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1 Introduction

The interest in decomposing an integer p prime as a sum of squares dates back to Antiquity.
Easy at first glance, this theorem is based on algebraic structures which will bring us to study the
ring Z[i| and its properties to explain the decomposition as a sum of two squares. This question
will lead us to be convinced that the Euclidean division exists in certain rings just like the ged.
This problem illustrates that highly abstract algebraic concepts can be employed to solve and
practically implement very concrete problems.

Two closely related problems are resolved in detail, namely the decomposition of the prime p into
the form a? 4 2b% and a? — ab+ b? but we went further by studying equations of the form a? + db?
in terms of the roots of the polynomial X2 — d. In fact, the fundamental idea to represent a
prime number by the quadratic forms considered consists of studying the possible factorization of
this prime number in a quadratic extension Z: Z[i] for the two squares, Z[v/—2] for the equation
a?+2b%. And finally, Z|w] where w is a cubic root of the unit distinct from 1 for a® —ab+b%. In
each case, the quotient A/(p) is identified to Fp[X]/(f) where f is a unit polynomial of degree
2 such as (X2 +1,X2 +2, X%+ X +1). The number p can be factored in the extension if and
only if f admits a root in ). The key point that allows us to go to the end of the question is
the hypothesis that A is Euclidean.

In each section an algorithm will be propose and detailed. For the implementation, we need two
essential ingredients:

— an algorithm for calculating square roots modulo p; we chose the Cipolla algorithm. because
it is explained very clearly from the structure of the fields of cardinal p? (and that it is effective
with a prime number of several hundred digits);

— a GCD algorithm in a Euclidean ring. In fact, the FEuclide algorithm is a succession of a
Euclidean division algorithm. To be more precise, we find thanks to the algorithm of Cipolla an
element w in A which is not in Z whose norm is a multiple of p. The gecd of p and w is then
automatically one of the two irreducible factors of p in A ;

we thus see how the abstract algebraic structure of a Euclidean ring is exploited to prove the
existence, then calculate a representation of a prime number as the norm of a element of said
ring.

One can see a great success in the theory (if it is easy to find head that 13 = 32 + 22, one cannot
find through blind tests that

a = 42037360450663977

_ 232
360027784083079948259017962255826129 = a” + b Where{ b — 492989075070657640. (1)

By contrast, most quadratic forms, even those of the form a? +nb?, are not norms of a Euclidean
ring, which indicate the limitations of the proposed methods. However, for non-Euclidean cases,
the situation is really more complex, as evidenced by the 550 pages of David A. Cox’s book :
Primes of the form x? +ny? : it appeals to class field theory and largely exceeds the framework
of a four-week internship and even that of the third year of a bachelor’s degree.
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4 Fermat’s two square theorem

The aim of the report is to study some quadratic forms and apply them to study algebraic struc-
tures around a few quadratic forms and apply them to find a way to represent a prime number p
by these forms. What is fascinating about this subject is how highly abstract algebraic concepts
can allow us to understand and implement very concrete problems. In this report, A is a com-
mutative unitary ring, except in the last part (quaternions ring). In general, I and J will denote
ideals of A. We denote the field of cardinal p, by F, the group of invertible elements (a cyclic
group of order p— 1), and by IE‘;Q the subgroup of invertible squares. We assume familiarity with
the notions of principal, prime, irreducible, prime and irreducible ideals, as well as the usual
basic properties of these structures.

Fermat stated the following result without proof, as he did with many of his theorems, which
sparked the interest of several generations of mathematicians still today. It was finally Leonhard
Euler who provided the first complete proof in the 18" century, developing new methods in
number theory. The theorem later played an important role in the study of Gaussian integers
and contributed to the rise of algebraic number theory.

Theorem 4.0.1 (Fermat’s theorem on sums of two squares). Let p be an odd prime number.
Then, there exist integers a and b be such that.

p=a’>+b® < p=1 (mod4).

Example 4.0.2. The first prime numbers of the form 1 + 4k are squares.

5=12422 13=22+3% 17=12+42 20=224+5% 37=12+62 (2)

We also introduce the ring of Gaussian integers :
Z[i| ={a+ib|a,beZ} (3)

The aim is to understand the algebraic notions behind the equation and to prove the theo-
rem 4.0.1, so that we can implement it later in SageMath software. Indeed, finding a solution
for p = 5 is easy, but what about a 100-digits number? How long will it take?

4.1 Theory
Structures

Definition 4.1.1 (Euclidean domain). A Euclidean domain is a commutative ring equipped
with a FEuclidean function

¢: A\ {0} — N.

that satisfies the following Euclidean division property : for all a,b € A with b # 0, there exist
g,r € A such that a = bg+r and [r = 0 or ¢(r) < ¢(b)]. We call ¢ the quotient and r the
remainder.

Definition 4.1.2 (factorial ring). A factorial ring is an domain in which for every element A\{0},
there exist an integer n > 0, irreducible elements p1,- - ,pp, and a € A* such that a = p1...p,
and such a decomposition is unique up to a permutation of factors and replacing an irreducible
element by a product by some unit.



These notions are closely related: every Euclidean domain is principal, and every principal ideal
domain is a unique factorization domain. For this reason, we treat them together.

Definition 4.1.3. A a ring and I be an ideal, there exist elements py,...,p, € A such that
every element of I can be written as a1p1 + -+ + anpn, with a; € A.

Lemma 4.1.4. Any principal domain is Noetherian.

Proof. Let A be a principal ring, i.e., a commutative ring in which every ideal is generated by
a single element. Let I C A be an arbitrary ideal. By the definition of a principal ring, there
exists an element x € A such that I = (z) = {ax | a € A}. This shows that I is generated by one
element, which is finite. Thus, every ideal of A is finitely generated. Therefore, by definition, A
is Noetherian. O

Proposition 4.1.5. Any Euclidean domain is principal.

Proof. Let I be an ideal of A an Euclidean domain, if I = {0}, I = (0). Otherwise, let a € T
as ¢(a) be minimal. Let b € I, we apply the Euclidean division of a by b. It exists ¢,7 € A
such that a = bg + r with ¢(r) < ¢(a). It follows that r € I because a,b € I. However, if
¢(r) # 0, ¢(a) bearer is not minimal, then » = 0 and b = aq. Hence, b € (a) and so [ = (a), A
are principal. O

Proposition 4.1.6. Any principal ring is factorial.

Proof. Set A as a principal ideal ring and I be an ideal of A such that I = (a). If a is irre-
ducible, then it is over. If not, it exists b,c € A such that a = bc. Thus, determined if b, ¢ are
not irreducible, we continue the development until we arrive at an irreducible element product
because the ring is Noetherian. O

Quadratic residues

Quadratic residues reveal interesting patterns in the behaviour of numbers when they are squared
modulo a prime. Surprisingly, they help to understand the criteria under which numbers can
be expressed as a sum of squares. The Legendre symbol provides a useful way to track these
patterns and uncover deeper relationships between numbers.

Definition 4.1.7. Let p be a prime and a be an integer. We say that a is a quadratic residue
mod p if there exist 2 € Z such that 22 = a (mod p). We define the Legendre symbol;

0 ifp]|a,
a
<p> =<1 if a is a non-zero quadratic residue modulo p,
—1 if a is not a quadratic residue modulo p.

Many properties follow from this definition and will be very useful for our proof and for imple-
mentation.

Proposition 4.1.8. Let a, b be integers, (%’) = (%) (%).

Proof. First of all, notice that if @ = 0 (mod p) or b = 0 (mod p), then ab = 0 (mod p). In

this case, the Legendre symbol immediately satisfies: (%’) =0= % IQJ . We can therefore
restrict ourselves to the case where a, b are invertible modulo p, that is, a,b € F;;
The set of squares is the image of the morphism ¢ : F, — Fj, r — x°, the kernel of



which is {—1,1} (the polynomial equation 22 = 1 has two solutions in the field F,). Thus,
we have [F5 : F3?] = 2. It follows that F}/F+* ~ {—1,1}. For a,z € F}, notice that a is a

a

square if and only if az? is a square. Hence, one can identify ( with the coset of a modulo

P
]F;';Q. The multiplicativity of the Legendre symbol follows from that of the canonical projection
Fy — T/ IF‘;‘?. O

Lemma 4.1.9 (Euler’s criterion). An element x in F); is a square if and only if 27 =1. In
other terms, the kernel of the morphism ;

—1
X:F = {-1,1}, arma'7.
is the set of squares in F},.

Proof. First, we check that x is well-defined. Indeed, for a € F)’, we have x(@)? =a’ ! =1
according to Fermat’s little theorem. Then x(a) € {—1,1}. It is clear that x is a morphism.
Its kernel has an order at most (p — 1)/2 since its elements are the roots of the polynomial
a?=1)/2 _ 1. In particular, its image is not reduced to {1}, so it is {—1,1}, and the order of ker x
is [Fx |/ Tm(x)l| = 252,

We know from 4.1.8 that there are % squares in I, so that the kernel of y is exactly the

subgroup of squares, which proves the lemma. O

We will end with an essential proof for our demonstration. The second part of the proposition
is trivial; instead we will focus on the first.

Proposition 4.1.10. An immediate consequence of Euler’s criterion is the following ;
-1
—1 is a square of F,, if and only if (-1)"z =1lifandonly if p=1 (mod 4).

Proof. There are several ways to demonstrate it, we choose to use a exact sequence. Let us
introduce (4) and we prove that Im(f) = ker(y).

* f *
1 — F2 =5 F, 25 {+1} — 1L (4)

Let us show that Im(f) C ker(). Let € Im(f). There exist y such that 2 = y2. It follows
that y(z) = (1:%)2 = 9P~ = 1 by Fermat’s theorem.

We have to show that ker(x) C Im(f) by reasoning on cardinalities. By Lagrange’s theorem
we have |(F32)| = [(F;)/{£1}| = 2=L 1t follows that | Im(f) |= Z52. Moreover, the order of

2 2
the kernel of x is at most the number of roots of "7 fe. BE. Moreover, we had prove that
Im(f) C ker(x), we can deduce the equalities. O

The isomorphisms are a mean of connecting two elements that have nothing to do with each
other. In particular all properties are preserved by the isomorphism. In fact, if A is an integral
domain, that implies B is isomorph to A is also an integral domain thanks to the isomorphism.

Lemma 4.1.11 (third isomorphism theorem). Let A be a ring, let I, J be two ideal. There is a
canonical isomorphism

A/I/(I+ J)/T~A/I+J).



Proof. The application
¢ AT — AJ(I+J)
a+I—a+(I+J).

. We have to check that the function is well-defined, let a,a’ € A. As a+ I = o’ + I, then,
a—a €I C I+ J. To prove that ¢ is surjective, let « € A/(I + J). Choose a € A such
that & = a+ (I + J); then a« = p(a + I). As for the kernel of ¢, an element a + I lies in
the kernel if and only if a + (I + J) = 0+ (I + J), if and only if a € I + J, if and only if
a+1 € (I+J)/I. By the isomorphism theorems we have a canonical quotient by its kernel.

Therefore, A/I/(I+J)/I:A/(I+J). O

We apply it to our problem. Let us set A = Z[X]. Let I = (p) and J = (X?+1) where we denote
by (a) the ideal of Z[X]. One has I +J = (p, X? + 1). Let A = Z[X]. Consider the polynomial
X2+ 1. Given P € Z[X], we can perform the Euclidean division of P by X2 + 1 in R[X]: this
gives @, R € R[X] such that P = (X% +1)Q + R, with deg(R) < 2, i.e. R(X) = bX + a for
a,b € R. Since X? + 1 has integer coefficients and its leading coefficient is 1, the coefficients of
(@) and R are actually integers: a,b € Z.

Now, evaluation at i (a square root of —1) is a morphism A — C, P — P(i). If P = (X2+1)Q+R
as above, then P(i) = R(i) = a + bi, so P is in the kernel if and only if a = b = 0 (since 7 is
irrational), i.e. if P is a multiple of X2 + 1, and the image of the evaluation map is the set of all
a + bi where a,b run over Z, i.e. the subring Z[i] generated by i in C. In other terms,

A)J =Z[X]/(X?+1) ~ Z[i].

On the other hand, the reduction map Z[X] — F,[X], > _oar X" — 5 _, m(ax) X*, where
7 : Z — Fp is the canonical projection, is a morphism of rings and its kernel is I = (p). Hence,

AJT = ZIX]/(p) = F,[X].

Z[X]

F,[X] ZIX]/ (X2 + 1) ~ Z]i]

ZIX]/(p, X? +1) =~ Fp[X]/(X? + 1) ~ Z[i] /pZ[i]

Figure 1: Illustration of 4.1.11 in this context.

Proof of Fermat’s Theorem

Thanks to all the propositions, we will now prove the theorem 4.0.1.



Proof. Let p be a prime number as p = 1 (mod 4), thanks to 4.1.10, we have any difficulty in
rolling out the demonstration.

p—1

p=1 (mod4) <= (-1) 2z =1
)
p
dz € Fp, 22 =-1
X2 41 has a root in Fp
the ideal (X2 + 1) is not prime in F,[X]
F,[X]/(X? 4 1) is not integral
Z[i]/(p) is not integral (since F,[X]/(X* + 1) ~ Z[i]/(p))
(p) is not irreducible in Z]i]
Jda,b € Z, p= (a+bi)(a—bi)
Ja,be Z, p=a®+ b

[ I A A

O

Thus, one can see that this practical problem is governed by laws of abstract number theory.
This theoretical approach will be essential to implement an efficient algorithm for quite large
numbers.

4.2 Implementation.

We chose to use SageMath because it is a free software for symbolic and numerical computation,
designed to explore and manipulate a wide range of mathematical structures. Unlike Python,
SageMath allows the construction and manipulation of abstract mathematical objects, such as
rings, fields, vector spaces, or groups, in a natural and algorithmic way. This makes it a powerful
tool for experimenting or illustrating practical concepts with theoretical notions. We want to
implement an algorithm which finds values of a,b such that p = a? + b? within a reasonable
computational time. The key idea is that the norm of a Gaussian integer gives exactly a and b
in the desired form;

N:Z[i]| — Z, z=a+bi— N(z)=2%z=(a+bi)(a—bi)=a®+b

The implementation of Euclidean division in Z]i]

First of all, we want to prove that Z[i] is Euclidean, and to use the Euclidean division to compute
ged’s. For a real number u, we set {u} = [u+ 3], so that u — {u} < 3; it is the closest integer
to u (or, if u € % + Z, one of the two closest integers).

Proposition 4.2.1. The ring Z[i] is Euclidean. More precisely, let a,b € Z[i] with b # 0. Write
a/b = u+vi, with u,v € R. Let ¢ = {u}+{v}i and r = a—bg. Then a = bg+r and N(r) < N(b),
where N is the norm N(x + yi) = 2% + 2.

Proof. The equality a = bgq + r follows directly from the definition of ». We have N(r/b)
N(a/b—q) = N((u—{u}) + (v = {v})i) = (u—{u})’ + (v - {v})? <1/22 +1/22 = 1/2 <
and, since N is multiplicative, it follows that N(r) < N(b).

o=



First, we have to define the field Number K containing a root of 22 + 1. Here, K = Q(i) and
i> = 1. This allows us to work in SageMath with Gaussian numbers. The quotient of a by b
is a rational number that we must round down (or up) to the nearest integer to find suitable
q,r integers. We have 4 possibilities because a, b can be approximate by two integers each as we
can see on figure (2). Thanks to that we have the smaller value of ¢ and the reminder r can be
deduce easily.

lllustration de la division euclidienne dans Z[i]

100 @ zZ=Xxy g+l @+1i
g min
0.75
0.50
=
2 o025
> ¢
E 4004 §+0i @+0i
o
<
o
o -0.25
~0.50 1
-0.75 1
-1.00 ! . : !
0.0 0.5 1.0 15 2.0
Partie réelle

Figure 2: Ilustration of the Euclidean division in Z[i].

Now, we can implement gcd. We want to implement an algorithm in order to handle numbers that
are impossible to manipulate by hand. Thus, the algorithmic complexity must be appropriate,
meaning that it does not grow too quickly with the size of the number. Answering this question
requires some algorithmic notions, to be detailed in the book of Michel Demazure : Cours
D’algebre especially with Lamé’s theorem which provides an explanation. One can easily see
that the worst case occurs when ¢ = 1 at each iteration. Moreover, the course of the Euclid
algorithm follows a Fibonacci sequence Fj, 1o = Fy11 + F,, with Fy = 0, F1 = 1 by definition.
Lame’s theorem states that the longer the algorithm, the larger the initial numbers.

Proposition 4.2.2 (Lamé’s theorem). Let a > b > 0 be two positive integers and d = pgcd(a, b).
If BEuclid’s algorithm requires n steps to compute, then: a,b < Fj, ;1 where Fj, ;1 is the (n + 1)t
Fibonacci number.

Proof. Without loss of generality, one assumes oneself a > b. We reason by recurrence on n. If
n =1, b is a multiple of a. We have gcd(a,b) = b. Then, we have b = d = dF5 and z > 2d = dF3
because Fo = Fop+Fy =1let F3=Fo+F =1+1=2. If n > 1, we suppose z > dF,,y > dFp41.
In the n' iteration, (x,y) became (y, z) with relation z = = — gy < x — y. But by hypothesis of
recurrence. * >y + z > dFy, + dF,+1 = dF,4+2. We have the result. O

Corollary 4.2.3. Let a > b > 0 be two positive integers. If Euclid’s algorithm requires at most
2 log(a, b) + O(1) steps.

Proof. Wee associate this sequence with the characteristic polynomial /! = ¢J 4 #7=1 which
is equivalent to 72 = r 4+ 1. The root is the golden ratio ¢ = ﬂ%‘/g and ¢ = % By the
formula of Binet (admitted), we have the expression of Fj = d)—z and b > Fyy1. By the logarithm
properties, it follows that k ~ O(log, (b)) O

S

This concludes the first step of our goal.
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Cipolla’s algorithm

As we saw in 4.1, find 2z such that 22 = —1 mod p is crucial to find a,b. Thus, we have to
construct an algorithm that allows us to find this z in a reasonable amount of time : we can
implement Cipolla’s algorithm which is based on field extension.

Theorem 4.2.4. V p prime and ¥d € N*, 3! field L of the cardinal of p°.

The proof is too complex and not really important for our case. However, we can focus on the
case d = 2. Indeed, we are looking for a field extension whose cardinal is p?.

Lemma 4.2.5. Let p be a prime number, and let n be a square in . There exists a € I, such

that a®> — n is not a square. More precisely, the number of such a is %.

Proof. For a € Fp, a®> — n is a square if and only if there exists b € F, such that a® —n = b?, i.e.
(a+b)(a —b) = n. Equivalently, there exists ¢ € F), and b € F) such that

a+b=t, a—b:%

2 — n is a square if and only if there exist ¢ and b such that

=) 03,

2

Set f:F, = Fp, t — (t(;)”). Then f(t) = f(%). It means that if a*> — n is a square, then a has

two preimages under f, unless a = f(t) with ¢ = %, i.e., t is one of the square roots of n. Hence,
p—1

there are % +2= % values of a for which a? —n is a square, and £5= values for which a’—n

In other terms, a

is not a square.

This means that when we look for an a such that a? — n is not a square, trying a random value
for a gives a probability of success of about %, and we should find a solution in approximately 2
trials on average.

Once such an a is found, we know that the polynomial X2 — (¢ —n) is irreducible in F,[X]. We

build the quadratic field extension L = F,[X]/(X? — a? + n), in which the projection w of X is
a square root of a2 — n. As a vector space over [F,, the dimension of L is 2 and (1,w) is a basis
of L. In particular, L has cardinality p?.

The field L comes with an interesting map:
F:L—L, xw2P

For any k € {1,...,p—1}, the binomial coefficient (}) is a multiple of p, so F(z+y) = F(z)+F(y)
for any z,y € L. Obviously, F(xzy) = F(z)F(y) and F(1) = 1. Therefore, F is a field morphism.
As such, F' is injective, and since L is finite, it is surjective too. The map F is called the
Frobenius automorphism.

It is an involution. First of all, the polynomial equation F'(x) = z has at most p solutions, and
Fermat’s little theorem says that elements of I, are indeed solutions. Next, from wr=a?>—-n
we deduce that F(w)? = a®> — n and F(w) # w since w ¢ F,, (because a®> — n is not a square).
Hence, F(w) is the other square root of a? — n, namely —w. For u,v € F,, it follows that
F(u+vw) = u — vw. In particular, F? = idy. O]

Proposition 4.2.6. Let p be a prime number, let n be a square in F,,, and let a be such that
1
a? —n is not a square. Let w be a square root of a®> — n in an extension of F,. Then (a + w)%

is a square root of n in [Fp,.

11



p+1

Proof. Let x = (a +w) 2 . Then

??=(a4+wP =(a+wFla+w) = (a+w)(a—w)=a®— (a® —n) =n.

Since n is a square, we know that x € F),. O

Final implementation

Now, we have all the tools to implement a resolution of theorem 4.0.1 : finding a, b for all p be
prime such that p =1 (mod 4).

Lemma 4.2.7. Let p be a prime number such that p = 1 (mod 4). Let r be an integer such
that 72 = —1 (mod p), and let d = ged(p,r + i) in Z[i]. Then N(d) = p, where N is the norm
N(a + bi) = a® + b°.

Proof. Let x € F,, such that 22 + 1 =0 [p]. Consequently, we have p|(x + i)(z — i). Let us pose
d = ged(p, x + ). We must check that the ged is not a unit (that is, £1,47). On the one hand
p| (22 +1) = (z —i)(x +14). Thus, ged(p, (x + 1)) # 1. On the other hand, we can assume that
ged(p,x +1i) =a+bi. p| (x —i)(x+1) and (a + bi) | p (definition of ged), we can deduce that
a+bi|(x—1i)(x+1). Thus,a+bi|z—iora+bi|xz+i. It follows that ged(p,x +1i) = a + ib.
Using the norm, we can deduce N(a + bi) = a® + b | N(p) = p or p. Impossible for p? because
otherwise d = p or d = pi. Thus, N(d) = p = a? + b*.

Ul

You will find the algorithm in the appendix. This is really impressive because our algorithm
takes only 0.03 seconds to find a solution for a 50-digit number, 3,45 seconds for a 200-digit
number.
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5 Resolution of p = a? + db?

After solving the theorem, we realize that it is only a particular case of a much larger question.
We want to find a,b be integers that satisfy (5).

Let p be an odd number and a, b, p be integers ;
p=a®+db’. (5)

For this, we consider the ring Z[v/—d] = {a + bv/—d | a,b € Z}. Can we reason in a similar
way? The proof is possible because the ring is Euclidean, so for which values of d is the ring
Euclidean? Although difficult, the question is solved. On the one hand, we chose to consider
small cases such that d = 2, d = 3. But we will soon see that the reasoning is almost identical.
On the other hand, we want to generalize to all d.

5.1 Cased=2

We want to solve equation p = a? + 2b? = (a + by/—2)(a — by/—2) that is clearly related to the
ring Z[v/—2] = {a+ bv/—2 | a,b € Z}. In fact, p can be expressed in this form under certain
conditions.

Theorem 5.1.1. Let p be an odd integer. There exist a and b such that ;

p=a’>+20¥ <<= p==+1 (mod 8). (6)

As one might expect, the proof of the theorem is essentially the same as 4.1. This time, the
quotient A /(p) is identified at F [X]/(f) where f = X2 +2 thanks to theorem 4.1.11. Moreover,
we have an essential condition 22 = —2[p]. We can conclude that p can be factored in Z[/—2] by
the same way. Moreover, we still need to use the quadratic residue thank to the second quadratic

reciprocity. Indeed, if (_72) = 1, it exists z such as 22 = —2 (mod p).

Proposition 5.1.2. Let p be odd prime.
(—2) _ (_1);72‘%1 )1 %f + 1 mod(8).
P —1 if £3 mod(8).
Proof. Let a be a root of X* 41 = 0. It is an eighth root of unity in an algebraic extension of
F,. Hence, a® = 1 but a* = (a?)? = —1 is a square of —1. So we have the relation : a? = —a~2.
Let B=a+a ! 2= (a+a1)?=2. Thus, 2 is a square in F, if and only if 87 — 8 = 0 with

P = aP —a~P. On the one hand, if p = £1 [8], if and only if 5 € F),, P = it is over. On the
other hand, if p = £3 [8] 8% = a® — a3 = —f there is no square in F),. O]

The implementation will be essentially the same expect a slight nuance. Indeed, the notion of real
or imaginary part does not exist; instead, a function is used to extract the coefficients. Before
implementing the Euclidean division in Z[v/—2], we must prove that the ring is Euclidean.

Proposition 5.1.3. The ring Z[\/—2] is Euclidean.

Proof. Let a, b € Z[v/—-2] with b # 0.

One has § = ¢ — ¢ = (u—{u}) + (v — {v})v/—2. Then, we apply the norm :

N (3) = (u— {u}) +2(v—{v})?<i+2- =3 <1 Thus, N(r) = N(b)- N (5) <N(b). O
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The ged and Cipolla’s algorithm are identical, so it only remains to find the correct coefficients
of ged to use to obtain the desired form.

Lemma 5.1.4. Let p be a prime number such that p = 1 (mod 4). Let r be an integer such that
7?2 = —2 mod p, and let d = ged(p,r +1i). Then N(d) = p, where N is the norm N(a + /—2b) =
a? + 202,

Proof. Let d = ged(p, z++v—2) = a+ +/—2b by same argument. Thus, (a ++/—2) | p by passing
through the norm N(a + v/—=2) | N(p) so a® + 2b* | p?. It follows that a® + 2b* = p. O

We have an efficient algorithm which find a solution as quickly as the previous one.

Example 5.1.5.

(—214835139219429)% + 2 x 1700595085590310% = 5830201427311259029681742878241.  (7)

5.2 Resolution of a®> — ab + b?, Eisenstein integers

We want to prove this theorem.

Theorem 5.2.1. Let p an odd prime number, a and b be integers ;

p=a’>—ab+b* <= p=1 (mod3).

The resolution of this new equation allow us to studies the ring of Eisenstein integers ;
Zw] ={a+bw | a,b € Z},

with w = €%7/3 = _1%“/3 We can deduce the relations j?> = w = _1%‘/3 and the poly-
nomial w? + w + 1 = 0 because 0 = w® — 1 = (w — 1)(w? + w + 1). We can deduce that
Z[w] ~ Z]X]/(w? +w+1 = 0). Moreover, one can see that N(a+wb) = a? —ab+b? that exactly

the good form.

As one can expect, quadratic reciprocity will allow us to prove theorem 5.2.1.

Proposition 5.2.2. Let p be prime.
(—3) _J1 ifp=1 (mod3),
p/) |-1 ifp=2 (mod3).

Proof. Let p be an odd prime. If p = 3, (%3) = 0, we suppose p # 3.

(—?3) = (%) <%> However, by the quadratic reciprocity ; (%) = (%) (=1)

(g) = 1 if and only if p =1 mod3 (It enough to compute the squares modulo 3). Finally, we

can deduce that <773> = (1)~ (). Moreover, (—1)P~! = 1 because p is an odd prime and

2(p—1)
1

. Moreover

the squares modulo 3 are 0 and 1, which concludes the proof.
O
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Regarding the Euclidean division, the reasoning is the same but involves a subtlety. Indeed as
you can see in 3, the lattice of Eisenstein integers is triangular. Then to find the nearest integer
of the quotient 7 € R, one must project the real quotient onto this lattice through a change of
basis. We have to prove that the ring is Euclidean. We have the same inequalities for the closest
integers. Then, by using the norm, we obtain

1
+

11 1
N(5)=N(5-9) = —{u}? - @@= ) -{ph+ - {o})* <+ 75+ =5 <L
2.0
L A N— A Y pal
A l;,?
e X \“1/ ;‘0 \:.('( n
AT AT X ; ;
| 79','5
LA T - T A T A— »
1.0
_;fs\ . A
-2.0

Figure 3: Illustration of Kisenstein integers.

The ged algorithm and Cipolla’s algorithm coincide in this setting, so it only remains to deter-
mine the appropriate coefficients of the greatest common divisor in order to obtain the desired
quadratic form. Indeed, Z|w], one has ged(p, z + w) = a + bw by the same argument as in the
classical case. Hence a + bw divides p in Z[w]. Passing to the norm, we obtain a? — ab + b? | p2.
And finally, a® — ab + b> = p. To exact a, b, we use an automorphism o which is the analogue
of the complex conjugation for Gaussian integers. Let z = a + bw, one has o(z) = a + b(w — 1).
Moreover, we solve the system ;

z+0(z) =2a—b,
z—o0(z) = (14 2w)b.

and we find b = 21_:2(5)7 a=3(z—o(z)+ zl__&(i)) However, ¢ is solution of o(w)? + o(w) = 0,

it follows that w 4+ o(w) = —1 and wo(w) = 1. We will store these values in a variable C' with

1+ H_%w), 3(1— H%w)’ H%w) We introduce a function Re im which return the coefficients

a,bof z=a+ bw :

{a = az + fo(z);
b=rvz—~vyo(2).

Example 5.2.3. 1070112 — 107011 x 69420 + 69420% = 8841786901.

5.3 General d

We want to resolve with the same method the equation (5). Quite intuitively, we will use the
field K = Q(\/&) with d € Z square-free. We have many proprieties.

15



Proprieties of the ring.

Proposition 5.3.1. Let d be a square-free integer. Then the ring O, of algebraic integers in
Q(Vd) is
a+b/d, a,beZ, ifd=23 (mod4),
Oy =
atbVi g pez, ifd=1 (mod 4).

Proof. Let v/d be the root of the polynomial X2 — d. A general element of K is expressed as
a+bvd,a—bVd. z € K, we can deduce o(z) = —z € A. By pose z = a + b\/d, with a,b € Q
we have : x4+ o(z) = 2a € Q, zo(x) = a® + db*> € Q (1). Thus, Z is principal and, above all,
integrally closed. Conditions (1) are essential if a + bV/d is an integer in Z. Hence,x is a root of
X% —2aX +a* — db* = 0.

By (1), (2a)? — d(2b%) € Z.Since 2a € Z, it follows that d(2b)? € Z. However, d is square-free. If
2b is not an integer, he has a prime factor at the denominator express as p? thus d cannot make
it an integer. So, 2b € Z. We can pose a = 5,b = 3, then we have.

2 d2
(Z) - (Z) €L u—d?edl  (2)

- If v is even, w also, it follows that a,b € Z.
- If v is odd, v? = 1[4], so u?> = 0,1 (mod 4) (only possibilities). d is square-free, thus not a
multiple of 4 u? =1 (mod 4) and d = 1 (mod 4). O

Classification of Z[X]/(X? — d)

To resolve the equation (5) for each value of d, we have to study the structure of the quotient
Z[X]/(X? — d) in the quadratic integer ring Z[V/d].

Let A a field of integer, d € Z square-free, and L = Q[v/d]. We can suppose p # 2. A = Z+7Z[\/d]
where B C Z + (3 + @)Z we work modulo p B C a + (b +p)(1+T‘/E). We can deduce that
AJ/Ap ~ 7+ \/&/(p) because p, d are odds. Moreover, Z++/d ~ Z[X] by a natural isomorphism.
Let determinism his kernel : ker(¢) = {P(x) € Z[X] | P(vVd) = 0} = (X2 — d). By theorem of
isomorphism.

ZIX]/(X? —d) ~ Z + ZVd.

we can distinguish several cases based on the roots of the polynomial :

- The polynomial (X2 — d) has two roots. It follows that the quotient A / p is decomposed into
two fields by the Chinese remainder theorem. The polynomial can be expressed as X? — d =
(X —a)(X —b) = X? — X(a+ b) + ab. However, there is no term in X, then a +b = 0 and
ab = —a®? = —d. Then, d is a quadratic residue mod p and p is decomposed.

- The polynomial (X2 — d) has no root,. It is irreducible, therefore maximal. It follows that
A / Ap is a field and d is not a quadratic residue mod p and p is inert.

- The polynomial (X?—d) has a unique root, the quotient Z[X]/(X?—d) had nilpotent elements.
p is ramified.

Let us focus on the case p = 2. On the one hand, if d = 2,3 (mod 4), B = Z + Z[\/d], so
AJ2A ~ Fy/X? — d with X? + 1 = (X% + 1)?, it follows that it is a square; we say that it
decomposed.

On an other hand, if d =1 (mod 4), 1+T\/& admits as its minimal polynomial X2 — X — %. In
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fact, we have A/Ap ~ ]FQ/XQ — X — 0. We can deduce different cases. If d =1 (mod 8), § =0
it follows that X? — X = X(X —1). If not, d =5 (mod 8),d =1, X2 - X -1 = X2+ X +1
because X2 = 1 which is irreducible.

Euclidean ring

This classification highlights the importance of the polynomial for the classification of an Ideal
p prime. Our problem corresponds to the first case. This allows showing that the problem is
actually much deeper and that it can be solved for any value of d. We have implemented the
Euclidean division and an algorithm allows the decomposition of a prime number p into a sum
of squares for d = 1,2,3 but in reality the Euclidean rings are much more numerous, although
not infinite. It comes from this theorem that we will not prove because it is obvious difficulty.

Proposition 5.3.2. The ring of integers Oy of a quadratic number field Q(\/&) is norm-FEuclidean
if and only if d € {-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19, 21,29, 33,37,41, 57, 73}.

With this general study of rings, we seek to standardize our algorithms into a single by entering
d,p and returning the decompositions when possible. On the one hand, we realize that object-
oriented programming would be more appropriate. The algorithm works very well for d < 0 but
often crashes for d > 0 because the number of Neighbors needed to have a minimum standard
changes from one value to another. Nevertheless, a satisfactory result is achieved.
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6 Lagrange’s Four-Square Theorem

Theorem 6.0.1. Let p be odd integer prime, it exists a,b,c,d € N such that p = a®>+b%>+c?+d>.

Remark 6.0.2. If p = 1 (mod 4), then Lagrange’s theorem follows from Fermat’s two-square
theorem by writing p = a? + b2, and then setting ¢ = d = 0.

6.1 Theory of the quaternion ring

The ring of quaternions was born from a desire to find an extension of the ring of complex
numbers. It is impossible to find consistent relations for three dimensions, whereas for four
components, one can define the following algebraic properties. It is moreover what makes the 3
squares theorem difficult to study. The quaternions ring is a classic example of non commutative
Euclidean ring that complicate all our reasoning.

Definition 6.1.1. The algebra of quaternions is the real vector space with a basis denoted by
(1,4, j, k), endowed with the unique bilinear product such that i> = j? = k? = ijk = —1 and the
multiplication rules

ij=k, ji=—k, jk=i, kj=—i, ki=j, ik=—j.

It is tedious but straightforward to check directly that this algebra is associative. Alternatively,
one can realize it as the algebra with basis

O B (R BEEY () RS ]

If R is a subring of R, we denote H(R) = {a + bi + ¢j + dk | a,b,¢,d € R}. Then H(R) is a
subring of H(R).

We pose Hp, we introduce Hurwitz’s quaternions which have interesting properties. Indeed,
coefficients a, b, ¢c,d are all integers or all half-integers. In this last case, all of them are odd;
otherwise, one can reduce to the first case.

1
Hy = {a+bi+cj+ dk |a,b,c,d € Z} U{a + bi + cj + dk |a,b,c,d€Z+§}CH(Z) (8)

The Following is a list of properties of this subring. The first three properties are not very
difficult. It is especially the fourth one that is important and makes the theorem work.

Proposition 6.1.2. 1) The set of Hurwitz quaternions is a non-commutative subring of H(Q)
contains H(Z).

2)Let ze Hz+Z€Z,N(z) =22 € Z.

3) Let z be invertible if N(z) = 1.

4) Every left (respectively, right) ideal is principal.

Proof. 1) By construction, we have H(Z) C Hy. We show that a subring. Let 1 € H, we have
the stability by addition because the sum of two integers is an integer and The sum of two
half-integers is an integer. We can also trivially prove the stability by multiplication thanks to
the multiplicative rules on (6.1.1).
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2) The proof is trivial if a,b, ¢,d are integers and the sum or multiplication of two half-integers
are integers.

3)[=]1If z is invertible, let 2’ be his inverse, we have : = N(1) = N(z2') = N(2)N(z') = 1. As
N(z), N(2') are positive integers, it follows that N(z) = 1.

[<=], Let z € Hy such that N(z) =1: 2Z = Zz = N(z) =1, hence z is invertible.

4)Let a € H be a left ideal of H, we can suppose (a) # 0. Let the set u € (a) be of minimal
reduced norm. u is invertible in Q invertible in @N (u)~! because uaN (u)~! = wi(ua)~! = 1.
Let y € A we focus on yu~! € H(Q) and z € H which N(yu—' — z) < 1. However, N(y — zu) =
N((yu™t —2)u) = N(yu™t — 2)N(u) < N(u). Thus, y — zu € A and N(u) are minimal. We can
deduce from the inequality that y — zu = 0 and so y = zu, y € Hu. That proves that a left ideal
is principal. O

6.2 Demonstration of Lagrange’s theorem

Proof. Let p be odd prime, commutes with all quaternions. Indeed, p is an integer and hence
central. The left ideal is therefore two-sided, so Hp = pH. Hence, one may take the quotient by
this ideal and study H/Hp which is a ring. Let introduce z = a + bi + ¢j + dk, a,b,c,d € Z or
% + 7Z. We want to show that it exists 2’ € Z represents z mod p. If z is an integer it is over. If
not, one set u = 1+i+j+k and Su € H. Let set 2’ = z 4 Zu which allows one to work modulo
p z =2 and 2’ € Z. That works because p is odd. As desired H/Hp ~ H(F ).

Firstly, the equation became a? + b? + ¢2 +d? = 0 [p], hence exists a non-zero quaternion with
zero norm which is not invertible (if not is norm will be 1). It follows that it engenders a left
ideal non trivial.

Secondly, Hz C H/Hp by the correspondence theorem Hp C Hz C H. Then, p € Hz,3z' such
that p = zz’. By using the norm, we can conclude that a®> 4+ b>+c?+d?> = N(z) = N(¢') =p. O

6.3 Implementation of division for the quaternion ring

Before implement the Euclidean division in Hpz, we need to prove that the subring is Euclidean.
Let a € A, 8 € A{0}. We perform the Euclidean division of a by b and we pose af~! = x +yI +

zJ +tK € H. As before, 3m € Z such as |z — §|. In fact, the elements quaternion of Hurwitz

are either integers or half-integers. We pose ¢ = Ww, however, m, n, h,l must have the

same parity, the one which is already fixed by m. It follows the inequities |y, z,t —n, h,1/2| < %

N@f™ — ) < (o= 2P 4 (= 2P+ (= g+ (- 5P < 4 o <1
This proves the Euclidean division for the quaternion ring, which exploits the same principle
as previous divisions. We begin with the definition of the ring. H. < i,j,k > = QuaternionAl-
gebra(QQ, -1, -1) which is a built-in SageMath function that defines the Hamilton quaternion
algebra. The Euclidean division is more sensitive given the parity problems because all the co-
efficients must have the same parity (especially for half-integers). In fact, if the division in Z[i]
gave us the choice between 4 neighbours, here it is 81 differents neighbours that we must analyse
to choose one which respects the properties of the ring but also the minimality of the norm.

Finding a, b, ¢, d whose respects the equation is no more difficult. On the one hand, we will
show that the equation a® + b + 1 = 0 [p] has a solution. Indeed, we saw that there are ]%1
squares in I, hence as many solutions for an equation —1 — 22 € Z/pZ. Tt follows that the
intersection isn’t empty. It exists y such that 4> = —1 — 22 in F,. Otherwise, said it exists
a,b € pZ such as a®> +b> +1 = (1 +al + bJ)(1 — al —bJ) € pA. One considers the ideal
I =Ap+ A(1+al +bJ). We have seen that all left ideal is principal hence it exists 5 such that
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P = Ap and Ap = pA C I C A because p € I. It exists a such that p = af. We must show that
these elements are not invertible if not, the ideal is all the ring and that is impossible. If « is
invertible 8 = a~'p and then p | (1 +al +bJ). That implies that (1 + al +bJ) = p[%m]
and particular that px = 2 impossible because p > 2 by hypothesis. If 5 is invertible p = A and
then 1 = q(1 4 al +bJ) + ¢'p, by multiply by (1 + aI + bJ) it follows that (1 + al +bJ) = ¢'p
and that impossible. As required N(p) = N(a)N(B) = p?. As before, we can use the algorithm
of Cipolla which find a solution effectively.

On the other hand, p | a®> +b? + 1 = (1 + ai + bj)(1 — ai — bj) and so ged(a + bi + cj, p) is not
trivial. We have ged(1 4 ai + bj, p) = a + bi + ¢j + dk passed by the norm we can conclude that
p=a’+b>+c2+d>.

Example 6.3.1.

2613108101432 + 2613108101432 + 31442698192 + 0% = 136576565427876657653659.

We will end up with an interesting result that allows one to count the number of quadruplets
(a,b,c,d) such as p = a® + b + ¢® 4 d?. If the sum of two squares is unique to permutation and
sign near, the sum of four squares offers more results. There is a theorem allows to show the
number in a way that describes p as the sum of 4 squares.

Theorem 6.3.2 (Jacobi’s Theorem). Let p is an integer. We pose r4(p) the number of ways to
represent n as the sum of four squares.

ra(n) =8 Z m.

mln
4lm

Example 6.3.3. Let p = 12, its divisors are {1,2,3,4,6,12}, we remove those divisible by 4,
{1,2,3,6}. We have 8 x 12 = 96 possibilities : the quartets (2,2,2,0) and (3,1,0,2) up to a
permutation and a sign.

Thus, when our algorithm finds a solution, it is only one among the others.
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7 Conclusion

Writing a prime integer in a quadratic form is a vast research topic, and our work only addresses
a tiny fraction of it. This illustrates how theoretical algebraic structures can help solve and im-
plement a concrete problem. Indeed, we have seen that each quadratic form is closely associated
with a ring from which essential algebraic properties can be derived: Z[i] for p = a® + b%, more
generally Z[v/—d] for a? + db?, and H for p = a® + b? + ¢® + d?. This allowed us to examine
certain properties for each ring and to generalize when studying more general equations. The
key idea is that the ring must be Euclidean to find suitable pairs/quadruples integers, but there
are many other ways to solve equations for example, using class field theory, which is entirely
beyond the scope here. Implementing an efficient algorithm is only possible thanks to a deep
understanding of the algebraic properties of each ring. Although there are some specificities, we
have seen that the algorithms are not fundamentally different from each other and follow the
same general protocol.
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8 Annexe

8.1 Algorithms

Representation of a prime number as a? + b?

##Euclidean division for Gauss integers.
K.<i> = NumberField(x~2 + 1)
def division_euclidienne(x,y):

z=x/y

zr=z.real ()

zi=z.imag ()

voisins_proches = [
K(a_ + b_*i)
for a_ in [(floor(zr)), (ceil(zr))]
for b_ in [(floor(zi)), (ceil(zi))]

q = min(voisins_proches, key=lambda q: abs(x - y*q) *%*2)
r=x-g*y
return r,q,z, voisins_proches

division_euclidienne (K (12 + 7x*i) ,K(9 + 4xi))

=
Q
N
<
Il

division_euclidienne (K(123+ 74x*i) ,K(17-7*1i))

~
Q
N
<
1

q,r,z, V

#gcd (this algorithm is the same for all the rings).
def pgcd(a,b):
while b !=0:
r, q, z, v = division_euclidienne(a,b)
a, b =5b, r
return a

#Cipolla’s algorithm.
def cipolla(mn, p):
n = Integer(n) % p
p = Integer (p)
if p == 2:
return n

if pow(n, (p - 1)//2, p) !'= 1:
return None

a = Integer (0)
while True:
w2 = Integer((a*a - n) % p)

if w2 !'= 0 and pow(w2, (p - 1)//2, p) == p - 1
break
a += 1
K = GF(p)
PR = PolynomialRing (K, ’w’)
w = PR.gen()
Q = PR.quotient (wx*2 - PR(w2), ’w’)
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22 ge = Q.gen()
23

24 elem = Q(a) + ge

25 res = elemx*x((p + 1)//2)

26

27 cO0 = Integer(res.lift () [0])

28 root = Integer(cO % p)

29 return root

1 |#find a,b

2 |def sum_of_two_squares (p):

3 p = Integer (p)

4 if not is_prime(p):

5 raise ValueError ("pymust,congruent to, 1l modulo 4")
6 if p % 4 !'= 1:

7 raise ValueError ("p,congruent to, 1l modulo 4")
8

9

x = cipolla(p- 1, p)
if x is None:
raise ValueError("Cipollareturn ,None")

e e
w N = O

14 ZI.<i> = GaussianIntegers ()
15 alpha = ZI(x) + i

16 pi = gcd(ZI(p), alpha)

17

18

19 a = Integer(pi.real())

20 b = Integer (pi.imag())

21 return (abs(a), abs(b))

Representation of a prime number as a? + 2b?

1 [#Euclidean division

2 |K.<sqrt_m2> = QuadraticField (-2)

3

4 |def division_euclidienne(x, y):

5 z =x /3

6 a, b = z.polynomial().coefficients (sparse=False)
7 zr, zi = a, b

8 voisins_proches = [

9 K(a_ + b_*sqrt_m2)
10 for a_ in [floor(zr), ceil(zr)]
11 for b_ in [floor(zi), ceil(zi)]
12 ]
13 q = min(voisins_proches, key=lambda q_: abs(x - y*q_) **2)
14 r = X - Qq*y
15

16 return q,r , z, voisins_proches

The ged and Cipolla’s algorithm are the same

1 |def find_ab(p):

2 z = cipolla(-2,p)

3 d=pgcd(p,z+sqrt_m2)

4 a,b=tuple(d[j] for j in range(2))

5 return a,b
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p=5830201427311259029681742878148
while p%8!=1

p=next_prime (p)

a,b=find_ab(p)
print (f"{a}~2,+,2%{b}~2,=,{p}")

Representation of a prime number as a’® — ab + b?

K =

CyclotomicField (3)

omega = K.gen()

def

def

eisenstein_proche(z):

zc = CC(z)

u = float(zc.real())

v = float(zc.imag())
sqrt3 = 3%*%0.5

y = 2.0 x v / sqrt3

X = u + v / sqrt3

m = int(round(x))

n int (round (y))

return K(m) + K(n)*omega

eisenstein_euclidean_division(alpha, beta):
if beta == 0:
raise ZeroDivisionError("divisionypar,z ro_ dans Zomega")

z = alpha / beta

q eisenstein_proche (z)
r alpha - betax*xq
return q,r

K =

CyclotomicField (3)

omega = K.gen()
sigma=K.automorphisms () [1]
C=((1+1/(1+2*omega)) /2, (1-1/(1+2%omega))/2, 1/(1+2*omega))

def

def

re_im(q):
gb=sigma(q)
return (C[0]*q+C[1]1*qb, C[2]1*(q-qb))

trouver_ab (p):

if p%3'=1
print ("Erreur")
return

z = cipolla (-3, p)

Z = K(z) - 2xomega -1
print (Zxsigma (Z))

g = pgcd(p, Z)
a,b=re_im(g)

return a,b

Representation of a prime number as a? + b? + ¢ 4 d?

H.<i,j,k> = QuaternionAlgebra(QQ, -1, -1)
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from itertools import product
def nearest_hurwitz(q):
coeffs = list(vector(QQ, q))

int_coeffs = [round(c) for ¢ in coeffs]

g_int = H(int_coeffs)

half_coeffs = [round(c - QQ(1)/2) + QQ(1)/2 for c in coeffs]
10 gq_half = H(half_coeffs)

11

© 0 N O s W

12 def norm2(ql, q2):

13 cl = list(vector(QQ, ql1))

14 c2 = list(vector(QQ, qg2))

15 return sum((cl[i] - c2[i])~2 for i in range (4))
16

17 if norm2(q, g_int) <= norm2(q, q_half):

18 return q_int

19 else:

20 return q_half

21
22
23
24 |def division_hurwitz(a, b):

25 q = b.inverse() * a

26 g=nearest_hurwitz (q)

27 r = a - bxq

28 min_norme = r.reduced_norm()

29

30 deltas_val = [QQ(-1)/2, QQ(0), QQ(1)/2]

31 for deltas in product(deltas_val, repeat=4):
32 coeffs_c = [ql[j] + deltas[j] for j in range (4)]
33 tot = 0

34 for ¢ in coeffs_c:

35 tot += floor(2 * c)

36 parite = tot % 2

37 for idx in range (4):

38 if floor(2 * coeffs_c[idx]) % 2 != parite:
39 if parite == 1:

40 coeffs_c[idx] += QQ(1) / 2
41 else:

42 coeffs_cl[idx] += -QQ(1) / 2
43 q_c = H(coeffs_c)

44 r_c = a - b*xq_c

45 nr = r_c.reduced_norm()

46 if nr < min_norme:

47 min_norme = nr

48 q = q_c

49 r = r_c

50

51 return q, r, r.reduced_norm()

1 |def trouver_abcd(p):

2 x,y=trouver_xy (p)

3 print (x,y)

4 alpha = H([1, x, y, 01)

5 beta = H([p, 0, 0, 01)

6 d = pgcd(alpha, beta)

7 print (d)

8 a, b, ¢, d = tuple(d[j] for j in range(4))

25




return a,

b,

C,

d
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Résumé

This report explores ring theory through the representation of a prime number p in quadratic
forms: the two-square theorem, its related problems, and the four-square problem. Each
equation is associated with a ring whose properties allow both the theoretical resolution of the
theorem and its practical implementation to quickly find solutions.
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