnée par

(= Oy P 4+,

2 = Vs + -+ 9y,
(v =05sih > k),

Zn = W

257E]le correspond & la notion actuelle de norme infinie.
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ol les coefficients fy}(lk) vérifient les conditions supplémentaires

0<7,(1h)§1 et Ogv,(f)<7,gh) si h<k.

Minkowski définit ensuite une suite de minima associés a la fonction f. Il détermine

d’abord un point du réseau (pgl), . ,pgn)) tel que f(pgl), e ,pgn)) = F} est la plus

petite valeur possible prise par f sur les points du réseau. Soit ensuite (pél), ceey pé"))

un point du réseau indépendant du premier et tel que f (pgl), ey pg")) = F5 est la plus

petite valeur pour les points du réseau indépendants de (pgl), cee p§"’). En itérant ce

procédé, il arrive a un point (pg), ey pﬁl‘)) du réseau tel que le déterminant des n points

obtenus est non nul et tel que f (pﬁf), cen pﬁl”)) = F,, est la plus petite valeur possible
pour les points du réseau indépendants des n — 1 premiers. Les quantités Fi, Fj, ..

*)

F,, sont déterminées de maniére unique et elles vérifient
< F <..<F,.

Il rappelle que dans le cinquiéme chapitre de son livre Geometrie der Zahlen, il avait
démontré que
... F,J < 2",

ou J est le volume du domaine f(x1,xs,...,z,) < 1. Dans cet article, il se contente de
montrer 1'inégalité?s

qui est 'objet du lemme I et qui est suffisante pour les applications qu’il a en vue. Dans
le lemme II, il prouve en plus que la valeur absolue du déterminant |p,(€h)| est toujours

inférieure ou égale a nl.

Dans la seconde partie de I'article, Minkowski va appliquer les résultats précédents
pour donner un critére afin de reconnaitre si un nombre est algébrique de degré n. Soit

donc a un nombre réel ou complexe, son critére est fondé sur I’étude de la fonction

§=a1 4T+ +x0" ",
ol x1, xs, ..., T, sont des entiers rationnels.
Minkowski introduit ensuite la notion de substitution appartenant & un entier r (« eine
zur Zahl r gehorende Substitution®® »), puis de chaine de substitutions appartenant a

a (« zu a gehérende Kette von Substitutionen®® »).

258 MINKOWSKI 1899 p.68.
259MINKOWSKI 1899 p.75.
260 M[INKOWSKI 1899 p.75.
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Soit pour cela r un entier rationnel, il considére les valeurs de £ quand xq, xs, ..., T,
sont compris entre —r et r, le cas ot 11 = x5 = --- = x,, = 0 est exclus. Parmi ces
valeurs de x1, xs, ..., T,, choisissons pgl), pgl), ey pg) tels que |£| soit minimale et
posons alors

) @

&t py, ) =
De plus, comme |£(—x1, —xo, ..., —x,)| = [{(z1, X2, ..., x,)]|, le systéme
1
<p§)7pg)7"'7p7(7/1))

est pris de telle sorte que le dernier des pl(j) non nul est strictement positif. Soit ensuite

(pg ),pf), o ,pn ) indépendant de (p1 ,p; ), o ,ps)) tel que

2
|§(p§ )7pg )7"'7pn )| = |a2|

est minimale avec le dernier des p,(f) non nul strictement positif, etc. . .

La substitution obtenue

Ty = pg)zl + pl(f)ZQ + -4 p,gn)zn

est notée P. Son déterminant est différent de 0 et elle est construite de telle maniére

que
EP =x=aiz1 t+ g2+ -+ ap2p,

avec en plus || < |ag| < -+ < |ay,|. P est une substitution appartenant a r, une telle

substitution n’est pas unique en général mais les quantités ||, |ael, ..., |ay| le sont.

Prenons r; = 1 et P, une substitution appartenant a r;. Il se peut que P, appartienne
aussi aux entiers suivants 2,3, ... Si P, n’appartient pas a tous les entiers suivants, soit
ro le plus petit entier auquel P, n’appartient pas, puis P, une substitution appartenant
a ro. Par suite, P3 appartenant a r3, P, appartenant a r4 ... sont déterminées. Min-
kowski impose en fait une condition supplémentaire pour la construction de la suite
Py, Py, ... 1l est possible en effet que pour la substitution P; certains coefficients, par
exemple aq, ao, ..., o, de I'expression x; = {F; soient nuls. Dans ce cas, les colonnes
de P; qui correspondent aux coefficients égaux a 0 sont gardées dans les substitutions
suivantes P11, P2, ... Cette condition a pour effet de conserver les coefficients nuls
dans les expressions X;i1, Xit2, - - -

La suite de substitutions P;, P, Ps, ..., qui peut étre finie ou infinie, est appelée chaine
de substitutions appartenant a a par Minkowski. Il note aussi que la suite d’entiers 7y,
ro, T3 ... est uniquement déterminée par la donnée de a, puis démontre que toutes les
substitutions d’une telle chaine ont un déterminant dont la valeur absolue est inférieure

ou égale a n!.
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La fin de P'article est consacrée a 1’énoncé puis la démonstration du critére pour
les nombres algébriques. Minkowski traite a part le cas o n = 2 et a est un nombre
complexe. a = b-+ic est algébrique de degré 2 si et seulement si b et ¢? sont des nombres
rationnels.

Si maintenant a est quelconque (le cas précédent étant exclu), posons o = 1 lorsque a
est réel, 0 = 2 quand il est complexe et supposons enfin n > ¢. En gardant les mémes
notations que précédemment, le critére proposé par Minkowski s’énonce de la maniére

suivante?6! :

1°) Si a n’est pas algébrique de degré inférieur ou égal a n, la chaine de substitu-

tions appartenant a a, P, P, ... ne s’interrompt jamais, les équations x; = 0,
x2 = 0, ... sont toutes différentes et les coefficients de chaque forme y; sont non
nuls.

2°) Si a est un nombre algébrique de degré n, la chaine de substitutions appartenant
aa, P, Py, ... ne s’interrompt jamais, parmi les équations x; =0, xo =0, ... il
n’y en a qu'un nombre fini qui sont différentes et toutes les formes y; ont tous

leurs coefficients non nuls.

3°) Si a est algébrique de degré n — m, avec m > 0 et n — m > o, la chaine de
substitutions appartenant a a, Py, P, ... ne s’interrompt jamais, s’il n'y a qu'un
nombre fini des équations x; = 0, x2 = 0, ... qui sont différentes et s’il existe un
indice ko a partir duquel les m premiers coefficients des formes x, sont égaux a

0 et les n — m suivants sont non nuls.

4°) Si a est algébrique de degré o, la chaine de substitutions appartenant a a, P,

P, ... s’interrompt aprés un nombre fini d’étapes.

Dans son article de 1902, Minkowski reprend la notion de chaine de substitutions

afin d’étudier le probléme suivant :

« Welche algebraische Zahlen besitzen analoge periodische Approximatio-
nen, wie sie die reellen algebraischen Zahlen zweiten Grades vermoge der

Periodizitit ihrer Entwicklungen in gewohnliche Kettenbriiche aufweisen?%2. »

261MINKOWSKI 1899 p.77-78.

262 ¢ Indiquer quels nombres algébriques possédent des approximations périodiques analogues a celles
des nombres algébriques réelles de degré 2 grace a la périodicité de leur développement en fractions
continues ordinaires. » MINKOWSKI 1902 p.333.

105



CHAPITRE 1 1.3

Soit @ un nombre algébrique de degré n > o, ot ¢ est défini comme dans l'article
précédent. Minkowski considére une chaine de substitutions 57, Ss, ... appartenant a «.
A partir de cette chaine de substitutions est construit une autre suite de substitutions

Q1, Qo, ... définie par les égalités

Sy = 51Q1, S3=5:Q2, ... Sip1=295Q;.

La chaine Sy, S5, ... est alors dite périodique s’il existe des indices jy et py tels que
pour tout j > jo, Q; = Qjip,- Dans la suite ce sont les nombres algébriques o qui
admettent une chaine de substitutions périodiques qui sont étudiés?®3.

Minkowski donne dans un premier temps une condition nécessaire a l’existence dune
chaine de substitutions périodique. Pour que o admette une chaine périodique, il doit
exister dans le corps engendré par o une unité o telle que :

(i) sa valeur absolue est strictement inférieure a 1,

(ii) les conjugués de cette unité dans les corps conjugués correspondants (& I'excep-
tion de 9 dans le corps engendré par & quand « est un nombre complexe) doivent
étre égaux en valeur absolue.

Il prouve ensuite que cette condition est en fait aussi suffisante ce qui 'améne a appro-
fondir I’étude des cas ot une telle unité existe dans le corps engendré par a. Il montre
finalement que les conditions ne sont vérifiées que dans six cas différents qui sont donc
les seules situations pour lesquelles il existe une chaine de substitutions périodique pour
a. Ces cas sont les suivants :

a) a est réel et n =2,

b) «a est réel, n = 3 et le corps engendré par o a deux corps conjugués qui sont

complexes,

263Ta-encore cette maniére d’aborder le probléme est trés proche du programme de Hermite pour
les nombres algébriques, voir GOLDSTEIN 2007 p.391-394 et en particulier la citation de 1880 de Léon
Charve, éléve de Hermite, & la page 393 :

« On sait que, si I'on développe en fraction continue une irrationnelle du second degré,
le calcul est périodique. Cette périodicité constitue une propriété trés remarquable des
racines des équations du second degré, et elle peut méme servir de définition & ces ir-
rationnelles. Or la théorie des fractions continues est liée étroitement & la théorie des
formes quadratiques binaires, de sorte que le développement en fraction continue d’une
racine a d’une équation du second degré est identique a la recherche des minima succes-
sifs de I'expression (z —ay)? + A(x — By)?, ot 3 désigne la deuxiéme racine de 1’équation
considérée et A une quantité qu’on fait croitre positivement de 0 4 co. D’un autre coteé,
la recherche de ces minima revient & la réduction de la forme binaire

f = (z —ay)? + A(z — By)? pour toute valeur de A. En opérant cette réduction, on
trouve alors que la suite des formes réduites équivalentes & f pour toute valeur de A
s’obtient par un calcul périodique. On est alors conduit & se demander si quelque mode
d’approximation des quantités ne donnerait pas une périodicité analogue pour les irra-
tionnelles d’un degré supérieur au second. C’est la considération des formes quadratiques
qui conduit & cette extension de la théorie des fractions continues, et donne ces nouvelles
méthodes d’approximation. »
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c) « est complexe et n = 3,

d) « est complexe, n = 4 et le corps engendré par « a tous ses corps conjugués

complexes,

e) « est complexe, n = 4 et le corps engendré par o posséde un sous-corps réel de

degré 2,

f) a est complexe, n = 6 et le corps engendré par « posséde un sous-corps réel de

degré 3 et deux sous-corps complexes conjugués entre eux.

Pour terminer, Minkowski se pose le probléme de déterminer une chaine de sub-
stitutions périodique (quand elle existe) connaissant a mais pas nécessairement ses
conjugués. Pour « réel et n = 2, ¢’est une question résolue par le développement en
fraction continue de «. Minkowski propose ici une méthode lorsque « est un nombre
complexe de degré 3. Il justifie en fait que dans cette situation le procédé donné pour

construire une chaine de substitutions conduit a une chaine qui est périodique.

Ce travail de Minkowski sur la théorie des nombres algébriques est en fait li¢ a celui

qu’il effectue dans la méme période sur des questions d’approximations.

1.3.3.2 Géométrie des nombres et approximation

Nous avons regroupé deux articles de Minkowski sur ce théme de I'approximation®64

publiés tous les deux en 1901. Le premier, daté de 1899 alors que Minkowski est a Zii-
rich, est publié en allemand. Il contient des résultats sur les formes linéaires homogénes
et non homogeénes qui sont appliquées a l'approximation d’un nombre réel. Le point
de vue adopté est celui du développement en fraction continue et ce travail se rattache
ainsi aux articles précédents sur les nombres algébriques. Le second en frangais est
beaucoup plus court car les résultats sont énoncés sans démonstration. Minkowski y
expose des théorémes sur ’estimation des formes linéaires qui sont cette fois appliquées
a 'approximation simultanée de deux réels ou bien a I’approximation de quantités com-

plexes dans des corps de nombres algébriques particuliers.

a) Approximation et fractions continues

Dans l'article intitulé Ueber die Anndherung an eine reelle Grisse durch rationale
Zahlen, Minkowski s’intéresse aux développements en fraction continue dun réel a pour
lesquels les numérateurs partiels sont 41, les dénominateurs partiels sont des entiers

x
positifs et les réduites — vérifient les conditions :

1) x et y sont premiers entre eux,

264 MINKOWSKI 1901b,a.
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2°) y >0,

3) (x—ay)yl < 5
a est supposé ici ne pas étre un demi-entier. Ces conditions avaient déja été données
par Minkowski dans son article de 1896 sur ce sujet, mais il note qu’il n’avait pas
alors remarqué qu’elles caractérisent complétement le développement obtenu?%®. Tout
le début de l'article concerne des théorémes sur le produit de deux formes linéaires a
coefficients réels ¢ = ax + [y et n = yx + dy. Ces résultats sont dans un deuxiéme

temps appliqués aux deux formes particuliéres x — ay et y afin d’approcher le réel a.

Dans le théoréme I, Minkowski démontre que si les coefficients des formes vérifient

ad — B3y = 1, il existe des entiers x, ¥, non tous deux nuls, tels que®%°

1En| <

DO | —

Il précise aussitot les cas d’égalités dans cette derniére inégalité : si le produit £n n’est
pas équivalent a XY ou a %(X 2 —Y?) alors il existe des entiers z, y, non tous deux
nuls, pour lesquels £ # 0, n # 0 et

1
< —=.
€1 5

Les formes équivalentes sont par définition celles qui sont obtenues a partir de £n par
des substitutions a coefficients entiers © = pX + p'Y, y = ¢X + ¢'Y et a déterminant
+1.

Minkowski choisit un systéme de coordonnées dont 1’origine est notée O. Pour un point

A de coordonnées (x = p,y = q), Ap désigne le point dont les coordonnées sont

(x=-py=—q).

Les points du réseau sont ceux de coordonnées

(€ = ax + By,n = vz + 0y)

avec x et y des nombres entiers. Soient maintenant p et ¢ des paramétres positifs, les
points R(§ = p,n = 0), Ro(§ = —p,n = 0), S(§ = 0, = o), So(§ = 0,n = —0)
sont les sommets d’un parallélogramme centré en O dont les diagonales sont les droites

d’équation £ = 0 et n = 0. Ce parallélogramme, noté B(p, o), est aussi défini par

265Crest le cas ot Q = 1 dans MINKOWSKI 1896b p.44.
266 M[INKOWSKI 1901b p.92.
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I'inégalité

el = -
p

n
o

Les paramétres p et o sont ensuite choisis de telle sorte que le seul point du réseau
a l'intérieur du parallélogramme B(p, o) soit O et qu’il ait un point A(z = p,y = q)
appartenant au réseau sur sa frontiére. Par symétrie par rapport a 'origine, le point
Ao(z = —p,y = —q) est aussi un point du réseau sur la frontiére de B(p, o), il est donc
possible de supposer pour A que 1 > 0. Posons alors pour A, £ = e\ et n = p, ou
A>0,u>0et e ==l

Le segment O A qui est inclus dans B(p, o) ne peut contenir des points du réseau autres
que O et A. Par conséquent, p et ¢ sont premiers entre eux et il existe donc deux entiers
r et s tels que ps — qr = €. Minkowski effectue le changement de coordonnées défini
par

r=pX +rY, y=qX +sY .

En posant A = e(ar + (3s) et i = yr + Js, il obtient
€=AX+XY et np=pX+ay.
Or le déterminant de ces deux formes est égal a

A elap+ Bq) e(ar + Bs) a B pr
= =¢c . =exlxe=1,

LR py +0q YT+ s v o |gqg s
ce qui permet d’exprimer X et Y en fonction de ¢ et 7, ainsi
X=ctp—Xn, Y =DX—pk.

De plus, comme le changement de variables est a coefficients entiers et de déterminant
e = +1, les points du réseau (z,y) correspondent & des points du réseau (X,Y). En
particulier, la droite O A est la droite d’équation Y = 0 et le point A est donc le point
du réseau qui correspond & Y = 0 et X = 1. Tous les points du réseau situés sur
cette droite sont obtenus pour X = ..., —1,0,1,2... et sont & la distance OA les uns
des autres. Les autres points du réseau sont répartis sur les droites paralléles & OA
(Y =41, Y = £2, ...) de la méme maniére.

Dans la suite de la preuve, Minkowski sépare trois cas selon que le point A est un
sommet, le milieu d’'un coté du parallélogramme B(p, o), ou bien ni I'un ni lautre.
Nous ne détaillons ici que ce dernier cas.

Soit maintenant le point F' de coordonnées (¢ = —eA,n = p). Le parallélogramme
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FAFyAq est défini par les inégalités

—A<SESA, —u<n<p

et il est contenu strictement (& part ses sommets) dans B(p, o) (voir la figure 1.6 qui
267,

est un dessin extrait de 'article de Minkowski

F1G. 1.6 — Illustration du premier cas dans la preuve du théoréme I

La droite paralléle & OA passant par F' coupe la frontiére de B(p, o) en un autre
point G. Par suite, F'G est strictement plus grand que AyO et A0 = OA, donc
FG > OA. Nous avons vu que sur une droite paralléle & OA les points du réseau sont
a distance O A les uns des autres, ainsi les droites Y = +1 ne peuvent étre situées entre
les droites OA et F'G sinon l'inégalité F'G > OA impliquerait 'existence d’un point du
réseau distinct de O dans le parallélogramme B (p, o). Minkowski en déduit que pour

tous les points entre les droites OA et FG, |Y| < 1. En particulier, pour le point F :
Y = An— pel = A — pe(—eA) = 2\,

ce qui implique

1
2Ap| < 1, clest-a-dire |En| < 3

Ceci termine le premier cas, c’est pour les deux autres cas pour lesquels A est un som-

met ou le milieu d’'un c6té de B(p, o) que 'égalité peut se produire.

26T MINKOWSKI 1901b p.94.
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Dans le théoréeme II, Minkowski montre que lorsque = = p, y = ¢ sont des entiers

premiers entre eux pour lesquels |£] > 0 et [&n] < %, alors il est possible de trouver
1

deux autres entiers p', ¢’ tels que pq’ — qp’ = %1, [{n] < 5 et [{] est plus petit que
pour p et g. Ces résultats lui permettent d’arriver au théoréeme IV qui est a la base du
développement en fraction continue qu’il veut proposer. Soit toujours & = ax + [y et
n = v + 0y deux formes linéaires a coefficients réels avec ad — v = 1. Le produit
&n est supposé ne pas étre équivalent a la forme XY ni a %(X 2 —Y?). L’ensemble des
couples d’entiers x, y premiers entre eux, tels que |{n| < % etn>0,oun=0et&>0,
est rangé selon les valeurs croissantes de 7. Deux couples successifs p, g et p’, ¢’ de cette

suite sont tels que
pq —qp’ = +£1.

La suite de ces couples admet un premier terme si et seulement si % est rationnel. Ce
couple est alors tel que n =0, > 0et £ = %{ > (. La suite admet un dernier terme
pour lequel n > 0 et & = 0 si et seulement si %ﬁ est rationnel, dans ce cas _iﬁ =Z>0.
Enfin, si la suite n’a pas de dernier terme, || tend vers 0, |n| vers +o00 et si la suite n’a
pas de premier terme, |£| tend vers +oo et |n| converge vers 0.

A la suite de ce théoréme, nous retrouvons un vocabulaire déja employé par Minkowski
dans ses articles précédents. La suite des points du réseau rangés selon les valeurs

croissantes de n est appelée la chaine des formes &, 1 et est notée

Dis G (t=...,-2,—-1,0,1,2,...).

La substitution 7} définie avec deux termes successifs de la suite
T =pia1X;+pYi, y=0qi1X;+qY;

est appelée une substitution de la chaine. Minkowski note aussi

Di-1, Di
T, =

qi-1, G

268 il applique ces théorémes aux formes £ = = — ay,

Un peu plus loin dans l'article
7 = y, ol a est un réel fixé, ce qui le conduit au théoréeme VI. Dans ce théoréme a
est supposé ne pas étre un entier ou un demi-entier et il construit une suite p;, ¢; en
posant :
—po=1,q0 =0 puis ¢ = 1 et p; = hy ot hy est I'entier le plus proche de a, ainsi
la — ho| < 1.

— Si p;, q; sont définis et tels que p; — ag; est non nul, soient ¥J; le signe du quotient

268 MINKOWSKI 1901b p.114-115.
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Pi—1 — ag;—1

Di —ag;
ensuite h; = g; ou h; = g; + 1 selon que

et g; la partie entiére de la valeur absolue de ce quotient. Posons

1
|((pi-1 — agi—1) — V59i(pi — 04:))(9:¢; — Viqi-1)| < ou > 3

— Enfin p;,1 et ¢;11 sont donnés par
Piv1 = hipi — Vipi—1 et Giv1 = higi — Viqi—1.

Cette suite p;, g; vérifie alors les propriétés suivantes :

1°. Si a est rationnel, la suite s’arréte avec des entiers p,,, g, pour lesquels p,—aq,, = 0

et si a est irrationnel la suite est infinie.

2°. Deux termes consécutifs de la suite vérifient la relation

DiGiv1 — @iPir1 = N10o. . 0 = £1.

Les entiers p; et ¢; sont toujours premiers entre eux.

3°. Le rapport Z—Z est donné par

i €t i sont alors égaux au numérateur et au dénominateur du membre de droite
de I'égalité précédente quand il est exprimé sous la forme d’un quotient de deux

fonctions de h; et ¥;.
4°. ¢; est une suite strictement croissante d’entiers strictement positifs, de plus

1
§>\p1—@91\>\292—a‘h\>|P3—GQ3|>"'a

ce qui implique que |Z—: — a| est strictement décroissante. Quand a est irrationnel,

. Pk
les fractions — convergent vers a.
dk

5°. Chaque couple d’entiers py, g satisfait a 'inégalité

1
|(pk — aqr)qr| < 5

Réciproquement, si x,y sont des entiers premiers entre eux avec y > 0 et

|(z — ay)y| < 3, alors z,y est un couple d’entiers p;, ¢; de la suite précédente.
Ce développement en fraction continue est qualifié de « diagonal » par Minkowski, par
comparaison au développement ordinaire appelé « parallele ».

La fin de I'article est consacré & la comparaison des deux développements. Par exemple,
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Minkowski justifie que les réduites du développement diagonal sont toutes des réduites
du développement paralléle, ainsi le développement diagonal converge plus rapidement
vers le réel a. Il montre enfin que comme pour le développement ordinaire, le dévelop-
pement en fraction continue diagonal est périodique si et seulement si a est la racine

d’une équation du second degré a coefficients rationnels.

Une partie de cet article concerne un résultat sur le produit de deux formes linéaires
non homogeénes. Minkowski s’y intéresse en liaison directe avec les résultats déja ob-
tenus. Mais ce théme deviendra un théme important pour la géométrie des nombres
repris par de nombreux successeurs de Minkowski.

Dans le théoréme V, & = ax + By, n = yx + dy sont toujours deux formes linéaires
a coefficients réels et de déterminant 1 et &y, 79 sont deux réels quelconques. Il existe

alors des entiers x et y pour lesquels

N

(€ = &) —mo)| <

Dans sa démonstration, Minkowski commence par traiter a part les cas ou &n est
équivalent a la forme XY ou a la forme %(X 2 —Y?), ces deux situations sont ensuite
exclues.

Soit z = pX+p'Y, y = ¢X+¢'Y une substitution de la chaine associée a &, n, o A(p, q)
et A'(p',q') sont deux points du réseau tels qu'ils étaient définis dans le théoréme II
(voir page 111). Minkowski considére le parallélogramme RS RSy, noté aussi B(p, o),
pour lequel les points A et A’ sont sur sa frontiére et qui ne contient pas de point du
réseau dans son intérieur autre que 1'origine?®®. Rappelons que ce parallélogramme est
aussi défini par l'inégalité

n
o

el =+
p

Pour le point A, £ = el et n =p avec e = £1, A > 0, u > 0. De méme pour le point
A posons £ =N, ' =p,one =41, N >0etp/ >0. Lescase =¢’ et ¢ = —¢’
sont démontrés séparément, dans la suite nous donnons les grandes étapes de la preuve
pour € = —&’. Soient maintenant les milieux de deux cotés adjacents de B(p, o) donnés

par M(§ =2, n=29) et M'(( ==L, n=2) (voir la figure 1.727).

Le fait que || ne soit pas équivalent & XY ou %(X 2—Y?) implique que nous ne pouvons
avoir A = 1 = 0 et nécessairement A # M, A" # M’. Minkowski justifie ensuite que

A'M’ < AM. Puis il construit les parallélogrammes B(%, ) centrés en tous les points
) centré en O rencontre les frontiéres

du réseau. La frontiére du parallélogramme B(%, §

2697 ’existence d’un tel parallélogramme a été justifiée dans la preuve d’un des théorémes précédents.
ZTIOMINKOWSKI 1901b p.110. Les parallélogrammes B(p, o) sont sur ce dessin remplacés par des
carrés.
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Fi1G. 1.7 — Illustration pour la preuve du théoréme V

de ceux qui sont centrés en A, Ay, A’, A} qui sont les points du réseau les plus proches

de O. Mais les cotés de ces parallélogrammes ne coincident pas complétement, ainsi

I'ensemble des B(%, ) ne recouvre pas tout le plan. Il reste donc des “trous” qui sont
1

des parallélogrammes centrés aux points X + %, Y + 5, c’est par exemple le rectangle

GHJK sur la figure 1.7. Nous avons alors
1 v !/ 1
GH:MAgMS:§ et GK:MA<MS:§RS,

or AM' < AM et donc GK < GH. En remarquant que les cotés de GH.JK sont plus

petits que ceux de B(4, 5

aire de ®B(5, 7) qui est égale a

), il montre que l'aire de GH JK est strictement inférieure a

1

épCT.

Minkowski veut ensuite transformer le parallélogramme B(4, §) par une homothétie de

centre O de telle maniére que ’ensemble des parallélogrammes ainsi obtenus recouvre

tout le plan. Pour cela il ajuste le rapport de I’homothétie & pour que chaque nouveau

parallélogramme prenne la moitié des GHJK qui sont les portions du plan non recou-
1

vertes. C’est-a-dire qu'il choisit que = soit égal au rapport de la distance du point O

a la droite GH a la distance du point L a la droite GH. Il vient en particulier que
1 sM'S  SM'S  M'S
k-1 1GK imA  MA

or nous avons vu que M'S > M'A’ ce qui implique 1 < k < 2.

kp ko

Minkowski construit donc les parallélogrammes B(-%, %) centrés en tous les points du
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réseau (ils sont représentés en pointillés sur la figure 1.7). Comme ce dernier systéme de

parallélogrammes recouvre tout le plan, le point (£, 19) appartient a 'un des %(%, ’2—")

dont les coordonnées du centre (x,y), qui sont des entiers, vérifient

n—"o
g

£ & _k
p -2

‘|

Les autres cas dans cette preuve sont traités par une méthode similaire a celle que nous

venons d’exposer.

Dans cet article, les problémes sont abordés géométriquement : construction de pa-
rallélogrammes qui sont transformés par des homothéties, calculs d’aire, comparaisons
de distances etc. .. Bien que Minkowski ne s’exprime pas de fagon explicite la-dessus,
il semble que les figures, auxquelles il renvoie dans certains passages, jouent un role
dans ces constructions géométriques. En effet, la rédaction de Minkowski parait inté-
grer le fait que le lecteur a un dessin sous les yeux et s’y reporte. Les objets manipulés
par Minkowski (points, figures géométriques...) sont définis de maniére parfaitement
rigoureuse dans le texte, il ne s’agit donc pas ici de pallier ce type d’ambiguité®™.
Cependant, beaucoup de points ou de notations sont introduits dans la preuve et le
dessin apparait comme le moyen de saisir globalement les arguments de la démonstra-
tion. D’autre part, ces arguments ne sont pas toujours développés de fagon précise et
il est souvent nécessaire de faire appel aux illustrations pour suivre le raisonnement.
De plus, Minkowski considére que ce traitement géométrique rend cette théorie plus
intuitive

« Im Folgenden gebe ich eine auf geometrischen Betrachtungen gegriindete
und dadurch sehr anschauliche Theorie des Systems zweier linearer Formen
ax + By, yr + oy mit beliebigen reellen Coefficienten und mit ganzzahligen

Unbestimmten?™2. »

b) De nouveaux théorémes sur ’approximation

L’organisation du deuxiéme article de Minkowski publi¢ en 1901 sur ’approxima-

73

tion?™ ressemble & celle du précédent. D’abord sont démontrés des résultats sur les

« minima de formes algébriques », ainsi qu’a la détermination des formes réalisant ces

271 Préciser la définition des objets est une des fonctions des figures dans les textes mathématiques
grecs de 'antiquité qui est relevée par Reviel Netz, voir NETZ 1999.

272« Dans ce qui suit je donne une Théorie du systéme de deux formes linéaires ax + By, yx +
oy & coefficients réels arbitraires et & indéterminées entiéres qui est fondée sur des considérations
géométriques et donc trés intuitive. » MINKOWSKI 1901b p.92.

ZI3MINKOWSKI 1901a.
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minima. Dans un deuxiéme temps, ces théorémes sont utilisés dans la théorie de ’ap-
proximation. Les preuves des théorémes ne figurent pas dans 'article et Minkowski
renvoie & la deuxiéme partie de sa Geometrie der Zahlen pour les consulter. Cette

deuxiéme partie correspond au livre Diophantische Approzimationen®™ publié en 1907.

Le premier théoréme concerne quatre formes linéaires de trois variables®™ :

« THEOREME. — Soient ¢, X, 1, w quatre formes linéaires a trois variables

x, Yy, z, a coeflicients réels quelconques et de sorte que 'on ait
e+x+Y+w=0.

Supposons que le déterminant de trois de ces formes soit toujours différent
de zéro et désignons sa valeur absolue par 4D.

Alors il existe toujours trois nombres entiers x, y, z, qui ne sont pas tous
égaux a zéro et de sorte que toutes les quatre formes @, y, ¥, w soient en

valeur absolue moindres que

=)

/108
La limite d = ¢ To D donnée ici est précise. »

Minkowski précise aussitot que 'inégalité précédente est en général stricte et que 1’éga-

lité se produit seulement lorsque les formes sont équivalentes®™ &

P 2 P 1
d(X—gY),d(Y—gZ),d(—?¥+Z),-?ﬂ@¥+Y+Zy

Aprés avoir mentionné les conséquences que peut avoir ce théoréme en cristallogra-
phie, Minkowski I’applique & la somme des valeurs absolues de trois formes. Soient &,
7, ¢ trois formes de trois variables a coefficients réels et de déterminant +D, ou D > 0.

Le théoreme précédent, appliqué aux formes

p=—8+n+¢ x=§—n+(, v=E+n—(¢, w=-E§—n—(,

donne l'existence d’entiers x, y, z différents de 0,0, 0 tels que
2TAMINKOWSKT 1907.

108
1+l +1¢ < /=5 D-
19
275 MINKOWSKI 1901a p.72-73.

2761 ’6quivalence est définie par des substitutions linéaires & coefficients entiers et de déterminant
+1.
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Il en déduit ensuite que

4
= D.
Encl < 19

Minkowski remarque lui-méme que I'inégalité précédente n’est pas la meilleure possible.
Nous aurons l'occasion de revenir sur cette question, la meilleure estimation pour le
produit de trois formes linéaires sera donnée dans les années 1930 par Harold Daven-
port.

En choisissant différemment les formes ¢, x, ¥, w dans le théoréme 1, il obtient aussi

o4 o4
< /=D < /=D

ce qui lui permet de montrer que

8 8
2 —D 2 —D.

Dans ce résultat, Minkowski pose ensuite

E=w—az, p=y—bz, (=-

ol a, b sont des nombres réels quelconques et ¢t un parameétre strictement positif. Comme
le déterminant de ces trois formes est tig, il existe des entiers x, y, z, oul z peut étre choisi

strictement positif, pour lesquels

x 8 1 Y 8 1
Zoal < /==, ——b‘<,/——.
‘z “‘ 19 .2 P 19 .2

Nous reconnaissons un procédé déja employé par Minkowski afin d’obtenir une ap-
proximation simultanée de deux nombres réels. Cependant ’amélioration de la borne
pour les sommes de valeurs absolues de deux formes linéaires le conduit & une meilleure

approximation que ce qu’il avait par exemple présenté a Chicago en 1893 (voir page
2 8

5 ala place de /{5

81) o il avait obtenu 5

La fin de D'article concerne des formes linéaires complexes et ’approximation de
nombres complexes. Soient £ = ax+ [y, n = yr+dy deux formes linéaires a coefficients
complexes et D = |ad — G| > 0.

« On peut toujours trouver, dans le corps algébrique de i = /—1%7", des

78

nombres entiers complexes®™® z, y différents du systéme 0,0 de sorte que

217 Cest-a-dire Q(3).

278Ce sont les nombres complexes qui s’écrivent sous la forme a + ib avec a et b des nombres entiers
rationnels. L’ensemble de ces nombres est maintenant appelé I’anneau des entiers de Gauss et il est
noté Z[i]. C’est aussi 'anneau des entiers du corps de nombres algébriques Q(7).
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l'on ait
\/§+1D | < V3+1
6 M EANT A

L’égalité se produit « lorsqu’il existe une substitution

D .»

€| <

r=pX+rY, y=qX +sY,

ou p, q,r, s sont des nombres entiers dans le corps de ¢ et le déterminant ps — gr = £1

ou =*i, de sorte que, par cette substitution, £, n soient transformées en
1 V3 i V3
——i|1—-—1]|Y d] |= 1—— || X+Y

A et étant des quantités dont la valeur absolue est égale a 1. »
Ce théoréme concerne le « corps algébrique de la quatrieme racine de 1'unité », Min-

)\d{X—i—

kowski énonce ensuite un résultat similaire dans le « corps de la troisiéme racine de

—1+v=3

5 . Puis en appliquant ce dernier théoréme aux formes

I'unité »notée j =

y
{=a—ay, N=43,

oll a est un nombre complexe quelconque et ¢ > 1, il obtient que®™
—14++v-3

« dans le corps de — (mais pas dans le corps de /—1), il y aura
toujours des nombres entiers complexes x,y tels que
1
0<|y|§t7 |"L‘_a’y|<¥7

d’ou l'on tire encore

(z—ay)y] < 1.»

Avec ces résultats, Minkowski montre que les méthodes qui lui ont permis d’appro-
cher des nombres réels par des rationnels peuvent étre généralisées pour élaborer une
théorie de 'approximation dans des corps de nombres algébriques. L’absence des dé-
monstrations dans cet article ne permet cependant pas de voir qu’elle est 1'origine des

théorémes présentés ici.

29 MINKOWSKI 1901a p.76.
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1.3.3.3 Empilements réguliers de corps congruents

Des éléments de réponse sur lorigine de ces résultats sont apportés dans un ar-
ticle publié en 1904 dans lequel Minkowski s’intéresse a I’empilement régulier de corps
convexes?®®. Etant donné un corps convexe K et un réseau, considérons ’ensemble des
corps qui sont I'image de K par une translation d’un vecteur a coordonnées entiéres par
rapport au réseau. Il s’agit alors de déterminer le réseau tel que tous les corps obtenus
ne puissent se rencontrer que sur leur frontiére et qu’ils occupent la plus grande partie
possible de 'espace.

Dans la premiére partie de cette article Minkowski montre qu’il peut se ramener au cas
ot K admet un point du réseau comme centre. Il étudie donc ensuite seulement des
corps convexes centrés dont les centres forment un réseau de ’espace de dimension 3.
Notons & = ayx + @y + aszz, n = b1z + Poy + (32, ¢ = 712 + Y2y + Y32 des substi-
tutions réelles dont la valeur absolue du déterminant est A. A est aussi le volume du

parallélogramme défini par les inégalités
0<e <, 0<y<1, 0<z<1.

Pour des valeurs entiéres des variables x,y, z les formes &, n, ( définissent un réseau
dont le domaine fondamental est donné par les inégalités précédentes.

Minkowski introduit aussi la distance radiale associée au corps K,

o(&n,¢) = f(z,y,2).

Pour que les corps obtenus par translation de K soient disjoints, K ne peut contenir des
points du réseau dans son intérieur autre que O, ainsi tous les points de coordonnées

entiéres z,y, z différents de 0,0, 0 doivent vérifier

flz,y,2) > 1.

Enfin si J est le volume de K, la proportion de ’espace occupée par ’ensemble des
corps K¢ (corps dont le centre est le point G du réseau) est alors N Le probleme
devient alors la détermination des coefficients des formes &, 7, ¢ tels que A est le plus
petit possible et que f(z,y,z) > 1 pour tous les entiers z,y, 2.

Minkowski démontre en particulier le résultat suivant : pour un corps convexe K donné,
il pose R = K + K’, ou K’ est le symétrique de K par rapport a O. Pour trouver les
déterminants minimaux A pour K, il suffit d’étudier les réseaux pour lesquels®! :

(I) les points (1,0,0); (0,1,0);(0,0,1); (0,1, —1); (=1,0,1); (1, —1,0) sont sur la fron-

280 MINKOWSKI 1904a.
281 MINKOWSKI 1904a p.329.
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tiere de R et les points (—1,1,1);(1,—1,1); (1,1, —1) est a 'extérieur de R,
(IT) les points (1,0,0);(0,1,0);(0,0,1);(0,1,1);(1,0,1);(1,1,0) sont sur la frontiére
de R et le point (1,1,1) a 'extérieur,
(ITI) les points (1,0,0);(0,1,0);(0,0,1);(0,1,1);(1,0,1);(1,1,0);(1,1,1) sont tous
sur la frontiére de R.
Minkowski illustre ce dernier résultat avec les dessins de la figure 1.8 2. Le premier de
ces dessins montre le domaine obtenu avec les points du cas (I) et leurs symétriques

par rapport a O, le deuxiéme correspond au cas (III).

F1G. 1.8 — Illustration des cas (I) et (III)

Ce théoreme permet de démontrer que pour des sphéres la proportion maximale

M2 . o .
d’espace occupé est 5 L’étude des empilements de tétraédres ou d’octaédres en-
traine aussi certains des théorémes sur les formes linéaires énoncés sans démonstration

dans l'article précédent.

1.3.3.4 Retour sur 1’équivalence des formes quadratiques

Dans son dernier article publié sur la géométrie des nombres®3, Minkowski revient
sur I’étude de I’équivalence entre formes quadratiques de n variables et sur la notion
de forme réduite?®*. Il propose un traitement géométrique de ces questions.

Considérons une forme quadratique f de n variables, a coefficients réels et définie

282MINKOWSKI 1904a p.330.

283MINKOWSKI 1905.

28413 notion de réduction chez Minkowski est discutée dans SCHWERMER 2007. Joachim Schwermer
en indique aussi des versions antérieures manuscrites.
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positive, notons

f(xl,xg,...,:cn):Zahk:chxk (h,k=1,2,...,n),
hok

ol apr = ayp pour tous les indices h et k. Cette forme est représentée par le point de

A . . 1 N . .
coordonnées (ayx) dans un espace A de dimension % Le probléme de la réduction

de ces formes est alors reformulé géométriquement
« wir suchen in der Mannigfaltigkeit A einen Bereich B, in dem jede Klasse
positiver quadratischer Formen durch einen Punkt, und wenn der Punkt in
das Innere von B fallt, auch nur durch einen einzigen Punkt reprasentiert

wird?8®. »

Rappelons que deux formes
f:Zahkathka gzzbhkyhyk (h,k=1,2,...,n)
hk hk

sont dites équivalentes si elles sont déduites I'une de l'autre par une transformation
linéaire & coefficients entiers et de déterminant +1. Minkowski introduit des notions
supplémentaires pour comparer f et g afin de définir une nouvelle notion de forme

réduite. Les deux formes sont également placées (« gleichgestellt?¢ ») si

a1 = b, a2 =byw, ... , Gny = Dby, .
Si maintenant pour [ = 1,2,...,n les coefficients des formes vérifient
ayp =bi, .., qoigm1=biogor, ag > by

alors f est supérieure & g a la [-éme place ou g est inférieure a f a la [-éme place.
Dans chaque classe, il existe des formes qui sont minimales pour la relation précé-
dente et toutes ces formes minimales sont également placées. Il existe certaines classes
de formes qui contiennent une unique forme minimale, ce sont les classes générales

(« allgemein®" »). Une forme f et sa classe sont dites générales si 'équation

f(xlaxZa"'axn) :f(ylayQa"'ayn)a

285« nous cherchons dans la multiplicité A un domaine B dans lequel chaque classe de formes

quadratiques positives sera représentée par un point, et si le point tombe a l'intérieur de B, par un
point unique. » MINKOWSKI 1905 p.221.

286 MIINKOWSKI 1905 p.225.

28T MINKOWSKI 1905 p.226.
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ot les ; et les y; sont des entiers, a pour seules solutions (y1,ys, - .., yn) = (1, T2, ..., Tp)
et (Y1,Y2, -y Yn) = (—x1, — T2, ..., —Ty).

Minkowski présente sa définition des formes réduites comme une simplification de celle
qu’avait donné Hermite. Les formes réduites sont des formes minimales dans la classe

avec des propriétés supplémentaires. Il appelle donc réduite une forme

f(x1,29,...,2,) = Z ApkThTy

qui vérifie les deux conditions suivantes®® :

(1) f(sgl), sg), 8Oy >ay, pourtout 1=1,2,...,n,
ou sgl), sél), ey s est un systéme d’entiers quelconque pour lequel le plus grand com-
mun diviseur de sl(l), 51(21, e sg) vaut 1;

(1I1) a2 >0, a3 >0, ..., ap_1,>0.
Les deux systémes d’entiers sgf) = egf) et sgf) = —eg), ou egf) =0si h #1et1 sinon,

sont exclus dans les inégalités (I).

Dans chaque classe de formes quadratiques définies positives, il existe alors une forme
réduite au sens précédent. Les conditions (I) des formes réduites sont en nombre infini
mais Minkowski montre qu’il est possible de vérifier ces inégalités seulement dans un

nombre fini de cas qui impliquent tous les autres.

La traduction en termes géométriques de ce qui précéde permet de définir le domaine
B cherché comme étant I'ensemble des points f = (an) qui vérifient les conditions (I)
et (II). Minkowski démontre dans la suite un certain nombre de propriétés géométriques
de B qu’il appelle domaine réduit (« reduzierten Raum? »). D’abord, il justifie que B
est un cone convexe dont le sommet est a l'origine f = 0 et qui est limité par un nombre
fini de plans passant par 'origine. Ensuite, il définit les formes arétes (« Kantenform » )
comme étant des formes réduites non identiquement nulles qui ne peuvent pas s’écrire
comme la somme de deux formes réduites non nulles et non multiples 'une de 'autre.
Une telle forme est représentée par un point situé sur une aréte de B. En choisissant
une forme aréte sur chaque aréte de B, Minkowski obtient un nombre fini de formes

arétes 1, @, ..., v, telles que toute forme réduite f peut s’écrire

f=cpr+cps+ -+,

288 MINKOWSKI 1905 p.228.
289MINKOWSKI 1905 p.229.
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ou les coefficients ¢y, co, . . ., ¢, sont positifs. Réciproquement, une forme s’écrivant ainsi
est réduite.

Ce type de raisonnement n’est pas nouveau dans le travail de Minkowski. La fin du
premier chapitre de sa Geometrie der Zahlen était en effet consacrée a 1’étude des
systéemes d’inéquations linéaires. Il avait alors introduit la notion de solution extréme
et démontré que toute solution du systéme peut s’exprimer comme une combinaison
linéaire a coefficients positifs d’'un nombre fini de formes extrémes. Minkowski fait lui-
méme référence a ce passage de son livre de 1896, il semble d’ailleurs qu’il fut inclus
dans Geometrie der Zahlen afin que les résultats puissent étre utilisés dans le cadre qui
est celui de l'article qui nous intéresse ici?*®. La question de la réduction des formes
quadratiques devait alors faire I’'objet d’un chapitre du livre qui ne fut finalement ja-
mais publi¢?”!. Le lien entre systémes d’inégalités linéaires et géométrie est qu'un tel
systéme définit un ensemble convexe, les propriétés précédentes sont en fait caractéris-

tiques des domaines convexes?%?.

Minkowski revient ensuite sur la question du minimum M(f) d’une forme qua-
dratique f pour des valeurs entiéres des variables. M(f) est un invariant de la classe
d’équivalence de f et pour une forme réduite M(f) = ay;. Nous avons déja vu qu'il

existe une constante A, telle que

D(f) = Aa[M(f)]",

M(f)
Y D(f)

est un probléme important de la théorie déja abordé par Hermite. Korkine et Zolota-

M(f)
Y D(f)

maximum local quand f est soumise & une variation infinitésimale. Minkowski prouve

ot D(f) est le déterminant de f. La détermination de la borne supérieure de

reff ont en particulier étudié les formes dites extrémes pour lesquelles est un

par exemple qu’une forme extréme qui est dans le domaine réduit est nécessairement
une forme aréte du domaine®. De plus, la forme aréte située sur la surface D(f) =1

et pour laquelle ay; est maximum représente une classe extréme et donne la borne

M(f)
/D7)

Notons maintenant B(D) le sous-domaine de B dont les formes f ont un déter-

supérieure de toutes les valeurs possibles de

minant D(f) plus petit quun réel strictement positif D donné. Une grande partie de

290Les liens entre la fin du chapitre I de la Geometrie der Zahlen et larticle de 1905 sont expliqués
dans KJELDSEN 2002 p.484-489.

291Voir la préface de Hilbert et Speiser dans MINKOWSKI 1910.

292Les livres de géométrie actuels appellent parfois théoréme de Minkowski le résultat qui dit qu’un
ensemble convexe et compact de R™ est ’enveloppe convexe de ses points extrémaux, voir BERGER
2006 p.43. Les points extrémaux de B sont ici les formes arétes.

293 MINKOWSKI 1905 p.248.
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I'article (presque 20 pages) est consacrée au calcul du volume de ce domaine B(D). Il

démontre que ce volume est égal a v, D 2 | oul
n

W 2 TETE.TE)
)

Dans I'expression précédente, Sy désigne la série

1 1 1
1+2_k+3_k+ﬂ+"' .
L’article se termine par deux applications de ce calcul. D’abord, il permet de montrer
qu’il existe un empilement régulier de sphéres dans I'espace de dimension n pour lequel
le rapport de I'espace occupé par ces sphéres a I'espace total est au moins — Sh.
Enfin, v, intervient dans une formule asymptotique pour le nombre de classe de formes
quadratiques a coefficients entiers déja annoncée par Minkowski dans sa lettre & Hermite
de 1893 (voir page 86). Soit D un entier strictement positif, H(D) désigne le nombre
de classes d’équivalence de formes quadratiques définies positives, & coefficients entiers

et de déterminant D. H (D) est fini et Minkowski démontre que*

D=co D%

i <H(1)+H(2)+---+H(D)) .

Cet article est caractéristique du travail de Minkowski avec un va-et-vient perma-
nent entre arithmétique et géométrie. Des notions arithmétiques comme 1’équivalence
ou la réduction sont interprétées géométriquement avec le domaine réduit et ’étude des
propriétés géométriques du domaine réduit permet d’obtenir de nouveaux théorémes
arithmétiques, par exemple la possibilité d’exprimer n’importe quelle forme réduite
comme combinaison linéaire positive d’'un nombre fini d’entre elles. Un calcul de volume

implique un résultat asymptotique pour le nombre de classes de formes quadratiques.

1.3.3.5 Un bref apercu de Diophantische Approximationen

Comme nous 'avons déja remarqué, Minkowski ne publia jamais la deuxiéme par-
tie de Geometrie der Zahlen. Il publie cependant un second livre sur la géométrie des
nombres en 1907 dont le statut est différent du premier de 1896. Il s’agit en effet d'un
livre qui est issus d’un cours donné a l'université de Gottingen pendant le semestre
d’hiver 1903-1904 qui doit étre une introduction a la théorie des nombres, ce qui est
indiqué par le titre : Diophantische Approximationen ; eine Einfihrung in die Zahlen-

theorie. L’objectif principal de Minkowski n’est donc pas d’y présenter les tout derniers

294 MINKOWSKI 1905 p.269.
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développements de son travail (bien que certains s’y trouvent) et comme nous le ver-
rons il ne se place pas dans le cadre le plus général possible.

Dans la préface Minkowski remercie A. Axer qui 'a aidé dans la rédaction de 1'ou-
vrage en particulier pour le dernier chapitre rédigé a partir de notes manuscrites de

296 jdentique est

Minkowski. Aprés la premiére édition?” de 1907, une deuxiéme édition
publiée en 1957.
Nous donnons ici un apergu trés rapide du contenu du livre car il ne traite pas de

thémes nouveaux par rapport aux articles publiés par MinkowskiZ" .

Le livre comporte six chapitres, le premier prend comme point de départ le principe
de Dirichlet :

« Wenn n + 1 Dinge auf n Facher irgendwie verteilt werden, so mufs es da-

runter mindestens ein Fach geben, welches mehr als ein Ding aufnimmt2%®. »

Minkowski montre en particulier comment utiliser ce résultat pour approcher un nombre
réel par un rationnel et pour 'approximation simultanée de deux nombres réels par des
rationnels de méme dénominateur.
La suite du livre est construite autour du théoréme sur les domaines convexes & centre
qui est appliqué a différentes situations.
Dans le deuxiéme chapitre qui traite des réseaux en dimension 2, Minkowski énonce
les théoréemes qu’il a obtenu pour deux formes linéaires de deux variables homogénes
ou non homogeénes. Pour cela il applique le principe de la démonstration du théoréeme
sur les convexes a des parallélogrammes. Le théoréme général est ensuite prouvé pour
n’importe quel convexe a centre en dimension 2. Cet énoncé est utilisé pour étudier
par exemple les domaines

P+ < 1,

ou &, n sont des formes linéaires homogeénes et p > 1. Quand p = 2, il obtient un
résultat pour les formes quadratiques définies positives qui est appliqué a I’empilement
régulier de disques dans le plan.

Le chapitre 3 suit un peu le méme modeéle que le précédent mais pour les réseaux en
dimension 3. Nous y trouvons donc les résultats relatifs a trois formes linéaires homo-
génes (produit, somme. ..) & coefficients réels ou complexes.

Les deux chapitres qui suivent traitent de la théorie algébrique des nombres. Dans le
chapitre 4, aprés des rappels sur cette théorie Minkowski aborde la question du dis-

criminant des corps de nombres algébriques et le théoréme des unités. Le chapitre 5

295 MINKOWSKT 1907.

296 MINKOWSKT 1957.

297Voir aussi TANNERY 1908.

298¢ Si m + 1 objets sont répartis n’importe comment dans n tiroirs, il doit nécessairement y avoir
parmi eux un tiroir qui recoit plus qu’un objet. » MINKOWSKI 1907 p.1.
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concerne les idéaux. Parmi les théorémes importants qui y sont énoncés nous trouvons
par exemple la finitude du nombre de classes d’idéaux ou la décomposition de n’im-
porte quel idéal en produit d’idéaux premiers.

Enfin le dernier chapitre, Minkowski étudie des formes linéaires dont les variables ap-
partiennent au corps de nombres algébriques engendré par i (K (7)) ou bien a celui
engendré par j (K (j)). Il a pour cela besoin de considérer des réseaux en dimension 4.
Minkowski démontre en particulier les théorémes sur K (i) et K(j) qu’il avait énoncés

sans preuve dans son article de 1901 (voir page 117)2%.

1.3.3.6 Quelques remarques sur le travail des années 1897-1909

A partir de 1897, Minkowski parait davantage vouloir privilégier des preuves et des
méthodes constructives. Il donne des procédures pour construire certaines substitutions
ou bien des chaines de substitutions. Il construit aussi géométriquement des solutions
aux inégalités qu’il étudie (en particulier sur les formes linéaires). Pour la théorie des
corps de nombres algébriques, il recherche des critéres pour décider si un nombre est
algébrique de degré donné, il propose aussi un nouvel algorithme de développements

en fraction continue

« Ich habe mich in der letzten Zeit wieder mit Verallgemeinerungen der Ket-
tenbruchalgorithmen beschéaftigt. Jeder Schritt erfordert dabei lange Rech-
nungen, zu denen die Resultate bisher nicht von dem Gegenstande loszu-

reissen. Im Hintergrunde verbergen sich da noch gewiss schone Dinge3?. »

Pour Minkowski, il ne s’agit pas seulement de donner des méthodes qui permettent de
calculer des solutions de maniére explicite, mais aussi d’éclairer avec un point de vue
nouveau les aspects les plus théoriques des domaines étudiés

« Ich selbst rechne jetzt viele Beispiele mit meinen neuen Algorithmen, und

ich glaube, dass viel Licht namentlich fiir die Theorie der kubischen Korper

von diesen neuen rechnerischen Hiilfsmitteln ausgehen wird3?!. »

Ceci semble confirmer le commentaire de Zassenhaus sur Minkowski qui selon lui « tried

hard to establish the fondations of constructive algebraic number theory3°? ».

29 MINKOWSKI 1901a.

300« Je me suis encore occupé ces derniers temps de la généralisation de 1’algorithme des fractions
continues. Chaque pas cotite de longs calculs, dont les résultats jusqu’ici ne se détachent pas de I'objet.
En arriére-plan se cachent encore néanmoins stirement de jolies choses. » Lettre de Minkowski a Hilbert
du 13 avril 1898, RUDENBERG et ZASSENHAUS 1973 p.107.

301« Je calcule moi-méme maintenant beaucoup d’exemples avec mes nouveaux algorithmes et je
crois que beaucoup de lumiére va sortir de ces nouveaux modes de calculs pour la théorie des corps
cubiques. » Lettre de Minkowski & Hilbert du 20 juillet 1898, RUDENBERG et ZASSENHAUS 1973 p.109.

3027 ASSENHAUS 1975 p.453, mais aussi p.444. Pour des exemples de 1'utilisation du travail de Min-
kowski dans ce contexte voir POHST 1993.
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Ces remarques aménent un commentaire plus général a propos de Minkowski. Sa
conception des mathématiques n’est pas facile a situer par rapport a celles de son
époque. Il semble par divers aspects au milieu de différents courants parfois percgus
comme antagonistes.

Une part importante de ses recherches portent sur des sujets mathématiques considérés
comme abstraits. Les développements des mathématiques parmi les plus conceptuels de
I’époque ne paraissent pas lui poser de problémes : dés 1891, il commence a adopter le
vocabulaire des corps de nombres dans ’étude des nombres algébriques®®, il est aussi
un des premiers mathématiciens, avec Hilbert, a défendre la théorie des ensembles de

Georg Cantor

« Die spétere Geschichte wird Cantor als einen der tiefsinnigsten Mathe-
matiker dieser Zeit bezeichnen:; es ist sehr zu bedauern, dafs eine nicht
auf sachlichen Griinden allein beruhende Opposition, die von einem sehr
angesehenen Mathematiker ausging, Cantor die Freude an seinen wissen-

304

schaftlichen Forschungen triiben konnte>*. »

Dans les premicéres années de son travail sur la géométrie des nombres, Minkowski
semble s’intéresser seulement a des résultats d’existence : que cela soit sous sa forme
géométrique ou analytique, le théoréeme sur les corps convexes a centre est de ce type.
En méme temps, Minkowski laisse une place fondamentale & 'intuition. Aprés la publi-
cation en 1896 de Geometrie der Zahlen, nous venons de voir qu’il apparait davantage
dans son travail un souci d’effectivité. Nous pouvons faire ici un paralléle avec le travail
d’Hilbert sur les invariants qui aprés avoir démontré de fagon non-constructive ’exis-
tence d'une base d’invariants pour un systéme de formes algébriques se tourne ensuite
vers des méthodes permettant d’expliciter ces bases®®. En revanche, Minkowski semble
beaucoup moins intéressé qu’Hilbert par le probléme des fondements, & propos de son

collegue de Bonn, Lilienthal, il écrit

« Er wird mir bald zu tief und geht besténdig auf die Begriffe und Grund-

lagen ein, wo ich bestimmte Facta haben mochte3% ».

Enfin, bien que beaucoup des travaux mathématiques de Minkowski appartiennent
a ce que nous appelerions aujourd’hui les mathématiques pures, il s’est aussi beau-
coup investi a la fois comme enseignant et comme chercheur dans les applications des

mathématiques a d’autres domaines comme la physique et la chimie

303Voir la lettre & Hermite de 1891.

304 ¢ I’histoire ultérieure décrira Cantor comme un des plus profonds mathématiciens de son temps
il est trés regrettable qu’une opposition ne reposant pas toute entiére sur des motifs factuels et prove-
nant d’'un mathématicien trés considéré puisse priver Cantor de la joie des recherches scientifiques. »
Minkowski cité dans HILBERT 1911 p.XXVIL.

305 BONIFACE 2004, chapitre II.

306« T1 deviendra bientot trop profond pour moi et plonge constamment vers les concepts et les
fondements, 1a ou je voudrais avoir des faits définis », Lettre de Minkowski a Hilbert du 29 décembre
1887 dans RUDENBERG et ZASSENHAUS 1973 p.33.
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« Sonst beschéftige ich mich noch viel mit Anwendungen. Von der Ther-
modynamik bin ich auf Chemie gekommen. Ich denke immer, eines Tages
KLEIN gegen seine vielen Angreifer in der Weise beizuspringen, dass ich
zeige, dass die Mathematiker auch wirklich etwas fiir die Praxis leisten kon-

307

nen, und zwar besseres als die Bewegungen des Kreisels festzustellen®”’. »

La encore, ses travaux dans ces domaines pouvent étre théoriques (en relativité) mais

aussi de nature expérimentale comme pendant les années qu’il passe a Bonn.

1.4 La géométrie des nombres pour Minkowski : une

nouvelle discipline des mathématiques ?

Nous avons vu que Minkowski a baptisé lui-méme Geometrie der Zahlen une partie
de ses travaux. Dans cette partie nous essayons de voir ce qui caractérise la géométrie
des nombres pour Minkowski. Par exemple, est-ce pour lui une nouvelle discipline des
mathématiques ? Si c’est le cas, qu’est-ce qui lui donne son identité, une unité ?

Une autre question qui nous intéresse ici est celle de la place que Minkowski entend
faire occuper a ce travail par rapport aux autres disciplines des mathématiques. Le
nom de géométrie des nombres suggere déja qu’il s’agit d’une théorie en interaction
avec plusieurs disciplines (géométrie et arithmétique), ce qui est confirmé par les nom-
breux champs d’applications possibles que nous avons rencontrés. Nous verrons quelle

signification Minkowski donne & cette particularité de ce travail.

1.4.1 Des problémes anciens abordés avec de nouvelles métho-
des

Si la géométrie des nombres est une nouvelle discipline des mathématiques, ce n’est
pas parce que Minkowski s’intéresse a l'origine & de nouvelles questions ou bien de
nouveaux objets d’étude. Les problémes qui occupent Minkowski ont déja été traités
par d’autres mathématiciens. Rappelons quelques exemples.

La théorie arithmétique des formes est un sujet important de la théorie des nombres du
XIX¢ siécle. La définition des formes réduites, la détermination d’estimations pour les

minima des formes sont des questions au centre de cette théorie et sur lesquelles Min-

307« Sinon je m’occupe encore beaucoup d’applications. De la thermodynamique je suis arrivé a

la chimie. Je pense toujours secourir un jour KLEIN de ses nombreux attaquants en montrant que
les mathématiciens peuvent aussi vraiment faire quelque chose pour la pratique et sans doute mieux
qu’établir les mouvements d’une toupie. » Lettre de Minkowski & Hilbert du 11 février 1899 dans
RUDENBERG et ZASSENHAUS 1973 p.113.

128



14 CHAPITRE 1

kowski travaille trés tot dans sa carriére. La théorie des nombres algébriques a connu
aussi des développements importants avant Minkowski avec par exemple des travaux de
Hermite, Kummer, Kronecker ou Dedekind. En ce qui concerne les fractions continues,
les recherches de Minkowski se place dans la continuité des travaux de Lagrange et de
Hermite.

Minkowski cite particuliérement Hermite dans ses publications, en effet il a obtenu
beaucoup de résultats qui approfondissent les travaux du mathématicien francais. Her-
mite est réciproquement trés élogieux dans ses commentaires sur les avancées faites par
Minkowski. Dans son discours a l’occasion du décés de Minkowski, Hilbert cite deux

extraits de la correspondance de Hermite a Minkowski®®® :

« Au premier coup d’oeil j’ai reconnu que vous avez été bien au dela de mes
recherches en nous ouvrant dans le domaine arithmétique des voies toutes
nouvelles. »

« Je me sens rempli d’étonnement et de plaisir devant vos principes et vos
résultats, ils m’ouvrent comme un monde arithmétique entiérement nou-
veau, ol les questions fondamentales de notre science sont traitées avec un
éclatant succes auquel tous les géomeétres rendront hommage. Vous voulez
bien, Monsieur, — et je vous en suis sincérement reconnaissant — rapporter
a mes anciennes recherches le point de départ de vos beaux travaux, mais
vous les avez tant dépassées qu’elles ne gardent plus d’autre mérite que

d’avoir ouvert la voie dans laquelle vous étes entré. »

Minkowski considére donc le travail de Hermite comme une source importante pour ses
recherches. Mais nous voyons aussi que pour Hermite, le travail de Minkowski n’est pas
seulement la continuation de ses « anciennes recherches » mais qu’il est aussi porteur
d’innovation. Mais ot se trouvent les innovations dans le travail de Minkowski alors
qu’il n’aborde pas de nouveaux problémes ?

Dans les commentaires, ce qui caractérise son travail c’est davantage le développe-
ment de nouvelles méthodes dans I'investigation des « questions fondamentales de notre
science ». Pour Jean-Pierre Serre par exemple, Minkowski est & 1’origine de « I’ensemble

7309 5 Parmi les outils importants utilisés

de méthodes appelé “géométrie des nombres
par Minkowski et qui avaient été peu ou pas utilisés dans le cadre de la théorie des
nombres nous avons rencontré par exemple une nouvelle notion de distance, les réseaux,
les corps convexes et la notion de volume. Dans leurs commentaires sur la géométrie
des nombres, les mathématiciens n’insistent pas toujours sur la méme notion. En 1891
a Halle, Minkowski insiste davantage sur les réseaux de points (voir la citation page

73). En 1909, Hilbert choisit de mettre I’accent sur le concept de corps convexe

308 ILBERT 1911 p.xiv. D’aprés Hilbert, le deuxiéme extrait vient d’une lettre de Hermite & Min-
kowski de novembre 1892 et le premier d’une lettre écrite deux ans plus tot.
309GERRE 1993 p.4.
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« Dieser Umstand fiihrte Minkowski zum ersten Male zu der Erkenntnis,
daf iiberhaupt der Begriff des konvexen Korpers ein fundamentaler Begriff
in unserer Wissenschaft ist und zu deren fruchtbarsten Forschungsmitteln

gehort310,

Un point commun des outils qui viennent d’étre cités est qu’ils interviennent tous de
maniére fondamentale dans le théoréme sur les corps convexes centrés sur les points
d’un réseaux. Ce théoréme est souvent considéré comme le résultat « qui fonde la géo-
métrie des nombres®'!. » En effet, dans toutes les publications de Minkowski sur la
géométrie des nombres soit ce théoréme est utilisé directement, soit c’est le principe de
la démonstration de ce résultat qui est appliqué a une situation particuliére. Il apparait

donc que ce théoréme caractérise le travail de Minkowski sur la géométrie des nombres.

Ce qui est mis en avant dans les commentaires plus tardifs sur la géométrie des
nombres c’est 'introduction de méthodes géométriques en théorie des nombres. Don-

nons en quelques exemples (dans 'ordre chronologique) :

« In der Geometrie der Zahlen ist von Gedankengéngen die Rede, in denen
geometrische Begriffe und Methoden auf zahlentheoretische Fragen ange-

wandt werden3?. »

« the geometry of numbers as such came into being only when Minkowski

brought in the geometric viewpoint3!3. »

« The geometry of numbers deals with the use of geometric notions®* »

« Where other mathematicians had attacked problems of certain types al-
gebraically, Minkowski’s genius was to approach them from a geometrical

315

point of view>°. »

L’intervention de la géométrie dans des questions arithmétiques est certainement ce

qui est le plus représentatif de 'image de la géométrie des nombres et du travail de

310« Cette circonstance conduisit Minkowski pour la premiére fois vers la reconnaissance qu’en
général, le concept de corps convere est un concept fondamental dans notre science et qu’il fait parti
des méthodes les plus fécondes pour la recherche. » HILBERT 1911 p.XI.

3UMARTINET 1996 p.61. Voir aussi & ce sujet la citation extraite de HARDY et WRIGHT 1938 page
76.

312 ¢ Dans la Géométrie des nombres il est question de raisonnements dans lesquels des concepts et
des méthodes géométriques sont appliqués a des questions de théorie des nombres. » KELLER 1954
p.27.

313Préface de LEKKERKERKER 1969.

314GOLDMAN 1998 p.440.

3150LDS ET AL. 2000 p.3.
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Minkowski. L’originalité dans la géométrie des nombres ne réside donc pas tant dans
I'introduction de nouveaux objets ni de nouveaux problémes, mais dans le développe-
ment de nouvelles méthodes. La géométrie des nombres serait donc chez Minkowski,
un ensemble de techniques de nature géométrique permettant d’étudier des questions
arithmétiques sous un angle nouveau. Mais a quel type de géométrie les commentaires
précédents font-ils référence? Comment la caractériser et la situer par rapport a la

géométrie de I'époque ?

1.4.2 La géométrie dans la géométrie des nombres de Min-

kowski
1.4.2.1 Quelques éléments pour caractériser la géométrie

Dans son compte rendu sur le premier livre de Minkowski Geometrie der Zahlen,

Eugéne Cahen écrit & propos de la géométrie qui y est employée :

« Comme le titre de 'Ouvrage I'indique, c’est par des considérations géomé-
triques que 'auteur arrive a ses théorémes ; mais ce sont des considérations

316

géométriques d’une espéece particuliere®®. »

La géométrie utilisée dans la géométrie des nombres semble donc percue comme spéci-
fique.

Pour avoir une idée des thémes privilégiés dans les recherches en géométrie au tournant
des XIX® et XX¢ siécles, nous reproduisons d’une part la table des matiéres du tome
IIT de I’édition francaise de I’Encyclopédie des sciences mathématiques pures et appli-
quées®'™ qui concerne la géométrie (voir la figure 1.9) ; d’autre part, la classification des
chapitres de géométrie du volume 26 de 'année 1895 du Jahrbuch iber die Fortschritte
der Mathematik (voir la figure 1.10). Nous avons choisi le volume de 1895 car c’est
celui qui correspond a ’année avant la publication du livre Geometrie der Zahlen, de
plus la classification pour les sections de géométrie ne change pas au moins jusqu’en
1902.

Une comparaison des deux montre que parmi les sujets importants se trouvent par
exemple la question des fondements, la géométrie analytique, la géométrie synthétique,
les coniques et les courbes dans le plan et 'espace (géométrie algébrique). Il est assez
difficile de placer la géométrie utilisée par Minkowski dans ce panorama. Il n’existe pas
de rubrique particuliére pour 1’étude de la convexité ou pour les questions de volume.

La nouvelle notion de distance introduite par Minkowski n’a pas non plus une place

316 CAHEN 1897 p.25.
31"MoLk 1911-1915.
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Tome I — GEOMETRIE

Valume 1 — Fondements de ln géométrie. Géométrie générale

Jaee, I — 20 praes RIS -1 Principes de la glomdtric
F. Enrigues 1-147
1il-1a Motes sur la géométrie non-archi-
médienne
A. Schoenflies 148151
1il-2  Les mogions de ligne & de surface
fa surveed
H. von Mangoldi - L. Zoreti 152-160
Jasg, F o~ M juifler 19I5 1I-2  feaite ef fim) 1460-184
113 Exposé paraliéle du développe.
ment de la géomdtsic synthetique
=t de la géométrie analyiigue pem-
dant le X1 sigche
. Fann = 5. Carras 185250
Hi-4  Céamétrie énumérative
H.G. Zenthen — M. Pieri M6k
Elie Cartan, (Euvrer complides [11-5  La théorie des groupes continus
Partic 101, Yol. 2, 0.V, 1955 et I glométric
(. Fano — E. Carlan 1-13%

Volume 2 — Géométrie descriptive. (éométric élémentaire
Jage, - 23 décembre 1913 111-8 Géométrie projeciive

A, Schoenfllies — A, Tresse 1-143
119 Configurations®
E. Steiniz E- Merlin 144-160
Volame 3 — Géoméirie algébrique plune
Jusc. b= 25 fudn 1901 HI-1T  Comiques (i swveed
F. Dingeldey — E. Fabry 1-14
Jaxe 2o~ T andr JWE NI-ET  fowire o fimj 161-162
Ii-18  Systémes de comigues
F. Dvingeldey ~ E. Fabry 163-256

I1-19 Théorie générale des courbes pla-
nes algébriges™

L. Berzolari $57-3H4
Vidume 4 — Géométrie algébrique dans I'espace
Jaxe. T — 28 gwrdl I9)4 [1-22 Quadrigues

. Stawde — A Grdvy I-164

F1G. 1.9 — Table des matiére du tome de géométrie de 1’ Encyclopédie

évidente dans ces différents thémes. Dans I’ Encyclopédie, les volumes 2, 3 et 4 traitent
de sujets différents de ceux de Minkowski et dans le volume 1 nous avons relevé seule-
ment 2 références a son travail®'®. Une concerne la définition de sa notion de distance,
I’autre rappelle les définitions qu’il a données de la convexité et d'une surface fermée.
Minkowski a aussi publié¢ des articles classés comme de la géométrie dans ses oeuvres
complétes. En fait ces publications sont toutes postérieures & Geometrie der Zahlen et
les thémes qui sont abordés sont tous liés aux notions géométriques qu’il a utilisées en
théorie des nombres. Pour essayer de préciser le statut de la géométrie de Minkowski,
nous pouvons donc regarder ou ces articles sont classés dans le Jahrbuch. Sur les cing
publications recensées dans ses oeuvres en géométrie, trois sont dans des sections de
géométrie du Jahrbuch : une dans la section 8 (Reine, elementare und synthetische
Geometrie) chapitre 1 (Prinzipien der Geometrie), une dans la section 8 chapitre 2
(Continuititsbetrachtungen (Analysis Situs, Topologie)) et une dans la section 9 (Ana-
lytische Geometrie) chapitre 3 (Analytische Geometrie des Raumes). Les deux autres,

qui ne sont donc pas vues comme de la géométrie mais davantage de l'analyse, se

3I8MoLK 1911-1915 p.124 et 183.
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Achter Abschnitt. Helne, elementare und synthetische
Geometrie.
Capitel 1. Principien der Geometrie
Capitel 2. Contimuniatsbetrachtungen (A nalysis situs, Topologie).
Capitel 3. Elementare Geometrie | Planimetne, Trigonometrie,
Sterecmetna ).
Capitel 4. Darstellende Geometrie.
Capitel 5. Neuere synthetische Geometrie.
A Allgemeines.
E. Bescndere ebens Gebilds.
. Besondere raumliche Gebilde.
1. Gebilde in raummen von mehr als drel Dimensionen.
E. Abzihlende Geometrie.

MNeunter Abschnitt,  Analvtische Geometrie.
Capitel 1. Lehrbuicher, Coordinaten
Capitel 2. Analytische Geometrie der Ebene.
A, Allgemeine Theorie der ebenen Curven,
E. Theorie der algebraschen Curven.
. Gerade Line und Kegelschnitie.
D, Andere specielle Curven.
Capitel 3. Analytische Geometrie des Haumes.
A Allgemeine Theorie der Flichen und Raumenrven.
E. Theorie der algebraischen Flachen und Raumcurven.
. Ranmgebilde ersten, zweiten und drtien Grades.
D, Andere specielle Raumgehilds,
E. Gebilde in Baumen von mehr als drei Dimensionen.
Capitel 4. Linlengeometrie (Compleae, Strahlensysteme].
Capitel 5. Verwandtschalkt, eindeutige Transformationen, Abbildungen.
A Verwandischalt, eindeutige Transformation und Abbildung.
E. Conforme Abbildung und dergleichen.

F1G. 1.10 — Classification des chapitres de géométrie du tome 26 du Jahrbuch

trouvent dans la section 7, Differential -und Integralrechnung, chapitre 4 (Bestimmte
Integrale) et chapitre 7 (Variationrechnung). Ces situations diverses pour les articles
de géométrie de Minkowski témoignent bien de la difficulté a caractériser sa géométrie.
Leur place permet cependant de mettre en évidence le role de la continuité dans son
travail et la dimension analytique de sa géométrie.

Un autre aspect important de la géométrie de Minkowski est qu’il s’agit d'une géo-
métrie & n dimensions. Méme lorqu’il se contente d'une présentation de ses résultats
en dimension 2 ou 3, il donne le plus souvent les indications nécessaires pour une gé-
néralisation en dimension quelconque. Tannery remarque dans son compte rendu sur
Diophantische Approximationen, aprés avoir dit que Minkowski présente sa méthode

en dimension 2 et 3 :

« Elle s’étend au cas de n variables, grace au langage de la géométrie a n

dimensions, et M. Minkowski donne & I'occasion sur ce sujet des indications
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319

bréves et suffisantes® ».

Ceci ne nous semble pas banal pour I'époque. En effet, comme le Jahrbuch et I’ En-
cyclopédie le montrent, le traitement des dimensions 2 et 3 est un des principes qui
organise les classifications et leur étude occupe une grande place. D’autre part, la suite
du commentaire de Tannery a propos de la géométrie en dimension quelconque va aussi
dans ce sens

« il [Minkowski| a tenu & s’arréter sur les deux cas [les dimensions 2 et 3|

320

ou le langage géométrique n’est pas un simple verbalisme®=”. »

De méme lorsque Cahen parle de « considérations géométriques d’une espéce particu-
liére » (voir la citation précédente de Cahen), il précise tout de suite « qu’il s’agit de

321 oy

Géométrie & n dimensions

Dans son étude sur les systémes d’inégalités linéaires, Tinne Hoff Kjeldsen®?? qua-
lifie aussi d’analytique la présentation que fait Minkowski de sa géométrie. Le travail
de Minkowski sur la convexité est décrit dans le contexte de la résolution des systémes
d’inégalités linéaires, point de vue que Minkowski adopte lui-méme a la fin du premier
chapitre de Geometrie der Zahlen. Minkowski relie I’étude des propriétés des convexes
a 'existence d’un hyperplan d’appui en tout point de leur frontiére. Un tel hyperplan
sépare l'espace en deux, dont un contient tous les points du convexe, et chacun de ces
demi-espaces est défini par une inéquation linéaire. L’aspect analytique ne provient pas
dans ce cadre d’'une insistance mise sur la continuité mais sur 1'utilisation des équations

d’hyperplans®?3.

Le dernier point qui permet de qualifier d’analytique la géométrie développée par
Minkowski est I'introduction de sa nouvelle notion de distance. Des questions géomé-
triques sur un domaine convexe peuvent étre ainsi reformulées de facon analytique avec
la fonction distance associée. Minkowski qualifie lui-méme de traduction analytique le
passage aux fonctions distances dans sa lettre & Hermite de 1891 :

« La méthode géométrique de mon travail, traduite en langue purement

324

analytique, conduit a ce théoréeme>*... »

En fait, pour Minkowski, ce qui caractérise le plus sa méthode géométrique n’est pas

I’application dans le cadre de la théorie des nombres des concepts et des méthodes qui

319 TANNERY 1908 p.314-315.

320TANNERY 1908 p.315.

321 CAHEN 1897 p.25.

322K JELDSEN 2002 p.483.

323Dans cette tradition de la résolution des systémes d’inégalités linéaires décrite dans KJELDSEN
2002, il semble que Minkowski ait une certaine postérité et ce probléme finit par intégrer la théorie
de la convexité dans les années 1930.

324 MINKOWSKI 1891a p.209-210.
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sont fournis par le domaine des mathématiques qu’est la géométrie. C’est davantage
I'utilisation de la géométrie dans sa dimension intuitive et c’est ainsi que Minkowski

justifie le nom de géométrie des nombres donné a ce travail

« Geometrie der Zahlen habe ich diese Schrift betitelt, weil ich zu den Me-
thoden, die in ihr arithmetische Satze liefern, durch rdumliche Anschauung
gefiihrt bin. Doch ist die Darstellung durchweg analytisch, wie dies schon
durch den Umstand geboten war, dass ich von Anfang an eine Mannigfal-

tigkeit belieger Ordnung betrachte®?. »

1.4.2.2 Géométrie et Anschauung dans la géométrie des nombres

Le mot allemand Anschauung qui est utilisé par Minkowski pour caractériser I’em-
ploi qu’il fait de la géométrie pose des problémes de traduction en frangais. Le plus
souvent il est traduit par intuition, mais venant du verbe anschauen qui signifie re-
garder, contempler, il s’agit en fait d’'une intuition de nature visuelle. D’ailleurs il est
souvent associé chez Minkowski au terme raum et se traduit alors par intuition de

’espace3?S.

327
, 1

D’aprés Joachim Schwermer importance de cette dimension intuitive apparait déja

en 1887 dans son discours pour son habilitation

« The ideas presented there were at the heart of Minkowski’s geometrical

thinking32®. »

Cette pensée géométrique n’est pas seulement caractéristique de ses recherches mathé-
matiques mais semble traverser tout son travail. Peter Galison reprend cette idée de
« visual thinking » & propos du travail de Minkowski en mathématique et en physique

« Characteristic of Minkowski’s approach to scientific problems, both ma-

thematical and physical, is his visual-geometric Anschauung®®. »

Les commentaires de Minkowski mettant en avant I'aspect intuitif de son travail
sont assez nombreux. Pensons d’abord au titre donné a l'exposé de la conférence de
Chicago en 1893 : Uber Eigenschaften von ganzen Zahlen, die durch rdumliche An-

schauung erschlossen sind3*.

325« J’ai intitulé cet écrit ’Géométrie des nombres’ parce que j'ai été conduit aux méthodes qui y
fournissent des propositions arithmétiques grace a l'intuition spatiale. Pourtant la représentation est
de bout en bout analytique comme c’était déja offert par la circonstance que je considérais depuis le
début une multiplicité d’ordre quelconque. » MINKOWSKI 1910 p.V.

326]] est d'usage dans la tradition philosophique kantienne de séparer Raumanschauung (intuition
de lespace) de Zeitanschauung (intuition du temps). Les mathématiciens allemands du XIX® siécle
sont particuliérement imprégés de cette philosophie. Voir par exemple ROWE 1994 p.197.

327Voir SCHWERMER 1991, 2007.

328SCHWERMER 2007 p.487.

329G ALISON 1979 p.118.

330 Qur les propriétés des nombres entiers qui sont dérivées de l'intuition de I’espace, MINKOWSKI

1896¢.
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Dés 1891, dans son article Uber die positiven quadratischen Formen und tiber ketten-
bruchdhnliche Algorithmen, alors que ’expression géométrie des nombres n’apparait
pas encore, Minkowski parle de « anschauliche Auslegung des Aequivalenzbegriffs®3! ».
Dans l'introduction d'un de ses cours le 28 octobre 1897, il remarque que la « geome-

trischer Anschauung » est la base de son approche de la théorie des nombres

« Zu ihr [die angewandte Zahlentheorie| kann man vielfach von geometri-
scher Anschauung zur leichteren Auffindung von Satzen Gebrauch machen
und so entsteht ein Gebiet, welches zuerst in einzelnen Partien bei Gauss,
Dirichlet, Eisenstein, Hermite auftaucht und welchem ich den Namen Geo-
metrie der Zahlen gegeben habe. Es handelt sich von demselben also we-
sentlich um einen Gebrauch rédumlicher Anschauung zur Aufdeckung von

Beziehungen fiir ganze Zahlen®3? ».

Minkowski explique le nom de « Geometrie der Zahlen » donné a cette partie de son

travail par cette utilisation des possibilités de représentation qu’offre la géométrie

« Im folgenden mochte ich versuchen, in kurzen Ziigen einen Bericht iiber ein
eigenartiges, zahlreicher Anwendungen fahiges Kapitel der Zahlentheorie zu
geben, ein Kapitel, vom dem Charles Hermite einmal als der “introduction
des variables continues dans la théorie des nombres" gesprochen hat. Einige
hervorstechende Probleme darin betreffen die Abschidtzung der kleinsten
Betriage kontinuierlich verénderlicher Ausdriicke fiir ganzzahlige Werte der
Variablen.

Die in dieses Gebiet fallenden Tatsachen sind zumeist einer geometrischen
Darstellung fahig, und dieser Umstand ist fiir die in letzter Zeit hier erzielten
Fortschritte derart mafsgebend gewesen, daf ich geradezu das ganze Gebiet

als die Geometrie der Zahlen bezeichnet habe333. »

Les réseaux, qui peuvent étre représentés géométriquement et acquiérent ainsi un ca-

ractére intuitif, ont une place fondamentale dans la théorie développée par Minkowski

331« interprétation visuelle du concept d’équivalence », MINKOWSKI 1891b p.288.

332 ¢« Pour elle (la théorie des nombres appliquée) on peut de multiples facons faire usage d’intuition
géométrique afin de trouver plus facilement des propositions et ainsi est né un domaine qui a d’abord
été initié pour des parties isolées par Gauss, Dirichlet, Eisenstein, Hermite et auquel j’ai donné le
nom de géométrie des nombres. Il s’agit donc essentiellement d’un usage de I'intuition spatiale pour
découvrir des relations sur les nombres entiers. » Minkowski cité dans GALISON 1979 p.87.

333 ¢ Dans ce qui suit je voudrais essayer de donner & grands traits un rapport sur un chapitre spéci-
fique et susceptible de nombreuses applications de la théorie des nombres, un chapitre & propos duquel
Charles Hermite a parlé autrefois d“introduction des variables continues dans la théorie des nombres”.
Certains problémes importants concernent ici I’estimation des plus petites contributions d’expressions
variables continument pour des valeurs entiéres des variables.

Les faits intervenant dans ce domaine sont pour la plupart susceptibles d’une représentation géomé-
trique, et cette circonstance a été décisive pour les progrés obtenus ici dans les derniers temps, de sorte
que j’ai désigné le domaine entier comme la Géométrie des nombres. », MINKOWSKI 1904b p.164.

136



14 CHAPITRE 1

« In diesem und den néchsten Kapiteln sollen einige Eigenschaften des Zah-
lengitters entwickelt werden, die sich ebenso durch Anschaulichkeit aus-

334

zeichnen wie sie mannigfache wichtige Anwendungen zulassen®>*. »

Finalement, ce qui caractérise et donne une unité a l’ensemble des textes qui sont
regroupés sous le nom de géométrie des nombres est cette introduction de la géométrie
dans des questions de théorie des nombres. Mais ce que Minkowski entend ici par
géométrie est avant tout 1'utilisation de représentations géométriques qui permettent
d’avoir une meilleure intuition des objets étudiés. Pour illustrer I'importance de cette
orientation dans le travail de Minkowski, citons une anecdote racontée par Galison
d’aprés un document que lui aurait fourni Lily Riidenberg la fille de Minkowski. Vers
1907, un étudiant écrit une parodie du catalogue des cours proposés a Gottingen dans
lequel il se moque de Minkowski et de ses applications systématiques de la géométrie et
de la visualisation a de nombreuses disciplines scientifiques (particuliérement la théorie

des nombres) :

« H. Minkowski : Chemical Number Theory (self-advertisement). I can no
longer hold back from the mathematical world one of the most interes-
ting results of my application of number theory to chemistry. It concerns
the ‘periodic system’ of the elements which, as everybody knows, is vi-
sualized through the following curve. .. [Minkowski graphs atomic volume
against atomic weight.] The result becomes clear through the latest sur-

prising results of Hilbert...and draws on the function I introduce ear-
lier : ?(x),!(x),;(x), = (x) which follows from. ..

z(e)
/ log v/ ?(y)®) dz .
z(a)

My detailed textbook about these matters should appear in the course of

the century3. »

Cette dimension du travail de Minkowski prend sa place dans un mouvement plus
large en particulier & Gottingen®®. Felix Klein prend position par rapport a ce qu’il

nomme l'arithmétisation des mathématiques

« il nous faut repousser cette idée que, dans la Science ainsi arithmétisée,

nous aurions, comme en un extrait concentré, I’ensemble total proprement

dit de la Mathématique existant déja®3”. »

334 « Dans ce chapitre et le suivant quelques propriétés du réseau de nombres doivent étre développées

qui se laissent autant décrire intuitivement qu’elles offres de multiples et importantes applications. »
MINKOWSKI 1910 p.73.

335Cité dans GALISON 1979 p.111.

336RowE 1989; PARSHALL et ROWE 1994, chapitre 4.

33TKLEIN 1897 p.117.
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Il défend une conception des mathématiques dans lesquelles l'intuition a une place

importante & coté du raisonnement logique

« Les développements mathématiques qui tirent leur origine de 'intuition ne
peuvent d’autre part étre admis comme possession définitive de la Science
que lorsqu’ils ont été ramenés a une forme logique rigoureuse. Réciproque-
ment, le traitement abstrait des relations logiques ne peut nous suffire, tant
que leur portée n’a pas été vivifiée a l'aide de chaque mode d’intuition
et tant que nous n’apercevons pas les combinaisons multiples qui relient
le schéma logique, dans le domaine que nous avons choisi, avec les autres

parties de nos connaissances®®. »

Hilbert, souvent présenté comme formaliste, donne lui aussi un réle a l'intuition par

exemple dans l'axiomatisation de la géométrie ou de la physique®®”.

Ce mode d’intervention de la géométrie conduit Minkowski & lui donner des fonc-
tions précises, dans certaines situations elle va étre préférée a ’analyse. En effet, comme
le montre par exemple la comparaison du théoréme sur les convexes dans les lettres a
Hermite et & 'occasion de la conférence de Chicago, Minkowski a le choix de présen-
ter son travail de facon géométrique ou plus analytique. Nous allons maintenant voir
qu’il semble que ce choix est guidé par les valeurs différentes que Minkowski attribue

a I'analyse et a la géométrie.

1.4.2.3 Les fonctions respectives de la géométrie et de 1’analyse dans la

géométrie des nombres chez Minkowski

Nous avons déja noté que les notions géométriques utilisées par Minkowski comme
les distances radiales, le volume, la convexité sont valables en dimension quelconque.
Cependant il fait une différence lorsqu’il expose son travail en dimension inférieure a
3 par rapport a une présentation faite en dimension n. Dans les petites dimensions
Minkowski préfere des présentations géométriques alors qu’il se tourne davantage vers
I’analyse lorsqu’il se place en toute généralité. Rappelons la fin de la citation de la page

135 extraite de Geometrie der Zahlen :

« Doch ist die Darstellung durchweg analytisch, wie dies schon durch den

Umstand geboten war, dass ich von Anfang an eine Mannigfaltigkeit belie-

ger Ordnung betrachte34°. »

338 KLEIN 1897 p.128.
339Voir HILBERT et COHN-VOSSEN 1952; BONIFACE 2004; CORRY 2000, 2002, 2006; TOEPELL 2005.
340NINKOWSKI 1910 p.V.
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Toujours dans la Geometrie der Zahlen, il justifie de maniére encore plus claire que la

nécessité d'une présentation analytique est liée a la question de la dimension :

« Ich bin zu meinen Sdtzen durch rdumliche Anschauungen gekommen |. . ]
Weil aber die Beschréankung auf eine Mannigfaltigkeit von drei Dimensionen
unthunlich erschien, so habe ich die Darstellung hier rein analytisch gefasst,
nur befleissige ich mich des Gebrauchs solcher Ausdriicke, die geeignet sind,

geometrische Vorstellungen wachzurufen*!. »

Nous voyons que la question de la dimension est indissociable de celle de I'intuition.
Pour Minkowski, I'intuition de 1’espace n’est possible qu’en dimension 3 d’ou la présen-
tation analytique en dimension plus grande. Cependant, ce qui est exposé en dimension
quelconque est suggéré par 'intuition des phénomeénes en dimension 3. Le vocabulaire
et les notions employées doivent donc rappeler cette origine intuitive qui se trouve dans
les représentations géométriques, possibles dans les dimensions 2 et 3. Cette remarque

est faite par Cahen dans son compte rendu sur le livre Geometrie der Zahlen :

« Dans le cas particulier de n = 3, la représentation géométrique rend
intuitif ce fait qu’il doit y avoir une relation entre le volume du corps et le

nombre maximum ou minimum de points du réseau qu’il contient®*2. »

La dimension plus intuitive qui est ainsi donnée a la théorie des nombres est aussi
soulignée par Klein en 1895
« la discipline qui, pendant bien longtemps, a semblé la plus étrangere a
I'intuition, je parle de la théorie des nombres, vient de prendre un nouvel
et brillant essor par l'introduction des méthodes intuitives entre les mains

343

de Minkowski et d’autres »

Nous avons déja vu (voir page 92) que pour Klein une conséquence importante d’une
approche par des méthodes géométriques est qu’elles permettent de simplifier la théorie
a laquelle on s’intéresse.
Nous retrouvons ce théme de la simplicité dans le commentaire de Hilbert sur le théo-
reme de Minkowski sur les corps convexes. Hilbert met en avant la simplicité du principe
se trouvant derriére ce résultat par rapport a 'importance des problémes qu’il permet
de traiter

« Minkowski succeeded in proving a theorem on lattices which has, despite

its simplicity, resolved many problems of Number Theory that could not be

treated by other methods®*. »

341« Je suis arrivé & mes propositions par I'intuition spatiale [...| Mais parce que la limitation & une
multiplicité de dimension trois parait inopportune, j’ai fait ici une présentation purement analytique,
je me suis seulement efforcé par 1'usage d’expressions appropriées a rendre attentif aux représentations
géométriques. » MINKOWSKI 1910 p.VI.

342CAHEN 1897 p.26-27.

343KLEIN 1897 p.124.

344 HILBERT et COHN-VOSSEN 1952 p.41.
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Il est intéressant de noter dans cette citation que la simplicité n’est pas a prior: une
valeur positive pour Hilbert. Il semble préférer juger de la qualité d’'une méthode ou

d’une preuve par sa fécondité pour des recherches ultérieures :

« On ne juge pas en soi-méme quelle est, parmi plusieurs démonstrations,
la plus simple et la plus naturelle ; il faut d’abord savoir si les principes in-
voqués sont susceptibles d'une généralisation et s’ils peuvent nous conduire

345

& d’autres recherches »

Minkowski commente aussi cet avantage des méthodes géométriques dans la conclusion

de Diophantische Approximationen

« die Einfachheit der spéter zu befolgenden geometrischen Methoden ins

346

rechte Licht zu setzen »

Cette simplicité vient en particulier du fait que les représentations géométriques per-

mettent de donner une image d’objets mathématiques abstraits

« Nunmehr entwarfen wir das geometrische Bild des Zahlengitters. |...]
Wir wandten uns weiter dem allgemeinen Begriffe der algebraischen ganzen
Zahlen zu. Wir erkannten das Zahlengitter als ein die Auffassung dufierst
erleichterndes Bild der Gesamtheit der ganzen Zahlen in einem algebrai-

schen Zahlkorper®” ».

Comme la géométrie permet de rendre plus simple et plus intuitive la théorie, Min-
kowski lui donne une fonction pédagogique. Le terme Anschauung porte en fait cette
dimension pédagogique depuis le début du XIX¢ siécle et la philosophie de I’éducation
de Johann Heinrich Pestalozzi®*®. L 'utilisation de représentations géométriques permet

de faire comprendre des problémes mathématiques difficiles méme a des non spécialistes

« Daft Minkowski auch Nichtfachleuten durch die Heranziehung treffender
Gleichnisse und anschaulicher Bilder iiber schwierige mathematische Ge-
gensténde vorzutragen und in ihnen eine Vorstellung von der Grofe und

Erhabenheit unserer Wissenschaft zu erwecken wufite34? ».

La comparaison des présentations faites du théoréme sur les convexes dans les lettres

a Hermite et a la conférence de Chicago et 'exposé de 1891 a Halle nous ont permis

345HILBERT 1991 p.VI.

346 ¢ de mettre dans leur vraie lumiére la simplicité des méthodes géométriques & suivre ultérieure-
ment. » MINKOWSKI 1907 p.234.

347« Jusqu’a présent nous esquissions l'image géométrique du réseau. [...] Nous nous tournions
ensuite vers le concept général des nombres entiers algébriques. Nous reconnaissions dans le réseau
une image de ’ensemble des entiers dans un corps de nombres algébriques facilitant extrémement la
représentation », MINKOWSKI 1907 p.234.

348 ARNHEIM 1976; BULLYNCK 2006; GRAY 1999 p.73.

349 ¢« que Minkowski savait exposer aussi 4 des non spécialistes des objets mathématiques difficiles
en ayant recours a des comparaisons frappantes et & des images intuitives et savait éveiller en eux une
représentation de la grandeur et du charme de notre science », HILBERT 1911 p. XXVIII.
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de voir que Minkowski fait le choix de la géométrie lorsqu’il s’adresse a des non spécia-
listes des thémes qu’il traite (voir le paragraphe 1.3.1.5). Il se sert de la géométrie pour
communiquer sur son travail & une autre occasion, il s’agit du congrés international
des mathématiciens en 1904 & Heidelberg3>°. Il propose alors un exposé dans lequel sur
un certain nombre de théoréemes obtenus dans le cadre de la géométrie des nombres.
Chaque résultat présenté est systématiquement accompagné d’un dessin illustrant la
démarche employée pour sa démonstration, si bien que dans les oeuvres complétes de
Minkowski sur les 18 pages dans lesquelles est reproduit cette conférence 8 sont occu-
pées par ces représentations géométriques. Par exemple, la preuve du théoréme sur les

corps convexes a centre est illustrée par la figure 1.11.

Fig. 1. Zahlengitter und konvexe Kurven.

flz,y):
@ flx, ) >0, ﬂ',y+°v°3 (0,0) = 0,
@ ftz, ty) =tf(x, y), t>0,

® fl—z, —y)=f(x, %),
@) @y, )+ F(@s Ys) _2_ f(@y 4+ 23y Y1+ ¥a)s
®) fle, ) <1, [fazdy=1J;
2
(8) . flz 9) é ﬁ =

F1G. 1.11 — [lustration utilisée par Minkowski en 1904 & Heidelberg.

Minkowski rejoint & nouveau une préoccupation de Hilbert. Son livre Anschauliche
Geometrie, publié en 1932, est issu d'un cours donné & Gottingen dans les années 1920-
1921 et retravaillé ensuite par Cohn-Vossen. Dans la préface ou il explique que son
objectif est justement de présenter la géométrie dans ses aspects visuels et intuitifs,

Hilbert remarque :

« Thus a presentation of geometry in large brushstrokes, so to speak, and

based on the approach through visual intuition, should contribute to a more

350 M INKOWSKI 1904b.
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just appreciation of mathematics by a wider range of people than just the

specialists®!. »

Minkowski n’est donc pas le seul a voir dans la géométrie un moyen de rendre plus
intuitif et simplifier les mathématiques. Cependant sa démarche est percue comme ori-
ginale & cause de la place qu’elle occupe dans I'heuristique. Cette originalité est relevée
dans 1"Encyclopédie des sciences mathématiques ou les auteurs comparent justement

I’emploi de la géométrie en théorie des nombres chez Klein et chez Minkowski :

« Comme H. Minkowski, F. Klein a cherché a représenter géométriquement
d’une fagon systématique les principaux résultats de la théorie des nombres
en particulier ceux qui se rapportent aux formes quadratiques binaires. Ses
recherches différent de celles de H. Minkowski en ce qu’elles ont moins servi
a trouver des résultats nouveaux qu’a rendre intuitifs et plus simples des

352

résultats déja connus®<. »

Nous retrouvons que 1'idée commune aux deux mathématiciens que la géométrie facilite
I'intuition et simplifie mais pour Minkowski elle joue aussi un role dans la découverte
de « nouveaux résultats ». Cet aspect de 'intervention de la géométrie dans le travail
de Minkowski est aussi commenté par Klein qui note a propos de la conférence faite a
Chicago :

« La géométrie y est employée directement a développer de nouvelles vérités

353

arithmétiques®” ».

Cette idée que l'intuition apportée par la géométrie est a l'origine de la découverte

354

pour le mathématicien apparait a plusieurs reprises chez Minkowski®**. Par exemple,

Il ouvre sa conférence & Chicago avec la phrase

« Dans la théorie des nombres, comme dans chacun des autres domaines
de I’Analyse, la découverte a lieu fréquemment au moyen de considérations
géométriques, tandis qu’ensuite les vérifications analytiques sont peut-étre

seules communiquées®®. »

Dans un premier temps, la recherche de théorémes nouveaux est donc guidée par la géo-
métrie qui intervient & travers la représentation qu’elle permet des problémes étudiés.
Ensuite seulement la présentation analytique est élaborée pour donner des preuves des
résultats dans toute leur généralité (dimension quelconque) ou encore pour communi-

quer son travail a l'intention des spécialistes des mathématiques.

351 HILBERT et COHN-VOSSEN 1952 p.iii-iv.

352CAHEN et VAHLEN 1908 p.120.

353 KLEIN 1898 p.58.

354Voir en particulier le début des citations déja données page 136 et page 139.
355 MINKOWSKI 1896¢ p.393.
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1.4.3 La place de la géométrie des nombres dans les mathéma-

tiques
1.4.3.1 La géométrie des nombres a la frontiére entre plusieurs disciplines

La géométrie des nombres est considérée comme appartenant a la théorie des

nombres. Nous le voyons a travers les commentaires des mathématiciens a son su-
jet mais aussi parce que les articles de Minkowski que nous avons présentés sont classés
dans la section du Jahrbuch qui concerne ’arithmétique. Mais nous avons vu que la
géométrie des nombres est en interaction avec de nombreux thémes de la théorie des
nombres : la théorie arithmétique des formes, 'approximation diophantienne, les frac-
tions continues, les corps de nombres algébriques. . .
L’appartenance a I’arithmétique ne semble pas contestée certainement a cause des résul-
tats qu’elle permet d’obtenir et de son origine dans la théorie arithmétique des formes
quadratiques. Cependant la situation de la géométrie des nombres dans 1’ensemble des
mathématiques n’est pas toujours aussi claire. Nous avons montré que la géométrie y
intervient de maniére cruciale mais ’analyse aussi y trouve une place importante. C’est
d’ailleurs I'analyse qui est mis d’abord en avant par Minkowski quand il présente son
livre Geometrie der Zahlen

« Diese Schrift enthélt eine neue Art Anwendungen der Analysis des Unend-

356

lichen auf die Zahlentheorie®® ».

Minkowski parle aussi de présentation analytique de son travail lorsqu’il est exprimé a
I’aide de fonctions ¢ vérifiant les trois propriétés énoncées par exemple dans les lettres
a Hermite (voir les conditions page 82).

En fait, quelle que soit la méthode employée, la présentation adoptée ou encore le pro-
bléme étudié, la géométrie parait étre toujours présente dans le travail de Minkowski sur
la géométrie des nombres. Parfois parce qu’il s’agit de recherches qu’il exprime de fagon
purement géométrique, c’est par exemple le cas lors de la conférence de Chicago®7. Mais
le plus souvent nous I'avons vu, la géométrie est associée a un autre point de vue ana-
lytique ou arithmétique. La géométrie se trouve alors a I'arriére plan et peut toujours
étre mobilisée pour donner un autre cadre dans lequel peut s’interpréter le travail en
cours. Quand Minkowski décrit & Hermite les fonctions ¢ (qu'il appelle & d’autres occa-
sions distances radiales) en termes analytiques, toutes les propriétés analytiques de ces
fonctions ont une interprétation géométrique : p(x) = ¢(—z) correspond a la symétrie
du corps étalon par rapport a un point, l'inégalité p(z+y) < v(z)+¢(y) & sa convexité
etc... Quand il s’intéresse & des problémes arithmétiques sur les formes quadratiques

la-encore la traduction géométrique n’est jamais loin. La question du minimum de ces

356 « Cet écrit contient une nouvelle sorte d’applications de I’analyse de l’infini & la théorie des
nombres », MINKOWSKI 1910 p.IV.
35TMINKOWSKI 1896c¢.
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formes pour des valeurs entiéres des variables a une signification en termes de distance
entre les points d’un réseau. L’équivalence et la réduction sont étudiées en introduisant
un domaine dont les propriétés géométriques (la convexité) fournissent un cadre pour
travailler sur les formes quadratiques réduites.

Il apparait donc que la géométrie des nombres est une théorie ol se rencontrent ana-
lyse, arithmétique et géométrie mais ou la géométrie occupe une place particuliére en

étant toujours adossée aux autres domaines.

1.4.3.2 La question de 'unité des mathématiques

En 1893, Klein considére que la théorie des nombres est a part du reste des mathé-

matiques

« La théorie des nombres est regardée d’habitude comme quelque chose
d’excessivement difficile et abstrait, et n’ayant presque aucun rapport avec

les autres branches de la science mathématique®®. »

Minkowski voit lui les mathématiques divisées en deux grandes parties : d'un coté le
domaine du continu avec la géométrie et ’analyse, d’autre part le domaine du discret
avec Iarithmétique®. Cette opposition entre discret et continu semble trés importante
pour Minkowski. L’introduction des variables continues est pour lui une étape impor-
tante dans le travail en théorie des nombres®®’, dans les toutes premiéres phrases de

Diophantische Approximationen il revient sur cette question :

« Der Urquell aller Mathematik sind die ganzen Zahlen. Dies verstehe ich
nicht blof in dem althergebrachten Sinne, daf auch der Begriff des Konti-

nuums sich aus der Betrachtung diskreter Mengen ableitet36!. »

Mais Minkowski manifeste sa croyance en I'unité préétablie entre les disciplines des ma-
thématiques. Dans la géométrie des nombres, il fait un lien entre des objets du domaine
du continu (le volume, I'intégral) et des objets de nature discréte (les nombres entiers,
le réseau) et cela en particulier a travers le théoréme sur les points d'un réseau dans
un corps convexe a centre. Ceci a donc pour conséquence pour Minkowski de rétablir

I'unité des mathématiques

358 KLEIN 1898 p.58.

359 Cette séparation entre ces deux domaines est en partie héritée de Gauss. Avant lui la théorie
des nombres était vue comme appartenant a l'analyse (analyse s’oppose ici & synthése et ne désigne
pas le domaine des mathématiques qui se développe par la suite autour, par exemple, de la notion de
fonction). Voir GOLDSTEIN et SCHAPPACHER 2007a p.21-22.

360Voir la citation dans laquelle il revient sur cet aspect du travail d’Hermite page 136.

361 « La source de toutes les mathématiques sont les nombres entiers. Je n’entends pas cela seulement
dans I'ancienne acception selon laquelle le concept de continu lui-méme dérive de la considération
d’ensembles discrets. » Préface de MINKOWSKI 1907.
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« dak es sich hier um Fragen handelt, welche die Fundamente der Grofsen-
lehre beriihren, welche der Auffassung leicht zugénglich sind und welche
uns die Disziplinen der Algebra, Arithmetik, Geometrie in harmonischer

62

Wechselwirkung zeigen3®2. »

L’unité est donc obtenue par I'introduction d’un point de vue géométrique qui permet

de réunir des résultats arithmétiques dispersés

« welche Fiille der verschiedenartigsten und tiefliegendsten arithmetischen
Wahrheiten werden in diesem Hauptwerke Minkowskis durch das geome-

trische Band gehalten und verkniipft363 ! »

Minkowski n’est pas le seul mathématicien du XIX¢ siécle a poser la question de
I'unité des mathématiques. Dans la préface du Zahlbericht, Hilbert revient sur les liens
entretenus par différents domaines des mathématiques en placant au centre la notion
de corps de nombres algébriques. Hermite, qui est avant tout un analyste, pense que

c’est 'analyse qui permet de réaliser 'unité®6*

« Dans cette immense étendue de recherches qui nous a été ouverte par
M. Gauss, I’Algébre et la Théorie des Nombres, me paraissent devoir se
confondre dans un méme ordre de notions analytiques, dont nos connais-
sances actuelles ne nous permettent pas encore de nous faire une juste
idée®0° . »

Le fait qu'Hermite réussit & surmonter cette opposition entre discret et continu par
le recours a l'analyse est aussi souligné par Henri Poincaré lors du jubilé scientifique

d’Hermite en 1892 :

« La théorie des nombres cessait d’étre un dédale grace a l'introduction
des variables continues sur un terrain qui semblait réservé exclusivement a
la discontinuité. L’analyse sortant de son domaine vous amenait ainsi un

précieux renfort3%6. »

Cette recherche de 1'unité peut cependant prendre différentes formes selon les mathé-
maticiens. Cela peut par exemple se traduire par des échanges de méthodes ou de
concepts entre les domaines®$”. Avec Minkowski, des notions empruntées & un domaine

(par exemple la convexité a la géométrie) sont utilisées dans un autre (la théorie des

362 ¢ qu’il s’agit ici de questions qui touchent aux fondements de la théorie des grandeurs qui sont
d’accés facile & la compréhension et qui nous montrent les disciplines de I'algébre, de 'arithmétique
et de la géométrie en interaction harmonieuse. » MINKOWSKI 1904b p.173.

363 ¢ quelle quantité de vérités arithmétiques variées et profondes sont contenues, entrelacées par le
lien géométrique, dans ce grand ouvrage de Minkowski! » HILBERT 1911 p.XIV.

364Voir GOLDSTEIN 2008.

365 HERMITE 1850 p.291.

366POINCARE 1893.

367 GOLDSTEIN et SCHAPPACHER 2007a p.53 ot des exemples sont donnés.
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nombres). Mais ce qui caractérise surtout l'unité, c’est la présence constante de la géo-

métrie dans sa dimension intuitive qui englobe 1’ensemble de la théorie.

Il est intéressant de noter que Minkowski croit aussi en I’harmonie préétablie entre les

368 ot que dans ce cas I'unité doit & nouveau provenir de

mathématiques et la physique
la géométrie. Il s’agit cette fois de géométriser la théorie de la relativité dans laquelle
Minkowski introduit la notion d’espace-temps®%?. Cette question de I’harmonie est une

conséquence de sa théorie qu’il met en avant dans la conférence de Cologne en 1908 :

« ceux qu’effraie ou que chagrine I'idée de changer quelque chose aux vieilles
conceptions habituelles pourront se réconcilier avec lui, a la pensée d’une

370

harmonie préétablie entre la Mathématique pure et la Physique®™. »

Conclusion

Le résultat central de la géométrie des nombres chez Minkowski est le théoréme
sur l'existence d’un point d’un réseau dans un corps convexe possédant un centre de
symétrie

« dasjenige Theorem, welches mit Recht als das Fundamentaltheorem der
Geometrie der Zahlen bezeichnet werden kann, weil es fast in jede Unter-

suchung auf diesem Gebiete hineinspielt37!. »

Ce théoréme est emblématique de la géométrie des nombres et lui donne en partie son
identité. C’est un résultat avec des applications nombreuses dans divers domaines de
la théorie des nombres, mais c’est aussi le paradigme pour une méthode. La démarche
utilisée dans sa preuve (illustrée par la figure 1.11) est en effet reprise dans d’autres

situations comme par exemple pour démontrer 'existence d’entiers x, y tels que

N

(€ = &) —mo)| <

ou & et n sont des formes linéaires de déterminant 1 (voir page 113).

Un autre aspect essentiel de la géométrie des nombres de Minkowski est 1'utilisation
qui est faite de la géométrie. La géométrie qui intervient dans le travail de Minkowski

est trés spécifique. La notion de convexité est cruciale et d’une facon plus générale il

368Voir GALISON 1979.

369WALTER 1996 p.248.

3TOMINKOWSKI 1909a p.517.

371« ce théoréme qui peut avec droit étre décrit comme le théoréme fondamental de la géométrie
des nombres parce qu’il intervient dans presque toutes les recherches de ce domaine. » MINKOWSKI
1904b p.164.
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utilise une géométrie qui peut étre traduite analytiquement (par exemple en termes de
fonctions distances ou de systémes d’inégalités). Mais ce qui est encore plus caracté-
ristique dans la géométrie des nombres de Minkowski, c’est I’emploi de représentations
géométriques pour les phénomeénes qui sont étudiés. Ce mode d’intervention de la géo-
métrie améne Minkowski a l'utiliser dans des situations précises et en particulier pour
favoriser 'intuition. Finalement, tout ce discours autour de I’Anschauung fonde pour
Minkowski le lien de cette nouvelle discipline qu’il a baptisée géométrie des nombres.

Hilbert revient sur tous ces aspects du travail de Minkowski en 1909 :

« Dieser Beweis eines tiefliegenden zahlentheoretischen Satzes ohne rech-
nerische Hilfsmittel wesentlich auf Grund einer geometrisch anschaulichen
Betrachtung ist eine Perle Minkowskischer Erfindungskunst. |...]

Aber der obige Satz vom Volumen des Eichkorpers, den ich einen der an-
wendungsreichsten der Arithmetik nannte, bildet doch nur das Anfangsglied
einer Reihe weiterer auf geometrischer Anschauung fuffender Schlufsweisen

von weittragender Bedeutung®™?. »

Des critéres de type internalistes apparaissent donc bien adaptés a la définition de la

géomeétrie des nombres comme discipline. Elle est caractérisée par des objets (distances,
convexes), des résultats clés (les théorémes sur les convexes), un systéme de preuves (le
raisonnement dans la démonstration du théoréme de Minkowski sur les convexes), des
méthodes privilégiées (géométriques) et une systématique (théoréme fondamental et
ses applications). De plus, la discipline est intégrée au reste de la théorie des nombres
par ses applications a des sujets variés comme 'approximation diophantienne ou les
nombres algébriques ; mais aussi au reste des mathématiques par ses liens avec la géo-
métrie, 'analyse et 'arithmétique.
Par contre, d’'un point de vue social, la géométrie des nombres ne parait pas étre une
construction collective. Elle n’est pas élaborée par un groupe de mathématiciens qui
partageraient un paradigme commun, Minkowski participe seul au développement de
la discipline. Ceci est bien illustré par les sources de Minkowski sur la géométrie des
nombres que nous avons présentées au paragraphe 1.2. Les références de Minkowski sur
la géométrie des nombres sont des mathématiciens décédés quand il commence & tra-
vailler sur ce sujet (Gauss, Dirichlet), ou bien qui se sont tournés vers d’autres thémes
de recherche (Hermite).

En revanche, Minkowski partage avec d’autres mathématiciens comme Hilbert ou Klein

372 ¢ Cette preuve d’un théoréme profond de théorie des nombres sans moyen calculatoire, reposant
essentiellement sur une considération géométrique intuitive est une perle de ’art heuristique de Min-
kowski. [.. ]

Mais la proposition ci-dessus sur le volume d’un corps étalon, que je nomme 'une des riches en appli-
cation de 'arithmétique, ne forme pourtant que le début d’une série de plus vastes conclusions basées
sur l'intuition géométrique et d’une grande portée. » HILBERT 1911 p.X-XI et p.XIII.
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une conception commune sur ’organisation d’une discipline. Par exemple, dans le Zahl-
bericht, Hilbert met au centre de I’étude des nombres algébriques la notion de corps
de nombres. Il privilégie certaines méthodes (par exemple celle de Hurwitz-Kronecker
devant celle de Dedekind pour la preuve de la décomposition d’un idéal en produit
d’idéaux premiers) et il offre un traitement systématique de la théorie. Il y a aussi
des points communs dans la maniere dont Hilbert et Minkowski envisagent 1’enseigne-
ment de leurs travaux respectifs. Dans les cours, la théorie des corps de nombres est
développée dans les cas particuliers des corps quadratiques et cubiques par Hilbert et
ses éléves3™. De méme, dans Diophantische Approzimationen, Minkowski insiste sur la
géométrie des nombres en dimension 2 et 3.

Les échelles d’analyse sont ici pertinentes pour voir a quels niveaux les facteurs collec-
tifs ou intellectuels agissent dans la construction de la géométrie des nombres en tant

que discipline.

Ce premier chapitre était centré sur la pratique mathématique de Minkowski. Avec
le chapitre suivant, nous passons a un autre niveau en analysant la production collective

de recherche sur la géométrie des nombres.

3T3SCHAPPACHER 2005 p.701 et 704.
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Trois terrains d’observation pour
repérer la géométrie des nombres
apreés Minkowski : le Jahrbuch, les
livres, I’ Enzyklopadie
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Une question qui surgit rapidement lorsque ’on essaie de faire ’histoire d’une disci-
pline scientifique est celle de ses limites. Nous devons délimiter la recherche pertinente
effectuée sur le sujet, repérer les thémes mathématiques qui relévent de la discipline ou
encore les mathématiciens qui participent a son développement.

Pour les mathématiques deux méthodes ont principalement été utilisées par les histo-
riens. Nous disposons de plusieurs classifications comme par exemple celle du Jahrbuch
tber die Fortschritte der Mathematik entre 1868 et 1942, celle de l'index du répertoire
bibliographique des sciences mathématiques de 1893 a 1916 ou bien maintenant celle
des Mathematical Reviews. Ces classifications qui organisent les connaissances mathé-
matiques en disciplines, sous-disciplines etc, fournissent une premiére approche pour

aborder les questions précédentes.
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Ces classifications, qui sont en fait le reflet du point de vue d’un spécialiste ou d'un
groupe de spécialistes, posent cependant des problémes : elles bougent dans le temps,
elles ne sont pas toutes équivalentes' et un méme vocabulaire & différentes époques
peut cacher des réalités diverses?.

Une autre stratégie consiste justement a regarder comment les spécialistes caracté-
risent la discipline. Le probléme avec le point de vue des spécialistes est qu’il n’est pas
toujours le méme : il change d’un mathématicien a ’autre, d’'une époque a une autre
et pour un méme scientifique il évolue aussi parfois au cours de sa carriére. De plus,
la maniére avec laquelle le spécialiste se repére a l'intérieur des disciplines mathéma-
tiques n’est pas nécessairement opératoire pour l'analyse historique. Pour citer un cas

extréme, voyons ce que dit André Weil & propos de la théorie des nombres :

« Perhaps, before I go on, I ought to say something about what number-
theory is. Housman, the English poet, once got one of those silly letters
of inquiry from some literary magazine, asking him and others to define
poetry. His answer was “If you ask a fox-terrier to define a rat, he may
not be able to do it, but when he smells one he knows it." When I smell
number-theory I think I know it, and when I smell something else, I think

I know it too3. »

Tout cela témoigne de la difficulté a délimiter une discipline scientifique particuliére.

Comme cela a été rappelé dans I'introduction, les travaux sur la notion de discipline
scientifique ont mis en évidence deux types de facteurs dans la définition d’une disci-
pline. D’une part, des facteurs sociaux et institutionnels (journaux spécialisés, postes
universitaires, organisation de séminaires ou de conférences, soutien financier alloué a
la discipline etc), d’autre part, des critéres scientifiques : la discipline est caractérisée

par un certain nombre de concepts fondamentaux

« To mathematicians a theory is a collection of ideas relating to mathema-

tical objects®. »
Par exemple pour la théorie des nombres :

« The higher arithmetic, or the theory of numbers, is concerned with the

properties of the natural numbers 1, 2, 3, ...5 »

C’est pour déterminer ces aspects de la définition de la discipline que 1'opinion des

spécialistes est sollicitée et que les classifications des journaux sont utilisées.

"Voir GOLDSTEIN 1999 p.198-199 pour une illustration des différences entre des classifications.
2GISPERT 1991 p.76-77.

SWEIL 1974 p.280.

4FISHER 1966-1967 p.137.

SDAVENPORT 1952 p.7.
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Dans ce chapitre, trois indicateurs sont mobilisés pour repérer la géométrie des
nombres aprés le travail de Minkowski : d’abord le Jahrbuch diber die Fortschritte der
Mathematik qui doit donner un accés a la production de recherche sur ce sujet dans
la premiére moitié du XX¢ siécle; ensuite, les manuels sur la géométrie des nombres
publiés aprés 1950 ; enfin la synthése de 1" Enzyklopddie der mathematischen Wissen-
schaften mit Einschluss ihrer Anwendungen. Les deux derniers fourniront un regard

rétrospectif sur la période de recherche qui nous intéresse ici.

2.1 Un premier repérage dans le Jahrbuch

La premiére source que nous utilisons pour étudier les développements de la géo-
métrie des nombres a partir du travail de Hermann Minkowski est le Jahrbuch tiber die
Fortschritte der Mathematik. En effet, il propose un recensement de tous les articles et
livres de mathématiques publiés & partir de 1868° et jusqu’en 1942. Les articles sont
classés par thémes d’abord dans des « Abschnitte », comme par exemple Geschichte
und Philosophie ou bien Algebra” qui sont elles-mémes divisées en chapitres (Capitel
1 : Geschichte, Capitel 2 : Philosophie) qui peuvent étre a leur tour organisés avec

différentes parties.

Le Jahrbuch semble donc étre un outil particuliérement efficace pour repérer les
travaux effectués dans un domaine précis des mathématiques ce qui est ici notre ob-
jectif®. Nous allons cependant voir qu’'un certain nombre de difficultés apparaissent et
qu’elles vont nous amener a faire des choix qui doivent conduire a s’interroger sur la
signification d’un tel recensement, ses limites et sur I'image qu’il produit de la géomé-

trie des nombres.

Le premier choix a faire, qui n’est pas spécifique a I'utilisation du Jahrbuch, est de
savoir en quelle année commencer le dépouillement. Si nous regardons les commentaires
faits par des mathématiciens sur la géométrie des nombres au cours du XX¢ siécle, tous
s’accordent pour situer sa naissance dans le travail de Minkowski. Dans ses Gesam-
melte Abhandlungen®, qui sont publiées en 1911, une partie regroupe ses travaux sur la
géométrie des nombres et le premier article sur ce sujet est de 1891, c’est donc & cette

date que nous avons choisi de débuter le recensement dans le Jahrbuch.

6Le premier volume est publié¢ en 1871.

“Comme nous le verrons la classification change pendant la période ot le Jahrbuch est publié, ces
exemples et les suivants sont issus pour l'instant du volume 1.

8Pour un autre exemple de repérage d’'un courant de recherche scientifiques (les théories unitaires)
qui utilise entre autre le Jahrbuch voir GOLDSTEIN et RITTER 2003.

YMINKOWSKI 1911.
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Nous devons ensuite déterminer dans quelles rubriques du Jahrbuch aller chercher les

textes qui concernent la géométrie des nombres. Voyons pour cela quelle classification

il propose en 1891.

2.1.1 La classification du Jahrbuch en 1891

Le premier niveau de classement est comme nous ’avons dit les « Abschnitte ». Le

volume de 'année 1891 en compte douze :

Erster Abschnitt : Geschichte und Philosophie

Zweiter Abschnitt : Algebra

Dritter Abschnitt : Niedere und hohere Arithmetik

Vierter Abschnitt : Combinationslehre und Wahrscheinlichkeitsrechnung
Fiinfter Abschnitt : Reihen

Sechster Abschnitt : Differential- und Integralrechnung

Siebenter Abschnitt : Functionentheorie

Achter Abschnitt : Reine, elementare und synthetische Geometrie
Neunter Abschnitt : Analytische Geometrie

Zehnter Abschnitt : Mechanik

Elfter Abschnitt : Mathematische Physik

Zwolfter Abschnitt : Geoddsie, Astronomie, Meteorologie

Si nous regardons quelques définitions de la géométrie des nombres données par des

mathématiciens il apparait qu’elle est considérée comme faisant partie de la théorie des

nombres :

« The geometry of numbers is a branch of number theory!® ».

« The geometry of numbers deals essentially with an arithmetical ques-

tiont! ».
« In the geometry of numbers, we treat a general class of problems in number

theory!? ».

Nous nous intéressons donc plus particuliérement a la troisiéme section Niedere und

héhere Arithmetik qui est elleeméme divisée en trois chapitres :

Capitel 1 : Niedere Arithmetik
Capitel 2 : Zahlentheorie

A. Allgemeines

B. Theorie der Formen
Capitel 3 : Kettenbriiche

190LDS ET AL. 2000 p.xiii.
HMNORDELL 1961 p.89-90.
I2DAVENPORT 1948.
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Les travaux de Minkowski sur la géométrie des nombres étant issus de son intérét
pour I’étude arithmétique des formes, nous nous attendons & trouver la géométrie des
nombres dans la section B du chapitre 2. Mais nous remarquons que la géométrie des
nombres n’apparait pas de fagon explicite dans la classification de cette troisiéme partie
et elle est méme absente de la classification de tout le volume de 1891. Cela n’a rien
d’étonnant car le travail de Minkowski sur ce sujet commence juste et c’est lui qui bap-
tise ainsi cette théorie. Ce qui est en revanche plus singulier, c’est que cette situation
va se prolonger jusqu’au volume 46 des années 1916-1918. Pendant cette période, il
n’est donc pas possible de trouver les textes concernant la géométrie des nombres en
cherchant ce théme dans la classification. Nous pouvons par contre essayer d’adopter
la démarche inverse : partir de textes considérés comme appartenant a la géométrie des
nombres et voir ol ils sont classés dans le Jahrbuch et ainsi repérer les rubriques de la
classification pertinentes pour notre sujet.

Quels textes suffisamment représentatifs de la géométrie des nombres peuvent nous ser-
vir de témoins ? A nouveau nous pouvons utiliser le fait que Minkowski est vu comme
I'origine incontestée de la géométrie des nombres. Nous allons reprendre ses articles
classés comme de la géométrie des nombres dans ses Gesammelte Abhandlungen puis

les situer dans la classification du Jahrbuch.

2.1.2 Les articles de Minkowski sur la géométrie des nombres

Dans ses Gesammelte Abhandlungen le travail de Minkowski est séparé en cinqg
grands thémes de recherche :

— Zur Theorie der quadratischen Formen

— Zur Geometrie der Zahlen

— Zur Geomelrie
Zur Physik
Rede auf Dirichlet

Les articles recensés dans la partie sur la géométrie des nombres sont les suivants :

(1) « Uber die positiven quadratischen Formen und iiber kettenbruchihnliche Algo-
rithmen », Journal fiir die reine und angewandte Mathematik, Bd. 107, S.278-297,
1891.

(2) « Théorémes arithmétiques (Extrait d’une lettre de M. H. Minkowski & M. Her-

mite », Comptes rendus de I’Académie des Sciences, Paris, t.112, p.209-212, 1891.
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(3) « Uber Geometrie der Zahlen », Verhandlungen der 64. Naturforscher- und Arz-
teversammlung zu Halle, 1891, S.13, und Jahresbericht der Deutschen Mathematiker-
Vereinigung, Bd. 1, S.64-65, 1892.

(4) « Extrait d’une lettre adressée a M. Hermite », Bulletin des Sciences mathéma-
tiques, 2° série, t.XVII, p.24-29, 1893.

(5) « Uber Eigenschaften von ganzen Zahlen, die durch rdumliche Anschauung
erschlossen sind », Mathematical Papers read at the international Mathemati-
cal Congress held in connection with the world’s Columbian Exposition Chicago,
1893, p.201-207 ; traduction en frangais : « Sur les propriétés des nombres entiers
qui sont dérivées de l'intuition de I'espace », de L. Laugel, Nouvelles Annales de
mathématiques, 3¢ série, t.XV, p.393-403, 1896.

(6) « Zur Theorie der Kettenbriiche », traduction en francais de L. Laugel : « Gé-
néralisation de la théorie des fractions continues », Annales de [’Ecole Normale
supérieure, 3¢ série, t.XIII, p.41-60, 1896.

(7) «Ein Kriterium fiir die algebraischen Zahlen », Nachrichten der K. Gesellschaft
der Wissenschaften zu Géttingen, mathematisch-physikalische Klasse, 1899, S.64-
88.

(8) « Zur Theorie der Einheiten in den algebraischen Zahlkérpern », Nachrichten
der K. Gesellschaft der Wissenschaften zu Géttingen, mathematisch-physikalische
Klasse, 1900, S.90-93.

(9) « Uber die Anniherung an eine reelle Groke durch rationale Zahlen », Mathe-
matische Annalen, Bd. 54, S.91-124, 1901.

(10) « Quelques nouveaux théorémes sur 'approximation des quantités a 1'aide de
nombres rationnels », Bulletin des Sciences mathématiques, 2¢ série, t. XXV, p.72-
76, 1901.

(11) « Uber periodische Approximationen algebraischer Zahlen », Acta Mathema-
tica, Bd. 26, S.333-351, 1902.

(12) « Dichteste gitterformige Lagerung kongruenter Korper », Nachrichten der
K. Gesellschaft der Wissenschaften zu Gottingen, mathematisch-physikalische
Klasse, 1904, S.311-355.
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(13) « Zur Geometrie der Zahlen », Verhandlungen des II1. Internationalen Mathe-
matiker-Kongresses, Heidelberg, 1904, S.164-173.

(14) « Diskontinuititsbereich fiir arithmetische Aquivalenz », Journal fiir die reine
und angewandte Mathematik, Bd. 129, S.220-274, 1905.

Remarquons d’abord que (12) ne semble pas avoir été recensé dans le Jahrbuch.
Tous les autres articles sont bien dans la troisiéme partie concernant 'arithmétique
conformément aux définitions de la géométrie des nombres que nous avons vues. En-
suite, 7 articles (3, 4, 5, 7, 8, 11 et 13) sont dans la section A. Allgemeines du chapitre
2 Zahlentheorie, 5 articles (1, 2, 9, 10 et 14) sont dans la section B. Theorie der Formen
de ce méme chapitre et enfin 1 article (6) est dans le chapitre 3 Kettenbriiche.

Cette répartition n’est pas vraiment surprenante, les articles exposant des principes
généraux de la géométrie des nombres sont dans les généralités avec ceux qui sont
en liaison avec la théorie des corps de nombres algébriques, théorie qui n’a pas non
plus de rubrique autonome. Les articles traitant des formes quadratiques mais aussi
de 'approximation des nombres rationnels sont dans Théorie des formes. La présence
des résultats concernant I’approximation dans cette partie s’explique par le fait que
les méthodes développées par Minkowski sur ce sujet sont dans la tradition du travail
d’Hermite et utilisent les théorémes sur les minima des formes quadratiques.

Ce premier repérage de quelques articles montre une premiére difficulté importante
pour ce recensement qui est la variété des thémes pouvant étre abordés en liaison avec

la géométrie des nombres, probléme sur lequel nous aurons 'occasion de revenir.

2.1.3 La géométrie des nombres dans le Jahrbuch entre 1891 et
1915

Le relevé des articles de Minkowski nous améne a chercher les textes sur la géométrie
des nombres dans les chapitres 2 et 3 de la troisiéme partie du Jahrbuch, partie pour
laquelle la classification ne change pas sur la période 1891-1915. Dans ces chapitres,
nous avons relevé les articles ou les livres'® pour lesquels Minkowski ou la géométrie
des nombres sont cités soit dans le titre soit dans le résumé proposé par le Jahrbuch.
Les publications qui satisfont & ces critéres sont données a la fin de ce chapitre (voir

page 171).

BBLes ouvrages généraux sur les mathématiques ou la théorie des nombres mais qui ne sont pas
consacrés exclusivement a la géométrie des nombres ont été exclus.
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Cette premiere liste d’articles permet déja de faire quelques commentaires. D’abord
pour une période qui s’étend sur 25 ans nous obtenons 17 articles consacrés a la géo-
métrie des nombres (hors ceux écrits par Minkowski lui-méme) ce qui semble étre assez
peu. Pour un point de comparaison les données fournies par Catherine Goldstein!?
permettent d’estimer que le nombre total d’articles recensés par le Jahrbuch sur cette
période 1891-1915 dans les chapitres qui nous ont ici intéressés est d’environ 2100.

A nouveau nous pouvons voir la diversité des thémes abordés en liaison avec la géomé-
trie des nombres, par exemple des questions sur les formes linéaires (Hurwitz, Levi B.,
Remak, Humbert-Got, Fujiwara), les formes quadratiques (Voronoi, Uspenskij, Bri-
card), la théorie des corps de nombres algébriques (Weber-Wellstein, Levi F.), ap-
proximation diophantienne (Kakeya). Enfin certains articles abordent plusieurs de ces
thémes (Chatelet, Blichfeldt). Parmi ces articles, celui de Hans Frederik Blichfeldt res-
sort car comme son titre I’évoque bien, c’est le seul qui place la géométrie des nombres
au centre de I'étude sans étre seulement une nouvelle preuve d'un résultat de Min-

kowski ou bien I’application d’un théoréeme de Minkowski dans un autre domaine.

2.1.4 La géométrie des nombres dans le Jahrbuch & partir de
1916

A partir de 1916, la situation semble étre plus favorable pour repérer la géométrie
des nombres dans le Jahrbuch car elle apparait explicitement dans la classification.
Pendant la période précédente il n’y a pas eu de grands changements dans cette classi-
fication (& part quelques modifications dans différentes sections) mais dans le volume
46 des années 1916-1918 elle est profondément remaniée. Elle passe de douze sections
a huit, en particulier une grande section d’analyse est créée (la quatriéme) et inclus
par exemple les probabilités, les séries, le calcul différentiel et intégral et la théorie des
fonctions qui étaient dans des sections autonomes. De méme, la section cing regroupe
toute la géométrie qui était séparée en deux parties et la section deux réunit l'arith-
métique et 'algébre. C’est bien entendu dans cette deuxiéme section que la géométrie

des nombres fait son apparition :
Zweiter Abschnitt. Arithmetik und Algebra.

Kapitel 1. Grundlagen der Arithmetik und der Algebra. Allgemeines.
Kapitel 2. Elementare Arithmetik und Algebra. Kombinationslehre.
Kapitel 3. Theorie der Polynome und der algebraischen Gleichungen. Algebraische

Eigenschaften der Polynome. Verteilung der Wurzeln. Galoissche Theorie.

14 GOLDSTEIN 1999 p.196.
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Kapitel 4. Theorie der Formen.
Determinanten. Invariantentheorie. Symmetrische Funktionen und Verwandtes.
Bilineare und quadratische Formen. Lineare Substitutionen. Modulsysteme und
Elimination.
Kapitel 5. Gruppentheorie.
Abstrakte Theorie der Kérper und Moduln. Gruppentheorie. Systeme hyperkom-
plexer
Zahlen.
Kapitel 6. Niedere Zahlentheorie. Additive Zahlentheorie. Diophantische Gleichungen.
Kapitel 7. Arithmetische Theorie der Formen.
Kapitel 8. Algebraische Zahlen. Analytische Zahlentheorie.
Kapitel 9. Transzendente Zahlen. Approximation reeller Zahlen durch rationale.

Geometrie der Zahlen.

La géométrie des nombres se trouve donc dans le chapitre 9 avec les nombres trans-
cendants et I'approximation des nombres réels par des rationnels. Ce chapitre ne bouge
pas jusqu’en 1925 ou son titre change, Approzimation reeller Zahlen durch rationale
est remplacé par Diophantische Approzimationen, puis en 1928 Arithmetik und Alge-
bra devient la troisiéme section. La géométrie des nombres disparait a nouveau de la
classification en 1935 et ne revient que dans le deuxiéme volume de l'année 1939. Dans
ce volume 65 II, la géométrie des nombres est dans le chapitre 7 - Zalhentheorie de la
section C - Arithmetik und Algebra et c’est le point 1) intitulé Geometrie der Zahlen
qui lui est consacré. Ceci est modifié dés le volume suivant puisque que pour l'année
1940, Geometrie der Zahlen se trouve dans le point m) et elle perd son isolation dans
la classification car elle est regroupée avec les réseaux de points ( Gitterpunkte). Elle ne
se trouve donc plus avec 'approximation diophantienne et les problémes de transcen-
dance qui font l'objet du chapitre 8 dans les volumes 65 II et 66, puis qui sont eux aussi
séparés dans volume 67 de I'année 1941. L’approximation diophantienne est alors dans
une rubrique autonome du chapitre 7 et la transcendance devient le théme unique du
chapitre 8. La classification change & nouveau l’année suivante mais la géométrie des
nombres reste avec les réseaux de points.

Comme nous aurons 'occasion d’y revenir, ces changements de regroupement pour la
géométrie des nombres sont significatifs de 1’évolution de ce domaine; celui-ci semble

étre de plus en plus assimilé au traitement des problémes liés aux réseaux!®.

Malgré 'apparition de la géométrie des nombres dans la classification, nous ne pou-
vons pas nous contenter de relever tous les articles présents dans la partie ou elle se

trouve pour continuer le recensement. D’abord parce que, comme cela a été vu, la géo-

15Voir par exemple le travail de Mordell sur les formes cubiques binaires au chapitre 4.

157



CHAPITRE 2 2.1

métrie des nombres est & nouveau absente de la classification pendant quelques années.
Mais aussi parce qu’elle n’est presque jamais dans une rubrique autonome et que, par
exemple, tous les articles concernant ’approximation diophantienne ou les questions
de transcendance ne sont pas liés a la géométrie des nombres. La seule exception ot
la géométrie des nombres est seule dans une partie de la classification est le volume
IT de 1939, mais dans ce volume un seul texte est recensé par le Jahrbuch dans cette
section. Il s’agit du livre de Harris Hancock Developments of the Minkowski Geometry
of Numbers.

Nous avons donc effectué le recensement de la maniére suivante. Quand la géométrie des
nombres est dans la classification nous avons relevé les textes qui sont dans le chapitre
ou la partie ou elle se trouve et qui vérifient les critéres déja utilisés pour la période
précédente. A savoir, Minkowski ou la géométrie des nombres doivent étre cités dans le
titre de l’article ou dans le résumé du Jahrbuch, ou encore le résumé doit mentionner
I'utilisation du théoréme de Minkowski sur les points d'un réseau dans un domaine
convexe. Lorsque la géométrie des nombres n’est plus dans la classification, des articles
concernant ce théme de fagon évidente (car c’est dit explicitement dans le titre par
exemple) continuent & étre classés dans le chapitre 8 Diophantische Approximationen
und Transzendenzprobleme. Nous avons donc continué a faire le recensement dans ce
chapitre avec les mémes critéres et pour homogénéiser ces choix sur toute la période,
quand la géométrie des nombres devient indépendante de ces deux thémes (I’approxi-
mation diophantienne et la transcendance) les parties les concernant ont encore été
étudiées.

La liste des résultats obtenus est donnée en fin de chapitre (voir page 172).

2.1.5 Bilan et limites de ce recensement

Le recensement a été effectué sur une période de 52 ans (de 1891 a 1942) et 108
publications ont été relevés soit environ deux en moyenne par an ce qui semble fina-
lement assez peu. La géométrie des nombres apparait donc comme un domaine plutot
restreint quantitativement. Le nombre de publications est trés faible avant les années
1930, entre 1891 et 1930 un peu moins d’un article par an est publié. Le sujet com-
mence & décoller petit a petit au cours des années 1930, la moyenne des publications

annuelles passant & presque six pour la période allant de 1931 & 1942 (voir la figure 2.1).

Ces conclusions sont cependant & prendre avec prudence, d’abord parce que les
chiffres sont ici trés petits. Ensuite, cette tendance a la hausse des publications n’est

pas un phénomeéne isolé, elle est observée aussi par exemple a I’échelle de toutes les pu-
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F1G. 2.1 — Publications annuelles recensées en géométrie des nombres dans le Jahrbuch

blications en théorie des nombres'®. A titre de comparaison nous donnons un graphique
(voir la figure 2.2) représentant ’évolution du nombre de publications en théorie des
nombres dans le Jahrbuch entre 1916 (année d’apparition de la géométrie des nombres
dans la classification) et 1942'7. A nouveau comme il n’existe pas de rubrique “théorie
des nombres” isolée et stable sur toute la période considérée, nous devons dire ce qui a
été regroupé sous cette catégorie.

Nous avons pris la section qui regroupe 'arithmétique et ’algeébre qui est la deuxiéme
entre 1916 et 1927 la troisiéme ensuite. A l'intérieur de cette section nous avons re-
levé toutes les publications des chapitres qui concernent ’arithmétique a I'exception de
celui sur les fondements quand il existe. Pour le tome 46 des années 1916-1918 cela cor-
respond aux chapitres 2 (Elementare Arithmetik und Algebra. Kombinationslehre), 6
(Niedere Zahlentheorie. Additive Zahlentheorie. Diophantische Gleichungen), 7 (Arith-
metische Theorie der Formen), 8 (Algebraische Zahlen. Analytische Zahlentheorie) et
9 (Transzendente Zahlen. Approximation reeller Zahlen durch rationale. Geometrie der

Zahlen). Cette répartition ne bouge presque pas jusqu’en 1934, a part des reformu-

16La chute observée sur les deux graphiques pour I’année 1942 est a relativiser car un seul volume
du Jahrbuch a été publié pour cette année la.

"Lorsque le méme tome du Jahrbuch couvre plusieurs années nous avons pris pour chacune des
années la moyenne des publications recensées dans le tome.
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lations des titres de chapitres et le fait que I'arithmétique élémentaire passe dans le
chapitre 1, sur cette période nous avons donc relevé les publications des chapitres 1,
6, 7, 8 et 9. Certains de ces chapitres disparaissent ensuite et nous avons donc comp-
tabilisé alors seulement ceux qui restent : le chapitre 9 disparait en 1935, le 1 en 1939
et le 8 en 1942. Ces disparitions correspondent en général a des remaniements dans les

autres chapitres.
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F1a. 2.2 — Publications annuelles recensées en théorie des nombres dans le Jahrbuch

Méme si la hausse du nombre de publications concernant la géométrie des nombres
est & nuancer, le recensement fait permet quand méme de voir que la géométrie des
nombres n’est pas un théme de recherche qui disparait et qu’il y a un intérét continu

pour ce sujet méme apres la mort de Minkowski.

Pour ces 108 publications nous avons 57 auteurs différents ce qui donne en moyenne
un peu moins de deux articles par auteur. Sur ces 57 mathématiciens, 34 n’apparaissent
qu’une seule fois dans le recensement et 44 pas plus de deux fois. Ceci suggére que peu
de ces mathématiciens s’intéressent a la géométrie des nombres de maniére continue.

Les 101 articles sont publiés dans 43 journaux différents. Parmi ces journaux, nous
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pouvons observer une forte représentation des journaux anglophones (9 journaux!'® qui
publient 34 articles) devant les journaux allemands (21 articles dans 8 journaux diffé-

rents).

Parmi les auteurs les plus plus prolifiques six publient au moins 5 textes. D’abord,
Barend Meulenbeld, Matsusaburé Fujiwara, Oskar Perron et Hans Frederik Blichfeldt
apparaissent cinq fois comme auteur et Jurjen Ferdinand Koksma sept fois. Les articles
de Fujiwara concernent essentiellement des applications de la géométrie des nombres
aux formes quadratiques, ceux de Perron, Meulenbeld et Koksma (4 articles sont écrits
en collaboration) ont surtout pour théme l’approximation diophantienne et les formes
linéaires. Les articles de Blichfeldt semblent étre particuliérement intéressants pour
étudier les développements de la géométrie des nombres, d’abord parce que de tous
les mathématiciens cités c’est lui qui publie en premier sur ce sujet, ensuite parce que
deux de ses articles annoncent de nouveaux principes en géométrie des nombres et deux
autres sont des articles généraux sur ce théme.

Enfin 'auteur le plus prolifique est Louis Joel Mordell avec 12 articles et ses publica-
tions semblent correspondre justement a la période ol le sujet se développe. Il est en
particulier en grande partie responsable du pic de 1941, année pour laquelle il publie
presque un tiers des articles recensés. Il apparait donc comme un mathématicien im-

portant pour I’étude de la géométrie des nombres.

Essayons de voir maintenant qu’elles sont les limites de ce recensement. Une pre-
miére limite évidente sont les oublis qui peuvent étre dus par exemple a ’absence de
résumé dans le Jahrbuch, au choix des critéres du recensement pouvant étre trop res-
trictifs pour saisir toutes les publications concernant la géométrie des nombres etc. . .
Ensuite, I’absence de rubrique ou d’autonomie pour la géométrie des nombres dans la
classification nous a amené a choisir des critéres afin de repérer les publications perti-
nentes. Mais si Minkowski ou la géométrie des nombres ne sont pas cités explicitement
dans le résumé du Jahrbuch cela ne signifie pas nécessairement qu’ils ne le sont pas
dans le texte dont il est question!® ni que, par exemple, le travail de Minkowski n’ai pas
eu une influence importante sur I'auteur de 'article. Inversement certaines références
a Minkowski pourraient étre des citations de circonstance sans que la géométrie des
nombres ait eu une réelle influence sur l'auteur.

Afin de corriger en partie ce biais éventuel nous pouvons relever les citations faites dans

les articles relevés pour voir s’ils ne pointent vers des mathématiciens qui nous auraient

184 sont britanniques et 5 nord-américains.

19C’est le cas par exemple pour MORDELL 1937a qui est un article recensé dans le Jahrbuch dans
une rubrique que nous avons prise en compte mais dont le résumé ne mentionne pas Minkowski alors
que Mordell y fait référence & plusieurs reprises.
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échappé par le Jahrbuch. Ce travail effectué dans 93 des articles relevés conduit aux

résultats donnés dans le tableau (2.1)%.

Nombre d’articles dans lequel il est cité
Minkowski 83
Mordell 16
Blichfeldt 15
Hurwitz 15
Remak 12
Dirichlet 11
Hermite 10
Kronecker 10
Siegel 9
Tchebycheft 9
Davenport 8
Hilbert 8
Perron 8
Furtwangler 7
Koksma 7

TAB. 2.1 — Mathématiciens cités dans les articles recensés dans le Jahrbuch

Nous observons que parmi les mathématiciens qui sont les plus cités nous avons
(Minkowski est a part), soit des auteurs qui ont été relevés au moins une fois dans
le Jahrbuch (ce sont ceux qui sont signalés en gras dans le tableau (2.1)), soit des
mathématiciens qui sont mentionnés pour des travaux antérieurs a ceux de Minkowski
(Dirichlet, Hermite, Kronecker, Tchebycheff). Hilbert apparait pour des raisons autres
que la géométrie des nombres ou bien pour une preuve non publiée communiquée a
Minkowski?!. Il reste donc seulement Carl Ludwig Siegel a n’étre dans aucune des si-
tuations précédentes. Cette étude confirme donc plutot le recensement du Jahrbuch
mais suggere aussi que Siegel devrait étre pris en compte dans les développements de

la géométrie des nombres?2.

Les publications que nous avons relevées montrent aussi que plusieurs autres themes

20Le tableau donne le nombre d’articles dans lesquels sont cités chaque mathématicien. Nous nous
sommes limités aux mathématiciens les plus cités.

2171 s’agit d’une preuve d’un théoréme sur les formes linéaires sur lequel nous reviendrons.

22Nous verrons par exemple son travail cité par Mordell.
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des mathématiques sont en intéractions avec la géométrie des nombres. Citons par
exemple des problémes liés aux formes linéaires, la théorie arithmétique des formes, la
théorie des corps de nombres algébriques, ’approximation diophantienne, la convexité
ou bien les réseaux de points. Ceci pose immédiatement la question du choix des cri-
téres que nous avons fait. En effet, certains de ces thémes sont recensés dans d’autres
rubriques (parfois autonomes) du Jahrbuch que celles qui ont ici été considérées. C'est
le cas par exemple pour la théorie arithmétique des formes??, la théorie algébrique des
nombres qui apparait dans la classification sous des titres divers comme Algebraische
Zahlen, Theorie der algebraischen Zahlen und ihrer Ideale ou Zahlkdrper. Le choix, dans
les oeuvres complétes de Minkowski, de se limiter a ses articles classés en géométrie des
nombres peut donc lui aussi étre discuté. Certains de ses articles en théorie arithmé-
tique des formes sont peut étre aussi pertinents d’autant plus que ce sont des problémes
liés aux formes qui ont conduit Minkowski & la géométrie des nombres?t. Son travail en
géométrie, toujours lié aux notions de volume et de convexité qui sont des concepts clés
de la géométrie des nombres, pourrait lui aussi avoir sa pertinence dans le recensement
et nous ameénerait a explorer la section de géométrie du Jahrbuch. D’autre part, ces
nouveaux thémes suggérent aussi que d’autres mots clés auraient pu étre ajoutés a
« Minkowski » et « géométrie des nombres », par exemple « réseau » ou « convexité ».
La prise en compte de mots clés supplémentaires nous aurait permis d’attraper des
publications nous ayant peut étre échappées. Cependant nous pensons que pour une
premiére approche du domaine il est plus prudent de considérer peu de mots clés (ici
nous avons le nom du domaine a repérer et le mathématicien vu comme a l’origine de
ce domaine) afin d’essayer de limiter le plus possible le biais da & la représentation
que nous nous faisons de la géométrie des nombres, représentation qui nécessairement
influence le choix de critéres. De plus, si nous ajoutons des mots clés pouvant sembler
pertinent a la suite d’un premier repérage, de nouveaux thémes vont émerger qui vont
par suite suggérer de nouveaux mots clés etc... Ceci pose des problémes opératoires :
quand faut-il s’arréter 7 La quantité de publications recensées permettrait difficilement
de bien appréhender le domaine pour un premier contact?.

Afin de confirmer ou infirmer les résultats obtenus a travers ce recensement nous allons

maintenant les croiser avec d’autres sources.

2371 y a aussi des rubriques qui concernent la théorie algébrique des formes.

24SCHWERMER 1991, 2007.

25Pour nous faire une idée de I'influence du changement de critéres sur le nombre de publications
recensées, nous avons fait un recensement (pourtant certainement non exhaustif) avec des critéres
élargis. Pour cela nous avons ajouté par exemple “réseau” parmi les mots clés, ainsi que des travaux
sur les formes cubiques ou les produits de formes linéaires (thémes de recherche importants pour les
mathématiciens que nous étudierons par la suite). Nous avons relevé des publications dans toutes les
sections de théorie des nombres du Jahrbuch. Cela conduit & plus de 400 publications ce qui donne un
poids quantitatif beaucoup plus important au domaine (environ 4 fois plus).
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2.2 Les livres consacrés a la géométrie des nombres

2.2.1 Repérage des livres sur la géométrie des nombres

Pour trouver les livres dont le théme principal est la géométrie des nombres nous
avons utilisé le catalogue de la Bibliothéque Interuniversitaire Scientifique de Jussieu,
le catalogue fusionné du Réseau National des Bibliothéques de Mathématiques et le
catalogue SUDOC (Systéme Universitaire de Documentation), tous disponibles sur in-
ternet. Nous avons recherché les livres contenant dans leur titre I’expression « géométrie
des nombres », « geometry of numbers » ou « Geometrie der Zahlen?® ». Nous avons
ensuite éliminé les résultats sans rapports avec notre sujet comme par exemple tous les
ouvrages traitant de l'utilisation des nombres complexes en géométrie dont certains ont
dans leur titre I'expression « la géométrie des nombres complexes ». Les théses, théses
d’habilitation, monographies, conférences et comptes rendus de congrées ont eux aussi

été écartés.
Voici la liste des publications qui satisfont les critéres précédents :

— CASSELS John William Scott, An Introduction to the Geometry of Numbers, Berlin-
Heidelberg, Springer-Verlag, 1959.

— GRUBER Peter Manfred et LEKKERKERKER Cornelis Gerrit, Geometry of numbers,
Amsterdam-New York, Elsevier Science Publishers, 1987.

— HANCOCK Harris, Development of the Minkowski geometry of numbers, New York,
Macmillan Company, 1939.

— LEKKERKERKER. Cornelis Gerrit, Geometry of numbers, Groningen, Wolters-Noordhoff
Publishing, Amsterdam-London, North Holland Publishing Company, 1969.

— MINKOWSKI Hermann, Geometrie der Zahlen, Leipzig-Berlin, Teubner, 1910 (pre-

miére édition en 1896).

— SIEGEL Carl Ludwig, lectures on the Geometry of Numbers, Berlin-Heidelberg-New
York, Springer-Verlag, 1989.

— OLDS C.D., LAX Anneli et DAVIDOFF Giuliana, The geometry of Numbers, The Ma-

thematical Association of America, 2000.

26Nous nous sommes limités 4 une recherche dans ces trois langues car ce sont celles des publications
qui sont apparues par le recensement dans le Jahrbuch.
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Nous obtenons finalement tres peu de résultats. D’autant plus que le livre de Gruber
et Lekkerkerker n’est qu'une seconde édition augmentée du premier de Lekkerkerker
publié en 1969.

Le livre de Hancock, comme son titre I'indique, a pour objectif de reprendre le travail
de Minkowski sur la géométrie des nombres. Hancock, qui déplore dans l'introduction
de son livre le manque de clarté de Minkowski dans ’exposition de son travail, donne
parfois de nouvelles preuves ou bien compléte les démonstrations de Minkowski?” mais
la plus grande partie du livre est en fait une traduction des travaux de Minkowski. Nous
ne tiendrons pas compte de ce livre dans le relevé que nous allons faire car, comme
celui de Minkowski lui-méme, il n’apporte pas d’information sur les développements de
la géométrie des nombres aprés Minkowski ce qui est notre objectif ici.

Le livre de Siegel est issu d’un cours donné & 'université de New York dans les années
1945-1946, les notes sont de B. Friedman et elles ont été révisées pour la publication
en 1989 par Komaravolu Chandrasekharan avec ’aide de Rudolf Suter.

Enfin, 'objectif affiché du livre de Olds, Lax et Davidoff est d’essayer de proposer une
introduction a la géométrie des nombres accessible & un large public n’ayant pas né-

cessairement des connaissances solides en mathématiques.

2.2.2 FEtude des tables des matiéres

Comme il s’agit ici d’'une premiére approche afin de repérer les développements
de la géométrie des nombres aprés Minkowski, nous avons choisi de nous concentrer
uniquement sur les tables des matiéres de ces livres pour voir quels mathématiciens
y sont cités. Pour cela nous ne tenons pas compte ni des livres de Minkowski ni de
Hancock qui, comme cela a été dit, ne refléte que le travail de Minkowski. De plus,
nous ne prenons en compte que la seconde édition du livre de Lekkerkerker pour ne
pas donner un poids double aux auteurs qu’il cite.

28

Le tableau suivant (2.2) résume les résultats obtenus®®, seuls les mathématiciens cités

au moins deux fois ont été gardés.

Sans surprise, Minkowski est largement devant tous les autres en ce qui concerne
le nombre de citations et il est cité par tous les livres. Blichfeldt vient ensuite et il
est lui aussi cité par tous, cela confirme qu’il est un mathématicien important dans

la réception de la géométrie des nombres et ses développements apreés Minkowski. De

2"Hancock n’effectue pas ce travail tout seul, il met & contribution ses étudiants de I’époque mais
il recoit aussi I'aide d’autres mathématiciens comme Blichfeldt et Mordell qui sont cités dans I'intro-
duction.

28Le relevé est donc fait sur 4 livres différents
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Nombre de citations | Nombre de livres dans lesquels il est cité
MINKOWSKI H. 28 4
BLICHFELDT H.F. 10 4
MORDELL L. ) 2
Hrawka E. ) 2
MAHLER K. 3 2
RoGERs C.A. 2 2

TAB. 2.2 — Mathématiciens cités dans les tables des matiéres

méme, le role de Mordell qui est apparu avec le relevé dans le Jahrbuch est conforté
par ses cing citations mais aussi par le fait qu’il est a l'origine de l'intérét de Cassels
pour la géométrie des nombres qui est 'auteur d’un des livres que nous avons recensé.
Cassels 'explique dans la préface de son livre et il remercie aussi Mahler et Rogers (qui
font partis des auteurs relevés) pour avoir relu les épreuves du livre. Il apparait donc
un groupe de mathématiciens s’intéressant a la géométrie des nombres et Mordell est
en contact avec chacun d’entre eux®.

Edmund Hlawka est aussi cité a plusieurs reprises dans les tables des matiéres des livres
ce qui s’explique par le fait qu'un résultat de la géométrie des nombres est connu sous
le nom de théoréme de Minkowski-Hlawka?°. Il n’était apparu qu’une fois dans le Jahr-
buch car au début des années 1940, au moment ol nous avons arrété le recensement, il

n’est qu’au début de sa carriére de mathématicien et il se met a publier réguliérement

sur des thémes liés a la géométrie des nombres qu’a partir de 1943.

Les résultats obtenus par cette étude des livres consacrés a la géométrie des nombres
confortent donc ceux qui étaient ressortis du recensement effectué dans le Jahrbuch :
Minkowski est confirmé comme étant l'initiateur de cette théorie, Blichfeldt est le pre-
mier & reprendre de maniére continu ce sujet de recherche et Mordell se met & y consa-
crer de nombreux articles & partir des années 1930 et il est en relation avec d’autres

mathématiciens qui s’intéressent a ce théme.

29Voir la préface de CASSELS 1959.
S0OHLAWKA 1943-1944.
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2.3 Un repérage dans I’ Enzyklopadie der mathema-

tischen Wissenschaften

2.3.1 Présentation de I’Enzyklopddie et de son fascicule 11

Une autre source intéressante pour se faire une idée des travaux effectués en géomé-
trie des nombres est I’ Enzyklopddie der mathematischen Wissenschaften mit Einschluss
threr Anwendungen. L’objectif de ce projet encyclopédique initié par Felix Klein est
de faire un bilan par domaine des connaissances mathématiques®'. La publication de
I’édition allemande débute en 1898 et elle est interrompue par la Premiére Guerre
Mondiale. Le fascicule consacré a la géométrie des nombres®? n’est publié qu’en 1954
dans le cadre du projet de seconde édition. Son auteur Ott-Heinrich Keller est alors
a I'université de Halle. Ce fascicule de 84 pages est divisé en 9 parties dans lesquelles
nous retrouvons les théemes mathématiques déja rencontrés en liaison avec la géométrie

des nombres, ces chapitres sont :

. Die grundlegenden Sétze iiber konvexe Korper im Zahlengitter
. Sternkdrper
. Lineare Formen
. Das Minimum homogener Formen
Inhomogene Formen
. Definite quadratische Formen
. Kettenbriiche
. Algebraische Zahlen

I. Partitionen und Gitterpunktsfiguren

ToOTMEHO QW B

Pour chacun de ces themes Keller revient sur des résultats de Minkowski et méme
parfois des résultats antérieurs mais il présente aussi les développements plus récents de
ces sujets. Il est donc amené a citer les mathématiciens ayant travaillé sur la géométrie

des nombres depuis Minkowski et ce sont ces citations que nous avons relevées.

2.3.2 Les mathématiciens cités dans I’ Enzyklopddie

Nous avons relevé pour chaque mathématicien le nombre total de citations mais
aussi le nombre de pages différentes dans lesquelles il est cité ce qui évite certaines
redondances dans les citations comme par exemple quand un auteur est cité pour le

méme travail dans le corps du texte et en note de bas de page. Keller fait référence en

[Pk

3Voir GISPERT 1999. Notons qu’a l'origine le titre était Encyklopddie. .. (avec un “c”).
32KELLER 1954.
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tout & 182 mathématiciens différents, dans le tableau suivant (2.3) nous avons gardé

les 10 les plus cités.

Nombre total de citations | Nombre de pages ot il est cité
MINKOWSKI H. 119 o1
MAHLER K. 46 26
MORDELL L. 35 19
DAVENPORT H. 32 21
RoOGERs C.A. 23 11
HerMITE C. 20 14
Hrawka E. 19 14
REMAK R. 19 13
BLICHFELDT H.F. 18 13
VORONOI G. 15 8

TAB. 2.3 — Mathématiciens cités dans 1" Enzyklopddie

Le seul nom complétement nouveau & apparaitre avec ce nouveau recensement est
celui de Charles Hermite??. Il n’est pas trés étonnant de le voir cité & de nombreuses
reprises, d’abord parce qu’il était considéré par Minkowski lui-méme comme étant a
'origine de son travail sur la géométrie des nombres®?. mais aussi parce quune grande
partie de 'article de I’ Enzyklopddie traite de la géométrie des nombres en liaison avec
la théorie des formes et Hermite a réalisé des travaux importants dans ce domaine. Il
est donc cité en particulier pour ses résultats sur les minima et la réduction des formes

quadratiques et cubiques.

Ensuite, Davenport, Remak et Voronoi étaient bien présents dans le recensement du
Jahrbuch mais n’étaient pas apparus alors comme des contributeurs importants pour la
géométrie des nombres car peu de publications avaient été retenues. Voronoi et Remak
sont cités ici & propos de leurs travaux sur les formes quadratiques mais aussi dans
le cas de Remak pour ses résultats sur le produit de formes linéaires non homogénes.
En ce qui concerne Davenport, bien qu’il commence & s’intéresser a la géométrie des
nombres a peu prés en 1936 au contact de Mordell, c’est véritablement & partir du

début des années 1940 qu’il publie de fagon intensive sur ce sujet, il est donc normal

33Nous I'avions vu uniquement pour 'instant dans les résultats du relevé dans le Jahrbuch pour
les lettres de Minkowski qui lui étaient adressées.
34Le livre de Minkowski Geometrie der Zahlen est d’ailleurs dédié a Hermite.
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que nous l'ayons peu vu dans le Jahrbuch.

Nous avions déja rencontrés Hlawka, Rogers et Mahler dans les livres consacrés a
la géométrie des nombres, leur role dans le développement de ce domaine est donc
conforté par 1’ Enzyklopddie. Mahler ressort davantage ici pour les mémes raisons que
Davenport. En effet, comme la lecture de la liste de ses publications permet de le voir3?,
son travail en géométrie des nombres devient trés important surtout entre 1940 et 1950,
il publie notamment son fameux « théoréme de compacité®® » en 1946. Il est donc nor-
mal que I"Enzyklopddie rende compte de ces développements récents de la géométrie

des nombres.

Enfin, Blichfeldt qui apparait dans les trois sources consultées est davantage en
retrait dans 1" Enzyklopddie. Cela peut s’expliquer d’une part par le fait que Blichfeldt
cesse de publier en 1939 et d’autre part parce que Blichfeldt a peu publié par rapport a
d’autres mathématiciens comme par exemple Mordell, Davenport ou Mahler. Cela lui
donne donc un moindre poids dans |’ Enzyklopddie qui vise & proposer une bibliographie

aussi précise que possible sur la géométrie des nombres.

Conclusion

Ce chapitre donne des éléments sur les développements de la géométrie des nombres
aprés Minkowski d'un point de vue collectif. Nous sommes donc & une autre échelle
que dans la partie consacrée a Minkowski qui est centrée sur un individu.

Le Jahrbuch, les manuels et 1’Enzyklopidie sont tous exploités a une méme échelle
d’observation : il s’agit de relever dans chaque cas des références a des mathématiciens.
Nous obtenons cependant des informations a des niveaux différents. Dans les limites des
critéres choisis pour effectuer le recensement, le Jahrbuch fournit toute la production
mathématique concernant la géométrie des nombres sans jugement sur sa qualité ou
sa pertinence. Par contre avec les manuels et 1" Enzyklopddie, une sélection est faite par
les auteurs. Le contenu mathématique des publications est évalué et seuls les travaux
considérés comme importants sont cités. La présence dans une table des matiéres de la

« méthode de Mordell®” » suggére qu’elle joue un réle crucial dans la discipline.

Un changement d’échelle a quand méme été effectué en relevant les mathématiciens

cités dans les articles recensés dans le Jahrbuch ce qui a eu pour effet de faire apparaitre

35COATES et VAN DER POORTEN 1994.
36 MAHLER 1946.
37CASSELS 1959.
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un nouveau protagoniste : Carl Ludwig Siegel. Méme si cette nouvelle échelle n’a pas
été exploitée de fagon systématique dans ce travail, cet exemple illustre bien les « effets
de connaissance » du choix d’une échelle particuliére ainsi que le profit heuristique du

principe de variation d’échelles.

Trois mathématiciens sont ressortis dans chacune des sources consultées : Min-
kowski, Blichfeldt et Mordell. Par conséquent, Blichfeldt et Mordell seront I'objet des

chapitres suivants.
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Publications en géométrie des nombres relevées dans le Jahrbuch (1891-1915) :

— WEBER H., « Ueber einen in der Zahlentheorie angewandten Satz der Integralrech-
nung », Gdttinger Nachrichten, 1896, p.275-281.

— HURWITZ A., « Ueber lineare Formen mit ganzzahligen Variabeln », Géttinger Na-
chrichten, 1897, p.139-145.

— VORONOI G., « Nouvelles applications des paramétres continus a la théorie des formes
quadratiques. Deuxiéme mémoire. Recherches sur les paralléloédres primitifs », Journal
fiir die reine und angewandte Mathematik, vol. 134, 1908, p.198-287.

— TARRY G., « Propriétés fondamentales des angles de la géométrie modulaire », Comptes
rendus de la session de I’Association Francaise pour I’Avancement des Sciences, vol. 33,
1910, p.32-47.

— USPENSKIJ J., « Einige Anwendungen der kontinuierlichen Parameter in der Zahlen-
theorie », St. Petersburg, 1910.

— BRUNN H., « Zur Theorie der Eigebiete », Archiv der Mathematik und Physik, vol. 17,
1911, p.289-300.

— CHATELET A., «Sur certains ensembles de tableaux et leur application a la théorie des

nombres », Annales scientifiques de I’Ecole Normale supérieure, vol. 28, 1911, p.105-202.

— LEVI B., « Un teorema del Minkowski sui sistemi di forme lineari a variabili intere »,
Rendiconti del circolo matematico di Palermo, vol. 31, 1911, p.318-340.

— LUCAS E., « Les principes fondamentaux de la géométrie des tissus », Comptes rendus
de la session de I’Association Francaise pour I’Avancement des Sciences, vol. 40, 1912,

p-72-87.

— BRICARD R., « Sur un théoréme connu d’arithmétique », Nouvelles annales de mathé-
matiques, vol. 13, 1913, p.558-562.

— KAKEYA S., « On a diophantine approximation », Science reports of the Tohoku im-
perial university, vol. 2, 1913, p.33-54.

— REMAK R., « Neuer Beweis eines Minkowskischen Satzes », Journal fiir die reine und
angewandte Mathematik, vol. 142, 1913, p.278-282.
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— WEBER H. et WELLSTEIN J., « Der Minkowskische Satz iiber die Koérperdiskrimi-
nante », Mathematische Annalen, vol. 73, 1913, p.275-285.

— BLICHFELDT H.F., « A new principle in the geometry of numbers, with some appli-
cations », Transactions of the American Mathematical Society, vol. 15, 1914, p.227-235.

— LEVI F., « Kubische Zahlkorper und bindre kubische Formenklassen », Berichte ue-
ber die Verhandlungen der Koeniglich-Saechsischen Gesellschaft der Wissenschaften zu
Leipzig, Mathematisch-Physische Klasse, vol. 66, 1914, p.26-37.

— FUJIWARA M., « Eine Folgerung aus einem Satze von Minkowski in der Geometrie
der Zahlen », Science reports of the Tohoku imperial university, vol. 4, 1915, p.57-63.

— HUMBERT G. et GOT T., « Notes sur la théorie des corps de nombres algébriques de

M. D. Hilbert (note III) », Annales de la faculté des sciences de l'université de Toulouse,
vol. 3, 1911, p.1-62.

Publications en géométrie des nombres relevées dans le Jahrbuch (1916-1942) :

— HANCOCK H., « Problémes de géométrie arithmétique », Journal de mathématiques
pures et appliquées (7), vol. 3, 1917, p.217-245.

— ZEISEL M., « Zur Minkowskischen Parallelepipedapproximationen », Sitzungsberichte
der Mathematisch- Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wis-

senschaften, vol. 126, 1917, p.1221-1247.

— BLICHFELDT H.F., « A second principle in the geometry of numbers », Bulletin of the
American mathematical Society, vol. 24, 1918, p.418.

— BLICHFELDT H.F., « Report on the theory of the geometry of numbers », Bulletin of
the American mathematical Society, vol. 25, 1919, p.449-453.

— GRACE J.H., « Note on a diophantine approximation », Proceedings of the London Ma-
thematical Society (2), vol. 17, 1918, p.316-319.

— FURTWANGLER P. et ZEISEL M., « Zur Minkowskischen Parallelepipedapproxima-
tion », Monatshefte fiir Mathematik und Physik, vol. 30, 1920, p.177-198.
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BLICHFELDT H.F., « Notes on geometry of numbers », Bulletin of the American ma-
thematical Society, vol. 27, 1921, p.152-153.

FUJIWARA M., « Anwendung der Geometrie der Zahlen auf indefinite terndre quadra-
tische Formen », Jahresbericht der Deutschen Mathematiker- Vereinigung, vol. 30, 1921,
p-103.

PERRON O., « Uber diophantische Approximationen », Mathematische Annalen, vol.
83, 1921, p.77-84.

FUJIWARA M., « Anwendung der Geometrie der Zahlen auf die bilinearen Formen »,
Science reports of the Tohoku imperial university, vol. 11, 1922, p.501-507.

SCHERRER W., « Ein Satz tiber Gitter und Volumen », Mathematische Annalen, vol.
86, 1922, p.99-107.

KOVNER S.S., « Uber einen Satz von Tschebyscheff-Minkowski », Matematiceskij sbor-
nik, vol. 32, 1925, p.528-541.

FUJIWARA M., « A new elementary proof of a theorem of Minkowski », Proceedings
of the Imperial Academy of Japan, vol. 2, 1926, p.97-99.

FUJIWARA M., « An elementary proof of Minkowski’s theorem », Proceedings of the
Physico-Mathematical Society of Japan (3), vol. 8, 1926, p.119.

FUKASAWA S., « On the extension of Klein’s geometrical interpretation of continued
fraction », Proceedings of the Imperial Academy of Japan, vol. 2, 1926, p.100-102.

FUKASAWA S., « Uber die Grossenordnung des absoluten Betrages von einer linearen
inhomogenen Form. I, II. », Japanese journal of mathematics, vol. 3, 1926, p.1-26 et

91-106.

FUKASAWA S., « On the extension of a theorem of Minkowski », Proceedings of the
Imperial Academy of Japan, vol. 2, 1926, p.305-306.

PIPPING N., « Einige Sétze iiber konvexe Korper in Beziehung zu Punktgittern », Er-
gebnisse der Mathematik und ihrer Grenzgebiete, vol. 27, 1926, p.14.

REMAK R., « Vereinfachung eines Blichfeldtschen Beweises aus der Geometrie der Zah-
len », Mathematische Zeitschrift, vol. 26, 1927, p.694-699.
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— MORDELL L.J., « Minkowski’s theorem on the product of two linear forms », Journal
of the London Mathematical Society, vol. 3, 1928, p.19-22.

— PIPPING N., « Zur Theorie der Diophantischen Approximationen », Annales Acade-

miae Scientiarum Fennicae, vol. 32, 1929.

— MORDELL L.J., « Note on some linear Diophantine inequalities », Proceedings of the
Cambridge Philosophical Society, vol. 26, 1930, p.489-490.

— LANDAU E., « Neuer Beweis eines Minkowskischen Satzes », Journal fiir die reine und
angewandte Mathematik, vol. 165, 1931, p.1-3.

— OPPENHEIM A., « Note on some linear Diophantine inequalities », Proceedings of the
Cambridge Philosophical Society, vol. 27, 1931, p.24-25.

— PIPPING N., « Uber konvexe Figuren mit Mittelpunkt in Beziehung zu Punktgittern »,
Acta Academiae Aboensis, vol. 6, 1932.

— USPENSKY J.V., « A problem in the geometry of numbers », Bulletin of the American
mathematical Society, vol. 37, 1931, p.352.

— DINES L.L. et Mc COY N.H., « On linear inequalities », Proceedings and transactions
of the Royal Society of Canada, vol. 27, 1933, p.37-70.

— HOFREITER N., « Zur Geometrie der Zahlen », Monatshefte fiir Mathematik und Phy-
sik, vol. 40, 1933, p.181-192.

— HOFREITER N., « Uber einen Approximationssatz von Minkowski », Monatshefte fiir
Mathematik und Phystk, vol. 40, 1933, p.351-392.

— MORDELL L.J., « Minkowski’s theorem on homogeneous linear forms », Journal of the
London Mathematical Society, vol. 8, 1933, p.179-182.

— HAJOS G., « Ein neuer Beweis eines Satzes von Minkowski », Acta Universitatis Sze-

gediensis : Sectio scientiarum mathematicarum, vol. 6, 1934, p.224-225.

— JACOBSTHAL E., « Der Minkowskische Linearformensatz », Sitzungsberichte der Ber-
liner Mathematischen Gesellschaft, vol. 33, 1934, p.62-64.

— MORDELL L.J., « On some arithmetical results in the geometry of numbers », Com-
positio mathematica, vol. 1, 1934, p.248-253.
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RADO R., « A proof of Minkowski’s theorem on homogeneous linear forms », Journal
of the London Mathematical Society, vol. 9, 1934, p.164-165.

SEALE R.Q., « A new proof of Minkowski’s theorem on the product of two linear
forms », Bulletin of the American mathematical Society, vol. 41, 1935, p.419-426.

BLICHFELDT H.F., « On geometry of numbers », Bulletin of the American mathema-
tical Society, vol. 41, 1935, p.196.
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PEPPER P., « Application of geometry of numbers to a generalization of continued

fractions », Bulletin of the American mathematical Society, vol. 42, 1936, p.23.
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MORDELL L.J., « Homogeneous linear forms in algebraic fields », The quarterly jour-
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— PIPPING N., « Uber konvexe Figuren K7 », Acta Academiae Aboensis, vol. 11, 1939.

— GELFOND A., « Sur une généralisation de 'inégalité de Minkowski », Bulletin de I’Aca-
démie des Sciences de I’'URSS, vol. 17, 1937, p.447-449.
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3.1 Présentation générale de Blichfeldt et de son tra-

vail

3.1.1 Eléments biographiques sur Blichfeldt

Peu de recherches ont été faites a propos de Blichfeldt et de son travail : nous dispo-
sons d'une « Memorial Resolution » rédigée par des membres de I'université de Stanford
lors de son décés, d'une nécrologie rédigée par Dickson, de quelques informations dans
un article de Royden sur 'université de Stanford et de deux articles biographiques.
Le premier de ces articles écrit par Miller est publié¢ dans le Dictionary of Scientific
Biography et le second de Bell dans les Biographical Memoirs of the National Academy
of Sciences of the United States of America. Remarquons que la construction de la vie
de Blichfeldt dans ces sources tend a la faire apparaitre comme une incarnation du réve

américain! ; nous avons laissé de coté cette interprétation.

Selon ces sources, Hans Frederik Blichfeldt est né le 9 janvier 1873 & Illar?, un

I'D’autres biographies de mathématiciens contiennent des éléments contestables, c’est ce que
montre Constance Reid avec la biographie de Bell, voir REID 1993.
20u bien Iller d’aprés BACON ET AL. N.D..
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village danois®. Blichfeldt est d’origine sociale modeste, son pére Erhard Christoffer
Laurentius Blichfeldt est fermier et le descendant d’une lignée de pasteurs. Hans a
deux soeurs et un demi-frére que sa mére, Nielsine Marie Schlaper®, a eu d'un premier
mariage®. La famille déménage & Copenhague en 1881 et alors qu'il a 15 ans Blichfeldt
réussit examen d’entrée a l'université”. Ses parents n’ont cependant pas les moyens
de lui financer ses études et il n’entre donc pas a 1'université de Copenhague®.

En 1888, sa famille émigre aux Etats Unis?, il vit alors dans les états du Nebraska, du
Wyoming, de ’Oregon puis de Washington!?, 1a ot le travail se présente'!. Entre 1888

et 1892, il est ouvrier dans des fermes ou des scieries de I'ouest et du mid-ouest!?

, puis
entre 1892 et 1894, il travaille dans le département d’ingénierie du comté de Whatcom
dans I'état de Washington. Il y effectue un travail de géométre qui 'améne a voyager
a travers tout le pays. C’est pendant cette période que ses collégues et ses supérieurs
remarquent ses capacités en mathématiques et qu’ils I’encouragent a essayer d’entrer
a Puniversité!3. 11 se présente donc pour étre admis a l'université de Stanford en 1894
avec une lettre de recommandation du directeur des écoles du comté de Whatcom!. 11
est admis comme “special student” en septembre 1894 car la direction de I'université ne
sait pas trop comment prendre en compte I'examen réussi pour 'entrée a 'université

de Copenhague. Sa situation d’étudiant se normalise au cours des mois suivants

« In January of 1895 he was granted “full entrance standing, except for
English 1b, on the basis of work done before entering the University”, and
a month later he was granted an additional credit of sixty hours toward

graduation®®. »

Il suit des cours d’anglais, d’allemand, de physique et de mathématiques sur les sujets
suivants : le calculus, les quaternions, les courbes planes , les équations différentielles,
I’analyse, la géométrie solide, la théorie des invariants, la géométrie projective, le tracé
de courbes, I’analyse vectorielle, la théorie des fonctions et la théorie des substitutions.
I1 obtient son B.A. en 1896 et son M.A. en mathématiques en 1897. Blichfeldt finance

SMILLER 1970; DICKSON 1947.

4MILLER 1970.

5D’aprés MILLER 1970, le nom de sa mére est Scholer.
SBELL 1951 p.181.

"BELL 1951.

SMILLER 1970.

YMILLER 1970.

1075 famille de Blichfeldt semble représentative des immigrés danois aux Etats Unis. D’aprés
BURMA 1956, il s’agit d’'une population composée surtout de fermiers avec un trés bon niveau d’édu-
cation et qui s’installe principalement dans les états de I’lowa, Minnesota, Nebraska et Winsconsin. 11
est intéressant de noter que Blichfeldt est cité dans cet article de Burma qui a pour objectif d’illustrer
I'impact de I'immigration sur les arts et la science aux Etats Unis.

BACON ET AL. N.D..

12MILLER 1970.

I3SMILLER 1970; ROYDEN 1989 p.239.

14Cité dans ROYDEN 1989 p.239.

I15ROYDEN 1989 p.239.
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ces trois années d’étude grace a des économies faites les années précédentes et en assu-
rant des travaux dirigés (« teaching assistantship ») a I'université pendant les années
1896-1897 1.

Avec le soutien financier d’un professeur de Stanford, Rufus L. Green, il se rend I’an-
née suivante a Leipzig ot il travaille sous la direction de Sophus Lie sur la théorie des
groupes continus. Il obtient son doctorat en 1898 a Leipzig avec une thése intitulée On

a certain class of groups of transformations in space of three dimensions'.

Il retourne ensuite a 'université de Stanford ou il effectue toute sa carriére de ma-
thématicien. A son retour en 1898 il est d’abord instructeur en mathématiques, puis

professeur assistant!®

en 1901, professeur associé en 1906, professeur en 1913 et pro-
fesseur émérite en 1938. Il dirige le département de mathématiques a partir de 1927
jusqu’a sa retraite en 19389, Il est aussi professeur invité a l'université de Chicago
pour le semestre d’été 1911 et & 'université de Columbia pour les semestres d’été de
1924 et 19252°. Pendant la Premiére Guerre Mondiale, il travaille sous la direction de
Oswald Veblen sur des questions de ballistique & I’Aberdeen Proving Ground?!.

Dans la premiére partie de sa carriére, son travail porte essentiellement sur la théorie des
groupes, mais a partir de 1913 il se tourne vers des problémes de théorie des nombres :
géométrie des nombres, approximation diophantienne et formes quadratiques. Blich-
feldt est un mathématicien qui a assez peu publié mais il s’est beaucoup investi dans
I’ American Mathematical Society pour laquelle il a fait de nombreux exposés et dont
il a été vice-président en 191222, 11 est aussi membre de The Mathematical Association
of America, élu a la National Academy of Sciences en 1920 et membre du National
Research Council entre 1924 et 192723, 1l est d’ailleurs le représentant officiel de la
National Academy of Sciences au congrés international des mathématiciens a Ziirich
en 1932 et celui du gouvernement américain et de I’American Mathematical Society en
1936 & Oslo. Blichfeldt a entretenu des liens avec son pays natal toute sa vie et le roi
du Danemark le fait Chevalier de I'ordre de Dannebrog en 1938 4.

Blichfeldt décéde le 16 novembre 1945 & Palo Alto en Californie d’une attaque car-

diaque consécutive a une opération.

16 A cette époque il n’y avait cependant pas de frais de scolarité a Stanford, ROYDEN 1989 p.239.

Y"MILLER 1970.

18]] est I’assistant de Miller, voir ROYDEN 1989 p.241.

19Pendant la Seconde Guerre Mondiale, I'université le rappelle pour qu’il assure quelques cours,
ROYDEN 1989 p.279.

20DIcKSON 1947; BACON ET AL. N.D.. Bell indique des dates différentes pour ces visites : 1913
pour Chicago, 1925 et 1926 pour Columbia, voir BELL 1951 p.182-183.

21D1cksoN 1919b p.296.

22MILLER 1970.

23MILLER 1970; BACON ET AL. N.D..

24DICKSON 1947. BELL 1951 donne & nouveau une date différente, ici 1939, voir page 184.
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3.1.2 Les sources de Blichfeldt sur la géométrie des nombres

Quand son premier article sur la géométrie des nombres est publié en 1914, Blich-
feldt a travaillé presque exclusivement sur la théorie des groupes. Nous ne connaissons
pas de déclaration explicite de Blichfeld pour expliquer ce changement complet de su-
jet?. Cependant, quand Bell oppose les mathématiciens qui préférent les problémes
liés a la continuité a ceux travaillant sur le discret, il classe Blichfeldt dans la premiére
catégorie & cause de son travail sur les groupes continus. Il est donc intéressant de
remarquer que lorsque Blichfeldt se tourne vers la théorie des nombres, ses recherches
portent sur la géométrie des nombres, sujet qui manifestait pour Minkowski 'interven-

tion du continu dans le discret.

Comme les seules sources concernant Blichfeldt dont nous disposons sont ses publi-
cations mathématiques, deux échelles d’analyse vont étre employées pour aborder ses
articles : celle des mathématiques qui y sont développées (énoncés, démonstrations)
et celle des références qui y sont citées. Les contenus mathématiques seront commen-
tés dans les paragraphes suivants. Nous allons relever ici les mathématiciens cités par
Blichfeldt dans son travail en géométrie des nombres. Méme si cela ne nous donnera
pas vraiment d’explication pour l'intérét nouveau de Blichfeldt pour ce sujet, nous au-
rons ainsi des indications sur les travaux qu’il a consultés au sujet de la géométrie des

nombres.

Dans la suite pour sélectionner la géométrie des nombres dans l’ensemble des tra-
vaux de Blichfeldt, nous choisissons les articles dans lesquels la géométrie des nombres
est explicitement mentionnée ou bien dont le théme est un des sujets que nous avons
rencontrés en liaison avec la géométrie des nombres dans le travail de Minkowski. Chez
Blichfeldt, 11 s’agit des formes quadratiques définies positives et en particulier la ques-
tion du minimum pour des valeurs entiéres des variables, le discriminant d’un corps de
nombres algébriques, I’approximation diophantienne et la majoration d’'une somme de
valeurs absolues de formes linéaires.

Nous trouvons 7 articles qui vérifient les critéres précédents qui sont publiés entre 1914
et 1939, ce qui est finalement assez peu. Notons que nous n’avons pas comptabilisé les
résumés des interventions orales faites lors de rencontres de I’ American Mathematical
Society et publiés dans le Bulletin de cette société. Ses résumés qui ne font en général
que quelques lignes ne sont pas tous rédigés par Blichfeldt et ne permettent pas tou-

jours de se faire une idée précise des résultats développés. Ils montrent cependant que

2571 semble abandonner complétement la théorie des groupes & partir de 1914 mis a part pour
la publication de deux livres sur ce théme en 1916 et 1917, mais ce sont plus des livres dédiés a
I’enseignement que des travaux de recherches.

26RED 1993 p.104.
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Blichfeldt a souvent abordé le théme de la géométrie des nombres, nous en avons en
effet relevé 13 sur ce sujet entre 1913 et 1935. Dans ces exposés ont été annoncés des
résultats ou des travaux sur la géométrie des nombres qui n’ont jamais été publiés. Par
exemple, en 1919 il fait part de son projet de publier prochainement « An exposition
of the theory of the geometry of numbers®” » dans les Annals of Mathematics, mais

d’aprés Bell cette idée a ensuite été abandonnée®®.

Le relevé des mathématiciens cités dans BLICHFELDT 1914, 1919, 1921, 1929, 1935,

1936, 1939 conduit aux résultats donnés dans le tableau 3.1 2.

Mathématiciens nombre de citations

(]
ot

MINKOWSKI

KORKINE et ZOLOTAREFF

HERMITE

DICKSON

GAUSS

HurwiTZ

KRONECKER

REMAK

BENDERSKY

BIERBERBACH et SCHUR

BIRKHOFF

HOFREITER

SCHOLZ

Rl R PP, RN NN W]

SEEBER

TAB. 3.1 — Mathématiciens cités par Blichfeldt

Ce relevé met en évidence la place de Blichfeldt comme un des premiers successeurs
important de Minkowski en géométrie des nombres. Sans surprise, Minkowski est de
loin le plus cité des auteurs et constitue donc la source principale de Blichfeldt concer-
nant la géométrie des nombres. En dehors de quelques références techniques, la plupart
des autres articles sont antérieurs au travail de Minkowski ou ne relévent pas direc-

tement de géométrie des nombres. Korkine et Zolotareff sont cités dans BLICHFELDT

2"BLICHFELDT 1919 p.449.

28BELL 1951 p.187. Nous avons effectivement pas retrouvé de synthése de la géométrie des nombres
dans les travaux publiés de Blichfeldt.

29Nous avons relevé le nombre d’occurrence pour chaque mathématicien cité.
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1914 et BLICHFELDT 1935 pour leurs articles sur les formes quadratiques définies po-
sitives publiés entre 1872 et 1877 dans les Mathematische Annalen. 1ls y développent
en particulier une méthode de réduction pour ces formes qui est utilisée par Blichfeldt.
Cette méthode leur permet de déterminer la meilleure borne possible pour le mini-
mum sur les valeurs entiéres des variables des formes quadratiques définies positives
de 3, 4 et 5 variables. Hermite® est aussi cité pour ce sujet ainsi que pour ses résul-
tats sur 'approximation simultanée de réels par des rationnels de méme dénominateur.
Kronecker (dans BLICHFELDT 1914, 1921) et Hurwitz (dans BLICHFELDT 1914) sont
eux aussi cités pour leur travail sur ce théme d’approximation. Gauss (dans BLICH-
FELDT 1914, 1929) et Seeber (dans BLICHFELDT 1914) sont mentionnés pour avoir
été parmi les premiers a s’étre intéressés au probléme du minimum des formes qua-
dratiques définies positives en particulier pour celles de 2 ou 3 variables. Bierberbach
et Schur (dans BLICHFELDT 1935) et Hofreiter (dans BLICHFELDT 1935) sont cités
eux aussi pour leur participation dans I’étude de ce probléme : Bierberbach et Schur
pour un article de 1928 sur la réduction des formes quadratiques définies positives de
n variables, Hofreiter pour un travail publié 1933 dans lequel il détermine toutes les
classes de formes extrémes (au sens de Korkine et Zolotareff) de 6 variables. Notons que
ces deux articles n’apparaissent pas dans le recensement que nous avons effectué dans
le Jahrbuch pour des raisons différentes. Alors que Minkowski apparait explicitement
dans son titre, ’article de Bierberbach et Schur n’a pas été relevé car il est classé dans
Algebraische Theorie der Formen, rubrique que nous n’avons pas explorée. L’article de
Hofreiter est quant a lui bien classé dans le chapitre Diophantische Approximationen,
Geometrie der Zahlen mais ne mentionne pas Minkowski ou la géométrie des nombres
de maniére explicite®'. Scholz (dans BLICHFELDT 1939) est cité pour un article de
1938 sur les discriminants minimaux des corps de nombres algébriques et la référence a
Bendersky (dans BLICHFELDT 1939) concerne un long mémoire sur la fonction gamma
que Blichfeldt mentionne pour un point technique (le calcul d’une limite dans lequel T’
intervient). Blichfeldt renvoie a 1’History of the Theory of Numbers de Dickson pour
trouver des réferences a propos des sujets qu’il traite.

A coté de ces travaux qui ne sont pas directement liés & la géométrie des nombres
ou qui relévent davantage de sa préhistoire (Gauss, Seeber, Hermite, Korkine, Zolo-
tareff, Kronecker, Hurwitz), les références a Birkhoff et Remak apparaissent comme
des exceptions. Ils sont en effet mentionnés pour des contributions qui sont issues d’un
contact avec le travail de Blichfeldt. La citation de George Birkhoff (dans BLICHFELDT
1914) fait référence a une communication personnelle avec Blichfeldt ou Birkhoff lui a
proposé une autre preuve de son théoréme qui généralise le théoréme de Minkowski sur

les convexes. Remak est cité (dans BLICHFELDT 1929, 1935) pour son article publié en

30Hermite est cité dans BLICHFELDT 1914, 1919, 1935.
31 Hofreiter est cependant un mathématicien recensé pour d’autres articles.

187



CHAPITRE 3 3.2

1927 et intitulé Vereinfachung eines Blichfeldtschen Beweises aus der Geometrie der
Zahlen, il se positionne donc directement dans la ligne du travail de Blichfeldt sur la
géométrie des nombres. Avec ces références au travail de Blichfeldt nous voyons déja
s’amorcer la construction d’une généalogie de la géométrie des nombres dans laquelle
Blichfeldt occupe une place importante.

Notons que les travaux liés a la géométrie des nombres et effectués aprés Minkowski
sont cités par Blichfeldt aprés 1914 date de son premier article sur ce théme. Quand
il commence a s’intéresser a la géométrie des nombres, sa source unique sur ce sujet
est Minkowski. Cette remarque semble confirmer que Blichfeldt est parmi les premiers
mathématiciens a travailler sur la géométrie des nombres aprés Minkowski.

L’étude précédente ne nous éclaire cependant pas sur l'origine de cet intérét pour la
géométrie des nombres. La premiére trace que nous en avons est une intervention que
Blichfeldt fait en 1913 lors d’une réunion de la section de San Francisco de I’American
Mathematical Society. Le résumé de 10 lignes®? de cette présentation montre seulement
que Blichfeldt y a proposé une amélioration de la borne de Minkowski pour le minimum
des formes quadratiques définies positives, estimation qui sera d’ailleurs encore amé-
liorée dans son article publié¢ en 1914. Ce dernier point semble indiquer que l'intérét
de Blichfeldt a commencé avec cette question du minimum des formes quadratiques,
théme auquel il consacre la plupart de ses articles par la suite.

Pour expliquer en partie le passage de recherches sur les groupes (en particulier finis)
a des recherches sur la géométrie des nombres, nous pourrions faire 'hypothése que
le premier contact de Blichfeldt avec le travail de Minkowski a eu lieu sur le terrain
de la théorie des groupes de substitutions. En liaison avec son travail sur ’équivalence
des formes quadratiques, Minkowski s’est en effet aussi intéressé aux substitutions
linéaires homogénes a coefficients entiers de n variables®® et il a démontré3* en par-
ticulier en particulier que l'ordre d’'un groupe fini de substitutions de ce type divise
27(2" — 1)(2" — 2)...(2" — 2"71). Nous n’avons cependant pas trouvé d’éléments qui
confirment cette hypothése et si nous faisons 1’étude des citations dans le travail de
Blichfeldt avec les articles concernant les groupes nous pouvons voir que Minkowski

n’y est jamais cité.

32BLICHFELDT 1913.
33Voir HILBERT 1911 p.VIII-IX.
34Voir MINKOWSKI 1887a.
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3.2 Le travail publié de Blichfeldt en géométrie des

nombres

3.2.1 Un nouveau principe pour la géométrie des nombres

Le premier article que Blichfeldt consacre a la géométrie des nombres est publié
en 1914 dans les Transactions of the American Mathematical Society®. Dans le début
de cet article, il revient sur le travail de Minkowski en géométrie des nombres ce qui
permet de voir comment il envisage 1’organisation de cette théorie aprés Minkowski.
Pour lui la géométrie des nombres vient de la découverte par Minkowski d'un « geo-
metrical principle which he applied with success to certain important problems in the
theory of numbers3®. » Le principe géométrique auquel il fait référence est le théoréme
de Minkowski sur les points d’un réseau dans un domaine convexe dont le centre est

un point du réseau. Blichfeldt rappelle ce résultat sous sa forme géométrique

« A surface in n-dimensional space, nowhere concave, possessing a center
which coincides with one of the lattice-points of this n-space, and having a
volume > 2", will contain at least two more lattice-points, either inside the

surface or upon its boundary37. »

Il le rappelle aussi sous sa « forme analytique » telle que nous 'avons par exemple
rencontrée dans les lettres de Minkowski adressées & Hermite. Blichfeldt revient ensuite
sur deux applications données par Minkowski.

D’une part, si [f(x1,...,2,)]* est une forme quadratique définie positive et de déter-

minant D, alors il existe des entiers [y, ..., [,, non tous nuls tels que
4 g
0<fi<= [P(1+ﬁ>] D
s 2

D’autre part, si vy, ..., v, sont des formes linéaires homogénes en xy, ..., x,, de
déterminant A non nul, telles que s paires de ces formes sont a coefficients complexes

conjugués et si f est définie par
flxy, .. .oxy) = o1+ -+ |va]

il existe alors des entiers [y, ..., [,, non tous nuls vérifiant

0<f< {(%)sf(l+n).|A|rL .

35BLICHFELDT 1914. Comme tous les articles de Blichfeldt, certains arguments ne sont pas donnés
nous les reconstituons dans ce qui suit.

36 BLICHFELDT 1914 p.227.

3"BLICHFELDT 1914 p.227.
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La description qui est ici faite par Blichfeldt de la géométrie des nombres confirme
ce que nous avons observé a propos du travail de Minkowski. La théorie s’organise
autour du résultat sur les points d’un réseau dans un corps convexe qui est ici érigé en
principe par Blichfeldt. Ce principe est ensuite appliqué a différentes situations (formes
quadratiques, somme de formes linéaires. . .) afin d’obtenir de nouveaux résultats.
Avec cette premiére contribution a la géométrie des nombres, il semble que Blichfeldt
veut donc revenir sur le fondement de cette théorie. En effet, comme le titre de son
article 'indique il veut proposer « a new principle in the geometry of numbers ».

La maniére dont Blichfeldt aborde ici la géométrie des nombres semble cohérente avec

la description que fait Bell de 'enseignement a Stanford au début du XX¢ siécle :

« The instruction at Stanford was a curious mixture of the French, Ger-
man and American methods, but it was extremely effective. The professors
insisted on a thorough mastery of general principles rather than skill in
problem-solving. Their attitude was this : if a problem was worth the se-
rious effort of an advanced student, it should have at least the elements of
a research project in it, and not be merely a difficult puzzle whose solution

would add nothing to existing mathematics®. .. »

Blichfeldt commence par définir une notion plus générale de points d'un réseau.

Dans 'espace de dimension n muni d’un systéme de coordonnées rectangulaires

(x1,...,2y,), il considére les plans
1’1:(11—|—b1t, x2:a2+62t,...,xn:an+bnt (tIO,:l:L:EQ,),
ol ay, ..., Gy, by, ..., b, sont des réels donnés. Ces plans partagent l’espace en paral-

lélépipedes dits fondamentaux et on suppose que k£ points appartenant strictement a
chacun de ces parallélépipédes sont fixés. Ce sont ces points qui sont appelés points de
réseau. Blichfeldt indique que la définition classique de réseau est retrouvée en prenant
a; = % et b; = 1, pour tous les entiers ¢ entre 1 et n, et en choisissant dans chaque

parallélépipéde le centre comme seul point du réseau (k = 1).

Soit maintenant S une partie ouverte et bornée de ’espace de dimension n dont
le volume est noté V. Le nouveau principe énoncé par Blichfeldt dans le théoréme I

consiste en 'existence d’une translation

T, = x; + 0 (1=1, ... ,n),

38Bell cité dans REID 1993 p.101-102. L’organisation autour de principes étaient trés importante
dans la tradition francaise du XIX¢® siécle en particulier chez Hermite, voir GOLDSTEIN 2008.
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qui permet de placer S de telle sorte que le nombre L de points de réseau dans ’adhé-

rence® de S vérifie I'inégalité

ou W est le volume d’un parallélépipéde fondamental et k£ le nombre de points de
réseau dans chacun de ces parallélépipedes.

Pour démontrer ce résultat, Blichfeldt commence par considérer un parallélépipede o
dont les cotés sont paralléles aux axes de coordonnées et de longueur Aby, ..., Ab,, ou
A est un entier naturel fixé choisi assez grand pour qu’aprés une translation S puisse
étre contenue dans o (sur la figure 3.2 A est pris égal a 2). Il note (5, 0) la figure

obtenue apres translation de S dans o.

by

by

F1G. 3.2 — Mlustration de la démonstration du théoréme I

Soit Y un autre parallélépipede construit comme o mais dont les cotés mesurent
Bby, ..., Bb, avec B un entier naturel supérieur a 24 (8 sur la figure 3.2). Le volume
de X est

Bby x Bby x --- x Bb, = B"W ,

il est donc possible de placer ¥ de telle sorte qu’il contienne exactement B™ parallé-
lépipédes fondamentaux. Soit enfin X' un troisiéme parallélépipéde inclus dans X de
cotés paralleles aux axes de coordonnées et de longueur (B — 2A)by, ..., (B — 2A)b,.
Les faces de Y’ sont supposées étre a distance Abq, ..., Ab, de celles de X.

(S, 0) est ensuite placée pour quun sommet O de o coincide avec un sommet de 3 et

Blichfeldt définit des translations en posant

(i=1,...,n), (3.1)

= —i—tbz
i — 4y ZC

39Blichfeldt n’utilise pas le terme adhérence mais parle du nombre de « lattice-points L contained
in the continuum or lying as near as we please to its boundary ».
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ol C est un entier naturel fixé et les t; parcourent I’ensemble des entiers relatifs. Si

(x1,...,2,) désignent les coordonnées de O dans sa position initiale, 2, ..., z!/, doivent
vérifier
xl<xZ<B.Cx5—AC 5:xi+[(B—A)C]5 (i=1,..., n)
—_—
coté de X coté de o

pour qu’aprés translation (S, o) reste dans ¥. Ceci implique que pour tous les indices
i,0<t; < (B—A)C et donc qulil y a [(B — A)C + 1]™ positions possibles pour (5, o)
dans ¥ en faisant opérer les translations définies ci-dessus.

En faisant le méme raisonnement que pour X, Blichfeldt montre que Y’ contient

(B — 2A)™ parallélépipédes fondamentaux et donc k(B — 2A)™ points de réseau. Si
Ientier C' est pris suffisamment grand, chacun de ces points de réseau appartient a
I’adhérence de un ou plusieurs translatés de S. Il s’agit maintenant de dénombrer ces
points en les comptant & chaque fois qu’ils sont dans I'adhérence d’une des parties S.
Notons N le résultat de ce dénombrement. Pour P un de ces points de réseau, nous
cherchons le nombre de parties S pour lesquelles P est & compter ; pour cela Blichfeldt
considére que S est fixe et que c’est le point P qui est translaté. Aprés chacune des

translations (3.1), le point P est le sommet d’un parallélépipéde dont les cotés ont pour

b bo
S-S

contenus dans S. Un sommet de chacun d’entre eux est alors une position possible pour

longueur Notons Mp le nombre de ces parallélépipédes qui sont entiérement

le point P, donc si M est le minimum des Mp pour P un des points de réseau dans X/,

il vient

Considérons maintenant S les parties incluses dans ¥ qui sont 'image de S par une

des translations (3.1) et ) le nombre de points de réseaux dans I’adhérence de S,

ainsi
[(B—A)C+1]"
N = Z o)
j=1
Si nous avions pour tous les indices j,
) (B—2A)"M
av < k )
[(B—A)C +1]"
alors : (oA
B—A)C+1]"
(B—2A)"M
N < = k(B—-2A)"x M,
2 g morp - FEoA
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ce qui est contradictoire. Il existe donc j, pour lequel

. B—2A"M
(o) > L (
=M B oA

et posons L = aU0). Nous prenons ensuite la limite quand B puis C' tendent vers +oo

dans l'inégalité précédente, le membre de droite devient

I kM
im .
C—+oo CT
Or M est le nombre de parallélépipédes inclus dans S et de cotés %, ey %”, d’ou
b1 b,
li M—...—|=V
oo ( C (J) !
ce qui implique
) M V V
lim — = = —

Cotoc O by...b, W'

Finalement L > kWV mais comme L est un entier, I'inégalité est en fait stricte & moins

que % soit aussi un entier. Dans ce dernier cas, Blichfeldt considére S’ qui contient

S mais pas de point de réseau supplémentaire. Le volume V'’ de S’ est plus grand que

EV!
W
KV’

celui de S et S’ est choisi de telle sorte que n’est plus entier. Le résultat démontré

précédemment s’applique a S’ et donc L > > % Ceci montre bien que dans tous

W
les cas Ly
L > W
Blichfeldt étend ensuite ce théoréme au cas ou la partie S est remplacée par un
nombre fini Si, ..., S,, de parties ouvertes et bornées dont S est la réunion (« net-
work »). Il suppose aussi donnés aq, ..., a,, des réels strictement positifs. Si V; et

L; désignent respectivement le volume de S; et le nombre de points de réseau dans

'adhérence de S; alors, quitte & translater S, nous avons l'inégalité

E(anVi4 -+ an Vi)

OélLl‘i""—'—OémLm> W

Aprés avoir indiqué les modifications & apporter & la preuve du théoréeme I pour
obtenir cette généralisation, Blichfeldt montre comment son nouveau principe, qu’il

présente comme géométrique, permet de retrouver le théoréeme de Minkowski.

Pour cela, il considére une fonction f qui vérifie les conditions des fonctions distances

de Minkowski, c’est-a-dire que :

1. f(z1,...,2,) > 0et f(xy1,...,2,) = 0siet seulement si 2y =--- =z, =0,
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2. 81t >0, f(tey, ... te,) =t f(x1,...,2),
3o fyit 2, ynt2) Sy yn) + (21 20),
4. f(=z1,...,—xp) = f(T1,...,Tp).

Le théoréme I est ensuite appliqué a la partie S qui est ’ensemble des points (z1, . .., z,)
vérifiant 'inégalité
flzy,...,x,) < Jn

ot J est 'intégrale [ dx;...dz, calculée sur le domaine f(x1,...,2,) < 1. Le volume
de S est donc V' =1 et pour le réseau (au sens usuel) des points & coordonnées entiéres
k =W = 1. Le théoréme de Blichfeldt montre donc qu’il existe une translation, dont
les composantes sont notées 4y, . . ., d,, pour laquelle le nombre de points & coordonnées

entiéres L situés dans I'adhérence de I'image de S vérifie

kV
L>— =1, ouencore L > 2.
W >
Soient alors y = (y1,...,yn) €t —2 = (—21,..., —2,) deux points distincts du réseau
donnés par le théoréme et pout tout i dans {1,...,n}, l; = y; + z;. (l1,...,1,) est bien

aussi un point du réseau. De plus, comme y — et —z — d sont des points de S, il vient

0< flly,--yln) = flyr+ 215, Yn+ 2n)

f[(yl - 51) - (_21 - 51)7 SRR (yn - 571) - (_Zn - 5n)]
f(yl—51,...,yn—5n)+f(—21—51,...,—2’”—5”)
L1 2

R

ce qui est bien la forme analytique du théoréme de Minkowski.

VAN

IA

Blichfeldt revient ensuite sur des applications déja étudiées par Minkowski et montre
comment avec son théoréme il peut obtenir de meilleures estimations.
Si F' est une forme quadratique de n variables définie positive et de discriminant D,
Blichfeldt 1’écrit

F=vi4vs+--+02,

oil les v; sont des formes linéaires de déterminant A; alors D = A2 Prenons S,

I’ensemble défini par l'inégalité

3ho

F(zy,...,2,) < (A@)n,

. . _ n__i_Q N _ 7'(%
avec A un entier compris entre 1 et m, ¢ = 7755 et ou J = Ar(i12) est le volume de
I'ensemble des (z1,...,z,) tel que F(xy,...,x,) < 1. Si V; désigne le volume de S;,
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alors

V, = igJ .

En gardant les notations précédentes, la généralisation du théoréme I appliquée avec

le réseau des nombres entiers donne
aly+ - F+aply, > aiVi+ -+ an Vi =6J (a1 + 200+ - + may,) .

Enposant,g:1+2%+-~-+m%,pi:Li—Li,l,ai:(ile)%—i% pour i < m et

Q= % — m%, I'inégalité précédente devient??
n+2 2 2 n+2
MLm—<p1+2ip2+~-~+mipm) > Q (3.2)
nm nm
Si(z),..., ) un point du réseau dans I’adhérence Sy, alors v} = v;(z} —d1, ..., 2, —d,)
et donc
2
W)+ 4 (v)? < (AQ)" +e, (3-3)
pour € > 0 aussi petit que 'on veut. De méme, si (zf,...,2) est un autre point du
réseau, v) — v = v;(a) — 2, ... x), — 2, etc. Ainsi la quantité

(vp —v)* + o+ (v, — o) (3-4)

est une valeur de F' pour des valeurs entiéres de ses variables. P est le nombre des
points du réseau dans Sy, ..., S,,, donc aussi le nombre de points du réseau dans S,,,
donc P = L,, et de plus L,, = p1 +p2 + - - + py,. Sommant les expressions (3.4) sur
toutes les %P(P — 1) paires de points distincts du réseau dans S,,, Blichfeldt obtient

3 [(vg) _ Uy))z Ft (09— Ug)ﬂ

1<j<I<P

Or p; points du réseau sont dans Sy, ils vérifient donc

WP 4 0 < g e,

4OBLICHFELDT 1914 p.232.
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p2 points du réseau sont dans S, mais pas dans S, ils sont tels que
WINV2 4 (W) < (29)7 +e ...
Pm points du réseau sont dans S, mais pas dans .S,,_; donc pour ces points

)+ 4 () < (mo)n +e.

Ainsi la somme Z [(vg))Q +-+ (vr(Lj))Q] est strictement inférieure a
j=1

P |pi(6% +2) +pa((20)F +€) + -+ pul(me)F + )

et par suite

1<j<I<P

<P [Pﬂ?% +p2(2¢)% + - +pm(m¢)%] +eP?,

Avec (3.2) et L,, = P, cette derniére inégalité implique

Z |:<U§j) _ v§z>>2 +oot (09 — vg))z

1<j<I<P

(n+2)g
nm

< P (P—1) + P% .

D’autre part,

3 {(W’ _ Ug))Q bt (0 — vfﬁ)ﬂ

1<j<I<P

v

1 . 2 A
5 P(P . 1) {(vyo) . UYO)) 4t (UgO) _ 2}7(110))2 ’

ot le couple (jo, lp) correspond au terme le plus petit dans la somme. Aprés avoir divisé
par %P (P — 1), les deux derniéres inégalités impliquent
2 (n+2)g P

‘ 2 . 2
(v§jo) B UEIO)) NI (vgo) _ 2}1(110)) < 2¢pn — +2 1%

Enfin, en remplacant ¢ par sa valeur et en faisant tendre m vers +oo, Blichfeldt obtient

le théoréme II : il existe des entiers [y, ..., [, non tous nuls et tels que

2 2\1"
Flh,....1) < = {F(1+n+ )} D
T 2
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1
Blichfeldt remarque que la valeur asymptotique de cette borne % est meilleure que
celle qui avait été obtenue par Minkowski.

Ce dernier résultat permet de montrer que pour f = |vq|+- - -+|vy|, il existe des valeurs

entiéres non toutes nulles des variables telles que

9 2\ 1"
0< f < —”{F(HTH )} N
s 2

Quand n devient grand, cette estimation est a nouveau plus précise que celle donnée
par Minkowski.

Enfin, I'article se termine avec une derniére application du théoréme I qui conduit
Blichfeldt & un résultat d’approximation simultanée de n — 1 réels positifs par des ra-
tionnels de méme dénominateur. Dans le théoréeme IV, il améliore les approximations

démontrées auparavant & part dans le cas de deux réels*!.

Cette présentation permet de comprendre le titre donné par Blichfeldt a son article :
« A new principle in the geometry of numbers, with some applications ». Nous avions
vu comment chez Minkowski la géométrie des nombres est organisée autour de son
théoréme sur les domaines convexes. En appliquant ce résultat a des situations variées,
Minkowski démontre de nouveaux théorémes, par exemple sur les formes quadratiques
ou les formes linéaires. Blichfeldt montre dans cet article que son théoréme I peut se
substituer a celui de Minkowski au centre de la théorie. D’abord parce qu’il apparait
plus général : le théoréme de Blichfeldt implique le théoréme de Minkowski. Ensuite
parce qu’il est susceptible d’étre appliqué aux mémes situations tout en améliorant les
résultats obtenus.
Nous pouvons aussi remarquer que le théoréme de Blichfeldt est plus général parce qu’il
porte sur une notion de réseau plus large que celle utilisée par Minkowski. Cependant
quand il applique ce résultat, Blichfeldt revient a la notion traditionnelle de réseau et
a notre connaissance Blichfeldt n’a jamais exploité dans son travail cet aspect de son

résultat.

Cet article est aussi une étape importante pour la géométrie des nombres car il
influence la maniére avec laquelle la théorie est transmise par la suite. Le point de vue
adopté par Blichfeldt pour démontrer le théoréme de Minkowski est en effet celui qui
est le plus repris. Dans beaucoup de livres ol ce théoréme est présenté et en particulier

dans les plus récents, c’est la preuve de Blichfeldt en deux étapes qui est proposée*?.

A BLICHFELDT 1914 p.235.
42Voir par exemple SIEGEL 1989; CASSELS 1959; SAMUEL 2003; LEKKERKERKER 1969; MARTINET
1996; TAUVEL 2000 ainsi que I’énoncé du théoréme de Minkowski proposé au début de I'introduction.
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La premiére étape est un lemme, parfois appelé lemme ou théoréme de Blichfeldt??,
qui est en fait une version plus faible du théoréme I. Voyons par exemple 1’énoncé dans

LEKKERKERKER 1969 page 35 :

« Theorem 2 (THEOREM OF BLICHFELDT). Let M be a measurable set
in R™. Suppose that V(M) > 1 or that M is bounded and closed and
V(M) > 1. Then M contains two points x, y, such that x — y is a lattice
point # 0. »

Le théoréme de Minkowski se démontre alors soit en suivant I’argument de Blichfeldt
que nous avons déja présenté s’il est donné sous forme analytique, soit en appliquant
le résultat précédent a %M pour sa forme géométrique. En effet, si M est convexe,
symétrique par rapport a l'origine O et de volume strictement plus grand que 2", alors
%M a un volume strictement supérieur a 1. D’aprés le théoréme précédent, %M contient
donc deux points x, y tels que x — y est un point du réseau différent de I'origine. Mais
la symétrie et la convexité de M impliquent que ce point du réseau

r—y=5 [22+ (—2y)]

| —

appartient aussi & M, ce qui prouve le théoréme de Minkowski dans sa forme géomé-

trique®.

3.2.2 Formes quadratiques et empilement de sphéres

Un autre aspect des travaux de Blichfeldt en géométrie des nombres, souvent men-
tionné, est sa nouvelle méthode pour aborder le probléme de '’empilement de sphéres
de méme rayon®®. Cette méthode est présentée dans un article publié en 192946, cepen-
dant Blichfeldt avait annoncé un résultat sur ce sujet dés 1919 dans une communication

lue & Chicago a un symposium de The American Mathematical Society®”.

Pour une forme quadratique de n variables definie positive de déterminant D, Bli-
chfeldt note 7, D= la meilleure borne possible pour le minimum de cette forme pour
des valeurs non toutes nulles des variables®®. Aprés avoir rappelé la majoration qu’il
avait obtenue pour ~, dans son article de 1914, il fait le lien entre cette question et
le probléme de la détermination de 'empilement régulier de spheéres le plus dense. Un

empilement régulier de spheéres est un empilement pour lequel les centres des sphéres

43Dans SAMUEL 2003 p.67, c’est ce lemme qui est méme appelé théoréme de Minkowski.

44Voir SIEGEL 1989 p.17.

45Voir CASSELS 1959 p.248 ; LEKKERKERKER 1969 p.261-262 ; SIEGEL 1989.

46 BLICHFELDT 1929.

47Un résumé de cette conférence est publié dans BLICHFELDT 1919.

48(ette notation va s’imposer par la suite et la constante v, sera plus tard baptisée constante
d’Hermite. Voir par exemple MARTINET 1996.
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forment un réseau. Dans ce cas, la densité maximale qu’il est possible d’obtenir est
n/2
e
r(1+3)
L’objectif de Blichfeldt est de trouver p; tel que la densité de n’'importe quel empilement

de sphéres (régulier ou non) soit strictement plus petite que p;. Si une telle constante

a été trouvée, comme py < pi, elle permet de déterminer une estimation pour 7, :

2
T n\1=
< lnr(143))
g 1 [,01 + 5
Blichfeldt considére donc des spheéres 51, ..., S, de rayon 1 dans ’espace de dimen-
sion n dont les coordonnées des centres sont notées (ay,by,..., k1), .., (Gm, by -+ -5 km)

et une origine 7' = (0,0, ..., 0) fixée. Soit aussi 7; = (a? + b? + - - - + k?)/? la distance
entre T et le centre de la sphére S;. La premiére étape consiste & minorer la somme
des r?. Pour cela, Blichfeldt remarque que pour que les sphéres ne se rencontrent pas,

la distance entre deux centres quelconques doit étre au moins 2, donc
(a; —aj)® + (bi —b;)* + -+ (ki — k;)* > 4 pour tout i # j.

En sommant ces inégalités sur toutes les paires de centres distincts (1 < i < j < m),
il obtient

mi(a?+bf R <Zaz> (ibl> — = <ik2> > 2m(m—1),

=1 i=1

ce qui implique
Z'r’? > 2(m—1). (3.5)
i=1
Blichfeldt fait ensuite appel & une analogie avec la physique. L’idée fondamentale

derriére sa méthode est de remplacer les sphéres abstraites par des sphéres matérielles

« Leaving the centers fixed, we now replace the given geometrical spheres

by physical spheres of superposable matter®’

Blichfeldt garde donc les centres des sphéres précédentes fixes mais considére des
sphéres dont le rayon est plus grand afin qu’elles puissent s’intersecter. Il suppose
que ce sont des sphéres matérielles avec une quantité de matiére par unité de volume®
qui est telle que la densité de matiére totale en n’importe quel point de ’espace soit

majorée par une constante.

49BLICHFELDT 1929 p.606.
50Blichfeldt utilise le terme « density of the matter », nous utiliserons le mot densité dans la suite
bien qu’en frangais cela désigne une grandeur sans unité.
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Blichfeldt commence par choisir des sphéres de rayon v/2 avec comme densité de ma-

tiere la fonction ¢ donnée par :

212 sir<v2
90(7‘): ’
0 sir>+/2

ol r désigne la distance au centre de la sphére. Si en un point m sphéres se rencontrent,
quitte a faite un changement de coordonnées on peut supposer qu’il s’agit du point T,

alors la densité totale en T vérifie

d@-rh)=2m—-) rP<2m—-2m-1)=2.

i=1 i=1

Soit un cube de coté E qui contient k sphéres de rayon 1, alors il existe un cube de coté
E +2(v/2 — 1) qui contient k sphéres de rayon v/2. Si @ désigne la matiére contenue

dans ce dernier cube, I'inégalité précédente donne
Q < 2x [E+2(\/§—1)] .

D’autre part, en notant S, la surface d’une sphére de rayon r, alors

V2
Q:k:/ S, x (2 —r?) dr.
0

n/2 .n—1
Comme S, = w, il vient donc
r(1+2%)
n V2
Q = kn Ln / "2 —r?) dr
r(1+%) Jo
4k K22
Q - n+2 9
7Tn/2
ol K = ———— . Blichfeldt obtient donc
I'(1+%)
n 4k K2%
2 % [E+2(ﬁ—1)} > et
n -+ 2

Or la densité py de l'empilement est le rapport du volume occupé par les k sphéres

kK

dans le cube de coté E par le volume de ce cube, c’est-a-dire p, = -, ainsi

n+2 2v2-2\"
p2<2n? 1+T =p1.
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n
En prenant E qui tend vers 400, p; se rapproche de et cette limite conduit en

n+2

2
fait a la méme estimation pour -, que celle qu’avait déja trouvée Blichfeldt en 1914.

Pour réussir & améliorer la majoration de 7, Blichfeldt applique la méme méthode
en modifiant la fonction ¢. Il suppose maintenant que le rayon des sphéres et les r;

sont inférieurs a v/2. Ceci lui permet de démontrer que

ri > /2m(m—1). (3.6)

i=1
Cette derniére inégalité va jouer le méme role que (3.5) par la suite. Il reprend les
sphéres précédentes de rayon v/2 avec une fonction densité de matiére ¢ qui est nulle

a l'extérieur des sphéres et a 'intérieur :

2 S0<r<2-—+2
pr)=< (2-r)? si2—v2<r<1 ,
2 —r? sil1<r<+v2

ou r est toujours la distance au centre de la sphére. Les inégalités (3.5) et (3.6) implique
que la densité de matiére en n’importe quel point est inférieure & 2. Si nous notons a
nouveau () la matiére contenue dans un cube de coté E + 2(v/2 — 1) qui contient k

sphéres alors

Q =k / Sr><2dr+/ STX(Q_T)Qd,r+/ Sr><(2—r2)dr
0 2—/2 1
4Kk n 1 V2 1
= 22 — (2 — /oyt [ X2
Q= a2 <2 +n+1>
AK k23
@ n+2 (1+29)

Blichfeldt en déduit que

4K k2%

1

2 % (E+2(\/§—1))" >

c’est-a-dire :

K 2(0v2—1)\
FEC_(p20V2-1)) 0 nd2
B ) @iy

En faisant tendre E vers +oo, il trouve cette fois

n+ 2
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puis que
n

I (14 282)
1+g

2
Tn < —
T

Comme g > 0, cette derniére estimation de -, est bien meilleure que celle précédemment
obtenue par Blichfeldt.

Il revient pour terminer sur la question de la détermination de ~, pour n un entier
fixé. Aprés avoir rappelé les valeurs de ~, pour n = 2,3,4,5, Blichfeldt annonce avoir

démontré que

64
76:637 Y =vV64 et g =2.

La méthode proposée ici par Blichfeldt est en fait trés proche de celle utilisée par
Minkowski pour démontrer son théoréme sur les convexes. L’idée de Minkowski consiste
a considérer des domaines convexes (comme des sphéres) qui ne se rencontrent que sur
leurs frontiéres et qui sont tous inclus dans un parallélépipéde. Minkowski compare en-
suite le volume de ce parallélépipéde et le volume occupé par les convexes, puis il passe
a la limite. De maniére analogue, Blichfeldt considére des sphéres toutes incluses dans
un cube. Mais ces sphéres ne sont plus nécessairement disjointes et elles sont supposées
matérielles. La matiére contenue dans les sphéres est donnée par une fonction densité
de matiére. Blichfeldt compare alors la matiére dans les sphéres et dans le cube qui les

contient.

3.2.3 Minimum des formes quadratiques de 6, 7 et 8 variables

Dans son article®® publié¢ en 1935, Blichfeldt revient sur I’étude de la constante 7,,.
Cette fois son objectif n’est pas de donner une estimation de cette constante valable
pour tout n, mais de déterminer les valeurs exactes de ~g, 77 et 5. Il rappelle d’abord
en introduction d’une part la définition de ~,, et d’autre part ses valeurs pour n égal 2,

3, 4 et 5 qui sont alors connues

4
722\/;7 73:\3/5, 74:\/§> 75:\5/§-

Les valeurs qu’il obtient pour n entre 6 et 8 sont celles qu’il avait annoncées dans son

article précédent, c’est-a-dire :

/64

Yo =\ 5 V7 = V64, Y8 =2.

51 BLICHFELDT 1935.
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Pour démontrer ces résultats, Blichfeldt emploie la méthode de réduction des formes
quadratiques de n variables développée par Korkine et Zolotareff en 1873 et qu’ils
nomment « le développement des formes suivant les minima®? ». Ils ont démontré que
chaque forme quadratique définie positive de n variables est équivalente a une forme

qui s’écrit
f=Ai(mi+azst+- - +vyx,) 2+ As(xa+03+ - +C2y)° 4 A Apo1 (T +0m,) + Al

De plus, dans cette écriture, A; est le minimum® de f, qui est donc atteint pour
(x1,22,...,2,) = (1,0,...,0). Ay est le minimum de la forme en zy, ..., x, lorsque
le premier terme A;(z; + axy + -+ + y,)? est annulé, etc... Korkine et Zolotareff
montrent aussi un certain nombre d’inégalités sur les coefficients de f. D’abord, les
coefficients (dits intérieurs par Blichfeldt) «, 3, ..., 4, ..., o sont tous inférieurs a % en
valeur absolue. Ensuite, les coefficients Ay, As, ..., A, (coefficients extérieurs) vérifient

les relations suivantes :

3
Aip1 > ZAia Aiys > gAi; (3.7)

1
Aip1 Aip2 Aiyz Aiga > 3 Al (3.8)

N}

Toutes ces inégalités permettent de déterminer ~, pour 2 < n < 5, mais elles doivent
étre raffinées pour obtenir vg, v7 et 7s.

Blichfeldt introduit la notation (7 j...k | a b...c) qui désigne la valeur de f quand
tous les termes avant A;(x; +...)? sont annulés et que l'on substitue x;, z;, ..., xy par
a,b,...c. Comme A; est le minimum de f quand les termes précédents sont annulés, il
vient

(tj...k|lab...c) > A;.

Blichfeldt étudie ensuite

(i+1,i+2]zyz)=Ai(r—sy£t2)*+ A1 (y —v2)? + Ay02?

ce qui lui permet de démontrer en particulier qu'en notant A ; = (1 — A?)A; et
Aipo = (1 - MQ)AHl, alors
< 1—-A
F=15x

52KORKINE et ZOLOTAREFF 1873 p.370.
53Par minimum de f, il est entendu minimum pour des valeurs entiéres et non toutes nulles des
variables.
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ou encore, si V =1—2(1 — \)(1 — p?) est positif :

vgé(l—ﬁ) et tZ%(l—)\+(1+)\)\/V).

Dans la suite, f est une forme de 6, 7 ou 8 variables et il se raméne & A; =1, Ay = A,

A3 =B, ..., As = G. L’objectif est donc maintenant de démontrer que
ABCDE > 5 ABCDEF > ! t ABCDEFG > L (3.9)
=64 =64 © = 256 '

ce qui implique
64
wE\g WSV, w2

En effet, comme A; = 1 est le minimum de f, 75 est telle que 1 = 1,AYS, oit A est le
déterminant de la forme. Or A = ABCDE, d’ou v = W,

égalité cherchée pour 4. Les autres cas se traitent de maniére identique. Ces derniéres

ce qui conduit a I'in-

inégalités sont en faites suffisantes pour avoir des égalités car Korkine et Zolotareff

6/64

5 /64 et 2 pour respectivement g,

avaient donné des formes réalisant les valeurs
77 et 7s.

Toute la suite de l'article consiste donc a démontrer les inégalités (3.9). Pour cela
Blichfeldt raisonne par ’absurde. Les contradictions sont obtenues en combinant les
inégalités précédentes et en distinguant différents cas selon les valeurs des coefficients.
Il s’agit d'un article trés technique et calculatoire et qui, mis a part la notion de ré-
duction des formes quadratiques, n’utilise pas de connaissance théorique difficile.
C’est une remarque générale que nous pouvons faire sur le travail de Blichfeldt en
géométrie des nombres. Dans BLICHFELDT 1914, la preuve du théoréme principal est
la partie la plus théorique, les applications étant ensuite surtout de nature calcula-
toire. Dans 'article de 1929 qui concerne les formes quadratiques et ’empilement des
sphéres, Blichfeldt présente une nouvelle méthode pour étudier ces empilements, mais
il se contente de présenter sa méthode a travers deux exemples différents sans faire
aucune heuristique un peu générale. Enfin dans l'article étudié dans ce paragraphe,
le point de départ de Blichfeldt est la réduction des formes quadratiques au sens de
Korkine et Zolotareff. Ensuite tout son travail consiste a chercher des inégalités plus
précises sur les coefficients des formes réduites. Pour cela il effectue uniquement un

travail technique sur des inégalités.

204



3.2 CHAPITRE 3

Conclusion

Dans ce chapitre, le principe de variation de I’échelle d’observation a permis d’ob-
tenir des informations de natures différentes sur Blichfeldt & partir d’'un unique type
de sources : ses articles de mathématiques. L’étude des citations dans ses publications
a par exemple confirmé qu’il est parmi les premiers mathématiciens a reprendre la géo-
métrie des nombres apreés Minkowski. L’examen des mathématiques pratiquées dans
certains articles a lui mis en évidence quelques caractéristiques du travail de Blichfeldt
en géométrie des nombres : il n’élabore pas de nouvelles constructions théoriques, il
n’introduit pas de nouveaux objets ou de nouveaux problémes. Par contre, il propose
une nouvelle approche pour étudier ’empilement de sphéres de méme rayon ; il obtient
de nouveaux résultats ou il en améliore d’autres en approfondissant des méthodes déja

connues.

Plus particuliérement, il semble que la géométrie occupe une place moins importante
dans la géométrie des nombres de Blichfeldt que chez Minkowski. Blichfeldt reconnait
que 'utilisation de la géométrie est caractéristique du travail de Minkowski en géométrie

des nombres®

« We now introduce the powerful geometrical process of Minkowski (1864-
1909). This process, dating from about 1890, he named “Geometry of num-

bers”. He introduces a certain key figure (standard curve or surface). »

Mais le seul endroit ou la géométrie est mise en avant dans son propre travail est

I’article de 1914 dans lequel il annonce que
« A new geometrical principle will now be stated and proved®. »

Cependant cette idée de nouveau principe géométrique n’est pas développée par la
suite.

En fait, la conception de Blichfeldt sur la géométrie est un point délicat car nous avons
trés peu d’éléments qui pourraient nous éclairer sur son point de vue a ce sujet. Il
commente un peu l'aspect géométrique dans le travail de Minkowski dans une commu-
nication faite lors d’un symposium sur la géométrie des nombres organisé le 28 mars
1919 pendant une réunion de I’American Mathematical Society a Chicago. Dans cet

exposé, Blichfeldt revient sur le théoréme de Minkowski sur les convexes

« It remained for Minkowski to discover a theorem bearing on the least va-

lues of a very general class of functions, by means of an elegant geometrical

56

interpretation of this minimum®®. »

54BLICHFELDT 1932 p.7.
S5BLICHFELDT 1914 p.228.
56 BLICHFELDT 1919 p.450.
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Ce que Blichfeldt semble souligner ici & propos de la géométrie est son seul caractére
esthétique, ce qui est beaucoup plus pauvre que l'utilisation qui en était faite par Min-
kowski. Rappelons en effet par exemple que Minkowski lui donnait un réle crucial dans
I’heuristique et qu’il avait I’ambition de faire de la géométrisation le principe permet-
tant d’unifier les différents domaines des mathématiques.

La deuxiéme communication du symposium est faite par Dickson et elle concerne les
applications de la géométrie des nombres & ’étude des nombres algébriques. Le com-
mentaire de Dickson sur la géométrie est peut étre plus fidele aux idées de Minkowski

sur le sujet

« The geometry of numbers not only furnishes a concrete geometric image
of certain fundamental theorems on algebraic numbers, but also provides

a new and attractive method of proving important theorems on algebraic
fields®”. »

L’intervention de Blichfeldt a cette occasion est aussi intéressante car il fait un bref
historique de la géométrie des nombres. Il trace les grandes lignes d’une histoire qui
seront celles reprises par la suite. Blichfeldt apparait donc comme celui qui le premier
a commencé a fagonner une histoire de la géométrie des nombres qui sera transmise
dans le milieu des mathématiciens travaillant sur ce sujet.

Pour lui la géométrie des nombres est issue « d’une classe de problémes » dont le
meilleur exemple est la détermination du minimum (ou d’estimations du minimum),
pour des valeurs entiéres et non nulles des variables, de la forme quadratique définie
positive f = ax? + 2bzy + cy?. Gauss et Seeber ont donné les premiers résultats dans
les cas particuliers de formes de deux ou trois variables®®. Le premier résultat général

sur ce probléme est celui d’Hermite qui montre que pour une forme de n variables de
déterminant D le minimum est plus petit que (%)%1 Dn. La citation précédente de
Blichfeldt montre que pour lui Minkowski intervient en élargissant la question & une
classe plus grande de fonctions dont les formes quadratiques sont un cas particulier.
C’est le sens qui est donné au théoréme sur les convexes sous sa forme analytique.

Cette histoire présentée par Blichfeldt est un élément supplémentaire suggérant qu’il

est venu a la géométrie des nombres & partir des formes quadratiques.

L’étude du travail de Blichfeldt sur la géométrie des nombres montre aussi une image
différente de cette discipline par rapport a celle que nous avions avec Minkowski. La
différence n’apparait pas dans les sujets qui sont abordés par les deux mathématiciens
mais dans ce qui caractérise pour chacun la géométrie des nombres.

Avec Blichfeldt, la géométrie des nombres se définit davantage par les problémes qui y

sont traités. La discipline s’organise donc plus autour de questions clés et la nature des

STDICKSON 1919a p.453.
S8 BLICHFELDT 1914 p.233.
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méthodes employées pour les résoudre importe peu. Nous venons de commenter par
exemple 'importance moins grande accordée aux méthodes géométriques. Parmi ces
questions clés, nous avons en particulier : le minimum des formes quadratiques définies
positives, I'approximation simultanée de nombres réels par des rationnels, le minimum
de la somme de valeurs absolues de formes linéaires, I’empilement de sphéres etc. .. Ces
problémes ne sont pas reliés par 'appel a 'intuition géométrique qui donnait son unité
a la discipline chez Minkowski. Ceci peut conduire a s’interroger sur la pertinence a
inclure tous les articles de Blichfeldt cités au paragraphe 3.1.2 dans la géométrie des
nombres. Pour l'article de 1914 dont le titre renvoie explicitement a la géométrie des
nombres la question ne se pose pas mais c’est peut étre moins clair pour les autres.
Malgré le point de vue diftérent parfois adopté par Blichfeldt dans ces autres travaux
nous pensons qu’ils doivent étre pris en compte et cela pour plusieurs raisons. D’abord,
comme nous l’avons dit, ils ont tous pour théme des questions étudiées par Minkowski
dans le cadre de la géométrie des nombres et Blichfeldt semble les intégrer a la disci-
pline (par exemple a travers les citations qui y sont faites) sans que l'utilisation de la
géométrie soit une condition pour cette intégration. Ensuite, ces articles de Blichfeldt
sont eux aussi cités dans des travaux consacrés a la géométrie des nombres. Prenons
par exemple le fascicule sur la géométrie des nombres de ' Enzyklopddie der mathe-
matischen Wissenschaften mit Einschluss ihrer Anwendungen®. Blichfeldt y est cité
précisément pour les trois articles que nous avons un peu détaillés®. Nous pouvons
aussi regarder dans les bibliographies des livres sur la géométrie des nombres pour voir
quels sont les articles de Blichfedt qui y sont cités. Ainsi dans les bibliographies de
CASSELS 1959; LEKKERKERKER 1969; SIEGEL 1989; OLDS ET AL. 2000 tous les ar-
ticles que nous avons recensés au paragraphe 3.1.2 sont cités a 1’exception du rapport

sur la géométrie des nombres de 1919.

Certaines des remarques précédentes sont cependant & préciser. Chez Minkowski,
la géométrie des nombres s’organise autour de son théoréme sur les parties convexes
et elle est caractérisée par l'utilisation d'une géométrie associée a l'intuition. Dans
son article publié en 1914, quand Blichfeldt commence & travailler sur ce sujet, il
donne I'impression de reprendre en partie cette conception du domaine. Les aspects
liés & l'intuition sont laissés de coté, mais nous avons noté son objectif de mettre un
nouveau principe géométrique au centre de la théorie. Ce nouveau résultat fondamental
est ensuite appliqué a divers problémes et il occupe alors la place du théoréme de
Minkowski. Mais cette organisation de la géométrie des nombres s’estompe dans les

travaux suivants de Blichfeldt. Dans les articles que nous avons commentés il n’utilise

S9KELLER 1954.
SOBLICHFELDT 1919 est aussi cité mais c’est un rapport sur le sujet et ne constitue donc pas un
travail original.
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pas son théoréeme de 1914 et la géométrie est absente du calcul des constantes -,
v7 et 7s. 11 applique ce théoréme dans des articles plus tardifs®! mais cette maniére
de travailler en géométrie des nombres consistant & utiliser un résultat central dans
différentes situations n’est pas aussi systématique avec Blichfeldt qu’elle 1'était chez
Minkowski.

Il se dessine donc avec Blichfeldt un changement progressif de ’organisation interne de
la géométrie des nombres telle qu’elle a été observée chez Minkowski. Ce changement

va se confirmer dans les travaux de Mordell et Davenport.

61 BLICHFELDT 1936, 1939.
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Chapitre 4

Les travaux de Mordell en géométrie
des nombres (1923-1945) : une

nouvelle conception disciplinaire
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Le recensement de la géométrie des nombres effectué dans le Jahrbuch suggére que
Louis Mordell a joué un réle important dans son développement. C’est d’abord le ma-
thématicien pour lequel le plus grand nombre de publications a été relevé (12). Ensuite,
le graphe représentant le nombre de publications consacrées a la géométrie des nombres
connait justement un pic les années pour lesquelles Mordell a lui aussi publié de ma-
niére importante sur ce sujet. Les autres sources qui ont été utilisées pour repérer la
discipline, les livres sur la géométrie des nombres ainsi que 1’ Enzyklopadie, ont elles
aussi fait ressortir les contributions de Mordell.

Dans ce chapitre, son travail est examiné & la méme échelle que celui de Minkowski et
Blichfeldt. Mais ’étude de ses articles montre que pour comprendre la dynamique de
ses recherches il est nécessaire de prendre en compte les travaux de Harold Davenport

sur la géométrie des nombres. A partir de la deuxiéme moitié des années 1930, les deux
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mathématiciens commencent & travailler en étroite collaboration sur ce sujet : ils se
citent, leurs articles circulent entre eux avant publication, leurs travaux se répondent. . .
Nous nous intéresserons d’abord aux premiers travaux de Mordell sur la géométrie des
nombres, puis aux débuts de Davenport sur ce sujet. Enfin, nous étudierons principale-
ment leur collaboration a travers deux thémes de leurs recherches : le produit de trois

formes linéaires homogénes et les formes cubiques binaires.

4.1 Mordell et Davenport : leurs débuts en géométrie

des nombres

4.1.1 Louis Joel Mordell (1888-1972)

4.1.1.1 Eléments biographiques

Louis Joel Mordell est né le 28 janvier 1888 & Philadelphie!. Il est le troisiéme d'une
famille de huit enfants. Ses parents sont des immigrés lithuaniens arrivés aux Etats
Unis en 1881. Son pére, Phinéas Mordell (1861-1934), a été un spécialiste reconnu en
hébreu?. Mordell raconte que, un peu avant 'age de 14 ans, il lit de vieux livres d’algébre
grace auxquels il découvre la théorie des nombres®. Il explique que l'idée d’aller étudier
les mathématiques & Cambridge est venue de la lecture de ces ouvrages. Il remarque
en effet que beaucoup des problémes qui y sont proposés sont issus de « scholarship
examinations » de Cambridge ou bien du « Mathematical Tripos* ». Il part donc pour
Cambridge & la fin de I'année 1906° et il obtient finalement un scholarship & Saint
John’s College (voir la coupure de presse figure 4.1°9).

En octobre 1907, il commence donc sa préparation pour le Mathematical Tripos’.
Son directeur des études est alors le géométre H.F. Baker avec qui il ne s’entend pas
trés bien®. Mordell pense que Baker aurait voulu qu’il se spécialise aussi en géométrie ;
il lui fait en tout cas suivre des cours sur les courbes planes et la géométrie différentielle,
cours que Mordell abandonne?. Il réussit la premiére partie du Tripos en 1909, il est

« third Wrangler ». C’est aprés avoir réussi la seconde partie du Tripos que Mordell
g P

I'MORDELL 1971b, p.953.

2CASSELS 1973, p.493.

3MORDELL 1971b, p.953.

4MORDELL 1971b, p.954.

SDAVENPORT 1964, p.3.

SMORDELL (St John’s), box 4, folder 41. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.

"En plus du scholarship de Saint John’s, il est soutenu financiérement par une bourse d’un lycée
de Philadelphie (« Philadelphia High ») CASSELS 1973, p.494.

8Pour des informations sur Henry F. Baker voir BARROW-GREEN et GRAY 2006.

YMORDELL 1971b p.956.
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Fic. 4.1 — Article paru dans The Philadelphia Press le jeudi 10 janvier 1907
211



CHAPITRE 4 4.1

commence réellement a s’intéresser a la théorie des nombres. Mordell se rappelle qu’il
s’agissait d’un sujet peu étudié a cette époque en Grande Bretagne et se considére donc
comme un autodidacte'®. Son premier travail dans ce domaine concerne la résolution

en nombres entiers de I’équation!!

v =2"+k,

ol k est un entier fixé. Il arrive deuxiéme pour le prix Smith!? pour ce travail'3.
Entre 1913 et 1920, Mordell occupe un lectureship au Birkbeck College de Londres.
Pendant la guerre, entre 1916 et 1919, il passe deux ans comme statisticien au ministére
des munitions'®. Il est ensuite chargé de cours au Manchester College of Technology
entre 1920 et 1922. Puis il obtient un poste a l'université de Manchester, d’abord un
readership en 1922 et a partir de 1923 jusqu’en 1945 il occupe la Fielden Chair of Pure
Mathematics. En 1924, alors qu’il est encore citoyen américain, il est élu Fellow of
the Royal Society. Il obtient la nationalité britannique en 1929 '°. Pendant ces années
a Manchester, il est président de la London Mathematical Society entre 1943 et 1945
et obtient la De Morgan Medal en 1941. D’aprés Cassels, il batit autour de lui a
Manchester une école performante en mathématiques, il accueille par exemple pour
des durées plus ou moins longues R. Baer, G. Billing, C. Chabauty, H. Davenport, P.
Erdos, H. Heilbronn, Chao Ko, D.H. Lehmer, K. Mahler, B. Segre, J.A. Todd, P. Du
Val, L.C. Young ou G. Zilinskas'S. Il aide aussi un certain nombre de réfugiés fuyant
le nazisme, en particulier Kurt Mahler qui lui aussi a travaillé sur la géométrie des
nombres.

En 1945, Mordell revient & Cambridge, il succéde & Hardy a la Sadleirian Chair et
obtient un Fellowship & Saint John’s College. Il donne a Cambridge des cours de théorie
des nombres dont le sujet est souvent la géométrie des nombres, les nombres algébriques
ou les équations diophantiennes. Il y organise également un séminaire hebdomadaire'”.

Davenport remarque sur ces années a Cambridge

« In the years that followed, he built up an active school of research in

10Comme mathématicien faisant exception et s’intéressant & la théorie des nombres Mordell cite
G.B. Mathews et J.H. Grace, voir MORDELL 1971b, p.957, CASSELS 1973 p.495. Dans le livre de Ma-
thews, Theory of Numbers (MATHEWS 1892), un chapitre est consacré a Uinterprétation géométrique
de la théorie des formes mais il s’arréte avant Minkowski.

UMORDELL 1914.

12T] n’y avait pas & cette époque en Angleterre de diplome comme le PhD pour les étudiants se
destinant & la recherche. A Cambridge, le Smith Prize, qui était décerné au meilleur article soumis,
était pour ces étudiants un moyen de montrer leur capacité & poursuivre dans une carriére de chercheur.
Au sujet de ce prix voir BARROW-GREEN 1999.

13CASSELS 1973, p.496.

1 DAVENPORT 1964, p.3.

15CASSELS 1973, p.500-501.

16 CASSELS 1973, p.503, DAVENPORT 1964 p.4.

17CASSELS 1973, p.506.
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Cambridge, which specialized mainly, but not entirely, in the geometry of

numbers!®, »

Mordell est professeur émérite a partir de 1953. On lui décerne le Senior Berwick Prize
en 1946 et la Sylvester Medal of the Royal Society en 1949. Il est membre étranger des
académies d’Oslo, d’Uppsala et de Bologne et au cours de sa carriére éditeur de Acta
Arithmetica et du Journal of Number Theory'®. Aprés sa retraite en 1953 il visite de
nombreuses universités comme par exemple celles de Toronto, du Ghana, du Nigeria,
du Colorado. ..

Mordell décéde le 12 mars 1972 & Cambridge®.

4.1.1.2 Apercgu général des travaux de Mordell

En 1964 le volume IX des Acta Arithmetica est dédié a Mordell. A cette occasion,
Davenport écrit un court article biographique sur Mordell dans lequel il revient sur ses
travaux.

A la différence avec ce que nous avions observé avec Blichfeldt, Mordell est un ma-
thématicien trés prolifique. La liste de ses publications?! comporte 270 articles (ce qui
inclut les comptes rendus d’ouvrages) et 1 livre. Ce qui suit n’est qu'un résumé trés
rapide des recherches effectuées par Mordell.

Davenport identifie quatre grands thémes de recherche dans la carriére scientifique de
Mordell : les équations diophantiennes, les fonctions theta et les fonctions modulaires,
la géométrie des nombres et enfin les congruences et sommes exponentielles??.

Les premiers travaux de Mordell concernent les équations diophantiennes avec I’étude
en particulier de I’équation y? = 23 4+ k. Ces premiéres recherches se caractérisent par
I'application de la théorie des invariants & la théorie des équations diophantiennes®?.
Le résultat pour lequel Mordell est sans doute le plus célébre est le théoréme dit main-
tenant de Mordell-Weil. En utilisant le procédé de descente infinie, Mordell démontre?*
en 1922 que le groupe des points rationnels d'une courbe elliptique est de type fini,
cette formulation actuelle du théoréme n’est pas celle de Mordell qui n’utilise pas dans
son article le vocabulaire de la théorie des groupes®.

L’intérét pour les fonctions modulaires date aussi du début de la carriére de Mordell. A

ce sujet il travaille sur des formules sur le nombre de classes ou encore sur le nombre de

BDAVENPORT 1964, p.4.

19CASSELS 1973, p.509-510.

20CASSELS 1973, p.509.

2LCette liste est publiée dans les volumes IX et XXIII de Acta Arithmetica.
22DAVENPORT 1964, p.6-12.

23Voir CASSELS 1973, p.496-497 et GOLDSTEIN 1993 p.40-42.

24MORDELL 1922.

25Voir CASSELS 1986; SCHAPPACHER 1990; GOLDSTEIN 1993.
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décompositions d’'un entier en un nombre donné de carrés. Ces recherches portent aussi
sur des fonctions plus spécifiques. En 1917, il démontre?® par exemple la multiplicativité

de la fonction de Ramanujan notée 7 et définie par

ZT(n)x”:x{H(l—xm)} :

n=1 m=1

D’autres travaux sur ce sujet concernent le calcul de I'intégrale

400 _at?
e + bt
[
_ et +d

[e.9]

probléme lié¢ & des sommes de Gauss et aux fonctions theta?”.
Nous reviendrons par la suite en détails sur le théme de la géométrie des nombres.

La question des sommes exponentielles concerne I'estimation de sommes du type

2mif(x)
2e

T

ou f est un polynoéme défini modulo p et ol la somme est faite sur un systéme complet
de résidus modulo p. Mordell travaille aussi sur ’estimation du nombre de solutions
d’équations

f(z,y) =0 (mod p),

avec [ un polynome.

Davenport présente & part certains travaux qui ne sont pas liés aux thémes précédents.
Parmi eux, nous avons par exemple des articles sur la représentation comme somme
de carrés de formes linéaires des formes quadratiques binaires ou sur la résolution

simultanée de deux équations quadratiques

Qi(z1,...,2,) =0, Qo(z1,...,2,)=0.

Mordell a aussi laissé un certains nombres de conjectures, parmi lesquelles la plus cé-
lebre est certainement celle qui affirme la finitude du nombre de points rationnels sur

une courbe de genre strictement plus grand que 12,

26MORDELL 1917.
27Voir DAVENPORT 1964 p.8-9, CASSELS 1973 p.499-500.
28Conjecture démontrée par Gerd Faltings en 1983.
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4.1.2 Les premiers travaux de Mordell en géométrie des nom-
bres 1927-1937

La premiére mention publiée par Mordell du travail de Hermann Minkowski se
trouve dans un article publié en 1923. Cet article?® est en fait un compte rendu in-
troductif a la théorie des nombres algébriques et Mordell n’y développe donc pas de
recherches personnelles.

Mordell débute par une introduction historique, pour lui l'origine de cette théorie se
situe dans l'utilisation par Leonhard Euler de nombres de la forme a + by/—2. Euler
cherchait alors & démontrer que les seules solutions entiéres de 1'équation 3% 4+ 2 = 23
sont © = 3 et y = 45, énoncé qu’il attribuait & Pierre Fermat. La théorie continue
ensuite a se développer avec des travaux concernant la loi de réciprocité quadratique
et ses généralisations aux lois de réciprocité cubique et biquadratique. L’étude de ces
questions amena Carl Friedrich Gauss & considérer les nombres complexes de la forme
a + 1b ol a et b sont des entiers.

Toujours d’aprés Mordell, c’est ensuite le dernier théoréme de Fermat et 1’équation
2P 4+ yP = 2P qui conduisirent les mathématiciens & considérer les nombres a + (b ou
( est une racine p-iéme de 'unité. La factorisation de tels nombres n’est pas toujours
unique comme c’est le cas pour les entiers de Gauss a + b, ce probléme était alors
la principale difficulté de la théorie & surmonter. Mordell signale le travail de Ernst
Eduard Kummer a ce sujet mais insiste surtout sur la théorie des idéaux de Richard
Dedekind qui illustre pour lui une idée « caractéristique » des mathématiques qui est
de travailler avec des objets plus généraux (les idéaux) que ceux qui sont étudiés au
départ (des nombres algébriques) pour résoudre un probléme3°.

Aprés cette introduction historique Mordell revient sur les notions de nombres algé-
briques, d’entiers algébriques, de corps de nombres algébriques, de bases entiéres, de
conjugués et de discriminant d’un corps. C’est a ce propos que Minkowski est cité pour
la premiére fois car il a démontré la formule asymptotique suivante pour le discriminant

d d’un corps de nombres algébriques K () de degré n :

d L (I)er 6271_% .

N27rn 4

29MORDELL 1923.

30Comme c’est souvent le cas avec Mordell, il développe son point de vue en donnant un exemple.
11 choisit ici celui de n! =1 x 2 x --- X n qui se généralise avec la fonction I' définie pour s > 0 par
I(s) = [y e *s""! dax. Pour un entier n > 1, on a alors I'(n) = (n — 1)!. Cette maniére d’envisager la
théorie des idéaux de Dedekind est différente de certaines autres interprétations pour lesquelles une
caractéristique importante de la solution de Dedekind est de rester dans le cadre de I'arithmétique.
Mordell ne semble pas attacher beaucoup d’importance & ce point comme le montre le paralléle fait
avec la fonction I' qui fait intervenir ’analyse.
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Aprés avoir souligné I'importance des unités des corps de nombres algébriques, Mor-
dell énonce un autre théoréme dt & Minkowski concernant les formes linéaires. Nous
reviendrons plus loin sur ce théoréme car il semble occuper une place particuliére dans
la théorie pour Mordell.

Mordell s’intéresse ensuite & des critéres permettant de déterminer si un nombre 6 est
algébrique de degré n. Il rappelle alors un résultat d’approximation : « 6 ne peut étre

un nombre algébrique de degré n s’il existe une infinité de rationnels g tels que

<
q q

oll ¢ est un nombre donné3! ». Joseph Liouville avait montré le résultat pour A > n,
puis Axel Thue en 1908 avait obtenu A > n et enfin Carl L. Siegel en 1921, A > 2¢/n.
Mordell présente un autre critére issu du travail de Minkowski qui consiste a étudier
les minima des formes zg + 210 + - -+ + x,_10""! ou les ; sont des entiers plus petit
qu’un entier ¢ fixé. Rappelons que Minkowski avait énoncé son critére en introduisant

la notion de chaine de substitutions®2. Mordell le donne ici en suivant la présentation

m2 m3
mi1’ ma’

faite par Philipp Furtwingler®® en 1917 qui considérait les rapports ..ol my
est le minimum pour U'entier ¢ = ¢. Ces rapports sont en nombre fini pour un nombre
algébrique 0 de degré n.

Mordell revient aussi sur les idéaux, en particulier sur le fait qu’il est possible d’« étendre
beaucoup de concepts arithmétiques aux idéaux » et sur le lien entre la factorisation
des idéaux et la factorisation des nombres algébriques.

Ensuite, la notion de congruence par rapport a un idéal permet a Mordell d’introduire
la norme N (A) d’un idéal A, puis la question du nombre de classe d’idéaux. A nouveau
un résultat de Minkowski joue un réle important dans ce probléme car il permet de

montrer que tout idéal A contient un élément a tel que
[N(a)] = N(4) Vd,

ce qui a pour conséquence qu’il n’y a qu'un nombre fini de classes d’idéaux. Mordell
explique comment ce nombre de classes H est important dans la résolution de cer-

taines équations diophantiennes. Il rappelle le lien entre le calcul de H et la fonction

f(s) = Z N(A): pour laquelle la sommation porte sur tous les idéaux du corps de
nombres algébriques K () étudié et ou la partie réelle de s est strictement supérieure
al.

Continuant avec des méthodes analytiques, Mordell note que la méthode de Hardy et

3IMORDELL 1923, p.451.
32 MINKOWSKI 1899.
33 FURTWANGLER 1917.
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Littlewood pour le calcul de formules approchées pour le nombre de décomposition
d’un entier naturel n en somme de carrés se généralise pour des entiers algébriques
en utilisant des fonctions theta introduites par Erich Hecke. L’article se termine par
quelques remarques sur les lois de réciprocités générales.

Bien que la géométrie des nombres ne soit pas au centre de cet article, ce travail
montre la bonne connaissance et l'intérét de Mordell pour les résultats obtenus par
Minkowski. Nous avons déja cité certains d’entre eux, mais le résultat de Minkowski
sur lequel Mordell insiste le plus est celui concernant le produit de formes linéaires
qu’il juge « fondamental dans la théorie et a contribué largement a sa simplicité et a
son élégance3? ». Ce théoréme de Minkowski est énoncé de la facon suivante : pour des

nombres réels a, b, ¢, d, p et ¢ ou p, g sont strictement positifs et vérifient

bqg=

il existe des entiers x, y qui ne sont pas nuls tous les deux et tels que
lax +by| <p et lcx + dy| < q.

Mordell semble déja assez bien connaitre ce probléme et les différentes approches uti-
lisées pour l'aborder : I'approche géométrique de Minkowski avec le théoréme sur les
parties convexes et symétriques par rapport a l’origine ; les approches jugées arithméti-
ques de David Hilbert et d’Adolf Hurwitz ; la preuve analytique de Carl Siegel, la plus
récente, utilisant des séries trigonométriques®. Nous verrons des travaux de Mordell
qui s’inscrivent dans chacune de ces trois approches, en particulier les méthodes ana-
lytiques sont l'objet de recherches importantes de Mordell dans les années 1928-1930

ou il publie plusieurs articles sur la formule sommatoire de Poisson.

Le premier article original de Mordell en géométrie des nombres est rédigé en 1927 et
traite du produit de deux formes linéaires non homogeénes®. En fait pendant la période
allant de 1927 a 1937, l'intérét de Mordell en géométrie des nombres se porte presque
exclusivement sur ce probléme des formes linéaires. De maniére un peu générale ce
probléme peut se formuler en disant qu’il s’agit d’étudier les plus petites valeurs prises
par un systémes de n formes linéaires (parfois par leur produit ou la somme de leur
valeur absolue) quand les variables prennent des valeurs entiéres.

Le discours qu’il prononce le 15 novembre 1927 devant the Manchester Literary and

34 MORDELL 1923, p.450.
35SIEGEL 1922.
36 MORDELL 1928a.
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Philosophical Society et qui est publié dans Nature en 1928 témoigne de I'importance
qu’il accorde & ce probléme’”. A cette occasion, Mordell discute des six problémes de
théorie des nombres qui ont pour lui le plus d’influence sur les recherches de 1’époque
et parmi ces questions se trouve la conjecture de Minkowski sur le produit de n formes
linéaires non homogeénes. Il aborde d’abord le probléme des trois bicarrés d’Euler qui
consiste en I’étude de 'équation a* + b* + ¢* = d*. Il rappelle ensuite I'importance du
dernier théoréme de Fermat dans les premiers développements de la théorie algébrique
des nombres. Le probléme suivant est celui de la détermination des nombres rationnels

x et y qui satisfont ’équation du troisiéme degré a coefficients rationnels suivante :
3 2 2 3 2 2 .
ax® + bx*y + cry” + dy® + ex* + fry + gy +hx +ky+i =20

Il précise bien str qu’il a lui méme démontré & 'aide du procédé de descente infinie
que toutes les solutions peuvent étre obtenues & partir d’'un nombre fini d’entre elles
par la méthode des tangentes et des sécantes. Mordell passe ensuite au probléme du
nombre de classes de Gauss. Gauss avait conjecturé que pour un nombre de classes
H(D) de formes quadratiques de déterminant —D donné, il n’y a qu'un nombre fini de
valeurs de D possibles. Mordell aborde ensuite le probléme des diviseurs de Dirichlet.
Il consiste en I'é¢tude de la somme d(1) 4+ d(2) + - - - + d(n) ou d(i) désigne le nombre

de diviseurs de I’entier i. Mordell indique que Dirichlet avait montré en 1843 que
d(1)+d(2)+---+d(n) =nlogn+ (2y — 1)n + R(n)

ouy = 0,577... est la constante d’Euler et le reste R(n) vérifie R(n) = O(y/n). De
meilleures approximations furent données par Voronoi en 1903 (R(n) = O(/nlogn))
et Van der Corput (R(n) = O(5/n)). Bien que Mordell remarque la diversité des ap-
proches utilisées (géométriques, arithmétiques), pour lui ce sont les méthodes de théorie
analytique des nombres qui ont joué le plus grand role dans les développements récents.
Mordell termine avec la conjecture de Minkowski sur le produit de n formes linéaires
non homogénes qui nous intéresse plus particuliérement ici*®. Il rappelle un énoncé de

cette conjecture : étant données des formes linéaires non homogénes
Li = @;1T1 + Q%o + ... + AipnTy — C; (1 SZ S’I’L),

ou les a;; et les ¢; sont des nombres réels tels que le déterminant |a;;| est égal a 1,

3"MORDELL 1928b.
38Bien que cette conjecture soit attribuée & Minkowski, nous n’avons pas trouvé cet énoncé dans le
travail de Minkowski que nous avons consulté. Freeman Dyson, qui démontre le cas du produit de 4

formes linéaires dans DYSON 1948, confirme qu’il n’en a trouvé aucune trace dans les travaux publiés
de Minkowski.
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existe-t-il des nombres entiers x1, 2o, ..., x,, tels que
|LiLy...L,| < 27" 7

Publié en 1928, le premier article de Mordell en liaison avec la géométrie des nombres
concerne justement cette conjecture de Minkowski sur le produit de formes linéaires
non homogénes®. Dans cet article Mordell commence par des rappels historiques a
propos de ce probléme que nous reprenons ici.

Pour Mordell les premiers résultats pour le produit de deux formes L; et Ly sont ceux

de Pafnuty Tchebychef qui démontra que pour des valeurs entiéres des variables

1
|L1Lsy| < 5

et Hermite?® qui améliora la borne précédente avec

2
LiLy| < {/—=.
|L1Lo| < o
En fait, comme celui de Tchebychef, le théoréme d’Hermite donne 'existence d’une

infinité d’entiers z et y tels que

|z —ay —b| < 2L
27 y
ol a et b sont deux nombres réels. La preuve d’Hermite utilisait la réduction des formes
quadratiques ternaires. Ces résultats étaient alors déja envisagés en liaison avec des
problémes d’approximations dans le cadre des fractions continues. C’est toujours dans
ce cadre mais en abordant la question avec des méthodes géométriques que Minkowski!
démontra que .

|Li1Ls| < 1
Enfin, en 1913, Robert Remak propose une démonstration plus simple pour le produit
de deux formes utilisant cette fois les formes quadratiques binaires®® et en 1923, il

réussit & prouver le résultat pour trois formes linéaires non homogénes*?.

Mordell juge que la preuve de Remak pour n = 3 est « excessivement compliquée »,

il lui semble donc qu’il serait tres difficile d’« étendre ses méthodes a plus de trois

39MORDELL 1928a.
4OHERMITE 1880.
HMINKOWSKI 1901b, 1907.
2REMAK 1913.

BREMAK 1923a,b.
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variables** ». De plus, d'un point de vue méthodologique il pense que pour résoudre le
cas ol n est quelconque, il est fructueux de multiplier les démontrations dans les cas

plus simples :

« An obvious method of attempting to deal with the general theorem is to

find new proofs for the case n = 2%. »

Nous pouvons voir les effets de cette opinion de Mordell sur son travail. Nous constate-
rons a travers quelques exemples qu’il publie souvent plusieurs articles sur exactement
le méme probléme : il propose plusieurs approches, simplifie des preuves. .. L’exemple
le plus frappant est peut-étre celui du produit de formes linéaires mais ce n’est pas le

seul, nous le verrons aussi pour la question du minimum des formes cubiques binaires.

Dans cet article de 1928, Mordell propose donc une nouvelle preuve du cas ot n = 2
qu'’il espére plus facile & généraliser que celle de Remak (bien qu’il indique ne pas encore

y étre parvenu). Etant données deux formes linéaires non homogénes,
Ly = anr +aprs — ¢ et Ly = a1 + agnxs — o,

dont les coefficients sont réels et le déterminant égal & 1, le probléme est de montrer

I'existence de deux entiers x; et xo qui vérifient

1
LiLo| < 7.

La preuve de Mordell est fondée sur deux lemmes. Dans le premier de ces lemmes, le

. i a2 . . . .
déterminant est supposé égal a 1, il existe alors des entiers x; et zo9, qui

21 Q22
sont non tous deux nuls et pour lesquels

la1121 + a19%2| |agixy + agxs| < 1.

A propos de ce résultat qui est énoncé sans démonstration, Mordell indique & juste
titre qu’il s’agit d’un cas particulier d’un théoréme sur les formes linéaires di a Min-
kowski?®. Minkowski avait démontré son théoréme pour un nombre quelconque n de
formes linéaires, cette premiére étape de la preuve ne pose donc pas de difficulté pour
la généralisation de sa méthode que Mordell envisage afin de démontrer la conjecture
dans le cas du produit de n formes. C’est le deuxiéme lemme utilisé par Mordell dont

la généralisation pose probléme :

4“4 MORDELL 1928a, p.20.
S MORDELL 1928a p.20.
46Voir par exemple MINKOWSKI 1896a, chapitre 4.
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«Si0<A<let0<|B| < %, alors il existe un nombre N tel que

—_

|AX?+ BX| < =

W

pour N < X < N +1».

Pour démontrer ce lemme Mordell se raméne par un changement de variables a 1’étude
de la fonction f(z) = ax® — b ou a et b dépendent de A et B. Ensuite en séparant les
cas ou b < i et ou b > i, puis en utilisant les conditions vérifiées par A et B, Mordell
obtient par des inégalités successives que |f(z)| < 1 pour un intervalle de valeurs de
de longueur 1.

Le premier lemme permet & Mordell de justifier qu’il est possible de se ramener au cas
ol

laj1 a| < 1.

Il traite ensuite des cas particuliers ou certains coefficients des formes sont nuls et dans

le cas général il suppose a1 # 0 et as; # 0. Le calcul du produit des deux formes donne

a a
LiLy = aja9 |21 — &1 + 2 (xZ - 52)} [ffl =&+ -2 (552 - 52) )
aii a21

ot le couple (& = agecy — a1y , & = a11C — agicy) est la solution du systéme

Mordell choisit pour x5 un entier tel que |25 —&| < % et pose X = 11 —§1+Zﬁ (x9 — &),
il obtient alors
LiLy = ajjan X + (z2 — &)X .

L’application du lemme 2 implique 'existence d’un intervalle I de longueur 1 tel que

1
VX €I, |LiLs| < =

W

Or dans X seul z; n’est pas fixé et comme la longueur de I est 1, x; peut étre choisi
entier.

Le point de vue adopté ici par Mordell n’a plus rien & voir avec celui de Minkowski.
Rappelons que Minkowski faisait une construction géométrique afin de trouver une
solution pour l'inégalité précédente?”. Dans ses tentatives suivantes pour aborder ce
probléme Mordell va s’éloigner de cette premiére idée et il va se tourner vers des

méthodes issues de la théorie analytique des nombres.

4TVoir MINKOWSKI 1901b.
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4.1.2.1 L’utilisation de la formule sommatoire de Poisson 1928-1929

A la fin des années 1920, Mordell consacre plusieurs articles a des applications de la
formule sommatoire de Poisson & des questions de théorie des nombres. Dans le premier

article de cette série il écrit

« It is a familiar fact that an important part is played in the Analytic
Theory of Numbers by Fourier series. There are, for example, applications
to Gauss’ sums, to the zeta functions, to lattice point problems, and to

formulae for the class number of quadratic fields*®

Dans les travaux de Mordell qui vont nous intéresser ici les séries de Fourier inter-
viennent & travers la formule sommatoire de Poisson. L’idée d’appliquer cette formule
a des questions de théorie des nombres n’est pas nouvelle et remonte en fait & Dirichlet
qui Pemploie afin d’é¢tudier les sommes de Gauss*®. Cette approche analytique des an-
nées 1928-1929 sont aussi a rapprocher de la démontration déja évoquée de Siegel de

1922 du théoréme sur les formes linéaires qui utilisait des séries de Fourier.

Le premier article de Mordell qui concerne la formule sommatoire de Poisson com-

mence par une démontration de cette formule qu’il écrit

+00 1 +00 400
> 5 (F—0)+ fn+0)) Z/ 2nmis f (1) da

Mordell en donne une preuve sous les conditions suivantes :
(1) Pour N > 0, f(x) est absolument intégrable sur [—=N, N]; pour 0 < ¢ < N,
f(x) est a variations bornées sur [¢, N]*°, pour N > 0 et z > N, f(z) admet une

dérivée seconde f”(x).
+oo +o0
(2) | |hm f(z) = |lim f'(z) = 0 et les intégrales f(z) dx et/ |f"(z)| dz
z|— —+00 -
sont convergentes.

—00 [e.e]

48MORDELL 1928¢ p.585.

Pour des renseignements sur les sommes de Gauss ainsi que la premiére utilisation de la formule
sommatoire de Poisson dans ce contexte par Dirichlet, voir PATTERSON 2007.

%0S0it f une fonction définie sur un intervalle [a,b] & valeurs dans R. Notons S([a,b]) I'ensemble
des subdivisions de [a, b]. Pour une subdivision o = (a = xg,z1,...,2, = b) € §([a, b]), on considére

o) = Z |f(wi) — f(@io1)].

La variation totale de f est alors

V(f)= sup V(fo0).
oceS([a,b])

f est dite a variations bornées si V(f) est finie.
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+o0
(3) La série Z (f(n—=0)+ f(n+0)) converge.

Avec cette formule, Mordell redémontre dans un premier temps des résultats connus.
D’abord il revient sur I’équation fonctionnelle vérifiée par la fonction zéta de Riemann
qui est définie pour les nombres complexes s de partie réelle strictement plus grande

que 1 par

L’équation fonctionnelle démontrée par Mordell s’écrit alors

s

C(s) =T(1 —s)2° 7! sin <?> ((1—3s),

ou la fonction I' est définie par

400
[(s) = / t e tdt.
0

Mordell explique ensuite comment la méme méthode permet d’obtenir aussi I’équation
fonctionnelle pour la fonction zeta plus générale définie pour les nombres complexes de
partie réelle strictement positive par

x(1) | x(2) | xB)

<<87X>: 13 + 23 + 33 +... )

ou y désigne un caractére primitif modulo un entier k.
L’intérét que Mordell porte alors & ce type de méthode semble venir de la possibilité

d’unifier avec un seul principe des résultats épars de la théorie des nombres :

« These formulae give instantaneous and simple proofs of so many impor-
tant and apparently disconnected results that it is rather surprising they
have been overlooked in the treatises in the Analytical Theory of Num-

bers®!. »

Nous voyons & nouveau apparaitre le théme de 1'unité déja développé par Minkowski.
Cependant 'unité ici ne passe pas par la géométrie mais par ’analyse, elle est obtenue
a travers une formule. Avec ces premiers travaux sur la formule sommatoire de Pois-
son, nous sommes donc davantage dans une tradition hermitienne. Cependant, cette

thématique de I'unité semble disparaitre des préoccupations de Mordell par la suite.

Dans le deuxiéme article sur la formule sommatoire de Poisson®?, publié¢ en 1929,
Mordell démontre la formule sous des conditions qu’il pense mieux adaptées et plus

simples & vérifier pour son utilisation dans les applications

5IMORDELL 1928¢ p.587.
52MORDELL 1929a.
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« These conditions make no pretence to any great generality, but they are so
simple and so easily applied that, as I am showing in a series of papers, Pois-
son’s formula furnishes obvious demonstrations of many theorems, which
can have only been overlooked owing to the lack of such a simple enuncia-
tion®3. »

Ce n’est pas la formule dans sa plus grande généralité qui doit donc étre recherchée pour
réussir a unifier ou encore organiser la théorie. Ce qui doit étre visé c’est la simplicité
de maniére a ce que les applications soient des conséquences presque immédiates. La
simplicité de la formule est ce qui assure sa fécondité®*. Nous retrouvons en partie ces

idées dans la lecture de Davenport de I'utilisation de la formule de Poisson par Dirichlet

« The method used by Dirichlet in 1835 to evaluate G is probably the most
satisfactory of all that are known. It is based on Poisson’s summation for-
mula, and it has the advantage that once the proof has been embarked

upon, no special ingenuity is called for®. »

Dans son article de 1929, Mordell démontre cette fois la formule de Poisson sous la

56 - - |
> fm= Y [ e

n=—oo n=—oo

forme

ot la fonction f vérifie les conditions suivantes®” :
() pour toutes valeurs réelles de z, f(x) et f’(x) sont continues et tendent vers

zéro quand |z| — 0o
oo

(B) f(x) et f"(x) sont telles que les intégrales /OO f(z)dx et / |f"(x)| dx

—00

convergent, et f’ est une intégrale de f”.
Puis il considére le cas ou la sommation s’effectue entre deux bornes qui ne sont plus

nécessairement infinies, la formule devenant alors

b

S = > [ s,

le symbole Z” indique que si a ou b est un entier le premier (respectivement le dernier
terme) dans la somme est 1 f(a) (respectivement 3 f(b)).

Comme nouvelle application, Mordell montre cette fois ’équation fonctionnelle vérifiée

53MORDELL 1929a p.286.

5414 encore il s’agit de thématiques qui sont & 'oeuvre dans le travail d’Hermite. Voir & ce propos
GOLDSTEIN 2008 ou l'articulation entre simplicité/clarté/fécondité chez Hermite est discutée.

S5DAVENPORT 1967 p.14, cité aussi dans PATTERSON 2007 p.513.

S6MORDELL 1929a.

STMORDELL 1929a p.285-286.
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par la fonction
Bls) = -+ ——— +
S) = — ey
a®  (a+1)* (a+2)s

qui s’écrit

+oo . 1
o(s) = 2D0(1—5) 21) 'Y Sm(z”;f * 75)
n=1

Le lien des deux articles précédents avec la géométrie des nombres n’est pas évident.
Pourtant en 1964, quand Davenport évoque les travaux de Mordell®®, il les classe parmi
les articles qui concernent la géométrie des nombres. Ce rapprochement entre géométrie
des nombres et formule sommatoire de Poisson fait par Davenport peut s’expliquer par
les applications possibles de cette formule aux questions concernant les points d’un ré-
seau ; ce dernier probléme est évidemment relié a la géométrie des nombres. D’ailleurs,
Mordell souligne lui méme les applications importantes des séries de Fourier aux points
d'un réseau®®. En quoi consiste ce probléme ?

Il s’agit d’obtenir des relations dans lesquelles intervient le nombre de points d’un réseau
dans un domaine fixé comme par exemple un disque ou un parallélogramme. Ce sujet de
recherche semble avoir pris de I'importance en théorie analytique des nombres & partir
du début des années 1920 comme en témoigne par exemple le fait que « Gitterpunkt-
probleme » apparait dans 'intitulé d’un chapitre dans la classification du Jahrbuch tiber
die Fortschritte der Mathematik en 1921%°. Cette section du Jahrbuch est par ailleurs
indépendante de celle qui concerne la géométrie des nombres. Parmi les mathématiciens
s’intéressant a cette question nous trouvons par exemple Edmund Landau ou bien Carl
Siegel avec qui Mordell avait des contacts®!.

L’intérét de Mordell dans cette période pour ce probléme apparait aussi dans sa cor-
respondance avec Davenport. Dans une lettre datée du 8 juillet 1929, Mordell donne

des conseils de lectures & Davenport alors mathématicien débutant®?

« As you will soon be returning to Cambridge, there is my suggested rea-
dings for you.

Landau, Darstellung und Begriindung einiger neuerer Ergebnisse der Funk-
tionentheorie

Landau, Einfithrung in die elementare und analytische Theorie der alge-
braischen Zahlen und Ideale

Landau, Vorlesungen iiber Zahlentheorie, vol.2-183 till end, Gitterpunkte®3. »

58 DAVENPORT 1964.

S9MORDELL 1928¢, p.585.

59Dans « Arithmetik und Algebra », il s’agit du chapitre 8 « Algebraische Zahlen, Asymptotische
Abschéatzung von Zahlentheoretischen Funktionen, Gitterpunkt-probleme ».

61Dans sa correspondance avec Davenport, Mordell mentionne des rencontres avec Landau (lettres
a Davenport du 26 janvier 1932 et du 18 février 1932) et avec Siegel (lettre & Davenport du 3 mars
1932). DAVENPORT (WL).

62Le premier article de Davenport fut publié en 1931.

63Lettre de Mordell & Davenport du 8 juillet 1929, DAVENPORT (WL), G 208.
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Cette courte bibliographie concerne donc exclusivement Landau (bien que Hecke soit
aussi cité plus loin) et la question des points d’un réseau est mentionnée explicitement.
Dans d’autres lettres, Mordell et Davenport ont des échanges autour de la formule
de Poisson. Le 24 juillet 1929, Mordell fait allusion & une preuve plus courte de cette
formule que lui a communiqué Davenport et il lui conseille de rédiger une note a ce
sujet. Il indique aussi qu’'un travail important pour lui serait de trouver les conditions
générales les plus simples sous lesquelles la formule reste vraie. Notons a nouveau 'in-
sistance de Mordell & propos de la simplicité.

Le 18 février 1930, il demande & Davenport la permission d’utiliser sa preuve simplifiée
de la formule de Poisson de deux variables dans un de ses articles, permission qui a di
lui étre accordée car le 26 mars Mordell envoie une copie de cet article & Davenport en

précisant ol cette démonstration est mentionnée%.

Toujours dans cette lettre du 26 mars 1930, Mordell écrit

« It seems worth while writing up the explicit formula for the number of

lattice points in any domain D ».

Cette citation fait écho a deux articles de Mordell écrits en 1929 dans lesquelles il
applique la formule sommatoire de Poisson de deux variables au probléme des points
d’un réseau dans certains domaines®.

Dans le premier de ces deux articles Mordell commence par énoncer et démontrer la

formule sommatoire de Poisson de deux variables qu’il écrit®
+00 +00 400  ptoo
Z Z f m, Tl Z Z / / 2mmm+2nmy f(.l’ y> dl’dy, (41)

ou la fonction f vérifie les conditions suivantes :
anrb ) ]
(1) =——==, pour a,b=0,1,2 (sauf a = b = 2), sont des fonctions continues de z,
Ox*QyPb
y pour toutes valeurs réelles de x et y; et elles tendent toutes vers zéro quand

une des variables tend vers Fo0.

(2) f et ses dérivées sont telles que / / <\ fl+

converge.

5
Oy?

Nf
0x20y?

=

i

) dx dy

Pour démontrer cette formule Mordell commence par justifier la convergence de la série

+oo +o0o
Y>> I,

m=—00 N=—00

647] semble que Davenport n’ait pas publié ces preuves de la formule de Poisson. L’article de Mordell
dont il est question dans ces lettres est MORDELL 1930c.

65MORDELL 1929b, 1930a.

66 MORDELL 1929b, p.412.
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o I, ,, est défini par

+o0 +o00 ) )
:/ / e2mmm+2nmy f(:L’,y) dl’dy )

Pour cela, il montre, avec deux intégrations par parties successives par rapport a I'une

ou l'autre des variables ou bien les deux variables et avec les conditions (1), (2), que

+o0 +o00 2m7rw: 2
Im,O = / / afdxdyv m#oa

2mz7r 0x?

+o0o +o0o 2n7rzy 62]0
Iy = / / dzdy , n 7& 0,
’ (2nim)? Oy?

+oo +o0o 2m7rz:v+2n7rzy 84]0
I, — dedy | 0, n#0.
’ / / (2mim)? (2nim)? 0x20y? ey m 70, n7

Ces relations permettent de justifier la convergence absolue de S, ainsi que I'inversion

des sommes et des intégrales dans S. Pour démontrer ensuite que

5= 5 S Jonn),

m=—0o0 N=—00

Mordell remarque que la série
+oo 2nmiz

ZOO (2nim)?

n——

est le développement de la fonction P définie, pour 0 < x < 1, par
1 1
Plz)=—-= (22— -
(x) 5 (:c T+ 6)

P(z+1) = P(z).

et pour tout x réel,

Cela lui permet d’exprimer S sous la forme d’une somme de quatre intégrales

“+0o0 400 “+00 +00

//f:cydxdy+// d:cdy
+00 +00 +oo +oo 4f
// da:dy + // xzan:L’dy,

qui, une fois calculée, donne la formule sommatoire de Poisson de deux variables (4.1).
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Cette formule est ensuite utilisée pour étudier les points d’un réseau dans un cercle
de rayon w? et centré en l'origine. Mordell applique la formule (4.1) a la fonction f

définie par

flzy) = (w—2"—¢y*) st P+’ <w,
flz,y) = 0 si 2?4+ 97 > w,

ol w > 0 et A > 3 pour que f vérifie les hypothéses sous lesquelles la formule (4.1)
a ¢été démontrée. Mordell obtient alors une nouvelle relation qui, comme il le justifie
grace a une dérivation, est encore vraie pour A > 1. En prenant alors A = 1, il trouve

finalement que®” :
+00
R
Z(w —2? ) = ng + % Z % J2(27rw%n%)
n=1

ol la sommation du membre de gauche porte sur les entiers z et y tels que 224 1? < w.
R(n) est le nombre de couples d’entiers solutions de z? + y*> = n et J, la fonction de

Bessel qui est définie pour un nombre complexe = par

2 IX (L) N 2
7 = (3) ;% (5)"

La deuxiéme application qui est donnée de la formule de Poisson nous intéresse davan-
tage car elle est directement liée a la géométrie des nombres et au probléme des formes
linéaires. Soient a,b,c,a’,V, ¢, w,w’ des nombres réels avec w et w’ supposés positifs.
Mordell note A = ab’ — a’b qui est supposé strictement positif, Ay = d'm — a'n et

Ap' = —bm + an, il obtient alors la relation%

Z(w — lam 4+ bn + ¢|) (W' — |a'm + b'n + )
+oo +oo

1 ) .., si 2 ) 1\
_ Z Z Z e—27rmc—27ru i/ S (ﬂ-:uw) Sin (ﬂ-:uw) (42)

72M2 .71-2“/2

nN=—0o0 MmM=—0o0

ou la sommation du membre de gauche porte sur les entiers m et n tels que
lam +bn + ¢| < w et la'm +bn+d| <o,

avec la convention que si aucun couple d’entiers ne vérifie ces inégalités la somme est

nulle. Ce dernier résultat est a nouveau une conséquence de la formule sommatoire de

S"MORDELL 1929b, p.415.
68 MORDELL 1929b, p.417.
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Poisson mais appliquée cette fois a la fonction donnée par

fley) = (w—laz+by+ ) (&~ lae + ¥y + )
silar+by+c <w et |[do+by+] <o,

f(z,y) = 0 sinon.

Les entiers p et ¢ sont dans un premier temps supposés strictement supérieurs a 3 afin
de pouvoir appliquer (4.1), puis comme pour I’appliquation précédente au disque, Mor-
dell justifie la validité de la relation obtenue pour p et ¢ plus grands que 1 en dérivant.

En prenant alors p = ¢ = 1, il en déduit le résultat cherché.

Voyons maintenant quel est le lien avec la géométrie des nombres et le travail de
Minkowski. Comme les inégalités |ax 4+ by +c| < w et |a'z +b'y+ /| < w’ définissent un
parallélogramme, compter les points & coordonnées entiéres dans un parallélogramme
revient a s’intéresser au probléme de la majoration des formes linéaires et a la conjecture
de Minkowski. D’ailleurs comme le rappelle Mordell, c’est 'idée qu’avait déja utilisée
Siegel pour traiter le cas homogeéne. En effet dans son article de 1922, Siegel avait

démontré le développement précédent dans le cas ol ¢ et ¢ sont nuls, c’est-a-dire®

2 10
, sin? (7 pw) sin? (Tp/'w’)
> (w = lam + bn|) (W — |a'm + b'n|) = Z Z S o (4.3)
n=—o00 mM=—0o0
La preuve de Siegel de ce développement utilise les séries de Fourier ainsi que de
I'intégration complexe. Avec ce résultat il retrouve un théoréeme de Minkowski sur les
formes linéaires homogénes. Ce théoréme™ donne l'existence d’entiers m et n, non tous

deux nuls, tels que
lam +bn| <w et |ad'm+Vn] <o

pour w et W' qui vérifient ww’ > A.
Comme le rappelle Mordell, la démonstration du théoréme sur les formes linéaires a
partir du développement en séries de Siegel s’effectue en raisonnant par ’absurde. Si en

effet aucun couple d’entiers (m,n) autre que (0,0) ne vérifie les inégalités précédentes,

59Voir SIEGEL 1922. Nous donnons ici le développement pour deux formes linéaires mais Siegel
traite en fait le cas général pour n formes.

"OBien qu’il s’agisse d’une conséquence immédiate du théoréme de Minkowski sur les corps convexes
et que parfois la méthode employée "améne a ce résultat au cours d’une preuve (par exemple voir
MINKOWSKI 1896b), nous ne connaissons pas d’énoncé explicite de ce théoréme dans le travail publié
de Minkowski. L’énoncé donné par Minkowski qui s’en approche le plus est le cas particulier ou
w=w" = YA, voir MINKOWSKI 1896a chapitre 4.
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la relation (4.3) devient

Aww' — w2 R, sin?(mpw)  sin?(mp/w’)
S Z Z 22w

n=—oo m=—0o0

2 ou encore A > ww' ce qui est contraire a I’hypothése

ce qui implique Aww’ > W'
faite sur w et w’. Mordell annonce aussi un résultat dont la démontration est publiée
en 1930 et qu’il semble voir comme la généralisation au cas des formes non homogénes

de la méthode de Siegel.

Dans ce nouvel article™, Mordell commence par redonner les énoncés des théorémes
de Minkowki sur les formes linéaires homogénes et non homogénes dans le cas de deux
variables. Nous venons de rappeler le cas homogeéne ; dans le cas non homogene il s’agit

de montrer I'existence de deux entiers = et y tels que
/ / / ]'
lax + by + c| |d'x + by + | < Z|A| .

Mordell revient sur les développements en séries qu’il a obtenu avec la formule som-
matoire de Poisson, en particulier il compare sa méthode pour démontrer (4.2) avec
celle de Siegel pour (4.3) qui pour lui « does not reveal the real origin of (4.2)™ ». Ce
commentaire confirme le role central que Mordell entend faire jouer a la formule som-
matoire de Poisson qu’il présente ici comme plus fondamentale que les outils employés

par Siegel. Le résultat central de ce nouvel article de Mordell est la formule™

+o0 +oo

1 o ie—oruie SIN(2THW) sin(2mp'W’)
L == 2mpic—2mu'ic ) 4.4

n=—0o0 m—=——0oQ

L est le nombre de points & coordonnées entiéres dans le parallélogramme défini par
les inégalités
lam +bn + | < w la'm +0'n+ | <o

et ol les points sur les cotés du parallélogramme comptent pour % et les sommets pour
% ou 0. Comme le développement dans le cas o ¢ = ¢ = 0 implique le théoréme
sur les formes linéaires dans le cas homogéne, Mordell pense que la nouvelle relation
qu’il a trouvée doit pouvoir lui permettre de montrer le théoréme dans le cas non
homogéne. Nous avons vu que Mordell a déja proposé une autre démonstration de ce
théoréme de Minkowski pour le produit de deux formes. Ainsi bien qu’il ne s’exprime

pas explicitement la-dessus, nous pouvons penser que l'intérét de Mordell pour cette

"IMORDELL 1930a.
2MORDELL 1930a, p.39.
SMORDELL 1930a, p.39.
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nouvelle approche du probléme vient du fait qu’il imagine que cette méthode doit
étre généralisable afin de démontrer la conjecture pour le produit de n formes non
homogeénes. Ce point de vue est certainement motivé par la formule de Poisson qui est
a la base de la méthode et qui est valable quelque soit le nombre de variables. Cette
approche n’a cependant pas été aussi fructueuse que prévue et Mordell n’a méme pas

réussi a retrouver le résultat pour le produit de deux formes

« It is possible that the formulae (2), (3) may be useful in proving Min-

kowski’s second theorem and its generalisation, but this I cannot do™. »

Mordell n’est pas revenu dans la suite de ces travaux sur cette méthode utilisant la
formule sommatoire de Poisson pour démontrer la conjecture sur le produit de n formes

linéaires linéaires.

4.1.2.2 Retour a des méthodes arithmétiques 1930-1937

Aprés ’échec de ces tentatives pour démontrer la conjecture de Minkowski par des
voies analytiques, Mordell se tourne vers des méthodes arithmétiques.
D’abord dans un court article de trois pages publié¢ en 1930, il revient sur le cas de
deux formes linéaires non homogénes. Il obtient un résultat qu’il juge intéressant car il
permet de contréler la taille de chaque terme du produit™. Soient A, B, C, D, P, Q des
nombres réels; il suppose que A = AD — BC' est non nul et que ABC' est positif, alors

il existe des entiers x et y tels que
1 1
|Ax + By + P| < 3 |A| et |Cz+ Dy+ Q| < 5 |D] . (4.5)
L’argument principal de la preuve consiste a considérer la fonction
o(x,y) = ax® + 2hxy + by® + 2fy + 292,

ot les coefficients sont des réels avec a strictement positif et ab > h?. Mordell justifie
ensuite I'existence d’un minimum pour ¢ pour des valeurs entiéres des variables x, y et

note (£,n) le couple pour lequel ce minimum est atteint. Cela implique en particulier

P 1,m) > o(&n)

ou encore aprés simplification

+2(al +hn)£29+a > 0.

"“MORDELL 1930a, p.39. Les relations (2) et (3) dont Mordell parle ici sont (4.2) et (4.4).
"SMORDELL 1930b.
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Finalement, aprés avoir fait la méme chose avec ¢(£,n+ 1), il vient

1 1
a€+hn+gl < za et |[RE+bn+ f| < 55-

\)

Les inégalités (4.5) s’en déduisent en choisissant les coefficients a, b, h, f, g convenable-
ment en fonction de A, B,C, D, P, Q).

Cet article de Mordell est isolé par rapport a ses autres travaux, d’une part par le
résultat qui y est énoncé et d’autre part par la méthode employée qui ne parait pas
liée aux autres tentatives de Mordell pour aborder ce sujet des formes linéaires non
homogenes. Cependant, il témoigne des recherches importantes sur ce théme faites par

Mordell qui essaie de diversifier les points de vue.

En 1933, Mordell revient sur le cas de n formes linéaires homogénes™. Il commence

par rappeler le théoréme : soient n formes linéaires a coefficients réels

Lr(x):Zarsxs (r=1,...,n),
s=1

dont la valeur absolue du déterminant D est strictement positive et n réels positifs A,

qui vérifient
I[» = D.
r=1

Il existe alors des entiers x1, xo, ..., x, non tous nuls tels que
|L. ()] < A, (r=1,...,n).

Mordell souligne 'existence de preuves analytiques et arithmétiques de ce résultats. Les
preuves arithmétiques dues a David Hilbert et Adolf Hurwitz consistent & démontrer
d’abord le résultat pour des formes a coefficients entiers, puis rationnels et enfin par
un procédé d’approximation pour les formes réels’”. L’objectif de Mordell est ici de
proposer une nouvelle démonstration dans le cas ou les coefficients des formes sont
des entiers. Sa méthode, qu’il juge plus simple, repose sur une idée arithmétique qu’il
attribue & Henry John Stephen Smith et qu’il énonce dans un lemme : si les a,, sont

des entiers alors le n-uplet (Ly(x), ..., L,(z)) prend exactement D"~! valeurs distinctes

"*MORDELL 1933.

""Voir HURWITZ 1897. D’aprés Hurwitz, Hilbert est le premier a avoir donné sa preuve qu'’il a com-
muniquée & Minkowski. Ce dernier avait prévu de la publier dans le deuxiéme fascicule de Geometrie
der Zahlen qui n’a finalement jamais été achevé. Le principe d’approximation des formes a coefficients
réels par des formes & coefficients rationnels serait donc dii & Hilbert, c’est ce qui est indiqué par
Georges Humbert dans la note IIT de la traduction francaise du Zahlbericht de Hilbert, voir HILBERT
1991.
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modulo D quand les z, sont des entiers™.

Mordell commence donc par démontrer ce lemme. Pour cela il justifie que par une
substitution linéaire de déterminant 1 sur les variables des L,, il est possible de se

ramener a des formes™

biix1, bo1wy + baowa, bg1w1 + bsawa + bszws, ..

avec D = by1bas ... b,,. La forme b2 prend des valeurs distinctes modulo D quand
x1 parcourt les entiers compris entre 0 et % — 1. Ensuite x; étant fixé dans l’ensemble

précédent, les valeurs de la forme by x1 + basrs sont obtenues en faisant parcourir a

D

To les entiers 0,1, ..., tas

— 1. En faisant la méme chose avec chaque forme, Mordell

montre qu’il y a
Hbg _ Dn—l
r=1 rr

valeurs possibles modulo D pour le n—uplet (L, )1<,<n. Il justifie que ces valeurs sont
en fait bien toutes distinctes.

A priori, chaque forme L, peut prendre D valeurs modulo D, ainsi le systéme de formes
(L )1<r<n D™ valeurs modulo D. Comme nous venons de voir qu'il en prend en fait
D! Mordell en déduit qu’il y a D" — D" ' = D""Y(D — 1) n—uplets (i1, ...,1i,) tels

que le systéme de congruences
L.(z1,...,2,) =14, (mod D) (r=1,...,n)

n’a pas de solution. Si (p1,...,pn) et (p},...,p)) sont tels que les systémes
L(xy,...;2,) =p, (mod D) et L.(x,...,2,)=p. (mod D) (r=1,...,n)
ont des solutions, Mordell remarque que

L.(xy,...,2,) =p, —p. (mod D) (r=1,...,n)
a des solutions, alors que le systéme

L.(z1,...,2,) =i, +p. (mod D) (r=1,...,n)

n’en a pas. Ces préliminaires terminés, Mordell passe & la preuve du théoréme.
Quitte a considérer les formes 2L, de déterminant £2" D et 2\, a la place de \,., Mordell

"8Voir SMITH 1861, p.325. Smith considére la question du point de vue de la résolution de systémes
linéaires de congruences.

" MORDELL 1933, p.180-181.
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suppose que les A\, sont pairs. Il suppose aussi que les inégalités

1 1
—= A < Lp(zq,...,20) < =N (r=1,...,n)
2 2
n’ont pas de solution autre que (0,...,0) sinon le résultat est démontré. Ainsi les
n—uplets d’entiers (iy,...,i,) # (0,...,0) avec —1 A, <4, < 3 A, pour tout r sont tels
que le systéme
L.(z1,...,2,) =1, (mod D) (r=1,...,n)

n’a pas de solution ; de plusil y a [H(l + ) — 1] n—uplets (i1, . ..,14,) avec cette pro-
r=1
priété. Soit maintenant (py,...,p,) une des D" ! valeurs prises par (L, )<<, modulo

D, d’aprés une remarque précédente le systéme

L.(z1,...,2,) =i, +p. (mod D) (r=1,...,n)

n’a pas de solution. Or il est possible de construire D" [H(l + A.) — 1| n—uplets
r=1

(11 4+ p1,-- -, in + pn) tel que le systéme précédent n’ait pas de solution, mais
D! [H(l + ) — 1] > D! [(H )\r> — 1]
r=1 r=1

> D" YD -1),

car AjAy ...\, > D. Comme il n’y a que D" 1(D — 1) n—uplets tels que le systéme de
congruences précédent n’ait pas de solution, il existe (i1 + p1, ..., 4, + pn) et

(¢ + Y, .. i, 4+ pl) qui vérifient

vre{l,2,....,n}, i,+p, = i +p. (mod D)
dou Vre{l,2,...,n}, i, —i, = p.—p. (mod D).

Comme le systéme de congruences
L.(z1,...,2,) =p. —p, (mod D) (r=1,...,n)
admet des solutions, il existe (x1,...,z,) # (0,...,0) des entiers tels que
vre{l,2,...,n}, L.(x1,...,2,) =4, —i,. (mod D),

avec —\, < i, —i. <\, pour tout r, ce qui montre le théoréme.
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Mordell qualifie sa preuve d’arithmétique et il travaille ici avec des formes a coefficients
entiers, utilise des congruences et fait jouer un role central a ce qu’il appelle le lemme
de Smith. Ce lemme est ’élément unifiant certains de ses travaux sur la géométrie des

nombres qui seront décrits comme arithmétiques par Mordell.

Nous ne suivons pas ici tout a fait la chronologie des travaux de Mordell et regrou-
pons les articles qui concernent exclusivement les formes linéaires. Seul un article ne
traite pas uniquement de ce sujet avant 1937, nous le détaillerons dans un paragraphe
a part.

Dans son article suivant sur les formes linéaires®®, publié en 1936, Mordell énonce un

résultat un peu plus général que le précédent. A nouveau, il note

L.(z) = i QpsTs
s=1

des formes linéaires homogénes a coefficients réels et de déterminant A > 0. Il considére

en plus pi1, ..., tn, V1, - .., v, des réels positifs tels que
by + V10 > A

et c1,...,c, des réels quelconques. Mordell démontre qu’il existe des entiers x4, ..., x,
qui vérifient au moins un des systémes d’inégalités suivants :

1
‘Lr<x>| S IU/T ) ‘Lr<x>| < UT' 9 |LT('T) _'_CT" S 5(:“7’ _'_ VT) °

La solution ou tous les x; sont nuls est exclue pour les deux premiéres inégalités.

La démarche suivie par Mordell est la méme que précédemment : le lemme de Smith
occupe une place centrale, il démontre d’abord le cas ou les coefficients des formes, les
I, les v, et les ¢, sont entiers, il se contente enfin de rapides explications pour passer
au cas rationnel puis réel. L’'importance du lemme de Smith conduit Mordell & qualifier
a nouveau sa méthode d’« arithmétique ». De plus, le peu d’insistance sur le passage
aux coefficients rationnels et réels suggére que Mordell voit le cas entier comme plus

fondamental et que c’est celui qui contient véritablement la difficulté.

Dans une courte note publiée dans le Journal of the London Mathematical Society®
rédigée en 1936, Mordell propose un probléme qu’il présente comme une sorte de réci-
proque au théoréme de Minkowski sur les formes linéaires homogénes. En notant L, n

formes linéaires homogénes, a coefficients réels et de déterminant 1, Ay, Ao, ..., Ay, Ky

80 MORDELL 1937a.
81 MoORDELL 1937c.
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des réels positifs tels que

)\1)\2---)\n:kn7
il rappelle que, si k,, = 1, ce résultat de Minkowski montre 'existence d’entiers x4, . . ., z,,
non tous nuls, qui vérifient
| L (1, .. xn)] < Ay (r=1,...,n).

De plus, le choix de k,, = 1 est optimal dans le sens ou si k, < 1, le théoréme devient
faux. La question qui intéresse Mordell est alors de savoir si, étant donnée les formes
L,, il existe k,, A1, Ao, ..., Ay, avec A Ag ...\, =k, et tels que l'origine O soit le seul

point du réseau (c’est-a-dire ici & coordonnées entiéres) qui satisfait
| L (1, .. xn)|] < Ay (r=1,...,n).

Le théoréeme de Minkowski implique que si k,, existe alors k, < 1. La encore, l'intérét
de Mordell pour cette question est motivé par la conjecture sur le produit des formes
linéaires non homogeénes. En effet, comme il le montre, une réponse positive au probléme
qui précéde permettrait d’avancer dans la démonstration de cette conjecture. Rappelons
que si ¢y, ..., c, sont des réels donnés, il s’agit de montrer 'existence d’une constante

K, indépendante des coefficients des formes, telle que des entiers x4, ..., x, vérifient

n

L@ )+ el < K,

r=1
La conjecture propose aussi K, = 27", ce qui a été démontré par Minkowski pour
n = 2 et Remak quand n = 3. Mordell indique que pour n > 4, 'existence d’'une telle
constante n’a pas été établie.
Supposons que k,, A1, ..., A\, soient tels que A\;... )\, = k, et que O est le seul point

du réseau qui vérifie
| Ly (1, .. xn)|] < Ay (r=1,...,n),

1
soit aussi [, la partie entiére de —. Pour justifier I'existence de la constante K,

Mordell applique le théoréme de Minkowski sur les formes homogénes et obtient des

entiers xy,...,x,, x,11, non tous nuls, tels que
Cy 1
Vred{l,...,n}, Lr(xl,...,xn)Jr—‘an < Aoet rpn] < — .
l,! kn
L’entier x,,, est nécessairement non nul, sinon, par le choix de Ay,..., \, et k,, tous
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Ty !

les z, sont nuls ce qui est exclu. Mordell pose donc ¥, = ——=, chaque ¥, est un entier
Tn+1

a cause du choix de [, et de l'inégalité |x,.1| < [,. De plus, d’aprés les inégalités

précédentes, les entiers yi, ...y, vérifient
T el < b (L)
r=1 Tnt1

ce qui montre K,, < k,(I,!)".
Mordell propose ensuite une preuve pour le probléme énoncé en début d’article dans

le cas ot n = 2. Pour cela, la question est interprétée géométriquement car
« The proof for n = 2 is simplest when put in a geometrical form®?. »

Nous retrouvons ainsi I'importance de la recherche de la simplicité pour Mordell. P

désigne le parallélogramme défini par les inégalités
‘Ll‘ < )\1 et ‘LQ‘ < )\2.

A1 et Ay sont d’abord choisis de telle sorte que P ne contient aucun point du réseau
autre que O. Ils sont ensuite augmentés jusqu’a ce que P posséde un point du réseau
sur deux cotés adjacents et aucun autre a I'intérieur excepté O. Notons A et B ces deux
points, leurs symétriques par rapport & O, A’ et B’, sont aussi des points du réseau

sur des cotés de P. Comme O, A et B ont des coordonnées entiéres, l'aire du triangle

1
2

et OB’ A qui sont tous inclus dans P, Mordell montre que l'aire de P est supérieure a
quatre fois celle de OAB. L’aire de P est 4\ Ay donc

OAB est supérieure a . En considérant de méme les autres triangles OA'B, OA’B’

—_

AAg > 3

Cela permet a Mordell de conclure que ky = % convient.
Au cours de son article Mordell mentionne d’autres résultats récents sur ce théme ce qui

témoigne de l'intérét d’autres mathématiciens pour ces questions. Il cite par exemple,

Szekeres qui a montré que la meilleure valeur possible de ko est % (1 + %) et que

ks = % convient. Erdos et Griinwald ont amélioré ce dernier résultat avec k3 =

qui a été redémontré de facon arithmétique par Ko®3.

, ce

=

Pendant cette période allant jusqu’en 1937, Mordell publie un dernier article en
liaison avec les formes linéaires®. Nous ne le détaillons pas car il concerne des formes

linéaires dont les coefficients appartiennent a un corps de nombres algébriques quel-

82MORDELL 1937c¢ p.35.
83MORDELL 1937c, p.34-35.
84MORDELL 1937b.
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conque, sujet sur lequel Mordell revient peu par la suite. Notons simplement que Mor-
dell est dans la continuité du travail de Minkowski dont il applique certains théorémes
sur ce théme. Il mentionne aussi les recherches récentes de Hofreiter sur le cas des

corps imaginaires, Hofreiter étant un des mathématiciens repéré par I'étude faite dans

le Jahrbuch.

4.1.2.3 Le congrés d’Oslo : un premier bilan du travail sur les formes li-

néaires

Pour faire un bilan du travail de Mordell sur les formes linéaires pendant les an-
nées 1927-1936, nous pouvons suivre la présentation qu’il fait en 1936 lors du Congres
international des mathématiciens a Oslo®. Le choix dans cette intervention, intitulée
« Minkowski’s Theorems and Hypotheses on Linear Forms », de présenter I'état des
recherches sur cette question n’est pas anodin et montre I'importance que ce probléme
avait pris dans ses propres travaux.

Mordell commence par poser le probléme de facon générale puis il énonce le théoréme
démontré par Minkowski pour n formes linéaires homogénes. Il rappelle que différentes
preuves ont ensuite été données. Des preuves arithmétiques par Adolf Hurwitz®® et
David Hilbert ; une preuve de Hans Frederik Blichfeldt®” en 1914 qui a introduit une
« rather different geometric idea |...] which was presented arithmetically in a more
simple way by Remak® in 19278 ». Mordell souligne ensuite plus particuliérement la
preuve donnée en 1922 par Carl Ludwig Siegel qui démontra que le théoréme de Min-
kowski peut étre retrouvé a partir d’'un développement en série obtenu par intégration
complexe. Mordell revient alors sur ses propres travaux sur la formule sommatoire de
Poisson avec laquelle il a redémontré le développement qu’avait obtenu Siegel. Il pro-
pose une nouvelle démonstration de la formule de Siegel qui s’appuie sur le lemme de
Smith vu dans les articles précédents. Comme a chaque fois que ce lemme intervient,
Mordell considére sa preuve comme étant de nature arithmétique. L utilisation du ré-
sultat de Smith lui permet de rappeler les théorémes qu’il a déja démontrés grace a
cette méthode. Aprés avoir commenté un certain nombre de questions liées aux formes
linéaires, Mordell termine 1’exposé avec le cas non homogéne. Il reprend alors essentiel-

lement les développements déja expliqués dans MORDELL 1937c.

Il est intéressant de voir le type de méthodes que Mordell choisit de mettre en avant

85MORDELL 1936.
86HurwiITZ 1897.
87BLICHFELDT 1914.
88REMAK 1927.
89MORDELL 1936 p.226-227.
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dans cette intervention alors qu’il dresse un panorama général du sujet. Pour classer
ces différentes méthodes, Mordell sépare celles qu’il juge géométriques, de celles qui
sont analytiques ou encore arithmétiques. Il voit ses travaux sur la formule sommatoire
de Poisson et ceux dans la tradition de Siegel comme analytiques. Les méthodes jugées
arithmétiques sont celles utilisant le lemme de Smith ou traitant d’abord le cas des
formes a coefficients entiers pour en déduire les cas rationnels puis réels. Il inclut
dans les méthodes géométriques le travail de Minkowski et nous avons dans MORDELL
1937¢ un exemple ou la démonstration est géométrique lorsqu’il reformule le probléme
sur deux formes linéaires en termes de la recherche de points d’un réseau dans un
parallélogramme®. Cette maniére de qualifier les différentes approches utilisées pour
aborder la question des formes linéaires permet de saisir avec davantage de précision
les méthodes privilégiées par Mordell pendant cette période.

Le premier constat est que, bien que ce type d’approches soit mentionné chez d’autres
mathématiciens dont bien str Minkowski, la géométrie est absente de ces premiers
travaux de Mordell sur la géométrie des nombres. Ce moindre intérét pour la géométrie
au profit de I'analyse et de I'arithmétique ressort par exemple des choix des thémes
exposés a ce congres d’Oslo, choix précisés deés le début par Mordell :

« More emphasis, however, will be laid on arithmetic ideas and methods

91

than on geometric ones”™ . »

Comme nous 'avons déja remarqué une place importante est attribuée aux méthodes
analytiques qui ont été le point de vue privilégié par Mordell a la fin des années 1920.
Mais la facon dont il rend compte de cet aspect de ses travaux intégre le fait que
son intérét s’est déplacé vers des méthodes arithmétiques. Virage dont nous pouvons
peut étre voir la justification a posterior: dans la recherche de ce qu’il nomme l'idée

arithmétique derriére la méthode analytique, recherche qu’il juge d’un grand intérét :

« The ideas involved in Siegel’s proof and my variation are analytic. It is
often of considerable interest to investigate the arithmetic ideas underlying
analytic proofs of results in number theory and so to deduce arithmetical

92

demonstrations”. »

Cette recherche de l'arithmétique derriére ’analyse ne semblait pas l'intéresser alors

qu’il étudiait les applications possibles de la formule sommatoire de Poisson & la théorie
es nombres. Mais 1’échec de cette approche pour réussir & obtenir des résultats sur

d b Mais I’échec de cett h bt d ltat

es formes linéaires non homogeénes 1’a amené a changer de stratégie et a revenir a des

les fi 1 h I’ h de strat t d

méthodes arithmétiques. C’est en suivant cette voie que Mordell a trouvé sa nouvelle

99Nous reprenons ici la description qui est faite par Mordell pour repérer géomeétrie, arithmétique,
algébre. Voir HERREMAN 2000 ou une approche sémiotique est utilisée pour distinguer les éléments
arithmétique, géométrique et analytique dans des textes mathématiques.

91MORDELL 1936 p.226.

92MORDELL 1936 p.228.
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preuve arithmétique du développement en séries de Siegel dans laquelle le résultat de
Smith que nous avons déja énoncé occupe une place importante. L'importance de cette
recherche de I'idée arithmétique revient lorsqu’il commente sa preuve du théoréme de

Minkowski sur les formes homogénes qui est basée sur le lemme de Smith? :

« It also had the great advantage of easy generalization, [...| and practically
laid bare the arithmetic ideas really underlying some of Minkowski’s work

of the Geometry of Numbers™. »

Toujours selon Mordell, cette idée arithmétique lui permit de donner une autre preuve
du théoréme sur les formes linéaires homogénes qu’il explique rapidement. Cette dé-
monstration est en fait la réécriture dans le cas particulier d’'un parallélépipéde de
dimension n de la démonstration de Mordell du théoréeme de Minkowski sur les parties
convexes symétriques par rapport a un point®.

Certains commentaires sur des démonstrations de résultats en liaison avec les formes
linéaires semblent indiquer que l'objectif de Mordell est d’en faire disparaitre la géo-
métrie. Par exemple, au sujet d'une preuve de Jansen? de 1909 il écrit

« The demonstration is arithmetic but is not altogether free from geometric

7

presentation®”. »

Il semble regretter que I'arithmétique ne soit pas complétement débarrassée de toute
considération géométrique comme si 'objectif était d’arriver aux méthodes arithmé-
tiques les plus pures possibles. Cette impression revient au sujet du travail de Beppo

Levi®® sur les formes linéaires

« Levi also gave for n = 2, 3,4 arithmetic proofs not free from geometric

presentation®. »

Une premiére explication pour cette volonté de limiter l'intervention de la géométrie
est que Mordell semble considérer que la géométrie n’est pas toujours bien adaptée
pour travailler dans n’importe quelle dimension. A propos d’une méthode employée

par Minkowski, il note par exemple

« This is simple enough in two dimensions but geometric arguments in n

dimensions are sometimes not easily apprehended!®. »

Non seulement cette derniére citation montre le désir de Mordell d’utiliser le moins

possible la géométrie, mais la raison invoquée, c’est-a-dire la difficulté & appréhender

93Voir MORDELL 1933.

94MORDELL 1936 p.230.

95Nous reviendrons en détails sur cette démonstration dans le paragraphe suivant.

9]] s’agit de la thése de Hans Jansen sur la géométrie des nombres qui a été repérée dans le
Jahrbuch.

9"MORDELL 1936 p.231.

9BLEVI 1911.

99MORDELL 1936 p.231.

100MORDELL 1936 p.231-232.
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les raisonnements géométriques en grandes dimensions, nous informe sur la facon dont
il voit cette intervention de la géométrie. Cela suggéere en effet qu’il n’envisage pas
une utilisation de la géométrie qui serait un simple jeu formel sur des concepts géomé-
triques, mais que comme pour Minkowski, la géométrie posséde une dimension intuitive
qui doit étre mise & profit. De plus, cette intuition est favorisée dans les petites dimen-
sions.

La suite va montrer que le point de vue de Mordell sur cette question de l'efficacité de
la géométrie pour traiter les problémes en dimension quelconque a évolué. Mais pour
la période qui nous occupe ici ce sont bien les méthodes arithmétiques qui sont privi-
légiées. D’ailleurs, Mordell propose aussi une démonstration arithmétique du théoréme

de Minkowski sur les parties convexes symétriques par rapport a un point.

4.1.2.4 Une nouvelle preuve du théoréme de Minkowski sur les parties

convexes

L’article dont il va étre maintenant question a trés certainement été rédigé avant
certains travaux que nous avons commentés précédemment. Cependant nous avons
choisi de rompre la présentation chronologique du travail de Mordell et de commenter

101 pour plusieurs raisons. D’abord, son théme principal n’est pas le

a part cet article
probléme des formes linéaires mais il est lié au théoréme de Minkowski sur les parties
convexes symétriques par rapport a l’origine, théoréme que Mordell retrouve comme
une conséquence du résultat qu’il démontre. La question des formes linéaires est traitée
comme une application possible du théoréme de Mordell qui apparait donc comme étant
plus général. Ce travail est aussi a part car malgré une méthode de démonstration
jugée arithmétique, Mordell se livre & une discussion d’ordre géométrique a propos
de I'hypothése de convexité dans le théoreme de Minkowski alors que nous avons noté
que les considérations géométriques ne sont pourtant pas dans ses priorités de I’époque.
Cette derniére remarque peut sembler contradictoire avec ce qui a été dit au paragraphe
précédent sur les rapports de Mordell & la géométrie a cette époque. Cependant cela
peut étre expliqué en regardant la chronologie du travail de Mordell du début des
années 1930.

L’article qui va nous intéresser maintenant est publié en 1935 mais il a en fait été rédigé
dés 1933 par Mordell. Nous pouvons dater ce travail d'une part parce que le journal
dans lequel il est publié¢ indique que I'article a été regu le 2 novembre 1933, mais aussi
parce qu’il en est question dans une lettre de Mordell adressée a Davenport qui est
datée du 25 septembre 1933

« I have recently found a new and even simpler proof for Minkowski theorem

10IMORDELL 1935.
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2

about lattice points in convex ovals of area 4 with centre at the origin'®2. »

Ainsi le raisonnement géométrique a propos du théoréme de Minkowski est élaboré
avant septembre 1933, a ce moment Mordell n’a publié qu’'un seul article ou les mé-
thodes arithmétiques sont mises en avant. De plus, dans ce premier article dans lequel
il utilise le lemme de Smith, il n’y a pas encore de comparaisons entre géométrie, arith-
métique ou analyse. Nous pouvons donc penser que son engagement dans le choix de
méthodes exclusivement arithmétiques ne se fait qu’aprés 1933 et qu’il se traduit par
le point de vue adopté lors de la conférence d’Oslo ainsi que la publication de plusieurs

articles dans lesquels I'arithmétique occupe la place centrale.

La présentation de Mordell rappelle celle que Minkowski faisait pour son théoréme
sur les convexes quand il I’énoncait sous sa forme analytique!®®. Il démontre un résultat
sur les valeurs prises par une certaine classe de fonctions de n variables quand ces
variables sont des entiers, puis il propose des applications de ce résultat principal. Les
fonctions considérées par Mordell, notées f(z1, ..., ,), sont en fait un peu plus générales
que les fonctions distances que Minkowski avait étudiées. Elles vérifient les conditions
suivantes'®* :

« (A). Pour tout réel t > 0,

(1) ftxy, tas, ... txy,) :t‘;f(a:l,xQ,...,xn),

ol ¢ > 0 est une constante indépendante des x et de t »

« (B).
(2) fer =y, rn —yn) SE{f(z1, 20, 20) + (Y102, - 00)

ol k > 0 est une constante indépendante des x et des y.
(C). Le nombre, N, de points réseau, c’est-a-dire, des ensembles d’entiers x4, zo, ..., x,,

tels que

(3) flxy,z9,...,2,) <G,

ol G > 0 est suffisament grand, satisfait a I'inégalité
(4) N > JG3,

ou J > 0 est indépendante de G. »

Mordell démontre que pour de telles fonctions, il existe des entiers xy, zs, ..., ,, non

1027 ettre de Mordell & Davenport du 25 septembre 1933, DAVENPORT (WL), G 211. Cette lettre est
reproduite en annexe.

103Voir par exemple MINKOWSKI 1893.

104N[ORDELL 1935, p.248.
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tous nuls, qui vérifient
f('rlwrQa - '73711) < th]i% .

Avant de commencer sa preuve, Mordell remarque

« My proof is completely arithmetical and even simpler than Minkowski’s
geometric proof. It has its origin in my recent arithmetical demonstration

105

of Minkowski’s theorem for linear homogeneous forms . »

Certaines idées de cet article sont en effet assez proches des méthodes utilisées a propos
des formes linéaires. Bien qu’il n’emploie pas le lemme de Smith, nous retrouvons la
méme idée de dénombrer le nombre de n-uplets modulo un entier ainsi que le nombre
de points & coordonnées entiéres dans un domaine.

Mordell commence sa démonstration en remarquant que pour un entier naturel non
nul M, il y a M valeurs distinctes modulo M et donc M"™ n—uplets (z1,za,...,T,)

modulo M. Il considére ensuite I’ensemble défini par
f(l’l,l’g,...,l’n) < gM6 )

ou les constantes g et M sont choisies assez grandes. En prenant g plus grande que

J ’%, la condition (C) implique que cet ensemble contient au moins M™ + 1 points a

coordonnées entiéres. Deux d’entre eux, (y1,¥2,...,Yn) €t (21, 22,...,2,), ont donc les
mémes coordonnées modulo M, ce qui s’exprime par 'existence d’entiers x1, zo, ..., x,
tels que

Yr — 2p = Mz, (r=1,2,...,n).

D’apreés la condition (B),

IN

k[f(ylavyn)++f(zlv7zn)]
k [gM° + gM°] = 2kgM° |

f(yl_zla"'ayn_zn)

IN

d’autre part, d’aprés (A), nous avons aussi
flyr =21, Yn — 20) = f(Mxy, ..., Mzx,) = M‘Sf(:pl,...,xn) )
En faisant tendre g vers J _%, Mordell obtient bien finalement
flxy, 2o, . 2) < ok J .

Ce théoréme de Mordell permet de retrouver celui de Minkowski. En effet, si le
domaine défini par I'inégalité
flxy, ... x,) <1

105MORDELL 1935 p.249. Mordell fait référence ici & sa démonstration dans MORDELL 1933.
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admet un volume noté V' strictement positif, le volume de ’ensemble donné par
flry,...,2,) <G

est alors VG5 et donc

N
ral—
VGEs G40
Ainsi pour V > J, la condition N > JG' est vérifiée et le théoréme de Mordell donne

1.

I'existence d’entiers x1, ..., x,, non tous nuls, tels que
fzy, 29, ... 1) < ok J n .
Mordell justifie enfin le passage a la limite J — V et obtient
flz, 2, ... 2,) < 2%V " (4.6)

ce qui est bien le théoréme de Minkowski pour £k =0 = 1.

Par la suite, Mordell compare les hypothéses sous lesquelles Minkowski avait dé-
montré son théoréme avec celles utilisées dans cet article. C’est cette discussion de
Mordell qui est d’ordre géométrique. Il remarque d’abord qu’avec Minkowski les do-
maines étudiés devaient étre convexes. Il analyse comment cette hypothése intervient

dans le théoréme de Minkowski

« The convexity condition really means that if P, (), are two points within
S, then P + @ lies within 25196 ».

Cette remarque est reprise dans la lettre & Davenport déja évoquée :

« A convex oval is one such that if P, () are two points within or on it,
P+ Q € 28 (figure explains all)!7. »

Dans cette lettre Mordell illustre son argument avec un dessin (voir la figure 4.3) qui,
selon lui, doit pouvoir se substituer a des explications. Il semble ainsi donner une place
forte & 'interprétation géométrique qui contient 1'idée fondamentale, le principe a la

base du résultat étudié.

Ces considérations sur la convexité aménent Mordell & considérer les ensembles S,
qu’il appelle semi-convexes, qui sont tels que si P et () sont des points de S alors le
point P + @) appartient a kS, ot k est une constante fixée supérieure a 2. Pour de tels

ensembles Mordell énonce le résultat suivant :

106 MORDELL 1935 p.250.
107 ettre de Mordell & Davenport du 25 septembre 1933, DAVENPORT (WL), G 211.
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B

F1G. 4.3 — Dessin de Mordell dans la lettre & Davenport du 25 septembre 1933.

« If S has a centre at O and a volume V > k", it contains within it at least

108

one lattice point in addition to the origin'”°. »

Mordell juge la méthode qu’il emploie pour obtenir ce théoréme par comparaison a ce
que faisait Minkowski :

« The proof is nearly trivial and entirely different from Minkowski’s idea

109

applied to n dimension™. »

Il apparait donc qu’un des enjeux est d’avoir des méthodes qui peuvent étre généralisées
a n’importe quelle dimension. Cela fait écho a la réserve sur la géométrie exprimée plus
tard par Mordell lors de la conférence d’Oslo dans laquelle il pointe la difficulté a saisir
les arguments géométriques en dimension quelconque, réserve qu’il ne semble pas avoir
encore en 1933.

Pour démontrer ce nouveau théoréme, Mordell procéde de maniére assez proche que
pour le premier résultat de cet article. Soit un entier naturel non nul M, le domaine

% S a pour volume % V et si N est le nombre de points du réseau qu’il contient alors

N
VDT e

L,

ou encore,
MV
ko

Lorsque v est strictement plus grand que k™, Mordell en déduit que, pour M suffisam-

N ~

ment grand, N > M". Le méme raisonnement que ci-dessus sur les valeurs prises par

108 MORDELL 1935, p.251.
109 ettre de Mordell & Davenport du 25 septembre 1933, DAVENPORT (WL), G 211.
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des n-uplets d’entiers modulo M donne l'existence de deux points distincts du réseau
P, @ qui sont dans % S et dont les coordonnées sont congruentes modulo M. Ainsi
le point P;MQ est aussi un point du réseau. Si maintenant @’ est le symétrique de
par rapport a O, Q" appartient a % Set P— Q=P+ @, ce qui implique, a cause de
la semi-convexité de S, que % appartient aussi & S. Le résultat est donc démontré
quand V > k", le cas V = k™ s’obtient par un passage a la limite comme dans les

preuves précédentes.

Mordell termine son article par des applications dans lesquelles il utilise son résultat
en prenant des fonctions f particuliéres. Ces applications sont essentiellement les mémes
que celles déja étudiées par Minkowski, mais ’exigence de simplicité de Mordell justifie
qu’il 8’y intéresse a nouveau

110

« My form also simplifies some of the applications'*°. »

Il revient d’abord sur le résultat « bien connu » sur la majoration de n formes linéaires

homogeénes. Il considére donc les formes

et les fonctions
n
fr(zy, 2o, . xy) = Zarsxs , (r=1,...,n).
s=1

Puis il justifie que le volume V' du domaine défini par les inégalités | f,.| < 1, donné par

V:/// drydxy...dx, ,
|frI<1

, ot A est le déterminant des formes &, &, ..., &,. L'inégalité (4.6)

n

1]

implique alors I'existence d’entiers x1, 2o, . .., Z,, non tous nuls, et tels que'!!

est égal a

Za'rsxs < |A|% (T:1,2,...,7’L).
s=1

HOMORDELL 1935 p.251.

H1Mordell a justifié rapidement que son résultat est encore vrai lorsque le domaine S est défini par
plusieurs inégalités du type f,(x1,22,...,2n) < &, ot &, = 0, =1 et chaque f,. vérifient les hypothéses
du théoréme, l'inégalité dans la condition (C) étant remplacée par f.(z1,z2,...,2,) < Ge,.
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Pour la seconde application, Mordell note p un nombre plus grand que 1 et «, 3,7, . ..

des entiers naturels dont la somme est n. Soient ensuite les fonctions

@ n p
P o) ST S
r=1 |s=1
a+p n p
f2 = Z Zarsxs :77{)+77§++7I§ , ete. ..
r=a+l |s=1

ot les coeflicients a;; sont des réels. La condition (A) est vérifiée pour ces fonctions en

prenant § = p et I'inégalité
(X +YP < (IX[+]Y])" < 2278 (X7 + [Y]P) (4.7)

permet de montrer (B) pour k = 2P~ L.

Le volume du domaine défini par f,.(z1,22,...,2,) < 1 (r=1,2,...,n) est alors

la borne de l'inégalité (4.6) s’écrit donc

2kV‘%:‘A|% [F <1+%) F<1+§>..,}

p
r(1+})>

Mordell note A cette borne, le théoréme implique 'existence d’entiers x1, xs, . .., x, non

Sk

tous nuls et qui vérifient

Al [ fal? <A
|fa+1‘p+"'+‘fa+ﬁ‘p < A,
| forpsrl” 4+ [ farpy ) < A, ete. ..

Pour terminer, Mordell remarque que dans le cas ot « = net § =~ =--- =0, il

retrouve le théoréeme de Minkowski qui conduit a une inégalité du type

P

) r(1+g>Z
[P+l < A ——L

p
F(1+§>
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ol les f, sont des formes linéaires homogeénes. Revenant sur la question de la simplicité,
Mordell note que cette derniére inégalité due & Minkowski nécessite la démonstration
de

Al

(A m)P 4+t < [+ [+ 427,

pour &1,..., &0, M, ..., My positifs, qui est plus difficile & obtenir que l'inégalité (4.7)

qu’il utilise ici.

La présentation des résultats dans cet article de Mordell est finalement assez proche
de celle qu’adoptait Minkowski. Mordell énonce un théoréme sur les valeurs prises par
des fonctions quand les variables sont des entiers, ces fonctions sont caractérisées par des
conditions rappelant pour certaines celles des fonctions distances de Minkowski. Nous
observons aussi un va-et-vient entre la formulation que Minkowski jugeait analytique
(en termes de fonctions) et sa traduction géométrique (sur des domaines). Mais alors
que Minkowski donnait des démonstrations qu’il jugeait analytiques ou géométriques,
Mordell propose des preuves qui sont de nature arithmétique. Cependant la discussion
sur la convexité et son illustration par le dessin laisse penser que la géométrie, via
des représentations visuelles, peut parfois aussi jouer un roéle heuristique pour Mordell
comme elle 'était pour Minkowski.

Revenons pour finir avec cet article sur la question de la convexité que Mordell aborde
quand il introduit les ensembles semi-convexes. Rappelons que ces ensembles S sont
tels que si P et () appartiennent a S alors le point P + () est dans kS, ot k > 2 est
une constante. Que cela soit dans son article ou dans la lettre & Davenport, Mordell

insiste sur son interprétation géométrique de la constante k, par exemple :

« My k above is a sort of measure of the concavity or lack of convexity of

an areal'?. »
Cette remarque le conduit a soumettre un probléme qu’il juge intéressant & Davenport :

« It suggests an interesting question what is the largest convex area contai-

113

ned in a concave area, which you may care to pose on to the geometers > ».

Mordell reviendra a cette idée de considérer un domaine convexe particulier dans un
ensemble concave. C’est une des idées importantes qu’il utilisera au début des années

1940 pour démontrer son théoréme sur les formes cubiques binaires.

12 ettre de Mordell & Davenport du 25 septembre 1933. Voir aussi MORDELL 1935 p.251.
13T ettre de Mordell & Davenport du 25 septembre 1933, DAVENPORT (WL), G 211.
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4.1.2.5 Conclusion sur ces premiers travaux de Mordell en géométrie des

nombres

Apreés lavoir mentionnée pour la premiére fois dans un article publié en 1923,
Mordell commence véritablement son travail sur la géométrie des nombres dans la
deuxiéme moitié des années 1920. Entre 1927 et 1937, l'intérét de Mordell pour la
géométrie des nombres se porte presque exclusivement sur les formes linéaires. Plus
particulierement, le probléme qui est au centre de ses préoccupations est la conjecture
dite de Minkowski sur le produit de n formes linéaires non homogénes : existe-t-il des

entiers x1, xo, ..., T, tels que
& 1
H(arlxl + AroT9 + -+ ArnTnp, + Cr) S 2_n 5

r=1

ol les coefficients des formes sont des nombres réels et le déterminant

aiy ... Qip

Ap1 .. Qpp

est égal & 17 L'importance que Mordell accorde & cette conjecture est attestée par le
fait qu’il la place en 1928 parmi les problémes qui influencent le plus les recherches en
théorie des nombres de cette époque!.

Cependant tous les articles sur la géométrie des nombres publiés par Mordell pendant
cette période ne sont pas directement consacrés a la démonstration de cette conjecture.
Dans certains d’entre eux, Mordell revient sur des résultats sur les formes linéaires
homogeénes!!? ; dans d’autres, il redémontre un cas particulier de la conjecture : le cas du
produit de deux formes, déja démontré par Minkowski ou Remak, pour lequel il propose
plusieurs preuves!'!é. Cette facon de travailler s’inscrit en fait dans une méthodologie
de recherche plus générale et tous ces travaux participent en fait de ses tentatives pour
résoudre le cas du produit de n formes non homogénes qui est son véritable objectif.
Pour lui, il est nécessaire de multiplier les preuves dans des cas particuliers du probléme
étudié et de diversifier les approches

« It is important to have different proofs, one sometimes goes much further

117

than another and may also be useful elsewhere''". »

H4MORDELL 1928a.

H5Voir par exemple MORDELL 1929b, 1933.

H6MORDELL 1928a, 1937c.

17ettre de Mordell & Davenport du 6 décembre 1931, DAVENPORT (WL), G 211.
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En plus des conséquences sur d’autres problémes que peut avoir le développement de
nouvelles méthodes, 1'objectif est aussi pour Mordell d’arriver a atteindre le plus de
simplicité possible. Cette notion de simplicité est a prendre avec précaution car elle
est souvent mise en avant dans les textes mathématiques. Il s’agit d’une notion déja
rencontrée a plusieurs reprises et que nous verrons apparaitre encore de nombreuses
fois dans le travail de Mordell. Ce sont toutes ces occurences qui permettent de donner
a son emploi une certaine cohérence. D’abord, pour Mordell, la simplicité ne va pas de

soi, elle se cultive, il est nécessaire de travailler pour I'obtenir

« It is generally after many years that the simple and apparently natural
method is discovered. It is only then that the proofs can be appreciated by
greater numbers, just perhaps as the rough diamond only reveals its beauty

after it has been polished and cut!!®. »

Cette derniére citation nous ameéne a ce qui caractérise pour Mordell la méthode simple,
c’est celle qui doit dévoiler ce qui est a la base d’un résultat, I'idée essentielle qui le
fonde. Ainsi la découverte de la méthode la plus simple doit permettre d’ouvrir des
pistes de recherches pour réussir & démontrer la conjecture de Minkowski dans le cas

général.

Pendant la période 1927-1937, deux principales approches se succedent dans le
travail de Mordell pour étudier cette question du produit des formes linéaires.
Jusqu’en 1930 ce sont des techniques analytiques qui sont privilégiées, Mordell faisant
jouer en particulier un role central a la formule sommatoire de Poisson

« During the later 1920s |...] perhaps the most important theme was the
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Poisson Summation Formula and its applications'*” »

Ces recherches se situent dans la tradition de Siegel qui avait abordé le cas des formes
homogenes par ’analyse, 1'objectif de Mordell étant d’adapter la preuve de Siegel au
cas non homogeéne. Ce courant, que Mordell qualifie d’analytique, se caractérise par I'in-
tervention d’intégrales réelles ou complexes, des séries, des séries de Fourier. La place
fondamentale qu’occupe la formule de Poisson est encore une fois justifiée en partie
par un argument de simplicité. C’est la simplicité des hypothéses sous lesquelles cette
formule est démontrée devant la diversité des applications possibles qui lui donne tout
son intérét. Mordell pense pouvoir, grace a cette formule, réunir autour d’un principe

commun des résultats a priori non connectés de théorie des nombres.

Mordell se détourne finalement assez rapidement de ces travaux sur la formule de

Poisson avec lesquels il n’est pas parvenu a obtenir les résultats attendus, puisque dés

H8MORDELL 1928b p.138.
H9CASSELS 1973 p.502.
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le début des années 1930 il développe des techniques qu’il juge cette fois arithmétiques.
L’arithmétique est alors caractérisée par 1'utilisation d’outils techniques. Parmi ces ou-
tils nous trouvons les congruences, le dénombrement de points & coordonnées enticres
dans un domaine, ce qui aboutit a une application du principe de Dirichlet : il y a M
points dont les coordonnées différent modulo M et M + 1 dans le domaine, donc deux
points ont les mémes coordonnées modulo M. C’est I’application de cette démarche qui
donne une cohérence aux travaux de Mordell de cette période. Pour les articles sur les
formes linéaires, cette méthode repose aussi sur ce qui est appelé le lemme de Smith
par Mordell.

Lors de la conférence d’Oslo en 1936, Mordell fait le lien entre les méthodes analytiques
et les méthodes arithmétiques. Il faut chercher I'idée arithmétique derriére 'analyse et
nous pouvons aussi ajouter derriére la géométrie a cause de sa preuve arithmétique du
théoréme de Minkowski sur les parties convexes. L’arithmétique apparait donc comme
plus fondamentale que les autres domaines. C’est comme si, pour Mordell, analyse et
géométrie ne sont que des moyens techniques pour démontrer des résultats mais qu’ils
cachent la véritable origine de ces théorémes qui est de nature arithmétique. Expliciter
ce noyau arithmétique doit justement permettre de percevoir le résultat dans toute sa
simplicité.

Nous notons ici la différence avec Minkowski qui adossait la géométrie a 'analyse et a
I’arithmétique pour favoriser 'intuition ce qui devait avoir pour effet de simplifier. Avec
Mordell la simplicité n’est pas nécessairement du coté de la géométrie, au contraire il
considére sa preuve arithmétique du théoréme de Minkowski plus simple que la dé-

monstration géométrique de Minkowski.

La géométrie est peu présente dans ces premiers travaux de Mordell alors qu’elle
était une des caractéristiques de la géométrie des nombres de Minkowski. Un article fait
un peu exception, il s’agit de MORDELL 1935 qui n’est pas consacré a la question du
produit de formes linéaires non homogénes et dans lequel une discussion géométrique
intervient. Cette discussion reste cependant assez limitée, la démonstration restant
d’ailleurs arithmétique, et n’est pas suffisamment explicite pour mesurer le point de
vue de Mordell sur la géométrie. Méme s’il utilise un dessin pour communiquer avec
Davenport sur son résultat, il ne développe pas de discours sur I’emploi de représenta-
tions géométriques, ni sur le théme géométrie et intuition trés présent chez Minkowski

ou encore sur la géométrie comme outil de communication.

Nous commencons a percevoir aussi chez Mordell une distinction qui peut sembler
vague en premier lieu mais qui la encore prend de la consistance au fur et & mesure
de son utilisation. Il s’agit de la distinction entre ce que Mordell nomme 1'idée (d’une

démonstration, d’un théoréme) et la partie purement technique de son travail. C’est
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par exemple 1"idée arithmétique” qu’il faut rechercher derriére I'analyse, c¢’est 1™idée”
qui doit étre simplifier au maximum. La preuve peut donc étre jugée géométrique (c’est
le cas dans MORDELL 1937¢) alors que l'idée est arithmétique.

Nous verrons cette distinction apparaitre & nouveau dans les commentaires de Mordell
et nous constaterons aussi que son point de vue sur les rapports entre analyse, arith-

métique et géométrie évolue.

Avec les débuts de Davenport en géométrie des nombres le travail de Mordell sur
ce théme s’est intensifié. Leur collaboration concerne d’abord le probléme de la ma-
joration du produit de trois formes linéaires homogénes, puis le minimum des formes
cubiques binaires. Ces sujets occupent une place importante dans le travail de ces deux

mathématiciens pendant les années 1937-1943.

4.1.3 Harold Davenport (1907-1969)

4.1.3.1 Eléments biographiques sur Davenport

Harold Davenport est né le 30 octobre 1907 prés d’Accrington'?® en Angleterre!?!.
En 1923, Davenport entre a I'université de Manchester comme étudiant, il obtient son
“degree with First Class Honours” in 1927122, C’est & cette période que Davenport
rencontre Mordell pour la premiére fois

123

« I came across Davenport as a first year student at Manchester . »

Davenport suit alors les cours d’analyse complexe de Mordell. En 1927, il se rend a
Cambridge car il a obtenu un Scholarship a Trinity College. Il s’intéresse alors plus par-
ticulierement aux cours de A.S. Besicovitch sur les fonctions quasi-périodiques et les
ensembles de points et de J.E. Littlewood sur les nombres premiers. Il reste par la suite
a Cambridge pour travailler sous la direction de Littlewood qui lui propose des sujets
d’analyse et de théorie des nombres, Davenport se tourne vers la théorie des nombres
et plus particuliéerement la distribution des résidus quadratiques. Dans 'article biogra-
phique qu’il consacre a Davenport, Rogers rapporte que Littlewood voyait la direction
de Davenport comme formelle et que ce dernier travaillait de facon autonome!?*. Notons
cependant que Davenport travaille toute sa carriére sur des thémes mélant arithmétique
et analyse auxquels Littlewood s’est aussi intéressé. Le mathématicien ayant peut étre

davantage influencé Davenport est Mordell. Les deux mathématiciens restent en contact

120 Accrington se situe au nord de Manchester.
2INfORDELL 1971a, p.1.

122ROGERS ET AL. 1971, p.159.

123MORDELL 1971a p.2.

124ROGERS ET AL. 1971, p.160.
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méme aprés le départ de Davenport de Manchester, nous avons en effet une lettre de
Mordell adressée a Davenport datée de 1927. Dans ses lettres a la fin des années 1920,
Mordell donne parfois des conseils de lecture'?®, explique des points mathématiques

126
£,

peu clairs pour Davenpor etc. .. Mordell considére d’ailleurs Davenport comme un

de ses éléves

« This was perhaps the beginning of the new number theory school here
[Cambridge|, now one of the best in the world under the leadership of (the
late) Professor Davenport and Professor Cassels, both of whom I am proud

127. 3

to say were my former students >

En 1930, Mordell fait suivre une proposition de Helmut Hasse & Davenport :

« Dear Davenport,

I have received a letter from Prof. Hasse. [.. .| who says “In order to have fur-
ther occasion for applying and enriching my knowledge (English he means)
I would much like to get a young English fellow at home. It would be very
kind of you, if you could send me one of your student during the next
summer term (April-July). We would invite that student to dwell and eat
with us. He would be obliged to speak English with us at any time we are
together (at breakfast dinner tea lunch etc.); otherwise he would be allo-
wed naturally to speak German with every one else, in order to take some
advantage from his German sojourn for himself. From my point of view it
would be best, if he were student of pure maths out of an advanced course
of you. I would much like to hear from you, whether you know a clever and
handsome fellow for this purpose”.

[...] It seems to me a splendid opportunity for you and I shouldn’t imagine

any difficulty would arise at Trinity with your scholarship?®. »

Au début des années 1930, Davenport fait un séjour & Marbourg au cours duquel il
travaille avec Hasse'?. Par la suite, il garde des contacts avec Hasse pendant de nom-
breuses années malgré les positions politiques prises par ce dernier. Pendant la période
nazie en Allemagne, Davenport comme Mordell continuent & avoir des relations avec
les mathématiciens allemands, méme ceux qu’ils considérent comme proches des nazis.
Mais en méme temps, ils jouent un role actif dans ’accueil de mathématiciens réfugiés
parmi lesquels R. Rado, K.A. Hirsch, R. Courant, A. Walfisz, O. Taussky, H. Kober ou
K. Mahler!.

125 ettre du 8 juillet 1929, DAVENPORT (WL), G 208.

126 ettre du 24 juillet 1929, DAVENPORT (WL), G 208.

2TMoORDELL 1971b p.958.

128 ettre de Mordell & Davenport du 27 novembre 1930, DAVENPORT (WL), G 209.

129Fn fait, Davenport rend visite & Hasse & plusieurs reprises pendant cette période. Entre 1931 et
1934, les lettres qu’il adressent & Mordell sont envoyées alternativement d’Angleterre et d’Allemagne.
MORDELL (St John’s), box 1, folder 4.

130ROGERS ET AL. 1971 p.161.
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En 1937, son Trinity Fellowship, qui avait débuté en 1932, se termine et il est
recruté & Manchester comme assistant par Mordell. D’aprés lui, « he could not have
come to a better place or at a better time, for this was the beginning of the Manchester
school of number theory!!. » II cotoie alors Mahler, Erdés, Heilbronn, Segre, Chao Ko,
Zilinskas ; ainsi que de nombreux visiteurs comme Chabauty, Lehmer ou Rankin.

Par la suite, Davenport est nommé, en octobre 1941, professeur de mathématiques a
I"University College of North Wales, puis Astor Professor of Mathematics a 1I’'University
College de Londres en 1945, il devient directeur du département de mathématiques en
1950. 11 termine sa carriére a Cambridge ot il obtient le Rouse Ball Professorship en
1958.

Davenport a influencé de nombreux étudiants et il est décrit comme trés disponible
pour ces étudiants. Parmi les jeunes mathématiciens qui ont été directement enca-
drés par Davenport ou qui ont assisté a son séminaire nous pouvons par exemple citer
J.H.H. Chalk, F.J. Dyson, C.A. Rogers, K.F. Roth'®?, D.A. Burgess, J.H. Conway, A.
Baker et H.L. Montgomery'®3. Davenport a aussi des contacts avec beaucoup de ma-
thématiciens, ce qui est illustré par le trés grand nombre d’articles qu’il a publié en

collaboration : c’est le cas pour 76 articles, écrits avec 24 auteurs différents.

Parmi les responsabilités administratives et les distinctions qu’il a obtenues, nous
pouvons citer le Adams Prize de I'université de Cambridge en 1941, the Berwick Prize
of the London Mathematical Society en 1951, il devient Fellow of the Royal Society
en 1940 et obtient la Sylvester Medal en 1967 il est aussi président de la London
Mathematical Society entre 1957 et 1959. En 1953, il est a l'initiative de la création
dun nouveau journal Mathematika édité par I'University College de Londres'®*.
Davenport, qui était un gros fumeur, doit se faire enlever un poumon en janvier 1969

et il décede quelques mois plus tard le 9 juin 1969.

4.1.3.2 Les travaux mathématiques de Davenport

Comme Mordell, Davenport est un mathématicien qui a publié de trés nombreux
articles'®, il n’est donc pas ici question d’en donner un compte rendu précis mais
seulement d’en présenter les grandes lignes ainsi que quelques résultats. Un apercu des

travaux de Davenport est proposé par Mordell et par Rogers dans le volume d’Acta

I3IMORDELL 1971a p.2.

132]] travaillait avant avec T. Estermann qui a publié des articles en liaison avec la géométrie des
nombres.

133ROGERS ET AL. 1971, p.162-166.

I34ROGERS ET AL. 1971, p.163-168.

135La liste donnée dans ses oeuvres complétes en compte 198, voir DAVENPORT 1977, p.430-439.
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F1G. 4.4 — Harold Davenport (1907-1969)
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Arithmetica de 1971136, mais nous avons surtout utilisé I'article des Biographical Me-
moirs of Fellows of the Royal Society'®”. Dans cet article, le travail de Davenport
est séparé en trois thémes principaux : la géométrie des nombres et ’approximation
diophantienne (sujet sur lequel nous reviendrons plus tard), la théorie analytique des
nombres et les équations diophantiennes, la théorie multiplicative des nombres.

En théorie analytique des nombres, une partie de son travail se place dans la tradition
d’Hardy et Littlewood, soit parce qu’il améliore certains de leurs résultats, soit parce
qu’il reprend certaines de leurs méthodes. Par exemple, en collaboration avec Heil-
bronn, il démontre que tout entier naturel est la somme de 17 puissances quatriémes,
ce qui est le meilleure résultat possible. En 1937, toujours avec Heilbronn, il montre que
pour k fixé, presque tout entier est la somme d’un nombre premier et d’une puissance
k-iéme. Il consacre aussi plusieurs articles au probléme de Waring. II démontre (avec
Heilbronn) en 1949, que si A1, ..., A5 sont des réels qui ne sont pas tous de méme signe,

alors il existe des entiers xy, ..., x5, non tous nuls et tels que

5
E 2
i=1

Il prouve ce théoréme pour plus de 5 variables et s’intéresse ensuite a sa généralisation

a n’importe quelle forme quadratique indéfinie!38.

< 1.

Les premiers travaux de Davenport publiés portent sur le nombre des résidus qua-

dratiques modulo un nombre premier p, ce qui le conduit a estimer des sommes du

types

”Zl ((n+a1)(n+a2)...(n+ar)) |

p

n=0

ol ai, as, ..., a, sont des entiers distincts modulo p et (%) désigne le symbole de

Legendre. Les théorémes obtenus sont ensuite interprétés dans le cadre de 1’étude du

nombre de solutions de la congruence
v’=Mn+a)(n+a)...(n+a) modp

sous l'influence de Hasse & Marbourg. Il semble que Davenport suscite I'intérét de
Mordell pour ce sujet comme le montre leur correspondence du début des années 1930.
Davenport a aussi étudié les équations diophantiennes du type f(x) = g(y), ou f et g

sont des polyndémes a coefficients entiers. Sur ce théme, il a par exemple montré avec

136Voir MORDELL 1971d; ROGERS 1871.
I3TROGERS ET AL. 1971, p.168-185.
I38ROGERS ET AL. 1971, p.171-176.
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D.J. Lewis que si

f<x>:xn+xnfl+_|_x’ g(y>:ym_'_ymfl_'__i_y7

avec n > m > 1, alors 'équation f(z) = g(y) a au plus un nombre fini de solutions®®.

Davenport a consacré des articles a 1’étude de certaines séries en liaison avec des ques-
tions de théorie des nombres. Par exemple, a nouveau avec Heilbronn, il démontre en

1936, que la fonction

R | 1
Q(s,a):z;m (O<a<1,a7é§)

a une infinité de zéros dans le domaine Re (s) > 1 quand a est rationnel ou transcen-
dant.

4.1.3.3 Les premiers résultats de Davenport en géométrie des nombres

C.A. Rogers, dans ses articles biographiques sur Davenport, indique que ce dernier
commence a s’intéresser a la géométrie des nombres quand il arrive & Manchester en
1937 :

« When Davenport returned to Manchester to join Mordell’s staff, he began
to contribute to the Geometry of Numbers, a subject in which Mordell had

been greatly interested'4?. »

Cette citation souligne aussi le role de I'influence de Mordell dans ce choix de sujet
de recherche, influence que nous illustrerons pour chacun des premiers thémes abordés
par Davenport.

Bien que Mordell et Davenport sont en contact depuis la fin des années 1920, leur
collaboration sur le theme de la géométrie des nombres ne débute réellement qu’en
1937. Leurs travaux entre 1937 et 1943 concernent essentiellement la question du pro-
duit de trois formes linéaires homogénes et I’approche de ce probléme par I'étude des
formes cubiques binaires. Ces deux thémes de recherche seront traités a part car ils
forment une partie importante du travail des deux mathématiciens en géométrie des
nombres. De plus, il semble qu’ils considérent que les théorémes obtenus sur chacun de
ces problémes occupent une place particuliére parmi leurs contributions a la géométrie
des nombres. Ce sont en effet souvent ceux sur lesquels ils insistent le plus lorsqu’ils
rendent compte de leur travail dans ce domaine.

Cependant, nous allons commencer par présenter deux articles de Davenport. Le pre-

139ROGERS ET AL. 1971, p.182.
14OROGERS 1871 p.14.
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mier concerne le produit de n formes linéaires non homogénes et dans le second Da-
venport propose une nouvelle preuve du théoréme des minima successifs de Minkowski.
Ces deux articles sont présentés ici pour des raisons différentes. Celui sur la conjecture
de Minkowski pour les formes linéaires non homogénes montre comment Mordell améne
Davenport a s’intéresser a la géométrie des nombres. Il confirme aussi la place cruciale
de cette question dans leur travail a ce sujet. La preuve du théoréme sur les minima
successifs est un peu isolée de leurs autres recherches de cette époque car la question

abordée n’est pas directement liée aux formes linéaires.

a) Le produit de n formes linéaires non homogénes d’aprés Siegel

Le premier article de Davenport sur la géométrie des nombres est publié en 1937 141,

Comme 'indique lui-méme Davenport, dans une lettre adressée & Mordell du 10 octobre

193742 Siegel démontre que si L1, Lo, ..., L, sont des formes linéaires a coefficients
réels, de déterminant 1 et ¢y, co, .. ., ¢, sont des nombres réels, alors il existe des valeurs
entiéres de x1, xo, ..., x, telles que

H|L2+Cz| < Tn

i=1

oll 7, ne dépend que de n 3. Mordell fait lire cette lettre & Davenport

« with the impertinence of youth I could not resist simplifying Siegel’s proof
and with great generosity Siegel insisted that I should publish my simplified

version instead of his publishing anything!#* ».

Davenport suit donc la suggestion de Siegel en précisant dans son article que sa dé-
monstration reprend les mémes idées que celle de Siegel mais qu’elles sont présentées de
maniére différente. La méthode utilisée par Davenport conduit en plus & ’estimation
suivante pour -, :
n—1 1 ) (n')%l

Yo < N2 F<1+2n 711(%)”
La démonstration est basée sur la notion de minima successifs d’une forme quadratique
binaire définie positive, notion que Davenport commence par rappeler.
Etant donnée Q(x) = Q(z1, ..., z,) une telle forme dont le déterminant est noté D, les
minima successifs de () sont définis de la maniére suivante : S? est le minimum de Q

(atteint pour xi) pour les valeurs entiéres de x non nulles, S7 est le minimum de Q

141D AVENPORT 1937.

142(Crest la date donnée par Davenport, mais dans les archives de Mordell nous avons seulement
retrouvé une lettre de Siegel du 8 octobre 1937 qui correspond au contenu décrit ici par Davenport.

143Rappelons que Minkowski avait conjecturé que vy, = 27"

144D AVENPORT cité dans ROGERS ET AL. 1971 p.168.
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(atteint pour x3) pour les valeurs entiéres de z non nulles et non multiples de i, Sz
est le minimum de @ (atteint pour y3) pour les valeurs entiéres de x non combinaison
linéaire a coefficients entiers de x; et xas, etc. ..
Le théoréme de Minkowski sur les minima successifs s’applique a la fonction +/Q qui
est un cas particulier des fonctions distances étudiées par Minkowski. Ce théoréme
implique X
I't+sn

S

Davenport considére les minima successifs associés a la forme quadratique

VD < 8,S,...8, < 2"

Q=L+L5+ -+ L%,

puis il applique le théoréme de Minkowski a la forme

2 2 12
R——l -2 —n
R I

L’application du théoréme de Minkowski étant au centre de la méthode, Davenport
termine en remarquant que n’importe quelles formes convexes a la place de @) et R

peuvent étre utilisées. Il donne I'exemple de la fonction
maX(|L1|7 |L2|7 R |Ln|)

qui peut étre choisie a la place de la forme quadratique Q 4.

Cette démonstration est insuffisante pour obtenir la conjecture de Minkowski qui

. 1 . . .
donne aussi v, = —. Cependant, Mordell remarquait dans son article sur ce sujet
publié¢ en 193716 que les seuls résultats démontrés sur ce probléme concernaient des
valeurs de n particuliéres. Cet article de Davenport est donc la premiére démonstra-
tion publiée de 'existence d’une constante qui ne dépend que de n et qui majore le

minimum sur les entiers du produit de n formes linéaires non homogénes.

b) Une nouvelle preuve du théoréme sur les minima successifs

Avec le titre de son article Minkowski’s Inequality for the Minima Associated with a
Convexr Body, Davenport place sa démonstration du théoréme sur les minima successifs
dans un cadre géométrique'*”. Il considére K un ouvert convexe centré en 'origine O

dans un espace de dimension n. Il rappelle d’abord le premier théoréme de Minkowski

145 DAVENPORT 1937 p.265.
M6 NORDELL 1937c.
7D AVENPORT 1939a.
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et donne le principe qui est pour lui & la base de toutes les démonstrations de ce
théoréme : un domaine, pas nécessairement convexe, de volume strictement plus grand

que 2" contient deux points distincts x = (21, x9,...,2,) et y = (Y1, Y2, - - ., Yn) tels que
r1=y; (mod2), z3=7y, (mod2), ... , x,=y, (mod?2).

Si K est convexe, le point %(:L’—y) est alors un point du réseau différent de O et dans K.
Cette méthode de démonstration n’est cependant pas celle que donnait Minkowski, nous
avons vu qu’il s’agit en fait d’une idée héritée du travail de Blichfeldt et la formulation
en terme de congruences vient de Mordell.

Davenport utilise ici ce résultat afin de démontrer le théoréme de Minkowski sur les
minima successifs d'une maniére qu’il juge plus simple. Ces minima sont définis de la
fagon suivante : A\; est la borne inférieure des A > 0 tels que AK posséde un point du
réseau P; sur sa frontiére, A\ la borne inférieure des A > 0 tels que Ay K a un point du
réseau P, sur sa frontiére qui n’appartient pas a la droite OP;, A3 la borne inférieure
des A > 0 tels que A3K a un point du réseau Ps sur sa frontiére qui n’est pas dans
OP, Py, etc... D’aprés le théoreme de Minkowski, A1, Aa, ..., A\, vérifient

Ao . M VI(E) < 27,

ou V(K) désigne le volume de K. Davenport considére ensuite les points du réseau
Q1,Qs2,...Q, qui sont tels que Qq,Qo,...,Q; engendrent tous les points du réseau
de OP; ... P;, puis il se raméne au cas ou @1,Qs,...Q, sont les points (1,0,...,0),
(0,1,0,...,0),...,(0,0,...,1). Par définition de \,, tous les points du réseau dans A, K
sont tels que x,, = 0, de méme les points du réseau dans \,,_ K vérifient x,, = x,_1 = 0.
Plus généralement, si x et y appartiennent & \.K avec x; = y; (mod 2) pour tout 4,

alors 1(z — y) est un point du réseau qui est aussi dans A\, K et donc

Tr =Yr y Tr41 = Yr41 y Ipn = Yn -

Davenport raisonne maintenant par l'absurde : si A; ...\, V(K) > 2" il justifie que
pour arriver a une contradiction il suffit de construire des domaines K, K, ..., K,
(non nécessairement convexes) qui vérifient les conditions suivantes

(a) K, C \.K, pour tout r,

(b) siz, y sont dans K, et tels que x; = y; pour tout ¢ = r,r+1,...,n, alors il existe

2,y appartenant a K,_q tels que z —y =2’ — ¢/,

(€) V(Kn) = MAa... MV(K).

Supposons K, Ko, ..., K, donnés, la condition (c¢) implique V(K,,) > 2", ainsi d’aprés

le lemme énoncé au début de son article, il existe deux points z, y distincts de K, dont
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les coordonnées vérifient
r1=1y (mod2), z=y, (mod2), ... , x,=y, (mod?2).

D’aprés (a), $(z — y) est un point du réseau dans A\,K, donc z,, = y,. (b) donne
I'existence de deux points 2/, y' distincts dans K, tels que x — y = 2’ — ¢/, leurs
coordonnées sont donc égales modulo 2 et Davenport réitére le méme procédé jusqu’a
obtenir deux points X, Y distincts qui appartiennent a K; et dont les coordonnées sont
les mémes modulo 2. Ainsi le point %(X —Y) est un point du réseau différent de O et
dans A\ K, ce qui contredit la définition de A;.

La fin de l'article est donc consacrée a la construction par récurrence de Ky, Ko, ...,
K, qui est assez peu détaillée. D’aprés Rogers, cette preuve a été critiquée a cause de

ce manque de détails**®.

4.2 Le produit de trois formes linéaires et les minima

des formes cubiques binaires 1937-1943

La collaboration entre Mordell et Davenport sur la géométrie des nombres com-
mence véritablement a partir de 1937. Si nous regardons le nombre d’articles qu’ils
publient sur ce sujet, nous pouvons voir que ce théme prend une place de plus en plus
importante dans leur travail de la fin des années 1930 au début des années 1940. Da-
venport publie son premier article sur les formes linéaires non homogeénes en 1937 et la
part de ses publications en géométrie des nombres par rapport a toutes ses publications
augmente jusqu’en 1947 ou elle atteint environ 57%14?. Pour Mordell, le théme de la
géomeétrie des nombres représente environ 53% de ses articles entre 1937 et 1943 contre
a peu prés 26% pour la période 1927-1937 étudiée précédemment. Pour les deux mathé-
maticiens, la géométrie des nombres est le sujet d’environ la moitié des articles qu’ils
ont publiés entre 1937 et 1950. D’ailleurs, a posteriori, la période qui va nous intéresser

ici est identifiée comme un moment de grande activité en géométrie des nombres

« In the late 1930s and early 1940s the work of Mordell, Mahler and Daven-

port in this subject [la géométrie des nombres| saw the greatest development

since its initiation by Minkowski®®. »

18R ogers indique que les critiques portaient en particulier sur l'utilisation par Davenport d’une
famille de fonctions vérifiant certaines conditions sans qu’il en démontre ’existence. Rogers juge ces
critiques non justifiées et il propose des fonctions qui conviennent. Voir ROGERS ET AL. 1971, p.169-
170.

14971 s’agit de la part des articles sur la géométrie des nombres entre 1937-1947.

150 CASSELS 1973, p.504.
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Leur collaboration sur la géométrie des nombres pendant ces années 1937-1943
concerne principalement le probléme du produit de trois formes linéaires homogénes
et le minimum des formes cubiques binaires. Les cubiques binaires ont en fait été
introduites par Mordell en liaison avec le produit de trois formes linéaires et constituent
donc une nouvelle approche de la question.

D’aprés Davenport, c’est Mordell qui est & l'origine de son intérét pour le probléme
et lui « a suggéré 1’étude du probléme analogue pour trois formes linéaires & trois
variables'!. »

De plus, les échanges entre les deux mathématiciens sont facilités entre 1937 et 1941 car
ils sont tous les deux a l'université de Manchester. Mordell s’y trouve depuis 1922 52
et il y engage Davenport en tant qu’assistant en 1937, poste que ce dernier occupe
jusqu’en octobre 1941193, D’aprés Rogers, c’est pendant cette période & Manchester
que

« Under Mordell’s influence Davenport acquired a lasting interest in the

54

Geometry of Numbers and in Diophantine Approximation!®. »

Enfin, ces années marquent aussi un changement dans l'attitude de Mordell par
rapport a la géométrie. Elle prend en effet une place importante dans ses travaux
et Iarithmétique n’est plus seule mise en avant dans ses commentaires. En réalité il
semble qu'un réle spécifique pour chacun de ces deux points de vue (arithmétique et
géométrique) se dessine peu a peu. La géométrie permettrait de traiter de problémes
généraux alors que l'arithmétique serait plus adaptée aux cas particuliers. Mais leur
conception de cette séparation des roles entre géométrie et arithmétique est certai-
nement encore plus subtile. La distinction précédente semble s’appliquer seulement a
ce qu'ils désignent « l'idée » de la preuve (que nous avons déja évoquée), notion bien
subjective & saisir qui pourrait étre du coté de 'heuristique, et pas nécessairement a sa
partie technique et aux vérifications formelles. Nous essaierons d’illustrer ce point par

la suite a travers les exemples que nous allons rencontrer.

4.2.1 Le produit de trois formes linéaires homogénes (1937-
1939)

4.2.1.1 Probléme et conjecture

Dans un premier temps, nous allons voir d’oit vient ce probléme du produit de

trois formes linéaires homogeénes de trois variables et de quelle fagon il est abordé par

151 DAVENPORT 1946b.

152 ASSELS 1973 p.501.
153ROGERS ET AL. 1971 p.161.
154ROGERS ET AL. 1971 p.161.
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Davenport qui est le premier a le traiter. Ce sont des considérations sur les nombres
algébriques qui aménent Davenport a la conjecture de son premier résultat qu’il juge
important en géométrie des nombres.

La présentation qui suit s’inspire de deux textes non publiés de Davenport. Le premier
est une conférence en francais faite a Bruxelles en 1946 !5 et le second est un cours
donné a Stanford en 195016, A ces deux occasions il revient sur ses théorémes sur le

produit de trois formes linéaires mais aussi sur la genése de ces résultats.

a) Retour sur un théoréme de Minkowski

Le point de départ du probléme est un résultat de Minkowski sur n formes linéaires
homogeénes. Supposons que &1, o, . . ., &, soient des formes linéaires réelles homogeénes de
n variables 1, xs, ..., x, et de déterminant A. Minkowski appliquait son théoréme sur

les parties convexes symétriques par rapport a ’origine au domaine défini par 'inégalité

‘§1‘++‘§n|§)‘

Le volume de ce domaine est 223°, ainsi en choisissant \ tel que A" = n!|A|, Minkowski

a démontré qu’il existe des entiers xq, xs, ..., T, non tous nuls et qui vérifient
1
[Sul =+ -+ [&n] < (RUA[)n

L’inégalité arithmético-géométrique'® lui permettait alors d’en déduire une inégalité
pour la valeur absolue du produit des formes : il existe des entiers xy, x5, ..., x, non

tous nuls qui vérifient
n!
&16a ... &nl < — |A].
n
Dans la conférence de Bruxelles, Davenport indique que

« Un des problémes suggéré par ce dernier résultat forma le point de départ

de mes recherches dans la géométrie des nombres en 1937158, »

Le probléme auquel Davenport fait allusion dans cette citation est celui de la détermi-
nation de la meilleure constante possible dans l'inégalité précédente lorsque n est un

entier fixé; la borne obtenue par le théoréme de Minkowski n’est en effet pas optimale.

155 DAVENPORT 1946b.

156D AVENPORT 1950b.

157Si y1, ..., yn sont des nombres réels strictement positifs alors {/z1. ..z, < LFtee,
158 DAVENPORT 1946b, p.6.
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b) Le cas du produit de deux formes linéaires

Pour justifier que la constante trouvée par Minkowski n’est pas optimale Davenport
revient sur le cas ot 'entier n est égal a 2.
Pour deux formes linéaires £ = au + bv et n = cu+ dv de déterminant A = ad — bc non
nul, la borne de I'inégalité précédente vaut 2 [A| = 1 |A]. Mais la meilleure constante
pour le produit de deux formes linéaires est connue depuis 1873 et les travaux de
Aleksander Nikolaevich Korkine et Egor Ivanovich Zolotareff!>?. Ils ont démontré qu’il

existe des entiers u et v non tous deux nuls tels que

1
[énl < 7 Al

L’égalité est par exemple obtenue pour les formes

541 —V5+1
2 2
En effet, la valeur absolue du déterminant de ces deux formes est |A| = /5 et leur

produit est égal a

2

En=|u+ = u? +uv —v? .

V5 +1 —V5+1
—v | lu+——w
2 2
Quand les variables sont des entiers non tout deux nuls, le produit £n est aussi un
entier non nul sinon un des facteurs précédents serait égal & 0, ce qui contredirait
I'irrationnalité de v/5. Pour tous les couples d’entiers (u,v), différent de (0,0), il vient

donc

1
onl > 1= = x|l

Ainsi quand D'entier n est fixé, cela conduit & se demander quelle est la meilleure
estimation possible, I'inégalité de Minkowski ne la donnant pas. C’est la recherche que

propose Mordell & Davenport dans le cas ot n est égal a 3.

c) Conjecture pour n =3

Une possibilité pour essayer de déterminer quelle est la meilleure constante possible

est de trouver un moyen de construire un produit de formes linéaires homogénes qui

159Dans sa conférence a Bruxelles (DAVENPORT 1946b p.6), Davenport attribue ce résultat & Andrei
Andreyevich Markoff en 1879 et dans le cours & Stanford a Korkine et Zolotareff en 1873, d’aprés
lui le résultat était méme déja connu (DAVENPORT 1950b p.47). Il se trouve effectivement dans un
article de 1873 de Korkine et Zolotareff sur la réduction des formes quadratiques, voir KORKINE et
ZOLOTAREFF 1873. Pour des informations supplémentaires sur les travaux de Korkine, Zolotareff et
Markoff sur les formes quadratiques voir OZHIGOVA 2001, en particulier les pages 137 a 154.
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ne soit pas trop petit quand les variables sont des entiers. Davenport remarque qu’un

tel procédé est donné, par exemple, par la théorie algébrique des nombres :

« The only general construction we know for getting a set of n linear forms
whose product cannot be too small is by taking one of the linear forms to
have its coefficients in an algebraic number-field of degree n, and the other

linear forms to be the algebraic conjugates®. »

Soit en effet £(f) un corps de nombres algébriques de degré n tel que 6 et ses conjugués
soient tous des nombres réels. Notons aussi (wy,ws,...,w,) une base des entiers du

corps k(6), tous les entiers de ce corps s’écrivent donc sous la forme
§ = uwi + Uswa + + - + Upwy

ou les u; sont des entiers relatifs.

Considérons maintenant les conjugués wl@, o ,wgn) de w; (wgl) = w;) et les n formes
linéaires conjuguées €M €@ € définies par :

€9 = uwl? + upwd + -+

Le déterminant au carré de ces formes linéaires est le discriminant d du corps et nous
avons donc construit n formes linéaires réelles de déterminant ++v/d. Quand les variables
Us, Us, . . ., Uy, prennent des valeurs entiéres non toutes nulles, le produit éM¢R) ¢
est un entier relatif différent de zéro car il s’agit de la norme de l’entier algébrique £,

donc
EWe@ M| > 1.

Le probléme posé au départ est d’établir une inégalité du type!®!

(u)e%ll\%(o)} |€1&2 .. & < KA].
Dans le cas des formes €9, la valeur absolue du déterminant |A| est v/d et le deuxiéme
membre de I'inégalité devient kv/d. Cette inégalité est donc meilleure si on prend pour
d le discriminant minimum d’un corps algébrique de nombres totalement réel de degré
n. De plus, comme |[€M¢@) ¢ > 1, 1a constante k vérifie k > %
Pour un corps de nombres algébriques réel de degré 2 le discriminant minimum est 5 et
% est comme nous 'avons vu la meilleure constante possible. Cette remarque conduit
Davenport a penser que la constante optimale pour n = 3 peut étre obtenue de la méme
maniere. Alors que le théoréme de Minkowski donne comme borne 2 |A| = 2 |A]

avec le procédé précédent elle devient + |A| conformément au fait que le discriminant

160D AVENPORT 1950b p.21.
161Nous notons (u) le n-uplet (ug, ..., uy).
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minimum d’un corps cubique réel est 49. Ainsi le résultat que Davenport va chercher
a démontrer est le suivant : pour &, 7, ( trois formes linéaires réelles et homogénes de

déterminant A, il existe des entiers x1, x2, x3 non tous nuls tels que

1
Encl < =14

Davenport indique dans sa conférence a Bruxelles quelle fiit sa stratégie pour essayer

de démontrer cette conjecture :

« Bien entendu, ceci n’est qu'une suggestion, et quoiqu’elle se soit mon-
trée étre vraie, elle était bien difficile & établir. Mon premier pas était de
découvrir une démonstration du théoréme de Markoff'®? qui suggérait un

processus pour le cas n = 3163, »

Nous retrouvons donc la méme approche méthodologique que chez Mordell. Pour com-
prendre comment généraliser un théoréme, un procédé consiste & multiplier les preuves

dans les cas déja connus.

4.2.1.2 Les théorémes de Davenport de 1937-1938

Les premiers résultats obtenus par Davenport sur le produit de trois formes linéaires

homogénes sont énoncés dans ce paragraphe. Des éléments sur leur démonstration se-
ront donnés dans le paragraphe suivant.
Les recherches de Davenport sur ce sujet commencent a la fin de 'année 1937, certai-
nement entre septembre et novembre 1937. Elles sont présentées dans une série de trois
articles publiés en 1938 et 1939 %% mais les premiéres démonstrations sont élaborées
des 1937 :

« In 1937, I solved this problem, having taken it up at the suggestion of

Professor Mordell*6® ».

Cela est confirmé par les dates de réception des articles par les journaux dans lesquels
ils sont publiés : le premier est recu le 16 décembre 1937, le second le 20 janvier 1938
et le troisiéme le 18 mai 1938. Les premiers théorémes sont donc démontrés assez ra-

pidement par Davenport.

Dans le premier article!®®, Davenport considére trois formes linéaires &, 1, ¢ de trois

variables x, y, z, a coefficients réels et de déterminant 1. Il note aussi M la borne

162(est-a-dire du cas n = 2.

163D AVENPORT 1946b p.7-8.

164D AVENPORT 1938a,b, 1939b.

165 DAVENPORT 1946a, Inaugural Lecture at University College, Londres, 6 juin 1946.
166D AVENPORT 1938a.
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inférieure de |£n(| pour des valeurs entiéres des variables non toutes nulles. Dans cet

article, il démontre que

M <8 [(3+\/§)\/2\/§—1+1}_2 @#) .

Il donne ensuite trois formes pour lesquelles M = % et il indique qu’il a conjecturé
M < % . Méme s’il n’obtient pas ce résultat dans cet article, Davenport semble penser
que la méthode utilisée doit pouvoir étre améliorée car elle permet de démontrer la

meilleure estimation possible dans le cas de deux formes.

La conjecture M < % est démontrée dans Darticle suivant!'6”. En fait, Davenport y

démontre un résultat un peu plus fort : il existe une constante u strictement plus

petite que % telle que M < i ou bien M = %; dans le cas ou M = %, les formes sont
équivalentes a

Ly = M0z + oy +z),

Ly = Xo (¢ + 9y + 02),

Ly = X (yz+0y+ ¢2),
oll A\{ A3 = % et # = 2cos 27”, = 2cos 47”, = 2cos 67” sont les racines de 1’équation

B +t2—2t—1=0.

Enfin, le dernier article traite du cas ot une des formes L; est a coefficients réels et les
deux autres L, L sont a coefficients complexes et conjugués. De plus, le déterminant
des trois formes a un module égal a 1. Davenport montre alors que M < \/% et qu’il

s’agit de la meilleure constante possible, le cas d’égalité ayant lieu pour les formes

L = Xu+v0+wb®),
I = MNu+v0+wd),
Li = p(u+ve+we?),

ofl A est un nombre complexe, p un réel tels que [Ap| = \/% et ¢, 0, 6 sont les racines
de I'équation 2 —t — 1 = 0.
Notons ’analogie avec le cas de trois formes réelles puisque a nouveau
« The problem is related to the cubic field of numerically least negative
discriminant in much the same way as the problem of |zyz| < 1 is related to
the cubic field of least positive discriminant. The cubic field of numerically

least negative discriminant is in fact the field generated by t3—t—1 = 0168, »

167D AVENPORT 1938b.
168D AVENPORT 1950b, p.61.
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4.2.1.3 Comparaison des preuves publiées avec des commentaires non pu-

bliés de Davenport

« Davenport took up the problem of finding the arithmetic minimum of a
product of three real linear forms, studying the problem by geometrical me-
thods and drawing diagrams on triangulated graph paper. When he came
to write up the work (24, 25)1% he eliminated all reference to the geometry
he has used as a guide and presented a severely analytic proof

[...] Shortly after completing his ° % " result, Davenport tackled the cor-
responding result for the product of three linear forms, one real and two
conjugate complex [...] Although the proof is presented in an analytic form,
the geometry from which it was obtained is less well hidden, and indeed
this is one of the very few of Davenport’s papers that actually contains a

diagram!™. »

L’objet de ce paragraphe est de confirmer ces commentaires de Rogers a propos du
travail de Davenport sur le produit de trois formes linéaires. Pour cela, nous allons
comparer les premiers articles qu’il publie sur ce sujet avec des sources non publiées.
Ces sources non publiées sont des notes de cours ou des notes pour des conférences,
des exposés dans lesquelles il donne parfois des morceaux des preuves avec des com-
mentaires sur la démarche employée pour les obtenir. Nous verrons, comme le suggeére
Rogers, que la géométrie occupe une place importante dans la découverte des démons-
trations et des méthodes mais qu’elle disparait presque complétement lors de la phase
de rédaction des travaux publiés. Comme le remarque aussi Rogers, nous constaterons

que le cas complexe laisse cependant apparaitre un peu plus les aspects géométriques.

a) Quelques éléments sur les démonstrations publiées

Dans un premier temps, des éléments sur les démonstrations données par Davenport
dans ses articles sont présentés. L’objectif n’est pas ici d’en exposer tous les détails,

mais davantage d’essayer de faire ressortir le mode d’exposition choisi par Davenport.

Dans le premier article publié sur le produit de trois formes linéaires réelles, Da-

venport démontre que

M <8 [(3+\/§)\/2\/§—1+1}_2 G#) .

169 est-a-dire DAVENPORT 1938a,b.
"OROGERS ET AL. 1971, p.168-169.
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La démonstration repose sur un lemme énoncé au début de Particle!™ :

min {u+v+max<$,|(u_1)1(v_l)| —1)}: % <(3+\/§)\/2\/§—1+1> (< 3,5) .

u,v>0
Pour justifier ce résultat, Davenport introduit la fonction

¢(u,v):u+v+max(%,Ku_l)l(v_l” _1) |

Il suppose d’abord que u > 1 et v > 1, ou bien u < 1 et v <1 et il pose t = %(u+v).

En étudiant ¢(t,t) selon les valeurs de ¢ > 0, il montre que ¢(t,t) > 3,5 et comme

¢(t,t) > ¢(u,v) ,

cela implique que ¢(u,v) > 3,5. Il suppose ensuite que u > 1 > v, puis justifie qu’il
suffit d’étudier ¢ pour des valeurs de u et v qui vérifient

B 1

w  (u—1)(1-0v)

Soit alors p = (u — 1)(1 — v), la relation précédente donne 0 < p < 1 ainsi que

En dérivant par rapport a p, Davenport montre que le minimum pour ¢ est atteint

pZ% (\/ \/5—1+1—\/§)

et que pour cette valeur de p,

pour

<(3+\/§)\/2\/§—1+1) ,

ce qui termine la preuve du lemme.

N | —

¢(u7 U) =

Soient &, 1, ¢ les formes linéaires, si € > 0, il existe des valeurs entiéres des variables

pour lesquelles & = &y, n =1y, = (o et
M < |€omool < M(1 +¢).

TR P nP (P
Posons P = {/|&0m0Co], quitte & prendre les formes %, %, ﬁ, Davenport suppose que

|€0] = |mo| = |¢o| = P. La deuxiéme étape de la preuve consiste alors a appliquer le
théoréme des minima successifs de Minkowski a €| + || + |¢|. Soient 3S; (i = 1,2, 3)

"I DAVENPORT 1938a p.140.
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ces minima, le volume du domaine défini par
€1+ [+ 1¢l <1

8
est G le théoréme de Minkowski implique donc

(351) (352) (353) x — < 8.

| oo

Ce qui permet d’obtenir, d'une part'??,

555 < 2 (4.8)

Ne}

et d’autre part, en utilisant I'inégalité arithmético-géométrique,

M < S}. (4.9)

Avec la définition de M, Davenport montre ensuite que!™

(I&| = P)(|m| = P)(Gl + P) = M,

e S 1] A /1 R (] A1
puis il pose u = 3, v = 5, w = = pour en déduire

1
1+e¢

uwow > et [(u—1)(v—=1D|(w+1) > (4.10)

1+e

En utilisant les inégalités S; < Ss, (4.8) et (4.9), il obtient!™ :

2\z 1
ut+tv+w < 3| = .
9 M2

Finalement, en appliquant le lemme ainsi que (4.10), cela implique :

3 (g) LS ﬂiﬁ)qﬁ(u,v):% ((3+\/§)\/2\@—1+1) ,

M3
ce qui achéve la démonstration.
Davenport termine son article en donnant quelques indications de modifications de sa
méthode permettant d’améliorer sensiblement 1’estimation de M, mais cela ne conduit

pas a la démonstration de la conjecture M < % .

Nous constatons que cette preuve ne fait pas appel a la géométrie. Elle semble ap-

172D AVENPORT 1938a, p.143.
173DAVENPORT 1938a, p.143.
174 DAVENPORT 1938a, p.144.
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paraitre un peu dans le passage ou le théoréme de Minkowski est appliqué. Mais il
s’agit d’une application immédiate de ce théoréme et non de la mise en oeuvre d'un

raisonnement géométrique.

La preuve de la conjecture M < % est 'objet de Darticle suivant'™ dans lequel est
démontré un résultat un peu plus fort (voir le paragraphe 4.2.1.2). La démonstration
n’est pas tres facile & suivre. Aucune notion vraiment difficile n’est utilisée, mais la
présentation des arguments, sous la forme d’une série de 15 lemmes et 2 théorémes,
rend difficile la compréhension de la fonction de chaque étape dans I’ensemble de la
preuve. Nous ne donnons que des morceaux de la preuve, 'objectif étant seulement de
montrer quel est le style de rédaction adopté par Davenport.

Dans ce qui suit Lq, Lo, L3 désignent des formes linéaires a coefficients réels et de
déterminant 1 et 0, ¢, ¥ sont les solutions de 1’équation t3 + 2 — 2t — 1 = 0. € est un
réel strictement positif quelconque et les ¢; sont aussi strictement positifs, ne dépendent
que de ¢ et tendent vers 0 quand ¢ tend vers 0.

Dans la premiére partie de la démonstration, Davenport étudie les ensembles de trois

réels z,y, z qui vérifient les deux conditions suivantes :

o r>Yy>=z,
o VneZ,|n+x)(n+y)(n+z2)>1—c¢.

Des réels de la forme x +m,y +m,z +m ou —x +m, —y + m, —z + m, ol m est un
entier, sont des ensembles dits équivalents & z,y, z. L’objet des trois premiers lemmes
de 'article est de montrer que si x —2z < 3+ é, quitte a prendre un ensemble équivalent,

il est possible de se ramener au cas ol
—2<z< -1, —-1<y<0 l<zx<?2,

un tel ensemble est alors dit normal. Remarquons que les trois racines 6, ¢, ¢ vérifient
également ces inégalités.

Les lemmes 4 a 9 sont tous du méme type : étant donnés un ensemble normal et tel
que x,y, z vérifient des inégalités supplémentaires (le plus souvent qui permettent de

comparer x,y, z avec 0, ¢, 1), Davenport obtient une majoration pour

max(|z — 6|, ly — |, [z —]).

Par exemple, Davenport considére toutes les inégalités entre z,y, z et 0, ¢, 1, il appelle
(A) la condition (x <0, y < ¢, 2 < ); (B) la condition (x <0, y < ¢, 2z > 1) ; ete. ..

75D AVENPORT 1938b.
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jusqu’a (H), les lemmes 5 et 6 sont alors énoncés de la fagon suivante!™ :

« LEMMA 5. In cases (A), (B), (C), (D) we have
max(|3: B 9|7 |y_ ¢|7 ‘Z - 1/1‘) < 2.7

« LEMMA 6. In cases (E), (G) we have (trivially) x — 2z > 0 — .

If:p—z<0—@/)+%,then

1
max(|x—9|, |y_¢|7 |Z_77Z)|) < %+E »

Ces différents lemmes sont démontrés grace a des manipulations techniques d’inégalités,
en faisant appel aux lemmes ou inégalités précédemment démontrés et en utilisant aussi
les relations entre 6, ¢, 1 qui sont les racines d’'un polynéme. Nous reproduisons a titre
d’exemple la preuve du lemme 6 dont nous venons de donner I’énoncé (voir la figure
4.5).

Cette série de lemmes conduit Davenport au lemme 10 qu’il juge le lemme principal

de sa démonstration™ :

« LEMMA 10. If & n, ¢ are real numbers satisfying

(E+n)n+n)(+n) >1—c¢

for every integer n, and also satisfying

(15) E—nl<b0—v—cw, [n—C<0—-9—cyp,
(16) -l <0—b+s,

then there exist numbers &;, 1y, (1, which are either of the form
Si=8+m, m=n+m, G=C+m,
or of the form
Si=—8+m, m=-n+m, G =—-C+m,
where m is a integer such that either

max(|& — 0], |[m — |, |G —¢[) <

or max(|{; — |, m—¢|, [ —0]) < 10 Ten

__'_8117

6 DAVENPORT 1938b p.416 et p.417.
TTDAVENPORT 1938b p.420.
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Proaf. TIn case (E), write 2 =0+4-a, y=4¢—f, z=i—y; then
a9 << g
and, by Lemma 4, 84y <a-+e. Hence a, B, y are all less than -+«
In case (G), write z=0%a, y=d¢+f8, z=yi—y. Then a4y <.

By (5),
(B4-a)(—g—BH —tit+y) > (1—e) B{—f){ —a),
’ = ,S_ 1—e
whenee 1 ["'5":"} fivi) Ir. 7 \]
VTE) T =g
A
(L '[l-l { I:—||f'|_:."
i b
b =gy
Thus A< {:QJ u—:g: ii‘f+{—nﬁ}z
< a-+yTE

This establishes the result.

FiG. 4.5 — Preuve du lemme 6.

Also &1, ny, (q satisfy

Si+m+G > —1—¢;
and, if E+m+G < —142¢

then either

max(|§1—9|, |771_¢|7 |<1_¢|) < &1,
or max(|& — Y|, [m — o], |G —0]) < e1.»

Les deux lemmes suivants permettent d’évaluer le volume du domaine convexe D,

défini par les inégalités

E+n+( <3, [E=n<0—v—cw, In—¢] <09 —cn, |§—<|<9_¢+3—10~
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D’aprés le lemme 12, le volume de D, est strictement plus grand que 56, 1. Ce dernier
résultat est ensuite utilisé pour démontrer le théoréme 1 : Si M > ﬁ , alors M = % .
Nous donnons quelques détails sur la preuve de ce théoréme car nous retrouverons par
la suite certaines des idées qui y sont développées.

Par définition de M, il existe des valeurs Lj, L3, L} des trois formes telles que
M
M < |L7L3L;| < 1%

Comme |LyLyL3| > M, il vient :

Ly Ly L
128 e,
Ly Ly Ly
En posant maintenant £ = %, n = % et ( = %, Davenport obtient un réseau qui
1 2 3

vérifient les propriétés suivantes :

(a) (0,0,0) et (1,1,1) sont des points du réseau.

(b) Pour tous les points du réseau différents de (0,0,0), [{n¢| > 1 — €. Ainsi pour

tous les points du réseau différents de (I,1,1) (ot [ est un entier),

((n+&n+n)n+ > 1-¢,

pour tout n entier.

(c¢) Le déterminant du réseau a pour valeur absolue

1 1
|L1L2L3| M

Le volume de D, est donc strictement plus grand que 56, 1, c’est-a-dire que 8 x 7, 01. Le
théoréme de Minkowski implique I'existence d’un point du réseau dans D; différent de
'origine et qui n’est pas de la forme (I,1,1), ot [ est un entier, a cause de la définition de
D;. Par la condition (b) ci-dessus, ce point du réseau vérifie les hypothéses du lemme

10, Davenport obtient ainsi un point du réseau (&1, 11, 1) tel que

1 1
max(|{—0|, [m—¢l, |G—v|) < 1o Fen ou max(|{ =y, [m—¢l, |G—0]) < 1o ten-

En échangeant les roles de 6, ¢, et en appliquant la méme méthode aux nouveaux

domaines ainsi définis, il démontre aussi qu’il existe des points du réseau (&2, 72, (2) et
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(537 73, §3) tels que

1
max(|&s — ¢, [ — ¥, [¢2 = 0]) < 1—0 +e11 ou max(|& — @, |ne — 0|, —Y|) < — + €11,

max(|& — ¥, (s — 0],[¢G — ¢]) < ——|—511 ou max(|& — 6|, |n3 — |, |G —¢|) < _+511

Davenport justifie ensuite que ces inégalités ne sont pas toutes compatibles entre elles.
En fait, seuls deux cas peuvent se présenter. Soit c¢’est la premiére inégalité pour chaque
point qui est vérifiée, soit c’est la seconde pour les trois points.

Il considére maintenant le point (&4, 74, (4) défini par

=6 +&+E, Na=m +n2+n3, G=GCG+C+ .

Dans les deux cas décrits précédemment, comme 6 + ¢ + 1 = —1, il vient

3
maX(|§4+1|v |774+1|, |C4+1|) < 1—0+3511,

ce qui permet de montrer que

|G+ 1D +1D)(G+1)] < 1-c¢.

Cette derniére inégalité implique &, = ny = (4 = —1 sinon elle contredirait la condition
(b). Ceci permet a Davenport de vérifier les hypothéses de la deuxiéme partie du lemme

10 qui donne alors

& =0, |m—ol, (G =9l
\772—1/1\7 |C2_9|7 < €.
‘§3_’l/}‘7 ‘773—9|7 ‘C?)_(b‘

max |£2 —

S

La méme inégalité en échangeant # et v est aussi vérifiée. Apres ces résultats prélimi-

naires, Davenport passe a la preuve du théoréme 1, il pose d’abord

& m G 0 ¢ ¢
A= S 2 G| s D=1¢ ¢ 6
§3 M3 G v o0 ¢

D’une part, les relations entre #, ¢ et 1) permettent de montrer que D = 7 et d’autre

part les inégalités précédentes impliquent

|A—D|:|A—7| < €14.
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Comme (&1, 11, (1), (&2, 12, C2) et (€3, M3, (3) sont trois points du réseau, A est un multiple

du déterminant du réseau —————. Mais |L]L5L5] < ——, or par un théoréme de

2
Minkowski M < 9 d’ou

2

m > 9(1—¢) > T+ey, poure assez petit.
142 L3

Or 7—e14 < A <7+ e14, Davenport en déduit que

1
A= —v——.
L7 L5 L
Finalement,
' 1 | < " 1—¢ - 1 - 1
« Tx Tx| €14 € * Tk T % s
|L7 L3 L M |L7 L5 L3 M

donc M = % Dans la fin de la démonstration, Davenport étudie en particulier le cas

oﬁM:%.

Cet article commence donc par I’énoncé du théoréme a démontrer. La preuve se
développe ensuite a travers une série de résultats intermédiaires dont la fonction n’est
pas explicitée au moment ou ils sont démontrés. Chacune de ces preuves intermédiaires
renvoie & ce qui a été montré précédemment. A aucun moment dans la preuve Daven-
port ne présente une heuristique pour sa méthode. Comme le remarque Rogers dans
la citation donnée page 269, aucune interprétation géométrique n’est proposée dans
I’article, ni aucune allusion a la possibilité d’'interpréter géométriquement certains pas-
sages de la démonstration. Le seul endroit ot nous rencontrons un peu de vocabulaire
géométrique est celui ot Davenport doit évaluer le volume de D; mais il s’agit d’un
point purement technique de la preuve qui fait davantage intervenir le calcul intégral

que la géométrie.

Nous passons plus rapidement sur le cas ou deux des formes dans le produit sont
a coefficients complexes conjugués, cas dont la premiére démonstration est publiée en
193917, Davenport souligne d’ailleurs lui-méme que la méthode employée est proche

de celle du cas réel :

« The method used in this paper is similar to that of (I)}™ only in so far

as the first steps in the argument are concerned. The subsequent analysis,

178 DAVENPORT 1939b.
179 (est-a-dire la méthode utilisée dans le cas réel.
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180

though elementary, is more complicated and of a different character'”. »

Une autre raison pour laquelle nous ne détaillons pas cette preuve est que nous ne dis-
posons pas de sources non publiées contenant une preuve ou des commentaires précis
a comparer avec ’article publié comme c’est le cas avec le cas des formes réelles.

Nous pouvons cependant observer la différence avec 1’exposition faite pour les formes
réelles relevée par Rogers (page 269). La présentation est en effet davantage géomé-
trique, en particulier contrairement a ce qu’il fait dans le cas réel, Davenport illustre

sa preuve par un dessin (voir la figure 4.6).

F1G. 4.6 — Illustration pour la preuve du cas complexe.

Comme dans 'article précédent, la démonstration du cas complexe comporte plusieurs
lemmes ou théorémes intermédiaires et le vocabulaire employé dans certains d’entre eux

témoigne aussi de la place un peu plus grande accordée a la géométrie, par exemple!®! :

« THEOREM 3. If (xq, o) is any point of @), and 0 < A < %\/ 23, then the

180D AVENPORT 1939b p.99.
1Bl DAVENPORT 1939b p.106.
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straight line
TYo — Yo = A

meets the boundary of E in exactly two points, say (x1,y1), (72,¥2), and

these satisfy the inequality

ly1 —yo| > yo. »
b) Commentaires et preuves non publiés

Les sources utilisées ici sont des notes non publiées de Davenport pour des cours
ou des exposés qui ne sont pas toujours datées mais qui sont trés certainement pour
la plupart des années 1940. Nous utilisons aussi la conférence faite & Bruxelles en 1946

déja mentionnée.

Dans ces notes, Davenport commence par revenir sur le cas du produit de deux
formes linéaires homogénes. La preuve qu’il en donne est celle qui, d’aprées lui, I'a
conduit & la démonstration pour le produit de trois formes. Notons L; = ax + by,
Ly = cx + dy deux formes linéaires & coefficients réels et de déterminant ad — bc = 1,

il existe alors un couple d’entiers (z,y), différent de (0,0), pour lequel

1
Ly L] < —.
| < —
M désigne toujours la borne inférieure de |L;Ls| pour des valeurs entiéres non nulles
des variables.

« First step, very simple and natural, helps with many problems. One might

2

call it the operation of standardising the lattice!®? ».

Ce qui est considéré par Davenport comme la premiére étape a été rencontrée dans les
démonstrations publiées (voir par exemple page 275). Pour tout § strictement positif,

il existe un couple d’entiers (z*, y*), différent de (0,0), tel que
M < |L7Ly| < M+5§.

Davenport écrit |L} L}| = 1&—5 avec 0 < e < §. Le réseau « standardisé » est obtenu en

posant £ = é—% et n = ﬁ—z avec les variables x,y qui parcourent les entiers. Ce réseau,

dont le déterminant est 1—]\7, posséde les propriétés suivantes :

(a) (1,1) est un point du réseau,

(b) pour tous les points du réseau différents de l'origine |{n| > 1 —&.

182D AVENPORT 1946a.
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« This suggests the investigation of the possible places in which lattice

points can lie, by drawing the hyperbolae [(§ — m)(n —m)| <1 —¢&!83.»
De la méme fagon dans la conférence de Bruxelles, Davenport décrit ainsi la suite de
la démonstration :

« Nous nous demandons dans quelles parties du plan peuvent se trouver
des points du réseau. Il y a des points du réseau en les points (0,0), (1,1),

(—=1,—1), ..., et tout autre point du réseau doit satisfaire a

Si l'on trace les aires hyperboliques, d’oti les points du réseau sont exclus,
on trouve qu’elles couvrent toute la bande donnée par |z — y| < V5. Apres
s’en étre rendu compte, ce fait se démontre facilement par I'arithmétique.

Ainsi le rectangle défini par
eyl <2, Jr—yl <5

ne contient aucun point du réseau sauf 0184, »
L’aire du rectangle défini par |€ + 7| < 2 et [€ — 5| < /5 — ¢ est 4(v/5 — ¢), comme il

ne contient pas de point du réseau le théoréme de Minkowski implique

1—¢
M b

4(Vh—¢) < 4
ce qui permet de conclure.

Nous voudrions souligner plusieurs points sur lesquels nous reviendrons. Contraire-
ment aux preuves publiées I'exposé précédent comporte du vocabulaire géométrique.
Ce vocabulaire, qui est employé de maniére assez qualitative (« dans quelles parties du
plan »...), intervient plutét dans la phase de la recherche de la démonstration. C’est
aprés avoir observé une propriété sur le dessin que la preuve arithmétique ou analy-
tique peut étre développée. Ces deux constations sur la démarche de Davenport vont

apparaitre encore plus clairement avec sa présentation du cas du produit de trois formes.

183Notes de cours DAVENPORT (WL), C 179.

184D AVENPORT 1946b. Les notations utilisées dans cette conférence ne sont pas les mémes que celles
des notes de cours reprises auparavant. £,n sont remplacées ici par z,y. De plus, dans cet exposé
Davenport suppose que M est atteinte et € n’apparait donc pas dans les inégalités. Le raisonnement
est cependant identique en remplacant le 1 des inégalités par 1 — € et /5 par /5 —¢.
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Comme dans le cas de deux formes, la premiére étape consiste « standardiser le
réseau ». Davenport pose donc
M Ly Lo Ls
L*L*L*:—7 = -, = -, = — .
| LY L L] 1_: § L n Iz ¢ L
Rappelons que ce réseau est tel que (1,1,1) est un point du réseau et tous les points

du réseau différents de 'origine sont tels que

IEn¢l > 1—¢.

Davenport décrit la méthode employée pour élaborer sa démonstration de la maniére

suivante!'®® :

« In examining the portions of space in which lattice points can lie, it
is sufficient to consider points satisfying 0 < £ + 7+ ¢ < 3/2. When I
first attacked the problem, I drew diagrams on triangulated graph paper

to represent the section of space by the planes ¢ + 7 + ¢ = 0, %, 1,3

2
. These diagrams indicated that lattice points could lie in small regions

surrounding the 12 points (0, ¢, 1) and all permutations, (—6, —¢, —1) and
all permutations, or in certain other regions considerably further away from
the line £ = n = (. It follows that there are no lattice points other than O

in the hexagonal prism
[E+n+¢l <3, max(l§—nl, [n—(IC—¢&) <O—v—er.»

L’évaluation du volume de ce prisme, puis I'application du théoréme de Minkowski

permet & Davenport de montrer que

1

M< — .
6,96 ...

Davenport présente de fagon générale cette méme méthode dans la conférence de

Bruxelles!®S :

« La premiére idée qui se présente, par analogie avec le cas précédent!®7,
est de trouver un domaine convexe qui ne peut contenir un point du réseau
autre que O, a volume aussi grand que possible, et d’y appliquer le théoréme
fondamental de Minkowski. Ceci peut se faire, mais je me suis convaincu
qu’il n’existe pas de tel domaine qui permette de démontrer que ﬁ >7.0n

peut démontrer de cette facon que ﬁ > 6,96... , mais cela ne suffit pas. »

185Notes de cours DAVENPORT (WL), C 179.
186 DAVENPORT 1946b p.9.
187(est-a-dire le cas du produit de deux formes linéaires.
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Il explique ensuite comment il a surmonté cette difficulté!®® :

« Au moyen d’un long raisonnement, & la fois compliqué et délicat, qui em-

ploie plusieurs domaines convexes, j’ai réussi a atteindre le résultat désiré. »

Le raisonnement auquel Davenport fait allusion ici est celui de son article DAVENPORT
1938b dans lequel il applique le théoréeme de Minkowski & plusieurs domaines convexes
afin de déterminer des points du réseau qui vérifient certaines inégalités. Ces inégalités
interprétées géométriquement correspondent a la situation de ces points dans I'espace.
C’est dans ces termes qu’il décrit la modification de sa méthode pour améliorer 1’esti-

mation M < z— et obtenir M < 1 :

« Here the method seemed likely to come to a full stop. But further ins-
pection of the diagrams showed that a lattice point near (6, ¢, ) must also
satisfy £+n+( > —1 (neglecting €). By considering the expanded hexagonal
prisms, typified by

1
E+n+¢ <3, [E=nl <=2, [n—=( <01, \<—£\<0—w+%,

[ was able to establish the existence of lattice points near each of (6, ¢, ),
(¢,1,0), (¥,0,¢) and lying within a distance % in each coordinate from
these. The sum of these three lattice points lies near (—1,—1,—1) and
therefore is (—1, —1, —1). The three points are therefore actually at (6, ¢, 1),
(9,1,0), (¥,0,¢) if we neglect e, and in this way the determinant of the
lattice is > 7, ie M < %

The formal proof of the various points inferred from the diagrams, and the

189

formal presentation of the arguments, is somewhat long and tedious ®”. »

Chaque étape de la démonstration que Davenport décrit dans cette citation a été
rencontrée dans la preuve publiée. En particulier, le prisme dont il est question est le
domaine convexe D; dont le volume est évalué¢ dans 'article (voir page 274). Les points
du réseau situés prés des points (6, ¢, 1), (¢,1,0), (1,0, ¢), & une distance au plus %
sont les points (&1,m1, (1), (&2,19,C2) et (€3,m3,(3). Ces trois points, qui sont obtenus
par Papplication du lemme 10, sont caractérisés par des inégalités du type (voir page

275)
1
maX(|£1 - 9‘7 ‘7]1 - ¢|7 ‘Cl - 7wb|> < 1—0 + €11 -
La somme de ces trois points est (&4, 74, C4), le fait que ce point est proche de (—1, —1, —1)

est traduit par les inégalités (voir page 276)

3
max (& + 1, s + 1, |G +1]) < 10 +3enn et |G+ Dm+1)(G+1)]<1l—¢,

188 DAVENPORT 1946b p.9.
189Notes de cours DAVENPORT (WL), C 179.
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ce qui permet effectivement a Davenport de montrer que (&4, 74, (4) = (—1,—1,—1).

Ainsi, que cela soit dans les démonstrations publiées ou les commentaires faits sur
ces preuves dans d’autres circonstances nous pouvons observer les mémes étapes dans
le raisonnement. Cependant ces étapes ne sont pas décrites dans les mémes termes.
Comme nous avons commencé a le dire les commentaires non publiés sont exprimés
avec un vocabulaire géométrique : « on trace des aires hyperboliques », « the section
of space by the planes », « no lattice points other than O in the hexagonal prism »,
« existence of lattice points near each of... », etc... Il s’agit en particulier de localiser
des points du réseau le plus précisément possible dans des domaines du plan ou de
I'espace. L’équivalent analytique ou arithmétique de cette question est étudié dans les

articles publiés a travers les inégalités vérifiées par certains points du réseau.

Une premiére explication pour ces choix de présentation est a rechercher dans les
objectifs et les fonctions différentes qu’elles doivent remplir. Cela rappelle d’ailleurs ce
qui avait été dit a propos de Minkowski quand il exposait son travail & Hermite ou & un
public moins spécialisé en théorie des nombres. D'un c6té nous trouvons des preuves
publiées dans des journaux spécialisés. Davenport s’adresse alors & des mathématiciens
confirmés en utilisant un langage arithmétique, son objectif est bien entendu de donner
une démonstration achevée et rigoureuse de ses résultats. D'un autre co6té, nous avons
relevé I'utilisation de la géométrie d’abord dans une conférence. Nous ne savons pas
a qui Davenport s’adressait dans cette conférence mais les impératifs de ’exposé oral
(comme par exemple la durée) peuvent peut étre expliquer la différence de présenta-
tion. Un exposé de tous les arguments, avec de nombreux lemmes tres techniques tel
que nous l’avons rencontré dans ses publications et qu’il juge lui méme comme pouvant
étre longue et ennuyeuse, n’est pas adaptée a cette situation de communication orale. Il
préfére alors 'emploi de la géométrie. Mais ce que Davenport utilise alors c¢’est davan-
tage un vocabulaire de nature géométrique avec lequel il décrit de maniere qualitative
les idées directrices de ses démonstrations.

Les extraits que nous avons cités sont aussi issus de notes de cours. A nouveau il s’agit
donc de textes qui doivent occuper une autre fonction que des articles de recherche. Le
souci pédagogique y est plus important et la priorité est donnée a l'expression géomé-
trique des problémes. De plus, dans ses notes de cours, Davenport fait explicitement
référence a des dessins qui représentent les questions étudiées. Malheureusement ces
illustrations n’ont pas été reproduites, mais elles étaient trés certainement utilisées lors
des cours. Ainsi la traduction géométrique des preuves donne & voir a travers le dessin
les problémes posés, elle permet aussi d’en faire une description. Nous retrouvons donc
la dimension visuelle de la géométrie qui est mis en oeuvre avec des objectifs pédago-

giques et de communication.
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Avec cette premiére explication qui consiste a regarder les circonstances différentes pour
lesquelles les discours sont produits, nous pouvons aussi remarquer que les vocabulaires
arithmétique et géométrique sont employés a des moments différents du processus de
recherche.

La géométrie intervient en amont, elle permet de trouver une méthode pour démontrer
le résultat qui est étudié. Il s’agit d’une fonction des dessins que Davenport met parti-
culierement en avant : « When I first attacked the problem, I drew diagrams [...| These
diagrams indicated that lattice points could lie in small regions », « Here the method
seemed likely to come to a full stop. But further inspection of the diagrams showed
that. .. », « The formal proof of the various points inferred from the diagrams. .. ».
Ces considérations géométriques aident donc a déterminer les étapes de la démonstra-
tion et fournissent une heuristique, puis dans un deuxiéme temps l'arithmétique doit
venir valider ce qui a été constaté sur les dessins : « Aprés s’en étre rendu compte, se
fait se démontre facilement par I'arithmétique ». Deux fonctions distinctes semblent
alors se dessiner pour la géométrie et I'arithmétique. La géométrie interviendrait dans
la phase de recherche et découverte de la preuve alors que I'arithmétique doit ensuite
sanctionner par un raisonnement rigoureux ce qui a été observé géométriquement. Elle
apparait ainsi davantage dans la justification du travail de recherche.

Les mémes observations peuvent étre faites & propos d’une preuve plus simple de I'in-

égalite M < % que Davenport publie en 1941.

c) Une simplification de la démonstration pour le produit de trois formes

linéaires a coeflicients réels

Dans un article publié¢ en 1941 ! Davenport propose une preuve qu'il juge plus
simple de l'inégalité M < % et & nouveau dans ses notes de cours il souligne 'origine

géométrique de cette preuve :

« I have since obtained a much simpler proof, which is tantamount to using

the circular cylinder whose axis is £ = n = ( and whose surface passes

191

through the 12 points mentioned above*”". »

Cette nouvelle démonstration repose sur un lemme que Davenport énonce et démontre

au début de son article'? :

« Suppose that 0 < e < 1—10. Let aq, as, as be real numbers such that

2)  ln—a)n—-ag)(n—as)] > 1-¢

190D AVENPORT 1941a.
91Notes de cours DAVENPORT (WL), C 179.
192D AVENPORT 1941a p.98.
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for all integers n. Then
(3) S =(a; —az)?+ (ag — a3)* + (a3 — ay)® > 14— 10¢. »

Comme [’énoncé la preuve de ce lemme est complétement arithmétique (voir la figure
4.7) et aucun commentaire ne fait le lien entre le probléme a résoudre et les quantités
introduites dans le lemme (en particulier S).

La encore ce type de commentaires est a rechercher dans des textes non publiés de
Davenport. En fait I'idée sous-jacente a ce lemme est évoquée dans un extrait que nous
avons déja cité sans qu’elle soit dans un premier temps exploitée par Davenport. Il
remarquait alors que les points du réseau « standardisé » ne peuvent étre que prés des
points dont les coordonnées sont formées & partir des solutions de I’équations ¢ 4 2 —
2t — 1 = 0 (ce qui a été approfondi dans la preuve précédente), ou bien « in certain
other regions considerably further away from the line £ = n = (19 ». Cette remarque
permet de faire le lien entre le théoréme que Davenport souhaite démontré et le lemme
précédent. En effet, si (o, s, a3) est un point du réseau standardisé qui n’est pas de
la forme (k, k, k), il doit vérifier la condition (2) du lemme. Ce lemme porte bien sur
les points du réseau standardisé et Davenport donne précisément le sens de la quantité

S dans sa conférence & Bruxelles!?* :

« nous pouvons nous attendre & ce qu’il n’y aura pas de points du réseau,
sauf ceux de la forme (k,k, k) dans un cylindre infini autour de la ligne
x =y = z. Ceci suggére que nous pourrions peut-étre démontrer quelque

chose concernant le minimum de

(z—y)P?+y—27°+(z—x)?,

expression qui est une mesure de la distance d'un point & la dite ligne!®®

pour tous les points du réseau qui ne sont pas de la forme (k, k, k). »

Le lemme permet donc en fait d’estimer quantitativement 1’éloignement des points du
réseau a la droite x = y = z constaté sur les dessins.
Nous gardons ici les mémes notations qu’auparavant (voir page 281). La premiére étape

de la démonstration consiste & se ramener a
Li =L (u+oqv+ fiw), Ly=Li(u+aw+ fow), L3g=L;(u+ azv+ fw),

ce qui est fait en choisissant une base du réseau dont le premier vecteur est (Lf, L3, L).

A cause de la définition de L3, L3, L3, d’une part pour tout les triplets d’entiers (u, v, w)

193Tes points de la forme (k, k, k), avec k entier, mis & part.
194D AVENPORT 1946b p.9.
195 Cette distance est exactement 1 [(z — )%+ (y — 2)* + (2 — 2)?].
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4.2

Proof. The hypothesis and conclusion are unaffected if ay, ag, ay &re
permuted, or if oy, ay o are replaced hy —ay —ay —ay, OF if ay, ag, 8y
are replaced by a,+k, ag-+k, as-+k, whene k is any integer. By employing
theee three operations successlvely, We can ensure that

ay ey = ag [y —lag] = [a]—[a4, —1 <ay== 0.
Cnse 1, Suppose that [mg]—[ay] =0, s0 that —1<g; < 0. By {2},
|y} |og|jos| =1 —6 ot 1{l— lagj{1—|ag|} = 1—=
Now |mg| (1= mg|) =}, and similarly for o Heqnee
[y} oy +1] 2= {1 —e)?,
whenee o = 3. Thas
8= 24,2 > 18,
Case ®. Suppose that [ag]—[eg]=1 and [a,]—[a,]= 1, 80 that
—2 gy —l <yl O ey < L
Let fin) = (m—a}{n—ag)(n—nz). Then, by (2},
fil)=1=¢, —f0)21—¢ [f(—1)= 1—e, —fl—2)=1—e«
But sinee f{n) iz & cubic polynomial with highest coeflicient 1,
A1) —3(0)+-8f [ — 1) —f(—2) = b
Henee 6 2= 5(1—«), which is imposaible.
Cuse 8. In the remaining case, we have [15] —[ag] = L [ay]—[ea] =2,
s0 that
gy —1, —l<a,<l, l<u.
Lot f(n}=n®tan*—tn—p. By ()
—fily=—l—stitp=1-¢
—fl0)=p=21=¢,
fi—1)=—1+44ti—p 2 1=c.
By adding the third of these to the first, or second, we obtain
t=2—e 840231
We have
8 = 2(Ea,)2—8Z oy ay = 2?46l

Fut { =2—e+£, s4+1=3—2¢+t7, vo that £ =0, g =0, We find
8 = 14— 106+ 2 42(n— EF {1 — a4 (244 £
= 14— 10e.

F1G. 4.7 — Preuve du lemme.
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différent de (0,0, 0)
(w4 oqv + f1w)(u+ agv + fow)(u+ azv + faw)| > 1 —¢ (4.11)

et d’autre part le déterminant des trois formes u+ajv+ Giw, u+asv+Gow, u+azv+FGzw

est égal a . Davenport introduit ensuite la forme quadratique

(v+Br1w—ov—PBow)*+(a v+Brw—asv—Bsw) * +(ov+Baw—azv—Fsw)? = Avi+Bow+Cw?.

Elle peut aussi s’écrire X2+ (X +Y)?2+ Y2 ou X = (a; — ap)v + (81 — Bo)w et

Y = (a2 —az)v+ (B2 — fs)w. Le déterminant des formes X, Y est 1= et le discriminant

de X% + (X +Y)? + Y? est 12, Davenport en déduit le discriminant de la forme

quadratique précédente
1—¢\?
4AC — B* =12 :

I1 utilise ensuite la réduction des formes quadratiques : par une substitution unimodu-

laire, il se raméne a

Bl < A < C,

avec 'expression du discriminant cette inégalité permet de montrer que
2
1—¢
34% < 12 ( ) ,
M

1—c¢
A< 2 .
- M

En prenant v = —1 et w = 0 dans I'inégalité (4.11), nous voyons que a1, as, ag vérifient

c’est-a-dire

I’hypothése du lemme, ainsi
S 1—e¢
A=S5 > 14—10¢, ce qui implique 2 S > 14—-10¢,

finalement M < = . Cette preuve concerne les formes linéaires réelles et Davenport

1
7
remarque

« The above simple proof (real case) seems to have no analogue in the

196

complexe case ™. »

De plus, il considére que

197

« This proof makes no use of the geometry of numbers™" ».

196Notes de cours DAVENPORT (WL), C 179.
197Notes de cours DAVENPORT (WL), C 179.
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Ces deux citations suggeérent que dans ce cadre la géométrie des nombres est plus geé-
nérale car elle permet de démontrer avec les mémes idées les cas réel et complexe, nous
y reviendrons. Mais que signifie ici « géométrie des nombres » pour Davenport ?

Dans la citation précédente, quand il dit que sa preuve n’utilise pas la géométrie des
nombres ce qu’il met en avant c’est que le théoréeme de Minkowski n’intervient pas.
Quand il explique sa démonstration a la conférence de Bruxelles, il fait la méme re-
marque mais de maniére un peu plus précise

« On verra que ce lemme en soi n’a rien a faire avec la géométrie des

198

nombres »

Seul le lemme ne serait pas de la géométrie des nombres et donc la seconde partie de la
preuve en ferait partie. Cette deuxiéme partie utilise la réduction des formes quadra-
tiques binaires, question qui est liée au minimum de ces formes pour des valeurs entiéres
des variables. Or pour Davenport, ce type de probléme appartient a la géométrie des

nombres, cela est confirmé par d’autres définitions qu’il donne de la discipline!®®

« In the geometry of numbers, we treat a general class of problems in number
theory by methods which are suggested by a geometrical interpretation. The
problems in question relate to “Diophantine inequalities”, ie inequalities

which are to be satisfied by integral values of the variables. »

Ainsi D'utilisation de l'expression géométrie des nombres est locale, elle désigne par-
fois un des théorémes de Minkowski sur les convexes ou bien la problématique plus
générale de la résolution d’inégalités diophantiennes. Dans ce cadre, les questions sont
interprétées géométriquement et la géométrie joue le role d'un guide pour I’élaboration

de méthodes permettant de résoudre le probléeme.

4.2.1.4 Une preuve de Mordell pour le produit de deux formes linéaires

homogénes

Mordell ne se contente pas de suggérer la question du produit des formes linéaires
homogeénes & Davenport, il contribue aussi & son étude. En 1938, il publie une nouvelle
preuve pour le produit de deux formes linéaires homogeénes??. Il redémontre que pour
deux formes linéaires homogenes réelles L et M, de déterminant 1, il existe un couple
d’entiers (z,y), différent de (0,0), tel que

1

LM| < — .
| I_\/g

198D AVENPORT 1946b p.10.

199Résumé d’un cours sur la géométrie des nombres, Berkeley, 24 janvier 1948, DAVENPORT (WL),
C 165.

200MORDELL 1938.
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Nous avons dit que de nombreuses démonstrations de ce résultat ont déja été données

201 t202

par exemple par Korkine et Zolotareff, Hurwitz®"" et plus récemment Davenpor

Mordell justifie donc 'intérét d’en proposer une nouvelle preuve

« Though many proofs have been given, it may be worth while giving ano-

203

ther which seems to involve a minimum of calculation®*?. »

Dans cette preuve, Mordell commence par définir les formes U, V par

AO— @)L = U+6V
TO-9)M = U+oV,

oll A est un réel non nul, 20 = 3 + V5 et 20 =3 — V5. Mordell en déduit que

VELM = U?+3UV + V2
= (w®+ 3w+ 1) max(U? V?).

D’aprés le théoréme de Minkowski, il existe des valeurs entiéres et non nulles des
variables pour lesquelles

<1, V] <

Mordell sépare ensuite le cas ou le produit UV est négatif et le cas on U > 0,
V > 0. Par exemple, dans le premier cas, Mordell remarque que si —1 < w < 0
alors |w? 4+ 3w + 1| < 1, ce qui implique le résultat.

Bien qu’il ne fasse pas de commentaire sur ce point, nous pouvons penser que cet ar-
ticle fait partie des recherches de nouvelles approches pour obtenir des résultats sur le
produit de plus de deux formes. Ce travail reste cependant isolé ce qui n’est pas le cas
avec la méthode que Mordell propose par la suite. Cette méthode consiste & étudier le

minimum des formes cubiques binaires.

4.2.2 L’étude du produit de trois formes linéaires homogénes

par les formes cubiques binaires
4.2.2.1 Lien entre les deux problémes

« The present writer well recalls the time, early in 1940, when Mordell told
him that he was working on a most interesting problem in the geometry

of numbers, which would throw new light on recent results concerning the

20lHurwiTz 1891. La preuve de Hurwitz utilise les fractions continues.
202D AVENPORT 1938a.
203MORDELL 1938 p.186.
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204

product of three homogeneous linear forms=**. »

Le probléme intéressant auquel Davenport fait référence est celui du minimum des
formes cubiques binaires pour des valeurs entiéres et non nulles de ses variables. Il
indique que Mordell commence a travailler sur cette question en liaison avec le produit
de trois formes linéaires homogeénes. Explicitons tout de suite le rapport entre ces deux

problémes. Mordell écrit une forme cubique binaire
flx,y) = ax® + by + cay® + dy’

ol a, b, ¢, d sont des nombres réels. La quantité D = 27a?d? — 18abcd — b2 c? + 4ac® + 4db®
est appelée déterminant de la forme f. La forme cubique peut toujours se factoriser en

un produit de trois facteurs linéaires

3

f(x,y) = [ [+ Biy) .
i=1
Quand le déterminant D est strictement négatif, les trois facteurs du produit précé-
dent sont réels, quand il est strictement positif deux de ces facteurs sont a coefficients
complexes et conjugués. Enfin, si D est nul, au moins deux facteurs du produit sont
identiques®®®. L’idée de Mordell pour étudier le minimum du produit de trois formes
linéaires homogénes de trois variables est donc d’abord de se ramener a des formes de
deux variables, puis d'utiliser une estimation du minimum de ces formes. C’est bien de

cette maniére que Davenport décrit la démarche de Mordell dans des notes de cours :

« Essence of Mordell’s result is to establish first an inequality for the mi-
nimum of three linear forms in two variables. Say we put w = 0 in X, Y,
Z

XY Z = (a11u + aqav) (a1t + agev)(asiu + asv) = f(u,v)

206

is a binary cubic forms=" ».

Ainsi déterminer une borne pour le minimum des formes cubiques binaires doit donner
une borne pour le produit de trois formes de deux variables et par suite permettre de

retrouver une estimation pour le produit de trois formes de trois variables.

4.2.2.2 Enoncés des principaux résultats

Mordell commence & travailler sur le minimum des formes cubiques binaires en

1940. Cependant 'article qui correspond & ses premiéres recherches sur cette question

204DAVENPORT 1964 p.9.

205Pour quelques détails supplémentaires voir par exemple CASSELS 1959 p.51.
206paveNPoORT (WL), C 180.
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n’est publi¢ qu’en 1945 dans les Proceedings of the London Mathematical Society®'.

Une courte note dans laquelle les théorémes sont énoncés sans démonstration est quand
méme publiée dés 1941 dans le Journal of the London mathematical society®*®.

Nous notons toujours D le déterminant de la forme cubique binaire a coefficients réels
f(z,y) = ax® + ba’y + coy® + dy® .

Pour D différent de 0, Mordell aborde le probléme du point de vue de la détermination

d’une constante [ telle qu’il existe des entiers x, y qui ne sont pas nuls tous les deux et

F(r.)] < (‘lﬂ‘)

Mordell indique que les formes cubiques binaires avaient déja été étudiées au XIX®
siécle par Ferdinand Gotthold Max Eisenstein, Peter Friedrich Arndt et Charles Her-

mite??. 11 décrit leurs contributions a cette théorie en disant par exemple que Arndt

qui vérifient

donna une valeur de [ pour D strictement négatif en 1857 219 qui fut retrouvée en 1859
par Hermite. Ce dernier détermina aussi une valeur de [ qui convient dans le cas ou D
est strictement positif. Cependant le cadre théorique dans lequel ces mathématiciens
du XIX¢ siécle travaillent sur ce probléme n’est pas la question de la détermination du
minimum mais celle plus générale de la réduction des formes cubiques binaires. Leurs
résultats ne sont donc pas exprimés comme le fait Mordell?!!. Dans ce contexte, Arndt
est celui qui a proposé une réduction pour les formes de déterminant strictement né-
gatif alors qu'Hermite a résolu la question de la réduction pour celles de déterminant

strictement positif.

Pour les formes dont le déterminant D est strictement négatif, Mordell démontre le
théoréme 1 : il existe des valeurs entiéres des variables x et y, non toutes deux nulles,

telles que
D
T < 4=
[f(z,9)] =\ g
Le cas d’égalité se présente si et seulement si D = —49¢? et e7! f(z,y) est équivalente

a 2% + 2%y — 22y? — 3, e étant une constante quelconque?'?.

Dans le théoréme 2 ou le déterminant est strictement positif, I'inégalité précédente

20"MORDELL 1945a.

208 MORDELL 1941b.

209MORDELL 1945a p.198.

2100\ordell indique 1958.

2L Pour les travaux d’Eisenstein, Arndt et Hermite sur les formes cubiques binaires voir par exemple
EISENSTEIN 1844; ARNDT 1851b,a, 1852, 1857, 1858; HERMITE 1851, 1859.

212Deux formes cubiques binaires sont équivalentes si elles sont liées par une substitution linéaire a
coeflicients entiers et de déterminant +1.
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devient
1/ | D]
x, < A\ =
feyl < {5
avec cette fois égalité si et seulement si D = 23¢* et e7!f(z,y) est équivalente a
3 — xy? — 5.

Mordell traite aussi le cas ou D est nul (jugé presque trivial) qui utilise le théoréme de
Minkowski sur la majoration simultanée de deux formes linéaires. Dans cette situation
la cubique f prend des valeurs arbitrairement petites pour des valeurs entiéres et non

nulles de ses variables?!? :

« THEOREM 3. If D = 0 then, for arbitrary ¢ > 0, integer values of x,y,

not both zero, exist such that

lf(zy)] < e.»

Aprés ces théorémes principaux, Mordell donne différents énoncés qui leur sont équi-
valents, en particulier les théorémes 3 et 4 qui nous intéressent davantage ici car c’est
sous cette forme que les résultats sont démontrés.

Considérons le réseau £ d’origine O qui est ’ensemble des couples (z,y) tels que

r=af+pPn et y=~L+on,

ol «, 3,7, sont des nombres réels qui vérifient ad — Gy = 1 et £, parcourent les
entiers.
Le théoréme 3, équivalent au théoréme 1, donne alors l'existence d'un point de L,

différent de 'origine O, tel que
l9(z,y)| = |2° + 2%y — 209> —y°| < 1,

avec égalité si et seulement si £ est équivalent soit au réseau

soit & un des trois réseaux défini par

(0 —d)z=00"C+yn,  (0—¢)y=—0°¢—0¢7n,

ou 0, ¢, 1 sont les solutions de 'équation 3 — ¢ — 2t + 1 = 0.

Le théoréme 4 est le méme type d’énoncé mais cette fois équivalent au théoréme 2 : il

213MORDELL 1945a p.200.
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existe un point (z,y) du réseau L, différent de l'origine O, tel que

\h(z,y)| =|2° —zy* —y®| < 1,

avec égalité si et seulement si £ est équivalent au réseau

ou bien au réseau défini par
3¢° —ax=—-6—-(0+3)n, (30°-1)y=-30+1,

ol 6 est I'unique solution réelle de 1'équation 3 — ¢ — 1 = 0.

L’équivalence entre les théoréemes 1 et 3, et les théorémes 2 et 4 est une conséquence
d’un résultat sur les cubiques binaires. En effet, deux formes cubiques binaires quel-
conques de déterminant strictement négatif peuvent étre déduites 'une de 'autre par
une substitution linéaire & coefficients réels. Ainsi pour n’importe quelle cubique binaire

de déterminant strictement négatif il est possible de se ramener a
g(w,y) = a® +a?y — 20y* — y°

qui est de déterminant —49. De la méme maniére, une cubique binaire de déterminant

strictement positif peut étre ramenée a la cubique
h(z,y) =2° —ay® —y°

de déterminant 23.
D’autres résultats équivalents sont énoncés par Mordell, parmi eux le théoréme 5 est
celui qui permet de faire le rapprochement avec le minimum du produit de formes
linéaires?!4 :

« THEOREM 5. Let p, q, 7, p/, ¢/, 7" be six numbers, which in case (I)

are all real, while in case (II) p, p’ are real and ¢, r are conjugate complex

numbers, as are also ¢/, r’. Suppose also that
[T(@ —dr)#0.

Let K = =, 1/4/(23) in the respective cases. Then integer values of z, v,

1
7

2I4MORDELL 1945a p.201.
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not both zero, exist such that

1
2

e+ 2'9) (a2 + dy) o+ ') < |K TJar=a)| >
Nous pouvons déja noter une différence avec les travaux précédents de Davenport. En
effet, avec ces énoncés nous voyons que la géométrie ne disparait pas complétement
des publications de Mordell et ¢’est méme sous la forme géométrique que les théorémes

principaux sont démontrés.

4.2.2.3 Conséquence sur le produit de trois formes linéaires homogénes

Comme nous 'avons déja remarqué, le travail de Mordell sur le minimum des cu-
biques binaires a été initialement suscité par son intérét pour le probléme du produit
de trois formes linéaires homogeénes. Son théoréme sur les cubiques lui permet effecti-
vement de donner une nouvelle démonstration des résultats qu’a obtenus Davenport
sur ce sujet. Cette preuve fait 'objet d’un article publié en 1942 mais dont la rédaction
date de 1940 a la suite de son premier article sur le minimum des cubiques®'®. Cela
confirme I'imbrication de ces deux problémes dans les recherches de Mordell au début

des années 1940.

Mordell note les trois formes linéaires homogénes
L, = a,x; + byxo + ¢, 23 (r=1,2,3).

Ces formes peuvent avoir des coefficients réels (cas (I)) ou deux d’entre elles peuvent
avoir des coefficients complexes et conjugués (cas (II)). Leur déterminant d est alors
1 ou 7 selon le cas étudié. Mordell suppose aussi qu’aucune des formes Lq, Ly, L3 ne
s’annule pour des valeurs entiéres de ses variables excepté pour xy = x9 = x3 = 0. 1l
rappelle alors le théoreme de Davenport : pour tout € strictement positif, il existe des

entiers x1, xo, x3, non tous nuls, tels que

1
|Ly Ly Ls| < ?Jr)f,

ott K =7 dans le cas (I) et K = /23 dans le cas (II). Mordell caractérise ensuite les
formes réalisant 1’égalité. A nouveau, Mordell justifie I'intérét de la nouvelle preuve de
ce résultat par sa simplicité

« The ideas involved in Davenport’s work are simple, but the details require

considerable calculation. The theorems are of such a nature as to suggest

215 M ORDELL 1942.
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strongly the possibility of a simpler proof.
[...] This led further to the method of the present paper, which gives a
demonstration of Theorem 1 [celui de Davenport| as short and simple as

could be desired?!6. »

Nous revoyons aussi apparaitre la distinction entre I'idée de la preuve et la rédaction
formelle des arguments. Selon Mordell, ce qui est en question dans la preuve de Daven-
port n’est pas la simplicité de I'idée qui est issue de considérations géométriques mais
la difficulté des vérifications a faire dans la rédaction rigoureuse de la démonstration.

Cependant comme Mordell le remarque lui-méme

« My proof depends, however, upon a theorem (7) (the proof of which is not
short), naturally suggesting itself in my method, which is more fundamental
than Theorem 1 and which had surprisingly escaped the notice of other

217

investigators for more than eighty years®'‘. »

Effectivement, dans cet article, Mordell admet et utilise son théoréme sur les formes

cubiques binaires qui conduit & une inégalité du type

) < ('[3')

et dont la simplification de la démonstration fait aussi I'objet de nombreux échanges

entre les deux mathématiciens.

La premiére étape de la preuve de Mordell consiste & écrire la cubique f sous sa

forme factorisée

fx,y) = (px +p'y)(qx + ¢'y) (re +1'y) .

Les coefficients p,p', q, ¢, r, " sont réels dans le cas (I) alors que ¢, et ¢, 7’ sont com-

plexes et conjugués dans le cas (II). De plus, le produit

T@ a7

est différent de 0, ce qui assure que tous les facteurs dans f sont distincts. Le détermi-

nant D de f s’exprime alors en fonction de p, p’, q,¢’,r,r" de la fagon suivante

D = [(gr' — ¢'r)(rp' — 7'p)(pd — P'q)]*.

216 N[ORDELL 1942 p.109.
2I"MORDELL 1942 p.109. Les 80 ans auxquels Mordell fait référence renvoient aux articles de Arndt
et Hermite publiés & la fin des années 1850.
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Le théoreme de Mordell sur les cubiques peut donc s’écrire

N

_1
[(pz + p'y)(qz + ¢'y)(re +r'y)| < K72 |(gr" = ¢'r)(rp" = r'p)(pd’ — P'q)|2 ,

ou z,y sont toujours des entiers non tous deux nuls.

Comme le produit P = |L;LyL3| dépend des trois variables z1, o, x3 et que l'inégalité
précédente concerne un produit de formes linéaires de deux variables, I’étape suivante
consiste a se ramener de 3 a 2 variables. Mordell effectue pour cela le changement de

variables?!®

x1:§7 T2 =ymn, T3 = 21,

ou &,m,y, z sont des entiers avec y et z qui sont soit nuls tous les deux, soit premiers

entre eux. Cela implique que

3
P =] la: + (bay + co2)n

s=1

et P est vu comme une forme cubique binaire en les variables £ et 7. Pour le déterminant

a b o
a9 bg (&) )
az by c3

Mordell note par exemple B; le cofacteur pour lequel la i-¢me ligne et la colonne des b;

ont été supprimées. La valeur absolue du déterminant de la forme cubique P est alors

3

H(Ciy — Biz)?.

i=1

Si y, z sont tels que le produit précédent ne s’annule pas (ce cas est traité a part par
Mordell), le théoréme sur les cubiques implique 'existence d’un couple d’entiers (£, n)

non nul tel que

o

P < K2
i=1
3
Mais H(Czy — B,z) est aussi une forme cubique binaire en y, z, si ce n’est pas une
i=1
cubique critique (c¢’est-a-dire conduisant au cas d’égalité dans le théoréme) en lui ap-

218\MORDELL 1942 p.110.
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pliquant le théoréme, Mordell obtient pour y, z des entiers non tous deux nuls

3
H |Cz’y — BZZ| < K_% |(BQCg — BgCQ) (Bgcl — Bng) (3102 — BQCl)|% .

i=1

Comme le déterminant d des formes linéaires Ly, Lo, L3 est égal a 1 ou 4, il vient que

|(BQCg — BgCQ) (B;»,C'l — Blcg) (Blcg — BQCl)| = |a1a2a3| s

ce qui permet de montrer finalement que?'®

1
KP < |Ka1a2a3 1,

Mordell considére des entiers premiers entre eux xi, To, 3 qui vérifient P > %, quitte
a faire une substitution, il suppose x; = 1, x5 = x3 = 0 et donc P = |ajasas|. Cela lui

permet de construire une suite d’entiers x1, x9, x3 tels que
|KL1L2L3‘ < 1"—5,

pour tout e strictement positif, ce qui implique le résultat. L’article continue avec

I’étude du cas d’égalité.

Pour Mordell, sa démonstration et celle de Davenport sont de natures différentes :

« The proof actually constructs, by means of a “descente infinie”, lattice
points satisfying the inequality (2), whereas Davenport’s results are in the

220

nature of existence theorems »

Cette remarque doit cependant étre précisée. En effet, si la fin de la preuve donne un

221y, qui satisfont

« process [which| is an actual construction of sets of integers 1, s, 3
I'inégalité du théoréeme de Davenport, le début utilise le théoréme de Mordell sur les
formes cubiques binaires qui est un théoréme d’existence. En particulier, la démonstra-
tion n’est pas effective. D’autre part, la méthode apparait différente d’une preuve par
descente infinie. Méme si une suite de solutions est construite, il ne s’agit pas d’une
suite de solutions de plus en plus petites qui conduirait a utiliser qu’il n’y a pas de

suite strictement décroissante d’entiers naturels??2.

Mordell considére le théoréme sur le minimum des cubiques binaires comme plus

fondamental que celui sur le produit de trois formes linéaires (voir la citation de Mor-

219N[ORDELL 1942 p.111.
220MORDELL 1942 p.109.
221 MORDELL 1942 p.111-112.
222Voir GOLDSTEIN 1993.
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dell page 295). Une premiére raison est bien entendu que le résultat sur les formes
linéaires est une conséquence de celui sur les formes cubiques. Mais comme le montre
la démonstration précédente, c¢’est aussi surtout parce que ’approche par les formes
cubiques binaires permet d’unifier le cas réel et le cas complexe du théoréme de Da-
venport. En effet, méme si les preuves des deux cas avec la méthode de Davenport
relévent des mémes grandes idées, elles font I'objet de deux publications différentes car
les détails techniques sont différents et plus compliqués dans le cas complexe. D’ailleurs
Davenport regrettait que la simplification de la preuve dans le cas réel que nous avons
évoquée n’ait pas d’analogue dans le cas complexe (voir la citation de Davenport page

287). Cet aspect de la méthode de Mordell est mis en avant par Davenport

« Mordell’s method deduces the result very simply in both cases from a
similar result for a binary cubic form, which however requires itself a proof

which is not as simple as one might wish??3. »

Ainsi Mordell déduit de maniére simple le théoréme de Davenport de son théoréme sur
les cubiques, une unique démonstration est nécessaire pour les cas réel et complexe et
donc la question de la simplicité va se déplacer sur le théoréme a propos du minimum
des formes cubiques. Nous verrons qu’effectivement Mordell et Davenport travaillent a
obtenir la preuve la plus simple possible pour le théoréme sur les formes cubiques.

Un autre probléeme auquel Mordell fait allusion a la fin de son article en proposant
quelques conjectures et qui va faire 'objet de recherches de la part de Mordell et Da-

24 11 s’agit de savoir si un résultat analogue pour

venport est celui des « minima isolés
le minimum du produit de formes linéaires ou des formes cubiques peut étre trouvé

quand les formes conduisant au cas d’égalité sont exclues.

4.2.2.4 La méthode de Mordell pour le théoréme sur les formes cubiques

binaires

Entre 1941 et 1945, Mordell publie cinq articles consacrés aux théorémes sur les
formes cubiques binaires. L’ordre des publications ne suit cependant pas la chronologie
du travail de Mordell sur cette question. Dans le premier de ces articles, Mordell énonce
une série de résultats sans démonstration®?”. La premiére démonstration du théoréme
principal obtenue par Mordell dés 1940 se trouve dans un article publié en 1945226, En

1943, deux articles proposent des preuves qu’il juge plus simples de son théoréme?®?7,

223Notes de cours DAVENPORT (WL), C 179.

224MoRDELL 1971d p.10.

225 MORDELL 1941b.

226 MORDELL 1945a.

22TLe cas ot le déterminant est strictement positif dans MORDELL 1943a et strictement négatif dans
MORDELL 1943b.
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démonstrations & nouveau simplifiées en 1944 pour les formes de déterminant stricte-

ment positif?28.

a) Résumé de la méthode de Mordell

A Bruxelles en 1946, Davenport résume de la maniére suivante la méthode em-
ployée par Mordell pour démontrer les théorémes sur le minimum des formes cubiques

binaires :

« M. Mordell a interprété le probléme dans un plan obtenu & partir du
plan wu, v par une transformation linéaire, qui réduit la forme cubique [4]
une forme spéciale, dépendant du signe de D. Le probléme consiste alors a
démontrer que si un réseau n’a d’autre point que O dans un domaine fixe,
son déterminant a une certaine borne inférieure. Le domaine est limité par
une courbe cubique et son image par rapport a O, et s’étend a 'infini. Par
diverses applications du théoréme fondamental de Minkowski, M. Mordell
a trouvé plusieurs petites régions, dont chacune doit contenir un point du
réseau. A la suite de combinaisons de ces points, et aprés un raisonnement
difficile et détaillé, il est arrivé a une contradiction si le déterminant du

4229

réseau ne satisfait pas a son inégalité==”. »

Mordell décrit lui aussi les grandes étapes de sa méthode a différentes occasions. Nous
suivons maintenant les présentations qu’il fait dans un article général sur la théorie des
nombres?® publié en 1946, un article sur la géométrie des nombres issu d’'un exposé

5 231

au congres canadien de mathématiques en 194 et enfin d’un article reprenant un

exposé donné en 1948 sur la question des formes cubiques?*?.

Comme le remarque Davenport, pour une forme cubique binaire
f(z,y) = ax® + ba*y + coy® + dy*

la premiére étape de la méthode de Mordell est de se ramener a I’étude de formes

cubiques particuliéres par une substitution linéaire sur les variables. Notons maintenant

D = 18abcd — 27a*d? + b*? — 4ac® — 4db®

228 M[ORDELL 1944a.

229D AVENPORT 1946b p.12-13.
230MORDELL 1946b.

231 MORDELL 1946a.
232MORDELL 1949.
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le discriminant?®3 de la cubique f. Pour D strictement négatif, Mordell écrit
f(XY) = g(aX + Y, 7 X 4 6Y) ,

ou a, 3, 7, ¢ sont des réels tels que ad — By = 1 et g(z,y) = 23 — zy? — y> est de

discriminant —23. De la méme fagon, si D est strictement positif,
f(X)Y) =h(aX + Y, v X +6Y),

ou h(z,y) = 23 + 2%y — 2zy* — 3® est de discriminant 49. Quand X, Y décrivent les
entiers, les points
r=aX+ Y, y=~vX+0Y

définissent un réseau de déterminant 1 et d’origine notée O. Mordell se raméne ainsi
a démontrer que tout réseau de déterminant 1 posséde un point différent de O dans

chacun des domaines définis par les inégalités

lg(z,y)| <1,  |h(z,y)| < 1.

En 1949, Mordell caractérise cette étape de la preuve en indiquant

« The problem of the minimum of a binary cubic can be reduced to a

question in the geometry of numbers?*. »

Cette fois 'expression géométrie des nombres désigne la formulation géométrique, en
termes de la recherche de points d’un réseau dans un domaine, du probléme arithmé-
tique de la détermination du minimum des formes cubiques binaires.

Dans la suite de la preuve, Mordell recherche des points du réseau. Son idée est d’uti-
liser le théoréme de Minkowski, cependant les domaines |g(x,y)| < 1 et |h(z,y)| < 1,
que nous notons R, ne sont pas convexes. Il détermine donc des domaines convexes
d’aire assez grande et qui sont presque inclus dans R afin d’obtenir des points du ré-
seau. Par exemple, quand le domaine R est donné par g(z,y), seulement deux parties
du carré (symétriques par rapport & O) |z| < 1, |y| < 1 ne sont pas dans R, or par
le théoréme de Minkowski ce carré contient un point du réseau. Si ce point est aussi
dans R le théoréeme est démontré, sinon il doit étre dans les parties du carré qui ne
sont pas dans R. Mordell applique éventuellement le méme raisonnement a d’autres
parallélogrammes pour trouver d’autres points du réseau.

Dans l'étape suivante, Mordell continue & déterminer des points du réseau mais cette
fois en exploitant les symétries du domaine R. Ce domaine est en effet invariant par

une substitution linéaire de déterminant 1 et I'image des parallélogrammes précédents

233(’est-a-dire 'opposé du déterminant.
Z34MORDELL 1949 p.72.
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par cette transformation permet de trouver de nouveaux points du réseau.

Enfin la derniére partie de la démonstration consiste a déterminer une combinaison
linéaire des points du réseau trouvés afin d’en construire un nouveau qui est dans R,
la vérification de 'appartenance de ce point a R est assez technique et demande pas
mal de calculs

« In considering linear combinations of any of the points, a detailed nume-

rical knowledge of the regions involved is necessary®. »

Mordell résume la fin de sa preuve de la maniére suivante

« After many efforts, I succeeded in finding smaller and smaller regions ex-
ternal to R and containing points of A?3¢, and finally was able to show that
a linear combination of these points led to a point [of] A other than O and

lying in R %", »

b) Les premiéres preuves de Mordell

Plusieurs articles de Mordell concernent la démonstration des résultats sur les
formes cubiques binaires : MORDELL 1945a, MORDELL 1943a et MORDELL 1943b.
Dans les articles publiés en 1943, il propose des preuves qu’il juge plus simples que
dans son article publi¢ en 1945238 des cas ot le déterminant des formes cubiques est
strictement positif ou strictement négatif. Cependant toutes ces démonstrations suivent
la démarche décrite dans le paragraphe précédent et les simplifications portent essentiel-
lement sur les parties les plus calculatoires des preuves (en particulier dans la derniére
étape de la preuve). Par ailleurs, tout ce qui est présenté dans U'article de 1945 n’est pas
repris dans les autres publications. Mordell y énonce plusieurs théorémes qu’il présente

comme étant d’autres formes possibles de ses résultats, par exemple??

« THEOREM 6. A point of £ not O exists such that

1
) < /5

Mordell démontre d’abord & part le cas ot le déterminant de la forme cubique

f(z,y) = ax® + ba’y + cay® + cy®

235MORDELL 1946a p.274.

236Mordell note A le réseau.

Z"MORDELL 1946a p.274.

238Rappelons que cet article a été rédigé avant ceux de 1943.
239MORDELL 1945a p.201.

301



CHAPITRE 4 4.2

est de déterminant nul. Dans cette situation, le résultat & montrer est que pour tout

e > 0, il existe des entiers x,y, non tous deux nuls tels que

[f(z,y)] < e

La méthode n’a aucun rapport avec celle employée pour les formes cubiques de déter-

minant non nul. Lorsque le déterminant est égal a 0, la forme f peut s’écrire

flay)=a(x+py) (= +qy),

avec a, p, q des nombres réels. Mordell juge le résultat évident quand p = ¢, il suppose
donc p différent de g. Il applique alors le théoréeme de Minkowski dans le cas particulier

dun parallélogramme du plan, il s’agit du lemme 5 dans son article?4 :

« LEMMA 5. Every parallelogram with area 4 and center at O contains a
point of £ other than O. »

Soit maintenant N un entier naturel, Mordell applique le lemme précédent au parallé-

logramme

1
|z +py| < ¥ lz+qyl < Nlp—q

ce qui donne l'existence d'un couple d’entiers (z,y) non nul et tel que

Fleal < 24

Le résultat suit en prenant N suffisamment grand.

La premiére étape de la démonstration qui consiste a passer de I’énoncé des théo-
rémes sous leur forme arithmétique a la forme géométrique est expliquée dans I'article
de 194524 mais elle n'est pas reprise dans les articles de 1943. Dans le cas ou le
discriminant de la forme cubique binaire est strictement négatif, Mordell doit donc

montrer qu’il existe un point du réseau différent de 1'origine dans le domaine défini par

|373—.Ty2—y3| < 17

ce qui est 'objet du premier des articles publiés en 1943 que nous reprenons ici®*2.

Mordell définit le réseau £ comme ’ensemble des points dont les coordonnées s’écrivent

r=af+0Bn, y="§+on,

240N ORDELL 1945a p.205.
241 MORDELL 1945a p.202.
242MORDELL 1943a.
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ou &, n parcourent 'ensemble des entiers et «, (3,7, d sont des réels tels que ad — Gy = 1.
L’origine de ce réseau est noté O.
Mordell commence par rappeler sans démonstration des résultats relatifs aux réseaux

qui lui seront utiles par la suite de la preuve*3 :

1. un parallélogramme d’aire 4 et centré en O contient un point du réseau L différent

de l'origine O (c’est un cas particulier du théoréme de Minkowski).

2. Si P et @ sont des points du réseau £ qui ne sont pas alignés avec O alors le

double de l'aire du triangle O PQ est un entier et donc
2 x aire(OPQ) > 1.

De plus, il y a égalité si et seulement si £ est engendré par P et Q.

3. Si laire de OPQ est égal a 1 et si aucun point de £ différent de O, P et Q)
n’appartient & OP ou OQ), alors le milieu de P est un point de L.

4. Si F, G sont des points tels que F'G = OP, les droites F'G et OP sont paralléles

et 'aire de OPGF est égale a 1, alors F'G contient au moins un point de L.

Mordell note h(z,y) = x* — xy* — y* et R le domaine |h(x,y)| < 1 (voir la figure 4.8).
Il examine dans un premier temps des propriétés de ce domaine. Il remarque que R est
symétrique par rapport & O (car h(—z,—y) = —h(z,y)) et que toute droite passant
par O coupe la frontiére de R en exactement deux points sauf la droite x = 0y qui est
asymptote & la courbe |h(z,y)| =1 (6 est la racine réelle de 1’équation > — ¢t — 1 = 0).
Mordell cherche ensuite des parallélogrammes auxquels il va appliquer le théoréeme de
Minkowski dans sa forme rappelée dans la propriété 1 ci-dessus. Or la frontiére de R
passe par les sommets et le milieu des cotés du carré (P sur la figure 4.8) défini par
les inégalités
[zl <1, [yl < 1.

Ce carré est inclus dans R & part une partie dans le premier cadran et en-dessous de
la droite d’équation y = 1 (noté R; sur la figure 4.8) ainsi que son symétrique par
rapport a O.

D’aprés le théoréme de Minkowski, le carré |z| < 1, |y| < 1 contient un point P de £

différent de O. Mordell envisage ensuite quatre cas selon la position de P :
(I) P est un point intérieur de R,
(IT) P est un sommet du carré |z| <1, |y| <1,
(ITI) P est le milieu d’'un c6té du carré |z| < 1, |y| < 1,
)

(IV) P est un point de Ry sauf (0,1) et (1,1) (ou de I'image de R4 par rapport a O).

243MORDELL 1943a p.202.
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R AN EIM LR
Putlxled, [§F+ylsd,

Domain I¥-xy-y’l1.

F1G. 4.8 -~ Le domaine |z — zy* — 3| < 1.

Dans la situation (I), le théoréme est démontré. Si P est un sommet du carré P,
par exemple P = (1, 1), Mordell suppose qu’aucun autre point de £ se trouve sur le
segment OP a l'exception de O et de P, sinon il est ramené au cas (I). Soient alors les
points F' = (—1,0) et G = (0, 1), le parallélogramme OPGF est d’aire égale a 1 donc,
d’aprés une propriété des réseaux déja rappelée, F'G contient un point () de £. Mais le
cas (I) étant exclu, Mordell en déduit que Q = F' ou que ) = G. Le réseau L est alors
défini par

Comme il n’y a pas de point a coordonnées entiéres dans l'intérieur de R
€8 —&n* —’] > 1,
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pour tous les entiers &, 1 qui ne sont pas nuls tous les deux. De plus, 1’égalité est réalisée
par exemple pour le point du réseau (1, 1), ce qui signifie que ce réseau est un réseau
critique. Le méme raisonnement dans le cas (III) conduit aussi a ce réseau critique.
Mordell suppose donc maintenant que le point P = (X,Y) du réseau ne satisfait pas
(I), (IT) ou (III) mais qu’il appartient & Ry (cas (IV)). Il justifie d’abord que R; ne
peut contenir deux points du réseau.

Mordell veut ensuite exploiter les symétries de R afin de trouver un deuxiéme point
du réseau, pour cela il détermine une substitution linéaire 3 pour laquelle le domaine

est invariant. Pour trouver cette substitution, il factorise h(z,y) :
v? =y’ —y’ = (2 = Oy)(a® + Ouy + 071y
ot @ est le réel tel que 62 — 6 — 1 = 0. Il résout ensuite le systéme

v’ =0y = —(z —Oy)
22+ 02y + 07 y% = 2 + Oxy + 07197,

et il obtient pour X

(30> -1’ =2+ (0 +3)y, (30> = 1)y =30x — 1y,
notée aussi
= e 4py, Y =vetpy.
Il explique ensuite ce qu’il appelle « I’'argument de symétrie » qu’il énonce dans un
théoréme?** :

« THEOREM. Let R and D be any two given regions, not necessarily convex
or finite, of which R contains the origin and is transformed into itself by
a linear homogeneous substitution > of determinant 1, and D is such that
no point of D is contained in R. Suppose that a lattice £ of determinant 1
exists such that no point of £ except O is contained in R, and that further
every such lattice £ has a point contained in D. Then the region XD, i. e.

the transform of D by ¥, will also contain a point of £ other than O. »

Cet argument de symétrie appliqué a la situation présente®*® ot D = R, donne 'exis-

tence d’un point P, = (X7, Y]) du réseau £ dans XR;. L'image par ¥ du réseau critique

244 \N[ORDELL 1943a p.205.

245Dans le théoréme la substitution est supposée étre de déterminant 1 alors que la substitution
Y. a laquelle Mordell applique ce résultat & un déterminant égal & —1. La démonstration donnée par
Mordell du théoréme montre que le résultat reste vrai pour les substitutions dont le déterminant est
—1.
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x = ¢, y = n donne le deuxiéme réseau critique annoncé®% dans le théoréme page 293
(30> ~1)z=—-¢—(0+3)n, (30> — 1)y = —30¢+1n .

Ainsi Mordell a déterminé deux points du réseau P et P, il va maintenant montrer
que le point P + P; est dans l'intérieur de R.

Un morceau de la frontiére de YR, est le segment noté B*7 dont les extrémités sont
les points X(0,1) = (p, p) et X(1,1) = (A + p, v + p), c’est donc une partie de la droite
d’équation vx 4 py = 1. Les abscisses des points (z,y) de ¥R, vérifient

W<z < A+pu.

Mordell fait maintenant I’hypothése que n’importe quel réseau de déterminant 1 qui
n’a aucun point dans R autre que 'origine posséde un point dans >R, dont 'ordonnée
est strictement négative. Comme pour le domaine R, ¥R; ne contient qu'un seul
point du réseau, ainsi le point de £ dans >R, dont 'ordonnée est strictement négative
est nécessairement P;. Or I'image de I’ensemble des points d’ordonnées strictement

négatives par ¥ est I’ensemble des points (x,y) tels que
ver+py < 0.

Comme P est le seul point du réseau dans R;, 'argument de symétrie appliqué au
domaine YRy N{(x,y), y < 0} implique que P appartient & R;N{(z,y), vz+py < 0}.

En particulier, les coordonnées des points P et P; vérifient
vX +pY < 0, vXi+pY1 < 1,
c’est-a-dire
v X+X1)+pY +Y1) < 1.

Le point P + P; se situe donc a gauche de B (dans le méme demi-plan que 'origine).
De plus, le point P est dans le carré P; sans étre un de ses sommets et dans le premier
cadran, d’o1 0 <Y < 1 et comme Y; < 0, il vient

Y+Y) <1,

ce qui signifie que P + P, est strictement en-dessous de la droite d’équation y = 1.
Ensuite, comme P; est dans XR; et que P est dans le premier cadran, X + X; > 0.

Enfin, en regardant 'ordonnée minimale des points de R, et ¥R, Mordell justifie que

246 Ay signe prés, mais il s’agit bien du méme car un réseau est symétrique par rapport a O.
247Voir la figure 4.8. Sur ce dessin le domaine ¥R est noté L"R;.
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Y +Y; > 0. Finalement, le point P + P; est dans l'intérieur du quadrilatére délimité
par les droites d’équation x =0, y =0, y = 1 et vz + py = 1. Les seules parties de ce
quadrilatére qui ne sont pas dans R sont Ry et ¥Ry, or P + P, est différent de P et
de P; donc P + P; est un point du réseau, différent de O, et dans R.

Si maintenant le point P; = (Xj,Y]) ne vérifie pas ¥; < 0, Mordell construit un
nouveau point du réseau comme il ’a fait pour P;. Il remarque pour cela que les
droites d’équation = = +1 et les tangentes a la frontiére de R aux points (0,+1),
dont les équations sont x + 3y = 43, forment un parallélogramme d’aire égale a 4248
(il s’agit du parallélogramme P, sur la figure 4.8). La partie Ry de Py qui n’est pas
incluse dans R est le triangle curviligne de sommets A = (—d = —55;1,12), (—1,1 = 3)
(l’autre intersection de la tangente au point (0, 1) avec la frontiére de R et avec la droite
x=—1) et (—1,1) (ce dernier point est exclu de Ry). Comme précédemment, il existe
un point P, = (Xs,Y3) du réseau £ dans Rs. Mordell prouve alors que £ est engendré
par les points P et P,. Pour cela, il montre que l'aire du triangle OP P, est égale a %
De la méme maniére, il démontre ensuite que le réseau L est aussi engendré par les

points P et Py, ce qui lui permet d’écrire
Plzpp—qu et PQITP—Spl,

ol p, q,r, s sont des entiers strictement positifs. Comme les points O, P, P, ne sont pas

alignés, ces deux relations impliquent

Dans ce qui suit, Mordell montre que cette derniére égalité ne peut se produire ce qui
termine la preuve de 'existence d'un point du réseau dans R.

Pour cela il commence par considérer la transformation ¥’ définie par?4?

(30> = 1)2’ = —x — (0 + 3)y , (30> — 1)y = —30z + vy,

ou encore Y/(z,y) = X(—x,—y). L’application de ce qui a été appelé précédemment
le principe de symétrie a la transformation ¥’ et au domaine Ry implique I'existence
d’un point du réseau P3 dans ¥X'R,. En justifiant que le point du réseau P, — Pj est

dans R et donc ne peut étre que l'origine O, Mordell montre qu’en fait P, = Py 2.

248 MORDELL 1943a, p.206.

249\[ORDELL 1943a p.207.

250Mordell rappelle qu’il a déja démontré que P, = P; dans MORDELL 1945a. Il propose ici une autre
démonstration. Cette remarque confirme que les preuves de ces différents articles sur les cubiques ne
différent essentiellement que sur les aspects techniques mais que le principe des démonstrations est le
méme.
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Revenons a la relation (4.12) et supposons d’abord que p = 1, c’est-a-~dire que

P=P—PF. Comme Y <1etY, >1, P, est strictement en-dessous de la droite
d’équation y = 0. De plus, le point P, appartient a l'intersection de R, et de ¥R,
(car P, = P3). Or X' = =3, d’ou —P, appartient & 3R,. Ainsi la méme méthode que
pour la somme P + P; permet de montrer que P, = P + (—P,) est dans l'intérieur de
R ce qui est absurde car P; est dans ¥R et donc p est différent de 1. Finalement, p

est supérieur a 2, ainsi (4.12) implique en particulier que
Yo+Y, >2Y.

Mordell désigne par h 'ordonnée minimale des points de Ry, ainsi comme P est dans
R1 et P, dans R, il obtient que
Y1 >2h—1.

Ensuite, comme 'aire du triangle OPP, est % alors XYs — X,Y = 1. En utilisant les

inégalités suivantes

Mordell obtient
X <1-—dh.

Le point P; est dans XR; et donc il appartient a I'image par ¥ du domaine défini par
I'inégalité x < 1 — dh, par suite, X P; est dans le domaine x < 1 — dh car ¢ est son

propre inverse. Cette derniére condition se traduit par

ou encore, comme X; est plus grand que 1,

1—dh— X\
7,“ .

Y1 <
Les deux conditions sur Y; conduisent & la nouvelle inégalité
dh+X+p(2h—1) < 1.

Les valeurs calculées par Mordell pour ces constantes impliquent 1,0049 < 1 ce qui est
absurde et termine la démonstration.

Mordell démontre en fait un peu plus que 'existence d’un point du réseau dans K.
Méme si nous ne 'avons pas mentionné, sa preuve lui permet d’étre plus précis sur

la localisation de ce point du réseau. Ce raffinement du résultat est énoncé dans un
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théoréme au début de son article?®!

« THEOREM 2a. The point of £ in Theorem 2 lies in the finite part of R
cut off by the parts of the lines?%?

y=1, 30%c —y=30—1,

lying in the first quadrant, and their images in O. The point is a boundary
point of the modified region when and only when L is a critical lattice, and

then the equality sign is necessary in (5). »

Le cas ou le discriminant de la forme cubique est strictement positif est traité dans
un article qui suit celui dont il vient d’étre question®3. Il s’agit cette fois de démontrer

I’existence d'un point du réseau dans le domaine R défini par I'inégalité
|2® — 2%y — 2297 + 97| < 1.

Le schéma général de la preuve est exactement le méme que pour le domaine

S—ay’ =y <1

|
étude géométrique de la frontiere de R, utilisation du carré |z| < 1, |y| < 1 pour
construire un premier point du réseau, construction de nouveaux points du réseau par
le principe de symétrie, combinaison de tous ces points etc... Par contre, les parties
techniques de la preuve sont plus difficiles a cause de la géométrie du nouveau domaine

R. D’abord, la frontiére de R posséde trois asymptotes d’équation respectives
r+0y=0, z4+0oy=0 et x+y=0.

Ensuite, lorsque Mordell considére le carré || < 1, |y| < 1 pour appliquer le théoréme
de Minkowski, deux parties de ce carré ne sont pas incluses dans R (ces deux parties

sont notées Ry et R} sur la figure 4.9).

Un peu plus tard en 1944, Mordell publie une nouvelle preuve du cas ou le discri-

minant est strictement négatif>®*. A nouveau cette démonstration suit le méme modéle

251 MORDELL 1943a p.202.

25211 y a trés certainement une faute de frappe dans ’équation de la seconde droite. En effet, le point
qui répond au probléme est P + P; et ce qui précéde montre que ce point est situé & gauche de la
droite B d’équation vx + py = 1. Lorsque les coefficients de cette équation sont exprimés en fonction
de 0 nous obtenons 30z —y = 36% — 1.

253 MORDELL 1943b.

Z54MORDELL 1944a.
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g el b E o P
AR, @ et 1y-anea.
P, e, lx-vied.
Po: 1elel, 130-2x1£3,
B Ivlet, lx-ried.

Domain ' ir-zote'ie 1,

F1G. 4.9 — Le domaine |23 — 2%y — 2xy? + | < 1.

que ce qui vient d’étre exposé mais en utilisant cette fois le domaine défini par
2% +y°] < 1.

Pour Mordell, de ce nouveau domaine est qu’il lui permet de simplifier encore les

vérifications techniques de sa preuve

« I have also given a proof when D < 0 by considering the more symmetri-

cal region |23 4+ 3| < 1, and have thus reduced the numerical details to a

minimum?®. »

255 MORDELL 1949 p.74.
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4.2.2.5 Les preuves de Davenport du théoréme sur le minimum des cu-

biques binaires

Mordell voit les preuves précédentes de son théoréeme comme géométriques et lors-
qu’il présente les démonstrations proposées par Davenport il reprend les termes géo-

métriques et arithmétiques pour les qualifier :

« Subsequently much simpler geometrical proofs were given by DAVENPORT
who clothed his proof in arithmetical form, and by myself. |[...]

After these results were found, DAVENPORT discovered arithmetical proofs
of surprising simplicity based on ideas related to those used by HERMITE

256. 3

nearly ninety years ago >

Cette description de Mordell nous rameéne a la distinction entre les différents niveaux
auxquels géométrie ou arithmétique peuvent intervenir et invite a préciser ce qu’il en-
tend quand il qualifie de géométrique les démonstrations du paragraphe précédent. Ses
preuves sont pour lui géométriques a la fois par les idées qui y sont mises en oeuvres
et par les vérifications formelles qu’elles contiennent. Cette séparation apparait plus
clairement dans son commentaire sur la premiére preuve de Davenport dont la mé-
thode sous-jacente est pour lui géométrique mais qui est présentée (ou habillée) sous
une forme arithmétique. La seconde preuve de Davenport évoquée dans la citation est

quant a elle complétement arithmétique.

a) Une preuve géométrique présentée sous forme arithmétique

Dans 'article ou il donne sa premiére démonstration sur le théoréme de Mordell du
minimum sur les formes cubiques binaires, Davenport reprend la description faite par

Mordell de son travail :

« The object of this paper is to give simple proofs of these theorems. The
method of the present proofs was first obtained in a geometrical form,
shortly after I had been privileged to read Mordell’s manuscript, but I give
them here in a purely arithmetical form, in order to avoid appealing to any

257

properties of diagrams="". »

Davenport commence par redonner les énoncés du théoréme dans le cas ou le dis-
criminant de la cubique est strictement négatif (théoréme 1) et strictement positif
(théoréme 2). Nous retrouvons dans cet article une exposition similaire aux autres tra-

vaux de Davenport que nous avons vus : il commence par énoncer des lemmes qu’il

256 M[ORDELL 1949 p.74.
ZTDAVENPORT 1943a p.168.
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applique a la situation qu’il veut étudier.

La premiére partie de la preuve concerne une transformation linéaire 1" définie par

+n'=al+p0n,

E+n=af+ 00,
oua#f,a>0, 0>0 a+f < 2 Cette transformation est son propre inverse. La
premiére étape consiste & démontrer le lemme 1258 :

« LEMMA 1. Let &, n be linear forms in x, y with real coefficients and
determinant 1, and let &, i’ be the transforms of &, n by T. Then there

exist integral values of x, y, not both zero, which satisfy at least one of the

following conditions :

(D <1, <1, [§+nl<1;
(r <1, W<t [§+nl<1;
(

)
)

II 0<6<1, 0<n<1, &+n>1, §<1;
(IT') 0<¢<1, 0y <1, &+n>1, <1,
(11T) §+n>0, <0, {+n—&<p;
(I1T) +n' >0, £<0, {+n—-§<p;
(IV) E>1, ¢>1, n<1, n<1.»

Pour démontrer ce lemme Davenport fait un raisonnement par I’absurde. Donnons le
début de la preuve. Le parallélogramme défini par || < 1, |n| < 1 est d’aire égale a 4,

d’aprés le théoréeme de Minkowski il existe des entiers xy, y;, non tous deux nuls, tels
que

IE(z, ) = 6] <1 et |n(a,p)] =|m| < 1.

&1 et m1 ne peuvent pas étre de méme signe sinon, nous aurions par exemple

ce qui implique —1 < & +m; < 1, la condition (I) est alors vérifiée ce qui est contraire

a I'hypothése. Les conditions (I) et (II) ne sont pas vérifiées donc

0<&E <1, 0<m<1, &G+m>1, {>1

258 DAVENPORT 1943a p.169.
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et le méme raisonnement pour &', 1’ entraine I'existence d’entiers o, 1o tels que
0<& <1, 0<n<1, &+4+n>1 &>1.
Si n] et 1y sont négatifs alors
S+&>1, §+E>1, m+m<1, f+np<l.
Ces conditions s’écrivent aussi

(o +xo, 1 +y2) >1, (a1 +a0, 11 +y2) >1,
N1+ z2, yi+1y) <1, 0z +xe, y1+y2) <1

Ainsi la condition (IV) est vérifiée ce qui est absurde, Davenport suppose donc par
exemple que 7, > 0 etc... La suite de la preuve de ce lemme continue de la méme

fagcon en combinant des inégalités pour aboutir & des contradictions.

Dans I'étape suivante de la démonstration, Davenport fait le lien entre le lemme 1
et la forme cubique binaire F' = £ — &n? — n®. Il montre (lemme 2) qu’il existe une
transformation 7' qui vérifie les mémes hypothéses que dans le lemme 1 et telle que

chacune des conditions (I), (I’), ..., (IV) implique |F| < 1. L’égalité se produit pour

ainsi que pour les cas qui sont symétriques des précédents par rapport a l'origine.

Davenport construit la transformation 7" en factorisant la forme cubique F

F=(§—0n)E—xn(€—xn),

ol 6 est la solution réelle de I'équation 3 —t — 1 = 0 et y, Y les solutions complexes

et conjuguées. T' est alors définie par les relations

(x = x)(E& —0n) X —X)(€—0n),
(X —=0)(& —xn) 0—x)(€—xn),
0 =) —xn") == —xn) .

—
—

Davenport justifie ensuite rapidement que T est ainsi bien définie, qu’elle est son propre

inverse et qu’elle transforme F' en —F'. En combinant les équations définissant T" et en

313



CHAPITRE 4 4.2

utilisant les relations entre les trois racines 6, y, Y, il montre que T peut s’écrire

§+n=a+pn, E+n=af + 0,

30+ 1 0+ 2
32 —1 P T3

avec o = qui, aprés calcul, vérifient bien les conditions

a>0, 6>0, a+[<2.

Il s’agit ensuite de démontrer que chaque systéme d’inégalité (I), (I'), ..., (IV) implique
|F'| < 1. Nous donnons a nouveau seulement quelques exemples.

Supposons d’abord que la condition (I) est vérifiée, c’est-a-dire que
<1, Inl<1, [§+n[<1.

Si € et € + 7 sont positifs alors 0 < (£ +7)n? < 1et 0 < & < 1, ce qui entraine bien
|F| < 1. Si maintenant, £ < 0et £ +n > 0alorsn > 0et £ —n <0, donc £ —n? < 0.
D’autre part, comme —1 < ¢ <0 et 0 <n <1, Davenport en déduit que

1< -7 <0

et par suite
0 < &€ —n") < 1.

Or 0 < n® < 1 donc il obtient bien |F| < 1.

Pour la condition (III), Davenport réécrit les inégalités

E+n>0, &<0, &4n-¢<p

en posant £ +n = fu et £ = —Fv, oll u et v sont strictement positifs.
Ainsi £ +n— & = f(u+v) et il en déduit que u+ v < 1. Davenport exprime ensuite
F' en fonction de u et de v. Pour cela, il utilise le fait que le changement de variables

T transforme F' en —F' ce qui permet d’écrire
F= (=& +&n"+1°.
D’une part, & = —fv et d’autre part,
Pu=E+n=af +py =—afv+py,
d’ou 7 = u + av. En reportant dans F', il obtient

F=u’+ (8 —a®8+a*)v’ + (3a — B)uv + (3 — 2a8)uv? .
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En prenant v = 0 et v = 1 il détermine ensuite le coefficient devant v3 et finalement
F = v’ +v* + yuv + duv? |
ouly=3a—8<3etd=3a®—2a83 < 3. Ce qui implique enfin
|F| < u® 40+ 3u0 + 3uv® = (u+v)* < 1.
Pour chaque condition, les cas primes s’obtiennent par symétrie.

Davenport passe ensuite a la démonstration du théoréme quand le discriminant D
de la forme cubique f est strictement négatif. Il doit donc montrer que pour des valeurs

entiéres non nulles des variables

el = (32)

Comme Mordell, Davenport se rameéne a la forme f(x,y) = £ — &n? — 03 qui est de
discriminant —23. L’application des lemmes 1 et 2 donne 'existence d’entiers z, y non

tous les deux nuls et tels que
[f(z,y)| < 1.

Il discute pour terminer les cas d’égalité donnés dans le lemme 2.

Quand le discriminant de la forme cubique est strictement positif, Davenport pro-

céde de la méme maniére en montrant d’abord le lemme 329 :

« LEMMA 3. Let F = & + &% — 2¢n? — 3. There exists a self-inverse
transformation 7" satisfying (2) such that any one of (I), (I), (III), (IIT),
(IV) implies |F| < 1. This is true with strict inequality except for the cases

enumerated in Lemma 2. »

La difficulté par rapport au cas précédent est que les conditions (II) et (II') n’implique
pas |F| < 1. Davenport surmonte ce probléme en considérant une transformation 7T
définie & partir des solutions de I'équation #3+t2—2t—1 = 0 mais aussi la transformation
U définie par

=-n, n=¢&+7

qui transforme aussi F' en —F'.

En quoi cette démonstration est-elle géométrique malgré la présentation arithméti-

que qui est faite par Davenport ? Prenons par exemple le lemme 1 et comme point de

259DAVENPORT 1943a p.173.
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comparaison les preuves de Mordell qui sont vues comme géométriques. Mordell essaie
de construire des points du réseau dans des domaines particuliers. Les points sont lo-
calisés en donnant leur position par rapport aux frontiéres de ces domaines (en-dessous
ou bien a gauche de la droite d’équation...). Le résultat énoncé par Davenport dans
le lemme 1 pourrait aussi étre traduit de cette fagon. Les systémes d’inégalités (I),
(I'), ..., (IV) peuvent s’interpréter comme I’appartenance de points d’un réseau a des
parties bien délimitées du plan. D’ailleurs, comme Mordell, Davenport commence sa
démonstration en appliquant le théoréme de Minkowski & un parallélogramme d’aire

égale & 4, ce qui confirme la proximité des méthodes sous-jacentes.

b) Une preuve purement arithmétique

La deuxiéme démonstration de Davenport du théoréme sur le minimum des formes
cubiques binaires est considérée par Mordell et Davenport comme arithmétique par
les idées qui y sont développées ainsi que par les parties techniques de la preuve. Les
deux cas ot le discriminant des formes sont strictement positifs ou négatifs sont traités
dans des articles différents publiés dans le méme volume du Journal of the London
Mathematical Society en 194529, Le titre de ces articles « The reduction of a binary

cubic form » confirme la place de ce travail dans un contexte arithmétique.

Davenport s’intéresse d’abord aux formes cubiques binaires de discriminant stricte-
ment positif. Il rappelle la notion de réduction introduite par Hermite pour ces formes.
Pour une forme

f(z,y) = ax® + ba*y + cxy® + dy®
de discriminant strictement positif, il introduit la forme quadratique

Az® + Bay + Cy? = (bx + cy)® — (3az + by) (cx + 3dy)

qui est définie positive. La forme cubique f est dite réduite si la forme quadratique

précédente est réduite, c’est-a-dire si
C>A>8B2>0.

Toute forme cubique peut étre transformée en une forme réduite par une transformation
linéaire & coefficients entiers de déterminant 41. Davenport utilise cette notion pour

démontrer 'existence d’entiers x, y non tous deux nuls et tels que

el = (2)

260D AVENPORT 1945a,b.
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avec égalité si f est équivalente a

D\* 3 2 2 3
19 (x° 4+ zy — 22y — y°) .

Par homogénéité, on peut supposer que f a pour discriminant 49. Davenport énonce

alors le théoréme 1 qui implique le résultat de Mordell?®! :

« THEOREM 1. Let f(z,y) be a reduced binary cubic form of discriminant
49. Than at least one of

f(170)7 f(ovl)v f(lvl)v f(lv—l)

does not exceed 1 numerically. One of them is numerically less than 1 except

when

+f(x,y) =2 +2%y —22y° —y® or =+ f(x,y) =2 +22%y —ayP 9> »

t262

Davenport démontre aussi le « deeper resul » otl sous les mémes hypothéses que le

théoréme 1 la conclusion devient qu’au moins un des produits

f(l,O)f(O,l), f(l,O)f(l,l), f(l,())f(l,—l), f(Ovl)f(lvl)v f(O,l)f(l,—l)

est inférieur a 1.

Davenport rappelle dans un premier temps des relations sur les coefficients de la forme

cubique f et la forme quadratique qui lui est associée?0? :

A= b — 3ac, B = bc — 9ad, C = — 3bd,
Be — Cb = 3Ad, Bb — Ac = 3Ca,
Ac? 4+ Cv? = AC + Ble,

AC < 49, 0<B<AKLT.

Il raisonne ensuite par I'absurde, il suppose donc que

f(L,0)=Ta[ =1 , [f(0,1)]=]d] >1,
F(LD) =la+b+ct+d >1 , |fQ,-D|=la—b+c—dl >1

261 DAVENPORT 1945a p.15.
262D AVENPORT 1945a p.15.
263DAVENPORT 1945a p.16.
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et montre que cela conduit & une contradiction & moins d’étre dans un des cas cités
dans le théoréme. Quitte a prendre — f, Davenport se raméne & a > 1. En utilisant les

inégalités rappelées et I'inégalité arithmetico-géométrique, il obtient d’abord
2|bc|VAC < A2+ Ch* = AC + Bbe < AC + |bc|VAC

d’ou il déduit
lbc] < VAC < 7.

Ainsi I'inégalité d > 1 est impossible et d < —1.

De plus, be < —9 + 7 = —2, ainsi la relation Bb — Ac = 3Ca entraine b > 0 et
¢ < 0. Davenport écrit alors ¢ = —v et d = —§. Comme la forme est supposée réduite
C(b++) > Bb— Ac = 3Ca, donc

B A
> b— — = .
b+7_bc+70 3a

Sia—b—~vy+d>1alorsd >1—a+ b+ ce qui implique § > 1+ 2a > 3. Ensuite,

AC = (b* + 3a7)(y* + 3b8) > 9adby > 18ad > 54,

ce qui est une contradiction, ainsi a —b — v+ 6 < —1.
Pour terminer, Davenport démontre avec des arguments similaires que si a+b—vy—4¢ > 1

alors b=2,v=1,a=1et § =1, c’est-a-dire que
fla,y) =2’ +22°y — xy® — ¢
Enfin le cas ot —(a + b — 7 — ) > 1 conduit & la cubique
fla,y) =2’ + 2%y — 2zy® — ¢

La fin de l'article est consacrée a justifier que si la forme cubique f représente 0, il

n’existe pas d’inégalité du type de celle donnée par le théoréme de Mordell.

Dans I'article suivant, Davenport s’intéresse au cas ou le discriminant D de la forme
cubique binaire f est strictement négatif, la difficulté étant de définir une méthode de
réduction pour ces formes. f posséde alors un facteur réel et deux facteurs complexes

et conjugués, elle peut donc s’écrire
fla,y) = (z + 0y)(P2* + Quy + Ry®) ,

avec 0, P, @, R des réels. La forme quadratique Pz? + Qzy + Ry? est définie et quitte

a considérer — f, Davenport la suppose définie positive. f est dite réduite si elle vérifie
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les deux conditions?%* :

1. Pz? + Quy + Ry? est réduite, c’est-a-dire —P < Q < P < R,
2. 0>0.

Toute forme cubique f peut alors étre transformée par une substitution linéaire a
coefficients entiers et de déterminant +1 en une forme réduite qui est en général unique
a part dans quelques cas énumérés par Davenport. Pour les mémes raisons que dans le

cas précédent le théoréme suivant implique le théoréme de Mordell?%

« THEOREM. Let f(z,y) be a reduced binary cubic form of discriminant
—23. Than one at least of

f(170>7 f<071)7 f<17_1>7 f(17_2)

does not exceed 1 numerically. One of them is numerically less than 1 except
when

f(z,y) =2 + 2%y + 22y° + o°
(in which case all four values are £1). »

La stratégie de Davenport pour démontrer ce théoréme est la méme que pour D > 0.

Il raisonne par I'absurde ce qui 'améne a supposer que
P>1, 60R>1, [1-0[(P-Q+R)>1, |1-20|/(P—-2Q+4R)>1,

il cherche alors & montrer que D = —D > 23. Pour cela, il remarque que, pour 6 fixé,
les inégalités précédentes sur P, ), R ainsi que les conditions de réduction définissent
un domaine convexe R et il prouve dans un lemme que VD, qui est une fonction de
P, @, R, est une fonction convexe. Davenport justifie ensuite que le minimum de D sur
le domaine R est atteint & un sommet de R. La fin de la preuve consiste alors a étudier
D a chaque sommet du domaine R.

Nous constatons que Davenport emploie un vocabulaire géométrique dans un travail
pourtant qualifié de purement arithmétique. La part de la géométrie reste cependant
assez faible. D’un point de vue technique, les justifications sont faites par un travail
sur des inégalités et la plus grande partie de la démonstration est 1’étude de D aux
sommets de R qui est abordée par des méthodes proches de celles utilisées dans I’ar-
ticle ot D est strictement positif. Du point de vue de I'idée de la preuve, Davenport
se place dans un contexte arithmétique qui est celui de la théorie arithmétique des
formes et de leur réduction. Il est d’ailleurs intéressant de noter que Davenport fait

référence dans cet article a Minkowski. Il cite d’abord 1'article de Minkowski de 1905

264D AVENPORT 1945b p.140.
265 DAVENPORT 1945b p.140-141.
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dans lequel Minkowski étudie la réduction des formes quadratiques de n variables et
donne des conditions de réduction qui le conduisent a 1’étude d’un domaine convexe;
Minkowski utilise aussi dans cet article une propriété de convexité du déterminant de
formes quadratiques définies positives?®®. Davenport cite également le livre Geometrie
der Zahlen a propos de la convexité, plus précisément le dernier paragraphe du premier

chapitre qui concerne les systémes d’inégalités linéaires?®”.

4.2.2.6 Les échanges entre Mordell et Davenport au sujet des formes cu-

biques

Selon les sources dont nous disposons, un des premiers mathématiciens auquel Mor-
dell communique son travail sur les formes cubiques binaires est Siegel. Dans une lettre
du 12 janvier 1941, Siegel remercie Mordell de lui avoir envoyé ses articles sur ces formes
et sur le produit de trois formes linéaires. Le jugement de Siegel sur les résultats obtenus
sur les cubiques est trés positif :

« As a matter of fact, your theorem for the binary cubic is one of the most

268

beautiful results in the geometry of numbers®°. »

Siegel note cependant la difficulté de certains calculs dans les preuves des théorémes :

il a essayé de simplifier ces calculs sans y parvenir.

Une lettre de Mahler montre que Mordell I’a aussi sollicité a propos de son travail
sur les cubiques. Dans cette lettre datée du 9 aotit 1941, Mahler répond, semble-t-il, a
une question que lui a posé Mordell a propos du domaine dont la frontiére est donnée
par

2] [y] (J| + y]) = constante.

Mabhler énonce une conjecture sur « the best possible result for lattices without points

269

inside the domain®®” ». Il décrit les réseaux critiques (ceux qui ont des points sur la

frontiére du domaine mais pas a l'intérieur) de maniére géométrique

« the critical lattice has as its basis two points P;, P in the first quadrant
on the curve C; these are chosen that both Py = P, — P, and P; = P, — 3P,

lie on C 270, »

266Voir MINKOWSKI 1905.

267Comme le remarque Davenport, le point de vue adopté par Minkowski n’est pas géométrique
dans cette partie du livre.

268 ettre de Siegel & Mordell du 12 janvier 1941, MORDELL (St John’s), box 3, folder 28.

269Lettre de Mahler & Mordell du 9 aotit 1941, MORDELL (St John’s), box 2, folder 17.

210 ettre de Mahler & Mordell du 9 aotit 1941, MORDELL (St John’s), box 2, folder 17.
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Mabhler accompagne son explication d'un dessin (voir la figure 4.10%™).

oLt

F1G. 4.10 — Dessin de Mahler dans la lettre & Mordell du 9 aotit 1941.

Cette courte lettre de Mahler est caractéristique de la correspondance de Mordell.
Quand nous y trouvons des mathématiques, ce sont le plus souvent des points trés pré-
cis et techniques qui sont abordés; il est peu fréquent de trouver des commentaires sur
les méthodes employées ou bien encore I’heuristique. De plus, les échanges conservés

sont ponctuels, autour d’une question isolée?"2.

La correspondance entre Mordell et Davenport est un peu différente, certains themes
sont abordés de facon plus continue : c¢’est par exemple le cas pour les formes cubiques
binaires. Leur collaboration sur ce sujet qui apparait dans leurs publications respec-
tives est donc confimée par leur correspondance. Huit lettres concernent les formes
cubiques : quatre écrites par Davenport et quatre par Mordell. Les commentaires que
nous trouvons dans ces lettres sont de natures diverses. Les deux mathématiciens com-
parent par exemple leurs méthodes sur un méme probléme et discutent de la maniére
la plus juste de rendre compte de leur travail respectif dans leurs articles. Ils se font
parfois des suggestions pour des corrections dans un article ou encore ils communiquent
sur leur derniéres découvertes sur le sujet.

Une question qu’ils débatent est la fagon dont Mordell doit faire référence dans un

article a une démonstration de Davenport :

« I now use the phrase “a variation of my geometric methods”. I want to

use a phrase suggesting that your method was not completely independent

2T1Reproduced by permission of the Master and Fellows of St John’s College, Cambridge.

272 Avant de déposer les papiers de Mordell & la bibliothéque de Saint John’s College, J.W.S. Cassels
a fait un tri dans les documents (communication personnelle avec Cassels, 25 avril 2005). Nous ne
connaissons pas exactement quels furent les critéres employés pour faire ce tri mais cela explique certai-
nement en partie pourquoi les archives contiennent essentiellement des mathématiques trés techniques
et peu d’informations personnelles.
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273

of mine so “another geometric method” does not appeal to me=>. »

Mais cette formule ne convient toujours pas a Davenport

« I do not altogether like the phrase you have selected in referring to my

simplification, but will think further about this®™. »

Finalement, la phrase choisie par Mordell est la suivante :

« Davenport has given an arithmetic proof of Theorems 2 and 3, which is,

however, based upon a simplification of my geometric methods?™. »

Cet épisode montre d’abord la minutie avec laquelle ils veulent rendre compte de leur
collaboration. Mais cela traduit aussi I'importance qu’ils accordent & ces simplifications
successives qu’ils proposent pour un méme résultat.

Dans la lettre suivante, Davenport compare justement les deux démonstrations aux-
quelles Mordell fait référence dans la citation précédente?. Pour lui, I'idée fondamen-
tale de leurs démonstrations est la méme. Elle consiste a faire deux cas : « one in which
P+ P, lies in the little quadrilateral, which is trivial, the other in which it does not?™ »
(voir la démonstration de Mordell page 306). Davenport indique qu’il traite le second
cas en montrant que le point P — P; appartient & un domaine assez proche de celui
considéré par Mordell. Plus loin il ajoute que 'utilisation de la convexité d’une partie

de la frontiére du domaine est cruciale. Il exprime cette convexité analytiquement par
u + o < (utv)?,

ou u et v sont positifs. Davenport explique la motivation qu’il la conduit a suivre cette

méthode :

« Actually my objective originally was to get a proof which should be sy-
metrical with respect to the linear transformation, and there I did not

succeed?™. »

Ces courts extraits de cette lettre montrent bien la différence de présentation par
rapport a la démonstration publiée de Davenport (voir les grandes lignes de cette dé-
monstration dans le paragraphe 4.2.2.5), alors méme que ce sont les mémes idées qui
sont exprimées. Dans son article, Davenport présente son travail de facon arithmé-
tique alors que dans la discussion avec Mordell il fait le choix de la géométrie. Comme

Minkowski le faisait avec Hermite quand il lui présentait son travail sous une forme

213 Lettre de Mordell & Davenport du 3 novembre 1942, DAVENPORT (WL), G 214.

2" ettre de Davenport & Mordell du 13 novembre 1942, MORDELL (St John’s), box 1, folder 4.
275 MORDELL 1943a p.202.

276 Lettre de Davenport & Mordell du 26 novembre 1942, MORDELL (St John’s), box 1, folder 4.
2T Lettre de Davenport & Mordell du 26 novembre 1942, MORDELL (St John’s), box 1, folder 4.
28 Lettre de Davenport & Mordell du 26 novembre 1942, MORDELL (St John’s), box 1, folder 4.
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analytique, Davenport choisit la géométrie peut étre pour prendre le méme point de
vue que celui adopté par son interlocuteur (Mordell) dans ses propres recherches. Mais
chez Davenport, cette différence de présentation entre ce qui est publié et ce qui ne I’est
pas apparait comme une attitude générale. Cette constatation sur la correspondance
avec Mordell rejoint en effet ce que nous avions remarqué a propos de ses notes de
cours ou d’exposés non publiées (voir & ce sujet le paragraphe 4.2.1.3). En particulier,
nous retrouvons 'utilisation de la géométrie quand il s’agit de décrire les grandes idées

de la preuve, de la méthode ou une heuristique (voir a ce sujet la page 283).

Une question qui revient a plusieurs reprises dans leurs lettres et que nous avons
déja mentionnée auparavant est celle de la simplicité. Le probléme est évoqué quand
Mordell doit faire référence au travail de Davenport, Mordell y revient a propos d’une

nouvelle démonstration :

« Proof for the second case is now very simple. I have dispensed with the
9/14 and have presented it in a form which makes the result more intui-

279. 5

tive
Dans une lettre du 13 mai 1943, Davenport fait part de ses critiques sur un manuscrit
que Mordell lui a demandé de relire®®®. Aprés avoir signalé & Mordell des passages qu'’il

juge peu clairs, Davenport conclut :

« I found the paper difficult reading, but I think the exposition is as clear
as the method permits. The numerous little calculations absorb a lot of the
reader’s energy. But it is a fine paper, especially when one thinks of the

further work it has led you to?!. »

D’aprés Davenport, la complexité des preuves sur les cubiques est donc lice a la dé-
marche qu’ils utilisent. Comme le suggére aussi cette derniére citation, la difficulté se
trouve dans les aspects techniques des démonstrations. Les preuves ne contiennent pas
de notion théorique trés élaborée, en revanche elles sont trés sophistiquées technique-

ment.

2 Lettre de Mordell & Davenport du 17 mars 1943, DAVENPORT (WL), G 214.
2801] s’agit probablement de MORDELL 1945a.
281 ettre de Davenport & Mordell du 13 mai 1943, MORDELL (St John’s), box 1, folder 4.
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4.3 Les autres travaux en géométrie des nombres entre

1937 et 1943 et de nouvelles pistes de recherche

4.3.1 Le produit de formes linéaires homogeénes

Pendant la période qui nous intéresse, le travail de Mordell et Davenport sur les
formes linéaires homogénes est focalisé sur la question du minimum du produit de trois
formes de trois variables. Mordell obtient cependant aussi des résultats sur des produits
plus généraux.

282 o1 Mordell revient sur le produit

C’est en particulier le cas en 1941 dans un article
de n formes linéaires de n variables. Il note Ly, ..., L, des formes linéaires homogénes
en les variables x1, ..., x, et de déterminant 1. Soit aussi k£ une constante indépendante
des coefficients des formes et telle qu’il existe des valeurs entiéres des z; non toutes

nulles pour lesquelles
|L1Ly...L,| < k.

K désigne la borne inférieure de toutes les constantes k£ possibles. Le probléme est de
calculer ou bien de majorer K et nous allons voir que Mordell déduit d'un théoréme
général des améliorations pour des résultats connus dans les cas n =4 et n = 5.

Mordell commence par un bref historique de ce probléme qui le conduit & rappeler

que Davenport a récemment montré que, pour n = 3, la constante K est atteinte et

est égale a % alors que dans un article précédent il avait obtenu K < 6017._.. Mordell

souligne ensuite qu’utilisant la méthode de Davenport de ce premier article, Zilinskas

vient?®* d’améliorer le résultat pour n = 4 en montrant que K < 75— . Quand n = 5,
1

Mordell remarque que la borne de Minkowski, K < 54—, est alors la meilleure connue.

La méthode proposée ici par Mordell lui permet d’obtenir dans ces deux derniers cas

1 1

K< —y K<—
(pour n = 4), =304

=149, (pour n =5).

Ces majorations pour la constante K sont des conséquences d’un théoréme que Mordell
énonce de la fagon suivante : s’il existe un ensemble convexe de dimension (n — 1),
symétrique par rapport a l'origine O(z; = 75 = -+ = 1,1 = 0), de volume 2" 7'V et
telle que tous ses points vérifient U'inégalité |z1xs ... 2, 1(x; + 20 + -+ 2,1)| < 1,
alors

K < Ve,

Z82MORDELL 1941d.
28371LINSKAS 1941. Notons que ce résultat de Zilinskas fut publi¢ dans le méme volume du Journal
of the London mathematical society que 'article de Mordell dont il est ici question.
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La preuve de ce théoréme utilise en particulier un résultat que Mordell attribue a Kurt
Mahler?®* et dont il rappelle la démonstration.
Avec ce théoréme, le probléme arithmétique a résoudre au départ est ramené & une

question que nous pouvons qualifier de géométrique®® :

« Concrete results now depend upon finding simple (n — 1)-dimensional sets

286

satisfying (8) %%, »

Mordell détermine ensuite de tels ensembles convexes pour n = 3, n = 4 et n = 5.
Pour n = 3, sa méthode ne lui permet pas de retrouver la borne optimale obtenue
par Davenport. Mais pour n = 4 et n = 5 le calcul du volume des ensembles trouvés
implique les majorations pour K données ci-dessus.

Dans une note a la fin de I'article, Mordell indique que ce travail est celui qui I’a amené

a ses résultats sur les formes cubiques binaires.

En 1943, Mordell consacre un autre article au produit de formes linéaires homo-
génes?®”. Pour X1, Xs, ..., X, des formes linéaires de n variables 1, z, .. ., T,, & coef-
ficients réels ou complexes et de déterminant 1, Mordell définit K (X) comme étant la
borne inférieure du produit | X;X5 ... X,,| pour des valeurs entiéres des variables non
toutes nulles, puis K la borne supérieure des K (X) pour tous les systémes de formes li-
néaires X1, Xo, ..., X,, de déterminant 1. En particulier, pour tout ¢ strictement positif,

il existe des entiers x1, o, ..., x, non tous nuls et tels que
|X1X2Xn| < K+e¢.

Mordell considére ensuite n — 1 formes L, Lo, ..., L,_1 des variables z1,xs,...T,_1
qui vérifient les mémes hypothéses que les formes X; précédentes. La constante k est

définie de la méme maniére que K pour le produit
|LiLo ... Ly 1(Ly+ Lo+ -+ Ly 1)

Pour n strictement plus grand que 2 et des hypothéses sur les formes X;, Mordell
démontre que®®®

K < kvs .

Cassels classe ce dernier article parmi un ensemble de travaux dont I'idée commune

est de ramener un probléme de dimension n & un probléme de dimension n — 129, La

Z8AMAHLER 1938-1939.

285MORDELL 1941d p.8.

286(8) est I'inégalité des hypothéses du théoréme.
28" MORDELL 1943c.

288 M[ORDELL 1943c p.273.

289CASSELS 1973 p.505 et CASSELS 1959 p.269.
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méthode de Mordell pour démontrer le théoréme de Davenport sur le produit de trois
formes linéaires homogénes ternaires peut étre vue comme appartenant a ces travaux.
Il effectue un changement de variables pour se ramener de trois & deux variables. Son
travail entre 1937 et 1945 sur le minimum des formes quadratiques reléve aussi de ce

type d’idée.

4.3.2 Les minima des formes quadratiques

Pour une forme quadratique définie positive, I’estimation du minimum pour des
valeurs entiéres des variables est un probléme classique abordé dans le cadre de la
géométrie des nombres. Minkowski et Blichfeldt ont par exemple obtenu des résultats
sur cette question, Mordell et Davenport s’y sont aussi intéressés. Nous allons illustrer
leur travail & ce sujet par un résultat de Mordell plus particuliérement cité puisqu’il
permet de retrouver plus simplement un théoréme dia a Blichfeldt. Avant de passer
au théoreme de Mordell, voyons comment Davenport décrit le sujet dans des notes de
cours du début des années 1940. Pour une forme quadratique de n variables, définie
positive

non
flzy,.yxy) = Z Z (psTpTs
r=1 s=1
de déterminant A, le probléme est de déterminer la meilleure constante possible ~,

telle qu'il existe (1, ...,x,) des entiers non tous nuls et qui vérifient

flxy, oy zn) < o A7

Davenport envisage alors deux questions en liaison avec ce probléme. La premiére

290

est d’essayer d’améliorer la constante 7, pour un entier n quelconque. Hermite*”" avait

n—1
N

donné 7, = (5) 2 Minkowski démontra ensuite en 1891 par des méthodes géomé-

2
triques que 7, = 2 [['(1 4 %)]~. Blichfeldt*! améliora encore ce dernier résultat en

1914 avec v, = 2 [T(l + "T”)] ". La deuxiéme question est de trouver la meilleure

s

N

constante possible v, ol cette fois 'entier n est fixé. Ces constantes sont connues pour

les entiers entre 1 et & :

64
DB =vV2; u=v2; p=V8; w={—; w=V6d; s=2.

Y2 = 3

Sl

299HERMITE 1850.
291 BLICHFELDT 1914.
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Dans son article publié¢ en 1944, Mordell note?%?

« None of the proofs for n = 5,6, 7,8 are as simple as one could wish. Thus

Blichfeldt’s method involves considerable numerical work. »
Mordell fait référence au calcul de g par Blichfeldt. Pour lui le principal intérét de ce
nouvel article est de pouvoir déterminer plus simplement g & partir de v; grace a une
inégalité entre 7, et 7,_1 qui est valable pour tout n. Il démontre donc le théoréme

o € Al

Comme ;7 = V64 = 20/7_ cette inégalité implique vs < 2. De plus, la forme

8 8 2
fo + (Z :cr> — 22179 — 2T92g
1 1

qui est de déterminant 1, prend la valeur 2 pour x1 =1, 2o =23 =--- = 3 = 0, d’oll
Vs = 2.

Apres avoir démontré le théoréme, Mordell fait le rapprochement entre la méthode
employée ici et celle qu'il a utilisée dans un article sur les formes linéaires (voir page
325). Il souligne aussi la similitude des inégalités obtenues

K < k=, g < e

La preuve de Mordell n’est pas géométrique. Cela semble confimer ce que Davenport
remarque a propos des démonstrations permettant de déterminer la constante -, pour

n entre 1 et 8

« It may be noted that the proofs of these mostly make no use of the
methods of the geometry of numbers. This is often the case with special

293

problems=’>. »

Pour Davenport, il apparait donc que la géométrie des nombres et les méthodes géomé-
triques seraient mieux adaptées pour traiter le cas général que pour les cas particuliers
ou l'entier n est fixé. Cette idée que la géométrie serait du coté de la généralité est

aussi reprise par Mordell en 1971 :

« It sometimes happens that arithmetical proofs are simpler but these may
not suggest the possibility of further application. The geometric method
often depends upon a simpler and more general idea, and this is often more

fruitful since obvious new problems can now be attacked?. »

292\MORDELL 1944b p.3.
293Notes non datées de Davenport sur la géométrie des nombres, DAVENPORT (WL), C 179.
294MORDELL 1971c p.612.
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295

Mordell exprime ici a la fois le fait que la géométrie serait plus générale”””, mais aussi

son intérét dans la découverte de nouveaux probléemes.

4.3.3 « Isolation Theorems »

Dés ses premiers travaux sur les formes cubiques binaires, Mordell énonce des
conjectures sur le comportement du minimum lorsque les cas d’égalités sont exclus.
Dans I'article dans lequel est exposé sa premiére démonstration de son théoréme, il
fait une analogie avec les formes quadratiques binaires qui le conduit aux hypotheéses

suivantes?? :

« HypOoTHESIS 1. If D <0 and f(z,y) is not equivalent to

x3+x2y_2xy2_y3’

then integer values of x,y, not both zero, exist such that

1/ | D]

Tyl < 4

where the equality sign holds when and only when D = —81le* and
e flz,y) ~ 2 =3y’ + 47,
of determinant —81.

HYPOTHESIS 2. If D > 0 and f(z,y) is not equivalent to x3 — xy* — y?,

then integer values of x,y, not both zero, exist such that

./ D

< -
)l < {5
where the equality sign holds when and only when D = 31e* and

e flz,y) ~ 2 +zy’ +y°,

295Ce n’est pas la premiére mention de la généralité en liaison avec la géométrie que nous rencontrons
chez Mordell et Davenport. Ils mettent ici en avant qu'une idée de nature géométrique serait plus
générale pour aborder des problémes dans n’importe quel domaine des mathématiques et en particulier
en théorie des nombres. Notons la différence avec la question de la généralité décrite dans NABONNAND
2008. Pour les mathématiciens du XIX€ siécle qui y sont étudiés, il s’agit de proposer des principes
généraux ou des méthodes générales pour la géométrie. Ils restent donc dans le cadre de la géométrie,
I'objectif poursuivi étant de développer un traitement général pour les problémes géométriques.

296 N[ORDELL 1945a p.203.
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of determinant 31. »

En 1940, Mordell énonce aussi des conjectures similaires pour le produit de trois formes

linéaires homogénes®7 :

« CONJECTURE. If
(I) K’ = /81, and K L;LyLs is not equivalent to (3)2% defined by (4) 2%,
(I) K" =+/31, and KL, LyLs is not equivalent to (3) defined by (5) 3%,

then integer values of x1, xo, w3, not all zero, exist such that

The least value of the product is 1/K” when, and only when,

K, L1 L2 L3 ~ H (IL‘l + QIZL'Q + 0/21'3) s
0/7(;5/711[)/

where for (I) ¢, ¢, 1’ are the roots of the cubic
3 —3t+1=0,

of determinant —81; and for (II) of the cubic
B+t+1=0,

of determinant 31. »

Comme le précise Mordell, la premiére conjecture sur les formes cubiques binaires
implique la seconde sur le produit de trois formes linéaires.
C’est en fait Davenport qui répond a ces conjectures. Dans un article publié en 1941,

301 11 donne

il démontre que la conjecture pour les formes cubiques binaires est fausse
un contre exemple pour I’hypothése 2 énoncée par Mordell, mais il prouve un résultat

. . . . . R e, 1
plus fort puisqu’il justifie qu’il n’existe pas de constantes, mémes différentes de /g7 et

. 3% proposées par Mordell, pour lesquelles la conjecture serait vraie. Les outils utilisés
par Davenport sont issus de I’approximation diophantienne. D’abord des résultats sur
les fractions continues, puis un cas particulier du théoréme de Thue-Siegel : si 6 est

un nombre algébrique de degré 3, pour tout € strictement positif, il existe un nombre

297T\MORDELL 1942 p.114.
298 (est-a-dire H (z1 + 02 + 0%23).
0,6,

299]] s’agit du cas ot les formes sont & coefficients réels donc 8, ¢, ¢ sont les solutions de I’équation
t3+12 -2t —1=0.

3007, est a coefficients réels et Lo, Ls & coefficients complexes conjugués, donc 0, ¢, 1 sont les
solutions de 1’équation t3 — ¢ — 1 = 0.

301 DAVENPORT 1941b.
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positif K. tel que, pour tous les entiers =,y avec y > 0,

-
Y

K.
ngre )

Davenport aborde aussi le probléme pour le produit de trois formes linéaires homogénes.
Dans le cas ot deux des formes sont complexes conjuguées, il indique qu’'un contre
exemple peut étre construit comme il ’a fait dans le cas des formes cubiques binaires.
Par contre, Davenport annonce qu’il a démontré le cas réel.

Dans I'article dans lequel il propose une preuve simplifiée de son théoréme sur le produit
de trois formes linéaires a coefficients réels (voir le paragraphe 4.2.1.3), Davenport

remarque’©?

« In a later paper the method will be developed to give a much deeper result

concerning the “second minimum” of | Ly Ly Ls|. »
En 1943, Davenport montre le résultat sous la forme3%3

« Either (a) M = 1 and Ly, Ly, Ly are equivalent (in some order) to
AM(u+0v+ow), X(u+ ov+yYw), As(u+ v+ w),

where 0, ¢, 1) are the roots of 3+t — 2t — 1 = 0, and A\ )3 =

or (b) M =5 and Ly, Ly, L3 are equivalent (in some order) to

1.
77

Mu+0v+dw), d(u+dv+y'w), Mu+ v+ 0w),

where ¢, ¢', 1)’ are the roots of t3 — 3t — 1 = 0, and A\ A\aA3 =
or(¢) M<gr.»

1.
9

Ly, Lo, L3 sont ici des formes linéaires homogénes de trois variables, de déterminant 1,
a coefficients réels et M la borne inférieure de |L; Ly L3| quand les variables prennent
des valeurs entiéres non toutes nulles. Nous retrouvons effectivement des notions déja
employées dans DAVENPORT 1941a (par exemple les ensembles normaux) ainsi que
des similitudes dans la démarche (utilisation de la réduction des formes quadratiques
binaires etc. . .).

304

L’étude de ce phénomeéne de “minima isolés fait partie des thémes que Davenport,

ainsi que les éleves de Mordell et Davenport, vont continuer a développer par la suite
« This provides an analogous ‘isolation’ situation similar to the well-known
Markoff results for quadratic forms. In a joint paper with Rogers such isola-

tion results and results asserting the existence of infinitely many solutions

302D AVENPORT 1941a p.98.
303DAVENPORT 1943b p.1.

304Pour une présentation modernisée de cette question voir CASSELS 1959, en particulier le chapitre
X.
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were discussed in a general setting. This work was taken further by Rogers
(1953) and J.W.S. Cassels & H.P.F. Swinnerton-Dyer (1955). Very recently
Swinnerton-Dyer, by very subtle use of an electronic computer, has found
a chain of 18 special forms so that the inequality |LiLoLs| < (1/17)A can

305

be satisfied unless LiLsL3 is equivalent to one of the 18 forms". »

4.3.4 Produit de formes linéaires non homogénes

Le probléme du produit de formes linéaires non homogénes et la conjecture de Min-
kowski a ce sujet est un théme qui a intéressé Mordell depuis le début de son travail sur
la géométrie des nombres. Il a joué aussi un role important a la fin des années 1920 et
au début des années 1930 dans les choix de méthodes de Mordell. Entre 1937 et 1945,
la dynamique de la recherche de Mordell et Davenport sur la géométrie des nombres est
davantage guidée par la question du minimum des cubiques binaires et du produit de
trois formes linéaires ternaires. Cependant le travail sur les formes non homogénes n’est
pas abandonné pendant cette période et les deux mathématiciens consacrent quelques
articles a ce sujet. Nous résumons ici les résultats obtenus en suivant la chronologie des

publications.

D’abord en 1939, Davenport redémontre le résultat pour le produit de trois formes
linéaires non homogenes®”. Ce cas avait déja été prouvé par Remak en 19233%7. En
suivant les notations de Davenport, rappelons d’abord 1’énoncé de ce théoréme. Si &, 7
et ( sont trois formes linéaires a coefficients réels, de déterminant 1 et dont les variables
sont notées u, v, w, alors pour n’importe quels nombres réels «, 3, v il existe des valeurs

entiéres de u, v, w pour lesquelles

o =

€ —alln—plI¢—7] <

La preuve proposée par Davenport commence par le rappel d’un résultat déja présent
dans la démonstration originale de Remak : il existe des réels p, ¢, r tels que 'ellipsoide
défini par

P2 4+ Pt 2t =1
ne contient aucun point a coordonnées entiéres dans son intérieur mais trois sur sa

frontiére qui n’appartiennent pas a un plan passant par l'origine. Ce lemme ainsi qu’'un

théoréme sur le minimum des formes quadratiques quaternaires définies positives attri-

305ROGERS ET AL. 1971 p.169.
306 DAVENPORT 1939c.
307TREMAK 1923b.
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bué & Korkine et Zolotareff**® lui permet d’obtenir I’existence dun point & coordonnées
entiéres qui vérifie
3

pE—a)+¢(n—0)P2+r*(¢C—7) < 7 (var)

wlno

En appliquant enfin 'inégalité arithmético-géométrique, cela implique bien le résultat

sur le produit des trois formes.

Mordell revient sur le cas général de cette conjecture de Minkowski en 19403%. Rap-
pelons que Minkowski avait conjecturé que pour n formes L,(x) + ¢, = Z ArsTs + Cp
s=1

a coeflicients réels et de déterminant 1, il existe un n—uplet d’entiers (z) vérifiant

- 1

H | Lr(2) + | < on -

r=1
De plus, Minkowski avait démontré cette conjecture quand n = 2 et d’autres preuves
de ce cas ont ensuite été trouvées, par exemple par Mordell lui-méme. Nous venons de
voir que Davenport a publié peu de temps auparavant une preuve plus simple que celle
de Remak pour n = 3. Mordell indique qu’a sa connaissance aucun résultat général
méme plus faible n’a encore été trouvé pour n plus grand que quatre.
En ce qui concerne le cas ou l'entier n est quelconque, Mordell revient sur la lettre
de Siegel d’octobre 1937 que nous avons déja évoquée dans laquelle Siegel propose une
méthode qui lui permet de montrer 'existence d’une constante M (n), indépendante des
coefficients des formes, majorant le produit précédent. Mordell expose cette méthode
lors de son séminaire et cela conduit Davenport a écrire son premier article sur le
produit de formes linéaires®!?. Mordell rappelle ici 'estimation pour M(n) a laquelle

Davenport est parvenue :

1 (a7

Mn) < |n2"'T(1+=n
En fait, comme Mordell I'indique lui-méme, une amélioration de cette inégalité a été
donnée en 1934. Mais publié en russe cet article avait échappé a Mordell et c¢’est son

auteur Nikolai Grigorievich Tschebotareff qui le lui signale. Tschebotareff a démontré

308 KORKINE et ZOLOTAREFF 1872.
309 MORDELL 1940Db.
310D AVENPORT 1937.
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En reprenant la méthode de Tschebotareff, Mordell obtient une meilleure estimation
de la constante M (n) :

1

2-3n
1+ (V21"

Mordell précise aussi que quelques jours apreés lui, Davenport a retrouvé ce résultat puis

M(n) <

I’a méme plus tard amélioré. Cela traduit une fois de plus le travail effectué en paral-

311 Remarquons

lele par ces deux mathématiciens autour de la géométrie des nombres
enfin que 'amélioration de 'estimation de Tschebotareff pour M (n) de Mordell repose
sur les majorations simultanées plus précises de formes linéaires qu’il avait démontrées
environ deux ans plus tot312.

Les lettres de Tschebotareff & Mordell de cette période apportent des précisions sur
cet épisode. Les deux mathématiciens avaient déja eu des contacts épistolaires en 1931
au sujet des points rationnels sur les courbes. L’échange de lettres reprend en 1938 a
propos de la conjecture de Minkowski sur les formes linéaires non homogénes. Dans
une lettre du 24 février 1938 313, Tschebotareff explique & Mordell qu’il vient de lire son
intervention de 1936 au congrés international d’Oslo intitulée Minkowski’s Theorems

314 Dans cet article que nous avons rencontré plus

and Hypotheses on Linear Forms
haut, Mordell note I’absence de résultat pour n > 3. Tschebotareff écrit donc & Mordell
pour lui faire part de son travail de 1934 dans une publication de I'université de Kazan.
I1 lui traduit en allemand quelques pages de son article afin que Mordell puisse prendre
connaissance de son résultat et de la méthode employée3!? .

Fidéle a son idée que la diversité des points de vue sur des cas particuliers d’un
probléme doit permettre de développer de nouvelles méthodes pour démontrer le cas
général, Mordell revient encore a deux reprises sur le produit de deux formes3!6 au début
des années 1940. Cette preuve, dont 1'idée aurait aussi été découverte par Davenport
indépendamment, utilise le théoréme de Minkowski sur les points d’un réseau dans une
partie convexes symétriques par rapport & un point. Pour Mordell, la preuve repose

sur une idée géométrique3!”

« The proof was suggested by geometric considerations and is essentially

based on the fact that the four hyperbolas

(@—cly—cl <, [@+aly+o] <,

311Nous avons pour l'instant pas trouvé a quel résultat de Davenport Mordell fait ici allusion.
312Voir MORDELL 1937a.

313MORDELL (St John’s) Box 3, Folder 19.

314 MORDELL 1936.

3151 lettre est reproduite en annexe.

316 N[ORDELL 1941c, 1943d.

31"MORDELL 1941c p.88.
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enclose the parallelogram
lr—y| < 2¢, |z+y| < 4e,

whose sides |z+y| = 4c each touch one hyperbola, while the sides |[z—y| = 2¢
each touch two of the hyperbolas. »

Il est rare que Mordell soit trés explicite & ce sujet, mais nous pouvons noter ici qu’il
reconnait a la géométrie un role heuristique. Cette derniére citation montre aussi que
la méthode employée par Mordell est la méme que celle utilisée a propos des formes cu-
biques binaires. Il s’agit de déterminer un parallélogramme d’aire suffisamment grande
dans le domaine qu’il étudie afin d’appliquer le théoréme de Minkowski et de trouver
ainsi des points du réseau. Dans des périodes précédentes, nous avons vu que le tra-
vail de Mordell était souvent guidée par une idée forte comme par exemple la formule
sommatoire de Poisson ou bien a un autre moment le lemme de Smith. Au début des
années 1940, il semble que cela soit ce principe de la recherche de parallélogrammes
permettant 'application du théoréme de Minkowski qui occupe cette place. Cette mé-
thode est par ailleurs aussi utilisée par Davenport.

Nous donnons juste le résultat démontré par Mordell dans le dernier article sur les
formes non homogénes de la période qui nous occupe. Il redémontre donc que pour
L =ax + by, M = cx + dy deux formes linéaires réelles de déterminant un et p, q des

nombres réels38

« THEOREM. (A) Integer values of x, y exist such that

1
|IL+pl|M+q < - (1)

I

(B) If a/b is not rational, there is, for given £ > 0, an integer solution
of (1) such that
0 < |L+p| < €.

(C) If a/b, ¢/d are both rational, there are only a finite number of solu-
tions of (1) unless L +p =0 or M + g = 0 for integers z, y, and these give

an infinity of trivial solutions of (1) in which one factor is zero.

(D) The result (A) is best possible, and the sign of equality in (1) is

required when and only when

(L+p)(M+q) ~ <x+r+%) <y—|—5_|_%)

318\MORDELL 1943d p.218.
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for a unimodular substitution (i.e. one of the form
v =oar+fy, y=7r+dy,

where «, 3, 7, § are integers, ad — By = 1), and integers r, s. »

Il ne s’agit pas d’un nouveau résultat. Mordell attribue (A), (D) et (C) a Minkowski
et (B) a Blichfeldt. Il indique aussi que d’aprés R.Q. Seale, qui donne aussi une dé-
monstration3!?, la preuve de Blichfeldt apparait dans son cours donné a l'université
de Stanford en 1932. Nous trouvons effectivement ce théoréme dans ce cours, I'idée de
départ de Blichfeldt est de se ramener & un probléme homogéne en introduisant une

variable supplémentaire3?°.

Le produit de formes linéaires non homogénes est aussi un théme que Mordell et
Davenport vont continuer a travailler apres 1945. Mordell y reviendra tout au long de sa
carriére, remarquons pour l’anecdote que le dernier article de Mordell recensé dans Acta
Arithmetica est une note sur le produit de n formes non homogénes publiée en 1972 32!,
Davenport étudie ces produits de formes linéaires non homogénes en liaison avec les

322 L’algorithme d’Euclide est valable dans un corps de

corps de nombres algébriques
nombres algébriques K, si pour tout élément A de K, il existe un entier algébrique & tel
que |[N(€ —\)| < 132, N, qui désigne la norme sur le corps K, est en fait un produit
de formes linéaires. Par exemple, pour un corps quadratique la condition précédente
s’écrit

(€=M =N <1,

ou les primes désigne les conjugués. Le calcul ou I'estimation du minimum euclidien

M(K) =sup inf |N(xz— ¢
zeK €Ok
d’un corps de nombres K (O est I'anneau des entiers de ce corps) est un sujet de
recherche encore actif. La conjecture de Minkowski sur le produit de n formes linéaires
non homogeénes qui est liée a ce probléme n’a pas encore été démontrée dans le cas

général mais des démonstrations ont été trouvées pour n < 6324

319GEALE 1935.

320 BLICHFELDT 1932 p.29-37. Des précisions sur ce cours sont données au chapitre 6.

321 MORDELL 1972.

322ROGERS ET AL. 1971 p.170-171.

323DAVENPORT 1949 p.883.

324Pour des détails sur ce probléme ainsi que des références voir BAYER-FLUCKIGER et SUAREZ
2006; BAYER-FLUCKIGER 2006b.
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4.3.5 Vers la géométrie des nombres pour des domaines non

convexes

Une autre direction prise par les recherches de Mordell et Davenport sur la géométrie
des nombres est I’étude de problémes qui conduisent a des domaines non convexes. Ce
nouvel intérét va les amener a des résultats pour des domaines jusqu’alors peu étudiés
mais va aussi modifier la perception de la géométrie des nombres. Le réseau de points
est de plus en plus central dans la théorie. Le probléme fondamental s’est déplacé de
I'estimation de minima d’une fonction (forme) a celui de 'existence de points du réseau
dans un domaine fixé. Cette existence est discutée selon les valeurs du déterminant du
réseau. Les titres des articles de Mordell illustrent ce changement : « Lattice points
in the region |Az* + By*| < 1», « Lattice points in some n-dimensional non-convex
regions ». . .

Dans ce nouveau cadre théorique, les théorémes de Davenport sur le produit de trois
formes linéaires homogénes et de Mordell sur les formes cubiques binaires sont considé-
rés comme une premiére étape vers une théorie générale de la non convexité. Mordell
s’exprime a plusieurs reprises a ce propos ce qui montre I'importance qu’il accorde a

cet aspect de leur travail sur la géométrie des nombres :

« My method of proof is geometrical and gives the first simple instance of
best possible results for a non-convex plane region bounded by curves of

325

degree greater than two>*>. »

« The method of finding the results for the binary cubic meant that the

geometry of numbers for nonconvex regions was no longer a closed book3?°. »

« The emphasis, however, was on convex regions.
The first real approach to non-convex regions was made by Davenport when

the region R is defined by

< 1,

3
E Qrsls

s=1

f($1,9€2,9€3) = H

r=1

where either the a,, are all real, or the a;, are real and the as,, a3, are
conjugate complex numbers. He found the best possible result for the mi-
nimum of f(xq, s, x3) by considering non-convex two-dimensional regions,
very complicated in the second case, but this did not lead to any similar
general results for non-convex regions.

The first vital breach was made by Mordell in 1940 when the region R
was defined by |f(z,y)| < 1 where f(z,y) is a binary cubic form with real

325MORDELL 1941b p.85.
326 N[ORDELL 1946a p.276.
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327

coeflicients »

« The new method employed for the binary cubic led to great developments
in the Geometry of Numbers. Previously only convex regions had been

328

studied, but now the road was open to the study of non-convex regions<°. »

Pour Mordell, cette théorie de la non convexité devient possible grace a la méthode
de démonstration qu’il a développée pour les formes cubiques binaires. Comme il le
montre dans les travaux & ce sujet, elle permet en effet d’aborder des domaines non
convexes en utilisant des parallélogrammes auxquels il peut appliquer le théoréme de
Minkowski sur les points d'un réseau dans des parties convexes. Dans un long article3?

(52 pages) rédigé en 1941 et publié en 1945, il étudie par exemple le domaine
="+ [yl” < 1

pour 0 < p < 1, il démontre aussi

« THEOREM 3. Let
fla,y) =a+y+ [\ = 1)@ +y?) + 2ay)7

where 1 < A < v/2. Then a point other than the origin of every lattice of

determinant A > 0 lies in the region

This is the best possible result. There are exactly two critical lattices®3?. »

Il obtient des résultats similaires pour

f(z,y) = min(z + my , y +mz) ,

75 < m < 1ouencore f(z,y) = zy(a? + y?). Dans un autre article™, il s’intéresse
au domaine |Az* + By?| < 1 et il revient plus particuliérement sur |z — y*| < 1 et

x* 4+ y* < 1. Il montre le théoréme
Yy

« THEOREM. Let A, B be real numbers and AB # 0. Then a point, other

than the origin, of every lattice L, of determinant A > 0, satisfies the

inequality33?

Az* + By*| < K|AB|z A?,
y

32TMORDELL 1961 p.90-91.
328 MoRDELL 1971d p.10.
329MORDELL 1945b.
330NMoORDELL 1945b p.361.
33IMORDELL 1941a.
332MoORDELL 1941a p.152.
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where K = 4/\/17if AB <0, K =2/(2/6 — 3) if AB > 0. »

Ces nouvelles questions sont réellement pergues comme étant a l'origine d’un nouveau

champ de recherche

« These remarks make clear that the geometry of numbers in non-convex
domains offers far more interesting possibilities than the theory for convex
regions, and has now become a most promising field for further investigation

and future research333. »

Dans ce nouveau courant de recherche, 'accent est mis sur l'existence de points de
réseau dans un domaine donné, sur la détermination de réseaux critiques et du dé-
terminant critique. Ces questions deviennent fondamentales alors qu’elles ne 1’étaient
pas encore dans les premiers articles sur les formes cubiques binaires, ot les problémes
étaient formulés différemment. La traduction du probléme du minimum des formes

3_:L,y2_y3|§1

cubiques binaires en terme de points d'un réseau dans le domaine |x
n’était alors vue que comme une étape de la démonstration. D’ailleurs, que cela soit
dans les premiers articles sur les formes cubiques binaires ou dans ceux sur le produit
de trois formes linéaires homogénes, 'accent n’est pas mis sur la non convexité des
domaines étudiés. Il semble donc qu’il s’agisse d’une relecture de ces résultats et mé-
thodes a posteriori (bien que peu de temps aprés) qui conduit Mordell et Davenport a
les envisager dans le contexte plus général d’une géométrie des nombres des domaines
non-convexes - « géométrie des nombres » prenant alors le sens de la recherche des
conditions pour lesquelles un réseau posséde un point différent de l'origine dans un

domaine fixé.

Conclusion

Cette étude du travail de Mordell et Davenport sur la géométrie des nombres fait
déja apparaitre une autre conception de cette discipline par rapport a celle de Min-
kowski. La géométrie des nombres n’est plus organisée avec Mordell et Davenport
autour d’un théoréeme fondamental ou d’'une méthode qu’il s’agit d’appliquer dans des
situations variées. La discipline est structurée par un certain nombre de problémes
a résoudre. Ces problémes peuvent étre étudiés de maniére largement indépendante,
d’autres, comme par exemple le produit de trois formes linéaires homogénes et le mini-
mum des formes cubiques binaires, sont liés. Les objets fondamentaux dans la géométrie
des nombres de Mordell et Davenport sont par conséquent ceux qui interviennent dans
ces problémes : les formes linéaires homogénes ou non homogeénes, leurs produits, les

formes quadratiques, les formes cubiques... De I'image d’une discipline unifiée avec

333MORDELL 1945b p.350.
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Minkowski, nous sommes donc passés, avec Mordell et Davenport, a I'image d'un do-

maine fractionné en différentes questions.

Pour Mordell et Davenport, 'introduction d’un point de vue géométrique en théorie
des nombres dans le cadre de la géométrie des nombres consiste en la traduction de

problémes arithmétiques par la recherche de points d’un réseau dans un domaine fixé :

« Many questions in the theory of numbers can be expressed in the form :
Does a particular region contain a lattice point, or under what conditions is
this the case ? This geometrical approach led Minkowski to many important
theorems. It is also valuable in suggesting new and interesting questions,

4

even when it does not provide any means for answering them?3?. »

Cependant, la géométrie n’occupe pas non plus chez Mordell et Davenport le role cen-
tral qu’elle avait avec Minkowski. Ce changement est bien illustré par la succession des
points de vue adoptés par Mordell au cours de ces recherches : analytique, arithmétique
ou géométrique.

Des utilisations spécifiques de la géométrie ont pu quand méme étre constatées a tra-
vers plusieurs commentaires ponctuels et isolés de Mordell et Davenport, ainsi qu’en
comparant des articles publiés et des notes non publiées de Davenport.
Contrairement a ce qui a été observé chez Minkowski, quand elle intervient la géomé-
trie n’est presque jamais associée a l'intuition. Une seule mention de 'intuition a été

rencontrée dans le cadre de la géométrie des nombres chez Mordell :

« Geometrical intuition and ideas seem to be very relevant for some of the
problems and occasionally the arithmetic aspect seems to have disappea-

red33®, »

Comme le suggeére la fin de la citation précédente de Davenport, a certaines occasions, la
géométrie semble étre employée a des fins heuristiques, en particulier dans la recherche
de '« idée » d’une preuve. Rappelons a ce sujet que Mordell distingue souvent dans
une démonstration I’enchainement logique des arguments de 1'« idée principale » qui
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permet « de voir la démonstration dans son ensemble®?® », c’est cette idée qui renferme

« the why and wherefore of the procedure or [on]| the origin of the proof or

why it succeeds?3”. »

Le role de la géométrie dans la découverte de I'idée de la preuve est apparu par exemple
dans la lettre de Mordell a Davenport du 25 septembre 1933 ot il discute de 'hypotheése
de convexité dans le théoréeme de Minkowski a propos de la démonstration arithmé-

tique qu’il en donne. Davenport semble attribuer une place précise a la géométrie et a

334 DAVENPORT 1947a p.104.
335 MORDELL 1961 p.93.
336 M[ORDELL 1959 p.11.
33TMORDELL 1959 p.11.
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I’analyse ou 'arithmétique selon le moment du processus de recherche dans lequel il se
trouve. Cela a été illustré en particulier par son travail sur le théoréme sur le produit de
trois formes linéaires homogénes pour lequel l'origine géométrique de certaines preuves
disparait dans les publications.

La dimension heuristique qu’apporte la géométrie ou peut-étre méme plus générale-
ment une autre discipline dans la géométrie des nombres est reconnue dans le travail

de leurs prédecesseurs :

« the proofs of both Minkowski’s theorem and Blichfeldt’s theorem, when

expressed in the proper professional form, need no reference to the geome-

338 They are expressed in terms which involve numbers

339 Ty

try or to matter

only but nevertheless that is where the idea come from

Un autre aspect de la géométrie chez Minkowski souligné par Davenport est la
généralité :
« Minkowski found a semi-geometrical interpretation of the problem which
suggested to him arguments which proved to be of great generality and

340

power>*. »

Le peu de commentaires sur cette question rend difficile leur interprétation, mais Mor-
dell et Davenport font référence a plusieurs reprises au caractére plus général des ar-

guments géométriques dans leur propre travail (voir page 327).

Tout cela montre que les critéres pour caractériser la géométrie des nombres comme
discipline chez Minkowski ne peuvent étre conservés dans le cas de Mordell. En par-
ticulier, ’étude de la géométrie des nombres chez Mordell a 1’échelle de sa pratique
des mathématiques a mis en évidence sa collaboration avec Davenport. Cette observa-
tion suggére que dans leur cas, des phénomeénes collectifs doivent étre pris en compte
pour comprendre le développement de la géométrie des nombres comme discipline.
Nous sommes donc conduit a regarder le travail de Mordell & une autre échelle afin

d’approfondir ces facteurs collectifs.

3381 a référence a la matiére renvoie a 1'utilisation par Blichfeldt de sphéres matérielles pour estimer
la constante 7, intervenant dans ’étude du minimum des formes quadratiques.

339 DAVENPORT 1946a.

310D AVENPORT 1946a.
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A travers la collaboration entre Mordell et Davenport, le chapitre précédent a mon-

tré que les facteurs sociaux sont pertinents pour rendre compte de la géométrie des

nombres telle

maintenant en exploitant de nouvelles sources, en particulier leur correspondance. Cette

remarque sur

taires sur la création autour de Mordell d'une école de recherche spécialisée en théorie

des nombres.

de lextérieur

lui-méme. Dans ses Reminiscenses of an Octogenarian Mathematician, il revient sur sa

carriére et en

qu’elle est développée par ces mathématiciens. Ces aspects sont abordés
I'importance des facteurs collectifs est confirmée par plusieurs commen-

Ces commentaires viennent de mathématiciens qui observent ce groupe

(nous en donnerons des exemples dans la suite) mais aussi de Mordell

particulier sur ces années & Manchester puis & Cambridge :

« Fortune was kind to me, and in later years I gathered around myself some

brilliant young mathematicians as members of my staff or research stu-

dents. There were Professor H. Davenport, F.R.S., now at Cambridge (but
who recently died), Professor K. Mahler, F.R.S., Professor at Manchester,
Canberra, and Ohio State University, and Dr. P. Erdos, Professor at the

Hungarian Academy of Science, all of whom have acquired world wide re-

putations.
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[...] It is not often that such a brilliant young trio could be found any-
where. We had also Professor B. Segre, an Italian emigré, now President
of the Lincei Academy at Rome, and H. Heilbronn, F.R.S., Professor at
Bristol and Toronto. It is not surprising that mathematics flourished and
that the Manchester School became well known. As a result, I shone with
a great deal of reflected glory.

[...] T was very fortunate again at Cambridge in having some very bright
students. This was perhaps the beginning of the new number theory school
here, now one of the best in the world under the leadership of (the late)
Professor Davenport and Professor Cassels, both of whom I am proud to

say were my former students®. »

La notion d’« école », qui est utilisée par plusieurs mathématiciens a propos de la
carriére de Mordell, est aussi une catégorie d’analyse employée en histoire des sciences.
Un des articles considérés comme fondateurs de cette tradition historiographique est
celui sur Liebig et Thomson de Jack B. Morrell?.

Dans cet article publié en 1972, I'objectif de Morrell est de comparer deux écoles de
recherche en chimie : le laboratoire de Justus von Liebig & l'université de Giessen et
celui de Thomas Thomson & I'université de Glasgow?. Pour cela, il propose des critéres
pour juger de la réussite d’une école de recherche. Ces critéres sont a la fois intellec-
tuels, institutionnels, techniques, psychologiques et financiers. Pour Morrell, une école
doit avoir un directeur qui supervise un programme de recherche trop important pour
qu’il puisse étre réalisé par une seule personne. Ce directeur doit posséder des moyens
institutionnels, du charisme et il est préférable qu’il ait une forte réputation dans son
domaine de recherche. L’école doit accueillir réguliérement de nouveaux étudiants qui
ont a leur disposition un petit ensemble de méthodes de recherche simples permettant
d’arriver rapidement & de nouveaux résultats. Enfin, les membres de 1’école doivent
avoir des moyens de publication et des moyens financiers. Morrell indique lui-méme
certaines limites du modéle qu’il propose : d'une part, il s’agit de critéres adaptés
pour des « laboratory-based research school » dans la premiére moiti¢ du XIX® siécle,
d’autre part, ils ont été construits pour rendre compte du succes de 1'école de Liebig
en comparaison de celle de Thomson. Malgré ces réserves, Morrell juge que la notion
d’école ainsi que les critéres qu’il propose est une approche fructueuse pour I’historien.
Cependant, Gerald Geison constate en 1981 que cette catégorie d’analyse a été négligée.

Geison revient sur les critéres de Morrell mais donne aussi sa propre définition :

« small groups of mature scientists pursuing a reasonably coherent pro-

gramme of research side-by-side with advanced students in the same insti-

'MORDELL 1971b p.958.
2Voir par exemple la synthése de John Servos, SERVOS 1993.
3SMORRELL 1972.
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tutional context and engaging in direct, continuous social and intellectual
interaction?. »

Il insiste aussi sur la nécessité pour une école d’étre ouverte sur 1'extérieur®.

En 2004, Karen Parshall souligne que la notion d’école a souvent été utilisée en histoire
des mathématiques sans qu’elle ait été définie de maniére précise. De plus, les caracté-
risations proposées pour les autres sciences concernent essentiellement les sciences de
laboratoires et les critéres apparaissent comme peu adaptés aux mathématiques®. En
modifiant les critéres de Morrell et de Geison, elle donne une caractérisation des écoles
de recherche en mathématiques qui tient compte des spécificités de cette discipline.
Pour Parshall, une école est définie par un leader qui défend une idée fondamentale
ou une approche particuliére pour un ensemble de problémes. Ensuite, ce leader doit
former des étudiants et leur inculquer son approche des problémes et sa conception
de la recherche. Par la suite, ces étudiants doivent poursuivre leur propre travail de
recherche dans le méme esprit. Enfin les publications des membres de 1’école sont le
signe de la reconnaissance des recherches effectuées et elles valident le point de vue du
leader dont les idées peuvent étre reprises plus largement”.

Dans ce qui suit nous verrons que cette définition ne rend pas compte de la dynamique
des recherches effectuées autour de Mordell. En particulier parce qu’elle ne décrit qu’un
seul type de relation entre les individus participant au développement de 1’école : celle
du leader avec des étudiants. Ensuite, parce que la conception du role de ce leader qui
s’en dégage ne correspond pas a la place qu’occupe Mordell a Manchester et a Cam-

bridge.

5.1 Premiers indices de la reconnaissance de Man-

chester comme école de recherche

Dans son article biographique sur Mordell, Cassels revient longuement sur le role

qu’il tient d’abord & Manchester puis a Cambridge :

« During the thirties Mordell built up a strong school of mathematics
at Manchester and one which attracted many visitors [...] As Davenport
rightly says, ‘When one recalls the very small scale of mathematical acti-
vity in that age, both in England and in the world at large, as compared

with the activity today, one realizes that Mordell at Manchester exercised

4GEISON 1981 p.23.
SGEISON 1981 p.35.
SPARSHALL 2004 p.271-272.
"PARSHALL 2004 p.274.
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a notable influence’.

Davenport adds, ‘Those who served under him as junior members of staff
found him an admirable head of department. He was conscious of his res-
ponsibilities, and made us very conscious of ours, but at the same time
he did everything possible to encourage us in our researches, and this in-
dependently of whether their subject matter interested him personally or
not’. His usual morning greeting was ‘What’s your news?’ so that one al-
most felt obliged to produce some new mathematical result for him. For
undergraduate courses he made the rule that after each lecture the lecturer
had to make a record of the material covered. This was not merely useful
in constructing the syllabus next year. If for some unavoidable reason the
lecturer was unable to continue then someone else was detailed to give the

missing lecture from the point reached®. »

Cette citation laisse entrevoir différentes caractéristiques de l'intervention de Mordell.
D’abord l'environnement qu’il a créé est reconnu non seulement en Angleterre mais
aussi a ’étranger, ce qui attire de nombreux visiteurs. Nous le verrons, ces visiteurs
sont aussi bien des étudiants voulant continuer leur formation que des chercheurs déja
confirmés. Cassels et Davenport insistent aussi sur les encouragements de Mordell en-
vers ses collaborateurs qui influencent ainsi le développement de leurs recherches. A
un autre niveau, Mordell joue un role dans l'organisation de 1’enseignement et comme
le montre 1'anecdote racontée par Cassels pas seulement pour les étudiants les plus

avances.

Mordell arrive a Manchester en 1920, d’abord au Manchester College of Technology
puis & partir de 1922 a 'université de Manchester ot il reste jusqu'en 1945. Dés 1924
dans une lettre & Hardy, Mordell reconnait lui-méme la dynamique qui est en train
d’étre créée a Manchester. Alors qu’il est a Chicago, il a entendu parlé de postes de

professeur & Liverpool, Sheffield et Londres, il confie son impression & ce sujet a Hardy :

« But I don’t think Liverpool or Sheffield are in the same class as Manchester
(i.e mathematically) which seems to be developing a large math school.
Further we are starting graduate work this coming year which we hope
may develop.

I am not so sure about London. I would rather be in Manchester University
than London University although of course Manchester is not so pleasant

a town (climatically etc) as London®. »

8 CASSELS 1973 p.502-503.
9Lettre de Mordell & Hardy du 24 juillet (1924), MORDELL (St John’s), box 1, folder 8. L’année
n’est pas précisée sur la lettre, 1924 est celle attribuée par ’archiviste.
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Mordell a donc conscience de ce qui se met en place & Manchester et nous voyons le
volontarisme qui est mis dans ’enseignement pour y développer les mathématiques.
La réussite de Manchester dans les années 1920 est une source de fierté pour Mordell.
D’aprés Cassels'?, il ressortait souvent & la fin de sa vie une photo de jeunes mathé-
maticiens de ces années a Manchester en insistant sur le fait qu’ils sont tous devenus
professeurs par la suite (voir la figure 5.1 ).

En 1931, Mordell envisage de quitter Manchester attiré par d’autres opportunités
a Oxford ou Cambridge. Dans une lettre a Hardy il explique les raisons pour lesquelles
il veut partir et ses arguments montrent ce qu'’il juge important pour développer des
recherches dans de bonnes conditions'?. Il voudrait d’abord plus de temps pour la
recherche et donc étre moins pris par des taches administratives. De plus, il juge que
son travail a atteint une certaine reconnaissance et qu’il serait profitable qu’il soit en
contact avec plus d’étudiants susceptibles de se diriger vers les mathématiques (« a
more mature class of students »). Il souhaiterait enfin pouvoir organiser un séminaire
centré sur ses recherches. En fait, cette lettre de Mordell apparait comme un acte
de candidature officieux pour un poste & Oxford : il prend la peine de faire écrire la
lettre par quelqu'un d’autre (son écriture étant souvent presque illisible) et il donne
implicitement son autorisation pour que Hardy la fasse circuler. Mordell a en effet
conscience qu’il n’est pas favori pour ce poste ce qu’il semble attribuer & son manque
de connection avec Oxford par rapport a celui qu’il voit comme son principal concurrent
Edward C. Titchmarsh. Il n’obtient effectivement pas ce poste qui revient finalement
a Titchmarsh mais cet épisode montre que Mordell accorde une place importante a la
transmission dans son activité de chercheur.
Dans une lettre ou il regrette que Mordell n’ait pas eu ce poste a Oxford, Edward

Arthur Milne note en guise de consolation

« But at any rate at Manchester you have a department of your own, and
all the world knows what a fine amount of original work you are turning

out!?. »

Malgré les doutes exprimés par Mordell en 1931, Manchester finit par étre recon-
nue comme centre de recherche en mathématiques et Mordell est associé a 'image de

Manchester :

10CASSELS 1973 p.503.

HUMORDELL (St John’s), box 4, folder 41. Reproduced by permission of the Master and Fellows of St
John’s College, Cambridge. Nous avons trouvé cette photo dans les archives de Mordell & Cambridge
et il est trés probable que c’est celle qui est mentionnée par Cassels. Le catalogue de la bibliothéque
indique qu’il s’agit d’'une photo du personnel de Manchester en 1925. Mordell se trouve au premier
rang en quatriéme position en partant de la gauche. On peut reconnaitre Davenport a la gauche de
Mordell : c’est possible car en 1925 il était étudiant & Manchester. Ceci suggére qu’il doit y avoir sur
cette photo a la fois des étudiants et des enseignants.

12Lettre de Mordell & Hardy de 1931, MORDELL (St John’s), box 1, folder 8.

13Lettre de Milne & Mordell du 10 septembre 1931, MORDELL (St John’s), box 2, folder 18.
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0.1

Fi1G. 5.1 — Photo & Manchester en 1925
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« Hope all is well for you and the Manchester school'*. »

D’ailleurs, c’est sur le terrain de la théorie des nombres, sujet préféré de Mordell, que
Manchester acquiert sa réputation. Par exemple, alors qu’il postule pour obtenir le
Bishop Harvey Goodwin Mathematical Scholarship pour 'année 1934-1935, Fritz John

remarque

« My special interests in the theory of numbers suggest that Manchester

would be a suitable place for me to continue my work!®. »

En 1938, nous avons un autre témoignage de la reconnaissance de Manchester
comme centre important de recherches en théorie des nombres quand Salomon Lu-

belski demande & Mordell de faire parti du comité de rédaction de Acta Arithmetica

« Jetzt, sehr verehrter Herr Professor, ist es mir sehr angenehm zu betonen,
dass Thre zahlentheoretische Schule in Mantchester (sic) heute zum grossten
zahlentheoretischen Collegium geworden ist. Es wird also ganz natiirlich
sein, dass ich mich an Sie mit des Proposition wende, einzuwilligen dem

16

engeren Redaktionskomitee anzugehoren™. »

Dans la suite nous essayons de donner des détails sur le fonctionnement de ce groupe
constitué autour de Mordell. D’abord en récoltant des indices sur la maniére dont ensei-
gnement et recherche s’effectuent au sein du groupe, ensuite sur les contacts de Mordell
a l'extérieur. Enfin, nous donnerons quelques éléments sur le travail administratif de
Mordell.

5.2 Enseignement et recherche sous I’'influence de Mor-
dell

5.2.1 Enseignement & Manchester et Cambridge

Nous avons en fait assez peu de traces des activités d’enseignement de Mordell &
Manchester. Il aurait donné entre 1923 et 1926 des cours d’analyse complexe qui aurait
été suivis par Davenport!” alors qu’il était étudiant. Nous avons aussi trouvé dans

les archives de Mordell des listes d’éléves datées de 1’été 1923 pour des cours sur les

T ettre de Herbert W. Richmond & Mordell du 6 juillet 1943, MORDELL (St John’s), box 3, folder
25.

5Lettre de F. John & Mordell du 18 mai 1934, MORDELL (St John’s), box 3, folder 19.

16 « Maintenant, Monsieur le Professeur, il m’est trés agréable de souligner que votre école arith-
métique & Mantchester (sic) est devenue maintenant le plus grand Collegium de théorie des nombres.
Il sera donc tout naturel que je me tourne vers vous avec la proposition que vous consentiez a faire
partie du comité de rédaction restreint. », lettre de Lubelski & Mordell du 7 avril 1938, MORDELL (St
John’s), box 2, folder 16.

"ROGERS ET AL. 1971 p.159.
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intégrales définies et la théorie analytique des nombres. Sur ces listes chaque étudiant
indique son nom ainsi que son université et il s’agit exclusivement ici d’universités
ameéricaines. Ces cours ont donc été trés certainement professés aux Etats Unis, il est
cependant possible qu’il ait abordé les mémes thémes & Manchester. Un témoignage de
John A. Todd atteste du bon niveau des étudiants de Manchester du début des années
1930. En 1931, Todd arrive a l'université de Manchester ou il a obtenu un assistant
lectureship. Il se voit accorder en 1933 un Rockefeller Fellowship pour aller & Princeton
afin de travailler avec Lefchetz!'®. Le 26 octobre 1933, Todd écrit a Mordell pour lui
donner de ses nouvelles, il juge alors le niveau des étudiants a Manchester meilleur qu’a

Princeton

«T[...] have made amazing discoveries (7) the calibre of certain members
of his audience, to whom the notation “d?s” is a mystery and who have the
strangest idea on one parameter families of curves. Some of the questions
asked in class would shame many Manchester audiences - and these are

graduates!® ! »

Les étudiants en mathématiques a Manchester de cette époque suivent un cursus
Honours in Mathematics. La formation dure trois ans (Part I, IT et III) et les étudiants

assistent a environ six heures de cours de sciences par semaine. Nous donnons la liste
de ces cours pour les années 1919-1920, 1929-1930 et 1939-1940 dans le tableau 5.1 2°.

Nous ne savons pas si Mordell est responsable du cours de théorie des nombres
qui fait son apparition en 1939 ou encore s’il intégre dans ses cours la géométrie des

nombres. Cependant, le 28 novembre 1945, Freeman Dyson écrit & Mordell :

« I return with thanks your lecture on the geometry of numbers. It is cer-
tainly helpful in giving a better grasp of the present state of the subject as
a whole than is to be got from the published papers®!. »

La date de cette lettre laisse penser que ce cours sur la géométrie des nombres de
Mordell a été donné alors qu'il se trouve encore & l'université de Manchester. A cette
époque, aucun cours ou livre portant exclusivement sur la géométrie des nombres n’a
encore été publié (a4 part ceux de Minkowski), ce qui explique la fin de la citation de
Dyson car les articles sont la seule source pour étudier les développements récents de
la théorie.

Davenport mentionne enfin un cours de Mordell & Cambridge pendant 1'hiver 1933-1934

alors qu'il est encore & Manchester??, cette invitation est aussi un signe de reconnais-

18 ettre de Mordell & Hardy du 1 mai 1933, MORDELL (St John’s), box 1, folder 8.

Yettre de Todd & Mordell du 26 octobre 1933, MORDELL (St John’s), box 3, folder 32.

29Ces informations sont extraites de la base de données Britmath réalisée par June Barrow-Green.
21Lettre de Dyson & Mordell du 28 novembre 1945, MORDELL (St John’s), box 3, folder 19.
22Lettre de Davenport & Mordell du 11 juillet 1933, MORDELL (St John’s), box 1, folder 4.
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Année 1919-1920

Part I

algebra; plane and spherical trigonometry ; elementary solid geometry ;
analytical plane geometry ; infinitesimal calculus; elementary mechanics
(without calculus)

Part 11

analytical plane and solid geometry ; differential and integral calculus;
ordinary differential equations; statics and hydrostatics; two-dimensional
dynamics

Part III

differential equations; functions of a complex variable ; statics and dynamics
mainly 2 dimensional ; projective geometry ; higher plane curves; differential
solid geometry ; theory of infinite series; definite integrals; theory of
functions ; statics and dynamics (3 dimensional) ; dynamics of material
systems in general ; theory of vibrations; attractions; elementary
hydrodynamics ; vibrations of strings; bars and air columns

Année 1929-1930

Part I

algebra; plane and spherical trigonometry ; elementary pure and analytical
geometry ; elementary infinitésimal calculus; elementary statics; dynamics
and hydrostatics

Part 11

pure and analytical (plane and solid) geometry ; infinitesimal calculus;
ordinary differential equations; statics (2 and 3 dimensional) ; dynamics of a
particle (2 and 3 dimensional) ; rigid dynamics

Part III

higher geometry ; theory of functions; differential equations; rigid dynamics
(3 dimensional) ; theory of the potential (including gravitational and
electrostatics) ; elasticity and elementary hydrostatics

Année 1939-1940

Part I

elementary analysis comprising algebra, calculus, elementary differential
equations; elementary pure analytical and differential geometry ; elementary
statics ; dynamics and hydrostatics

Part 11

theory of functions of real and complex variables ; differential equations;
plane, solid and differential geometry ; statics and dynamics (2 and 3
dimensional) ; mathematical theory of electricity and magnetism

Part III

theory of functions; theory of numbers; higher geometry ; differential
equations ; dynamics; theory of vibrations and wave motions;
hydrodynamics; electromagnetic theory

TAB. 5.1: Cours de mathématiques a Manchester
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sance de son travail.

Il y a plus d’indices et de témoignages sur les activités d’enseignement de Mor-
dell & Cambridge a partir de 1945. D’aprés Cassels, Mordell propose alors des cours
sur les équations diophantiennes, les nombres algébriques et la géométrie des nombres.
Ces cours s’adressent a des étudiants avancés, ceux qui préparent la troisiéme partie
du Tripos, et sont aussi suivis par des Research Students?. Cela est confirmé par di-
vers documents trouvés dans les archives de Mordell. Nous avons d’abord des notes de
Mordell pour ce qui est certainement des questions pour des examens. Ces questions

portent justement sur les trois thémes évoqués par Cassels (voir les figures 5.2, 5.3 et
5.424),

Ensuite, nous avons retrouvé des notes de cours manuscrites concernant la géomé-
trie des nombres. Ces notes ne sont pas datées mais la mention d’un résultat sur les
formes linéaires publié en 1948 permet de dire que ce cours a été donné a Cambridge.
Dans le méme dossier contenant le cours sur la géométrie des nombres se trouvent aussi
plusieurs listes d’étudiants ayant certainement suivi des cours de Mordell et en par-
ticulier celui sur la géométrie des nombres?. Il s’agit de listes manuscrites ot chaque
étudiant a inscrit lui-méme son nom, le College auquel il est rattaché ainsi que son
niveau d’é¢tude (pour un exemple voir la figure 5.52%).

Une de ces listes est datée de 1946, une autre de 1947-1948 et enfin une seule
précise qu'il s’agit d'un cours sur les équations diophantiennes en 1951. Comme les
mémes noms reviennent sur toutes les autres listes, elles sont probablement toutes de
la méme époque.

Nous avons relevé tous les noms qui apparaissent au moins sur une des listes, nous les

donnons par ordre alphabétique?” :

1. A.J. Amin 2. A.O.L. Atkin 3. R.P. Bambah
4. E.S. Barnes 5. A.V. Boyd 6. M. Campbell
7. JJW.S. Cassels 8. J.H.H. Chalk 9. K.L.. Chang
10. R.F. Churchhouse 11. L.E. Clarke 12. P.M. Cohn
13. C.S. Davis 14. G.A. Dirac 15. J.L. Dixon
16. M.P. Drazin 17. H.G. Eggleston 18. G.D. Findlay

23CASSELS 1973 p.506.

2AMORDELL (St John’s), box 7. Reproduced by permission of the Master and Fellows of St John’s
College, Cambridge.

Z’MORDELL (St John’s), box 7. Des détails sur ce cours sont donnés dans le chapitre 6.

26Reproduced by permission of the Master and Fellows of St John’s College, Cambridge.

2716 noms trop difficiles & lire n’ont pas été mentionnés.
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F1G. 5.2 — Problémes sur les équations diophantiennes
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F1G. 5.3 — Problémes sur les nombres algébriques
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F1G. 5.4 — Problémes sur la géométrie des nombres
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F1G. 5.5 — Liste d’étudiants présents a un cours de Mordell

19. C.S. Fu
22. G. Gregory
25. R. Harrop
28. H.E. Hogg
31. O.S. Icen

34. M.J. Lighthill
37. A.M. Macbeath

40. H. Meier

43. P. Mullender

46. A.J. Pillow
49. E. Rowland
52. E.S. Selmer

20. K.S. Gangadharan
23.
26.
29.
32.
35.
38.
41.
44.
47.
50.
53.

J.S. Griffith
C.B. Haselgrove
J. Hunter

H.A. Thurston
G.B. Longden
E.A. Mac Harg
G.R. Morris
P.C. Parks
R.A. Rankin
P.A. Samet
W.A.C. Smith

354

21.
24.
27.
30.
33.
36.
39.
42.
45.
48.
o1.
o4.

F.W. Gehring
V.W.D. Hale
C.J. Heywood
D.R. Iaunt
A.J. Knight
G.S. Lowden
G.F.M. Mayo
P. Matthews
W.B. Pennington
K. Rogers
D.B. Sawyer
G.K. Stanley
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56. J.C. Tanner
59. E.G. Watson

57. G. Vincent
60. D.J. Wheeler

55. P. Swinnerton-Dyer
58. F.J. Walker

Certains des étudiants précédents ont pu étre identifiés en utilisant le site Genealogy
Project® ce qui permet d’avoir une idée des sujets de recherche qu’ils choisissent par
la suite. Quand ces informations sont disponibles, nous avons indiqué dans le tableau

5.2 'année d’obtention et le titre de la thése ainsi que l'université dans laquelle elle a

été soutenue®.
Nom Année/Univ. | Titre de la thése donné sur le site
Atkin A.O.L. 1952 /Cambridge | Two Problems of Additive Number Theory
Bambah R.P.
Barnes E.S. 1952 /Cambridge | Minimal Problems for Quadratic and Bilinear
Forms
Cassels J.W.S. 1949 /Cambridge
Chalk J.H.H. 1952 /Cambridge | Diophantine Inequalities
Churchhouse R.F. | 1952/Cambridge | On the Geometry of Numbers in some non-
convexr Regions
Clarke L.E. 1954 /Cambridge | Some Results in the Geometry of Numbers
Cohn P.M. 1952 /Cambridge | Integral Modules, Lie Rings and Free Groups
Dayvis S.D. 1949/Cambridge | The Minimum of a binary Quartic Form
Dirac G.A. 1952 /Londres On the Colouring of Graphs : Combinatorial to-
pology of Linear Complezes
Drazin M.P. 1953 /Cambridge | Contributions to Abstract Algebra
Findlay G.D. 1958 /Cambridge | A Class of Monomial Groups
Gangadharan K.S. | 1953/Cambridge | Two Classical Lattice-Point Problems
Gehring F.W. 1952 /Cambridge | A Study of the pth Power Variation
Hale V.W.D. 1952/Cambridge | Quasi-Groups and Loops associated with Steiner
Systems
voir la suite page suivante

28 ’adresse de ce site internet est http://www.genealogy.ams.org/.

29Ces informations sont cependant & prendre avec précaution. Il est par exemple étrange que le
titre des théses de Cassels et de Swinnerton-Dyer ne soit pas indiqué alors qu’ils sont parmi les
mathématiciens les plus célébres de cette liste.
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Nom Année/Univ. | Titre de la thése donné sur le site
Harrop R. 1953 /Cambridge | An Investigation of the Propositional Calculus
used in a Particular System of Logic
Haselgrove C.B. 1956/Cambridge | Some Theorems in the Analytic Theory of Num-
bers
Higgins P.J. 1954 /Cambridge | Two Topics in Abstract Algebra
Hunter J. 1953 /Cambridge | Minimum Discriminants of Algebraic Number
Fields
Icen O.S. 1955 /Gottingen | Eine Verallgemeinerung und Uebertragung der
Schneider’schen Algebraizitaetskriterien ins p-
adische mit Anwendung auf einen Transzendenz-
beweis im p-adischen
Lighthill M.J.
Knight A.J. 1955 /Cambridge | Some New Contributions to the theory of Abelian
Varieties with Applications
Macbeath A.M. 1950/Princeton | The Geometry of Non-Homogeneous Lattices
Morris G.R. 1953 /Cambridge | Some Topics on the Theory of Non-Linear Vi-
brations
Mullender P. 1945 /Amsterdam | Toepassingen van de meetkunde der getallen op
ongelijkheden in K (1) en K(iy/m)
Pennington W.B. 1951 /Cambridge | Contributions to the Theory of Series and the
Analytical Theory of Numbers
Rankin R.A. 1940/Cambridge
Rogers K. 1955/Cambridge | Some Results in the Geometry of Numbers
Samet P.A. 1953 /Cambridge | Algebraic Integers with Two Conjugates Outside
the Unit Clircle
Swinnerton-Dyer P.
Walker F.J. 1952 /Cambridge | A Problem in the Theory of Numbers
Wheeler D.J.

TAB. 5.2: Théses des étudiants de Mordell trouvés sur le site Genealogy Project
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La théorie des nombres apparait donc comme un des premiers sujets de recherche
pour plus de la moitié des mathématiciens de ce recensement. Neuf s’intéressent & la
géométrie des nombres ou des thémes que nous avons rencontrés en liaison avec la
géométrie des nombres. Nous pouvons certainement voir 1a 'influence de Mordell dans
le choix des sujets. C’est 'interprétation de Cassels qui remarque que Mordell attirait
de nombreux “research students” & Cambridge dont la plupart travaillaient sur des pro-

blémes liés & la géométrie des nombres®’.

Une derniére source permet de donner des informations sur les étudiants qui as-
sistent aux cours de Mordell & Cambridge. Ce dernier devait demander que chacun
d’entre eux remplisse une fiche indiquant quelle formation ils avaient en théorie des
nombres (cours déja suivis, lectures). Certaines de ces fiches retrouvées dans les pa-
piers de Mordell permettent de se faire une idée sur les connaissances d’étudiants a
Cambridge désirant se spécialiser en théorie des nombres®'. Le cours d’introduction &
la théorie des nombres d’Albert Ingham est cité a plusieurs reprises et le séminaire
de Davenport une fois. Le livre qui apparait comme un classique est celui de Hardy
et Wright, Introduction to the Theory of Numbers, mentionné a plusieurs reprises. Les
ouvrages suivants sont aussi cités dans ces fiches :

— Bachmann, Zahlentheorie,

— Gauss, Disquisitiones Arithmeticae,

— Hecke, Algebraischen Zahlen,

— Ingham, Distribution of Prime Numbers,

— Landau, Vorlesungen iber Zahlentheorie et Uber einige neure Fortschritte der

additiven Zahlentheorie,

— Mathews, Theory of Numbers.

Les lectures de ces étudiants sont donc avant tout anglaises et ensuite allemandes.
Nous avions déja remarqué que les sources de Mordell sont surtout allemandes, cela
donc semble étre une caractéristique partagée dans le milieu des théoriciens des nombres
de Cambridge de la fin des années 1940 et du début des années 1950.

Mordell attire donc de nombreux étudiants sur lesquels il semble exercer une in-
fluence pour le choix de leur sujet de recherche?. A notre connaissance, Mordell a trés
peu encadré de théses dans le sens ol nous 'entendons maintenant. Seuls Cassels et

Davis (qui figurent dans le tableau précédent) ont obtenu un doctorat sous sa direction.

30CASSELS 1973 p.505.

3IMoORDELL (St John’s), box 7.

32Pour confirmer que Mordell exerce bien ce type d’influence sur ses étudiants il serait utile de
reconstituer plus précisément le parcours d’un nombre significatif d’entre eux. Il est en effet possible
que le choix du sujet soit la raison de leur venue & Cambridge pour suivre les cours de Mordell. Ce
dernier n’en serait alors pas directement responsable.
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Mais cela n’est pas nécessairement un indicateur trés fiable & propos de 'activité d’en-
seignement d’'un chercheur a cette époque en Angleterre. Le PhD apparait en Grande
Bretagne a la fin de la Premiére Guerre Mondiale mais il ne commence a devenir un
passage obligé pour les futurs chercheurs qu’aprés la Seconde3?. De plus, ce systéme ne
se met en place que progressivement. Cassels témoigne cependant de la maniére dont
Mordell intervenait dans la formation des jeunes chercheurs. Selon Cassels, Mordell
était trés peu dirigiste pour les choix de thémes de recherche et préférait au contraire
qu'ils trouvent eux-mémes des problémes a étudier®*.

Cassels raconte que Mordell avait surtout pour habitude de relire minutieusement les
manuscrits des « research students » et leur demandait de les réécrire tant que chaque
phrase n’était pas complétement claire : « The process continued until he could read
right through?®’. » Cette maniére de travailler a un impact sur ’exposition des recherches
et Cassels reconnait avoir beaucoup appris « about the art of exposition in this way,
partly from explicit comments [...] but much more from observing his difficulties® ».
La transmission entre le professeur et I’étudiant se passe ici lors d’entretiens privés au
cours desquels I'apprentissage de la recherche se fait non seulement a travers la discus-

sion mais aussi par l'observation du chercheur confirmé au travail.

Nous terminons ce paragraphe par deux anecdotes montrant que Mordell est pergu
a cette époque comme un des mathématiciens a consulter pour faire de la théorie des
nombres en Angleterre.
En 1943 alors qu’il est mobilisé par la guerre, Cassels rencontre Hardy et lui fait part
de son intention de s’orienter vers la recherche en théorie des nombres apres la guerre.
Hardy contacte alors Mordell, il lui explique que Cassels a déja lu Landau et le livre
de Hardy et Wright et il lui demande de faire des suggestions car

« He really wants some definite problem which he can think about it in his

7

(scanty) spare time®7. »

Grace a la lettre de remerciements que Cassels adresse & Mordell le 3 octobre 1943,
nous savons que Mordell lui a conseillé d’étudier un de ses articles (il ne précise pas
lequel) et de lire Minkowski®.

Un deuxiéme exemple ott Mordell est sollicité pour conseiller un mathématicien débu-

tant est celui de Peter Swinnerton-Dyer. En aott 1942, Mordell regoit une lettre de

33Voir le site http://www.economics.soton.ac.uk/staff/aldrich/PhD.htm . Je remercie June
Barrow-Green pour cette référence et pour les informations qu’elle m’a communiquées sur le PhD en
Angleterre.

34CASSELS 1973 p.506.

35CASSELS 1973 p.506.

36CASSELS 1973 p.506.

37Lettre de Hardy a Mordell du 25 aotit 1943, MORDELL (St John’s), box 1, folder 8. Hardy indique
qu’il voulait d’abord consulté Davenport mais cela n’a finalement pas été possible.

38Lettre de Cassels a Mordell du 3 octobre 1943, MORDELL (St John’s), box 3, folder 19.
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Thomas Merton® dans laquelle il lui demande son avis & propos du travail sur I’équa-
tion diophantienne A* + B* = C* + D* qu’un ami de son fils lui a montré*®. Cet ami,
Swinnerton-Dyer alors 4gé de 15 ans, a développé une nouvelle méthode pour résoudre
'équation précédente?!. Mordell pense que la méthode est originale et se montre trés

¢logieux envers ce travail

« the boy must be congratulated on a very pretty piece of work which even
an old (7) like myself would be pleased to have discovered.

I think the method ought to be published and I am prepared to submit his
effort to the Journal of the London Mathematical Society.|. . ]

Can you tell me something about the boy and his attainments. I shall
follow his career with great interest for he will probably be the youngest

contributor to the publications of the London Math Soc*?. »

Des lettres entre Mordell et Swinnerton-Dyer sont ensuite échangées pour discuter de
la publication de cette méthode®®. Mordell lui conseille aussi de lire Landau, Hardy et
Wright, Ingham (sur les nombres premiers), Salmon (sur les coniques) et Mascheroni
(sur la géométrie du compas). Pour la théorie des nombres, nous retrouvons la littéra-

ture classique de I'étudiant anglais de cette époque déja mentionnée.

5.2.2 Des exemples de pratiques de recherche dans cette com-

munauté de mathématiciens

Nous avons noté l'influence probable de Mordell dans le choix des thémes de re-
cherche des jeunes chercheurs. De plus, il apporte émulation et motivation dans le
groupe en manifestant son intérét pour le travail de chacun (voir la citation de Cas-
sels a la page 343). Il s’agit maintenant de donner des éléments plus concrets pour
comprendre comment s’exerce cette influence et a quelles occasions. Les contacts avec
Mordell ne sont pas les seuls a avoir des conséquences sur la recherche mais toutes les
interactions entre les membres peuvent avoir les mémes effets.

Ces contacts peuvent prendre la forme d’échanges informels entre deux ou un petit
groupe de personnes. Ce sont parfois des rencontres institutionnalisées pour favoriser
les échanges entre les mathématiciens, le séminaire en est un exemple. Ces deux modes

de communications sont aussi complémentaires, une discussion lors d’un séminaire peut

39Nous ne savons pas s’il s’agit d’un ami de Mordell, il indique seulement qu’il n’est pas mathéma-
ticien.

40Lettre de Merton a Mordell du 15 aotit 1942, MORDELL (St John’s), box 3, folder 31.

4 Pour des éléments sur 1’histoire de cette équation ainsi qu’une présentation de la méthode d’Euler
voir DICKSON 1920 p.644.

42Lettre de Mordell & Merton du 20 aofit 1942, MORDELL (St John’s), box 3, folder 31.

43SWINNERTON-DYER 1943.
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susciter une collaboration entre deux mathématiciens sur un probléme précis. Nous es-
saierons enfin de donner des exemples de ce qui est échangé et circule au sein de ce

groupe de mathématiciens.

5.2.2.1 Les séminaires et les conférences comme lieux d’échanges officiels

En 1931 quand il envisage de quitter Manchester, Mordell met en avant 'importance
du séminaire comme outil pour la recherche. Nous verrons dans la suite qu’il a fini par
organiser un séminaire & Manchester au cours duquel certains de ses résultats sur la
géométrie des nombres ont été présentés. Cassels mentionne la tenue d’un séminaire
hebdomadaire alors qu’il se trouve & Cambridge**.

Dans un de ces articles sur les formes linéaires publié¢ en 1941%5, Mordell mentionne
qu’il a présenté ce travail a son séminaire et que des suggestions lui ont été faites par
Davenport et Patrick Du Val pour simplifier un point de la démonstration.

Lors du conférence a Oxford en juin 1945, Mordell aborde la question du minimum
d’une forme quadratique de n variables et de la détermination de la constante 7, telle
que

f(xla---vxn) S ’Yn\n/ﬁa

ou les x; sont des entiers non tous nuls. Nous avons vu que cette constante a été cal-
culée pour 2 < n < 8. Suite a cette conférence, T. W. Chaundy propose une nouvelle
méthode permettant de déterminer v, pour 3 < n < 1046, La publication de la preuve
de Chaundy entraine des réactions chez des mathématiciens intéressés par cette ques-
tion. Alexander Oppenheim pense avoir trouvé un probléme dans la démonstration de
Chaundy, il consulte a ce sujet Davenport qui est d’accord avec ses critiques. Il écrit
donc & Mordell pour lui demander son avis?”. A travers cette anecdote, nous voyons
comment une communication publique a pour conséquence une publication qui, & son
tour, suscite des échanges cette fois dans la sphére privée. C’est ici & ce niveau qu’ils
essaient de se mettre d’accord sur ce qui pose probléme et éventuellement de trouver

une solution.

Il serait trop restrictif de limiter notre étude au seul lieu géographique ot se trouve
Mordell pour rendre compte de I'activité en théorie des nombres et surtout en géométrie
des nombres en Angleterre a cette époque. Méme lorsqu’il quitte Manchester en 1941,

Davenport maintient des contacts trés étroits avec Mordell particulierement au sujet de

44CASSELS 1973 p.505.

4SMORDELL 1941d.

46MORDELL 1946b p.66.

47Lettre de Oppenheim & Mordell du 8 novembre 1946, MORDELL (St John’s), box 3, folder 19.
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la géométrie des nombres. I1 donne lui aussi des cours sur ce théme®® et son Inaugural
Lecture a Londres le 6 juin 1946 porte sur la géométrie des nombres*®. Une bonne
illustration de ces échanges est donnée par le séminaire que Davenport commence a
organiser a son arrivée a Londres en 1945 et ou la géométrie des nombres est un
theme souvent abordé. D’autre part, Mordell vient assister parfois a ce séminaire et ses
travaux y sont présentés et Davenport intervient au séminaire de Cambridge. Donnons
des exemples de sujets traités lors du séminaire de Davenport a Londres ainsi que les

intervenants® :

1. Minkowski’s Generalized Inequality, par M. Woodger. Il s’agit d'une présentation
du chapitre 5 de Geometrie der Zahlen dans lequel Minkowski démontre le théo-

réme des minima successifs.

2. Product of Three Homogeneous Linear Forms, par J.H.H. Chalk®. La méthode

de Davenport sur ce sujet est détaillée.

3. Binary Cubic Forms, par H. Davenport. C’est la méthode de Mordell qui est

présentée.
4. Product of non Homogeneous Linear Forms I, par H. Davenport.

5. Product of non Homogeneous Linear Forms II, par H. Davenport. Les travaux de
Remak et de Landau sont abordés.

La présence au premier exposé de Mordell et de Rogers (qui assistait réguliérement au

séminaire®) est indiquée.

La preuve de Dyson de la conjecture de Minkowski sur le produit de quatre formes
linéaires non homogeénes est consécutive a une intervention sur le sujet a ce séminaire®.

Davenport s’intéresse a cette conjecture depuis plusieurs années

« I have not been successful with any research- have tried the 4 linear forms

again but there is still a real difficulty®. »

Dans l'article o cette démonstration est publiée, Dyson remercie d’ailleurs Davenport
pour lui avoir suggéré ce probléme et signalé les travaux de Remak et Hofreiter sur le
sujet®.

Nous avons aussi une trace d’une intervention de Davenport au séminaire de Mordell

48Les archives contiennent des notes de cours dont le contenu indique qu’elles datent d’aprés 1943.
D’autres notes donnent le plan d’un cours & University college of London en 1946 toujours sur la
géométrie des nombres, DAVENPORT (WL), C 167, C 179, C 180.

YDavENPORT (WL), A 59, C 164.

S0DavENPORT (WL), C 167.

51Chalk qui est un des premiers étudiants de Davenport se rend ensuite & Cambridge pour travailler
avec Mordell, ROGERS ET AL. 1971 p.162.

52ROGERS ET AL. 1971 p.162.

53ROGERS ET AL. 1971 p.162. Il s’agit peut étre d’un des exposés de Davenport sur le produit des
formes non homogénes mentionnés dans la liste précédente.

54Lettre de Davenport & Mordell du 14 octobre 1941, MORDELL (St John’s), box 1, folder 4.

55DyYSON 1948 p.83.
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a Cambridge sur la géométrie des nombres. Le 8 février 1946 il fait un exposé intitulé
Non homogeneous problems in the geometry of numbers, il revient alors en particulier
sur la question du produit de formes linéaires non homogeénes®.

Une autre anecdote racontée par Rogers sur le séminaire de Davenport concerne Klaus
F. Roth. Ce dernier arrive & Londres en 1946 et suit alors des cours et le séminaire de
Davenport. En 1954, Roth fait une conférence & Amsterdam « about his work on irre-
gularities of distribution ». Davenport, peu satisfait de cette intervention, lui explique
alors comment il aurait di présenter son travail®”. Consécutivement a cet épisode, Da-
venport met en place en 1954-1955 un « teaching seminar » dont un des objectifs est
de travailler la qualité de I'exposition. Les participants & ce séminaire doivent étudier
les travaux de Siegel et Dyson sur le théoréme de Thue-Siegel pour les exposer ensuite
aux autres. Une grande partie du travail est alors effectuée par Roth. C’est semble-t-il
a cette occasion que Roth acquiert une trés bonne connaissance de ce sujet, pour lequel

il obtient la médaille Fields en 1958 °8.

5.2.2.2 Des traces de contacts informels

Il est bien entendu plus difficile d’avoir des informations sur les échanges directs
entre scientifiques qui se font en dehors des circuits académiques officiels. Mordell et
Davenport en ont cependant laissé quelques indices particulierement dans leurs publi-
cations.

Les collaborations entre ces mathématiciens sont de natures diverses. Elles peuvent étre
des relectures de manuscrits avant une publication. Ces relectures sont 1'occasion de
corriger des erreurs éventuelles, de suggérer une simplication ou encore d’apporter une
précision sur un aspect de la preuve. Mordell mentionne des relectures de ses articles
par exemple par Davenport, Richard Rado, Kurt Mahler ou Kathleen Ollerenshaw®’.
Parfois les collaborateurs apportent leur aide sur des points spécifiques dans 1’élabo-
ration de l'article destiné & étre publié. Par exemple, Mordell remercie & plusieurs
reprises Mahler pour avoir réalisé les dessins dans ses articles ou parfois des tables
numériques® . Dans un article publié en 1945, Mordell remplace sa version d’une partie
de la démonstration par une méthode due & Davenport car il la juge plus simple®?.

L’aide peut aussi intervenir avant le moment de la publication, quand la recherche est

en train de se faire : Mordell remarque que les tables précédentes lui ont été utiles « in

S6DAVENPORT (WL), C 168.

5TRoth raconte que peu de temps aprés sa discussion avec Davenport, Mordell 'a félicité pour son
exposé qui lui a rappelé le style de Davenport.

58ROGERS ET AL. 1971 p.163.

SYMORDELL 1936, 1945b, 1944a.

SOMORDELL 1945b, 1944a.

S1MORDELL 1945b p.372.
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the first stages of this work%? », Mahler est aussi remercié pour « a very useful model

of the polyhedron%? ».

Au cours d’échanges privés se réglent aussi des détails sur la forme des publications.
Dans son article On the geometry of numbers in some non-convex regions, Mordell fait
référence a un résultat d’analyse de George Neville Watson qu’il utilise dans son tra-

14, Watson écrit en fait cet article aprés une suggestion de Mordell et ils veulent que

vai
les deux articles soient publiés I'un aprés 'autre. Watson, alors éditeur des Proceedings
of the London Mathematical Society, arrange cette question et ils discutent entre eux la
maniére de citer son travail dans 1’article de Mordell®>. Watson aborde aussi la question
de l'insertion des figures dans 'article de Mordell (les dessins ont d’abord été égarés),

probléme auquel ce dernier semble attacher de I'importance.

Les références a des travaux non encore publiés sont un autre signe de collaboration.
Les exemples chez Mordell sont assez nombreux. Dans le texte de la conférence faite a
Oslo et publié¢ en 1936 il cite des articles de George Szekeres et un article de Chao Ko%
sur les réseaux, tous les deux publiés en 1937 dans le Journal of the London Mathe-
matical Society®”. Dans un article sur les formes linéaires homogénes, il fait référence

a un résultat de G. Zilinskas publié dans le méme volume et il remarque aussi

« While this paper was being written, Davenport found better results for
n = 4,5 by a modification of his first method®. »

Tous ces éléments témoignent que plusieurs mathématiciens travaillent en méme temps
sur le méme sujet, ici la géométrie des nombres, mais aussi qu’ils communiquent direc-
tement sur ’avancement de leurs travaux.

Il semble que Mordell soit particuliérement efficace pour s’entourer de collaborateurs
de grandes qualités dont le travail commun et les échanges favorisent le développement

des recherches de chacun d’eux

« Es ist ja wirklich sehr schon, dass Sie jetzt in Manchester so tiichtige
Mitarbeiter wie Davenport, Mahler, Erdés und Ko besitzen. Sie alle arbei-
ten in verwandten Gebieten, und so wird aus dieser Arbeitsgemeinschaft

sicherlich viel Erspriessliches entstehen® ! »

62MORDELL 1945b p.339.

63MORDELL 1941d p.8.

64 MORDELL 1945b p.349.

65Lettres de Watson a Mordell du 18 avril 1942, du 4 octobre 1942 et du 26 septembre 1943,
MORDELL (St John’s), box 4, folder 36.

66Herbert William Richmond percoit Chao Ko comme un éléve de Mordell. Lettre de Richmond &
Mordell du 26 octobre 1936, MORDELL (St John’s), box 3, folder 25.

5"MORDELL 1936 p.238.

68 MORDELL 1941d p.5.

69« 11 est vraiment trés beau que vous ayez maintenant & Manchester de si bons collaborateurs
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Les meilleurs exemples de ces échanges sont bien entendu ceux rencontrés entre
Mordell et Davenport en particulier au sujet des formes cubiques binaires ou parfois
les simplications de la méthode de Mordell sont publiées avant la démonstration initiale.
La question des formes cubiques fournit aussi une illustration des idées qui circulent
entre les deux mathématiciens. Rappelons que la méthode de Mordell pour aborder
le probléme est de montrer I'existence d’'un point d’un réseau dans un domaine non
convexe. Pour cela, il détermine des parallélogrammes presque inclus dans les domaines
étudiés et qui contiennent au moins un point du réseau. Aprés avoir ainsi déterminé
plusieurs points du réseau il en construit un nouveau qui répond au probléme en fai-
sant une combinaison linéaire des précédents. Nous avons constaté que cette idée de
Mordell passe dans le travail de Davenport ot elle est exprimé sous une autre forme.
Chez Davenport la preuve est rédigée uniquement avec des inégalités mais derriére ce
changement de présentation nous avons détecté une méthode commune : la détermi-
nation de points du réseau dans différents parallélogrammes (en termes arithmétiques,
des entiers qui vérifient des systémes d’inégalités) afin de construire un point particulier

permettant de conclure.

5.3 Les échanges internationaux

5.3.1 Voyages, cours et conférences & I’étranger

Le groupe constitué autour de Mordell a de trés nombreux contacts internationaux,

c’est attesté par exemple par les voyages faits par Mordell a I’étranger mais aussi comme
nous le verrons plus tard par sa correspondance.
Au cours de sa carriéere Mordell est intervenu (cours ou conférences) dans au moins
191 institutions différentes se trouvant dans 28 pays différents™. La région du monde
ou Mordell s’est le plus rendu est I’Amérique du Nord avec 79 interventions aux Etats
Unis et 19 au Canada, vient ensuite 1’Allemagne avec 17 institutions visitées. Nous
retrouvons les rapports privilégiés avec I’Allemagne alors qu’a titre de comparaison il
n’est venu que deux fois en France (a I'Institut Henri Poincaré les 5 et 6 juin 1963 et
a I'Institut des Hautes Etudes Scientifiques le 7 juin 1963™).

Dans une lettre & Hardy certainement de 19237, Mordell annonce qu’il va donner

comme Davenport, Mahler, Erdos et Ko. Ils travaillent sur des domaines proches et de cette commu-
nauté de travail il adviendra stirement beaucoup de choses productives! », lettre de Walfisz & Mordell
du 17 février 1938, MORDELL (St John’s), box 4, folder 35.

0 Institutions at which Professor L. J. Mordell has lectured up to May 11, 1971, MORDELL (St
John’s), box 5. Cette liste est reproduite en annexe.

"IMORDELL (St John’s), box5.

7211 s’agit d’une lettre non datée.
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des cours a 'université de Chicago

« I shall be giving a course of lectures on the theory of numbers at Chicago

73

University during the coming summer®. »

Dans une autre lettre envoyée de Chicago le 24 juillet, Mordell donne des précisions
sur les cours qu’il propose. Il explique a Hardy que les étudiants ont des connaissances

trés hétérogenes donc
« T am given them a course on the T. of N. starting from the beginning™ ».

Les thémes abordés sont par exemple le nombre de diviseurs d’un entier n, le probléme
des diviseurs de Dirichlet, les congruences, les lois de réciprocité, les sommes de Gauss,

les formes quadratiques et la résolution d’équations comme y? = 23+ k ou z* +y* = 2*.

Mordell se rend aussi plusieurs fois a I'Institute for Advanced Study a Princeton. Le
4 janvier 1939, Hermann Weyl mentionne une visite de Mordell & I’automne prochain™.
Quelques mois plus tard en novembre, Weyl annonce & Mordell que 'introduction de
son séminaire sur la current literature qu’il a consacrée a la géométrie des nombres a
été soumis pour publication dans les Proceedings of the London Mathematical Society.
Il semble que cette séance du séminaire sur la géométrie des nombres aurait da avoir
lieu en présence de Mordell, mais ce dernier a été obligé d’écourter son séjour. Weyl
demande si Mordell ou Davenport pourrait s’occuper de la relecture de 'article™. Cet
article a bien été publié dans les Proceedings en 1942 et Weyl mentionne la relecture
du manuscrit par Mordell qui lui a suggéré des références supplémentaires’” .

Nous avons la trace d'une autre invitation a Princeton cette fois de John Von Neumann
en 1947. 11 lui propose de faire un exposé sur le sujet de son choix tout en remarquant
que le théme qu’il a abordé & son Inaugural Lecture & Cambridge serait parfait™.

Au cours des années 1950-1960, Mordell est “Visiting Professeur” dans plusieurs
universités nord américaines (voir la figure 5.6). En particulier, il est & l'université
du Colorado en 1959-1960, puis & 'université d’Arizona de 1961 a 1964. Nous avons
plusieurs sources précisant les activités de Mordell pendant ces périodes. D’abord, une
proposition de programme de recherche datée du 20 décembre 1961 contient un court

curriculum vitae, quelques publications ainsi qu'une description détaillée des thémes

"3Lettre de Mordell & Hardy du 14 novembre (1923), MORDELL (St John’s), box 1, folder 8.

"Lettre de Mordell & Hardy du 24 juillet (1924), MORDELL (St John’s), box 1, folder 8.

"Lettre de Weyl a Mordell du 4 janvier 1939, MORDELL (St John’s), box 4, folder 39.

"Lettre de Weyl a Mordell du 16 novembre 1939, MORDELL (St John’s), box 4, folder 39.

"TWEYL 1942. Weyl ne précise pas la raison de cet intérét pour la géométrie des nombres, peut
étre que c’est la venue de Mordell qui a motivé le choix de ce théme pour le séminaire. Weyl a publié
deux autres articles en liaison avec la géométrie des nombres au début des années 1940 concernant la
réduction des formes quadratiques.

Lettre de J. Von Neumann & Mordell du 23 septembre 1947, MORDELL (St John’s), box 3, folder
19.
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mathématiques qu’il compte aborder™. Il est intéressant de noter que Mordell se pré-
sente comme le « Founder of the Modern British School in the Geometry of Numbers »
(figure 5.6%9). Le titre de ce programme de recherche est Diophantine Equations - L-
Series, and Related Aspects of Analytic Number Theory. Mordell propose d’approfondir
ses recherches sur la finitude du nombre de points rationnels sur les courbes de genre
plus grand que 2 (étude de cas particuliers de genre 2 et 3), 'estimation de sommes

exponentielles

3
)

e%(aox”-i-m-i-anflm) 7

8
Il
o

le nombre de solutions de congruences f = 0 (mod p) et sur la distribution des résidus
quadratiques.

De cette période date aussi une demande a la U.S. National Science Foundation du 15
seme

juillet 1962 pour proposer 'organisation d’un symposium & ’occasion du 7 anni-

131, Ce symposium, qui doit durer 3 jours en mars 1963 a 1'université

versaire de Mordel
d’Arizona, a un double objectif, d’'une part, promouvoir le développement du nouveau

département de mathématiques de cette université et d’autre part,

« to issue a mathematical volume to help perpetuate the legend of Mordell
(which happens to be real, but which would still have been worth inventing

for the purpose of morale and inspiration for future number theorists®?). »

La fin de cette demande détaille tous les lieux de conférences de Mordell entre aotit
1961 et janvier 1964 et montre en particulier que le 5 et 6 juin 1963 il a fait des exposés
a l'Institut Henri Poincaré a Paris et le 7 juin 1963 une intervention a 'Institut des
Hautes Etudes Scientifiques.

Malgré les relations privilégiées que Mordell semble avoir avec son pays natal, une
difficulté apparait en 1953 quand son visa pour entrer aux Etats Unis est refusé. Mordell
doit se rendre & 'université de Stanford pour y donner des cours pendant 1'été 1953 et
ensuite a partir de septembre 1953 & 'université du Colorado pour faire de la recherche.
Il semble qu’au mois de mai 1953 Mordell commence a s’inquiéter de ne pas avoir
de nouvelles pour son visa et les premiéres démarches entreprises pour obtenir des
informations restent sans réponse, son cas étant « under consideration by the American
Embassy at London®® ». Malgré les multiples démarches pour débloquer la situation le

visa est officiellement refusé le 12 octobre 1953 en vertu de la « section 212(a) of The

MORDELL (St John’s), box 3, folder 19.

80Reproduced by permission of the Master and Fellows of St John’s College, Cambridge.

8IMORDELL (St John’s), box 5.

82Cette citation est extraite d’'un document intitulé « Preliminary Form of Proposal to the U.S.
National Science Foundation for a SYMPOSIUM TO COMMEMORATE THE 75TH BIRTHDAY OF PROFES-
SOR LOUIS J. MORDELL AT THE UNIVERSITY OF ARIZONA ». Cette demande est signée par Harvey
Cohn, « Head, Department of Mathematics », MORDELL (St John’s), box 5.

83Lettre de Maurice Mordell & Louis Mordell du 20 juin 1953, MORDELL (St John’s), box 4, folder
34.
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Immigration and Nationality Act® ». En 1955 il apprend que c’est plus précisément le
paragraphe 27 de la loi précédente qui a motivé le refus, ce paragraphe vise a empécher

I’'entrée aux Etats Unis des étrangers

« who the consular officer or the Attorney General knows or has reason to
believe seek to enter the United States solely, principally, or incidentally
to engage in activities which would be prejudicial to the public interest, or

endanger the welfare, safety, or security of the United States® ».

Mordell et sa famille (ses fréres sont encore a Philadelphie) essaient de comprendre les
raisons d’une telle décision mais il semble qu’ils n’aient jamais eu d’explication officielle.
Dans les correspondances plusieurs hypothéses sont cependant avancées. Ils évoquent
la possibilité d'un homonyme mais aussi ’oubli de Mordell qui n’a pas signalé lors de sa
premiére demande qu’il avait déja été arrété une fois®®. Dans une lettre du 5 novembre
1953, son frére Albert suggére que le probléme peut venir de I'abonnement qu’il a
souscrit pour lui a un journal qui publie des articles anti-catholiques et dont certains
collaborateurs sont communistes®”. Avec son autre frére Maurice, Mordell discute du

fait que ses conférences dans des pays de I’Est peuvent étre la cause du refus

« When I applied for a visa on March 16th, it was my visit in 1948 to
Czechoslovakia and Hungary that seemed to create difficulty. One of the
letters from Colorado in May referred to a security investigation about me;
but as I have already said, I have never had anything to do with communism

or politics®. »

Mordell obtient finalement un visa pour entrer aux Etats Unis seulement en 1959%%.

Davenport s’est lui aussi rendu a plusieurs reprises aux Etats Unis, en particulier a
l'université de Stanford au cours des années 1947 et 1948 puis en 1950. A Stanford, Da-
venport enseigne la théorie des groupes, la théorie des nombres pour les “undergraduate
students” et les fractions continues, la géométrie des nombres,; la théorie analytique des

nombres pour les “graduate students®”. Pendant 1’année 1947-1948, il conduit le sémi-

84Lettre de Olive M. Jensen (American Vice Consul, American Ambassy, London) & Mordell du 12
octobre 1953, MORDELL (St John’s), box 4, folder 34.

85MORDELL (St John’s), box 4, folder 34.

86Nous ne connaissons pas ni la date ni les raisons de 'arrestation, son frére Albert fait allusion
a une destruction de photo d’identité. Lettre de Albert Mordell a Louis Mordell du 21 janvier 1954,
MORDELL (St John’s), box 1, folder 7.

87Lettre de Albert Mordell & Louis Mordell du 5 novembre 1953, MORDELL (St John’s), box 1,
folder 7.

88 Louis Mordell cité par son frére Maurice dans une lettre du 21 septembre 1953 adressée a George
1. Bloom. Bloom est I’assistant d’un sénateur, Edward Martin, auquel ils auraient demandé de 'aide.
MORDELL (St John’s), box 4, folder 34.

89Mordell n’a pas été le seul a avoir des problémes de visa pour entrer aux Etats Unis dans les
années 1950, voir par exemple le cas d’Hadamard dans MAZ’YA et SHAPOSHNIKOVA 1998 p.271.

99ROYDEN 1989 p.255. D’aprés Royden, Davenport aurait eu des propositions pour obtenir un poste

368



9.3 CHAPITRE 5

naire du département avec Polya sur le théme de 'approximation diophantienne et la
théorie des nombres irrationnels?'. De cette période nous avons aussi le résumé d’un
cours ou d’'une conférence sur la géométrie des nombres & Berkeley en avril 1948. Les
thémes abordés sont le produit de deux formes linéaires non homogénes, le théoréme

de Minkowski et les formes quadratiques®?.

Le deuxiéme pays avec lequel Mordell a de nombreux contacts est donc I’Allemagne,
cependant nous avons moins de détails sur les séjours qu’il y effectue. Il se trouve en
Allemagne au début de 'année 1932 pendant plusieurs mois. Il passe alors par Berlin®,
puis a la fin du mois de janvier il est a Gottingen. Mordell donne quelques informations
sur ses activités dans des lettres & Davenport. A Géttingen, il discute avec Landau sur
les problémes de sommes exponentielles®, il rencontre aussi Van der Waerden et Siegel.
I1 suit des cours d’Artin ainsi que des séances des séminaires de Noether sur la théorie
du corps de classe et de Landau sur le « circle problem ». A la fin du mois de février
1932, il fait un exposé sur les congruences a Frankfort®.

Le mathématicien allemand avec lequel les relations sont les plus importantes & la fin des
années 1920 et au début des années 1930 est Helmut Hasse. Nous avons déja mentionné
les circonstances dans lesquelles Mordell recommande Davenport & Hasse pour aller
travailler avec lui & Marbourg. Quand Mordell les met en contact en 1930, tous les deux

notent qu’ils ont en fait peu d’intéréts mathématiques communs. Davenport s’inquiéte

que

« There may be nobody at Marburg interested in the analytical theory of

numbers?. »
Hasse ne semble pas penser que cela soit réellement un probléme

« Many thanks for your kind letter, particularly for your writing to Mr.
Davenport. Three days ago I received a very kind letter from him. I think
he will come, though I am not at all interested in lattice points and only
a little in Zetafunction. But I think that is no pity. We can learn from

another, each the interests of the other®”. »

Effectivement comme le suggére Hasse, les thémes de recherche ont circulé entre ces

mathématiciens. L’intérét de Mordell et Davenport pour l'estimation du nombre de

permanent & Stanford & cette époque. Le cours sur la géométrie des nombres de 1950 est conservé
dans les archives de Davenport. Voir les commentaires sur ce cours dans le chapitre 6.
9TROYDEN 1989 p.258.
92DAVENPORT (WL), C165 et C 166.
93Lettre de Davenport & Mordell du 11 janvier 1932, MORDELL (St John’s), box 1, folder 4.
9Lettre de Mordell & Davenport du 26 janvier 1932, DAVENPORT (WL), G 211.
9 Lettre de Mordell & Davenport du 3 mars 1932, DAVENPORT (WL), G 211.
9 Lettre de Davenport & Mordell du 30 novembre 1930, MORDELL (St John’s), box 1, folder 4.
9Lettre de Hasse & Mordell du 10 décembre 1930, MORDELL (St John’s), box 2, folder 9.
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solutions de certaines congruences a conduit Hasse & travailler sur I’hypothése de Rie-
mann pour les fonctions zeta associées aux courbes elliptiques®®. La correspondance
entre Davenport et Mordell témoigne de la collaboration entre Hasse et Davenport sur

ce théme quand ce dernier est en Allemagne®.

Mordell donne aussi une série de conférences dans plusieurs universités allemandes

en 1951. Il répond en fait & une invitation du Foreign Office (German Section) :

« Dear Professor Mordell,

Since the end of the war it has been our policy to exercise an in-
fluence on German educational and cultural life and to this end we have
made arrangements for a number of British teachers, scholars and people
distinguished in the political and cultural fields to give lectures to German

audiences and to meet German leaders.

Although the situation in the British Zone and the British Sector of
Berlin has changed materially over the past two years the need for contact
with the West is still a very real one, and we are anxious to continue our

programme over the coming year.

I am, therefore, writing to ask whether you would be able to help
us in this work by going to Germany for a week or so at some time in the
future convenient to you to give single lectures to German audiences and to
meet individual Germans. Bonn University has already asked if you would
be prepared to lecture at their University. If you can spare the time to go
we could arrange for you to lecture at one or two other University towns as
well as Bonn, and in addition I should be glad to know whether you would

100

also be prepared to lecture at British Centres ™. »

Mordell accepte cette proposition et son séjour est prévu du 27 juin au 11 juillet 1951.
Il fait alors des conférences & Cologne, Bonn et Gottingen. Nous ne savons pas quels
sont les thémes finalement retenus pour ces exposés mais il semble que Mordell ait eu
I'intention de parler de géométrie des nombres car il avait demandé des renseignements

sur les connaissances du public des conférences a ce sujet

« I will make enquiries from Bonn and Cologne about the audiences’ know-

9BROQUETTE 2004.

99Voir par exemple les lettres de Davenport & Mordell du 9 avril 1933 et du 11 juillet 1933, MORDELL
(St John’s), box 1, folder 4.

1007 ettre de W. D. Rusbatch (from German Education and Information Department) & Mordell du
12 octobre 1950, MORDELL (St John’s), box 2, folder 14.
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ledge of the geometry of numbers and will let you know as soon as I possibly

can'ot, »

Les contacts internationaux de Davenport sont aussi nombreux. Dans les années
1950 et 1960, citons par exemple ses collaborations avec D.J. Lewis et E. Bombieri qui

sont 'occasion pour Davenport de se rendre a l'université du Michigan et a Milan!®2.

Mordell et Davenport sont aussi intervenus lors de congrés internationaux et en
particulier au sujet de la géométrie des nombres.
Le contenu de la conférence de Mordell en 1936 a Oslo dont le théme central est le
produit de formes linéaires non homogénes'® a déja été discuté en détails. Nous avons
mentionné comment cette communication publique (exposé oral et ensuite publication)
entraine des échanges & un autre niveau (correspondance) entre Mordell et Tschebota-
reff. Ce dernier dans ses lettres informe Mordell des résultats qu’il a démontrés ainsi

104 En réaction & ces contacts privés, Mordell contribue a

105

que de la méthode employée
la diffusion du travail de Tschebotareff en y faisant référence dans un article
Au congreés international de 1950 & Harvard, Davenport se propose de faire un bilan
des derniéres avancées en géométrie des nombres et particuliérement sur les conjectures
discutées par Mordell dans son exposé de 1936 1%, Davenport fait explicitement réfé-
rence & Tschebotareff quand il aborde la question du produit des formes linéaires non
homogénes et il mentionne le fait que la démonstration de ’estimation donnée par le
mathématicien russe est reproduite dans la seconde édition du livre Introduction to the
Theory of Numbers de Hardy et Wright'%?. Davenport renvoie & la seconde édition de
1945 et nous ne savons pas si le « théoréme de Tschebotareff » faisait déja partie de
I’édition originale de 1938. Cela semble cependant peu probable car la premiére lettre
de Tschebotareff & Mordell & ce sujet date de février 1938 mais cela montre qu’apres
I'intervention de Mordell, Tschebotareff est intégré dans I’histoire de ce probléme.

Un deuxiéme aspect intéressant de cette conférence est que Davenport intégre dans sa

présentation du sujet les transformations du domaine que nous avons déja commen-

01 ettre de W. D. Rusbatch a Mordell du 24 avril 1951, MORDELL (St John’s), box 2, folder 14.

102ROGERS ET AL. 1971 p.164.

103MORDELL 1936.

104 ettres de Tschebotareff & Mordell du 24 février 1938 et 19 mars 1938, MORDELL (St John’s),
box 3, folder 19.

105MORDELL 1940b.

106D AVENPORT 1950a.

107Ce livre aborde largement la géométrie des nombres et il est intéressant de noter que la forme
du chapitre XXIV, Geometry of Numbers, doit beaucoup & l'intervention de Davenport, Rado et
Heilbronn : « Dr. H. Davenport and Dr. R. Rado have also read parts of the book, and in particular
the last chapter, which, after their suggestions and Dr. Heilbronn’s, bears very little resemblance to
the original draft », HARDY et WRIGHT 1960. Ces trois mathématiciens font tous partie du cercle de
Mordell et cela montre bien que la compétence de ce groupe en géométrie des nombres est reconnue.
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tées. L'insistance est maintenant davantage mise sur la notion de réseau que sur celle de
forme. Davenport revient sur une conjecture exprimée en 1936 par Mordell en termes
d’inégalités sur des formes linéaires de la maniére suivante :

« The first conjecture concerns what we should now call the critical lattices

108

of an n-dimensional cube ”°. »

De nombreux autres problémes sont expliqués en utilisant les notions de déterminants
critiques et de réseaux critiques. En particulier rétrospectivement il traduit dans ces
termes son travail de la fin des années 1930 sur le produit de trois formes linéaires

homogénes

« In 1937 1 found the critical determinant of another unbounded region,
namely the three-dimensional region defined by |zyz| < 1; and this proved
to be the starting point for a good deal of new work. The value of the critical
determinant is 7, and the critical lattices are closely related (as indeed was
expected) to a particular cubic field. This is the cubic field of least positive
discriminant, 49, and is generated by the equation 03+ 602 —20 —1 =019, »

tllO

Ces quelques exemples montrent que Mordell et Davenpor participent trés lar-

gement & la diffusion de leur travail sur la géométrie des nombres.

5.3.2 L’accueil de visiteurs étrangers

Mordell attire & Manchester et & Cambridge des étudiants ou des jeunes chercheurs
étrangers intéressés par la théorie des nombres.
Parmi les fiches d’étudiants avancés ayant suivi les cours de Mordell a Cambridge,
nous avons celle d'un jeune docteur de I'université de Lausanne, G. Vincent, qui a eu
connaissance des travaux de Mordell par Francois Chatelet'!! de Lyon!!2.
En 1935, il semble que Mordell se prépare & recevoir un étudiant de Hambourg (Bii-
nemann). Il regoit a ce sujet une lettre de remerciements d’Artin le 17 octobre dans
laquelle ce dernier précise les thémes de recherche qui intéressent cet étudiant. Il vient
a Manchester pour faire de la théorie des nombres et il s’est pour l'instant plus parti-
culiérement consacré a la théorie du corps de classe!!?.

Apres la guerre, les universités tchéques qui ont été fermées pendant six ans essaient

108D AVENPORT 1950a p.166.

109D AVENPORT 1950a p.171.

10Rappelons aussi la conférence sur la géométrie des nombres faite par Davenport en 1946 a
Bruxelles.

H1T] g’agit du fils d’Albert Chatelet dont le cours au Collége de France en 1911 intégre des résultats
de Minkowski sur la géométrie des nombres. Ce cours est présenté dans le chapitre 6.

H2MoRDELL (St John’s), box 7.

13T ettre de Artin & Mordell du 17 octobre 1935, MORDELL (St John’s), box 3, folder 19.
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de se réorganiser, Jarnik écrit & Mordell en septembre 1946 afin d’étudier la possibilité

d’envoyer certains de leurs étudiants en Angleterre :

« After a long standstill of our educational and scientific activity we stand
before the task of raising the level of our young generation. For this purpose,
it will be very useful to send our young talented mathematicians abroad.
[...] Now, as England is one of the leading countries in many branches of
the mathematical research-work, we were very happy if we could send our
young scientific workers to your country.

[...] T hope you will be so kind as to aid me in order that I may attain the

aim explained above!'4. »

Cet épisode montre que Mordell fait partie des personnes qu’il est légitime de contacter
en Angleterre pour réussir & placer des étudiants. Il posséde a la fois le poids institu-
tionnel pour trouver des solutions et la crédibilité en tant que chercheur pour que la

venue d’étudiants puisse étre bénéfique pour eux.

Mordell n’accueille pas seulement des étudiants mais aussi des chercheurs plus
confirmés. D’aprés une lettre de remerciements qu’il envoie & Mordell en aott 1939, G.
Zilinskas fait partie de ces chercheurs. Il aurait passer environ deux ans a Manchester?
et nous avons vu qu’il a publié sur la géométrie des nombres.

En mai 1946, Johannes G. Van Der Corput doit se rendre en Angleterre avec une

délégation de scientifiques. Il veut en profiter pour rencontrer Mordell afin de parler

« about your discoveries in the war years and to speak about the Mathe-
matical Centre of the Netherlands, especially about the relations between
English and Dutch mathematicians and about the relations between pure

and applied Mathematics!'¢. »

Van Der Corput apparait ici s’intéresser a des questions administratives et d’organi-
sation de la recherche et c’est peut étre de I'expérience de Mordell sur ces sujets qu’il
compte profiter.

Mordell recoit deux visiteurs francais pendant qu’il se trouve a Manchester. C’est
Jacques Hadamard qui introduit André Weil auprés de Mordell. Dans une lettre da-
tée du 5 janvier 1928, Hadamard explique que Weil s’intéresse maintenant aux points

rationnels sur les courbes algébriques et que

« His intention is precisely to take your own results as a starting point and

try to extend them ; this is the reason why he would be especially desirous

7

to see you''”. »

14T ettre de Jarnik & Mordell du 21 septembre 1946, MORDELL (St John’s), box 3, folder 19.
5L ettre de Zilinskas a Mordell du 1°7 aotat 1939, MORDELL (St John’s), box 3, folder 19.

16T ettre de Van Der Corput a Mordell du 15 mars 1946, MORDELL (St John’s), box 3, folder 33.
17 ettre de Hadamard & Mordell du 5 janvier 1928, MORDELL (St John’s), box 4, folder 37.
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Weil se rend & Manchester dés le mois de janvier 1928, il rapporte plus tard que Mor-
dell se serait en fait peu intéressé a la généralisation de son théoréme sur les points
rationnels des courbes elliptiques sur laquelle Weil travaillait pour sa theése'®. 11 fait
d’ailleurs part a Mordell des difficultés rencontrées pour trouver quelqu’'un qui accepte
de rapporter sa thése, Emile Picard a refusé (« because I spoke too much of ideals in
it ») et finalement René Garnier a accepté!!®. Weil a fait d’autres séjours par la suite
a Manchester, par exemple en juin 19322

Enfin nous avons la trace de la venue & Manchester de Claude Chabauty en 1938 juste

aprés la fin de sa thése!?!.

5.3.3 La correspondance de Mordell

La correspondance de Mordell témoigne de son appartenance a un large réseau de
mathématiciens. Le nombre des correspondants différents de Mordell est important,
environ 130. Parmi eux 40 ont au moins trois lettres adressées & Mordell conservées

dans ses archives (voir le tableau 5.3 122).

Correspondants Nombre de lettres | premiére - derniére lettre
DAVENPORT Harold 7 03/02/1929 - 17/08,/1956
HARDY Godfrey Harold 60 09/02/1920 - 29/12/1949
ERDOS Paul 48 12/12/1933 - 23/11/1960
MAHLER Kurt 41 03/05/1932 - 07/01/1957
HASSE Helmut 21 26/11/1928 - 21,/01/1972
SIEGEL Carl Ludwig 19 24/03/1926 - 23/05/1967
HEILBRONN Hans Arnold 16 28/07/1933 - 05/10/1936
RicHMOND Herbert William 14 02/12/1929 - 30/12/1943

voir la suite page suivante

HEWEIL 1991.

19 ettre de Weil & Mordell du 25 février 1928, MORDELL (St John’s), box 4, folder 37.

120 ettre de Weil & Mordell du 6 juin 1928, MORDELL (St John’s), box 4, folder 37.

21T ettre de Chabauty a Mordell du 12 janvier 1938, MORDELL (St John’s), box 3, folder 19. Plus
tard Chabauty travaille aussi sur la géométrie des nombres.

122Dans ce tableau seules les correspondances avec des mathématiciens ont été indiquées, en par-
ticulier nous avons exclus la correspondance familiale. Parmi les mathématiciens en correspondance
avec Mordell nous avons gardé ici ceux dont au moins trois lettres adressées & Mordell sont conservées
dans les archives. La deuxiéme colonne donne donc le nombre de lettres adressées a Mordell et la
derniére les dates de la premiére et la derniére de ces lettres.
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Correspondants Nombre de lettres | premiére - derniére lettre
MILNE Edward Arthur 12 29/01/1932 - 29/05/1941
RADO Richard 11 23/01/1934 - 01/01/1943
SWINNERTON DYER Peter 11 1942 - 1963
CHAPMAN Sydney 10 11/07/1925 - 27/06,/1957
HECKE Erich 9 21/02/1924 - 01/04/1939
STUART T. 9 27/12/1934 - 1938
WATSON George Neville 9 12/05/1933 - 26/09/1943
LANDAU Edmund 8 22/11/1927 - 29/04/1937
WALFI1SZ Arnold 8 04,/06/1934 - 17/02/1938
BAER Reinhold 7 27/07/1933 - 20/10/1953
HASSE Henry Ronald 7 01/12/1933 - 23/01/1935
LUBELSKI Salomon 7 27/10/1937 - 25/07/1939
WEIL André 6 25/02/1928 - 06/06/1932
WEYL Hermann 6 29/09/1936 - 16/11/1939
WHITTAKER Edmund Taylor 6 28/03/1924 - 11/04/1955
HILBERT David 5 05/02/1928 - 1931
NEWMAN Maxwell H. A. 5 12/05/1933 - 1945
REMAK Robert 5 23/09/1933 - 09/08/1939
SCHUR Issai 5 09/12/1931 - 10/05/1937
SEGRE Beniamino 5 24/06/1942 - 05/06/1949
TobpbD John Arthur 5 19/01/1933 - 17/04/1964
VAN DER CORPUT Johannes G. 5 06,/03/1935 - 30/05,/1947
WESTERN A. E. 5 10/02/1936 - 21/05/1938
BAKER Henry Frederick 4 19/04/1922 - 24/01/1945
LiTTLEWOOD John Edensor 4 15/10/1929 - 1933
HuA Loo Keng 4 19/03/1939 - 15/01/1957
NAGELL Trygore 4 28/01/1923 - 16/11/1959

voir la suite page suivante

375




CHAPITRE 5 2.3

Correspondants Nombre de lettres | premiére - derniére lettre
SNOW Charles Percy 4 18/05/1962 - 23/09/1969
TSCHEBOTAREFF Nikolay 4 14/05/1931 - 19/03/1938
VEBLEN Oswald 4 04/09/1934 - 31/07/1939
BRrRUN Viggo 3 15/06/1949 - 03/01/1958
Ko Chao 3 02/07/1936 - 09/09,/1939
OPPENHEIM Alexander 3 21/12/1930 - 08/11/1946

TAB. 5.3: Correspondants de Mordell (au moins 3 lettres)

Ces correspondances sont de natures diverses. Certaines ne traitent que de questions
administratives, c’est le cas par exemple de celles de Whittaker, Lubelski. D’autres
concernent exclusivement des problémes de postes et de recrutement : Veblen, Re-
mak, Hassé. Il y a aussi de brefs échanges sur un ou deux sujets mathématiques trés
précis : Oppenheim (les formes quadratiques), Nagell (des équations diophantiennes
particuliéres), Tschebotareff (équations diophantiennes et produit de formes linéaires
non homogeénes), Western (équations diophantiennes), Hecke (théorie analytique des
nombres, fonctions theta, fonctions zeta, fonctions modulaires). Les correspondances
plus importantes abordent divers aspects des thémes précédents. Un point commun
qu’il est intéressant de noter est le type de discussions mathématiques que nous trou-
vons. Il n’y a pas de commentaires généraux sur une méthode, une démonstration, la
bonne maniére d’aborder un probléme, I'heuristique etc... Quand il est question de
mathématiques, il s’agit presque toujours de points trés précis et le plus souvent as-
sez technique. La correspondance avec Davenport, pourtant assez volumineuse, illustre

bien cette observation.

Nous voulons revenir sur un épisode a propos de la correspondance déja mentionné
mais qui prend une autre signification dans le contexte de ce chapitre. En effet, il
témoigne a nouveau du passage de communications dans la sphére privée a un tra-
vail publié. En 1937, Mordell fait part & Davenport d’une démonstration de Siegel qui
prouve l'existence d'une constante qui ne dépend que de n et qui majore le minimum
sur les entiers de la valeur absolue du produit de n formes linéaires non homogénes.
Il s’agit alors du premier résultat général (pour n formes) au sujet de la conjecture

de Minkowski. Siegel communique sa méthode & Mordell dans une longue lettre da-
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tée du 8 octobre 193723, Davenport s’intéresse alors a ce probléme et en reprenant
les idées de Siegel il simplifie sa démonstration. Siegel réagit favorablement a ce tra-
vail de Davenport et donne son accord pour qu’il soit publié. Il note cependant que
I’estimation obtenue est encore assez éloignée de la borne 27" de la conjecture de
Minkowski'?*. L’article de Davenport est publié finalement dans le volume de 1937 de

Acta Arithmetica'®®, ¢’est sa premiére contribution a la géométrie des nombres publiée.

5.4 Quelques aspects du travail administratif et ins-
titutionnel de Mordell

5.4.1 Le recrutement & Manchester

Nous avons vu que lorsqu’il envisage de quitter Manchester en 1931, Mordell se
plaint en particulier de ne pas pouvoir étre en contact avec des étudiants se destinant
a la recherche en mathématiques. Effectivement, seuls deux PhD et deux Masters of
Sciences sont délivrés a 'université de Manchester avant 1940126 :

e PhD.

- E.J. Williams, The scattering of X-rays and the quantum theory, 1926
- A. Porter, The differential analyser and some applications, 1936
e MSc.
W. Smith, An investigation of the torsional stresses in prisms of irreqular cross
section, by the soap film analogy, 1935
O. Buenemann'?", A survey of the methods for the solution of non-linear oscilla-
tion equations, 1938.
Aucun de ces travaux ne concerne la théorie des nombres, un paradoxe pour ce qui est
percu comme « the school of Manchester ».
En fait, comme nous avons commencer & le voir, 'intervention de Mordell auprés des
jeunes chercheurs prend assez peu la forme de la direction de leurs recherches. Il exerce
davantage son influence par ses conseils et la motivation qu’il apporte. Il semble que
cette influence soit particuliérement importante pour les collaborateurs qu’il a fait venir

pour travailler avec lui :

« The years in Manchester were very fruitful ones, both in respect of Mor-

dell’s own researches and in respect of the influence that he exercised

123 ettre de Siegel & Mordell du 8 octobre 1937, MORDELL (St John’s), box 3, folder 28.

124 ettre de Siegel & Mordell du 7 novembre 1937, MORDELL (St John’s), box 3, folder 28.

125D AVENPORT 1937.

126D’apreés la base de données Britmath de June Barrow-Green.

127Buenemann est I’étudiant de Hambourg recommandé par Artin. Le titre de son mémoire semble
indiquer qu’il s’est finalement dirigé vers ’analyse.

377



CHAPITRE 5 5.4

through his students and his younger colleagues. Many of these are now well-
known mathematicians, established in various parts of the world. Among
them may be mentioned R. Baer (Frankfurt), the late G. Billing (Stock-
holm), P. Erdés (Budapest), Chao Ko (China), K. Mahler (Canberra), B.
Segre (Rome), J.A. Todd (Cambridge), P. Du Val (London), L.C. Young
(Madison), and the present writer [...| Among those who came under his
influence, in varying degrees, at Cambridge may be mentioned R.P. Bambah
(Panjab), E.S. Barnes (Adelaide), B.J. Birch (Manchester), J.W.S. Cassels
(Cambridge), J.H.H. Chalk (Toronto), R.F. Churchhouse (Atlas Computer
Laboratory), C.S. Davis (Brisbane), S. Knapowski (Poznan), A.M. Mac-
beath (Birmingham), P. Mullender (Amsterdam), K. Rogers (Los Angeles),
P.A. Samet (Southampton), E.S. Selmer (Bergen), H.P.F. Swinnerton-Dyer
(Cambridge)'?8. »

Mordell a joué un roéle actif dans le recrutement d’un certain nombre des mathémati-
ciens cités par Davenport. Davenport lui-méme est recruté a Manchester par Mordell

en 1937 et il y reste jusqu’en 1941.

Reinhold Baer arrive & Manchester en octobre 1933, grace & Mordell il a obtenu un
Fellowship qui doit durer deux ans. Mais Mordell ne se contente pas d’intervenir au
niveau institutionnel pour qu’il ait ce poste, il le renseigne sur les questions financiéres,
il effectue les démarches administratives auprés de I'université pour l'obtention dun
permis de séjour en Angleterre et il I'accueille chez lui avec toute sa famille pendant
les premiers jours & Manchester'?®. Par la suite, il I'aide & trouver un nouveau poste :
il le recommande a Horatio Scott Carslaw pour aller & Sydney et le conseille pour la
constitution du dossier de candidature en particulier en ce qui concerne les références
nécessaires!.

Le cas de Hans Heilbronn est un peu différent. C’est Davenport qui rencontre Heilbronn
alors qu’il se trouve & Gottingen et qui contacte Mordell pour lui demander s’il n’y au-

131 Un Fellowship temporaire

rait pas une possibilité pour le faire venir en Angleterre
pourrait étre disponible pour lui & Manchester!®? mais au moment ott Davenport doit
revenir d’Allemagne rien n’est encore sir. Heilbronn rentre quand méme en Angleterre
avec Davenport il reste quelques mois & Manchester avant de trouver un poste a Bristol

en 1934. Heilbronn doit quitter Bristol en juin 1935 et & nouveau il fait appel & Mordell

128 DAVENPORT 1964 p.4.

129 ettres de Baer a Mordell du 27 juillet 1933, du 14 aoiit 1933 et du 24 septembre 1933, MORDELL
(St John’s), box 1, folder 2.

130 ettre de Baer & Mordell du 20 aotit 1934, MORDELL (St John’s), box 1, folder 2. Nous ne savons
pas si Baer a finalement obtenu ce poste.

131 ettre de Davenport & Mordell du 11 juillet 1933 MORDELL (St John’s), box 1, folder 4.

132 ettre de Davenport & Mordell du 23 septembre 1933 MORDELL (St John’s), box 1, folder 4.
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pour savoir s'il peut lui trouver quelque chose a Manchester!®®. Aprés des démarches
pour trouver un financement Mordell réussit finalement a le faire revenir a Manchester.
En 1934, c’est aussi Mordell qui recommande Paul Erdos pour qu’il obtienne le Bi-
shop Harvey Goodman Scholarship a Manchester. Encore une fois il prend les choses
en main : il lui envoie le dossier de candidature avec des recommandations pour la
constitution de son dossier’®!. Erdos reste & Manchester entre 1934 et 1938.

En 1938, le Bishop Harvey Goodman Scholarship est ensuite attribué a G. Billing qui
envoie une lettre de remerciements & Mordell pour la part active qu’il a pris dans son

recrutement

« IT'am very glad to get the opportunity to continue my mathematical studies

under your eminent tutorship and to profit by the excellent mathematical

milieu you have created at the Manchester university®>. »

Les exemples ou Mordell est sollicité pour trouver un poste pour quelqu’un sont

136 qui postule finalement

137

nombreux : Richard Courant lui recommande Fritz John
pour le Bishop Harvey Goodwin Mathematical Scholarship a Manchester>’, Benia-
mino Segre est recommandé par William Hodge et John G. Semple pour un Assistant
Lectureship a Manchester!3®, A.R. Richardson veut connaitre les possibilité pour Ro-
senhead a Manchester'®®, Philipp Furtwingler demande son aide pour F. Pollaczek!4°.
On lui demande parfois son avis sur des recrutements hors de la théorie des nombres
ou dans d’autres universités que Manchester : Douglas R. Hartree (un de ses collégues
a Manchester) discute avec lui des candidatures de Hopf et Bhabha pour un poste
d’Assistant Lecturer en 19384, Thomas G. Cowling souhaite qu’il lui suggere des
candidats pour un poste d’Assistant Lecturer of pure Mathematics a 'university Col-
lege of North Wales!42.

Mordell est aussi contacté directement par les intéressés : Heinrich Grell lui demande
son aide pour trouver un emploi'*?®, Kurt Mahler fait part & Mordell de son intérét pour

2 144

venir & Manchester dés le mois de mai 193 et il arrive en Angleterre en 1933.

Le cas de Mahler est exemplaire d’un réseau dans lequel Mordell est particuliérement

133Lettre de Heilbronn a Mordell du 19 décembre 1934 MORDELL (St John’s), box 2, folder 11.

134Lettres de Erdds a Mordell du 7 mars 1934 et du 22 mai 1934, MORDELL (St John’s), box 1,
folder 6.

135 ettre de Billing & Mordell du 6 septembre 1938, MORDELL (St John’s), box 3, folder 19.

136Lettre de Courant & Mordell du 12 mai 1934, MORDELL (St John’s), box 3, folder 19.

137Lettre de John a Mordell du 18 mai 1934, MORDELL (St John’s), box 3, folder 19.

138 ettre de Hodge a4 Mordell du 19 aotit 1941, lettre de Semple & Mordell du 26 aott 1942, MORDELL
(St John’s), box 3, folder 27.

139 ettre de Richardson & Mordell du 13 juin 1933, MORDELL (St John’s), box 3, folder 19.

1407 ettres de Furtwingler a Mordell du 10 novembre 1935 et du 29 décembre 1935, MORDELL (St
John’s), box 3, folder 19.

1 ettre de Hartree & Mordell du 6 mai 1938, MORDELL (St John’s), box 3, folder 19.

127 ettre de Cowling & Mordell du 14 juin 1946, MORDELL (St John’s), box 3, folder 19.

13 ettre de Grell & Mordell du 14 décembre 1935, MORDELL (St John’s), box 3, folder 19.

144 ettre de Mahler & Mordell du 3 mai 1932, MORDELL (St John’s), box 2, folder 17.
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actif : celui des mathématiciens juifs qui fuient les persécutions. Un grand nombre des
mathématiciens cités précédemment sont dans ce cas et Mordell semble avoir joué un

role important dans 1’accueil des mathématiciens réfugiés'®s.

5.4.2 Mordell et ’aide aux mathématiciens réfugiés

L’attitude de Mordell par rapport & la montée du nazisme et la Seconde Guerre
Mondiale peut apparaitre comme assez paradoxale. Nous avons pu observer que Mordell
comme Davenport sont trés productifs & la fin des années 1930 et pendant les années
1940, en particulier en ce qui concerne la géométrie des nombres. Leur rythme de
publication ne faiblit pas et ils démontrent des résultats importants comme par exemple
le théoréme sur les formes cubiques binaires de Mordell. De plus, leurs contacts avec
I’Allemagne continuent pendant plusieurs années aprés 'arrivée de Hitler au pouvoir.
Dés le mois d’avril 1933 Davenport est a Marbourg avec Hasse et il reste en Allemagne
jusqu’a la fin du mois de septembre 1933 146. En aotit 1934, il est en vacances avec Hasse
a Partenkirche'*”. En mars 1935, c’est Hasse qui est & Cambridge avec Davenport!48
et au début de 'année 1936, Hasse essaie d’arranger une conférence a Manchester avec
Mordell'*?.

Parallélement, Davenport étant en Allemagne au début de 'année 1933, ils sont tres
vite conscients des difficultés qui attendent les mathématiciens d’origine juive

« Term has been postponed at all the Prussian Universities until May 1. I

150

hope Landau, E. Noether, Heilbronn do not come to any harm . »

151 is not very cheerful, but

52

« The outlook among Gottingen mathematicians

I have had some interesting talks with Heilbronn!®2. »

Mordell se retrouve alors intégré dans un réseau de solidarité envers les mathéma-
ticiens réfugiés!® : il est mis & contribution pour trouver des postes, des financements

ete. ..

145Pour des éléments sur I'organisation de la communauté universitaire britannique face & I'arrivée
de mathématiciens réfugiés voir FLETCHER 1986.

146  ettres de Davenport & Mordell d’avril 1933 et du 23 septembre 1933, MORDELL (St John’s), box
1, folder 4.

147Carte postale de Davenport & Mordell du 12 aotit 1934, MORDELL (St John’s), box 1, folder 4.

18T ettre de Hasse & Mordell du 10 mars 1935, MORDELL (St John’s), box 2, folder 9.

149 ettre de Hasse & Mordell du 10 mars 1935, MORDELL (St John’s), box 2, folder 9.

150 ettre de Davenport & Mordell « Good Friday » 1933, MORDELL (St John’s), box 1, folder 4.

151Qyr la situation des mathématiciens a Gottingen pendant la période nazie voir SCHAPPACHER
1987.

152 ettre de Davenport & Mordell du 6 juin 1933, MORDELL (St John’s), box 1, folder 4.

133Pour des informations sur les mathématiciens réfugiés voir SIEGMUND-SCHULTZE 1998.
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Tout cela donne I'impression qu’ils séparent complétement leur travail mathématique
et la situation politique de I’époque. En méme temps, les activités de Mordell dans
I'aide aux réfugiés ont aussi des conséquences sur la recherche a travers les recrute-
ments effectués et les contacts qui se créent. Revenons sur le cas de Mahler qui est

emblématique.

En 1932, Mahler apprend par l'intermédiaire de Siegel que la fondation Rockefeller
lui a attribué un financement. Il semble qu’il ait été trés intéressé par une conférence
de Mordell & Ziirich!® sur la théorie des nombres (il ne précise pas sur quel sujet) et

155

il voudrait donc profiter de ce financement pour venir & Manchester™”. La situation

politique en Allemagne vient cependant contrarier ce projet :

« In the last time I tried in vain to “habilitate”. The situation of today in my
country makes it now impossible, because I am a Jew. It follows that I shall
not be granted a fellowship of the Rockefeller-Foundation. But I should like
to come Manchester and learn from you something of “Zahlentheorie”; in
Zurich your lecture was most interesting. Therefore I take the liberty to beg
you if there is no other possibility to come to your university, perhaps by
an English “Stipendium”? Or when I come on my own expenses, will the
living very dear 7 Must I pay much as a foreigner for the permission to hear
your lectures? I should be glad if I could work as your assistent or hold
lectures of my own, especially on the theory of Diophantine equations and

156

transcendental numbers »

La suite de cette lettre donne une idée du théme de ses travaux mathématiques récents.
Il vient de faire un rapport pour le Jahrbuch de I'article d’André Weil L’arithmétique
sur les courbes algébriques. 11 juge que ce travail a été difficile « because there are too
many definitions » mais il reconnait que cela a été 'occasion pour lui d’apprendre en
particulier au sujet des fonctions algébriques. Il a aussi récemment terminer un article
sur 'approximation des nombres algébriques qu’il envoie & Mordell.

Dans la citation précédente Mahler est trés insistant sur son envie de venir a Man-
chester. Son désir de quitter I’Allemagne n’y est certainement pas étranger, mais en
méme temps il revient a plusieurs reprises dans sa correspondance sur son intérét a
venir apprendre de la théorie des nombres auprés de Mordell. Par exemple, lorsqu’il

évoque I’éventualité de partir aux Etats Unis, il note

« I should prefer to have been previously for a time in England in order

to learn good English and from you as much as possible of the theory of

154’ aprés COATES et VAN DER POORTEN 1994 p.267, Mahler et Mordell se seraient aussi rencontrés
a Gottingen. Peut-étre lors de la visite de Mordell en 1932.

155 ettre de Mahler & Mordell du 3 mai 1932, MORDELL (St John’s), box 2, folder 17.

156 ettre de Mahler & Mordell du 4 avril 1933, MORDELL (St John’s), box 2, folder 17.
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7

numbers!®”. »

Mordell obtient finalement pour lui le Bishop Harvey Godwin Fellowship pour 'année
universitaire 1933-1934 '8, Dans ses lettres a Mordell de mai 1933 & octobre 1933, Mah-
ler le tient au courant de ses recherches, lui donne quelques nouvelles de la situation en
Allemagne (renvoie de Noether et Courant de Gottingen). Il discute enfin des derniers
détails administratifs pour préparer son arrivée a Manchester en octobre : obtention
d’un permis pour quitter ’Allemagne, probléme pour faire sortir de 'argent de son
pays.

Les années universitaires suivantes de 1934 a 1936, Mahler se trouve a Groningen aux
Pays-bas pour un Fellowship arrangé par Van Der Corput grace a une aide financiére
d’une association juive néerlandaise. Il revient ensuite & Manchester en 1937 ol jusqu’en
1941 mais il n’a pas de situation stable. Il occupe deux postes temporaires d’assistant,
il recoit un peu d’argent d'un Fellowship et il vit pendant au moins deux ans sur ses
propres économies™. Mordell joue un réle important dans le retour de Mahler & Man-
chester et dans l'obtention de soutiens financiés pendant cette période. Comme son
Fellowship a Groningen se termine en mai 1936, dés novembre 1935, Mahler cherche
un nouveau poste. Il a postulé & Saratow en Russie mais n’est pas trés optimiste a ce
sujet, il demande donc & Mordell s’il peut le recommander auprés des mathématiciens
de Birmingham car un fond vient d’y étre débloqué pour la création d’un Fellowship
temporaire destiné aux réfugiés'®®. Mordell contacte alors Watson a Birmingham?!6?
mais Mahler n’y obtient pas de poste. Quand ils se rencontrent au congrés internatio-
nal de 1936 a Oslo, Mordell fait part & Mahler de la possibilité de le faire revenir pour

162

un nouveau Fellowship & Manchester'®*. En fait il semble que Mordell lance alors une

collecte d’argent pour financer ce poste pour Mahler

« I had not forgotten our conversation at Asgardstrand concerning the pos-
sibility of getting some money for getting a German refugee to Manchester
for a time. I have talked it over with Heilbronn and we are each sending you

163

£25 for the purpose. I hope it is not too small a sum to be of any use . »

En plus de Davenport et Heilbronn, nous savons qu’Olga Taussky, alors & Cambridge,
envoie aussi un chéque de £5 164
Mordell a aussi sollicité Hermann Weyl au sujet de Mahler, ils en avaient déja discuté

a Oslo et le 29 septembre 1936, Weyl confirme & Mordell qu’il a contacté the German

157Lettre de Mahler & Mordell du 12 mai 1933, MORDELL (St John’s), box 2, folder 17.

158 COATES et VAN DER POORTEN 1994 p.267.

159 COATES et VAN DER POORTEN 1994 p.268.

160 ettre de Mahler & Mordell du 3 novembre 1935, MORDELL (St John’s), box 2, folder 17.

161 ettre de Mahler & Mordell du 8 novembre 1935, MORDELL (St John’s), box 2, folder 17.

162 ettre de Mahler & Mordell du 1% septembre 1936, MORDELL (St John’s), box 2, folder 17.
163 ettre de Davenport & Mordell du 29 septembre 1936, MORDELL (St John’s), box 1, folder 4.
164 ettre de Taussky & Mordell du 27 novembre 1936, MORDELL (St John’s), box 3, folder 19.
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Mathematicians’ Relief Fund d’obtenir $350 pour Mahler!%®. Quand & la fin de 'année
1936, la création du Fellowship est confirmée, Mordell veut renvoyer cet argent a Weyl
mais ce dernier refuse et il veut que Mahler le garde car

« If he is under shelter now, he is certain to have to face rainy days

166

again-°. »

Cet argent a certainement été utile car comme nous ’avons dit Mahler n’a pas de poste
permanent avant 1941. Une lettre d’Erdos a Mordell de mars 1939 indique qu’il essayé
d’obtenir un Fellowship & Princeton mais cela n’aboutit pas'é”. Le début de la guerre
en 1939 l'aurait aussi obligé a renoncer & un poste a I'université de Szechuan en Chine
ot il devait rejoindre Chao Ko'68.

Au cours de 'année 1940, il est interné dans un camp pour réfugiés (voir la figure
5.7199). Dans des lettres, Mahler décrit & Mordell les conditions de vie difficiles dans
ce camp et lui demande d’essayer de faire des démarches pour le faire sortir'™.

En particulier, il voit dans une invitation de Chao Ko pour se rendre en Chine le moyen
de sortir du camp. Il demande a Mordell d’essayer d’organiser pour lui ce voyage, il
pense que cette conférence pourrait étre un bon motif pour que les autorités britan-

niques lui permettent de sortir

« Since my lectures at Omei will be given in English and so will propagate
English culture, it can only be in the interest of the British Government to

help me!™. »

La situation se stabilise pour Mahler en 1941 quand il succéde & Davenport comme
Assistant Lecturer a Manchester. Il reste par la suite & Manchester ou il occupe suc-
cessivement les postes de Lecturer (en 1944), Senior Lecturer (en 1947), Reader (en
1949) et en 1952 « the first personal chair in the history of the University!™ ». Mahler
continue cependant & demander conseil a Mordell a propos de sa carriére. En 1946,
un poste plus avantageux financiérement lui est proposé en Afrique du Sud a Cape
Town'™. Il semble que Mahler, qui préférerait rester & Manchester, suive alors les indi-
cations de Mordell pour négocier une promotion. Mahler passe Senior Lecturer en 1947

et remercie Mordell pour ses conseils

165 ettre de Weyl & Mordell du 29 septembre 1936, MORDELL (St John’s), box 4, folder 39.

166 ettre de Weyl a Mordell du 27 octobre 1937, MORDELL (St John’s), box 4, folder 39.

167Lettre de Erdés & Mordell du 18 mars 1939, MORDELL (St John’s), box 1, folder 6.

168 COATES et VAN DER POORTEN 1994 p.268.

169Carte de Mahler & Mordell du 18 juillet 1940, MORDELL (St John’s), box 2, folder 17. Reproduced
by permission of the Master and Fellows of St John’s College, Cambridge.

170 ettres de Mahler & Mordell du 18 juillet 1940 et du 21 aoiit 1940, MORDELL (St John’s), box 2,
folder 17. Une de ces lettres est reproduite en annexe.

1" Lettre de Mahler & Mordell du 12 septembre 1940, MORDELL (St John’s), box 2, folder 17. Nous
ne savons pas si Mahler s’est finalement rendu en Chine pour faire cette conférence.

1"2COATES et VAN DER POORTEN 1994 p.268.

173Lettre de Mahler & Mordell du 11 mai 1946, MORDELL (St John’s), box 2, folder 17.
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Fi1G. 5.7 — Carte de Mahler du camp d’internement du 18 juillet 1940

384



5.4 CHAPITRE 5

« Thanking you for your excellent lesson in departmental strategy'™ ».

L’exemple de la solidarité de Mordell & 1’égard de Mahler est aussi intéressant car
les nouvelles relations qui se tissent entre ces deux mathématiciens pourraient étre a
I'origine du travail de Mahler sur la géométrie des nombres. Il n’y a pas de déclaration
explicite qui le confirme dans les lettres de Mahler & Mordell mais des coincidences de
dates entre le début des contacts entre Mordell et Mahler et I'apparition de nouveaux
thémes de recherches sont frappantes.
D’aprés Coates et Van Der Pooten, Mahler commence a s’intéresser a la géométrie des

617 juste aprés le premier

nombres alors qu’il se trouve aux Pays-Bas entre 1934 et 193
séjour de Mahler a Manchester et que les contacts avec Mordell se soient intensifiés. La
correspondance permet de préciser cette affirmation. Dans une lettre & Mordell du 12

avril 1936, il indique qu’il vient de commencer & étudier la géométrie des nombres

« At present I am studying the Minkowski theorem on the successive mi-
nima of a convex body, about which I intend to lecture after my return to
Groningen next week. His proof is very clear, but he has not represented it
so very well in the Geometrie der Zahlen, since he is too anxious to prove

every small particularity!'7. »

De plus, Mahler est & Manchester entre 1937 et 1941 alors que Mordell et Davenport
s’y trouve tous les deux. C’est la période pendant laquelle ils travaillent sur le produit
de trois formes linéaires homogeénes et ot Mordell commence a s’intéresser aux formes
cubiques binaires. Rappelons qu’ils voient ces résultats comme la premiére étape vers
une théorie de la géométrie des nombres pour des domaines non convexes. Une lettre de
Mahler a Mordell de 1941 montre que Mahler est intégré aux échanges sur ces thémes!™
et au début des années 1940 il commence lui aussi a publier sur ces questions

« Mahler developed a geometry of numbers of general sets in n-dimensional

space!™ ».

Effectivement, ces premiers articles sur les domaines étoilés sont publiés dans le Jour-
nal of the London Mathematical Society en 1942 et 1943. Entre 1942 et 1946, sur les

20 articles qu’il publie, 14 ont pour théme central la géométrie des nombres.

B. Segre, F. John, F. Pollaczek, H. Grell que nous avons cités sont tous des exemples

de mathématiciens qui cherchent a quitter leur pays pour des raisons politiques et pour

lesquels Mordell est sollicité. A cette liste nous pouvons aussi ajouter Otto Szasz'™ et

17T ettre de Mahler & Mordell du 13 mai 1946, MORDELL (St John’s), box 2, folder 17.

175 COATES et VAN DER POORTEN 1994 p.268.

176 ettre de Mahler & Mordell du 12 avril 1936, MORDELL (St John’s), box 2, folder 17.
177Lettre de Mahler & Mordell du 9 aotit 1941, MORDELL (St John’s), box 2, folder 17.

178 COATES et VAN DER POORTEN 1994 p.268.

1" ettre de Hannah Remak & Mordell du 22 juillet 1933, MORDELL (St John’s), box 3, folder 19.

385



CHAPITRE 5 5.4

Robert Remak. Entre septembre 1933 et aotit 1939 plusieurs lettres, de Remak lui-
méme, de sa femme Hertha Remak et de Hans Freudenthal, informent Mordell de la
situation de Remak!®. Nous avons mentionné le travail de Remak en géométrie des
nombres et en particulier sur les produits de formes linéaires, il a donc des intéréts
mathématiques communs avec Mordell. Mais contrairement & ce que nous avons ob-
servé avec Mahler, les échanges entre les deux mathématiciens ne sont pas 1'occasion

de communiquer sur leurs travaux mathématiques.

Le cas de Heilbronn illustre les difficultés a recueillir des fonds afin d’accueillir
tous ces réfugiés ainsi que les réseaux qui sont mobilisés pour y parvenir. Aprés que
Davenport ait demandé a Mordell d’essayer de trouver un poste a Heilbronn, que

181 1yi ait aussi envoyé une recommandation & son sujet, Mordell pense le faire

Landau
venir a Manchester. D’ailleurs, en aotit 1933, c’est la solution qui parait se dessiner et

Heilbronn exprime sa satisfaction de venir & Manchester

« Of course I would be very happy to stay at Manchester and to work with

you, since I am specially interested in analytic theory of numbers!®?. »

Pour financer la venue de Heilbronn, Mordell commence par s’adresser au Central Bri-
tish Fund for German Jewry qui lui indique qu’il doit contacter I’ Academic Assistance
Commuittee'®3. Mais & nouveau, Mordell est orienté sur une autre association mieux

adaptée a la situation de Heilbronn

« the assistance given by the Academic Assistance Council and, to a great
extent, by this Committee, is being confined to people who have had high
academic standing in their country.

The case of students and people who have just completed their studies
is being dealt with by another Jewish Committee, which has just been
formed, and other organisations, such as the International Student Service,
are interesting themselves in this part of the work!®4. »

Mordell finit par trouver les bons interlocuteurs et le Committee of Assistance to Fo-

5

reign Scholars'®® accepte de mettre Heilbronn sur la liste des réfugiés susceptibles d’étre

180Fn particulier Mordell recoit une lettre de Hertha Remak le 18 novembre 1938 pour lui demander
son aide pour quitter I’Allemagne, soit 9 jours aprés la nuit de cristal au cours de laquelle Remak
aurait été arrété. MORDELL (St John’s), box 3, folder 24. Nous ne savons pas si Mordell a effectué des
démarches pour Remak.

Bl ettre de Landau & Mordell du 26 aofit 1933, MORDELL (St John’s), box 2, folder 13. Il semble
que Landau ait aussi demandé le soutien de Littlewood.

182 ettre de Heilbronn a Mordell du 26 aotit 1933, MORDELL (St John’s), box 2, folder 13.

183Lettre du Central British Fund for German Jewry & Mordell du 24 septembre 1933, MORDELL
(St John’s), box 2, folder 11.

184 ettre du Joint Foreign Committee & Mordell du 27 septembre 1933, MORDELL (St John’s), box
2, folder 11.

185]] s’agit d’un comité de I'université de Manchester.
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assistés sous réserve que I’ Academic Assistance Council trouve les fonds nécessaires®.

Mais Mordell ne réussit pas a réunir suffisamment d’argent pour accueillir Heilbronn
a Manchester. Mordell prend alors contact avec Henry Ronald Hassé de Bristol. Ce
dernier avait engagé des démarches pour trouver différentes sources de financement
(en particulier auprés de la communauté juive locale) pour faire venir un mathéma-
ticien juif d’Allemagne. Il suggére donc que Heilbronn pourrait venir a Bristol quitte
a organiser pour lui la possibilité de s’absenter pendant plusieurs semaines pour tra-
vailler & Manchester ou les mathématiciens ont des intéréts scientifiques plus proches
des siens'®”. Le poste de Heilbronn pour 1934-1935 est finalement arrangé mais dés
décembre 1934 la correspondance entre Mordell et Hassé reprend pour trouver de nou-
veaux financements en prévision de la fin du Fellowship a Bristol en juin 1935. Mordell
obtient en 1935 un scholarship pour Heilbronn a Manchester.

Dans les années 1930, Heilbronn commence une longue collaboration avec Davenport.
Des articles écrits en collaboration sont encore publiés en 1969 et 1971 alors que Da-

venport décéde en 1969.

L’exemple de Heilbronn montre que plusieurs associations semblent avoir été cons-
tituées pour l'aide aux réfugiés. Beaucoup sont liées a la communauté juive et nous
pouvons penser que Mordell, qui est d’origine juive, est bien implanté dans cette com-
munauté®s.

Deés aotit 1933, Mordell s’adresse aussi a la fondation Rockefeller pour demander une
aide pour K. Mahler, R. Baer, H. Heilbronn, B. Neumann et F. Behrend. Le réglement
de la fondation exige que les mathématiciens bénéficiant d’'un de ses financements
puissent ensuite revenir en poste dans leur pays d’origine!®. Ce point de réglement est
évidement impossible & satisfaire pour les réfugiés et Mordell demande s’il serait pos-
sible de faire des exceptions. Mais la fondation ne suit pas Mordell sur cette question et
I'informe que les mathématiciens qu’il a proposés ne pourront pas étre aidés car ils ne
sont pas « mature enough to fall within the group of eminent deposed scholars whom
the officers in Paris are authorized to assist through the Special Research Aid Fund
appropriated from New York!?. »

L’activisme de Mordell en ce qui concerne l’assistance aux mathématiciens réfugiés

semble reconnu. Il est invité en septembre 1933 & participer a une réunion de I’ Academic

186 ettre du Vice Chancellor de I'université de Manchester 4 Mordell du 19 octobre 1933, MORDELL
(St John’s), box 2, folder 11.

187Lettre de Hassé & Mordell du 1T décembre 1933 MORDELL (St John’s), box 2, folder 11.

188Nous avons la trace d’'un don de Mordell aux Amis de l'université juive de Jérusalem en 1943,
MORDELL (St John’s), box 3, folder 19.

189Pour les différents critéres requis pour obtenir un financement de la Fondation Rockefeller voir
SIEGMUND-SCHULTZE 2001 p.79-81.

1907 ettre de Lauder W. Jones & Mordell du 13 septembre 1933, MORDELL (St John’s), box 3, folder
23.
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Assistance Council :

« Lord Rutherford, Sir Austen Chamberlain, Lord Hugh Cecil, Miss Maude
Royden and Professor Einstein have kindly agreed to speak at a meeting in
the Royal Albert Hall on Tuesday, October 3rd., at 8 p.m., organised un-
der the auspices of the Academic Assistance Council, International Student
Service, Germany Committee of the Society of Friends, and the Refugee
Professionals Committee.

The meeting - which is entirely non-political - is called to consider
plans for assisting the professional and academic workers displaced in Ger-

many !, »

Plusieurs correspondants de Mordell témoignent de I’épuisement rapide des fonds
de ces différentes associations et de la difficulté pour les mathématiciens d’obtenir des
financements de leur part. John C. Burkill s’adresse directement a Mordell pour recom-
mander Willy Feller car il sait que « Manchester has done a good deal for refugees »
et qu’il y a peu de chance qu’il obtienne de 'argent de I’ Academic Assistance Council
qui manque de fonds'”2. Richard Rado, qui avait demandé en 1934 & Mordell de le

['93ironise en septembre 1936

recommander auprés de 1" Academic Assistance Counci
sur les problémes que semblent rencontrer plus particulierement les mathématiciens

pour trouver des postes (voir la figure 5.8 194).

Le travail effectué par Mordell pour aider les réfugiés pendant cette période est
reconnu trés rapidement. En aotit 1933, Selig Brodetsky profite de I'expérience de
Mordell et veut savoir comment la création d’un poste s’organise a Manchester car il

195

voudrait aussi inviter un mathématicien réfugié a I'université de Leeds™™ sur le méme

modéle!?S.
Il est aussi intéressant de remarquer que Mordell est contacté en 1942 par le ministére

de l'information pour obtenir des illustrations du travail des juifs pendant la guerre

« We have received a request from the British Press Service in New York for
a series of photographs illustrating the activities in war time of a number

of distinguished Jews in this country, and particular reference is made to

191 Lettre de Walter Adams & Mordell du 28 septembre 1933, MORDELL (St John’s), box 3, folder
23.

192 ettre de Burkill & Mordell du 28 juin 1934, MORDELL (St John’s), box 3, folder 23. Voir aussi
a ce sujet la lettre de Mahler & Mordell du 3 novembre 1935, box 2, folder 17.

193 ettre de Rado & Mordell du 13 septembre 1934, MORDELL (St John’s), box 3, folder 21.

94T ettre de Rado & Mordell du 6 septembre 1936, MORDELL (St John’s), box 3, folder 21. Repro-
duced by permission of the Master and Fellows of St John’s College, Cambridge.

195]] est possible que ’idée initiale vienne de Mordell.

196 ettre de Brodetsky & Mordell du 5 aotit 1933, MORDELL (St John’s), box 3, folder 19. Il semble
qu’un des candidats proposés par Mordell, B. Kaufmann, ait été recruté.
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Fi1c. 5.8 — Lettre de Richard Rado a Mordell du 6 septembre 1936
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yourself'¥7. »

Dans les archives de Mordell est conservée une liste d’universités avec pour chacune
des informations sur le devenir de mathématiciens qui y étaient en poste. Ces infor-
mations ont été réunies par Franz Rellich certainement aprés la guerre, nous ne savons

pas comment elles ont été transmises a Mordell (voir les figures 5.9 et 5.101%).

Conclusion

1199 % par plu-

L’insistance qui est mise sur « Die Schule in Manchester um Mordel
sieurs mathématiciens est intéressante car elle permet de voir que les acteurs identifient
un moment important qui influence les développements ultérieurs de la discipline pour
ce qui est de la géométrie des nombres; et qui peut-étre plus largement a un impact sur
la théorie des nombres telle qu’elle est pratiquée en Angleterre (choix des thémes, mé-
thodes privilégiées etc. ..). Cependant la notion d’« école » comme catégorie d’analyse,
telle que historiens et sociologues ont essayé de la définir en reprenant cette catégorie
des acteurs, ne semble pas correspondre complétement a ce que nous avons décrit pré-

cédemment.

Deux aspects cruciaux de la définition d’une école de recherche sont ’existence d'un
lieu dans lequel sont réunis les membres du groupe et d’un leader dont le role est lui
aussi trés spécifique. Les commentaires laissent penser que ces conditions sont remplies
dans le cas qui nous occupent avec 1’association constante qui est faite entre Manchester
et Mordell. Nous pensons néanmoins que ce que nous avons vu du fonctionnement de
cette communauté de mathématiciens révéle une organisation différente de celle d’'un
leader qui organise la recherche dans un lieu unique.

La question géographique apparait en fait déja problématique si nous revenons sur cer-
tains commentaires. Certes Manchester est le plus souvent mis en avant mais parfois le
nom de Mordell est aussi associé & Cambridge ot il se trouve a partir de 1945. Cassels
qui est peut étre le plus connu en tant qu’éléve de Mordell n’a jamais été a Manchester
en tant qu’étudiant. De plus, si nous nous limitons & Manchester, nous perdons de
vue la majeure partie de la collaboration entre Mordell et Davenport qui joue un role
dynamique important dans leur propre recherche mais aussi dans celle des mathéma-

ticiens de leur entourage. L’influence de cette collaboration se voit par exemple dans

97 ettre de H.A. Goodman (Religion Division, Ministry of Information) & Mordell du 9 avril 1942,
MORDELL (St John’s), box 3, folder 23.

198MORDELL (St John’s), box 4, folder 41. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.

99HLAWKA 1980 p.398.
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F1G. 5.9 — Devenir de mathématiciens aprés la guerre (premiére partie)

391



CHAPITRE 5 0.4

F1G. 5.10 — Devenir de mathématiciens aprés la guerre (fin)

les échanges trés nombreux entre leurs séminaires respectifs qui se tiennent d’ailleurs
a Cambridge et & Londres. En fait, la période pendant laquelle Mordell et Davenport
sont tous les deux & Manchester s’étend seulement de 1937 a 19412% pourtant leur
collaboration commence bien plus tot et dure jusqu’a la mort de Davenport en 1969.
La place occupée par Davenport au coté de Mordell est un premier indice du fait que
Mordell ne remplit pas les conditions attendues pour le leader d’une école de recherche.
Il est vrai qu’il joue un role de guide pour Davenport au début de sa carriére. Mais
les définitions de la notion d’« école » insiste sur un rapport hiérarchique fort entre
un leader et ses éléves ou collaborateurs qui ne nous semble pas exister dans le cas de
Mordell.

D’un point de vue institutionnel, Mordell ne montre pas réellement 1’ambition de créer
un centre de recherche en mathématiques. A titre de comparaison, nous pouvons re-
garder quelques caractéristiques données par David Rowe sur ce qui s’est passé sous
I'ére de Klein et Hilbert & Gottingen?®!. Il y a en particulier chez Klein un volontarisme
politique fort pour implanter & Gottingen un centre de recherche en mathématiques.
Mais il poursuit un projet plus général en permettant le développement des mathéma-
tiques appliquées, en créant des instituts de recherche dans d’autres domaines comme
la physique ou la mécanique, en tissant des liens avec I'industrie ou encore en lancant
des grands projets comme celui de I’ Encyklopidie der mathematischen Wissenschaften
mit Einschluss ihrer Anwendungen. Un des moyens utilisés par Klein est de faire ve-
nir & Gottingen parmi les scientifiques les plus prestigieux dans différentes spécialités.

Mordell ne suit pas un projet aussi ambitieux, la dynamique qu’il créée est limitée

200Nous ne parlons pas ici de I’époque oit Davenport est étudiant & Manchester.
201RoWE 1989.
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a la théorie des nombres et a des thémes mathématiques proches de ses intéréts. Ses
interventions dans des recrutements apparaissent plus comme des réactions au cas par
cas selon les opportunités qui se présentent. Les premiers contacts avec Mahler ou Heil-
bronn sont la conséquence de la situation politique en Allemagne, ce ne sont pas encore
a cette époque des mathématiciens reconnus mais leurs thémes de recherche sont liés
a ceux de Davenport et Mordell. Ce dernier s’investit alors trés fortement pour leur
venue en Angleterre.

Mordell n’impose pas un programme de recherche précis a ses collaborateurs, il inter-
vient de maniére moins directive. Il sensibilise les étudiants aux sujets qui l'intéressent
dans ses cours et au cours de séminaires. Pour les jeunes chercheurs, il est une figure
qui encourage, motive et conseille. Son influence est peu transmise par des relations
du type étudiant/directeur comme Della Fenster le décrit au sujet de Leonard Eugene
Dickson. Pour rendre compte de l'influence de Dickson aupres de ses étudiants elle
reprend la distinction entre le mentor (qui désigne « older people in an organization or
profession who take younger colleagues under their wings and encourage and support
their career progress until they reach mid-life » ou quelqu’un « higher in the institution
or organization who coaches, teaches, advises, provides support and guidance, and help
mentee achieve his or her goals®®? ») et le modeéle (qui « possesses skills and displays
techniques which the student lacks ... and from whom, by observation and comparison
with his own performance the student can learn®®® »). Si la transmission avec Dickson

204 Mordell présente lui davantage les

passe par l'exemple qu’il donne a ses étudiants
caratéristiques du mentor.

Le role social de Mordell prend diverses formes. Au sein du groupe il intervient avec
I'organisation de séminaires et le recrutement. Il est aussi un intermédiaire important
dans les relations a I'extérieur du groupe. Son réseau de contact est international et
il entretient ces échanges par sa correspondance, ses voyages et en faisant venir de
nombreux chercheurs étrangers.

Au cours des échanges au sein du groupe ou avec I'extérieur ce qui circule peut étre tres
concret comme de 'argent, des informations sur des postes, des problémes liés a des
publications ou l'organisation de cours et de séminaires. Mais il circule aussi parfois un
intérét pour un nouveau théme de recherche, de nouvelles démonstrations, de nouveaux
résultats, des méthodes ou des idées pour aborder un probléme dont nous pouvons voir
la trace par la suite dans les publications.

La catégorie « école » apparait donc trop rigide pour décrire ce qui se passe autour de

Mordell et de Davenport??®. Nous avons un type de socialisation qui n’est pas organisé

202FENSTER 1997 p.9.

203FENSTER 1997 p.9.

204FENSTER 1997 p.16.

2051 ¢tude précédente se focalise sur la personnalité de Mordell mais le méme travail sur Daven-
port montrerait certainement aussi qu’il exerce une grande influence sur la théorie des nombres en

393



CHAPITRE 5 5.4

autour d’une personnalité unique et d'un lieu unique, mais dont les caractéristiques se
rapprochent davantage de ce que Diana Crane a appelé un « groupe de solidarité?%6 » .
Il s’agit d'un groupe de collaborateurs réunis autour d’un ou plusieurs professeurs in-
fluents qui recrutent et socialisent de nouveaux membres, définissent les problémes
importants dans leurs spécialités et qui communiquent avec d’autres groupes. Le role
directif des leaders du groupe, bien que moins fort avec cette notion, est peut étre
encore trop grand. Nous n’avons pas trouvé de déclaration de Mordell sur ce que sont
les questions les plus importantes, au contraire nous avons noté qu’il laissait le choix
de leurs thémes de recherche a ses étudiants. Malgré cela nous avons pu remarquer les
liens entre le travail de Mordell et les thémes choisis par beaucoup de ses collaborateurs,
I'influence de Mordell se passe certainement & un autre niveau, a travers les cours, les

séminaires ou bien des relations personnelles.

Nous constatons donc avec Mordell et Davenport une conception disciplinaire de
la géométrie des nombres qui est complétement différente de celle de Minkowski. Avec
Minkowski, la géométrie des nombres se définit bien par des caractéristiques internes
et Minkowski est le seul a participer a son développement. Le chapitre précédent a
montré qu’il est beaucoup plus difficile de caractériser la géométrie des nombres de
Mordell et Davenport comme discipline a 'aide de critéres purement intellectuels a
cause de la variété des objets étudiés et des méthodes utilisées. Par contre, avec eux, il
est pertinent d’envisager la discipline comme une entreprise collective. La communauté
est soudée par I’étude de problémes comme celui du produit de formes linéaires non
homogenes. Cette question est enseignée (voir le cours de Mordell dans le chapitre
suivant), elle est le sujet d’interventions lors de séminaires (voir celles de Davenport
page 361), plusieurs mathématiciens liés a ce groupe publient sur ce sujet (Mordell,
Davenport, Dyson, D.B. Sawyer, A.M. Macbeath, E.S. Barnes, L.E. Clarke, P.A. Samet
etc). Nous voyons la comment un énoncé mathématique peut jouer un réle social qui
n’est pas sans rappeler celui attribué au microscope par Bruno Strasser?’?. Il s’agit d'un
objet intellectuel qui organise une variété de pratiques collectives. C’est dans ce sens
que la géométrie des nombres de Mordell et Davenport peut étre caractérisée comme

un champ disciplinaire?®®. Pour appuyer cette idée, rappelons I'importance accordée a

Angleterre, qu'il posséde un vaste réseau de relations etc. . .

206 CRANE 1972 p.35.

207STRASSER 2002. Voir les commentaires sur cet article dans I'introduction & la page 20.

208 Pour un autre exemple en histoire des mathématiques voir GOLDSTEIN et SCHAPPACHER 2007a ol
I’ensemble des travaux liés aux Disquisitiones Arithmeticae de Gauss est caractérisé comme un champ
de recherche. Le roéle d’un ou plusieurs objets intellectuels dans l'organisation du champ apparait
aussi dans cet exemple : « It [the Disquisitiones Arithmeticae] provided the field with technical tools,
and a stock of proofs to scrutinize and adapt. It also provided concrete examples of the very links
between different branches of mathematics that created the field, often articulated around richly
textured objects and formulae, such as the cyclotomic equation or Gauss sums. », GOLDSTEIN et
SCHAPPACHER 2007a p.58.
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I'histoire dans la définition de la notion de « champ » (voir l'introduction page 24). Les
nombreuses interventions de Mordell dans la construction dune histoire collective de la
géométrie des nombres peuvent étre interprétées dans ce cadre : ses articles comportent
souvent de brefs historiques des questions qu’il traite et il défend Minkowski quand le
journal anglais The Engineer conteste le Grand Prix de I’Académie des Sciences qui

lui a été attribué (voir le commentaire a ce sujet page 42).
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Chapitre 6

Les cours : retour sur les aspects

pédagogiques de la discipline

Sommaire

6.1 Présentationdescours . . . . . . . i i i it 398

6.2 La géométrie des nombres comme discipline a travers les

Il a été indiqué dans l'introduction que certains historiens percevaient le role de
I’enseignement comme fondamental dans la définition d’une discipline. Les cours spé-
cialisés sur un sujet ont pour fonction de former de nouveaux scientifiques susceptibles
de participer a son développement. De plus, ce qui est transmis dans ces cours influence
les pratiques de recherche adoptées par ces nouveaux entrants dans la discipline.
L’objectif de ce chapitre est donc de donner un apercu de la géométrie des nombres a
travers la maniére dont elle est enseignée. Nous essayons de voir si la pédagogie mise en
oeuvre dans les cours montre une organisation différente de la géométrie des nombres
par rapport a ce qui a été observé dans le travail de recherche des mathématiciens.
Nous examinons pour cela des cours tous professés aprés la mort de Minkowski. Nous
avons retrouvé cing cours donnés par Albert Chatelet, Hans Frederik Blichfeldt, Carl
Ludwig Siegel, Louis Mordell et Harold Davenport. Deux de ces cours ont été publiés
(Chatelet et Siegel), les trois autres sont des notes manuscrites ou dactylographiées
non publiées.

Pour comparer ces cours, nous reprenons certains critéres proposés par Ralf Haubrich
que nous avons déja mentionnés dans l'introduction. Nous reléverons dans chaque cas
quels sont les objets étudiés, quels sont les concepts ou les résultats clés, quelles sont
les méthodes employées et enfin s’il se dégage de I'organisation des cours une systéma-

tisation de la discipline.
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6.1 Présentation des cours

6.1.1 Les Lecons sur la théorie des nombres d’Albert Chatelet

Le travail d’Albert Chatelet (1883-1962) est per¢u comme singulier en France. Il
est en effet vu comme 1'un des rares mathématiciens francgais du début du XX¢ siécle a
s’'intéresser a la théorie des nombres. Plusieurs témoignages de cette époque vont dans

ce sens. Emile Picard écrit dans son rapport sur la soutenance de thése de Chatelet

« La these de M. Chatelet me parait d’un trés réel intérét ; elle marquera

dans la théorie des nombres, théorie trop peu cultivée en France'. »
Gaston Julia, qui assiste aux cours de Chatelet, souligne

« A ton cours tu voyais défiler de jeunes camarades, empressés a connaitre
ce phénomeéne qui pratiquait I’ Arithmétique, quand tout le monde en France

s’adonnait a 1’ Analyse ou a la Géométrie?. »

Chatelet est chargé du cours de la Fondation Péccot au College de France au
deuxiéme semestre 1911-1912 et c’est ce cours qui est publié en 1913 sous le titre
Lecons sur la théorie des nombres®. L’objectif de Chatelet est de donner une intro-
duction aux développements de la théorie des nombres de la seconde moitié du XIX®
siécle. Ces développements sont présentés sous un point de vue personnel, celui de la
théorie des tableaux®. Il aborde ainsi par exemple la théorie des nombres algébriques
et la méthode de réduction continuelle d’Hermite.

Ce cours a un statut un peu différent de ceux que nous regarderons ensuite : il n’est pas
consacré exclusivement a la géométrie des nombres. Cependant c’est le premier cours
qui présente le travail de Minkowski de maniére intégrée au reste de la théorie des
nombres. Les références au travail de Minkowski sont trés nombreuses tout au long du
texte, des aspects de la géométrie des nombres sont présentés dans plusieurs chapitres,
en particulier les théorémes de Minkowski sur les parties convexes. D’autre part, I'in-
terprétation en termes géométriques de beaucoup de problémes est utilisée de maniére
importante et & nouveau Minkowski est explicitement cité a ce sujet. Nous reviendrons
un peu plus précisément sur la maniére dont la géométrie des nombres prend sa place

dans 'ensemble de la théorie des nombres dans le cours.

Ce travail de Chatelet est 1'occasion de dire un mot sur la réception en France de la
géométrie des nombres. La réception immédiate de cette théorie par les mathématiciens

frangais semble trés positive. Trés rapidemment des travaux de Minkowski sont publiés

LG1SPERT 1991 p.410.

2JuLiA 1963.

3CHATELET 1913.

4Pour des précisions sur cet aspect du travail de Chatelet voir BRECHENMACHER 2006.
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en francais : les lettres de Minkowski & Hermite et le texte de la conférence de Min-
kowski a Chicago. Nous avons aussi vu la réaction enthousiaste d’Hermite au travail
de Minkowski, Julia accueille favorablement le point de vue géométrique de Minkowski

ainsi il remarque a propos de la théorie des nombres

« A Texemple de Minkowski, je I’ai toujours envisagée en liaison avec la
Géométrie®. »
Ce cours donné par Chatelet dés 1911 témoigne lui aussi de cette réception favorable
des idées de Minkowski.
Cependant, malgré ces premiéres réactions, la géométrie des nombres n’a pas été re-
prise par la suite en France et il faut attendre la fin des années 1940 avec le travail de

Claude Chabauty pour voir ce sujet redémarrer.

6.1.2 Un cours de Blichfeldt a Stanford

Dans un article sur le produit de deux formes linéaires non homogénes publié en
1943, Mordell fait référence & un cours de Blichfeldt donné en 1932 a l'université de
Stanford®. Mordell a trés certainement eu connaissance de ce cours grace a larticle de

Seale de 1935 sur le méme sujet qui mentionne’

« a syllabus which Professor Blichfeldt distributed to a class in geometry

of numbers at Stanford University, winter and spring quarters, 1932. »

Seale obtient un PhD de l'université de Stanford en 1935 intitulé A simple proof of
Minkowski’s theorem on the product of two linear forms, il est donc probable qu’il est
suivi ce cours de Blichfeldt®. Des notes de cours de Blichfeldt, qui contiennent le résul-
tat auquel Mordell et Seale font référence, sont conservées a Stanford”. Ces notes de
cours ne sont pas datées mais le catalogue de la bibliotheque de I'université de Stanford
indique que le cours a été donné entre 1930 et 1932, c’est donc trés certainement le
cours de 1932.

Ces notes, intitulées Geometry of Numbers. Diophantine Approximations, se composent
de 65 pages dont les 49 premiéres sont manuscrites et les autres dactylographiées. Nous
ne savons pas a quels étudiants ce cours était destiné.

Nous en donnons maintenant le plan. La numérotation est celle de Blichfeldt, mais
tous les paragraphes n’ont pas de titre nous avons donc indiqué entre crochets le theme

de ces parties.

>JuLia 1933.

SMORDELL 1943d p.218.

"SEALE 1935 p.419.

8Ce PhD est recensé dans la base de données Dissertation Abstracts qui est consultable en ligne
http://proquest.umi.com/login.

9BLICHFELDT 1932.
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Plan du cours de Blichfeldt :

1. Introductory remarks
2. Equation of the first degree in two unknowns
3. Equation of the first degree in three unknowns

4. Minkowski’s standard surface

Space of n dimensions R,, and lattice points

5. |[Examples of a Minkowski’s standard surface]

7. [Théoréme de Minkowski]

8. |Application du théoréme a un parallélogramme]|

9. [Produit de deux formes linéaires de deux variables]
10. [Application du théoréme a un parallélépipéde]

11. [Application du théoréme & un octaédre]

12. Note

13. [Produit de trois formes linéaires homogénes ternaires|

Certain non-homogeneous forms

14. [Théoréme sur le produit de deux formes linéaires non-homogeénes|
15. |[Preuve du théoréme (partie 1)]
16. [Preuve du théoréme (partie 2)]
17. |Preuve du théoréme (partie 3)]
18. [Preuve du théoréme (partie 4)]

19. [Produit de n formes linéaires homogénes|

A new geometrical principle
20. [Théoréme de Blichfeldt dans le plan]

21. [Preuve du théoréeme de Minkowski avec celui de Blichfeldt. Enoncé du théoréme

de Blichfeldt en dimension n|

22. |Généralisation du théoréme de Minkowski]

Linear Transformations

23. [Transformations linéaires de deux variables. Remarques]
24. |Transformations inverses|
25. [Propriétés des transformations linéaires]

25. [Transformations linéaires de n variables|

Quadratic Forms

26. |[Formes quadratiques binaires : décomposition en somme de carrés|

27. |Application du théoréme de Minkowski aux formes quadratiques binaires|
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28. [Calcul de 7, par la méthode de Korkine et Zolotareft]

29. |La méthode de développement d’une forme quadratique par rapport & ses minima
d’aprés Korkine et Zolotareff]

30. [Théoréeme de Minkowski sur les formes quadratiques de n variables]

31. [Inégalités de Korkine et Zolotareff sur les coefficients des formes quadratiques]

32. [Calcul de 73, 74 et s

33. |Estimation de Minkowski pour 7,]

34. [Méthode de Blichfeldt pour améliorer I'estimation de Minkowski de ~,]

6.1.3 Le cours de Siegel

Les Lectures on the Geometry of Numbers de Siegel ont été professées a 'université
de New York pendant I'année 1945-1946. Il s’agit d’un cours publié en 1989 d’apres
des notes de Bernard Friedman'®. Les notes de cours ayant été réécrites pour la publi-
cation sous forme de livre, nous avons un document de nature assez différente de celui
de Blichfeldt : rédaction plus soignée, plan plus précis etc... Nous reproduisons ici la

table des matiéres de ce livre.

Table des matiéres des Lectures on the Geometry of Numbers de Siegel :

Chapter I : Minkowski’s Two Theorems

Lecture 1

1. Convex sets

2. Convex bodies

3. Gauge function of a convex body

4. Convex bodies with a center

Lecture 11

Minkowski’s First Theorem

Lemma on bounded open sets in R"”

Proof of Minkowski’s First Theorem
Minkowski’s theorem for the gauge function

The minimum of the gauge function for an arbitrary lattice in R"

A T o

Examples

10S1EGEL 1989.
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Lecture III
1. Evaluation of a volume integral
2. Discriminant of an irreducible polynomial

3. Successive minima
4. Minkowski’s Second Theorem (Theorem 16)

Lecture IV

1. A possible method of proof

A simple example

A complicated transformation

Volume of the transformed body
Proof of Theorem 16 (Minkowski’s Second Theorem)

CU W N

Chapter II : Linear Inequalities

Lecture V

Vector groups

Construction of a basis

Relation between different bases for a lattice
Sub-lattices

Congruences relative to a sub-lattice

ARl e

The number of sub-lattices with given index

Lecture VI

Local rank of a vector group
Decomposition of a general vector group
Characters of vector groups

Conditions on characters

Duality theorem for character groups

A T o

Kronecker’s approximation theorem

Lecture VII

1. Periods of real functions

2. Periods of analytic functions
3. Periods of entire functions

4. Minkowski’s theorem on linear forms

Lecture VIII

1. Completing a given set of vectors to form a basis for a lattice
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Completing a matrix to a unimodular matrix
A slight extension of Minkowski’s theorem on linear forms
A limiting case

A theorem about parquets

A T

Parquets formed by parallelepipeds

Lecture IX

1. Products of linear forms
Product of two linear forms
Approximation of irrationals

Product of three linear forms

ANl

Minimum of positive-definite quadratic forms

Chapter III : Theory of Reduction

Lecture X

The problem of reduction
Space of all matrices
Minimizing vectors

Primitive sets

Construction of a reduced basis
The First Finiteness Theorem
Criteria for reduction

Use of a quadratic gauge function

© 0N e WD

Reduction of positive-definite quadratic forms

Lecture XI

Space of symmetric matrices

Reduction of positive-definite quadratic forms
Consequences of the reduction conditions
The case n = 2

Reduction of lattices of rank two

ARl e

The case n = 3

Lecture XII
1. Extrema of positive-definite quadratic forms
2. Closest packing of (solid) spheres

3. Closest packing in two, three, or four dimensions
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4. Blichfeldt’s method

Lecture XIII

1. The Second Finiteness Theorem

2. An inequality for positive-definite symmetric matrices
3. The space Py

4. Images of R

Lecture XIV

1. Boundary points

Non-overlapping of images

Space defined by a finite number of conditions

The Second Finiteness Theorem

Ul N

Fundamental region of the space of all matrices

Lecture XV

Volume of a fundamental region

Outline of the proof

Change of variable

A new fundamental region

Integrals over fundamental regions are equal
Evaluation of the integral

Generalizations of Minkowski’s First Theorem

N oo W

A lower bound for the packing of spheres

6.1.4 Un cours de Mordell & Cambridge

Nous avons retrouvé dans les archives de Mordell & Cambridge un dossier inti-
tulé Geometry of Numbers''. Ce dossier contient des notes manuscrites de Mordell sur
des thémes variés : formes quadratiques, formes cubiques, produit de formes linéaires,
« Lattice points in astroidal region ». .. Certaines des listes d’étudiants données au cha-
pitre précédent se trouvent aussi dans ce dossier. Malheureusement les papiers dans ce
dossier sont dans le désordre et parfois visiblement incomplets. Nous avons cependant
reconstitué ce qui doit étre des notes pour un cours sur la géométrie des nombres. 1l
s’agit d’environ 110 pages manuscrites numérotées (a peu prés) continiiment, quelques

pages sont quand méme manquantes alors que d’autres sont en plusieurs exemplaires

HTe titre est écrit de la main de Mordell ce qui permet de penser qu’il a lui méme réuni les notes
contenues dans ce dossier. MORDELL (St John’s), box 7.
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avec parfois des modifications.

Ces notes de cours ne sont pas datées mais plusieurs indices montrent qu’elles ont été
écrites aprés 1946 et probablement avant 1949. D’abord, Mordell donne la référence
d’'un article de Davenport publié en 1946 et il cite Dyson sur le produit de quatre
formes linéaires non homogeénes. Ce travail de Dyson, qui est publié en 1948 mais dont
la preuve est élaborée des 1946, semble étre le résultat le plus récent cité par Mordell.
Ensuite une des listes d’étudiants se trouvant dans le méme dossier est datée de 1947-
1948.

Cette liste permet aussi de dire que le cours de Mordell était destiné a des étudiants
avancés. Ce sont des « Research students » ainsi que des étudiants préparant la « Part
ITI » du Mathematical Tripos.

Nous donnons maintenant le plan du cours, les titres sont ceux indiqués par Mordell

seule la numérotation a été ajoutée.

Plan du cours de Mordell & Cambridge :

—_

Linear substitutions

Minimum of a binary quadratic form
Min. of a binary cubic form

Lattice points

Regions

Linear Forms

Non convex regions

Improvement of Minkowski’s theorem

© o N e s W N

Improved results for some non-convex regions R

—_
e

Simultaneous approximations

—_
—_

. Properties of two dimensional lattices

—_
[\

. Best possible results

—_
w

. Binary cubic forms

—
W

. Product of three ternary linear forms

—_
ot

. Product of two non-homogeneous forms

—
D

. The product of n non-homogeneous linear forms

—_
N |

. The product of n homogeneous forms

—_
o

. Analytical methods. Poisson’s summation formula
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19. Successive minima for quadratic forms
20. Successive minima of a bounded star body
21. Product of n homogeneous linear forms continued

22. Related n dimensional problems

6.1.5 Le cours de Davenport & Stanford en 1950

A partir de la fin des années 1940, Davenport est invité & plusieurs reprises a I'uni-
versité de Stanford. D’aprés Royden, il y donne des cours, en particulier un cours pour
les graduates sur la géométrie des nombres'?. Une version de ce cours est conservée
dans les archives de Davenport a Cambridge!3. Il s’agit de 67 pages dactylographiées
datées de 1950.

Plan du cours de Davenport & Stanford :

1. Introduction
2. Minkowski’s fundamental theorem
3. Lattices
4. Applications of Minkowski’s Theorem to particular bodies
(a) The Sphere
(b) The box
(c) The octahedron
(d) A more general body
The closest packing of convex bodies
The closest packing of spheres
The theorem of Minkowski and Hlawka

Non-convex bodies

R A

The regions |zy| < 1 and |zyz| <1

10. Further developments

12ROYDEN 1989 p.255.
13D AVENPORT 1950b.
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6.2

Pelwated toploa lﬂ tha Creoame bry EE Numbara

L, Intreduction

The geomatyy of opwoberm le a bransh of the theory
of numbers whiech originated wlth the work of Minkowaki (1864~
1909}, It 1s concernsd with the problem of determining whether
or not lnequalitlas of verioup Klndes are scluble 1o lntegera,
end with other proclems thet bhave arisen paturselly out of thig.
Some general thecrems of the solubllisy of inequalities in
integers ware found mlready by Hermite (1822-1892), end the
most importent of these wes given by Hermite In the letters
which he addrsssed to JTacobi in mbout 18L5, .

Bupposa we have & quadratle form

Ll

] ——

Qiul,..., un] = i - Byy Uy Yy {&ij = Hji}

1=1 3=l

wlth real coefficlsnts e,4, which is posltive definite, that is

gll ite wveluss £re strictly positive, exzoept when the variables

are sll zern. Let

be the determinsnt of the form, whieh 18 necassarily posliive.
Then Hermite's theorem 1s that thara axipt intagars Upy e

Uy s not all zers, for whleh

F1G. 6.4 — Premiére page du cours de Davenport
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6.2 CHAPITRE 6

6.2 La géométrie des nombres comme discipline a tra-

vers les cours

6.2.1 Les objets fondamentaux

Nous avons déja mentionné certains des objets qui sont étudiés dans le cours de
Chatelet. D’abord, interviennent ce qu’il appelle les tableaux qui correspondent a la
notion actuelle de matrice carrée. Leurs propriétés sont introduites afin que les tableaux
soient appliqués a différentes situations. Les autres objets fondamentaux dans le cours
de Chatelet sont les « modules de points!4 » dont les réseaux sont un cas particulier, les
nombres et les entiers algébriques et les « distances généralisées ». Les distances géné-
ralisées de Chételet correspondent aux distances radiales, réversibles et concordantes
de Minkowski.

Les objets mis en avant dans le cours de Blichfeldt sont les réseaux, ce qu’il nomme
les « Minkowski’s standard surfaces » qui sont des domaines convexes et surtout les
formes : linéaires ou bien quadratiques.

Nous retrouvons chez Siegel les réseaux ainsi que les domaines convexes mais les formes
occupent une place beaucoup plus marginale. Siegel utilise aussi 'interprétation des
domaines convexes avec la notion de distance qu’il appelle la « gauge function of a
convex body ».

Les mémes objets sont présents dans le cours de Mordell : les formes (linéaires, qua-
dratiques, cubiques), les réseaux et les domaines mais qui ne sont plus nécessairement
convexes. Cependant 'importance qui leur est accordée est différente, ’accent chez
Mordell est mis davantage sur les formes.

Enfin, avec Davenport, les formes disparaissent a nouveau pour laisser la place centrale
aux corps convexes dans la premiére partie du cours puis a des corps plus généraux

dans la seconde partie. Les réseaux ont eux aussi un role fondamental dans ce cours.

6.2.2 Les concepts et les résultats clés

Le théoréeme de Minkowski sur les points d'un réseau dans un domaine convexe est
énoncé et démontré dans tous les cours. Parfois le théoréme sur les minima successifs
qui le généralise est également donné. Chaque cours contient des paragraphes dont la
fonction essentielle est de préparer le terrain pour la démonstration de ces théorémes.
Parmi ces thémes préliminaires nous avons les réseaux, les domaines convexes ou encore
parfois les substitutions linéaires. Ces sujets ne sont pas traités de la méme fagon et

avec la méme importance selon les auteurs. Pour certains ils sont présentés seulement

1471 s’agit en termes modernes de groupes additifs.
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parce qu’ils apparaissent dans le théoréme de Minkowski, pour d’autres ils prennent
un statut plus fondamental dans le cours. Par exemple, les réseaux sont fondamentaux
dans le cours de Siegel alors que Blichfeldt se contente d’une définition.

La preuve et I’énoncé du théoréme ne sont pas non plus toujours identiques.

Chatelet énonce le théoréme de Minkowski de la maniére suivante!® :

« THEOREME I : Etant donné un module type de dimension n, de base T’

et formé par les points A(ay,as,...,a,), on a

2" |A(T)]
J )

[minimum f(ay, as, ..., a,)]" <

J étant une constante qui ne dépend que de la fonction f. »

Pour Chéatelet, un module type de dimension n correspond & la notion de réseau.
Il appelle alors base du module un tableau T inversible, de taille n et qui vérifie la

propriété : un point (py, ..., p,) appartient au module si et seulement si

Py - pall = Ny ozl X T

ot les z; sont des nombres entiers'®. A(T') désigne le déterminant du tableau T et f est

une « distance généralisée », notion qu’il a définie dans le premier chapitre du livre!” :

« on appelle distance généralisée de deux points A, B, une fonction des

différences des coordonnées des points
S(AB) = f(os — Bi) ,

cette fonction étant réelle, définie pour deux points quelconques de [’espace

considéré et telle que

;

f(ui)ZOa

f =0 entrainant u; =0,

(2)  f(Aug) = |A| f(us) (A réel) |
(3) flui+v) < flw)+ f(vi). »

(1)

15CHATELET 1913 p.108. La preuve de Chatelet est présentée en annexe.

16En termes modernes, les lignes de T sont donc les coordonnées des vecteurs d’une base du réseau
dans la base canonique. Remarquons que les conventions de Chételet dans ’écriture des tableaux ne
sont pas celles qu’il est 'usage d’utiliser maintenant : les coordonnées des vecteurs sont notés en ligne
chez Chéatelet.

1" CHATELET 1913 p.17.
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La démonstration du théoréme proposée par Chéatelet est celle donnée par Min-
kowski dans le texte de la conférence de Chicago. La seule différence est que Chatelet
exprime les calculs de volumes avec des intégrales.

En reprenant lui aussi la preuve de Minkowski, Blichfeldt démontre uniquement le

théoréme dans le cas de la dimension 2 :

« A M— curve of area 4 or more, having a center at the origin, must
contain on (or inside) its boundary one or more lattice points in addition
to (0,0)18. »
Il donne I’énoncé en dimension n sous cette forme mais sans preuve. Plus loin dans le
cours, Blichfeldt montre le théoréme de Minkowski en utilisant son théoréme démontré
en 1914.
Ce dernier point de vue est aussi celui adopté par Siegel. Ce dernier commence par

donner trois preuves du lemme

« Let M be a bounded open set in R”, with volume greater than 1. Then

M contains two distinct points x and y, such that
x; — y; = an integer (fori=1,...,n),

where z; and y; are the coordinates of the points x and y respectively!?. »

Avec ce lemme, qui nous ’avons dit est une version plus faible du théoréme de Blichfeldt,
Siegel démontre ensuite le théoréme de Minkowski. Notons que Siegel donne le théoréme
de Minkowski sous sa forme géométrique et analytique.

Mordell propose aussi les deux formes du théoréme ainsi que plusieurs démonstrations.
D’abord une preuve ot le théoréeme de Minkowski est vu comme un cas particulier du

résultat qu’il a montré en 193520 :

« Let R be any region and S the region derived from R by taking the set

r—Y _ 1 — W Tpn — Yn
. 5 T )
where (z), (y) are any two points of R and (k) is a set of positive numbers.

Then if V' = V(R) is the content of R and A is a lattice of determinant
A > 0 and if

of points

V > klkz...knA,

the region S contains a point of A other than O 2. »

I8 BLICHFELDT 1932 p.18.
19GIEGEL 1989 p.13.
2OMORDELL 1935.

2IMoORDELL (St John’s), box 7.
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L’autre preuve donnée par Mordell est analytique et utilise les séries de Fourier.

Enfin, Davenport introduit le théoréme de Minkowski de maniére progressive. Il com-
mence par le montrer dans le cas de l'ellipsoide et pour le réseau des nombres entiers.
Puis il remarque que seules les propriétés de convexité et de symétrie par rapport a
I’origine sont utiles, ce qui le conduit & I’énoncé du théoréme pour n’importe quel do-
maine convexe et symétrique par rapport a un point. Enfin, aprés avoir défini la notion

de réseau, le théoréme est donné sous sa forme générale.

Les autres résultats importants dans le cours de Chatelet sont ceux qui concernent

les tableaux car ils sont appliqués dans divers problémes, en particulier

« Pour avancer plus loin dans cette théorie des entiers des corps algébriques
et des idéaux, il est utile et méme nécessaire d’étudier d'un peu plus prés

les systémes de tableaux?? ».

Cet examen plus approfondi des propriétés des systémes de tableaux conduit Chéatelet
a développer une autre notion cruciale de son cours qui est la réduction. La méthode
de réduction qu’il présente est la réduction continuelle d’Hermite®® qu’il expose dans
le cadre de sa théorie des tableaux.

La question de la réduction est aussi fondamentale dans le cours de Siegel : c’est le
titre d’un des trois chapitres. Siegel s’intéresse au probléme de la réduction des formes
quadratiques définies positives ainsi qu’a la construction de bases réduites pour un
réseau.

La réduction de certaines formes est aussi abordée par Mordell mais elle est traitée
dans le cadre d'une problématique plus générale qui est celle de la résolution d’'inéga-
lités. A I’exception de celui Chatelet, les problémes sur les inégalités jouent un role
fondamental dans tous les cours tout en étant déclinés sous des formes diverses. Avec
Blichfeldt, les inégalités apparaissent d’abord dans des questions d’approximations dio-
phantiennes, puis a la fin de son cours au sujet de 'estimation des minima pour des
valeurs entiéres des variables des formes quadratiques. Pour Siegel, 1’objectif de son
chapitre sur les inégalités linéaires est de « résoudre approximativement des équations
linéaires au moyen d’entiers®? ».

Les inégalités sont au coeur des conceptions de la géométrie des nombres de Mordell

et Davenport, c’est dans ce cadre qu’ils décrivent la théorie et ses développements :

«It [the geometry of numbers| is concerned with the problem of determining
whether or not inequalities of various kinds are soluble in integers, and with

other problems that have arisen naturally out of this?®. »

22CHATELET 1913 p.91.
23GOLDSTEIN 2007 p.394.
24SIEGEL 1989 p.43.
25DAVENPORT 1950b p.1.
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Parmi les problémes dans lesquels les inégalités interviennent, figure 'estimation de
minima que Davenport aborde pour les formes quadratiques mais que Mordell envisage

de fagon plus générale

« The geometry of numbers was a subject, developed originally by Min-
kowski, which dealt with the application of geometric intuition and ideas
to certain arithmetic questions, but is now used in a more general sense for
questions of the following type. Let P with coordinates (x1, s, ..., z,) be

a real point in n dimensional Euclidean space R,,, and let

f(x) = f(ar,22,..., 1)

be a function of the x’s defined for all such z. The question is to find the

26

lower bound M; of |f(x)| for integer values of the z’s*°. »

Dans la suite du cours, Mordell étudie les minima de différents types de fonctions f :
formes quadratiques, formes cubiques binaires, produits de formes linéaires homogénes
ou non homogénes. Davenport traduit plus systématiquement que Mordell ce probleme
géométriquement. Les inégalités f(z1,...,z,) < 1 définissent un domaine et il s’agit de
savoir si ce domaine contient des points d’un réseau. Pour un domaine fixé, les résultats
recherchés sont la détermination du déterminant critique et des réseaux critiques®”’.

Un dernier ensemble de résultats qui occupe une place importante dans les cours de
Siegel et de Davenport concerne le probléme de I'empilement de corps convexes. Les
deux mathématiciens s’intéressent plus particuliérement au cas des sphéres pour lequel

ils exposent la méthode de Blichfeldt consistant & utiliser des sphéres matérielles®®.

6.2.3 Les méthodes utilisées

Les méthodes employées, les points de vue adoptés d’un cours a I'autre sont aussi
variés. Nous trouvons des approches arithmétiques, algébriques, analytiques et géomé-
triques qui se mélangent mais jamais de la méme facon.

Avec sa théorie des tableaux, la démarche de Chéatelet peut étre caractérisée comme
algébrique, son premier chapitre est d’ailleurs une « introduction algébrique ». L’al-
gébre cohabite avec un « langage géométrique » que Chatelet introduit dans le début

de son cours. Chatelet parle donc de points, de droites, de plans, de distances. .. Cha-

26MORDELL (St John’s), box 7.

2TSi K est un domaine, un réseau est admissible pour K s’il ne contient pas un point du réseau
autre que l'origine dans son intérieur. La borne inférieure du déterminant des réseaux admissibles
pour K est le déterminant critique de K noté A(K) par Davenport (par convention s’il n’y a pas de
réseau admissible pour K, A(K) = c0). Un réseau critique pour K est alors un réseau admissible de
déterminant A(K).

28Cette méthode est présentée dans le chapitre 3.
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telet favorise des méthodes effectives. Par exemple, dans les parties ot il s’intéresse aux
idéaux, il choisit des bases explicites pour travailler?.

Blichfeldt alterne des méthodes géométriques et arithmétiques. Quand il présente le
théoréme sur les corps convexes et ses applications, il reprend I’exposition géométrique
de Minkowski. En revanche, il propose une preuve arithmétique pour le théoréme sur
le produit de deux formes linéaires non homogénes. De méme, dans la fin de son cours
consacrée aux formes quadratiques, Blichfeldt donne les méthodes arithmétiques de
Korkine et Zolotareff pour calculer les constantes s, 3, V4 et 7s.

Siegel présente le théoréme de Minkowski géométriquement, mais il en donne plusieurs
preuves dont une qui est analytique. L’analyse intervient aussi dans des calculs d’in-
tégrales et dans la méthode de Blichfeldt pour I'empilement des sphéres. Enfin, des
méthodes arithmétiques sont développées a propos de la réduction des formes quadra-
tiques.

Nous retrouvons arithmétique, géométrie et analyse chez Mordell. Ce dernier semble
attacher une importance toute particuliére & montrer différentes approches possibles
pour un méme probléme. Par exemple, il présente son théoréme sur le minimum des
formes cubiques binaires avec le point de vue géométrique qu’il avait lui-méme adopté,
mais il donne aussi I’approche arithmétique par la théorie de la réduction élaborée par
Davenport. Il étudie les produits de formes linéaires homogénes par des méthodes géo-
métriques mais aussi en reprenant son travail sur la formule sommatoire de Poisson.
Il reprend le théoréme de Minkowski avec la méthode arithmétique de son article de
1935 mais il propose en plus une preuve analytique utilisant des séries de Fourier.

S’il ne semble pas y avoir de point de vue dominant chez Mordell, la situation est
un peu différente dans le cours de Davenport. En effet, s’il présente sa démonstration
arithmétique du théoréme sur le produit de trois formes linéaires homogénes, s’il utilise
un peu d’analyse dans la preuve du théoréme de Minkowski-Hlawka et la méthode de
Blichfeldt sur 'empilement des spheéres, ce qui domine quand méme dans ce cours c’est
la géométrie. Davenport met au centre les notions de corps convexes ou de corps étoilés
ce qui 'améne a privilégier 'approche géométrique. Cela est bien illustré par la table

des matiéres du cours dans laquelle le vocabulaire géométrique domine (voir page 408).

6.2.4 Systématisation de la géométrie des nombres

Nous comparons maintenant ’organisation des cours pour essayer de voir s’il se
dégage une présentation standard de la géométrie des nombres.

Le travail de Minkowski est réparti dans ’ensemble du cours de Chételet, la géomé-

29Voir en particulier la note II dans laquelle Chatelet traite un exemple de corps algébrique, CHA-
TELET 1913 p.138.
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trie des nombres est complétement intégrée aux autres thémes traités. Dans le premier
chapitre, ce que Chatelet appelle le « langage géométrique » est introduit grice aux
distances généralisées. Le deuxiéme chapitre sur les modules de points contient les pro-
priétés sur les réseaux nécessaires pour I’énoncé des théorémes de Minkowski sur les
parties convexes. Chéatelet expose ensuite les bases de la théorie des nombres et en-
tiers algébriques. Les théorémes de Minkowski figurent ensuite dans un chapitre avec
la réduction continuelle car ils sont vus comme un complément & cette théorie. Dans
ce méme chapitre, Chatelet donne une application immédiate a l’approximation simul-
tanée de réels par des rationnels. Dans le dernier chapitre, le théoréme de Minkowski
est utilisé pour démontrer des propriétés plus fines des corps de nombres algébriques :
propriétés des unités, du discriminant, finitude du nombre de classes d’idéaux.

Le cours de Blichfeldt progresse de problémes du premier degré a des problémes du
second degré. Plus précisément, Blichfeldt commence par quelques remarques sur les
équations du premier degré en liaison avec I'approximation diophantienne. Ensuite, il
présente le théoréme de Minkowski qui est dans un premier temps appliqué aux formes
linéaires, & leur somme ou a leur produit. Aprés une parenthése dans laquelle il donne
son théoreme généralisant celui de Minkowski, Blichfeldt s’intéresse aux formes qua-
dratiques.

Le cours de Siegel est structuré autour de problémes ou résultats clés qui fournissent
le théme de chacun des trois chapitres : les théorémes de Minkowski, les inégalités li-
néaires et la réduction. Des résultats du chapitre I sont utilisés dans les deux derniers
chapitres qui sont quant a eux indépendants.

Avec Mordell, nous avons encore affaire un autre type d’organisation. Cette fois le cours
se présente comme une succession de problémes a résoudre®®. Les différentes parties ne
s’enchainent pas nécessairement, elles sont le plus souvent indépendantes. Mordell re-
vient parfois & plusieurs reprises sur le méme sujet qu’il aborde alors avec un nouveau
point de vue (les formes cubiques binaires, produit de n formes linéaires homogénes).
Enfin, le cours de Davenport se développe en partant de questions qui portent sur
des domaines convexes pour aller vers des problémes non convexes. Il s’intéresse alors
essentiellement a des corps étoilés. Dans la premiére partie, il applique le théoréeme
de Minkowski a différents exemples de corps convexes, il étudie aussi 'empilement de
corps convexes et en particulier de sphéres. Dans la fin du cours, 'objectif est de dé-
terminer le déterminant critique et les réseaux critiques de domaines fixés. Davenport
interpréte alors les théorémes qu’il avait obtenu avec Mordell sur les formes cubiques
binaires et le produit de trois formes linéaires dans ce cadre. Par exemple, le théoréme
de Davenport sur le produit de trois formes linéaires homogeénes réelles est équivalent

au fait que le déterminant critique du domaine défini par 'inégalité |rizexs| < 1 est

3071 est intéressant de noter que c’est la critique que fait Serge Lang au sujet du livre de Mordell
sur les équations diophantiennes. Voir LANG 1983 p.349-358.
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7. Les réseaux critiques sont alors donnés par les cas d’égalités du théorémes de Da-
venport. Ce cours illustre donc bien I’évolution de la géométrie des nombres que nous

avions déja mentionnée & propos de ses travaux de recherche.

Conclusion

La description des cours montre donc une grande diversité dans la fagon dont la

géométrie des nombres est enseignée. Les objets étudiés, les méthodes utilisées, les
résultats présentés changent dans tous ces cours. Lorsque nous trouvons des points
communs, un examen plus précis fait ressortir des différences de traitements, un agen-
cement différent de I’ensemble de la discipline. .. Nous ’avons constaté par exemple a
propos du théoréme de Minkowski qui n’est jamais présenté de la méme maniére et qui
semble avoir des statuts divers dans ces cours. Les formes sont juste parfois un champ
d’application possible du théoréme de Minkowski (Siegel) ou elles sont aux centre de
presque tous les problémes dont s’occupe la géométrie des nombres (Mordell).
A travers ces cours, nous constatatons aussi qu’aucun consensus sur la maniére dont
la géométrie des nombres doit étre exposée ne semble avoir émergé dans la période
que nous regardons. En présentant une géométrie des nombres intégrée a la théorie
des nombres, le cours de Chéatelet est celui qui refléte le mieux I'ambition qu’avait
Minkowski pour cette théorie. Elle apparait en effet comme un cadre général permet-
tant d’unifier différentes disciplines arithmétiques. Avec Siegel, bien que les théorémes
de Minkowski soient encore appliqués a plusieurs problémes, nous perdons I'imbrica-
tion de la géométrie des nombres aux questions qu’elle permet d’aborder. L’exposé des
théorémes de Minkowski au début du cours comme préliminaires et de fagon indépen-
dante véhicule I'image d’une discipline au service de la résolution d’autres problémes.
La géométrie des nombres du cours de Mordell est organisée en une succession de pro-
blémes qu’il s’agit d’étudier par des méthodes variées. Ces problémes sont reliés par
une question générale d’estimation de minimum pour des fonctions, mais la géométrie
des nombres apparait quand méme comme une discipline constituée de plusieurs sujets
qui sont traités indépendamment. Enfin, la géométrie des nombres dans le cours de
Davenport est structurée par les propriétés géométriques des domaines associés aux
questions étudiées (convexes, étoilés). Cette observation est paradoxale pour Daven-
port qui est davantage considéré comme un analyste et qui semble plutot favoriser une
approche arithmétique dans son travail sur la géométrie des nombres. Cela suggére chez
Davenport des pratiques pédagogique et de recherche de la géométrie des nombres qui
sont différentes.

Du point de vue de la recherche, nous avons qualifié la géométrie des nombres de Mor-
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6.2 CHAPITRE 6

dell et Davenport de champ disciplinaire, soulignant ainsi ’effort de travail collectif
effectué sur ce sujet. Mais ce chapitre montre que dans ’enseignement cela ne se tra-
duit pas par une maniére unifiée de faire cours.

Cette absence de systématisation de la géométrie des nombres dans les cours traduit
des conceptions variées de la discipline ce qui est trés proche de ce qui a été constaté

pour la géométrie des nombres comme activité de recherche.
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Conclusion

La géométrie des nombres apparait au départ comme une discipline des mathémati-
ques qui surgit subitement du travail de Minkowski. Dans le début des années 1890,
les premiers résultats sont démontrés, Minkowski baptise lui-méme la discipline qu’il
est en train de construire Geometrie der Zahlen et pendant une vingtaine d’années il
prend en charge seul son développement. La situation est par exemple complétement
différente pour un sujet de recherche comme les nombres algébriques. Ils sont étudiés
dés le XIX¢, les approches du sujet sont profondément modifiées en particulier a travers
le Zahlbericht de Hilbert, mais l'expression théorie algébrique des nombres qui désigne
encore cette discipline actuellement n’est utilisée que dans les années 19203!. L’¢labo-
ration progressive mais aussi collective d'une discipline théorie algébrique des nombres
contraste donc avec ce qui a été observé pour les débuts de la géométrie des nombres.
Minkowski accompagne la création de son sujet d’une conception disciplinaire forte. Il
organise la géométrie des nombres autour d'un résultat fondamental, d’objets fonda-
mentaux ; il met en avant une approche méthodologique (I'utilisation de la géométrie) ;
il définit un certain nombre de champs d’applications importants. Minkowski semble
aussi avoir une grande ambition sur la place que doit occuper la géométrie des nombres
dans ’ensemble des mathématiques. Il I'envisage comme une discipline intégrée au reste
des mathématiques mais aussi comme un modéle pour unifier I’ensemble des domaines
des mathématiques. De plus, a la fin du XIX€ siécle ot du point de vue des fondements
se développe un mouvement d’« arithmétisation des mathématiques », un mathémati-
cien comme Klein présente la géométrie des nombres et la géométrisation comme une
alternative crédible.

Une telle origine pour la géométrie des nombres laisse penser que faire ’histoire de
cette discipline est un exercice bien balisé : il suffit de suivre ce que les mathémati-
ciens appellent géométrie des nombres pour en comprendre les développements, travail
d’autant plus facile qu’il existe a cette époque des journaux qui recensent tous les tra-
vaux mathématiques classés par disciplines. Mais la thése a montré que si la discipline
géométrie des nombres perdure apres Minkowski, les conceptions disciplinaires qui lui

sont associées changent. Ce qui est plus paradoxal encore, c¢’est que le moment qui

31Voir GOLDSTEIN et SCHAPPACHER 2007b p.91.
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est percu comme un redémarrage du sujet avec Mordell et Davenport est aussi celui
ou la discipline apparait comme la plus dispersée avec un travail organisé autour de
différents problémes plus ou moins isolés.

Une premiére tentation serait d’essayer d’expliquer ces différences en intégrant des
facteurs nationaux et d’opposer des organisations disciplinaires allemandes et britan-
niques. Mais les liens forts entretenus par Mordell et Davenport avec I’Allemagne, ainsi
que leurs nombreuses collaborations avec des mathématiciens de nationalités variées

suggérent que ce n’est pas complétement satisfaisant.

La prise en compte de différentes échelles d’analyse a alors permis de mieux com-
prendre ces deux conceptions disciplinaires. En particulier, le changement d’échelles a
montré que les facteurs sociaux y sont plus ou moins déterminants mais surtout opérent
a des niveaux différents. La conception disciplinaire de Minkowski est typique du mi-
lieu dans lequel il évolue (Klein, Hilbert), mais le collectif semble jouer un réle moins
apparent dans l’élaboration conceptuelle de la géométrie des nombres, Minkowski en
assurant seul le développement. A I'inverse avec Mordell et Davenport, la géométrie
des nombres fait 'objet d’un effort de recherches en commun. Des problémes, comme
celui du produit de formes linéaires, se trouvent alors au centre du travail de plusieurs
mathématiciens : ce sont des sujets abordés lors de séminaires, des publications leur
sont consacrées, ils sont enseignés. . .

Les deux conceptions disciplinaires se différencient aussi par plusieurs aspects du dévelop-
pement interne de la géométrie des nombres.

D’abord, pour Minkowski, la géométrie des nombres est un terrain important d’in-
novation conceptuelle, en particulier en ce qui concerne la géométrie. Son travail sur
la convexité avec l'introduction du point de vue des fonctions distances est jugé a

posteriori: comme fondamental

« the geometry he [Minkowski| developed in the book |[Geometrie der Zah-

len| laid the foundation for an analytical theory of convexity®? » ;

tout comme 'étude conjointe des corps convexes et des réseaux. L’impact du travail de
Minkowski sur ces domaines de recherche est illustré par la place importante qui lui est
accordée dans l'introduction historique du livre Handbook of Conver Geometry®. Au
cours de son travail sur la géométrie des nombres, Mordell n’introduit pas de nouveaux
objets. Ses contributions a la discipline consistent davantage a proposer de nouvelles
méthodes ou en adapter d’anciennes a de nouvelles situations. Beaucoup de démonstra-
tions n’utilisent que des notions assez élémentaires et n’intégrent pas d’éléments issus

de développement théoriques récents (en particulier en ce qui concerne la géométrie),

32K JELDSEN 2002 p.480.
33Voir GRUBER et WILLS 1993.
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mais elles sont le plus souvent extrémement élaborées.

A Téchelle des commentaires des mathématiciens, la géométrie des nombres est le
plus souvent caractérisée par l'application de la géométrie a la théorie des nombres.
Mais les exemples étudiés dans la thése ont montré que cela ne peut pas la caractéri-
ser sur la longue durée. D’ailleurs, a posteriori, certains travaux sur la géométrie des

nombres sont pergus comme laissant une moindre place a la géométrie :

« At present, the geometry of numbers appears to be much more geometric
than it was between 1920 and 196034, »

Dans les commentaires les disciplines arithmétique, géométrie, analyse sont utilisées
spontanément par les mathématiciens. Mais dans le cadre de la géométrie des nombres
le sens qui leur est donné est moins clair, il change. Si I'utilisation de la géométrie
dans un contexte arithmétique se traduit par I'opposition entre continu et discret chez
Minkowski, avec Mordell et Davenport il s’agit davantage d’interpréter la résolution
d’inégalités diophantiennes comme la recherche de points d’'un réseau dans un do-
maine. Il y a aussi ce que géométrie désigne dans ’expression géométrie des nombres et
la ce que Minkowski visait lorsqu’il a baptisé ainsi la discipline, c’est trés certainement

la géométrie dans sa dimension intuitive.

Des différences apparaissent ensuite dans les emplois qui sont faits de la géométrie,
Iarithmétique et ’analyse. Alors que Minkowski privilégie I'un ou l'autre de ces points
de vue dans des situations précises, leur utilisation ne semble pas systématisée de la
méme maniére chez Mordell et Davenport. La géométrie dans le travail de Minkowski
a un statut fondamental, c’est par la géométrisation que doit passer 'unité des ma-
thématiques. Mordell et Davenport n’expriment pas une ambition aussi grande pour la
géométrie. Cependant, des commentaires dispersés et ponctuels montrent qu’eux aussi
lui attribuent certaines spécificités. C’est particuliérement frappant avec Davenport
qui utilise la géométrie a des fins heuristiques, qui lui laisse la place la plus importante
dans son cours, qui semble la considérer comme plus générale mais qui par contre la

fait disparaitre de ses publications.

Les éléments percus sur la géométrie des nombres ont di étre dégagés a partir de
courtes remarques faites le plus souvent au milieu d’un article de mathématiques, ou
encore dans le cas de Davenport en comparant les contenus de ses publications avec
des cours et des notes non publiés. Cette observation sur la géométrie des nombres
est en fait caractéristique et ameéne & un commentaire méthodologique plus général.

Mordell et Davenport sont des mathématiciens qui ont laissé principalement des textes

34GRUBER 1993b p.9.
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mathématiques et ils sont nombreux dans leur cas. Ils n’ont pas produit de métadis-
cours sur leur travail ou sur les mathématiques en général. Tout ce que nous trouvons,
ce sont de brefs commentaires, souvent peu explicites, qui peuvent parfois apparaitre
banals et par conséquent difficiles & interpréter de maniére isolée. Cela peut expliquer
en partie pourquoi Mordell et Davenport, et plus généralement ce type de mathéma-
ticiens, ont été peu étudiés. Pourtant, comme I’a montré en particulier le chapitre sur
« I’école de Mordell », ce sont des figures incontournables de la théorie des nombres en
Angleterre au milieu du XX¢ siécle, il est donc nécessaire de développer des approches
méthodologiques pour rendre compte de leur travail ; d’autant plus que cette fagon de
faire des mathématiques est certainement la plus représentative de cette communauté,
en particulier pour I’époque contemporaine. Faire varier les échelles d’analyse est la
méthode qui a été employée ici. Par exemple, 'examen & une échelle fine de certains
articles de Davenport a montré l'origine géométrique de certaines démonstrations ju-
gées arithmétiques dans leurs commentaires, ce qui a permis d’avancer des hypothéses
sur sa conception de 'intervention de la géométrie. A une autre échelle, de la lecture
de nombreux articles et de la répétition de petites remarques au milieu de leur travail
mathématique se dégage parfois un point de vue cohérent sur une question précise.

Les différences de conception disciplinaire décrites expliquent aussi en partie pourquoi
certaines généalogies oublient Mordell dans I’histoire de la géométrie des nombres. Le
développement des mathématiques structurales au cours du XX¢ siécle fait que Min-
kowski est plus facilement mobilisé comme repére historique car sa conception de la
géométrie des nombres est mieux adaptée a cette vision des mathématiques. Quand
il est cité, Mordell apparait lui pour des contributions ponctuelles ou des points tech-

niques.

Du point de vue de la question des disciplines scientifiques comme catégorie histo-
rique, les variations d’échelles montrent que, pour la géométrie des nombres, le probléme
n’est pas de savoir si la caractérisation de la notion de discipline doit laisser une plus
grande place au social ou aux critéres internes. La comparaison entre les conceptions
de Minkowski et Mordell montrent que ces deux types de facteurs font I'objet de re-
définition et que le probléme est de savoir a quels niveaux ils opérent et comment ils
s’articulent. Ainsi la question n’est pas de déterminer si la géométrie des nombres est
une discipline car le sens que cela prend concrétement dans la pratique des mathé-
maticiens bouge. Il s’agit dans chaque cas de trouver les indicateurs pertinents et de
comprendre leur agencement pour rendre compte de la dynamique de la recherche tant

sur le plan social qu’intellectuel.

L’angle adopté ici est celui de I'histoire d'une discipline. Cette histoire croise des

notions et des théorémes mathématiques qui auraient pu étre choisis comme théme
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central. Mais faire I'histoire d’une notion ou d’un théoréme aurait conduit a une autre
contextualisation, & mobiliser un autre corpus et donc a faire apparaitre des phéno-
ménes et des protagonistes différents®®. Par exemple, une histoire de la notion de ré-
seaux aurait certainement amené a s’intéresser a la cristallographie et & Poincaré ; une
histoire du théoréme sur les formes cubiques binaires serait passée par les travaux
de Eisenstein, Hermite, Arndt et une étude plus précise de la théorie arithmétique
des formes; alors que s’intéresser a la question de la convexité dans la géométrie des
nombres replacerait le travail de Minkowski dans le contexte de la géométrie au XIX®
siecle et par suite a prendre en compte des textes nouveaux. L’écriture de ces histoires
et leur articulation avec celle entamée ici permettrait une compréhension plus compléte
de la géométrie des nombres.

C’est bien siir & quoi invite ce travail. . .

35Pour un exemple des effets de nouvelles contextualisations voir RITTER 2004.
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Annexe A

La polémique sur le Grand Prix de
I’Académie de Minkowski

Nous reproduisons les documents a propos de la polémique entre Mordell et le
journal The Engineer au sujet du Grand Prix de ’Académie des Sciences attribué a
Minkowski. Ces documents sont des copies conservées par Mordell des articles publiés

par ce journall.

IMoRDELL (St John’s), box 1, folder 5. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe B

Deux lettres de Mordell a Davenport

Nous reproduisons ici deux lettres écrites par Mordell et adressées a Davenport.

La premiére est datée du 3 mars 19321, Mordell se trouve alors en Allemagne et
il rend compte en particulier de ses contacts avec plusieurs mathématiciens allemands
(Landau, Siegel, Artin, Noether etc).

Dans la seconde du 25 septembre 1933 2, Mordell présente a Davenport certaines des
idées de son article dans lequel il propose une démonstration arithmétique du théoréme

de Minkowski sur les domaines convexes.

!Davenport (WL), G 211.
2DavenporT (WL), G 211.
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Annexe C

Une lettre de Siegel a Mordell

Nous reproduisons ici la lettre de Siegel a Mordell du 8 octobre 1937 qui concerne
le produit de n formes linéaires non homogénes®. Il s’agit de la lettre qui a inspiré le
premier article de Davenport sur la géométrie des nombres.

La lettre est retranscrite aprés le document original.

IMoRDELL (St John’s), box 3, folder 28. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe D

Une lettre de Tschebotareff & Mordell

Nous reproduisons maintenant la lettre de Tschebotareff & Mordell du 24 février
1938 a propos du produit de n formes linéaires non homogénes!. Suite a la conférence
de Mordell & Oslo en 1936 ou il n’avait pas été cité, Tschebotareff lui fait part de ses

travaux sur ce sujet qui avaient été uniquement publiés en russe.

IMoRDELL (St John’s), box 3, folder 19. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe E

Une lettre de Mahler a Mordell

Lettre de Mahler a Mordell du 21 aotit 1940 alors que Mahler se trouve dans un
camp d’internement!.

La lettre est retranscrite aprés le document original.

IMoRDELL (St John’s), box 2, folder 17. Reproduced by permission of the Master and Fellows of
St John’s College, Cambridge.
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Annexe F

Institutions visitées par Mordell

Liste des institutions ott Mordell a fait des conférences!.

!MoRDELL (St John’s), box 5. Reproduced by permission of the Master and Fellows of St John’s
College, Cambridge. 465






Annexe G

Les théorémes de Minkowski d’apreés
Albert Chatelet

Dans son cours mentionné dans le dernier chapitre!, Albert Chatelet énonce et dé-
montre les deux théorémes de Minkowski sur les domaines convexes. Il s’agit a notre
connaissance du premier mathématicien a présenter les preuves de ces résultats aprés
Minkowski. Chatelet reprend en fait tres largement les idées utilisées par Minkowski
dans ses démonstrations. Cependant, Chatelet les présente en employant la notion de

tableaux développée dans le début de son cours.

G.1 Définitions et notations préliminaires

Chatelet consacre le chapitre II de son cours a la Théorie des modules de points,
c’est-a-dire en termes actuels aux groupes additifs. Comme cas particulier de ces mo-
dules de points, il étudie les modules types de dimension n dans un espace de dimension
n qui correspondent a la notion de réseau. Chéatelet appelle base d’un tel module un
tableau A inversible et de taille n tel qu'un point (py,...,p,) est dans le module si et

seulement si

Pty s pull = |21 20| X A,

ol les z; sont des entiers. Deux bases A et B du module sont équivalentes?, c¢’est-a-dire
que A =3 x B ot ¥ est un tableau unimodulaire® (tableau a coefficients entiers et de
déterminant £1).

Chatelet reprend aussi la notion de distance de Minkowski. Il définit la distance géné-

LCHATELET 1913.
2CHATELET 1913 p.36.
3CHATELET 1913 p.12.
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ralisée* entre deux points A(ay, ..., a,) et B(B4,...,5,) par

S<AB) = f(Oéz' - 51') )

avec [ une fonction réelle qui vérifie :
(1) f(u;) > 0et f =0 entraine u; = 0,
(2) pour tout A réel, f(Au;) = || f(w),
(3) flui+wvi) < flui) + flvs).

Pour une distance généralisée S et 7 un module type de dimension n, Chatelet

démontre en particulier le résultat suivant®

« Dans tout module type de dimension n, il existe toujours un nombre fini

(non nul) de tableaux V', A(V') # 0, formés de points A;, Ay, As, ..., A, tels

que’

S(OA;) (A quelconque de 7)
S(OA) > S(OA,) (A quelconque de 7 et non de OA;)
S(OA3) (A quelconque de 7 et non de OA;Ay)

en particulier S(OA;) < S(OA;) <--- < S(OA,).»

Les tableaux V avec cette propriété sont appelés par Chéatelet tableaur minima et

S(OA;), S(OAy), ..., S(OA,) est un systéeme de distances minima.

Un tableau est sous forme réduite d’Hermite” s’il s’écrit

aj 0 0 0
12
as a; O 0
)
1 .2 3 n

4CHATELET 1913 p.17.

SCHATELET 1913 p.92.

6C’est-a-dire que les lignes de V sont les coordonnées des points A;. A(V) désigne le déterminant
de V.

"CHATELET 1913 p.46-47.
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avec des coefficients qui vérifient a; > 0 et

0<ay<a;, 0<aj<a;,

1
n
0<a3<a;, ... , 0<a<a;

Pour 7 un module type de dimension n et V' un tableau minimum, Chatelet démontre

qu’il existe une unique base U de 7T telle que
U=5xV,

ol S est a coefficients rationnels sous forme réduite®. Ces tableaux U sont les tableaux

réduits du systéme de distances minima.

G.2 Le premier théoréme de Minkowski

Soit S une distance généralisée dans un espace de dimension n et f la fonction de n
variables qui lui est associée comme dans le paragraphe précédent. Chatelet démontre

le premier théoréme de Minkowski sur les convexes sous la forme suivante? :

« THEOREME I. — Etant donné un module type de dimension n, de base

T et formé par les points A(ay,as, ..., a,), on a

2" |A(T)]
J )

[minimum f(a1, as, . ..,a,)]" <

J étant une constante qui ne dépend que de la fonction f. »

Chatelet commence par remarquer que pour deux points du module A et A’, le point
A — A’ est aussi un point du module et S(AA") = S(O(A — A’)), ot O est l'origine du
module. Il en déduit que si m désigne le minimum de f pris sur les points du module,
l'inégalité S(AA’) < m est impossible quand A et A" sont distincts. Il considére ensuite

les corps I'm (A) qui sont définis par I'inégalité
S(AM) <

m
2

Pour deux points quelconques du module A et A’, les corps I'm (A) et I'm (A") ne peuvent

se rencontrer que sur leur frontiére. Sinon un point M vérifierait les deux inégalités

8 CHATELET 1913 p.93.
9CHATELET 1913 p.108.
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S(AM) < %, S(A'M) < *F et par suite
S(AA") < S(AM)+ S(AM) < m.

Soient maintenant les points £ du module dont les coordonnées e; dans la base définie
par T vérifient |e;] < w, olt w est un entier naturel non nul. Pour chacun de ces
(2w + 1) points E, Chatelet considére I'm (E) et  le domaine formé par tous ces

corps. Le volume de € est donc

2w+ 1)" (%)n J,

ou J est le volume de I'1(O). Si (y1,...,y,) désigne les coordonnées dans la base T,
Chaételet note € une limite supérieure des |y;| pour les points (yi,...,y,) de I'm(O),
ainsi pour n’importe quel point (yi,...,y,) de €,

i —e| <e, |ya—e <e, .., Jyn—en| Ze,
c’est-a-dire

|y1|§w+€v |y2|§w+€a SRR |yn|§w+5

Ces derniéres inégalités définissent un corps qui contient €2 et dont le volume est donné

//da:d:c _ \A(T)\/.../dyl...dy
o

= 2w+26

par

En comparant ce volume avec celui de €2, Chatelet obtient

(2w + 1)" (%)" J < AT (2w + 2€)"
IA(T)] 2n<2w+26)"

J 2w—+1

ou encore : m" <

Quand w tend vers 400, cette inégalité conduit bien a

_jam)
- J
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G.3 Le second théoréme de Minkowski

Chatelet utilise les mémes notations dans 'énoncé du deuxiéme théoréme de Min-

kowski sur les corps convexes'® :

« THEOREME II. — Si dans un module type de base T' (tableau d’ordre n)

on considére un systéme de distances minima,
S(OAl) =m, S(OAQ) = My, ey S(OAn) = My,

on a
2" |A(T)]
mimsg ... m, < >
J
Pour démontrer ce résultat Chéatelet choisit comme base du module le tableau réduit
U déduit du tableau minimum V' donné par le systéme de distances minima de 1’énoncé

(voir le paragraphe G.1). Il considére ensuite les corps
Pm (B)=TYE), Tm(E)=T%E), ...Im(E)=T"E),

ou les coordonnées de E vérifient |e;| < w avec w un entier naturel non nul. Dans la
suite ; désigne la réunion sur les points tels que |e;| < w des corps T(E) et v; le

volume de ;. Dans la preuve du théoréme I, Chatelet a déja obtenu
v =2w+1)" (%) J.

D’autre part, si €’ est une limite supérieure de |y;| pour les points (y1, ..., y,) de ["(O),

le méme raisonnement que pour le théoréeme I montre que

ve < |AU)] (2w + 2¢)"

En particulier, comme I''(O) = 2+ I'*(0), Chételet remarque que &' = Twe,0U€ a

été défini dans le paragraphe précédent.

L’étape suivante consiste a déterminer des inégalités sur le rapport entre v et v4_1.

Par définition de my, pour un point A du module l'inégalité S(OA) < my implique
que A appartient & OA; ... Ap_1 et donc que les (n — k + 1) derniéres coordonnées de
A dans la base définie par U sont nulles. En effet, par définition de U, le sous-espace
engendré par les £ — 1 premiéres lignes de U est le méme que celui engendré par les
k — 1 premiéres lignes de V.

Chatelet répartit ensuite les corps I'*(E) de chaque Q en (2w + 1)"7**1 groupes de

(2w + 1)%=1 corps, chaque groupe étant composé des corps dont les centres ont les

10CHATELET 1913 p.110.
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mémes (n — k + 1) derniéres coordonnées. Deux corps I'*(E) pris dans deux de ces
groupes ne peuvent se rencontrer que sur leur frontiére. En effet, si un point M est
intérieur a [*(E,) et a T*(E,) alors

Or S(E1Ey) = S(O(E; — Es)) ce qui implique que les (n—k+ 1) derniéres coordonnées
de E; et E, sont les mémes et contredit le choix de T*(E}) et I'*(E,) dans deux groupes
distincts. Chatelet déduit de cette dernieére remarque que le volume de €2, noté vy, est
égal a la somme des volumes de chacun des groupes qui le compose. Comme les volumes

de ces groupes sont tous égaux, il vient
v = (2w + 1) Frlap

ot wy, est le volume d’un des groupes. En choisissant le groupe pour lequel les (n—k+1)

derniéres coordonnées sont nulles, wy, s’écrit

wk://dxld@dxn,

ou l'intégration porte sur les points (z1, ..., x,) qui vérifient

Mg
f(xl_617---7xk—1_ek—laxka"'axn) S 77

avec e; des entiers tels que |e;| < w. Chatelet évalue U'intégrale précédente « en deux

étapes » en intégrant d’abord par rapport aux (k — 1) premiéres variables, ainsi

ou S désigne l'intégrale / . / dxy ...dxy_q1 sur le domaine

My
f(xl _617"'73719—1_ek‘—latkv"'7tn) S 7 .

En répartissant de la méme maniére les corps du domaine €;,_; en (2w+1)""*+1 groupes
qui ne se rencontrent pas (car my_; < my), Chatelet obtient

p

/ /dazl dy,

mrg—1
/ / /
\ fx] —e1y @ g — €p 1, bl ) < 5
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ANNEXE G

Pour comparer ce volume au précédent, Chéatelet pose 6 = m’:kl et il multiplie la

derniére condition par #, d’ou
FIO(, = e1), ., 02y — s 1), 08, ..., 01] fgfgﬁ

Il effectue alors le changement de variables 0t; = ¢;, donc

( n—k+1
w’ ( ) / /Sl dtk
/ /dazl dzy_

f[@(:c —e1), .01 —er_1), tk,...,t]gmk

2

\

Pour comparer les volumes wy, et wy, Chéatelet compare S et S; pour un systéme
de valeurs de tg, ..., t, fixé. Les conditions f(x1 —e1,..., 51 — €p_1,tgy ..., ln) < Tk
et f[0(x) —e1),...0(x)_; — €x_1),tk, ..., t,] < ™ définissent des domaines (respecti-
vement notés D; et Dy) dans le sous-espace de dimension k — 1 défini par lesn — k+ 1
équations x; = t;, k < i < n. Pour comparer les volumes de ces deux domaines, Chéa-
telet translate D;.

Soit (a1, ag, .., 1) vérifiant f(ozl, Qg, .., 1, by, . 1,) < 758, il effectue dans S le chan-

gement de variables x; = 2} + 21 oy, alors

S:/.../da:’l...d:c;_l

ou l'intégrale est calculée sur le domaine D3 défini par

0—-1 0—1
aq, . (xk 1~ €k— 1)‘|——Oék 1,k -ty <

e —en+ 5 .

'k

5
Mais le domaine Dy est inclus dans Ds. En effet, la condition qui définit le domaine
D, signifie que le point (8(x} —e1),..,0(x,_; —er_1),tk, - - ., t,) appartient & I'*(O). Or

(a1, @, ..y 1, g, t,) est aussi un point de I'*(O), donc par convexité

(«9(:5’1 —e1)+(0—1)y O(z), 1 —er—1)+ (0 — a1 )
9 e ey 9 7tk‘7 "7tn

, 6—1 0—1
= <($1—61)+T€11,  (Thoy — en- 1)+TO% 17tk7---atn) eT*(0) .

Chatelet en déduit donc que S est inférieure ou égale a S, par suite 0" * 1w, < wy,

puis 0" F*ly, | < v,. Cette derniére inégalité s’écrit finalement

" my, n—k+1
—Z( ) (k=2,3,...,n),

Vi1 mrg—1
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ce qui implique
1% > mo M3 ... My

vy m’f‘l

Comme vy = (2w + 1)" (2L)" J et v, < |A(U)] (2w + 2¢)", il vient

My ... My mip\ "
M2 - o g 4 q)m (—1) J < |AU)] (2w + 2¢)"
my 2
et donc "
2" |AU)| (2w + 2¢€
mymo ... My = .
J 2041

Par passage a la limite, pour w qui tend vers +oo, Chéatelet obtient finalement 1’esti-

mation cherchée

N _ 2" 1AW)
1Mo ... My = J .
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