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e Page 30, line &: instead of [(LP;)*du read [(LP,f)?du, thanks to Kevin Tanguy.

e Page 35, line 10: instead of

> ul@)L(z

yelE

> ul@)Lix

zeE

read

thanks to Michal Strzelecki.
e Page 36, line 4: instead of L read K , thanks again to Michal Strzelecki.
e Page 39, line -1: instead of F(x,T) read F(T,x), thanks to Michal Strzelecki.

e Page 42, line -4: the matrix g is supposed to be also definite-positive, thanks to Michal Strz-
elecki.

e Page 49, line -13: instead of g = ¢/(f) read g = ¢(f), thanks to Michal Strzelecki.

e Page 79, line -5: instead of
> (05f)? Z 9:1)
ij=1

read
n

I %(Z 917

i,j=1

thanks to Michal Strzelecki.



e Page 90, line 11: instead of

1 d e
ks(t, d) = .
3(t:d) = 1207 s (@) eXp( 4t)
read (add a ()
1 d &
ks(t,d) = —t— =
3(b4) = 77 smh(d) eXp( 4t>

e Page 95, Proposition 2.4.1. The proposition schould be replace by the following with its proof.

Proposition 2.4.1 Let Lf = f"+4a(x)f" be defined on C(0, 00), where a is a smooth function
on (0,00). Then the operator L is symmetric with respect to the measure du = e“dxr where
A" = a. Moreover, as soon as there exist two constants C' > 0 and ¢ > 3/4 such that

a'(x) + @(z)

2
then L is essentially self-adjoint.

Proof

< We briefly outline the arguments. The fact that L is symmetric with respect to du = edx
is immediate (see Section 2.6). Remove then the gradient in L according to the technique
described in Sect. 1.15.7, p. 65. The problem is reduced to proving that the operator Ly f =
f" — K f where K = “5/ + % is essentially self-adjoint on (0, 00) with respect to the Lebesgue
measure. To this task, according to Proposition A.5.3, p. 482, it is enough to show that for some
A € R, the equation f” = (A+ K)f (understood in the distributional sense) has no solution in
L%(dz) = £%((0,00), dx) except 0. By the hypothesis, A may be chosen so that A + K > Ky(z)
where Ko(x) = -5. Any solution f on (0,00) of f” = (K + \)f is as smooth as K. Assuming
that f is not identically 0, up to a sign change, let f(zo) > 0 for some zy > 0. Now, if
f'(zg) > 0, it is easy to see from f” > Koy(x)f that f increases on (zg,00), and is therefore
convex on this interval. Being convex it grows at least linearly at infinity and therefore is not
in £?(dx).

On the other hand, if f'(z¢) < 0, from standard arguments, f is bounded from below by the
solution fy of f/ = Ky fo which has the same value and same derivative at xy. To check that f
is not in £%(dx), it is therefore enough to see that fZ may not be integrable near 0. But the
solutions of f = Ky fy are linear combinations of z*' and x®? where «; and «y are solutions
of a(a — 1) = ¢. Since f{(zg) < 0, fo behaves near the origin like fz*', with § € R and
a1 = (1 —+/1+4c)/2. Then, fy ¢ L£3(dz) iff 201 < —1 that is ¢ > 3 Then the proposition is
established. >

c
}P—O,ZL’>O,

e Page 102. Proposition 2.6.1 should be replaced by the following.
Proposition 2.6.1 Let Lf = f” + ¢f’ be a Sturm-Liouville operator on (—1,+1). Assume
that ¢ is smooth in (—1,+1) and that there exist Cy,Cy > 0 such that for every = € (—1,+1),
c*(x)
2
Then L is essentially self-adjoint.

d(x)+ > zmax (1+2)%(1—2)7) = C..



Page 102, line 7, instead of min(a_, a ) > 2 read

S 2—1—\/10'

min(a_, o) > 5

Page 108, line 7, the sentence should be replaced by the folowing :
that is L = A — 2x - V, the Ornstein-Uhlenbeck operator, up to a scaling.

Page 129, line -1: instead of

L) = Jim (5 Pu (7)) — Pu(f)(@))

k—o0 \ 2t}
read ]
D()(w) = Jim o (P () (@) = P (1))
thanks to Michat Strzelecki.
Page 152, line -7: Item (iii) has to be understood as follows, for any functions fi,---, fr € A

and ¥ : R* — R a smooth function (C*®), then ¥(f1,--- , fr) € A.
Page 156, line 17: instead of f — g read f + g (three times), thanks to Michatl Strzelecki.

Page 158, line 13: instead of

D(g.T(f, 1) + T(h.T(f,9)) = T(f.T(g,h) |

N | —

H(f)(g, h) =

read (add a ))
H()(g.h) = [T (0. T(, 1) + T(h.T(f,0)) = T(£,T(9, )]

Page 170, line -6: remove L*(f) at the beginning of the formula.

Page 200, line -8 to the end of the page. Replace the paragraph by the following:

The second set (ii) of inequalities, without any boundary condition, appears as a consequence
of (iii) by symmetrization and periodization (for f : [0, 1] — R arbitrary, define g : [-1,+1] —
R by g(z) = f(z) for z € [0,41], g(x) = f(—z) for z € [-1,0], and apply (i) to g on the
interval [—1, +1] after re-scaling).

Finally (i) is a consequence of (i) by anti-symmetrization and periodization. For f : [0,1] - R
such that f(0) = f(1) =0, define g : [-1,+1] — R by g(z) = f(z) for z € [0,+1], g(x) =
—f(—x) for x € [-1,0]. Then

d dz\*> 1 d 1
frdx —/ P (/ g—x) < —2/ L= [ e
[0,1] [-1,1] 2 [—1,1] 2 ™ J-1,) 2 ™ Jo,

where (ii7) has been applied to the probability measure 1[_171]%% with the optimal constant
1/7%. The function f(x) = sin(wzx) is an optimal function from a direct computation.



Page 201, line -7: instead of
1
= [ e
1.2 = 5z J, )

[ = [ s

read

(thanks to Arnak Dalalyan).

Page 205, Proposition 4.6.4: instead of

KNL
Crur < ZEK J L; max(Cr, CL),

read (KL
14
C <2 Cr,C
KUL > ILL(KUL maX( K L)7

~— | —

(thanks to Michat Strzeleck).

Page 211, line 5: instead of I'(P.f) = O(t"/?) read /T(P.f) = O(t~'/?).

Page 240, line -1: instead of s = [ g fdu read s = f, thanks to Michal Strzelecki.
Page 249, Proposition 5.2.7: instead of E;, E; read E4, Fs.

Page 251, formula (5.3.2), read (¢ — 1)*/? instead of (¢ — 1)*, thanks to Max Fathi.

Page 263, line 11: instead of A97!(s) in the LHS, read

q2
?Aq_l(S)A'(S),

moreover the function ¢ is decreasing, thanks to Michat Strzelecki.

Page 267, line -7: instead of

in the RHS, read

thanks to Michal Strzelecki.
Page 298, line -8: instead of

2 P(fA(log f))

Pi(flog f) = Pif log Pif < tAP,f + 3 log(1 B/

),

read

2t P(fA(log f))

PAflog f) = Piflog Bf < tARf + 5P flog(l = 0o Snes),



e Page 298. The proof of Theorem 6.7.3 can be simplified as follows.

Let f be a nonnegative function and let, as usual, for s € [0, ¢]

A(s) = Ps(Pi—s f log P f).
As already observed,
N'(s) = Ps(Pi—s fT(log P—s f)),
A”(S) = 2P5(Ptfsfr2(10g Ptfsf))
and the C'D(0,n) condition yields the inequality (6.7.6) page 300,

AN'(s) > LP,f — N(s)]?.
(52 LA~ ()
Now, letting ¢(s) = A(s) — sLP,f, the previous inequality can be reformulated as,

6> ()P s

In other words, the map

2
[0,¢] 3 s+ exp (—nptfgo(s))
1S concave.

Then the two inequalities hold true:

2 9 exp (—%g@(t)) — exp (—ng—tfcp(O))
o O (<Dl < : <
2

- nptfsf/(o) exp (—n;f¢(0)> :

The first inequality can be written as

T 2
P (BD) Lrs+ i > fnsen (-0 - o).

which is a reformulation of inequality (6.7.4), and the second one can be written as

L(P.f) n n 2
———= + LP, —Pf> =P — t) —(0) ],
P.f + tf+2t v f 5 rJ exp nPtf(SO() ¢(0)
which is a reformulation of inequality (6.7.5). We recover the Li-Yau inequality since the
exponential is positive.

e Page 301, line 11: instead of

2[LPf — N(s)]?

124 >
Als) = nP,f

+ pA'(s),

read
2LP.f — N(s)]?

nP, f

N'(s) > +2pA'(s).



e Page 308, additional information on Theorem 6.8.3. For all the computations explained on
page 309, the extremal function f has to satisfy some properties.

First, from the indentity
Jrt = @ fude = cesu),

/fq_ludu:C'/f<1;€u—Lu)d,u.

That is, if Ry(u) =g with A\ = %, the equality becomes

we get

/unqu—cvwmwza

This equalition implies back that

f= 2B

and then, f € D(L).

It is proved that f is bounded from above and below (by a strictly positive constant). From
the equation satisfied by f, we know that Lf is also bounded. To apply the various integration
by parts formula, we need to prove that for any constant a € R, f* € D(L). One way to prove
it is to show that I'(f) is a bounded function.

From the first formula page 312, we have

f = SR,

which implies that

< [ o VIERT)

Now, since the model satisfies the C'D(0,00) condition and f¢~! is a bounded function, In-
equality 4.7.7 page 211 implies that

1% oo
\/¥ )

The two previous inequalities imply that I'( f) is a bounded function.

t> 0.

PR (fe1)) <

e Page 315, formula (6.9.2): instead of L, read L(f).
e Page 317, line 12: instead of VW (f), read T'(W, f).
e Page 318, line 13: instead of u, read pg.

e Page 321, Proposition 6.9.6 and its proof have to be replaced by the following (see also [1] for
a more developed proof).



Proposition 6.9.6 Let du = e Wdu, and o € R, then
Salpt.T) = u() sy — algW + ()T (W)
18 n-conformal invariant where

an—2ng+2) —2(ng — 1)

fula) = 2(n —ny)
and I
(@) = 4(ng — 1) — 2a(n — ng)
Proof

< It is enough to check that S, (u,I") satisfies the condition (6.9.1). The measure p is trans-
formed to i = ¢ ", and T' to I' = ¢’T". From the previous computations, sc, becomes

Seg = *[scg + (ng — 1)(2A,7 — (no — 2)T'(7))],
W = —log ddT"g becomes

dj —d d
'lf = —log ¢ a4 _ —logcno_"—u =W+ (n —no)T,

W = —log
djig cdpg djig

and finally, A; becomes

~

Ay = Ay — (ng — 2)T(7, )]
So,
Sa(c™ ™, 1) = Ay, (@) [scg + [2(ng — 1) — a(n — ng)]Ay(7)
+ [Bna)(n —ng)* = (ng — 1)(ng — 2) + a(ng — 2)(n — ng)JT(7)
— (W) + [alng — 2) + 2Ba(a)(n — no)|T(r, W) + ﬁn(a)r(W)} .

It has to be equal to

N I N\ s YO |

On can check the values of 7, (a) and «,(«) proposed do the job. >

& [%(a) [scg — alg(W) + B (a)[(W)] +

Page 322, line -18: instead VVU = —Uld read VVU = —Ugsn, where gg is the spherical
metric.

Page 338, line -1: instead of I(u), read I, p(u).

Page 364, line -6: The sentence starting by In the finite measure case... is not correct. It has to
be replaced by the following one: In the finite measure case, the tight Nash inequality (3.2.3),
p. 281, corresponds to a function ® which is the inverse function of (1, +00) 3 z + (z!T2/" —

x)/C.



e Page 372, line -5: instead of e=/¢, read e~*/C.

e Page 373, line -13: instead of w(x) = p(x)"?(14+2%)~?, read w(x) = p(z)~/2(1+22)7? (thanks
to Persi Diaconis).

e Page 425, Theorem 8.6.3: the set A, should be here the d;-closed neighborhood of A instead
of the open one (A4, = {z € E; d(z, A) < d;} instead of Ay, = {z € F; d(x, A) < d;}).

e Page 448 line -7: (the line before formula (9.3.5)) the integration is w.r.t. the measure u'~*/"dz
instead of udx (thanks to Emanuel Milman).

e Page 464, formula (9.7.4) should be

W3 (Pif, Pigp) < W3 (fu, gp) +2n(VE = V/5)?%,
thanks to Luigia Ripani.

e Page 516, in the formula (C.6.5) the last term should be

H(f)(f3 1)

instead of
H(fi)(fi /i)

thanks to Francois Bolley.

e Page 514, line -2: instead of wrapped product, read, of course, warped products !
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