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3000, chemin de la Côte Sainte-Catherine
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Abstract

The aim of this paper is to present efficient algorithms for the detection of multiple
targets in noisy images. The algorithms are based on the optimal filter of a multidi-
mensional Markov chain signal. We also present some simulations, in the case of one,
two and three targets, showing the efficiency of the method for detecting the positions
of the targets.
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Résumé

Le but de cet article est de présenter des algorithmes efficaces pour la recherche de
cibles dans des images bruitées. Les algorithmes reposent sur le filtre optimal pour une
châıne de Markov multidimensionnelle représentant le signal. Nous présentons aussi
des simulations, dans le cas d’une, deux et trois cibles, démontrant l’efficacité de la
méthode proposée pour la détection de positions de cibles.
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1 Introduction

The problem of detecting targets in a region, using images, is a quite interesting challenge,
having a lot of applications. For example, one can try to find a boat lost at sea, or try to
track drug smugglers, etc. Unfortunately, images are not crystal clear and can be affected
by several parameters, in particular weather conditions.
In what follows, we will assume that the targets move on a lattice, according to a

Markov chain. Moreover, the observations are black-and-white noisy images of a finite
fixed region. Our setting is different of the setting considered by Ballantyne, Chan and
Kouriztin (2002) [1], where they used different kind of noise and a different approach for
the motion of targets.
In order to simplify calculations, the following notations will be used.
Model for targets: Let (ξk)k≥0 be a finite system of mMarkovian targets evolving

in a countable space X. The state space is the set of all ξ ∈ {0, 1}X so that
∑
x∈X

ξ(x) = m.

Let A be the set of all A ⊂ X, |A| = m. For any A ∈ A, define
FA(ξ) =

∏
x∈A

ξ(x),

and set νξ(A) = EP (FA(ξk+1)|ξk = ξ). Note that, for any B ∈ X, |B| ≤ m,

EP {FB(ξk+1)|ξk = ξ} = P (ξk(x) = 1, x ∈ B|ξk = ξ) =
∑

A∈A,A⊃B

νξ(A).

Further set
M(A,B) = E {FA(ξk+1)|FB(ξk) = 1} , (1)

where A,B ∈ A. The transition function M is important since it describes exactly the
movement of the m targets. We discuss about it in the section 3.

Model for observations: Observations are denoted by Yk ∈ {0, 1}I , where I ⊂ X is
a finite set. Given ξ0, . . . , ξk, we assume the {Yk(x)}x∈I are independent and

P (Yk(x) = 0|ξk(x) = 0) = p0, (2)
P (Yk(x) = 1|ξk(x) = 1) = p1, (3)

where 0 < p0, p1 < 1.

Two algorithms will be defined to compute the optimal filter according as we know or
we don’t known the transition function M .
In the next section, we will present a straightforward algorithm when the motion of

targets is assumed to be known, i.e. M is known. In section 3 we will propose an algorithm
in the case on an unknown motion. Simulations showing the performance of the algorithms
are presented in Section 4 in the case of m = 1, 2, 3 targets. Finally, section 5 contains a
discussion of the results and ideas for future work.
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2 Optimal filter when the transition mechanism is known

Throughout this section we assume the transition function M to be known. Our aim is to
find an easy algorithm to compute

P (∩x∈B{ξk(x) = 1}| Yk) ,

where B ∈ A, |B| ≤ m and Yk is the sigma-algebra generated by observations Y1, . . . , Yk.
Set Y0 = {∅, {0, 1}I}.
The first step is to compute, for any y ∈ {0, 1}I , the following conditional probability

P (Yk = y|ξk = ξ) = P (∩x∈I{Yk(x) = y(x)}| ξk = ξ) .

Using the independence assumption, together with (2) and (3), one can check that

P (Yk = y|ξk = ξ) =
∏
x∈I

{
(1− p0)1−ξ(x)p

ξ(x)
1

}y(x)

×
{
p
1−ξ(x)
0 (1− p1)ξ(x)

}1−y(x)

= p
|I|
0

(
1− p0

p0

)<y> (
1− p1

p0

)<ξ> (
p0p1

(1− p0)(1− p1)

)<yξ>

= Λ(y, ξ), (4)

where < y >=
∑

x∈I y(x), < ξ >=
∑

x∈I ξ(x), and < yξ >=
∑

x∈I y(x)ξ(x).

Let P be the joint law of the Markovian targets with initial distribution ν, and the
observations, and let Q be the joint law of the Markovian targets with initial distribution
ν, and independent Bernoulli observations with mean 1/2.

Further let Gk be the sigma-algebra generated by Y1, . . . , Yk, ξ0, . . . , ξk. Then it is easy
to check that with respect to Gk, P is equivalent to Q and

dP

dQ

∣∣∣∣
Gk

= 2|I|
k∏

j=1

Λ(Yj , ξj). (5)

Further define

Lk =
k∏

j=1

Λ(Yj , ξj). (6)

It follows that for any Gk-measurable random variable Z and for any sigma-algebra
F ⊂ Gk,

EP (Z|F) = EQ (ZLk|F)
EQ (Lk|F) . (7)
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While this formula is an easy consequence of the properties of conditional expectations, in
the context of filtering, (7) is known as the Kallianpur-Stribel formula.

The key observation here is to note that expectations relative to Q are much easier
to evaluate since the signal and the observations are independent. Moreover all variables
{Yi(x)}1≤i≤k,x∈I are independent and identically distributed Bernoulli with mean 1/2.
For any A ∈ A, define qk(A) = EQ(FA(ξk)Lk|Yk). Note that, according to (7), we have,

for any B ∈ X, |B| ≤ m,

P (∩x∈B{ξk(x) = 1}| Yk) =

∑
A∈A,A⊃B

qk(A)

∑
A∈A

qk(A)
.

Therefore the conditional law of ξk given Yk is completely determined by the qk(A)’s
with A ∈ A.
Our goal will be attained if one can find a recursive formula for the “unnormalized

measure” qk. To this end, set

DA(y) = p
|I|
0

(
1− p0

p0

)<y> (
1− p1

p0

)|A∩I| ( p0p1

(1− p0)(1− p1)

)<y>A∩I

,

where < y >A∩I=
∑

x∈A∩I y(x).
Using independence and identity (4), we have

qk+1(A) = EQ {FA(ξk+1)Lk+1|Yk+1}
= EQ [EQ {FA(ξk+1)Λ(Yk+1, ξk+1)|Yk+1, ξk}Lk|Yk]
= DA(Yk+1)EQ [EQ {FA(ξk+1)|ξk}Lk|Yk]
= DA(Yk+1)EQ [νξk

(A)Lk|Yk]

= DA(Yk+1)
∑
B∈A

EQ [νξk
(A)FB(ξk)Lk|Yk]

= DA(Yk+1)
∑
B∈A

M(A,B)EQ [FB(ξk)Lk|Yk]

= DA(Yk+1)
∑
B∈A

M(A,B)qk(B)

Therefore we obtain the so-called “Zakai” equation

qk+1(A) = DA(Yk+1)
∑
B∈A

M(A,B)qk(B). (8)
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Note also that for any B ∈ X, |B| ≤ m, one can define qk(B) by the formula

qk(B) =
∑

A∈A,A⊃B

qk(A).

It follows easily that for any such B

qk(B) = EQ(FB(ξk)Lk|Yk)

and
EP {FB(ξk)|Yk} = P (∩x∈B{ξk(x) = 1}| Yk) =

qk(B)∑
A∈A

qk(A)
.

Remark 2.1 Using the same technique, one can prove that for any 1 ≤ k ≤ n,

P (Yk = y|Yk−1) =
pk(y)∑

z∈{0,1}I

pk(z)
, (9)

where
pk(y) =

∑
A∈A

∑
B∈A

DA(y)M(A,B)qk−1(B), 1 ≤ k ≤ n. (10)

Note that, using (4) and (10) and the definition of DA(y), one can write
∑

z∈{0,1}I

pk(z) =
∑

z∈{0,1}I

∑
A∈A

∑
B∈A

DA(z)M(A,B)qk−1(B)

=
∑
A∈A

∑
B∈A

M(A,B)qk−1(B)
∑

z∈{0,1}I

DA(z)

=
∑
A∈A

∑
B∈A

M(A,B)qk−1(B).

It follows that

P (Y1 = y1, . . . , Yn = yn) =
n∏

k=1

P (Yk = yk|Yk−1) (11)

can be written in terms of (9). This expression can be used to find maximum likelihood
estimates of M and p0, p1.

In view of applications, one can restrict ourself to finite sets X. However, to be realistic,
one should take X bigger that I. Think about ships sailing in a certain region, where a
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satellite take pictures of a subregion. It is quite possible that some ships are outside of
satellite reach.

Under this finiteness hypothesis, Zakai equation (8) is a finite sum and it can be eval-
uated easily (theoretically). Note that by definition, q0 is determined by the initial law of
the targets. Having observed Y1, one can calculate the measure q1, and so on.
Let us remark that some calculations can be done off-line. Probabilities M(A,B), for

A,B ∈ X, can be stored as a matrix, prior to starting the observation process. Note also
that the computation of qk is nothing but matrix multiplication.
The location of the m targets after the k-th observation can be estimated by choosing

A ∈ A, |A| = m, such that qk(A) = max
B∈A

qk(B).

3 Algorithm when the transition mechanism is unknown

Suppose now that we don’t know the value of the transition functionM defined in (1), and
we want again to find the position of targets. Throughout the rest of the section, M will
be considered as random. In that case, we have to estimate both the positions of targets
and the law of M .
This case is of course a little more complicated and we need to introduce new notations.

For any A ∈ A and any k ≥ 0, define

r̃k(A) = E(FA(ξk)|Yk) = µ̃k(FA)
rk+1(A) = E(FA(ξk+1)|Yk) = µk+1(FA)

r̃
(M)
k (A) = E(FA(ξk)|Yk,M) = µ̃

(M)
k (FA)

r
(M)
k+1(A) = E(FA(ξk+1)|Yk,M) = µ

(M)
k+1(FA),

where ν(f) is a shorthand notation for
∫
f(y)ν(dy). Using the results of section 2, the

following identities hold true:

r̃
(M)
k (A) =

qk(A)∑
B∈A

qk(B)
,

and
r̃
(M)
k+1(A) =

1

C
(M)
k+1

DA(Yk+1)
∑
B∈A

M(A,B)r̃(M)
k (B), k ≥ 0, (12)

where
C

(M)
k+1 =

∑
A,B∈A

DA(Yk+1)M(A,B)r̃
(M)
k (B).
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Note also that for any k ≥ 1,

r
(M)
k+1(A) =

∑
B∈A

M(A,B)r̃(M)
k (B). (13)

Now, our aim is to find a recursive algorithm to compute r̃k(A), for any A ∈ A.
Using the projection property of conditional expectations, we get

r̃k+1(A) = E(E(FA(ξk+1)|Yk+1,M)|Yk+1)

= E
(
r̃
(M)
k+1(A)|Yk+1

)

= η̃k+1

(
r̃
(·)
k+1(A)

)

=
∫
r̃
(M)
k+1(A)η̃k+1(dM),

where η̃k+1 refers to the law of M , given Yk+1.
We have now to find how to compute expectations with respect to the measure η̃k+1.

This is done using a useful result due to Del Moral and Miclo (2002). See [2] for a general
statement of the result.

Lemma 3.1 (Del Moral-Miclo) For any bounded measurable function φ of M , we have

η̃k(φ) =
E

(
φ(M)

∏k
i=1 µ

(M)
i (Λ(Yi, ·))

∣∣∣Yk

)

E
(∏k

i=1 µ
(M)
i (Λ(Yi, ·))

∣∣∣Yk

) .

Proof
� For sake of completeness, we give a proof in our setting. First, for a givenM , (ξk)k≥0 is
a Markov chain. So (M, ξk)k≥0 is also a Markov chain. Using Kallianpur-Stridel formula,
one can check that for any bounded measurable function ψ of (M, ξk),

EP (ψ(M, ξk)|Yk) =
EQ(ψ(M, ξk)Lk|Yk)

EQ(Lk|Yk)
,

where Lk is defined by (6).
Applying the formula to ψ(M, ξk) = φ(M), one obtains

EP (φ(M)|Yk) =
EQ(φ(M)Lk|Yk)
EQ(Lk|Yk)

=
EQ(φ(M)EQ(Lk|Yk,M)|Yk)

EQ(EQ(Lk|Yk,M))
.
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It is easy to check that

EQ(Lk|Yk,M) = µ
(M)
k (Λ(Yk, ·))EQ(Lk−1|Yk−1,M),

so that, using induction, one gets

EQ(Lk|Yk,M) =
k−1∏
i=1

µ
(M)
i (Λ(Yi, ·)),

yielding the result. �

By lemma 3.1, we have

η̃k+1(φ) =
η̃k

(
φµ

(·)
k+1(Λ(Yk+1, ·))

)

η̃k

(
µ

(·)
k+1(Λ(Yk+1, ·))

) .

From the definition of r̃k(M), one gets, using equality (13),

µ
(M)
k+1(Λ(Yk+1, ·)) =

∑
A∈A

DA(Yk+1)r
(M)
k+1(A)

=
∑

A,B∈A
DA(Yk+1)M(A,B)r̃

(M)
k (B)

= C
(M)
k+1 .

Next, (12) yields

r̃k+1(A) =
∫

1

C
(M)
k+1

DA(Yk+1)
∑
B∈A

M(A,B)r̃(M)
k (B) η̃k+1(dM)

=

∫
1

C
(·)
k+1

DA(Yk+1)
∑
B∈A

M(A,B)r̃(M)
k (B)µ(M)

k+1(Λ(Yk+1, ·)) η̃k(dM)

∫
µ

(M)
k+1(Λ(Yk+1, ·)) η̃k(dM)

=

∫
DA(Yk+1)

∑
B∈A

M(A,B)r̃(M)
k (B) η̃k(dM)

∫
C

(M)
k+1 η̃k(dM)

. (14)

Note that
∫
C

(M)
k+1 η̃k(dM) is just a normalizing term.

Remark 3.1 Applying equality (14), when the measure η̃k is the Dirac measure at M0,
we obtain the same formula as the one described in section 2.

We are now in a position to describe the new algorithm.
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3.1 Algorithm

Initialization: As in the first algorithm, r̃o and η̃0 are determined by the initial law of the
targets.

Recursion: For any k ≥ 0, given r̃k , r̃
(·)
k , and η̃k, compute r̃

(M)
k+1 , using (12), r̃k+1, using

(14). Then, for any bounded measurable φ of M ,

η̃k+1(φ) =

∫
φ(M)

∑
A,B∈A

DA(Yk+1)M(A,B)r̃
(M)
k (A) η̃k(dM)

∫ ∑
A,B∈A

DA(Yk+1)M(A,B)r̃
(M)
k (A) η̃k(dM)

.

As in the first algorithm, we can locate the m targets at the k-th iteration by choosing
A ∈ A such that r̃k(A) = max

B∈A
r̃k(B).

4 Simulations

Animations representing the results of the simulations described below can be obtained at
the web site http://www.lsp.ups-tlse.fr/Fp/Gentil/ensimulations.html. Calculations were
done using C++ and MATLAB.

4.1 Simulation results when M is known

When M is known, one can use the algorithm described in section 2. For the estimation
of the positions of the targets, we chose the sets A ∈ A maximizing qk(A) = max

B∈A
qk(B).

Note that several sets can satisfy this property, due to the lack of precision, especially in
the first iterations.
In order to simplify calculations, we assumed that X = I. The Markovian targets are

non-intersecting nearest neighbors random walks moving up (resp. down, right and left),
with probability α1 (respectively α2, α3 and α4 = 1−α1−α2−α3). The initial distribution
q0 was chosen to be the uniform law on all possible configurations.
For memory and computing time reasons, we restricted the simulations to the cases of

one, two and three targets, and images of size 200 × 200 in the case of one target, size
60× 60 for two targets, and size 20 for three targets.
In order to estimate the efficiency of our algorithm, we computed the mean error over

several time intervals. We found out that the positions predictions were quite good after
10 to 30 steps. We also took into account various values of parameters p0 and p1. The error
made at each iteration was calculated in the following way: in case of just one estimate
A, we calculated the L1-distance between the targets and the estimate; in case of several
estimates, the largest L1-distance was kept. The first iteration is never considered. The
results are reported in Tables 1, 2 and 3.
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Table 1: Mean error for one target in images of size 200× 200.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 8.7 4.1 1.2
p0 = p1 = 0.95 4.3 0.3 0.3

Table 2: Mean error for two targets in images of size 60× 60.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 6.5 1.7 1.8
p0 = p1 = 0.95 3.1 1.1 1.2

Table 3: Mean error for three targets in images of size 20× 20.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 4.0 3.1 2.6
p0 = p1 = 0.95 3.5 2.5 2.0

Note that in each case, the algorithm presents really satisfying results. From the 10-th,
or 30-th iteration (depending on the choice of parameters p0 and p1), the distance between
the estimation and the targets is about one or two pixels. This is due to the fact that the
algorithm provides an exact solution to the resolution of the optimal filter. The estimation
is of course better in the case of one target.

Remark 4.1 A natural question to ask is how to track more than two targets for large
images? One solution is to use one dimensional optimal filters to try to approximate the
optimal filter for several targets. This can be done in the following way. We use the optimal
filter for one target. Then we assume that the first target is on the first estimation and we
use again the optimal algorithm to find another target, and so on. Tables 4, 5 and 6 below
represent the results obtained by simulations.

Table 4: Mean error for two targets with the approximation of the algorithm and in
images of size 60× 60.

t [2, 100] [20, 100] [30, 100]
p0 = p1 = 0.9 7.9 3.9 4.4
p0 = p1 = 0.95 4.1 0.9 0.6
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Table 5: Mean error for two targets with the approximation of the algorithm in images
of size 200× 200.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 47 42 45.3
p0 = p1 = 0.95 5.7 0.5 0.6
p0 = p1 = 0.99 20.1 17.3 19.0

Table 6: Mean error for three targets with the approximation of the algorithm in images
of size 200× 200.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 40.7 35.6 31
p0 = p1 = 0.95 45.9 45.3 44.1
p0 = p1 = 0.99 15.1 14.1 14.7

These results are quite interesting. For two targets and images of size 60 × 60, the
mean errors are almost the same as the one obtained in Table 2. However, as can be seen
in Tables 5 and 6, the stability of the approximation of the optimal filter is not as good.
Remark that for three targets, when p0 = p1 = 0.99, the approximation is quite satisfactory.

4.2 Simulation results when M is unknown

We now present simulations using the algorithm developed in section 3. For sake of sim-
plicity, we chose to simulate only one target in images of size 200× 200.
As in the previous subsection, we use the uniform law on all pixels. The measure η̃0 is

a discrete measure with N Dirac measures defined as

η̃0(α1, α2, α3, α4) =
N∑

i=0

1
N + 1

δ( i
2N

, i
2N

, 1
2
− i

2N
, 1
2
− i

2N
)(α1, α2, α3, α4). (15)

This is not the best choice for η̃0 but it is very simple for computations and the results
obtained are quite interesting. Of course, in simulations, the motion of the target is random
and is not in the support of η̃0 defined by (15).

For the simulations, we used several values for N and (p0, p1). The results are reported
in the Table 7.
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Table 7: Mean error for one target in images of size 200× 200 for random M .

p0 = p1 = 0.9 [2, 100] [10, 100] [30, 100]
N = 2 36 27 20
N = 10 21 10.5 0.9
N = 100 20 8 0.8

p0 = p1 = 0.95 [2, 100] [10, 100] [30, 100]
N = 2 6.5 1.4 0.5
N = 10 7.1 0.1 0.1
N = 100 7.1 0.1 0.1

From these results, one can see that when the measure is initialized by a discrete measure
with N = 10 or 100, the approximations look like simulations when we know the transition
function M of the targets. When N = 2, the measure η̃0 is too bad to estimate the target.

Remark 4.2 In view of applications, one can either consider that the parameters p0 and
p1 have been estimated or one can use the maximum likelihood method, (e.g. using 11) to
estimate them from the observation of images.

5 Conclusion

We can conclude that the optimal filter is quite easy to implement whether the transition
function M of the targets is known or unknown. Simulations results reported in the
previous section showed quite convincing arguments in favour of the proposed approach.
On the negative side, the optimal filter method need a lot of memory to compute

predictions for 3 targets or 2 targets in large images.
A good solution could be to use an hybrid method combining the optimal filter for one

or two targets and ”Interacting Particle methods”. See e.g. Del Moral and Miclo [3] for
an interesting review of the subject. With this hybrid method used in the section 3, we
could compute also the optimal filter to find the positions and the number of targets. This
is still work in progress.
Finally, one could replace the hypothesis of conditional independence of the observa-

tions by introducing Gibbs measure noise (e.g. Rémillard and Beaudoin 1999 for other
applications of Gibbs noise [4]). The only difference would be in the definition of the Lk’s.
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