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Abstract

1. There exist finitely generated infinite boundedly simple groups of arbitrarily large
commutator width;

2. there exists a finitely generated (infinite) simple group of infinite commutator width;

3. such groups can be constructed with decidable word and conjugacy problems.
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Boundedly simple groups
Definition of bounded simplicity

Notation: x¥ = yxy~" (the conjugate of x by y).

Definition

A group G is n-boundedly simple if for every two elements g,h€ G\ {1},
(3m<n) (3oy,...,o0mei£1}) (3x1,.... xm € G) (g = (A7) ... (H7m)™).

A group G is boundedly simple if it is n-boundedly simple for some n€ N.
Every boundedly simple group is simple, but the converse is not generally true
(e.g., it is not true for an infinite alternating group).

Remark
The property of being n-boundedly simple is first-order, but the property of being
simple is not.
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Preliminaries

Questions about bounded simplicity

Can a finitely generated boundedly simple group be infinite?
Can it have free non-cyclic subgroups?
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Ivanov’s and Osin’s theorems

Theorem (S. lvanov, 1989)

For every big enough prime p (p > 1078), there exists a 2-generated infinite group of
exponent p, in which there are exactly p distinct conjugacy classes, and therefore, every
subgroup of order p has elements from all of these classes.

The group whose existence is stated in this theorem is (p— 1)-boundedly simple.
Ivanov’s proof uses techniques of graded diagrams.

Theorem (D. Osin, 2004)

Any countable group G can be embedded into a 2-generated group C such that in C each
two elements of the same order are conjugate, and every finite-order element of C is
conjugate to an element of G.

Osin’s theorem shows that every countable torsion-free group can be embedded into a
2-generated 1-boundedly simple group.

(1-boundedly simple means all nontrivial elements are conjugate.)

Osin’s proof uses theory of relatively hyperbolic groups.
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Commutator width
Definition of commutator width

Notation: [x,y] = xyx~'y~" (the commutator of x and y).
Definition
If G is a group, then the commutator length of an element g € [G, G|, denoted
clg(g), is the minimal n such that there exist elements xi,..., X, 1,...,¥Yn € G
such that

g= [X1:Y1]"'[Xny}/n]'

The commutator width of a group G, denoted cw(G), is the maximum of the
commutator lengths of elements of [G, G].
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Commutator width
Questions about commutator width of simple groups

1951 Oystein Ore conjectured that all elements in every non-abelian finite simple
group are commutators. (In terms of commutator width: the commutator
width of every finite simple group is 1.) This question still remains open.

1977 Martin Isaacs noted that no non-abelian simple group, finite or infinite, was
known to contain a non-commutator (i.e., to have commutator width greater
than 1).
1999 Valerij Bardakov posed the following question (Problem 14.13 in The
Kourovka Notebook):
Does there exist a (finitely presented) simple group of infinite
commutator width?
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Work of Barge, Gambaudo, and Ghys

Simple groups of infinite commutator width, realised as groups of certain surface
diffeomorphisms, have been studied in:

» Jean Barge and Etienne Ghys, Cocycles d’Euler et de Maslov, Math. Ann.
294 (1992), no. 2, 235-265;

» Jean-Marc Gambaudo and Etienne Ghys, Commutators and diffeomorphisms
of surfaces, Ergod. Th. & Dynam. Sys. 24 (2004), 1591-1617.

Those groups are not finitely generated, and the infinity of their commutator widths
is established by constructing non-trivial homogeneous quasi-morphisms.
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Boundedly simple groups

Theorem 1

For every n€ N, there exists a torsion-free 2-generated simple group G with a
rank-2 free subgroup H such that:

1. forevery g G and every x € G\ {1}, there exist y1, ..., Yont2 in G such
that g = x¥1 ... xY2r+2; and

2. forevery he H\ {1} and for every m>2n, clg(h™) > n.

In particular, G is (2n+ 2)-boundedly simple, and n+1 <cw(G) <2n+2.
Moreover, there exists such a group G with decidable word and conjugacy
problems.
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Infinite commutator width

Theorem 2
There exists a torsion-free 2-generated simple group G with a rank-2 free
subgroup H such that for every he H\ {1},
. ™
nﬂrﬂmclg(h ) = —+oo0.
In particular, G has infinite commutator width.

Moreover, there exists such a group G with decidable word and conjugacy
problems.
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Outline of the proof Construction of a presentation

Construction of a f.g. simple group of infinite c.w. (slide 1 of 3)

Let A = {a, b}.
Let {An}n=45,,. and {unln=456,.. be sequences of sufficiently small positive
numbers tending to 0 sufficiently fast, e.g., A, = 101? and u,= 10010,72.

Let wy, ws, wg, ... be the list of all reduced group words over {a, b} ordered
deg-lex, s0 0 = [wy| <|ws| < |wg| <....
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Outline of the proof Construction of a presentation

Construction of a f.g. simple group of infinite c.w. (slide 2 of 3)
Let for every n=4,5,6,...,

_ .. Unja Unn —1 _ . Unntd Un2n ;. —1
Tan=W, ...w,"'a , Io,n = W, W, h

where {r, »} and {u,;} are families of group words over {a, b} such that:
1. forevery n=4,5,6,...,

1.1 up1| = |up2| = -+ =|un2nl, and hence |ran| = |1yl
1.2 1+n|Wn|SAn|ra,n|a

1.3 |up1] < |Upy1,1] @nd pnlranl < ol ranitl;

2. the family {upi}n=45¢,...i=1,..2n Satisfies the following small-cancellation

condition: if u7} = prsqy and Uy, = p2sqe (01,072 € {£1}), then either

(n1,i,04,p1,G1) = (N2, l2, 02, P2, Q2),
or
Wy rang | 2= 181 < tny|ranl;

3. if s is a common subword of up; and of the concatenation of several copies of

at? and b*2, then

Is| < .un|ra,n| = .Unlrb,n|~



Outline of the proof Construction of a presentation

Construction of a f.g. simple group of infinite c.w. (slide 3 of 3)
Inductively construct a presentation (a,b|| % ) as follows:
1. Ro=R1=%Ro=%R3=0,
2. Forn=4,5,..., if the relation ‘w, = 1’ is a consequence of the relations
‘r=1,re %1, then define Z, = #n—1;
otherwise, define %, = %Zn—1U{ran, ron}.
Let 2 = U2 %n.
Let G be the group presented by (a,b || Z ), and H be the subgroup generated by
[8®] g and [P?]. Then:
0. Gis generated by [a]g and [b]a,
1. Gis torsion-free,
2. His a free (sub)group freely generated by [a]% and [b]Z,
3. forevery he H\ {1}, nﬂTchG(h”) =400,
4. @G has decidable word and conjugacy problems if the family of group words

{r«n} is recursive.
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Sl
Van Kampen diagrams of spheres with handles

If w is a group word and [w]g € [G, G], then to show that clg([w]g) = n, itis
enough to show that there is no van Kampen diagram A on a sphere with less
than n handles and a hole such that the label of A is w.

If “cancellations are small,” this can be proved by contradiction using

Euler characteristic and Hall's Lemma.
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Outline of the proof Main ideas

Hall's Lemma

If X is a set, then || X|| denotes that cardinality of X, and &2 (X) denotes the set of
all subsets of X (the power set).
Lemma (Philip Hall, 1935)

Let A and B be finite sets. Let f: A— 22 (B). Let F: 2 (A) — 2 (B) be defined
by F(X) =,y f(x) for all X C A. Then the following are equivalent:

(I) There exists an injection h: A— B such that for each x € A, h(x) € f(x).
(1) Foreach X C A, [IXI| <IIF(X)II.
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Outline of the proof Main ideas

Corollary of Hall’'s Lemma

Corollary

Let A and B be two finite sets. Let f: A— £ (B) and c: B— N. Let

F:2(A)— 2 (B) be defined by F(X) =,y f(x) forall X C A. Then the
following are equivalent:

(I) There exists a function h: A— B such that:

1. foreach x € A, h(x) € f(x), and
2. foreachyeB, ||h~'(y)ll < ce(y).

() Foreach X C A, |IX|| < Z c(y).
yeF(X)

(Ill) Foreach Y C B, |[{x|f(x)C Y} SZc(y)
yey
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One particular result

Theorem
There exists a 4-boundedly simple group generated by two non-commutators.
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C’est tout, merci de votre attention.
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