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Abstract

We prove a general optimal L”-Euclidean logarithmic Sobolev inequality by using Prékopa—
Leindler inequality and a special Hamilton—Jacobi equation. In particular we generalize the
inequality proved by Del Pino and Dolbeault in (J. Funt. Anal.).
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction and main results

In R" the following optimal Euclidean logarithmic Sobolev inequality for the
Lebesgue measure dx holds,

n 2
Ent,, (f?) :/ﬂ log /2 dx<§log<%/|Vf\2dx>

for any smooth function f such that [ f2dx = 1. This inequality appears in a work of
Weissler in [Wei78].

Then an [7-version, called I7-Euclidean logarithmic Sobolev inequality, where
1<p<n, is given as follows:

Entan(1f17) = [ 17V logl s dx<f—,log(ffp [rerr dx), 0
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for any smooth function /" such that [|f|’dx =1 and

)
o _b(p=1\" g _IGHD )
A I'(nt- Ly

Inequality (1) for p = 1 was written by Ledoux in [Led96], and then by Del-Pino and
Dolbeault for any 1<p<n in [DPDO02a].

Furthermore it is known that inequality (1) is optimal. Extremal functions
for p = 1 were given by Beckner [Bec99]. He proved that, for p = 1, the extremels
are the characteristic functions of balls. For p =2 Carlen in [Car91] and Del
Pino and Dolbeault in [DPDO02a], for other values of p, prove that the extremal

functions are
P
|x - X‘pil ’
where >0 and xe R".

The first result developed in this paper is a generalization of inequality (1).
For that purpose, let C:R"—R" be an even, strictly convex function.
We suppose that there exist ¢g>1 such that C satisfies the following

property:

-1/p

VxeR", f(x)= n%e)nur(r(pl+)l) exp(_

2

Q|-

V220, xeR", C(ix)=21C(x). (2)

We shall say that C is g-homogeneous. Let us note by C*, the Legendre transform of
C. It’s easy to prove that in this case, C* is also even and p-homogeneous where
1/p +1/q = 1. The most important example is C(x) = ||x||?, where || - || is @ norm
on R".

The principal result of this paper is the following.

Theorem 1.1. Let g>1, n>0, and C g-homogeneous (dx the Lebesgue measure on

R™). Suppose that 1/p+1/q = 1. Then for any smooth function f on R" such that
[1fFPdx =1, we have

n
uta (1) = [ 1P 1o 1Y) dx<ttog(2c [ Cna), )
where C* is the Legendre transform of C and

pp+1
ner—1([ e C) dx)”/”'

Lc=
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Inequality (3) is optimal and equality holds if for some b>0 and XeR"
VxeR", f(x)=aexp(—bC(x — X)), (4)

where a™” = [exp(—pbC(x — X))dx.
Inequality (3) is called LP-Euclidean logarithmic Sobolev inequality.

Remark. Theorem 1.1 is a generalization of Theorem 1.1 of [DPDO02a], if 1<p<mn
and C(x) = 611|x|q with 1/p + 1/q = 1, then inequality (3) is exactly the inequality (1)

with the same constant because C*(x) = l%|x|p and it’s easy to prove that

&
ZC_ &,
p

The generalization concerns on the one hand the function C and on the other hand
the parameter p> 1, which is not any more restricted to the set [1,n][.

Also let us note that the methods used by Cordero-Erausquin et al. [CENV02]
allow as well to obtain a generalization of inequality (1). They use the theorem of
Brenier and McCann [Br91,McC97] to prove, by a new method, the optimal
Gagliardo—Niremberg inequalities, see [DPD02b]. Then the I7-Euclidean logarith-
mic Sobolev inequality appears as a limit case.

The second result gives an optimal control of Hamilton—Jacobi equations which
are equivalent to Theorem 1.1. Let us first define the Hamilton—Jacobi equations and

solutions (QEC)),>O-

If g is a smooth function on R” (for example Lipschitz), the operator (QEC))I>0 is
defined by the following equation:

Q\g(x) = inf {g(y) + 1C(E)}, >0, xeR",
(5)
Q(()C)g(x) =g(x), xeR"

We know that v =uv(x,1) = Qt(c)g(x) is the solution of the following Hamilton—

Jacobi equation:

W (x, 1)+ C*(Vo(x,1) =0, >0, xeR", 6
v(x,0) =¢g(x), xeR"

This semigroup is called the Hopf—Lax solution of Hamilton-Jacobi equations.
More details about Hamilton—Jacobi equations may be found in [Bar94] and
[Eva9s].

We obtain the following result.
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Theorem 1.2. Let n>0 and C g-homogeneous. Suppose that 1/p + 1/q = 1. Then for
any smooth function g on R", f=a>0, t>0 we have

5w (1) #(=) ba

Q|| <10 —o\\p) P o 1 P 7

He X He Ha P £<ﬁ+z> fe_c(x)dx , ( )
ﬁﬁa 'y

where || - || is the norm of Lebesgue measure on R".

Inequality (7) is optimal and equality holds if for some 0<a<f3, XeR" and b>0 we
have

[:M

{ VxeR", g(x) = —bC(x —X),
brlap

Furthermore, when = oo and oo =1 we obtain, for any smooth function g, the

following ultracontractive bounds of (QEC))go,

n

<[lef]] Ny 1
w "\ 7 [ e~ CWdx’

and equality hold if t = 1/(b"/9) and g(x) = —bC(x).

(C)g

Remark. The link between Hamilton—Jacobi equations where C(x) = |x|?/2 and
logarithmic Sobolev inequality are given in [BGLO1]. In particular, the authors prove
that logarithmic Sobolev inequality are equivalent to hypercontractivity of
Hamilton—Jacobi equations.

And the link between Sobolev inequality and the Hamilton—Jacobi equation are
given in [Gen02]. In particular, the author proves that Sobolev inequality implies an
ultracontractive estimate of Hamilton—Jacobi solutions and inequality (7) is a
generalization of inequality (13) of [Gen02].

We are going to see, in the next section, the link between Theorems 1.1 and 1.2.

2. Generalization on a Riemannian manifold

Let M be a smooth complete Riemannian manifold of dimension n with
Riemannian metric d. If g is a smooth function on M (for example Lipschitz), the

semigroup (QEC)) />0 18 defined by the following equation:

Q{“g(x) ngﬁ{g(y)HC("(’;’y))}, t>0, xe M,

Q\Vg(x) = g(x), xeM.
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Following the argument in the classical Euclidean case, one shows similarly that
v=ov(x,t) = Qt(c)g(x) is a solution of the initial-value Hamilton—Jacobi problem on

the manifold M,

{—< )+ C'(Velx,0) =0, 1>0, xeM. ©)

v(x,0)=g(x), xeM,

where Vo stands for the Riemannian length of the gradient of v for the variable x.
Now let us explain the generalization.

Theorem 2.1. Let p be a measure on M. We suppose that p is absolutely continuous
with respect to the standard volume element on M, and let ®: R"—R be a strictly
increasing concave function.

Suppose that the measure u on M satisfies the following inequality for any smooth
function f on M such that [|f'du =1,

Ene (1) <o [ €9 ). (10)

This inequality will be called the I?7-entropy-energy inequality.
Let ¢>0 and let q. denote a strictly increasing non-negative function satisfying the
following differential equation on [0, ty], (to>0):

! eaP) — 14
P (cqy) =P’ 4

(11)

2-p
C
—

Note that, at this point q.(0) is not fixed. Then for any ¢ >0, the following inequality is
satisfied for any smooth function g,

qc(1) P
vielosnl, 1@, <l e, with )= [*TH P iy 12y
‘ ‘ alo) Y

where (x) = @(x) — x®'(x).
Conversely, if inequality (12) is satisfied for any ¢ >0 then the measure u satisfies the
inequality (10) for any smooth function f such that [|f|’ = 1.

The proof of this theorem is based on the following computation 4||e9|| 4(n)» this
an adaptation of Theorem 3.5 of [Gen02].

Corollary 2.2. Let (M,d) be a n-dimensional smooth Riemannian manifold and
let u be a measure on M absolute continuous with respect to the standard volume
element on M.
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Suppose that there exists </ >0, such that u satisfy the following LP-FEuclidean
logarithmic Sobolev inequality for any function smooth function f on M,

Entu(lfl”)%log(% / c*<Vf>du), (13)

where .o/ >0. Then for any p=o>0 and any bounded Lipschitz function g we have

M) (2)52,4:5%) (e,,_ln ﬂ) (2 -

t nff a
ﬁﬂa(ﬁq)

Conversely if inequality (14) is satisfied for any p=o>0 and any bounded
Lipschitz function g then the measure u satisfies the LP-Euclidean logarithmic Sobolev
inequality (13).

V>0, ||eQ5C)-"H,;<He“’|Ia(

Proof. Let us use the Theorem 2.1 with

o(x) = Zlog(m).

Then for any ¢>0 we can solve the differential equation (11). Let

p=o0>0,
_(B—o)n
=

Then the function ¢.(¢) = aff/((« — )t + p) satisfies the differential equation (11) on
[0, oo].

Theorem 2.1 applied to the function ®(x) = 7log(/x) with 7 =1 proves the
inequality (14) for t = 1.

The definition of Qgc)g imply the following scaling property:

(©) g—1
t
V0, ang:w_ (15)

By using the scaling property we prove inequality (14) for any 7> 0.
The proof of the converse is an adaptation of Theorem 3.1 of [Gen02]. [

When f = oo and o = 1 we find the following corollary.
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Corollary 2.3. Suppose that u satisfies the L?-Euclidean logarithmic Sobolev inequality
(13) then (QEC))Q0 is bounded as follows:

n
p-1 P
(©) e no/
vi>0, [|e® gumsnegnl((;) —t>,

for any bounded Lipschitz function g.

Remark. This inequality is an generalization of the ultracontractive bounds on
Hamilton—Jacobi solutions in R”, see the Corollary 2.2 of [Gen02].

3. Proof of Theorems 1.1 and 1.2 with Prékopa—Leindler inequality

Proof of Theorem 1.1. At the light of Corollary 2.2, to prove inequality (3) of
Theorem 1.1, we just have to prove Theorem 1.2.
Let us now prove that functions defined by (4) are extremal. Let

VxeR" f(x) =aexp(—bC(x — X)),

where a? = [exp(—pbC(x — X))dx, b>0 and XeR".
An easy calculus prove that

/ C*(Vf)dx = b7 /f”(x)((x ~ %) VC(x — %) — Clx — %))dx.
The property (2) imply that
VxeR", x-VC(x)=qC(x).

Then we find that

A similarly calculus prove that
n
Ent,. (f) = 4 +ploga

and

/ o= C0) gy (bl’>n/q_

aP

Then inequality (3) is an equality. [
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Proof of Theorem 1.2. To prove inequality (7) we are going to use the
Prékopa—Leindler inequality. Let us recall this inequality, and refer to [DG8&0] for
a review.

Let a,b>0, a+ b =0, and u, v, w three non-negative functions on R". Assume
that, for any x, yeR", we have

u(x)"v(y)" < wlax + by), (16)

then

( / u(x)dx)a( / v(x)dx)b< / w(x)dx. (17)

This inequality is also called the Brunn—Minkowski inequality, is a particular but
equivalent case of the Prékopa—Leindler inequality.

Let o, fe R such that 0<a<ff and let g a bounded Lipschitz function. Set for any
xeR",

u(x) = exp(FQI“g(x)),
b(x) = exp(—0C(x)),

w(x) = exp (ocg <§X) ) :

where 0 = (2778 and set a = /B, b= (f — )/
Then for any x, ye R" we have

u(x) ()" = exp (aQ$C>g<x> - uecu))

p
< exp (cxg(x —z)+aC(z) — b g x

for all ze R". Let take z = —((ff — o) /o)y and by the definition of 6 and the property
(2) we prove that for all x, ye R" we have

0C(y)),

u(x) v(y)" S wlax + by).
We obtain, using the Prékopa—Leindler inequality

n

n =
||eQ‘f)gHﬂ<|\eg||a(%)“( / e“(“dx) "

By using property (2) and by a change of variables for the Lebesgue measure we
prove inequality (7) for # = 1. By using scaling property (15) we prove inequality (7)
for all 1> 0.
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Let now prove that g(x) = —bC(x — %), for b>0 and XeR" are extremal
functions. It is easy to prove that

b

th<x> - (1 _ tbp/q)q/P

C(x —X),

for 0<r<b?/4.
And we prove that for t = (f — «)/(b?/9f), inequality (7) is an equality. [

Remark.

Extremal functions of Theorems 1.1 and 1.2 are, of course, connected. One

can deduce one of them from the other one. But regrettably, unlike the circumstance in
Theorem 1.1 of [DPD02a], one does not know if all extremal functions are given by (4).
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