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Ornstein-Uhlenbeck and Fokker-Planck equations

{
dXt = 2dBt −∇V (Xt)dt
X0 = x

where Bt is a standard Brownian Motion in R
n.

Ito formula implies : the Semigroup Pt f (x) = Ex(f (Xt)) satisfies
the PDE {

∂
∂t Pt f (x) = LPt f (x)
P0f = f ,

where Lf = ∆f −∇V · ∇f is the IG of Pt . This is the
Ornstein-Uhlenbeck equation .
Consider L∗ or P∗

t , the dual with respect to dx ,
∫

Lfgdx =

∫

fL∗gdx , or
∫

Ptfgdx =

∫

fP∗
t gdx,

then
L∗g = ∆g + div(g.∇V ).
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The Semigroup P∗
t f (x) satisfies the PDE
{

∂
∂t P

∗
t f (x) = L∗P∗

t f (x)
P∗

0 f = f ,

This is the Fokker-Planck equation .
Let µV = e−V dx (assume that µV is a probability measure ),
(Pt)t≥0 or L is self adjoint in L2(µV ) and the by integration by
parts ∫

Lf gdµV = −

∫

∇f · ∇gdµV .

Under smooth assumptions :

lim
t→∞

Pt f (x) =

∫

fdµV .

or equivalently

lim
t→∞

eV (x)P∗
t g(x) =

∫

gdx .

The good question is HOW FAST ?
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Tools for the asymptotic behaviour

◮ Poincaré inequality : a L2 convergence.

d
dt

varµV (Pt f ) = 2
∫

Pt fLPt fdµV − 0 = −2
∫

|∇Pt f |2dµV ,

If Poincaré inequality holds

varµV (f ) ≤ C
∫

|∇f |2dµV

varµV (Pt f ) ≤ e−2t/CvarµV (f ).

◮ Logarithmic Sobolev inequality a L log L convergence

d
dt

EntµV (Pt f ) :=
d
dt

∫

Pt f log
Pt f

∫
Pt fdµV

dµV = −4
∫

|∇
√

Pt f |2dµV ,

If Logarithmic Sobolev inequality holds

EntµV (f 2) ≤ C
∫

|∇f |2dµV

EntµV (Pt f ) ≤ e−4t/CEntµV (f ).
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When do we have a Poincaré or a logarithmic Sobolev
inequality ?

The well known Bakry-Emery Γ2-criterion implies that if

Hess(V) ≥ λId,

with λ > 0 then logarithmic Sobolev inequality holds with
C = 2/λ and Poincaré inequality holds with C = 1/λ.
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Definition of Lévy process

Lévy process Lt = process with stationary & indep increments

Fourier transform (Lt ) = etψ(ξ) where ψ is characterized by the
Lévy-Khinchine formula.

ψ(ξ) = −σξ · ξ + ib · ξ +

∫

(eiz·ξ − 1 − iz · ξ1B(ξ))ν(dz)

where ν is a singular measure satisfying
∫

B
|z|2ν(dz) < +∞

∫

Rd\B
ν(dz) < +∞,

σ is a positive definite matrix and b is a vector.
Parameters (σ,b, ν) characterize the Lévy process (or a inifinite
divisible law).
◮ For all t > 0 the law of Lt is an infinite divisible law :
µ = µn ⋆ · · · ⋆ µn

︸ ︷︷ ︸

n times

.
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◮ Associated infinitesimal generators as for the Brownian
Motion.

I(u) = div (σ∇u) + b · ∇u

+

∫

(u(x + z) − u(x) −∇u(x) · z1B(z))ν(dz)

These operators appear everywhere (mathematical finance,
mechanics, fluids etc. )

Laws with heavy tails (decrease as power laws)

Example : (σ,b, ν) = (0,0, 1
|z|α+d dz), the α stable process.

In that case ψ(ξ) = |ξ|α. The case α = 2 is the Brownian
motion.
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The Lévy-Fokker-Planck equation

Replace ∆ by I a IG of a Lévy process in the Fokker-Planck
equation :

{
∂
∂t u = I(u) + div(ux)
u(0, x) = f (x)

The goal of this talk is to understand the asymptotic behaviour.

Remark : We assume that V = x2/2.

Questions :

Find a steady state as e−V as for the classical case ∆.

Find the asymptotic behaviour of the Lévy-Fokker-Planck
equation (LFP).

Find conditions to get an asymptotic behaviour using
inequalities as Poincaré or logarithmic Sobolev.
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An equilibrium u∞
def
= a stationary solution of the LFP

u∞ can be seen as an invariant measure µV in the case of the
Laplacian.

Proposition (Existence of an equilibrium)
Assume that ∫

Rd\B
ln |z|ν(dz) < +∞.

There then exists an positive equilibrium u∞ :

I(u∞) + div(u∞x) = 0.

Moreover, u∞dx is an infinite divisible law whose characteristic
exponent A is

A(ξ) =

∫ 1

0
ψ(sξ)

ds
s
.

Of course the condition is satisfied in the case of the α-stable.
In that case u∞ is the infinite divisible law of the Lévy process,
A = ψ/λ.
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For φ : R
+ → R convex and smooth and µ a probability

measure, consider the φ-entropy

Eφ
µ (f ) =

∫

φ(f )dµ− φ

(∫

fdµ
)

◮ Examples

For φ(x) = 1
2x2 (Eφ

µ=the variance), Dφ(a,b) = 1
2(a − b)2

Fφ
µ (v) =

1
2

∫∫

(v(x + z) − v(x))2ν(dz)µ(dx)

For φ(x) = x ln x − x − 1 (Eφ
µ=entropy), Dφ(a,b) = a ln a

b + b − a

This is natural interpolation between the variance and the
Entropy.
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Define also a Bregman distance

Dφ(a,b) = φ(a) − φ(b) − φ′(b)(a − b) ≥ 0

Theorem
Let µ(dx) = u∞(x)dx, ν the Lévy measure associated to I and
consider v(t , x) = u(t,x)

u∞(x) , then

d
dt

Eφ
µ (v(t , ·)) = −

∫∫

Dφ (v(x + z), v(x)) ν(dz)µ(dx).

◮ Fisher information

Fφ
µ (v) =

∫∫

Dφ

(

v(x + z), v(x)

)

ν(dz)µ(dx).

Can be seen as a Dirichlet form with respect to the measure
u∞(x)dx
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The proof os the theorem come from

◮ A related equation : the Lévy-Ornstein-Ulenbeck
equation (LOU)

The function v = u/u∞ satisfies

∂tv =
1

u∞

(

I(u∞v) − I(u∞)v
)

+ x · ∇v def
= Lv .

Dual operator of L wrt µ
∫

w1

(

Lw2

)

dµ =

∫ (

Ǐ(w1) − x · ∇w1

)

w2dµ,

where Ǐ is I with ν̌(dx) = ν(−dx).

Recall that in the classical case L is a self-adjoint operator with
respect to µ.
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Convergence towards the equilibrium

Theorem
We assume that νI has a density N with respect to dx and
satisfies ∫

Rd\B
ln |z| N(z) dz < +∞.

If N is even and satisfies,

∀z,
∫ +∞

1
N(sz)sd−1ds ≤ CN(z)

then for any smooth convex function Φ one gets :

∀t ≥ 0, EntΦu∞

(
u(t)
u∞

)

≤ e− t
C EntΦu∞

(
u0

u∞

)

.

20/ 21



Proof
d
dt Eφ

µ (v(t)) = −Fφ
µ (t)

it is enough to compare Fφ
µ with Eφ

µ .

◮ A functional inequality [Wu’00,Chafaï’04]

If
µ is an infinite divisible law
φ satisfies φ′′ > 0 and 1/φ′′ concave on R

+

Then Eφ
µ (f ) ≤

∫
Dφ(v(x + z), v(x)) νµ(dz)µ(dx)
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