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Ornstein-Uhlenbeck and Fokker-Planck equations

dX; = 2dB; — VV (X;)dt
Xo =X

where B; is a standard Brownian Motion in R".
the PDE

Ito formula implies : the Semigroup P:if(x) = Ex(f(X:)) satisfies
2P (x) = LPf(x)
Pof =T,
where Lf = Af — VV - Vf is the IG of P;. This is the
Ornstein-Uhlenbeck equation

Consider L* or P/, the dual with respect to dx,

/Lfgdx = /fL*gdx, or /Ptfgdx = /fPfng,
then

L*g = Ag +div(g.VV).
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The Semigroup P/f(x) satisfies the PDE

2Pf(x) = LPyf(x)
Pf =1,

This is the Fokker-Planck equation
Let uy = e~ Vdx (assume that y is a probability measure ),

(Pt)t>0 or L is self adjoint in L2(2y ) and the by integration by
parts

/Lfgd,uv :—/Vngd,uV

Under smooth assumptions :

t|Im Pt /deV

or equivalently

tingoev(x)Pt*g(x) = /gdx.

The good question is HOW FAST ?
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Tools for the asymptotic behaviour
» Poincaré inequality

a L? convergence
f
dt

var,, (i) =2 [ PLPddpy ~ 0 = -2 [ VP Pday.
If Poincaré inequality holds

var,, (f) < C/\Vf|2duv
var,, (Pif) < e=2/Cvar,, (f)
» Logarithmic Sobolev mequallty
d
aE uv Pt

a LlogL convergence
P:f log

T dt / SN T fd

If Logarithmic Sobolev inequality holds

Ent,, (f?) < C/|Vf\2duv

Entuv (Ptf) <

/W\/Pt 2d .,

e 4/CEnt

Mv(fc?'
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When do we have a Poincaré or a logarithmic Sobolev
inequality ?

* The Gaussian measure, V (x) = x?/2 (Inequality proved by
Gross).

* The Bakry-Emery I',-criterion implies that if
Hess(V) > Ald,

with A > 0 then logarithmic Sobolev inequality holds with
C = 2/ and Poincaré inequality holds with C = 1/\.

* There are also many technical methods to prove Poincaré or
Log-Sobolev : Hardy, transportation...
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Definition of Lévy process

Lévy process L; = process with stationary & indep increments

Fourier transform (L;) = e'¥(¢) where 4 is characterized by the
Lévy-Khinchine formula.

P(E) = —ot-E1ib-E+ / (7€ — 1 iz -£1g(E))(d2)

where v is a singular measure satisfying

/|z|2y(dz) < 400 / V(dz) < +oo,
B RI\B

o is a positive definite matrix and b is a vector.

Parameters (o, b, v) characterize the Lévy process (or a inifinite
divisible law).

» For allt > 0 the law of L; is an infinite divisible law :
Iu:lun*...*'un_
~—_——

n times



» Associated infinitesimal generators

as for the Brownian
Motion.

I(u) = div(eVu)+b-Vu
+/(u(x +2z) —u(x) — Vu(x) - z1g(z))r(dz)

These operators appear everywhere

@ Laws with heavy tails (decrease as power laws)
@ Example : (o,b,v) = (0,0, ‘Z‘%Mdz), the a € (0, 2) stable
process. In that case (&) = [£|.

® The case o = 2 is the Brownian motion, | = A.



The Lévy-Fokker-Planck equation

Replace A by | a |G of a Lévy process in the Fokker-Planck
equation :

Zu = 1(u) + div(ux)
{ o0 10 (7P

The goal is to understand the asymptotic behaviour of the
semigroup.
Remark : We fix now (o, b, ) and assume that V = x2/2.

Starting point of this work : Biler and karch (2001)

Questions :
@ Find a steady state as e~V as for the classical case A.
@ Find the asymptotic behaviour of the Lévy-Fokker-Planck
equation (LFP).

@ Find conditions to get an asymptotic behaviour using
inequalities as Poincaré or logarithmic chbolﬁev. B
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An equilibrium u., el a stationary solution of the LFP
Laplacian.

Us Can be seen as an invariant measure py in the case of the

Proposition (Existence of an equilibrium)
Assume that

In|z|v(dz) < +oo. (Con 1)
RI\B
There then exists an positive equilibrium u :
[(Uoso) + div(UsoX) = 0.
Moreover, u..dx is an infinite divisible law whose characteristic
exponent A is

1
A = [ 095

A
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The condition

In|z|v(dz) < +oo. (Conl)
RI\B
is satisfied for the a-stable Lévy process. In that case u is the
infinite divisible law of the Lévy process, A = ¢/ \.
Proof : The Fourier transform (., satisfies

(€)oo + €+ Vi =0
so that U, = exp(—A) with A such that :

VA(E) - € = ¥(8),
then

1
A©) = [0S

Conl prove that A is well defined and is the characteristic
exponent of a Lévy process.
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For ¢ : RT™ — R convex and smooth and x a probability
measure, consider the ¢-entropy

i) = [ oo [ 1an)
» Examples
For ¢(x) = 3x? (Ej/=the variance), D4(a,b) = 1(a — b)?

P = 5 [ s 2) = v utez)uca)

For ¢(x) = x Inx —x — 1 (E=entropy), Dy(a,b) =aln & +b —a
Entropy.

This is a natural interpolation between the variance and the

A
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Define also a Bregman distance

Theorem

Dy(a,b) = ¢(a) — ¢(b) — ¢/(b)(a—b) > 0

Let u(dx) = us(x)dx, v the Lévy measure associated to | and
consider v(t,x) = 40X)

1) then

S EIVE ) = - // D, <v(x + z),v(x)) v(dz)u(dx).

» Fisher information

Fo(v) = // D, <v(x +z),v(x)> v(dz)p(dx).
Uno (X )dX

Can be seen as a Dirichlet form with respect to the measure
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The proof is related to :

» A related equation : the Lévy-Ornstein-Ulenbeck
equation (LOU)

The function v = u/u, satisfies

[ee]

v = ui (I(uoov) - I(uoo)v> +x-ww Ly,

Dual operator of L wrt ;1 = u..(x)dx

/wl <Lw2>du = / (Iv(wl) —X- Vw1>wzdu,

where [ is | with #(dx) = v(—dx).

Recall that in the classical case L is a self-adjoint operator with
respect to p.

u]
L)
1
ul
!
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Convergence towards the equilibrium

Theorem

satisfies

We assume that v has a density N with respect to dx and

/ In|z| N(z) dz < +o0 (Con1l)
RY\B
If N is even and satisfies,
+oo
vz, / N(sz)s9 1ds < CN(z) (Con 2)
1
then for any smooth convex function ® one gets

u
> <e cEnt® < —°> .
Uoo o Uso

vt>0, En® ( u(t)

A
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Proof
& EN(v(t) = —Fi()
it is enough to compare F[f’ with E[f’.

» A functional inequality [Ane-Ledoux’00Wu'00,Chafai’04]

w1 is an infinite divisible law (without gaussian part)
¢ satisfies ¢” > 0 and ...

Then ES(F) <1 [Dg(v(X +2),v(x)) v, (dz)u(dx)

If

v, is the derivation associated to the probability measure f.

Example : If ¢(x) = Inx —x — 1 and for the Gaussian measure
this is exactly the Log-Sobolev inequality

— Generalization of Log-Sobolev inequality to the infinite
divisible law.
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a-stable process. o & - = ® 9ac
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e Conclusion

@ Family of Entropies — Associated Fisher information
@ Sufficient condition for exponential decay to the equilibrium
e Perspectives

@ V(x) = x2/2 — General potential ?
@ What appens if the Lévy measure v has atoms ?
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