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Abstract

We prove that a convex phase may be perturbed into a non-convex phase preserving the spectral
gap properties of the unbounded spin system with nearest neighbour interaction associated to this
potential. The proof is based on HELFFER’s method that reduces the spectral properties of the
unbounded spin system to some uniform spectral gap of the one-dimensional phase. We then make
use of HARDY’s criterion for POINCARE inequalities on the real line to construct our examples.

1 Introduction

The purpose of this work is to establish some perturbation results for spectral gaps to produce some
examples of unbounded spin systems with nearest neighbour interaction associated to non-convex
phases satisfying a spectral gap inequality uniformly in finite subsets of the lattice and boundary
conditions. These examples thus show that the recent results by YosHIDA (see [Yos99]), HELFFER
[Hel99a|, BoDINEAU-HELFFER [BH99a, BHI9b] on spectral gaps and logarithmic SOBOLEV inequalities
can actually hold for families of phases that go beyond the usual convexity at infinity.

To introduce to the results of this paper, let us first describe, following [Hel99a|, the spin systems
we will investigate. Consider the measure exp(—®x ., (X))dX, where @, , is a function associated to
a finite subset A in Z? (for d € N*) and to some w € R”" which defines the boundary conditions. The
function ®, , has the form, for X = X € RIA! (where |A] is the cardinal of A) :

Sru(X) =D w(@)+J Y Viz—z)
ieA {6,/ }NAH£D, inj
where

z; ife€eA
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¥ and V are real-valued functions, respectively called phase and potential of the interactions

between sites. We assume that V satisfy

IV lleo < o0 ()

e i~ j means that j and i are neighbours in Z¢ .

e J is a positive real parameter (the coupling constant).



Assume that there exists Jo > 0 such that for any .J in [0, .Jy], any finite subset A of Z¢ and w in
de, the integral of exp(—®, ) on RA is finite. In this case, define the probability measure Koy, as:

exp(—Px (X))dX, (2)

where Zp, , = [exp(—®a o (X))dX.

This model is described in [BH99a] (see also [Hel99a]). The particular case where ¢(z) = az* — bz?
(a,b > 0) and V(z) = 2? is considered by YOsHIDA (see [Yos99]).

We will investigate spectral gaps and decays of correlations of the family of probability measures
pa, , uniformly over A and w. More precisely, we want to find two constants " and C" such that, for
any A finite subset of Z%, w € Z¢ and any smooth functions f and F,G we have:

Buo, . (1) = By, (0 <C [ IV )Pdpa,

B, (16) DB, ((F-Fu, (1) (G-Eu,, (@)

2 1/2 (3)
< Cexpl-d(si,50)  [I9FPaue, ) ( [IVGIdns, )

where |V f[|? =320 (9: 1), Eus, (f) = [fdpe, ,, Sris the support of F' in Z% and d is the distance
between subsets of the lattice Z%.

It has been shown in [Hel99a], [BH99a] and [Yos99] that whenever the phase 1 is convex at infinity

and J, is small enough, then the measures (,u@/w) satisfy such a uniform spectral gap and decay

Aw
of correlations (inequality (3)).

As announced, the aim of this paper is to present examples of non-convex phases such that the
uniform spectral gap still hold. The main tool of the construction is the method developed by HELFFER
which is presented in the next section. It will reduce to the study of some uniform spectral gap property
of the phase % in dimension one that we investigate by means of HARDY’s criterion for POINCARE
inequalities in dimension one. This is the subject of Section 3.

In the last section, we prove our main result:

Theorem 1.1 Let ¢ be a strictly uniformly convex function (i.e. for allx € R, ¢"(z) > a > 0), let g be
a bounded function (||g|,, < 00), and let h be a perturbation function satisfying S = fR(eM| -1) < c0.
Then, the measure g, , defined in (2) with b = ¢+ g + h satisfies, uniformly in A and w, a spectral
gap nequality and a decay of correlations for every J small enough.

The simple criterion on h will easily produce examples for which % is not convex at infinity, and
not even bounded above and below by two power type functions as will be showm at the end of the
section 4.

2 HELFFER’s method for spectral gap inequality

Let us first recall the definition of the spectral gap or POINCARE inequality for a measure on R” and

for the set of measures (;@A M)A o



Definition 2.1 (Spectral gap inequality) Let assume that dpy, = exp(—1(X))dX is a probability
measure on R", where 1) is a real-valued function. The measure yu,, satisfies a spectral gap inequality
if there exists a positive constant C'y, such that for any smooth enough function f:R" — R,

Var,, (f) = By, (f2) - B, () < Cy / IV f12dy (1)

where [V 1|2 = S, (8:f)* and By, (f) = [ fdpy.
The constant C'y, is the spectral gap constant associated to either the measure ., or the function .
We say that the set of measures (:“%,JA ., defined by (2) satisfies a uniform spectral gap inequality

if each measure pg,  satisfies a spectral gap inequality with a constant C' = Cg,  independent of A in
7 and w in RZ"

HELFFER proved recently spectral gap inequalities for the preceding spin systems using a criterion
on the WITTEN Laplacian [Hel99a]. The main feature of the approach is that it reduces to some uniform
spectral gap for the phase 1 that we investigate in the next section by HARDY’s inequalities. For the
sake of completness, we present this criterion that we however reformulate via the BAKRY-EMERY I3
operator (see [BE85], [Bak94] and [L.ed92] with more simple semigroup tools).

Theorem 2.2 Let assume that dpy(X) = exp(—¢(X))dX s a probability measure on R”, where v
is a C? real-valued function. Let L = A — (V.V) denote the infinitesimal diffusion generator with
invariant measure py. Then the spectral gap inequality is equivalent to the inequality:

/ ()L fdpy < Cy / (LF)2dpy, (5)

holding for any smooth function f.

We briefly recall the proof.

Proof
<« Assume that the measure p,, satisfies (5). Denote by (P;)¢»o the semigroup with generator L. For
any smooth function f, we have Pof = f and P, = [ fdu,, so that

Var,, (f) = —2//000Pff LP.f dtdp, = —2/000/ P.f LP.f duydt.
Let F'(t) = — [ Pyf LPfduy, t > 0. Integration by parts shows that
F(0) = -2 [ (LR ds.
Then, by (5), F'(t) < —(2/Cy)F(t) so that F(t) < e_c%”tF(O), for every ¢ > 0. Hence,
Var,, (1) < Cy [ 19 Pdus.

On the other hand, by invariance and the CAUCHY-SCHWARZ inequality,

[ 11tdne = [ =B ()L < Var, (0 ([ L0 "

Therefore inequality (5) follows from the spectral gap inequality with the same constant C'y,. The proof
of the theorem is complete. »



Applying Theorem 2.2 shows that a spectral gap inequality for the set of measures (1A ) amounts
to establish (5) uniformly in A and w. Now, for a given smooth function f, integration by parts allows
us to write that

/(Lf)zdﬂ%,w :/ (Z (0;;1)* + Z 0: f (0;,;®p ) ajf) due,

1,JEA 1,JEA
/Z ZZf a f {Qpll + Z ]‘/// _ Z] } dH(I)A7w (6)
1€EA JEN(é
+ Yo IV —x;)0if 0;f d#%,wv

1,jEA i~
where N (i) = {j € Z%; j ~i}. For any i in A, [N (i)| = 2d, so
Y aifo;if<2d) (0:f)°
1,jEN i~ €A
The condition (1) on V” easily shows that
Yo IV @i = )0 f0;f > =2d||[V"||o0d Y (0:5)° (7)
i GEM i €A

Therefore, (6) holds as soon as

/ (Lf)dps,, > / ( diif)? P @)+ Y IV @iz )) dps,,
(8)

€A JEN(3)
+32 -2V / (O:1) s, .
€A
For each 7 in A, denote by ugl _ the conditional measure on g, , given {(z;),7 € A, j #i}. Therefore
Q) ’

lig, 18 a measure on the real line and
e

exp (=9 (i) — EjeN(i) SV (i = 2;))

(I)A,u.)
where Z( = [exp(—9(z;) — > jen() V" (2i — zj))dz;. The measure ,ugl _ depends of the variables

(%)) and w € Z°

(1)

Suppose now that all the measures Po, o E A, satisfy a spectral gap inequality with a constant

Cusa (USG as uniform spectral gap) independent from the variables (w, (;);ea,j2i) and from the
site 1.
The equivalence provided by Theorem 2.2 then indicates that for every ¢ € A,

) " (i) 1
/((am FODH )+ Y IV (o - >> W) > o [t

JEN(7)



After integration all the (z;);%; and summation on 7 € A we find:

[ @urr+ @y + V=) o> g [ S @ ey 0

tEA JEN

It then follows from (8) and (9) that (6) became

1
Jrtaus, > (G - 2anvri) [195Pdu,.

As a consequence, the measure ug, , satisfies the spectral gap inequality defined by 2.1 with a

constant, independant of A C Z% and w € RZd, equal to Crsa/(1 — Cusa2dJ||V"||s) as soon as
1- CUSGQdJ”V”Hoo > 0.

_The main point in this argument is the uniformity of the spectral gap inequalities for the measures
(Zl on R. We emphasize this property with the following definition.

,w

Definition 2.3 (Uniform spectral gap inequality (USG)) Let define 6 = (0:)ien(o) and N(0) =
{j€z%; j ~0}. Denote by [y the probability measure on R defined by

hisle) = —eop (vgle) d (10

where Pg(x) = Y(z) + Xen(0)/V (z = 0i) and Zz = [ exp (—v5(z)) dz. We say that the phase ¥
satisfies a uniform spectral gap mequalu‘y (USG) zf the measure ) satisfies a spectral gap inequality
with a constant Cyrsg independent of 8 in RINO)I,

At the light of this definition 2.3 and the preceding argument, we may state HELFFER’s result in
the following way (see [Led99]).

Theorem 2.4 Let 1 be a real-valued function on R such that v satisfies the condition (USG) of the
definition 2.3. Then there exists Jo such that for every J € [0,.Jo], the set of measures (g, ,)Aw
satisfies spectral gap inequality with

Cusa
1 - Cusa2dJ||V"]| s

C@A,w g

The right hand side of the inequality does not depend of A C Z%, and w € RZ

With the same method, we also get the corresponding decay of correlations as in [Hel99a].

Theorem 2.5 Let b be a real-valued function on R such that v satisfies the condition (USG) of the
definition 2.3. Then there exists Jo and a constant C' such that for every J € [0, Jo], the set of measures
(H%,W)A,w satisfies:

1/2 1/2
By, (R.6) < Cexpl=d(sr,50) [ IVFPdna, ) ([ 196 Pdne, )

for any smooth functions F,G, A and w. The constant C' only depends on Cysag,J,d and [|[V"|c.



Remark 2.6 In the particular case where V(z) = z?%, (10) can be reparametrized in terms of a single
one-dimensional parameter ¢, and (USG) amounts to a uniform spectral gap for the set of measures

(fty,) defined by

i (3) = 7—exp(=o(a) . (1)

where g(z) = ¥ (z) + 0z.

A natural question is thus to ask when the condition (USG) is satisfied? Simple arguments show
that (USG) holds when 1 is strictly convex at infinity, that is ¥ = ¢, + ¢ with ¢/(z) > a for some
a > 0 and ||g|loc < 0o (see [Yos99] and [Aa99]). This is the classical phase behaviour investigated
in the recent contributions on spectral gap and logarithmic Sobolev inequalities for unbounded spin
systems by ZEGARLINSKI [Zeg96], YosHIDA [Yos99|, HELFFER |[Hel99a] and BODINEAU-HELFFER
[BH99a, BH99b].

That (USG) for a given phase ¥ may be quite restrictive is shown by the example of ¥(z) = |z|*
with some s in [1, 2] that is known to satisfy a spectral gap inequality (see [Aa99]) but that does not
satisfy a uniform spectral gap in the sense of the preceding definition as shown by the next proposition.

Proposition 2.7 Let ¥ be a real-valued function on R such that

P (R)=R and lim ¢"(z) = 0.

|z| =0

Then the phase ¥g(z) = ¥ (z) + 0z, define on (11), could satisfy for any 6 in R a spectral gap inequality
but the phase v does not satisfy the condition (USG).

Remark 2.8 The function 1 (z) = |z|* satisfies the hypotheses of Proposition 2.7 and for any # there
is a spectral gap inequality. However by the last proposition, it does not satisfy the condition (USG).
This case is treated by HELFFER in the Exercise 6.3.4 in [Hel99b].

Proof

<« We assume that the measure p,, satisfies the condition (USG). By Theorem 2.2, there exists a
constant Cysg > 0 such that, for any 8 € R and any smooth function f with compact support, we
have:

/flzdﬂwe < Cusa / (f"2 + f’z‘l/J”) Aty -

The hypotheses on ¢ insure the existence of ag such that 9'(ag) +6 = 0, and lim 5o |ag| = c0. Then
for any y by TAYLOR’s formula on R, there exists u, ¢ €]0, 1[ such that

2
Bly+ ) + 0y = ¥(as) + T (a5 + ).

By a change of variables,

/f/(y)Ze_yQ_M(aﬁuy’ey)dy < Cusa / (f”(y)2 + /()" (v + 040)) e~ TV otunov) gy,

By the dominated convergence theorem as 8 — oo,

/f’gdw < Cusa /fll?dfC-
6



However, there is no spectral gap inequality for the LEBESGUE measure on R. Therefore the phase
1 does not satisfy the condition (USG). »

Proposition 2.7 deals in particular with the case |z|® for 1 < s < 2. On the other hand, one can
easily see that vy (z) = |z|> + 0z satisfies a spectral gap inequality with constant independant of  (and
so a uniform spectral gap). To complete this setting, our next result deals with the behaviour of the
spectal gap constant of 1y (define in 11) with ¢(z) = |z|®* and s > 2. More precisly, we have (we omit
the proof):

Proposition 2.9 Let ¥ be a real-valued function on R such that

lim ¢"(z) = co.
|z| =00

Then the measure .y, define in (11) satisfy for any 0 a spactral gap inequality and the constant Cy,
satisfy:
lim Cy, =0.

|8] =00

Theorem 2.4 reduces the question of spectral gap for families (p4 ) to the (USG) property of a
real-valued phase ¥. We now investigate this condition by means of HARDY type inequalities.

3 HARDY type inequalities and applications

This section introduces the notion of HARDY type inequalities which will be our basic tool to prove
our main result (Theorem 4.1 below).

Let p and v be two probability measures on R*. We assume v to be absolutely continuous with
respect to LEBESGUE’s measure on R*, and its density dv/dz to be strictly positive. In 1972, MUCK-
ENHOUPT generalized results of HARDY and ToMmASELLI (see [Tom69]), TALENTI (see [Tal69]) and
ARTOLA on some specific functional inequalities, now called HARDY type inequalities. They were
namely interested in controlling the best constant A such that

/OOO (/:o f(#) dt)2 dp(r) < A/OOO f(z) dv(z) (12)

for all continuous functions for which the preceding integrals are well-defined. HARDY gave a result for
this inequality with du(z) = 2?*dz and dv(z) = 2?*+2dz. ToMASELLI, TALENTI and ARTOLA proved
the inequality for general measure du(z) = U?(z)dz and dv(z) = V?(z)dz. One of MUCKENHOUPT’s
main results [Muc72] is summarized in the next statement.

Theorem 3.1 The constant A defined by (12) is finite if and only if

o > AN
BY sup/ d,u(.r)/ (d—y) dr < oo,
20 Jz 0 z

and wn this case,



In [Mic99], MicrLo establishes a link between the HARDY type inequalities and the spectral gap
inequalities. While he was concerned with the case of probability measures on Z, we briefly present
here the corresponding results on the real line.

Let us first remark that if F(z) = f; f(t) dt and = v (that we will suppose from now), then the
previous inequality (12) becomes

| @) - o) dute) < 4 [P @) duta)

This latter inequality is rather close to a spectral gap inequality for the probability measure p. More
precisely, it is well known that for every m € R,

Var,(F) < [ (F(a) = P(m))* du(o).

In order to apply Theorem 3.1, we need to cut the real line into two parts (to reduce R to Rt). We
denote by At and A the best constants satisfying respectively

[ @) - pen)?dn) < af [ ) duto

m m

and

[ @ - remaue) < 4 [ @) dute)

— 00 — 00

for all C! functions F. By a simple change of variables, they are controlled by
Bl < A} <4B} and B, < A, <4B, ,

where

o0 r -1 r m -1
B def. sup/ du(m)/ d—ﬂ dz and B, def sup/ du(m)/ d—ﬂ dz . (13)

We may summarize these observations in the following proposition.

Proposition 3.2 For every m € R, the best constant C' in the spectral gap inequality for p is such
that
C < 4BtV BL).

While the latter bound holds for every m € R, we get a more precise control if m is a median for p.

Proposition 3.3 Let m be a median of pu. Then p satisfies a spectral gap inequality if and only if
BtV B, is finite, and in this case, the best constant C in the spectral gap inequality for u is such that

1
5(3;; VB,)<C<4(BEvVBL).

Proof

<« We need only prove the lower bound. Assume that B, Vv B, is finite and that B}, v B, = B}.
For any € > 0, we can find f such that

[ ([ o) e 420 [

8



Without loss of generality, we can assume that f is non negative. Now, define

if x>m,

0
F(m):{ [Cfydt  if z<m.

As m is a median of p, p(F = 0) > p(z < m) > 4. From the CAUCHY-SCHWARZ inequality, we get

therefore that

p(F)? < p(FHp(F > 0) < Spu(F?) .

N | —

Hence

5
=
=
3
Il
=
=
\_lf
|
=
3
[Sv]
A\
|
=
=
\_lf

P (@) dy(o)

\Y
B |
N
“+
|
NaF
T

> 5BE-9 [ FP@duta)
1. 1
> 5(Bn—¢zVar,(F)

from which the result follows since ¢ > 0 is arbitrary.
Now, assume that B} = co. Following step by step the previous argument with f,, such that

/moo (/mx In(t) dt)2 du(z) > n/: F2(2) dp(z)

for n large enough, we conclude similarly that C' = co. The proof of the proposition is complete. »

In the following, we describe with the preceding results some perturbation properties. Consider a
function b : R — R. Given a phase ¢, we modify the probability measure dy,(z) = 7 exp (—¢(z))dz
as

Qo () = 251, oxp (~¢(a) — h(a))do . (14)

We assume that 7, is finite. & can be considered as a perturbation function.
The following result gives conditions on ¢ and h so that u, 4, satisfies a spectral gap inequality. It
also gives an upper bound on the spectral gap constant.

Theorem 3.4 Assume that there exist m € R and a constant K independent of x such that for all
T Z=m,

/ O dt < Ke ?®  and / M dt < Ke?®) | (15)

m

and the corresponding inequalities for x < m. Assume furthermore that ¢ is increasing on [m,c0) and
decreasing on (—oo, m]. Assume also that

s M /(e|h| 1) <. (16)
R

Then, the probability measure p,1p defined by (14) satisfies the spectral gap inequality. Furthermore,
the best constant Cy,yp, appearing in the spectral gap inequality s controled by

Cogn <AK*+2KS + S%) .



Proof
<« From Proposition 3.2, we see that C,p, < 4(Bf(¢+h)V B, (¢+h)). By symmetry, we may reduce

to the control of N -
Bt (o4 k) sup / (P Hh(1) gy / =P =h1) gy
Now, given that z > m, we may write

r>m
/wekp(t)+h(t)dt/me Pl)=h(1) gy « (/ / eh_lD (/“e—¢+/me-¢ -

We develop the right hand side using (15) and monotonicity of ¢ to get

/fe¢(t)+h(t)dt /me—w(t)—w)dt < (Kest) (Ke—m))Jr(Bew ( o(a) /
# (e [T fero ] ) (emeto)
(o o) o

el — 1] < el — 1. It follows that for all = >m

h—1D .
et —l‘dt)
M0 1] dt) .

/ 0)+h(t) gy /OO e~?=ht) gt < K2 1 2K S + 52 .

Together with the corresponding result for B, (¢ + h), this completes the proof. »

Remark 3.5 Turning back the proof above, we can replace K? in the upper bound of Cy,i, by
Bt (¢) V By, (¢) (this quantity is finite by (15)). Moreover, if m is a median of y, keeping all the
hypotheses of Theorem 3.4 and applying Proposition 3.3, we get that B} (¢) V B, (¢) < 2C, <
8B (¢) V B, () so that

Copn < 8C, +4(2KS + 5%) .

This inequality clearly describes the contribution of the perturbation in the spectral gap constant.

4 A new class of measures which satisfies a spectral gap inequality

As already mentioned in Section 1 and 2, the keystone of HELFFER’s method is the (USG) condition
(see Definition 2.3). It allows us to reduce the initial problem on unbounded spin systems to a simple
problem on the real line. We will then be able to apply Theorem 3.4.

In this section, we first present and establish the main result of this paper. We then discuss why
the new class of phases ¥ = ¢+ g+ h is strictly bigger than the usual class of phases convex at infinity.

Theorem 4.1 Let ¢ be a strictly uniformly convex function (i.e. for allz € R, ¢"(z) > a > 0), let g be
a bounded function (||g|,, < 00), and let h be a perturbation function satisfying S = fR(eM| -1) < c0.
Then, there exists Jo such that for all J € [0,.Jo], the set of measures (po, ) defined in (2) with
= @+ g+ h satisfies a spectral gap inequality uniformly in A and w, with

Cursetlol
1— Cusa2d [V7]|.

Co,, <

10



where Cysg < 4(K2+2KS +5%) and K < 1+4/a.
This set of measures satisfies also a decay of correlations, uniformly in A and w, with constant C’
depending only on Cysa, J, d, ||V"||., and ||g||.., that is, for any smooth functions F, G,

1/2 1/2
By, . (1.6) < Cexp(=d(se.50)) ([ IVFPdus, ) ([ IVGI P, )

The proof of this theorem requires two technical lemmata. Note that from the hypothesis on ¢, it
is obvious that ¢ has a unique minimum m € R and that ¢ is increasing on [m, c0) and decreasing on
(—o0, m].

Lemma 4.2 Let ¢ be as defined in Theorem 4.1. Then there exists a constant K < 14 2/a such that
for all z > m,

/ " o0 gt < K e

m

Proof
<« By convexity, for all z > m 41,

() = ¢(a) ~ ¢'(m) > alz —m) > a. (17)

[ eva - em))_ e I 20 coto) gy
)

m+1 Sol(x @l(m + 1) m+1 8«9/2
< e?l® N (o) T () it
@l(x) m+1 3‘9/2
(@) 1
< + @(z)
P Pmt 1)

So, by (17),

Finally, for all z > m + 1, we have

T m+1 T
/ O g — / 0 g 4+ / o0 gy
m m m+1

< 9@ 4 2eelo)

< (1 + g) ekﬂ(f) ,
a

namely, the expected result in this case with K = 1+ 2/a. Now, for m < 2 < m+ 1, write

/ ") gr < 910 ¢ Ko@)

m

from which the proof follows. »
In a similar way, we can prove the following lemma (we omit the proof).

11



Lemma 4.3 Let ¢ be as defined in Theorem 4.1. Then there exists a constant K < 14 1/a such that
for all z > m,

/Oo e—kp(f) dt < [(e—kﬁ(f) .

Note that it exists two corresponding lemmata for z < m.

We now prove Theorem 4.1.

Proof
« As announced, we use the reduction to the (USG) property provided by Theorem 2.4. With the
notation of the first two sections and in particular Definition 2.3, let us define

eg(z) = p(a)+ Y JV(z—0).
)

1€N(0

For all z € R and J small enough, ¢Z(z) > a — 2dJ[[V"[|, > a/2. Tt follows from lemmata 4.2 and 4.3
that the hypothesis (15) holds for @7, with K < 14 4/a. We can thus apply Theorem 3.4 to ¢z and A
to get

Cusa < 4(I(2 +2KS + 52) .

The preceding constant is independent of § = (0:)ien(0), so that (USG) is satisfied. In this way
we may apply Theorem 2.4. The set of measures (;L@AM) will satisfy a spectral gap inequality with a

constant equal to
Cusa
1= Cysa2dJ|V"| .

Finally, it is well known that adding a bounded function ¢ gives no more than e*l9lls in the control
of the constant (see [Aa99]).

On the other hand, applying Theorem 2.5 instead of Theorem 2.4 gives the result on the decay of
correlations. Theorem 4.1 is established. »

We now present examples of functions ¥» = ¢ + g + h defined in Theorem 4.1 that are not convex
at infinity. To do so, we give an example where we add a special perturbation function i to ¢ (where

@ is as in Theorem 4.1). Indeed, let h(z) et > hi(z) where h; : R — R (i € Z) is a piecewise linear
continuous function defined from its derivative by

0 if o ¢ [wi,u; + o] ,

Wile) =14 =B ifz=u+,
B ife=ui+ 3,

where (;) is a sequence of non negative numbers and (u;) and («;) are two sequences of real numbers
such that u; < u; + a; < u;41. Moreover we agssume that [u;, u; + a;] is the support of h;. One can see
h; as a well of depth a;;/4 and of width «;.

To be outside the classical class of convex at infinity functions, it is enough to show that the depth
of the well increases faster than ¢. Write L; = ||h;]|, — (¢(ui + @;/2) — ¢(u;)). We have the following
obvious sufficient condition (we omit the proof).

Proposition 4.4 Let ¢ be as in Theorem 4.1 and h as above. Then, if
lim L; = o0,
T—>00

then @ 4+ h s not convex at infinity.

12



It is now easy to choose the sequences («a;);ez and (53;);ez such that

lim L, =
1—00

|A] el Al
el —1< a;ell™lleo < o0 |
JREEEEDY

tEZ

and at the same time,

since we are free to choose a; as we want. For example, one can chose ¢(z) = 2%/2 and h as above,
even, with u; = 4, §; = 4i%¢' and o; = €™ /i% for all i € N*. It’s well known that dyu,(z) = 7 e 2y
satisfies a spectral gap inequality with constant C, = 2. On the other hand, it follows from an obvious
calculus that L; =i — o(1/i) and S < 237, .y. 1/7%. Proposition 4.4 holds and so ¢ 4 h is not convex
at infinity. Moreover the hypotheses of Theorem 4.1 are satisfied.

We may note that Theorem 4.1 is quite general since the condition on the perturbation A (fR(e|h| —
1) < oo) is rather weak. Until now, the results were based on convexity conditions (following semi-group
methods) whereas we just need integrability conditions here.

In this note, we proved a perturbation theorem (Theorem 3.4) for POINCARE inequalities using
HARDY’s criterion. One may try to obtain the same kind of result for logarithmic SOBOLEV inequalities
using the corresponding criterion by BoBkov and GOTZE (see [BG99]). In an other direction, one
can try to prove logarithmic SOBOLEV inequalities for unbounded spin systems with nearest neighbor
interaction associated to non convex phases introduced in this note. But here, HELFFER’s method is
no more avaible because there is no result like Theorem 2.2 (see for example [L.ed99, Aa99]). It is an
open problem to find its analogue for logarithmic SOBOLEV inequalities. One may also try to use a
more classical approache via the decay of correlations (see [Zeg96, Yos99, BH99a]). In this direction,
HELFFER (see [Hel99b] Remark 8.5.2) remarks that under the decay of correlations (see Theorem 2.5)
and an hypothesis relative to the existence for each n of a uniform logarithmic SOBOLEV constant C,,
(uniform on the boundary conditions, in .J and in the functions f with support “nearly” includes in a box
of size n), one can prove the logarithmic SOBOLEV inequality for unbounded spin systems. Actually,
taking back the proof given by HELFFER, we can see that we only need the existence of the uniform
logarithmic SOBOLEV constant in dimension one. Thus, by this note, as the logarithmic SOBOLEV
inequality implies the spectral gap inequality and the decay of correlations, we have the following
interesting result: under a uniform logarithmic SOBOLEV inequality on the line, the unbounded spin
systems satisfy a logarithmic SOBOLEV inequality uniformly on the boundary conditions, on the box
A, for J small enough. By this way, we reduce the problem from R™ to a more simple problem on the
line. However, at this point, we have not been able to prove a uniform logarithmic SOBOLEV inequality
in this context.
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