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1 Introduction

The interest in decomposing an integer p prime as a sum of squares dates back to Antiquity.
Easy at first glance, this theorem is based on algebraic structures which will bring us to study the
ring Z[i] and its properties to explain the decomposition as a sum of two squares. This question
will lead us to be convinced that the Euclidean division exists in certain rings just like the gcd.
This problem illustrates that highly abstract algebraic concepts can be employed to solve and
practically implement very concrete problems.

Two closely related problems are resolved in detail, namely the decomposition of the prime p into
the form a2+2b2 and a2−ab+b2 but we went further by studying equations of the form a2+db2

in terms of the roots of the polynomial X2 − d. In fact, the fundamental idea to represent a
prime number by the quadratic forms considered consists of studying the possible factorization of
this prime number in a quadratic extension Z: Z[i] for the two squares, Z[

√
−2] for the equation

a2+2b2. And finally, Z[ω] where ω is a cubic root of the unit distinct from 1 for a2− ab+ b2. In
each case, the quotient A/(p) is identified to Fp[X]/(f) where f is a unit polynomial of degree
2 such as (X2 + 1, X2 + 2, X2 +X + 1). The number p can be factored in the extension if and
only if f admits a root in Fp. The key point that allows us to go to the end of the question is
the hypothesis that A is Euclidean.

In each section an algorithm will be propose and detailed. For the implementation, we need two
essential ingredients:
— an algorithm for calculating square roots modulo p; we chose the Cipolla algorithm. because
it is explained very clearly from the structure of the fields of cardinal p2 (and that it is effective
with a prime number of several hundred digits);
— a GCD algorithm in a Euclidean ring. In fact, the Euclide algorithm is a succession of a
Euclidean division algorithm. To be more precise, we find thanks to the algorithm of Cipolla an
element w in A which is not in Z whose norm is a multiple of p. The gcd of p and w is then
automatically one of the two irreducible factors of p in A ;
we thus see how the abstract algebraic structure of a Euclidean ring is exploited to prove the
existence, then calculate a representation of a prime number as the norm of a element of said
ring.
One can see a great success in the theory (if it is easy to find head that 13 = 32+22, one cannot
find through blind tests that

360027784083079948259017962255826129 = a2 + b2 where
{

a = 42037360450663977
b = 492989075070657640.

(1)

By contrast, most quadratic forms, even those of the form a2+nb2, are not norms of a Euclidean
ring, which indicate the limitations of the proposed methods. However, for non-Euclidean cases,
the situation is really more complex, as evidenced by the 550 pages of David A. Cox’s book :
Primes of the form x2 + ny2 : it appeals to class field theory and largely exceeds the framework
of a four-week internship and even that of the third year of a bachelor’s degree.

2



2 Acknowledgments

I would like to express my sincere gratitude to all those who contributed, directly or indirectly,
to my internship. First and foremost, I would like to thank Jérôme Germoni my internship
supervisor, associated professor at University of Lyon 1, for his guidance and valuable advice
throughout this experience. I would like to quote too Jean-Baptiste Aubin, associate professor at
INSA Lyon, thanks to whom I found accommodation for the duration of the internship. But also
Philippe Caldero, Associate Professor at University of Lyon 1, with whom I was able to discuss
my results. I would also like to thank my academics supervisors, Guillaume Maire and Frederic
Palesi, Faculty member, for their support and for following my progress during the internship.
Finally, I thank the referee for reading this report.

3



3 Presentation of department

The internship took place at the Institut Camille Jordan, a major research centre in France. It
brings together researchers, professors, and PhD students divided into research teams working
in many areas of mathematics :
– algebra, geometry, logic;
– combinatorics and Number Theory;
– partial differential equations and analysis (PDEA);
– history of Mathematics;
– mathematical modeling and scientific computing (MMSC);
– probability, statistics, and mathematical physics.
érôme Germoni belongs to the algebra team, that gathers about 75 persons. 1 The Camille Jordan
Institute (ICJ) is attached to the Lyon 1 university, but also to the Jean Monnet university in
Saint-Étienne, to the INSA de Lyon and to the École centrale de Lyon, as well as the Centre
national de la recherche scientifique. Most of the 190 faculty members share their time between
teaching duties and research, while 30 of them are CNRS researchers. There are more than 90
PhD students, and nearly 20 postdocs. Many members of ICJ are involved in activities aimed
at promoting mathematics to the general public. Examples include the monthly mathematics
evening, which offers college students a meeting with a researcher around a current research
topic, the Lyon Mathematical Rally for middle and high school pupils, as well as the ’Girls,
Math, and Computer Science’ Days for high school girls interested in science
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4 Fermat’s two square theorem

The aim of the report is to study some quadratic forms and apply them to study algebraic struc-
tures around a few quadratic forms and apply them to find a way to represent a prime number p
by these forms. What is fascinating about this subject is how highly abstract algebraic concepts
can allow us to understand and implement very concrete problems. In this report, A is a com-
mutative unitary ring, except in the last part (quaternions ring). In general, I and J will denote
ideals of A. We denote the field of cardinal p, by F∗

p the group of invertible elements (a cyclic
group of order p−1), and by F∗2

p the subgroup of invertible squares. We assume familiarity with
the notions of principal, prime, irreducible, prime and irreducible ideals, as well as the usual
basic properties of these structures.

Fermat stated the following result without proof, as he did with many of his theorems, which
sparked the interest of several generations of mathematicians still today. It was finally Leonhard
Euler who provided the first complete proof in the 18th century, developing new methods in
number theory. The theorem later played an important role in the study of Gaussian integers
and contributed to the rise of algebraic number theory.

Theorem 4.0.1 (Fermat’s theorem on sums of two squares). Let p be an odd prime number.
Then, there exist integers a and b be such that.

p = a2 + b2 ⇐⇒ p ≡ 1 (mod 4).

Example 4.0.2. The first prime numbers of the form 1 + 4k are squares.

5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52, 37 = 12 + 62. (2)

We also introduce the ring of Gaussian integers :

Z[i] = {a+ ib | a, b ∈ Z} (3)

The aim is to understand the algebraic notions behind the equation and to prove the theo-
rem 4.0.1, so that we can implement it later in SageMath software. Indeed, finding a solution
for p = 5 is easy, but what about a 100-digits number? How long will it take?

4.1 Theory

Structures

Definition 4.1.1 (Euclidean domain). A Euclidean domain is a commutative ring equipped
with a Euclidean function

ϕ : A \ {0} −→ N.

that satisfies the following Euclidean division property : for all a, b ∈ A with b ̸= 0, there exist
q, r ∈ A such that a = bq + r and [r = 0 or ϕ(r) < ϕ(b)]. We call q the quotient and r the
remainder.

Definition 4.1.2 (factorial ring). A factorial ring is an domain in which for every element A\{0},
there exist an integer n ≥ 0, irreducible elements p1, · · · , pn, and a ∈ A× such that a = p1 . . . pn
and such a decomposition is unique up to a permutation of factors and replacing an irreducible
element by a product by some unit.
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These notions are closely related: every Euclidean domain is principal, and every principal ideal
domain is a unique factorization domain. For this reason, we treat them together.

Definition 4.1.3. A a ring and I be an ideal, there exist elements p1, . . . , pn ∈ A such that
every element of I can be written as a1p1 + · · ·+ anpn, with ai ∈ A.

Lemma 4.1.4. Any principal domain is Noetherian.

Proof. Let A be a principal ring, i.e., a commutative ring in which every ideal is generated by
a single element. Let I ⊆ A be an arbitrary ideal. By the definition of a principal ring, there
exists an element x ∈ A such that I = (x) = {ax | a ∈ A}. This shows that I is generated by one
element, which is finite. Thus, every ideal of A is finitely generated. Therefore, by definition, A
is Noetherian.

Proposition 4.1.5. Any Euclidean domain is principal.

Proof. Let I be an ideal of A an Euclidean domain, if I = {∅}, I = (0). Otherwise, let a ∈ I
as ϕ(a) be minimal. Let b ∈ I, we apply the Euclidean division of a by b. It exists q, r ∈ A
such that a = bq + r with ϕ(r) < ϕ(a). It follows that r ∈ I because a, b ∈ I. However, if
ϕ(r) ̸= 0, ϕ(a) bearer is not minimal, then r = 0 and b = aq. Hence, b ∈ (a) and so I = (a), A
are principal.

Proposition 4.1.6. Any principal ring is factorial.

Proof. Set A as a principal ideal ring and I be an ideal of A such that I = (a). If a is irre-
ducible, then it is over. If not, it exists b, c ∈ A such that a = bc. Thus, determined if b, c are
not irreducible, we continue the development until we arrive at an irreducible element product
because the ring is Noetherian.

Quadratic residues

Quadratic residues reveal interesting patterns in the behaviour of numbers when they are squared
modulo a prime. Surprisingly, they help to understand the criteria under which numbers can
be expressed as a sum of squares. The Legendre symbol provides a useful way to track these
patterns and uncover deeper relationships between numbers.

Definition 4.1.7. Let p be a prime and a be an integer. We say that a is a quadratic residue
mod p if there exist x ∈ Z such that x2 ≡ a (mod p). We define the Legendre symbol;

(
a

p

)
=


0 if p | a,
1 if a is a non-zero quadratic residue modulo p,
−1 if a is not a quadratic residue modulo p.

Many properties follow from this definition and will be very useful for our proof and for imple-
mentation.

Proposition 4.1.8. Let a, b be integers,
(
ab
p

)
=

(
a
p

)(
b
p

)
.

Proof. First of all, notice that if a ≡ 0 (mod p) or b ≡ 0 (mod p), then ab ≡ 0 (mod p). In
this case, the Legendre symbol immediately satisfies:

(
ab
p

)
= 0 =

(
a
p

)(
b
p

)
. We can therefore

restrict ourselves to the case where a, b are invertible modulo p, that is, a, b ∈ F∗
p.

The set of squares is the image of the morphism c : F∗
p → F∗

p, x 7→ x2, the kernel of
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which is {−1, 1} (the polynomial equation x2 = 1 has two solutions in the field Fp). Thus,
we have [F∗

p : F∗2
p ] = 2. It follows that F∗

p

/
F∗2
p ≃ {−1, 1}. For a, x ∈ F∗

p, notice that a is a

square if and only if ax2 is a square. Hence, one can identify
(
a
p

)
with the coset of a modulo

F∗2
p . The multiplicativity of the Legendre symbol follows from that of the canonical projection

F∗
p → F∗

p/F∗2
p .

Lemma 4.1.9 (Euler’s criterion). An element x in F×
p is a square if and only if x

p−1
2 = 1. In

other terms, the kernel of the morphism ;

χ : F∗
p → {−1, 1}, a 7→ a

p−1
2 .

is the set of squares in F∗
p.

Proof. First, we check that χ is well-defined. Indeed, for a ∈ F×
p , we have χ(a)2 = ap−1 = 1

according to Fermat’s little theorem. Then χ(a) ∈ {−1, 1}. It is clear that χ is a morphism.
Its kernel has an order at most (p − 1)/2 since its elements are the roots of the polynomial
a(p−1)/2−1. In particular, its image is not reduced to {1}, so it is {−1, 1}, and the order of kerχ
is |F×

p |/| Im(χ)∥ = p−1
2 .

We know from 4.1.8 that there are p−1
2 squares in F∗

p, so that the kernel of χ is exactly the
subgroup of squares, which proves the lemma.

We will end with an essential proof for our demonstration. The second part of the proposition
is trivial; instead we will focus on the first.

Proposition 4.1.10. An immediate consequence of Euler’s criterion is the following ;
−1 is a square of Fp if and only if (−1)

p−1
2 = 1 if and only if p ≡ 1 (mod 4).

Proof. There are several ways to demonstrate it, we choose to use a exact sequence. Let us
introduce (4) and we prove that Im(f) = ker(χ).

1 −→ F∗2
p

f−−→ F∗
p

χ−−→ {±1} −→ 1. (4)

⊂ Let us show that Im(f) ⊂ ker(χ). Let x ∈ Im(f). There exist y such that x = y2. It follows
that χ(x) = (x

p−1
2 )2 = yp−1 = 1 by Fermat’s theorem.

⊃ We have to show that ker(χ) ⊂ Im(f) by reasoning on cardinalities. By Lagrange’s theorem
we have |(F∗2

p )| = |(F∗
p)/{±1}| =

p−1
2 . It follows that | Im(f) |= p−1

2 . Moreover, the order of
the kernel of χ is at most the number of roots of x

p−1
2 i.e. p−1

2 . Moreover, we had prove that
Im(f) ⊂ ker(χ), we can deduce the equalities.

The isomorphisms are a mean of connecting two elements that have nothing to do with each
other. In particular all properties are preserved by the isomorphism. In fact, if A is an integral
domain, that implies B is isomorph to A is also an integral domain thanks to the isomorphism.

Lemma 4.1.11 (third isomorphism theorem). Let A be a ring, let I, J be two ideal. There is a
canonical isomorphism

A
/
I

/
(I + J)

/
I ≃ A

/
(I + J).
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Proof. The application
ϕ : A

/
I −→ A

/
(I + J)

a+ I −→ a+ (I + J).

. We have to check that the function is well-defined, let a, a′ ∈ A. As a + I = a′ + I, then,
a − a′ ∈ I ⊂ I + J . To prove that φ is surjective, let α ∈ A/(I + J). Choose a ∈ A such
that α = a + (I + J); then α = φ(a + I). As for the kernel of φ, an element a + I lies in
the kernel if and only if a + (I + J) = 0 + (I + J), if and only if a ∈ I + J , if and only if
a + I ∈ (I + J)/I. By the isomorphism theorems we have a canonical quotient by its kernel.

Therefore, A
/
I

/
(I + J)

/
I ≃ A

/
(I + J).

We apply it to our problem. Let us set A = Z[X]. Let I = (p) and J = (X2+1) where we denote
by (a) the ideal of Z[X]. One has I + J = (p,X2 + 1). Let A = Z[X]. Consider the polynomial
X2 + 1. Given P ∈ Z[X], we can perform the Euclidean division of P by X2 + 1 in R[X]: this
gives Q,R ∈ R[X] such that P = (X2 + 1)Q + R, with deg(R) < 2, i.e. R(X) = bX + a for
a, b ∈ R. Since X2 + 1 has integer coefficients and its leading coefficient is 1, the coefficients of
Q and R are actually integers: a, b ∈ Z.

Now, evaluation at i (a square root of −1) is a morphism A→ C, P 7→ P (i). If P = (X2+1)Q+R
as above, then P (i) = R(i) = a + bi, so P is in the kernel if and only if a = b = 0 (since i is
irrational), i.e. if P is a multiple of X2 +1, and the image of the evaluation map is the set of all
a+ bi where a, b run over Z, i.e. the subring Z[i] generated by i in C. In other terms,

A
/
J = Z[X]

/
(X2 + 1) ≃ Z[i].

On the other hand, the reduction map Z[X] → Fp[X],
∑r

k=0 akX
k 7→

∑r
k=0 π(ak)X

k, where
π : Z→ Fp is the canonical projection, is a morphism of rings and its kernel is I = (p). Hence,

A/I = Z[X]/(p) ≃ Fp[X].

Z[X]

Fp[X] Z[X]
/
(X2 + 1) ≃ Z[i]

Z[X]/(p,X2 + 1) ≃ Fp[X]/(X2 + 1) ≃ Z[i]/pZ[i]

Figure 1: Illustration of 4.1.11 in this context.

Proof of Fermat’s Theorem

Thanks to all the propositions, we will now prove the theorem 4.0.1.
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Proof. Let p be a prime number as p ≡ 1 (mod 4), thanks to 4.1.10, we have any difficulty in
rolling out the demonstration.

p ≡ 1 (mod 4) ⇐⇒ (−1)
p−1
2 = 1

⇐⇒
(
−1
p

)
= 1

⇐⇒ ∃z ∈ Fp, z2 = −1
⇐⇒ X2 + 1 has a root in Fp

⇐⇒ the ideal (X2 + 1) is not prime in Fp[X]

⇐⇒ Fp[X]/(X2 + 1) is not integral

⇐⇒ Z[i]/(p) is not integral (since Fp[X]/(X2 + 1) ≃ Z[i]/(p))
⇐⇒ (p) is not irreducible in Z[i]
⇐⇒ ∃a, b ∈ Z, p = (a+ bi)(a− bi)

⇐⇒ ∃a, b ∈ Z, p = a2 + b2.

Thus, one can see that this practical problem is governed by laws of abstract number theory.
This theoretical approach will be essential to implement an efficient algorithm for quite large
numbers.

4.2 Implementation.

We chose to use SageMath because it is a free software for symbolic and numerical computation,
designed to explore and manipulate a wide range of mathematical structures. Unlike Python,
SageMath allows the construction and manipulation of abstract mathematical objects, such as
rings, fields, vector spaces, or groups, in a natural and algorithmic way. This makes it a powerful
tool for experimenting or illustrating practical concepts with theoretical notions. We want to
implement an algorithm which finds values of a, b such that p = a2 + b2 within a reasonable
computational time. The key idea is that the norm of a Gaussian integer gives exactly a and b
in the desired form;

N : Z[i] −→ Z, z = a+ bi 7−→ N(z) = zz = (a+ bi)(a− bi) = a2 + b2.

The implementation of Euclidean division in Z[i]

First of all, we want to prove that Z[i] is Euclidean, and to use the Euclidean division to compute
gcd’s. For a real number u, we set {u} = ⌊u+ 1

2⌋, so that u− {u} ≤ 1
2 ; it is the closest integer

to u (or, if u ∈ 1
2 + Z, one of the two closest integers).

Proposition 4.2.1. The ring Z[i] is Euclidean. More precisely, let a, b ∈ Z[i] with b ̸= 0. Write
a/b = u+vi, with u, v ∈ R. Let q = {u}+{v}i and r = a−bq. Then a = bq+r and N(r) < N(b),
where N is the norm N(x+ yi) = x2 + y2.

Proof. The equality a = bq + r follows directly from the definition of r. We have N(r/b) =
N(a/b − q) = N((u − {u}) + (v − {v})i) = (u − {u})2 + (v − {v})2 ≤ 1/22 + 1/22 = 1/2 < 1,
and, since N is multiplicative, it follows that N(r) < N(b).
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First, we have to define the field Number K containing a root of x2 + 1. Here, K = Q(i) and
i2 = 1. This allows us to work in SageMath with Gaussian numbers. The quotient of a by b
is a rational number that we must round down (or up) to the nearest integer to find suitable
q, r integers. We have 4 possibilities because a, b can be approximate by two integers each as we
can see on figure (2). Thanks to that we have the smaller value of q and the reminder r can be
deduce easily.

Figure 2: Illustration of the Euclidean division in Z[i].

Now, we can implement gcd. We want to implement an algorithm in order to handle numbers that
are impossible to manipulate by hand. Thus, the algorithmic complexity must be appropriate,
meaning that it does not grow too quickly with the size of the number. Answering this question
requires some algorithmic notions, to be detailed in the book of Michel Demazure : Cours
D’algebre especially with Lamé’s theorem which provides an explanation. One can easily see
that the worst case occurs when q = 1 at each iteration. Moreover, the course of the Euclid
algorithm follows a Fibonacci sequence Fn+2 = Fn+1 + Fn with F0 = 0, F1 = 1 by definition.
Lame’s theorem states that the longer the algorithm, the larger the initial numbers.

Proposition 4.2.2 (Lamé’s theorem). Let a > b > 0 be two positive integers and d = pgcd(a, b).
If Euclid’s algorithm requires n steps to compute, then: a, b ≤ Fn+1 where Fn+1 is the (n+ 1)th

Fibonacci number.

Proof. Without loss of generality, one assumes oneself a > b. We reason by recurrence on n. If
n = 1, b is a multiple of a. We have gcd(a, b) = b. Then, we have b = d = dF2 and x > 2d = dF3

because F2 = F0+F1 = 1 et F3 = F2+F1 = 1+1 = 2. If n > 1, we suppose z ≥ dFn, y ≥ dFn+1.
In the nth iteration, (x, y) became (y, z) with relation z = x− qy ≤ x− y. But by hypothesis of
recurrence. x ≥ y + z ≥ dFn + dFn+1 = dFn+2. We have the result.

Corollary 4.2.3. Let a > b > 0 be two positive integers. If Euclid’s algorithm requires at most
2
3 log(a, b) +O(1) steps.

Proof. Wee associate this sequence with the characteristic polynomial rj+1 = rj + rj−1 which
is equivalent to r2 = r + 1. The root is the golden ratio ϕ = ±1+

√
5

2 and ϕ̄ = 1−
√
5

2 . By the
formula of Binet (admitted), we have the expression of Fk = ϕk

√
5

and b ≥ Fk+1. By the logarithm
properties, it follows that k ≈ O(logϕ(b))

This concludes the first step of our goal.
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Cipolla’s algorithm

As we saw in 4.1, find z such that z2 ≡ −1 mod p is crucial to find a, b. Thus, we have to
construct an algorithm that allows us to find this z in a reasonable amount of time : we can
implement Cipolla’s algorithm which is based on field extension.

Theorem 4.2.4. ∀ p prime and ∀d ∈ N∗, ∃! field L of the cardinal of pd.

The proof is too complex and not really important for our case. However, we can focus on the
case d = 2. Indeed, we are looking for a field extension whose cardinal is p2.

Lemma 4.2.5. Let p be a prime number, and let n be a square in F∗
p. There exists a ∈ Fp such

that a2 − n is not a square. More precisely, the number of such a is p−1
2 .

Proof. For a ∈ Fp, a2 − n is a square if and only if there exists b ∈ Fp such that a2 − n = b2, i.e.
(a+ b)(a− b) = n. Equivalently, there exists t ∈ F∗

p and b ∈ Fp such that

a+ b = t, a− b =
n

t
.

In other terms, a2 − n is a square if and only if there exist t and b such that

a =
1

2

(
t+

n

t

)
, b =

1

2

(
t− n

t

)
.

Set f : F∗
p → Fp, t 7→ (t2+n)

(2t) . Then f(t) = f(nt ). It means that if a2 − n is a square, then a has
two preimages under f , unless a = f(t) with t = n

t , i.e., t is one of the square roots of n. Hence,
there are p−3

2 +2 = p+1
2 values of a for which a2−n is a square, and p−1

2 values for which a2−n
is not a square.

This means that when we look for an a such that a2 − n is not a square, trying a random value
for a gives a probability of success of about 1

2 , and we should find a solution in approximately 2
trials on average.

Once such an a is found, we know that the polynomial X2− (a2−n) is irreducible in Fp[X]. We
build the quadratic field extension L = Fp[X]

/
(X2 − a2 + n), in which the projection ω of X is

a square root of a2 − n. As a vector space over Fp, the dimension of L is 2 and (1, ω) is a basis
of L. In particular, L has cardinality p2.

The field L comes with an interesting map:

F : L→ L, x 7→ xp.

For any k ∈ {1, . . . , p−1}, the binomial coefficient
(
p
k

)
is a multiple of p, so F (x+y) = F (x)+F (y)

for any x, y ∈ L. Obviously, F (xy) = F (x)F (y) and F (1) = 1. Therefore, F is a field morphism.
As such, F is injective, and since L is finite, it is surjective too. The map F is called the
Frobenius automorphism.

It is an involution. First of all, the polynomial equation F (x) = x has at most p solutions, and
Fermat’s little theorem says that elements of Fp are indeed solutions. Next, from ω2 = a2 − n
we deduce that F (ω)2 = a2 − n and F (ω) ̸= ω since ω /∈ Fp (because a2 − n is not a square).
Hence, F (ω) is the other square root of a2 − n, namely −ω. For u, v ∈ Fp, it follows that
F (u+ vω) = u− vω. In particular, F 2 = idL.

Proposition 4.2.6. Let p be a prime number, let n be a square in Fp, and let a be such that
a2 − n is not a square. Let ω be a square root of a2 − n in an extension of Fp. Then (a+ ω)

p+1
2

is a square root of n in Fp.

11



Proof. Let x = (a+ ω)
p+1
2 . Then

x2 = (a+ ω)p+1 = (a+ ω)F (a+ ω) = (a+ ω)(a− ω) = a2 − (a2 − n) = n.

Since n is a square, we know that x ∈ Fp.

Final implementation

Now, we have all the tools to implement a resolution of theorem 4.0.1 : finding a, b for all p be
prime such that p ≡ 1 (mod 4).

Lemma 4.2.7. Let p be a prime number such that p ≡ 1 (mod 4). Let r be an integer such
that r2 ≡ −1 (mod p), and let d = gcd(p, r + i) in Z[i]. Then N(d) = p, where N is the norm
N(a+ bi) = a2 + b2.

Proof. Let x ∈ Fp such that x2 + 1 ≡ 0 [p]. Consequently, we have p|(x+ i)(x− i). Let us pose
d = gcd(p, x+ i). We must check that the gcd is not a unit (that is, ±1,±i). On the one hand
p | (x2 + 1) = (x− i)(x+ i). Thus, gcd(p, (x+ i)) ̸= 1. On the other hand, we can assume that
gcd(p, x+ i) = a+ bi. p | (x− i)(x+ i) and (a+ bi) | p (definition of gcd), we can deduce that
a+ bi | (x− i)(x+ i). Thus, a+ bi | x− i or a+ bi | x+ i. It follows that gcd(p, x+ i) = a+ ib.
Using the norm, we can deduce N(a+ bi) = a2 + b2 | N(p) = p or p2. Impossible for p2 because
otherwise d = p or d = pi. Thus, N(d) = p = a2 + b2.

You will find the algorithm in the appendix. This is really impressive because our algorithm
takes only 0.03 seconds to find a solution for a 50-digit number, 3,45 seconds for a 200-digit
number.

12



5 Resolution of p = a2 + db2

After solving the theorem, we realize that it is only a particular case of a much larger question.
We want to find a, b be integers that satisfy (5).

Let p be an odd number and a, b, p be integers ;

p = a2 + db2. (5)

For this, we consider the ring Z[
√
−d] = {a + b

√
−d | a, b ∈ Z}. Can we reason in a similar

way? The proof is possible because the ring is Euclidean, so for which values of d is the ring
Euclidean? Although difficult, the question is solved. On the one hand, we chose to consider
small cases such that d = 2, d = 3. But we will soon see that the reasoning is almost identical.
On the other hand, we want to generalize to all d.

5.1 Case d = 2

We want to solve equation p = a2 + 2b2 = (a+ b
√
−2)(a− b

√
−2) that is clearly related to the

ring Z[
√
−2] = {a + b

√
−2 | a, b ∈ Z}. In fact, p can be expressed in this form under certain

conditions.

Theorem 5.1.1. Let p be an odd integer. There exist a and b such that ;

p = a2 + 2b2 ⇐⇒ p ≡ ±1 (mod 8). (6)

As one might expect, the proof of the theorem is essentially the same as 4.1. This time, the
quotientA

/
(p) is identified at Fp[X]

/
(f) where f = X2+2 thanks to theorem 4.1.11. Moreover,

we have an essential condition x2 = −2[p]. We can conclude that p can be factored in Z[
√
−2] by

the same way. Moreover, we still need to use the quadratic residue thank to the second quadratic
reciprocity. Indeed, if

(
−2
p

)
= 1, it exists z such as z2 ≡ −2 (mod p).

Proposition 5.1.2. Let p be odd prime.(
−2
p

)
= (−1)

p2−1
8 =

{
1 if ± 1 mod(8).
−1 if ± 3 mod(8).

Proof. Let α be a root of X4 + 1 = 0. It is an eighth root of unity in an algebraic extension of
Fp. Hence, α8 = 1 but α4 = (α2)2 = −1 is a square of −1. So we have the relation : α2 = −α−2.
Let β = α+ α−1. β2 = (α+ α−1)2 = 2. Thus, 2 is a square in Fp if and only if βp − β = 0 with
βp = αp − α−p. On the one hand, if p ≡ ±1 [8], if and only if β ∈ Fp, βp = β it is over. On the
other hand, if p ≡ ±3 [8] β3 = α3 − α−3 = −β there is no square in Fp.

The implementation will be essentially the same expect a slight nuance. Indeed, the notion of real
or imaginary part does not exist; instead, a function is used to extract the coefficients. Before
implementing the Euclidean division in Z[

√
−2], we must prove that the ring is Euclidean.

Proposition 5.1.3. The ring Z[
√
−2] is Euclidean.

Proof. Let a, b ∈ Z[
√
−2] with b ̸= 0.

One has r
b = a

b − q = (u− {u}) + (v − {v})
√
−2. Then, we apply the norm :

N
(
r
b

)
= (u− {u})2 + 2(v − {v})2 ≤ 1

4 + 2 · 14 = 3
4 < 1. Thus, N(r) = N(b) ·N

(
r
b

)
< N(b).
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The gcd and Cipolla’s algorithm are identical, so it only remains to find the correct coefficients
of gcd to use to obtain the desired form.

Lemma 5.1.4. Let p be a prime number such that p ≡ 1 (mod 4). Let r be an integer such that
r2 ≡ −2 mod p, and let d = gcd(p, r+ i). Then N(d) = p, where N is the norm N(a+

√
−2b) =

a2 + 2b2.

Proof. Let d = gcd(p, z+
√
−2) = a+

√
−2b by same argument. Thus, (a+

√
−2) | p by passing

through the norm N(a+
√
−2) | N(p) so a2 + 2b2 | p2. It follows that a2 + 2b2 = p.

We have an efficient algorithm which find a solution as quickly as the previous one.

Example 5.1.5.

(−214835139219429)2 + 2× 17005950855903102 = 5830201427311259029681742878241. (7)

5.2 Resolution of a2 − ab+ b2, Eisenstein integers

We want to prove this theorem.

Theorem 5.2.1. Let p an odd prime number, a and b be integers ;

p = a2 − ab+ b2 ⇐⇒ p ≡ 1 (mod 3).

The resolution of this new equation allow us to studies the ring of Eisenstein integers ;

Z[ω] = {a+ bω | a, b ∈ Z},

with ω = e2iπ/3 = −1+i
√
3

2 . We can deduce the relations j2 = w̄ = −1−
√
3

2 and the poly-
nomial w2 + w + 1 = 0 because 0 = w3 − 1 = (w − 1)(w2 + w + 1). We can deduce that
Z[w] ≃ Z[X]/(w2+w+1 = 0). Moreover, one can see that N(a+wb) = a2−ab+b2 that exactly
the good form.

As one can expect, quadratic reciprocity will allow us to prove theorem 5.2.1.

Proposition 5.2.2. Let p be prime.(
−3
p

)
=

{
1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).

Proof. Let p be an odd prime. If p = 3,
(−3

3

)
= 0, we suppose p ̸= 3.(

−3
p

)
=

(
−1
p

)(
3
p

)
. However, by the quadratic reciprocity ;

(
3
p

)
=

(p
3

)
(−1)

2(p−1)
4 . Moreover(p

3

)
= 1 if and only if p ≡ 1 mod3 (It enough to compute the squares modulo 3). Finally, we

can deduce that
(
−3
p

)
= (−1)p−1

(p
3

)
. Moreover, (−1)p−1 = 1 because p is an odd prime and

the squares modulo 3 are 0 and 1, which concludes the proof.

14



Regarding the Euclidean division, the reasoning is the same but involves a subtlety. Indeed as
you can see in 3, the lattice of Eisenstein integers is triangular. Then to find the nearest integer
of the quotient a

b ∈ R, one must project the real quotient onto this lattice through a change of
basis. We have to prove that the ring is Euclidean. We have the same inequalities for the closest
integers. Then, by using the norm, we obtain

N
(r
b

)
= N

(a
b
− q

)
= (u− {u})2 − (u− {u})(v − {v}) + (v − {v})2 ≤ 1

4
+

1

4
· 1
2
+

1

4
=

5

8
< 1.

Figure 3: Illustration of Eisenstein integers.

The gcd algorithm and Cipolla’s algorithm coincide in this setting, so it only remains to deter-
mine the appropriate coefficients of the greatest common divisor in order to obtain the desired
quadratic form. Indeed, Z[ω], one has gcd(p, z + ω) = a + bω by the same argument as in the
classical case. Hence a+ bω divides p in Z[ω]. Passing to the norm, we obtain a2 − ab+ b2 | p2.
And finally, a2 − ab + b2 = p. To exact a, b, we use an automorphism σ which is the analogue
of the complex conjugation for Gaussian integers. Let z = a+ bω, one has σ(z) = a+ b(ω − 1).
Moreover, we solve the system ; {

z + σ(z) = 2a− b,

z − σ(z) = (1 + 2ω)b.

and we find b = z−σ(z)
1+2ω , a = 1

2(z − σ(z) + z−σ(z)
1+2ω ). However, σ is solution of σ(ω)2 + σ(ω) = 0,

it follows that ω + σ(ω) = −1 and ωσ(ω) = 1. We will store these values in a variable C with
(12(1+

1
1+2ω ),

1
2(1−

1
1+2ω ),

1
1+2ω ). We introduce a function Re_im which return the coefficients

a, b of z = a+ bω : {
a = αz + βσ(z);

b = γz − γσ(z).

Example 5.2.3. 1070112 − 107011× 69420 + 694202 = 8841786901.

5.3 General d

We want to resolve with the same method the equation (5). Quite intuitively, we will use the
field K = Q(

√
d) with d ∈ Z square-free. We have many proprieties.
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Proprieties of the ring.

Proposition 5.3.1. Let d be a square-free integer. Then the ring Od of algebraic integers in
Q(
√
d) is

Od =

a+ b
√
d, a, b ∈ Z, if d ≡ 2, 3 (mod 4),

a+b
√
d

2 , a, b ∈ Z, if d ≡ 1 (mod 4).

Proof. Let
√
d be the root of the polynomial X2 − d. A general element of K is expressed as

a+ b
√
d, a− b

√
d. x ∈ K, we can deduce σ(x) = −x ∈ A. By pose x = a + b

√
d, with a, b ∈ Q

we have : x + σ(x) = 2a ∈ Q, xσ(x) = a2 + db2 ∈ Q (1). Thus, Z is principal and, above all,
integrally closed. Conditions (1) are essential if a+ b

√
d is an integer in Z. Hence,x is a root of

X2 − 2aX + a2 − db2 = 0.
By (1), (2a)2 − d(2b2) ∈ Z.Since 2a ∈ Z, it follows that d(2b)2 ∈ Z. However, d is square-free. If
2b is not an integer, he has a prime factor at the denominator express as p2 thus d cannot make
it an integer. So, 2b ∈ Z. We can pose a = u

2 , b =
v
2 , then we have.(

u2

4

)
−

(
dv2

4

)
∈ Z←→ u2 − dv2 ∈ 4Z (2).

- If v is even, u also, it follows that a, b ∈ Z.
- If v is odd, v2 ≡ 1[4], so u2 ≡ 0, 1 (mod 4) (only possibilities). d is square-free, thus not a
multiple of 4 u2 ≡ 1 (mod 4) and d ≡ 1 (mod 4).

Classification of Z[X]
/
(X2 − d)

To resolve the equation (5) for each value of d, we have to study the structure of the quotient
Z[X]

/
(X2 − d) in the quadratic integer ring Z[

√
d].

Let A a field of integer, d ∈ Z square-free, and L = Q[
√
d]. We can suppose p ̸= 2. A = Z+Z[

√
d]

where B ⊂ Z + (12 +
√
d
2 )Z we work modulo p B ⊂ a + (b + p)(1+

√
d

2 ). We can deduce that
A/Ap ≃ Z+

√
d
/
(p) because p, d are odds. Moreover, Z+

√
d ≃ Z[X] by a natural isomorphism.

Let determinism his kernel : ker(ϕ) = {P (x) ∈ Z[X] | P (
√
d) = 0} = (X2 − d). By theorem of

isomorphism.

Z[X]
/
(X2 − d) ≃ Z+ Z

√
d.

we can distinguish several cases based on the roots of the polynomial :
- The polynomial (X2 − d) has two roots. It follows that the quotient A

/
p is decomposed into

two fields by the Chinese remainder theorem. The polynomial can be expressed as X2 − d =
(X − a)(X − b) = X2 − X(a + b) + ab. However, there is no term in X, then a + b = 0 and
ab = −a2 = −d. Then, d is a quadratic residue mod p and p is decomposed.
- The polynomial (X2 − d) has no root,. It is irreducible, therefore maximal. It follows that
A
/
Ap is a field and d is not a quadratic residue mod p and p is inert.

- The polynomial (X2−d) has a unique root, the quotient Z[X]
/
(X2−d) had nilpotent elements.

p is ramified.

Let us focus on the case p = 2. On the one hand, if d ≡ 2, 3 (mod 4), B = Z + Z[
√
d], so

A
/
2A ≃ F2

/
X2 − d with X2 + 1 = (X2 + 1)2, it follows that it is a square; we say that it

decomposed.
On an other hand, if d ≡ 1 (mod 4), 1+

√
d

2 admits as its minimal polynomialX2 −X − d−1
4 . In
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fact, we have A
/
Ap ≃ F2

/
X2 −X − δ. We can deduce different cases. If d ≡ 1 (mod 8), δ = 0

it follows that X2 −X = X(X − 1). If not, d ≡ 5 (mod 8), δ = 1, X2 −X − 1 = X2 +X + 1
because X2 = 1 which is irreducible.

Euclidean ring

This classification highlights the importance of the polynomial for the classification of an Ideal
p prime. Our problem corresponds to the first case. This allows showing that the problem is
actually much deeper and that it can be solved for any value of d. We have implemented the
Euclidean division and an algorithm allows the decomposition of a prime number p into a sum
of squares for d = 1, 2, 3 but in reality the Euclidean rings are much more numerous, although
not infinite. It comes from this theorem that we will not prove because it is obvious difficulty.

Proposition 5.3.2. The ring of integersOd of a quadratic number field Q(
√
d) is norm-Euclidean

if and only if d ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.

With this general study of rings, we seek to standardize our algorithms into a single by entering
d, p and returning the decompositions when possible. On the one hand, we realize that object-
oriented programming would be more appropriate. The algorithm works very well for d < 0 but
often crashes for d > 0 because the number of Neighbors needed to have a minimum standard
changes from one value to another. Nevertheless, a satisfactory result is achieved.

17



6 Lagrange’s Four-Square Theorem

Theorem 6.0.1. Let p be odd integer prime, it exists a, b, c, d ∈ N such that p = a2+b2+c2+d2.

Remark 6.0.2. If p ≡ 1 (mod 4), then Lagrange’s theorem follows from Fermat’s two-square
theorem by writing p = a2 + b2, and then setting c = d = 0.

6.1 Theory of the quaternion ring

The ring of quaternions was born from a desire to find an extension of the ring of complex
numbers. It is impossible to find consistent relations for three dimensions, whereas for four
components, one can define the following algebraic properties. It is moreover what makes the 3
squares theorem difficult to study. The quaternions ring is a classic example of non commutative
Euclidean ring that complicate all our reasoning.

Definition 6.1.1. The algebra of quaternions is the real vector space with a basis denoted by
(1, i, j, k), endowed with the unique bilinear product such that i2 = j2 = k2 = ijk = −1 and the
multiplication rules

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j.

It is tedious but straightforward to check directly that this algebra is associative. Alternatively,
one can realize it as the algebra with basis

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 −1
1 0

)
, k =

(
0 −i
−i 0

)
.

If R is a subring of R, we denote H(R) = {a + bi + cj + dk | a, b, c, d ∈ R}. Then H(R) is a
subring of H(R).

We pose HH , we introduce Hurwitz’s quaternions which have interesting properties. Indeed,
coefficients a, b, c, d are all integers or all half-integers. In this last case, all of them are odd;
otherwise, one can reduce to the first case.

HH = {a+ bi+ cj + dk |a, b, c, d ∈ Z} ∪ {a+ bi+ cj + dk |a, b, c, d ∈ Z+
1

2
} ⊂ H(Z) (8)

The Following is a list of properties of this subring. The first three properties are not very
difficult. It is especially the fourth one that is important and makes the theorem work.

Proposition 6.1.2. 1) The set of Hurwitz quaternions is a non-commutative subring of H(Q)
contains H(Z).
2) Let z ∈ H z + z̄ ∈ Z, N(z) = zz̄ ∈ Z.
3) Let z be invertible if N(z) = 1.
4) Every left (respectively, right) ideal is principal.

Proof. 1) By construction, we have H(Z) ⊂ HH . We show that a subring. Let 1 ∈ H, we have
the stability by addition because the sum of two integers is an integer and The sum of two
half-integers is an integer. We can also trivially prove the stability by multiplication thanks to
the multiplicative rules on (6.1.1).
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2) The proof is trivial if a, b, c, d are integers and the sum or multiplication of two half-integers
are integers.
3) =⇒ If z is invertible, let z′ be his inverse, we have : = N(1) = N(zz′) = N(z)N(z′) = 1. As
N(z), N(z′) are positive integers, it follows that N(z) = 1.
⇐= , Let z ∈ HH such that N(z) = 1 : zz̄ = z̄z = N(z) = 1, hence z is invertible.
4)Let a ∈ H be a left ideal of H, we can suppose (a) ̸= 0. Let the set u ∈ (a) be of minimal
reduced norm. u is invertible in Q invertible in ūN(u)−1 because uūN(u)−1 = uū(uū)−1 = 1.
Let y ∈ A we focus on yu−1 ∈ H(Q) and z ∈ H which N(yu−1 − z) < 1. However, N(y − zu) =
N((yu−1− z)u) = N(yu−1− z)N(u) < N(u). Thus, y− zu ∈ A and N(u) are minimal. We can
deduce from the inequality that y− zu = 0 and so y = zu, y ∈ Hu. That proves that a left ideal
is principal.

6.2 Demonstration of Lagrange’s theorem

Proof. Let p be odd prime, commutes with all quaternions. Indeed, p is an integer and hence
central. The left ideal is therefore two-sided, so Hp = pH. Hence, one may take the quotient by
this ideal and study H

/
Hp which is a ring. Let introduce z = a+ bi+ cj + dk, a, b, c, d ∈ Z or

1
2 + Z. We want to show that it exists z′ ∈ Z represents z mod p. If z is an integer it is over. If
not, one set u = 1+ i+ j + k and p

2u ∈ H. Let set z′ = z+ p
2u which allows one to work modulo

p z ≡ z′ and z′ ∈ Z. That works because p is odd. As desired H/Hp ≃ H(Fp).
Firstly, the equation became a2 + b2 + c2 + d2 = 0 [p], hence exists a non-zero quaternion with
zero norm which is not invertible (if not is norm will be 1). It follows that it engenders a left
ideal non trivial.
Secondly, Hz ⊂ H/Hp by the correspondence theorem Hp ⊂ Hz ⊂ H. Then, p ∈ Hz, ∃z′ such
that p = zz′. By using the norm, we can conclude that a2+b2+c2+d2 = N(z) = N(z′) = p.

6.3 Implementation of division for the quaternion ring

Before implement the Euclidean division in HH , we need to prove that the subring is Euclidean.
Let α ∈ A, β ∈ A{0}. We perform the Euclidean division of a by b and we pose αβ−1 = x+yI+
zJ + tK ∈ H. As before, ∃m ∈ Z such as |x − m

2 |. In fact, the elements quaternion of Hurwitz
are either integers or half-integers. We pose q = (m+nI+hJ+lK)

2 , however, m,n, h, l must have the
same parity, the one which is already fixed by m. It follows the inequities |y, z, t−n, h, l/2| < 1

2 .

N(αβ−1 − q) < (x− m

2
)2 + (y − n

2
)2 + (z − l

2
)2 + (t− k

2
)2 <

1

16
+

3

4
< 1.

This proves the Euclidean division for the quaternion ring, which exploits the same principle
as previous divisions. We begin with the definition of the ring. H. < i, j,k > = QuaternionAl-
gebra(QQ, -1, -1) which is a built-in SageMath function that defines the Hamilton quaternion
algebra. The Euclidean division is more sensitive given the parity problems because all the co-
efficients must have the same parity (especially for half-integers). In fact, if the division in Z[i]
gave us the choice between 4 neighbours, here it is 81 differents neighbours that we must analyse
to choose one which respects the properties of the ring but also the minimality of the norm.

Finding a, b, c, d whose respects the equation is no more difficult. On the one hand, we will
show that the equation a2 + b2 + 1 ≡ 0 [p] has a solution. Indeed, we saw that there are p+1

2
squares in Fp, hence as many solutions for an equation −1 − x2 ∈ Z/pZ. It follows that the
intersection isn’t empty. It exists y such that y2 = −1 − x2 in Fp. Otherwise, said it exists
a, b ∈ pZ such as a2 + b2 + 1 = (1 + aI + bJ)(1 − aI − bJ) ∈ pA. One considers the ideal
I = Ap+A(1+ aI + bJ). We have seen that all left ideal is principal hence it exists β such that
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P = Aβ and Ap = pA ⊂ I ⊂ A because p ∈ I. It exists α such that p = αβ. We must show that
these elements are not invertible if not, the ideal is all the ring and that is impossible. If α is
invertible β = α−1p and then p | (1+ aI + bJ). That implies that (1+ aI + bJ) = p[x+yI+zJ+tk

2 ]
and particular that px = 2 impossible because p > 2 by hypothesis. If β is invertible p = A and
then 1 = q(1 + aI + bJ) + q′p, by multiply by (1 + aI + bJ) it follows that (1 + aI + bJ) = q′p
and that impossible. As required N(p) = N(α)N(β) = p2. As before, we can use the algorithm
of Cipolla which find a solution effectively.
On the other hand, p | a2 + b2 + 1 = (1 + ai+ bj)(1− ai− bj) and so gcd(a+ bi+ cj, p) is not
trivial. We have gcd(1 + ai+ bj, p) = a+ bi+ cj + dk passed by the norm we can conclude that
p = a2 + b2 + c2 + d2.

Example 6.3.1.

2613108101432 + 2613108101432 + 31442698192 + 02 = 136576565427876657653659.

We will end up with an interesting result that allows one to count the number of quadruplets
(a, b, c, d) such as p = a2 + b2 + c2 + d2. If the sum of two squares is unique to permutation and
sign near, the sum of four squares offers more results. There is a theorem allows to show the
number in a way that describes p as the sum of 4 squares.

Theorem 6.3.2 (Jacobi’s Theorem). Let p is an integer. We pose r4(p) the number of ways to
represent n as the sum of four squares.

r4(n) = 8
∑
m|n
4|m

m.

Example 6.3.3. Let p = 12, its divisors are {1, 2, 3, 4, 6, 12}, we remove those divisible by 4,
{1, 2, 3, 6}. We have 8 × 12 = 96 possibilities : the quartets (2, 2, 2, 0) and (3, 1, 0, 2) up to a
permutation and a sign.

Thus, when our algorithm finds a solution, it is only one among the others.

20



7 Conclusion

Writing a prime integer in a quadratic form is a vast research topic, and our work only addresses
a tiny fraction of it. This illustrates how theoretical algebraic structures can help solve and im-
plement a concrete problem. Indeed, we have seen that each quadratic form is closely associated
with a ring from which essential algebraic properties can be derived: Z[i] for p = a2 + b2, more
generally Z[

√
−d] for a2 + db2, and H for p = a2 + b2 + c2 + d2. This allowed us to examine

certain properties for each ring and to generalize when studying more general equations. The
key idea is that the ring must be Euclidean to find suitable pairs/quadruples integers, but there
are many other ways to solve equations for example, using class field theory, which is entirely
beyond the scope here. Implementing an efficient algorithm is only possible thanks to a deep
understanding of the algebraic properties of each ring. Although there are some specificities, we
have seen that the algorithms are not fundamentally different from each other and follow the
same general protocol.

21



8 Annexe

8.1 Algorithms

Representation of a prime number as a2 + b2

1 ##Euclidean division for Gauss integers.
2 K.<i> = NumberField(x^2 + 1)
3 def division_euclidienne(x,y):
4 z=x/y
5 zr=z.real()
6 zi=z.imag()
7

8 voisins_proches = [
9 K(a_ + b_*i)

10 for a_ in [(floor(zr)), (ceil(zr))]
11 for b_ in [(floor(zi)), (ceil(zi))]
12 ]
13

14 q = min(voisins_proches , key=lambda q: abs(x - y*q)**2)
15 r=x-q*y
16 return r,q,z, voisins_proches
17

18 r,q , z, v = division_euclidienne(K(12 + 7*i),K(9 + 4*i))
19

20 r,q , z, v = division_euclidienne(K(123+ 74*i),K(17 -7*i))
21

22 q,r,z, v

1 #gcd (this algorithm is the same for all the rings).
2 def pgcd(a,b):
3 while b !=0:
4 r, q, z, v = division_euclidienne(a,b)
5 a, b = b, r
6 return a

1 #Cipolla ’s algorithm.
2 def cipolla(n, p):
3 n = Integer(n) % p
4 p = Integer(p)
5 if p == 2:
6 return n
7

8 if pow(n, (p - 1)//2, p) != 1:
9 return None

10

11 a = Integer (0)
12 while True:
13 w2 = Integer ((a*a - n) % p)
14 if w2 != 0 and pow(w2 , (p - 1)//2, p) == p - 1:
15 break
16 a += 1
17

18 K = GF(p)
19 PR = PolynomialRing(K, ’w’)
20 w = PR.gen()
21 Q = PR.quotient(w**2 - PR(w2), ’w’)

22



22 ge = Q.gen()
23

24 elem = Q(a) + ge
25 res = elem **((p + 1)//2)
26

27 c0 = Integer(res.lift()[0])
28 root = Integer(c0 % p)
29 return root

1 #find a,b
2 def sum_of_two_squares(p):
3 p = Integer(p)
4 if not is_prime(p):
5 raise ValueError("p␣must␣congruent␣to␣1␣modulo␣4")
6 if p % 4 != 1:
7 raise ValueError("p␣congruent␣to␣1␣modulo␣4")
8

9

10 x = cipolla(p- 1, p)
11 if x is None:
12 raise ValueError("Cipolla␣return␣None")
13

14 ZI.<i> = GaussianIntegers ()
15 alpha = ZI(x) + i
16 pi = gcd(ZI(p), alpha)
17

18

19 a = Integer(pi.real())
20 b = Integer(pi.imag())
21 return (abs(a), abs(b))

Representation of a prime number as a2 + 2b2

1 #Euclidean division
2 K.<sqrt_m2 > = QuadraticField (-2)
3

4 def division_euclidienne(x, y):
5 z = x / y
6 a, b = z.polynomial ().coefficients(sparse=False)
7 zr , zi = a, b
8 voisins_proches = [
9 K(a_ + b_*sqrt_m2)

10 for a_ in [floor(zr), ceil(zr)]
11 for b_ in [floor(zi), ceil(zi)]
12 ]
13 q = min(voisins_proches , key=lambda q_: abs(x - y*q_)**2)
14 r = x - q*y
15

16 return q,r , z, voisins_proches

The gcd and Cipolla’s algorithm are the same

1 def find_ab(p):
2 z = cipolla(-2,p)
3 d=pgcd(p,z+sqrt_m2)
4 a,b=tuple(d[j] for j in range (2))
5 return a,b
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6 p=5830201427311259029681742878148
7 while p%8!=1 :
8 p=next_prime(p)
9 a,b=find_ab(p)

10 print(f"{a}^2␣+␣2*{b}^2␣=␣{p}")

Representation of a prime number as a2 − ab+ b2

1 K = CyclotomicField (3)
2 omega = K.gen()
3

4 def eisenstein_proche(z):
5 zc = CC(z)
6 u = float(zc.real())
7 v = float(zc.imag())
8 sqrt3 = 3**0.5
9 y = 2.0 * v / sqrt3

10 x = u + v / sqrt3
11 m = int(round(x))
12 n = int(round(y))
13 return K(m) + K(n)*omega
14

15 def eisenstein_euclidean_division(alpha , beta):
16 if beta == 0:
17 raise ZeroDivisionError("division␣par␣ z r o ␣dans␣Zomega")
18

19 z = alpha / beta
20 q = eisenstein_proche(z)
21 r = alpha - beta*q
22 return q,r

1 K = CyclotomicField (3)
2 omega = K.gen()
3 sigma=K.automorphisms ()[1]
4 C=((1+1/(1+2* omega))/2, (1 -1/(1+2* omega))/2, 1/(1+2* omega))
5

6 def re_im(q):
7 qb=sigma(q)
8 return (C[0]*q+C[1]*qb , C[2]*(q-qb))
9

10 def trouver_ab(p):
11 if p%3!=1 :
12 print("Erreur")
13 return
14 z = cipolla(-3, p)
15 Z = K(z) - 2* omega -1
16 print(Z*sigma(Z))
17 g = pgcd(p, Z)
18 a,b=re_im(g)
19 return a,b

Representation of a prime number as a2 + b2 + c2 + d2

1 H.<i,j,k> = QuaternionAlgebra(QQ, -1, -1)
2
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3 from itertools import product
4 def nearest_hurwitz(q):
5 coeffs = list(vector(QQ , q))
6

7 int_coeffs = [round(c) for c in coeffs]
8 q_int = H(int_coeffs)
9 half_coeffs = [round(c - QQ(1)/2) + QQ(1)/2 for c in coeffs]

10 q_half = H(half_coeffs)
11

12 def norm2(q1, q2):
13 c1 = list(vector(QQ, q1))
14 c2 = list(vector(QQ, q2))
15 return sum((c1[i] - c2[i])^2 for i in range (4))
16

17 if norm2(q, q_int) <= norm2(q, q_half):
18 return q_int
19 else:
20 return q_half
21

22

23

24 def division_hurwitz(a, b):
25 q = b.inverse () * a
26 q=nearest_hurwitz(q)
27 r = a - b*q
28 min_norme = r.reduced_norm ()
29

30 deltas_val = [QQ(-1)/2, QQ(0), QQ(1)/2]
31 for deltas in product(deltas_val , repeat =4):
32 coeffs_c = [q[j] + deltas[j] for j in range (4)]
33 tot = 0
34 for c in coeffs_c:
35 tot += floor(2 * c)
36 parite = tot % 2
37 for idx in range (4):
38 if floor (2 * coeffs_c[idx]) % 2 != parite:
39 if parite == 1:
40 coeffs_c[idx] += QQ(1) / 2
41 else:
42 coeffs_c[idx] += -QQ(1) / 2
43 q_c = H(coeffs_c)
44 r_c = a - b*q_c
45 nr = r_c.reduced_norm ()
46 if nr < min_norme:
47 min_norme = nr
48 q = q_c
49 r = r_c
50

51 return q, r, r.reduced_norm ()

1 def trouver_abcd(p):
2 x,y=trouver_xy(p)
3 print(x,y)
4 alpha = H([1, x, y, 0])
5 beta = H([p, 0, 0, 0])
6 d = pgcd(alpha , beta)
7 print(d)
8 a, b, c, d = tuple(d[j] for j in range (4))
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9 return a, b, c, d
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Résumé
This report explores ring theory through the representation of a prime number p in quadratic

forms: the two-square theorem, its related problems, and the four-square problem. Each
equation is associated with a ring whose properties allow both the theoretical resolution of the

theorem and its practical implementation to quickly find solutions.
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