Analyse mathématique/Mathematical Analysis (Équations aux dérivées partielles/Partial Differential Equations)

Équations de Hamilton-Jacobi et inégalités entropiques généralisées

Ivan Gentil, Florent Malrieu

Laboratoire de statistique et probabilités, UMR CNRS C5583, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4, France

Recu le 22 mars 2002 ; accepté après révision le 23 juillet 2002

Note présentée par Pierre-Louis Lions.

Résumé

Nous prouvons l'équivalence entre des inégalités de Sobolev logarithmiques généralisées et l'hypercontractivité de certaines équations de Hamilton–Jacobi et retrouvons sous cette hypothèse une inégalité de transport établie dans [5]. Ces résultats généralisent ceux de [3]. Pour citer cet article: I. Gentil, F. Malrieu, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 437–440.

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Hamilton-Jacobi equations and inequalities for generalised entropies

Abstract

We prove the equivalence between a general logarithmic Sobolev inequality and the hypercontractivity of a Hamilton–Jacobi equation. We also recover that this property imply a transportation inequality established by [5]. These results provide a natural generalization of the work performed in [3]. To cite this article: I. Gentil, F. Malrieu, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 437–440.

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction et définitions

Une étude du comportement en temps long de l'équation de Fokker-Planck :

$$\partial_t u = \nabla \cdot [u \nabla (\log u + V)],$$

où V est strictement uniformément convexe en dehors d'un ensemble compact et $\int \exp(-V) = 1$, peut reposer sur l'inégalité de Sobolev logarithmique suivante : pour toute densité de probabilité f,

$$\int f \log f + \int f V \leqslant \mathcal{L} \int f \left| \nabla (\log f + V) \right|^2. \tag{1}$$

D'après [3], l'existence d'une telle inégalité est équivalente à une propriété d'hypercontractivité dans les espaces $L^p(e^{-V})$ pour le semi-groupe $(\mathbf{Q}_t)_{t\geqslant 0}$ défini comme la solution fondamentale de l'équation de Hamilton–Jacobi suivante :

$$\partial_t \mathbf{Q}_t g(x) + \frac{1}{2} |\nabla \mathbf{Q}_t g(x)|^2 = 0$$
 pour tout $t > 0$ et presque tout $x \in \mathbb{R}^n$,

Adresses e-mail: gentil@math.ups-tlse.fr (I. Gentil); malrieu@math.ups-tlse.fr (F. Malrieu). URL: http://www.lsp.ups-tlse.fr/Fp/{Gentil,Malrieu}.

I. Gentil, F. Malrieu / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 437-440

avec pour condition initiale g lipschitzienne bornée. Cette reformulation fournit en particulier le fait que l'inégalité de Sobolev logarithmique implique l'inégalité de transport suivante : pour toute densité de probabilité f par rapport à la mesure e^{-V} ,

$$W_2^2(f e^{-V}, e^{-V}) = \inf \left\{ \int \frac{|x - y|^2}{2} d\pi(x, y) \right\} \leqslant 2\mathcal{L}\left(\int f \log f + \int f V\right),$$

où l'infimum est pris sur l'ensemble des mesures de probabilité sur $\mathbb{R}^n \times \mathbb{R}^n$ de marges $f e^{-V}$ et e^{-V} .

Notre but est ici de montrer que ces relations sont encore vraies dans un cadre très général. Introduisons tout d'abord quelques notations :

- la fonction U désigne une fonction sur \mathbb{R}^+ , vérifiant les hypothèses techniques suivantes :
 - * U est \mathbb{C}^4 sur \mathbb{R}^+ , U(0) = 0, strictement convexe,
 - * $\lim_{x\to\infty} U(x)/x = \infty$,
 - * $\lambda \mapsto \lambda^n U(\lambda^{-n})$ est convexe croissante sur \mathbb{R}^+ , cette condition a été introduite par McCann dans sa thèse (voir la page WEB suivante : www.math.toronto.edu/mccann/papers/short.ps).

Les exemples les plus importants sont les fonctions $x \mapsto x \log x$ ou $x \mapsto x^m$ pour m > 1.

- la fonction V peut se décomposer en la somme d'une fonction convexe et d'une fonction bornée,
- la fonction W est convexe et paire,
- la fonction C désigne la puissance p de la norme p (normalisée) de \mathbb{R}^n : $C(x) = |x|_p^p/p := \sum x_i^p/p$ pour p > 1. Sa transformée de Legendre est donnée par $C^*(x) = |x|_q^q/q$, avec 1/p + 1/q = 1.

Pour fixer les idées, l'étude des inégalités que nous développons dans la suite sont liée à l'équation aux dérivées partielles suivantes :

$$\partial_t \rho = \nabla \cdot \left[\rho \nabla C^* \left\{ \nabla \left(U'(\rho) + V + W * \rho \right) \right\} \right].$$

DÉFINITION 1.1. – Soit ρ une densité de probabilité par rapport à la mesure de Lebesgue sur \mathbb{R}^n . Définissons l'énergie libre de ρ , encore appelée entropie par abus de langage,

$$H(\rho) := \int U(\rho)(x) dx + \int \rho(x)V(x) dx + \frac{1}{2} \iint W(x-y)\rho(x)\rho(y) dx dy,$$

l'entropie relative de ρ_1 par rapport à ρ_2 , $H(\rho_1|\rho_2) := H(\rho_1) - H(\rho_2)$, et la dissipation d'entropie

$$I(\rho) := \int \left[\nabla \left(U'(\rho) + V + W * \rho \right) \cdot \nabla C^* \left\{ \nabla \left(U'(\rho) + V + W * \rho \right) \right\} \right] \rho \, \mathrm{d}x.$$

D'après les hypothèses faites sur les fonctions U, V, W il existe une unique densité de probabilité ρ_{∞} qui minimise la fonctionnelle H.

DÉFINITION 1.2. – Nous dirons que le système satisfait à une inégalité de Sobolev logarithmique généralisée (ISL)(\mathcal{L}), si pour toute fonction ρ , densité de probabilité par rapport à la mesure de Lebesgue,

$$H(\rho|\rho_{\infty}) \leqslant \mathcal{L} I(\rho).$$
 (ISL)(\mathcal{L})

Remarque 1. – L'appellation « inégalité de Sobolev logarithmique » provient de l'exemple fondamental $U(s) = s \log s$ et W = 0 présenté en (1).

2. Hypercontractivité des équations de Hamilton-Jacobi

Définissons le semi-groupe $(\mathbf{Q}_t)_{t\geqslant 0}$ de Hopf–Lax associé à la fonction de coût C: pour toute fonction g lipschitzienne bornée, $\mathbf{Q}_0g=g$ et pour tous t>0 et $x\in\mathbb{R}^n$,

$$\mathbf{Q}_t g(x) = \inf_{y \in \mathbb{R}^n} \left\{ g(y) + t C\left(\frac{x - y}{t}\right) \right\}.$$

La fonction $\mathbf{Q}_t g$ est solution de l'équation de Hamilton–Jacobi suivante :

$$\partial_t u(t, x) + C^*(\nabla u(t, x)) = 0$$
 pour tout $t > 0$ et presque tout $x \in \mathbb{R}^n$,

avec condition initiale $u(0, \cdot) = g(\cdot)$ (voir [2]).

DÉFINITION 2.1. – Soit $h: \mathbb{R}^n \to \mathbb{R}$, bornée lipschitzienne. Définissons K, la transformée de Legendre de H.

$$K(h) = \sup \left\{ \int \rho(x)h(x) dx - H(\rho|\rho_{\infty}); \ \rho \text{ densit\'e de probabilit\'e} \right\}.$$

Le résultat principal relie l'existence d'une inégalité de Sobolev logarithmique (généralisée) aux variations de la fonction définie sur \mathbb{R}^+ , pour toute fonction g, par

$$F_a(t) = \frac{K((a+t/(\mathcal{L}p))^{p/q} \mathbf{Q}_t g)}{(a+t/(\mathcal{L}p))^{p/q}}.$$

THÉORÈME 2.2. – Supposons que U, V, W vérifient les hypothèses données dans l'introduction.

Si que le système satisfait à l'inégalité (ISL)(\mathcal{L}), alors, pour toute fonction bornée lipschitzienne g, pour tout $a \ge 0$ et $t \ge 0$, on a $F_a(t) \le F_a(0)$.

Inversement, s'il existe a > 0 tel que $F_a(t) \leqslant F_a(0)$ soit satisfait pour toute fonction g bornée lipschitzienne et t > 0 alors le système satisfait à l'inégalité (ISL)(\mathcal{L}).

Pour démontrer ce théorème nous utilisons les deux lemmes suivants.

LEMME 2.3. – Soit h une fonction bornée lipschitzienne sur \mathbb{R}^n alors, il existe une constante C_h telle que

$$K(h) = \int \rho \left(U'(\rho) + \frac{1}{2}W * \rho \right) - \int U(\rho) + H(\rho_{\infty}) + C_h,$$

où la densité de probabilité ρ est solution de $h = U'(\rho) + V + W * \rho + C_h$ sur son support.

LEMME 2.4. – Soit h_t une fonction \mathbb{C}^1 sur un intervalle $I \subset \mathbb{R}$. Alors pour tout $t \in I$ on a

$$\frac{\mathrm{d}}{\mathrm{d}t}K(h_t) = \int \left(\frac{\mathrm{d}}{\mathrm{d}t}h_t\right)\rho_t,$$

où ρ_t satisfait, pour tout $t \in I$, $h_t = U'(\rho_t) + V + W * \rho_t + C_{h_t}$ sur le support de ρ_t .

Preuve du Théorème 2.2. – Soit g une fonction bornée lipschitzienne sur \mathbb{R}^n . Notons

$$\gamma(t) = \frac{K(\beta(t)\mathbf{Q}_t g)}{\beta(t)},$$

où $\beta(t) = (a + t/(\mathcal{L}p))^{p/q}$. Nous obtenons, en utilisant le Lemme 2.4,

$$\beta^{2}(t)\gamma'(t) = \beta'(t) \int \beta(t) \mathbf{Q}_{t} g \rho_{t} - \frac{\beta(t)^{2-q}}{q} \int \left| \nabla \left(\beta(t) \mathbf{Q}_{t} g \right) \right|_{q}^{q} \rho_{t} - \beta'(t) K \left(\beta(t) \mathbf{Q}_{t} g \right).$$

La relation $\beta(t)^{2-q} = \mathcal{L}q\beta'(t)$, la définition de ρ_t et l'inégalité (ISL)(\mathcal{L}) fournissent l'inégalité hypercontractive $F_a(t) \leq F_a(0)$.

Prouvons maintenant la réciproque. La relation $F_a(t) \leqslant F_a(0)$, quand $t \to 0$, implique $\gamma'(0) \geqslant 0$. Comme $\mathbf{Q}_0 g = g$ et $\rho_0 = \rho_\infty$, le système satisfait (ISL)(\mathcal{L}). \square

3. Application aux inégalités de transport

DÉFINITION 3.1. – Nous dirons que le système satisfait à une inégalité de transport (IT)(\mathcal{T}) si pour toute densité de probabilité ρ sur \mathbb{R}^n ,

$$W_C(\rho, \rho_\infty) = \inf \left\{ \int C(x - y) \, \mathrm{d}\pi(x, y) \right\} \leqslant \Im H(\rho, \rho_\infty), \tag{IT)}(\Im)$$

I. Gentil, F. Malrieu / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 437-440

où l'infimum est pris sur l'ensemble des mesures π sur $\mathbb{R}^n \times \mathbb{R}^n$ de marges ρ et ρ_{∞} .

La proposition suivante donne une définition équivalente de l'inégalité de transport faisant intervenir le semi-groupe $(\mathbf{Q}_t)_{t\geq 0}$ et permet de faire le lien entre les inégalités (ISL)(\mathcal{L}) et (IT)(\mathcal{T}).

PROPOSITION 3.2. – Le système satisfait à (IT)($\mathbb T$) si et seulement si pour toute fonction bornée lipschitzienne g, on a

$$K\left(\frac{1}{\Im}\left(\mathbf{Q}_{1}g - \int g\rho_{\infty}\right)\right) \leqslant 0.$$
 (2)

Démonstration. – Pour démontrer cette proposition nous utilisons la définition de la fonction K et le théorème de Kantorovich–Rubinstein, voir [1], Chapitre 8. □

La correspondance entre $(ISL)(\mathcal{L})$ et la propriété d'hypercontractivité de l'équation d'Hamilton–Jacobi permet de retrouver immédiatement un résultat établi dans [4].

COROLLAIRE 3.3 (Cordero-Erausquin, Gangbo, Houdré). – Supposons que U, V, W vérifient les hypothèses données dans l'introduction.

Si le système satisfait à une inégalité (ISL)(\mathcal{L}), alors il satisfait aussi à une inégalité de transport de constante ($\mathcal{L}p$) $^{p/q}$.

Démonstration. – L'inégalité $F_a(t) \leqslant F_a(0)$, appliquée à a = 0 et t = 1 donne l'inégalité (2). \square

Remarque 2. – Les résultats présentés ici n'assurent en rien l'existence d'une de ces inégalités. Par exemple lorsque $U(s) = s \log s$, W = 0 et $C(x) = |x|_p^p/p$ avec $1 , l'inégalité (ISL)(<math>\mathcal{L}$) est fausse quelle que soit la fonction V considérée!

Remerciements. Nous tenons à remercier Cédric Villani pour les différentes discussions sur le sujet.

Références bibliographiques

- [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, G. Scheffer, Sur les inégalités de Sobolev logarithmiques, in: Panoramas et Synthéses, Vol. 10, Société Mathématique de France, Paris, 2000.
- [2] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994.
- [3] S.G. Bobkov, I. Gentil, M. Ledoux, Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pures Appl. (9) 80 (7) (2001) 669–696.
- [4] D. Cordero-Erausquin, W. Gangbo, C. Houdré, Inequalities for generized entropy and optimal transportation, 2002, Prépublication.
- [5] J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 2002, à paraître.