Construction of certain boundedly simple groups and simple groups of infinite commutator width Small-cancellation approach

Alexey Muranov

Institut Camille Jordan, Lyon 1

5 October 2006

Abstract

- 1. There exist finitely generated infinite *boundedly* simple groups of arbitrarily large commutator width;
- 2. there exists a finitely generated (infinite) simple group of infinite commutator width;
- 3. such groups can be constructed with decidable word and conjugacy problems.

Outline

Preliminaries

Boundedly simple groups Commutator width

New results

Boundedly simple groups of large commutator width Simple groups of infinite commutator width

Outline of the proof

Construction of a presentation Main ideas Illustration of the method

Definition of bounded simplicity

Notation: $x^y = yxy^{-1}$ (the conjugate of x by y).

Definition

A group G is *n*-boundedly simple if for every two elements $g, h \in G \setminus \{1\}$,

$$\left(\exists m \leq n\right) \left(\exists \sigma_1, \ldots, \sigma_m \in \{\pm 1\}\right) \left(\exists x_1, \ldots, x_m \in G\right) \left(g = (h^{\sigma_1})^{x_1} \ldots (h^{\sigma_m})^{x_m}\right).$$

A group *G* is *boundedly simple* if it is *n*-boundedly simple for some $n \in \mathbb{N}$.

Every boundedly simple group is simple, but the converse is not generally true (e.g., it is not true for an infinite alternating group).

Remark

The property of being *n*-boundedly simple is first-order, but the property of being simple is not.

Questions about bounded simplicity

Can a finitely generated boundedly simple group be infinite? Can it have free non-cyclic subgroups?

Ivanov's and Osin's theorems

Theorem (S. Ivanov, 1989)

For every big enough prime $p(p > 10^{78})$, there exists a 2-generated infinite group of exponent p, in which there are exactly p distinct conjugacy classes, and therefore, every subgroup of order p has elements from all of these classes.

The group whose existence is stated in this theorem is (p-1)-boundedly simple. Ivanov's proof uses techniques of graded diagrams.

Theorem (D. Osin, 2004)

Any countable group G can be embedded into a 2-generated group C such that in C each two elements of the same order are conjugate, and every finite-order element of C is conjugate to an element of G.

Osin's theorem shows that every countable torsion-free group can be embedded into a 2-generated 1-boundedly simple group.

(1-boundedly simple means all nontrivial elements are conjugate.)

Osin's proof uses theory of relatively hyperbolic groups.

Definition of commutator width

Notation:
$$[x, y] = xyx^{-1}y^{-1}$$
 (the commutator of x and y).

Definition

If *G* is a group, then the *commutator length* of an element $g \in [G, G]$, denoted $cl_G(g)$, is the minimal *n* such that there exist elements $x_1, \ldots, x_n, y_1, \ldots, y_n \in G$ such that

$$g = [x_1, y_1] \dots [x_n, y_n].$$

The *commutator width* of a group G, denoted cw(G), is the maximum of the commutator lengths of elements of [G, G].

Questions about commutator width of simple groups

- 1951 Oystein Ore conjectured that all elements in every non-abelian finite simple group are commutators. (In terms of commutator width: the commutator width of every finite simple group is 1.) This question still remains open.
- 1977 Martin Isaacs noted that no non-abelian simple group, finite or infinite, was known to contain a non-commutator (i.e., to have commutator width greater than 1).
- 1999 Valerij Bardakov posed the following question (Problem 14.13 in The Kourovka Notebook):

Does there exist a (finitely presented) simple group of infinite commutator width?

Work of Barge, Gambaudo, and Ghys

Simple groups of infinite commutator width, realised as groups of certain surface diffeomorphisms, have been studied in:

- Jean Barge and Étienne Ghys, *Cocycles d'Euler et de Maslov*, Math. Ann.
 294 (1992), no. 2, 235–265;
- Jean-Marc Gambaudo and Étienne Ghys, Commutators and diffeomorphisms of surfaces, Ergod. Th. & Dynam. Sys. 24 (2004), 1591–1617.

Those groups are not finitely generated, and the infinity of their commutator widths is established by constructing *non-trivial homogeneous quasi-morphisms*.

Boundedly simple groups

Theorem 1

For every $n \in \mathbb{N}$, there exists a torsion-free 2-generated simple group G with a rank-2 free subgroup H such that:

- 1. for every $g \in G$ and every $x \in G \setminus \{1\}$, there exist y_1, \ldots, y_{2n+2} in G such that $g = x^{y_1} \ldots x^{y_{2n+2}}$; and
- 2. for every $h \in H \setminus \{1\}$ and for every $m \ge 2n$, $cl_G(h^m) > n$.

In particular, G is (2n+2)-boundedly simple, and $n+1 \le cw(G) \le 2n+2$. Moreover, there exists such a group G with decidable word and conjugacy problems.

Infinite commutator width

Theorem 2

There exists a torsion-free 2-generated simple group G with a rank-2 free subgroup H such that for every $h \in H \setminus \{1\}$,

$$\lim_{n\to+\infty} \operatorname{cl}_G(h^n) = +\infty.$$

In particular, G has infinite commutator width. Moreover, there exists such a group G with decidable word and conjugacy problems. Construction of a f.g. simple group of infinite c.w. (slide 1 of 3)

Let $\mathfrak{A} = \{a, b\}$.

Let $\{\lambda_n\}_{n=4,5,6,...}$ and $\{\mu_n\}_{n=4,5,6,...}$ be sequences of sufficiently small positive numbers tending to 0 sufficiently fast, e.g., $\lambda_n = \frac{1}{100n}$ and $\mu_n = \frac{1}{1000n^2}$.

Let w_4, w_5, w_6, \ldots be the list of all reduced group words over $\{a, b\}$ ordered deg-lex, so $0 = |w_4| < |w_5| \le |w_6| \le \ldots$

Construction of a f.g. simple group of infinite c.w. (slide 2 of 3) Let for every n = 4, 5, 6, ...,

$$r_{a,n} = w_n^{u_{n,1}} \dots w_n^{u_{n,n}} a^{-1}, \qquad r_{b,n} = w_n^{u_{n,n+1}} \dots w_n^{u_{n,2n}} b^{-1}$$

where $\{r_{x,n}\}$ and $\{u_{n,i}\}$ are families of group words over $\{a, b\}$ such that:

1. for every
$$n = 4, 5, 6, ...,$$

1.1 $|u_{n,1}| = |u_{n,2}| = \cdots = |u_{n,2n}|$, and hence $|r_{a,n}| = |r_{b,n}|$,
1.2 $1 + n|w_n| \le \lambda_n |r_{a,n}|$,
1.3 $|u_{n,1}| \le |u_{n+1,1}|$ and $\mu_n |r_{a,n}| \le \mu_{n+1} |r_{a,n+1}|$;

2. the family $\{u_{ni}\}_{n=4,5,6,\ldots;i=1,\ldots,2n}$ satisfies the following small-cancellation condition: if $u_{n_1i_1}^{\sigma_1} = p_1 sq_1$ and $u_{n_2i_2}^{\sigma_2} = p_2 sq_2$ ($\sigma_1, \sigma_2 \in \{\pm 1\}$), then either $(n_1, i_1, \sigma_1, p_1, q_1) = (n_2, i_2, \sigma_2, p_2, q_2)$,

or

$$\mu_{n_1}|r_{a,n_1}| \ge |s| \le \mu_{n_2}|r_{a,n_2}|;$$

if s is a common subword of u_{n,i} and of the concatenation of several copies of a^{±2} and b^{±2}, then

$$|\mathbf{s}| \leq \mu_n |\mathbf{r}_{a,n}| = \mu_n |\mathbf{r}_{b,n}|.$$

Construction of a f.g. simple group of infinite c.w. (slide 3 of 3) Inductively construct a presentation $\langle a, b || \mathcal{R} \rangle$ as follows:

1.
$$\mathscr{R}_0 = \mathscr{R}_1 = \mathscr{R}_2 = \mathscr{R}_3 = \emptyset$$
,

2. For n = 4, 5, ..., if the relation 'w_n = 1' is a consequence of the relations 'r = 1', r ∈ R_{n-1}, then define R_n = R_{n-1}; otherwise, define R_n = R_{n-1} ∪ {r_{a,n}, r_{b,n}}.
Let R = []^{+∞}_{n=4} R_n.

Let *G* be the group presented by $\langle a, b || \mathcal{R} \rangle$, and *H* be the subgroup generated by $[a^2]_G$ and $[b^2]_G$. Then:

- 0. *G* is generated by $[a]_G$ and $[b]_G$,
- 1. G is torsion-free,
- 2. *H* is a free (sub)group freely generated by $[a]_G^2$ and $[b]_G^2$,
- 3. for every $h \in H \setminus \{1\}$, $\lim_{n \to +\infty} cl_G(h^n) = +\infty$,
- 4. *G* has decidable word and conjugacy problems if the family of group words $\{r_{x,n}\}$ is recursive.

Main ideas

Van Kampen diagrams of spheres with handles

- If w is a group word and $[w]_G \in [G, G]$, then to show that $cl_G([w]_G) \ge n$, it is enough to show that there is no van Kampen diagram Δ on a sphere with less than *n* handles and a hole such that the label of $\partial \Delta$ is *w*.
- If "cancellations are small," this can be proved by contradiction using Euler characteristic and Hall's Lemma.

Hall's Lemma

If X is a set, then ||X|| denotes that cardinality of X, and $\mathcal{P}(X)$ denotes the set of all subsets of X (the power set).

Lemma (Philip Hall, 1935)

Let A and B be finite sets. Let $f: A \to \mathscr{P}(B)$. Let $F: \mathscr{P}(A) \to \mathscr{P}(B)$ be defined by $F(X) = \bigcup_{x \in Y} f(x)$ for all $X \subset A$. Then the following are equivalent:

- (I) There exists an injection h: $A \rightarrow B$ such that for each $x \in A$, $h(x) \in f(x)$.
- (II) For each $X \subset A$, $||X|| \leq ||F(X)||$.

Main ideas

Corollary of Hall's Lemma

Corollary

Let A and B be two finite sets. Let $f: A \to \mathscr{P}(B)$ and $c: B \to \mathbb{N}$. Let $F: \mathscr{P}(A) \to \mathscr{P}(B)$ be defined by $F(X) = \bigcup_{x \in X} f(x)$ for all $X \subset A$. Then the following are equivalent:

- (I) There exists a function $h: A \rightarrow B$ such that:
 - 1. for each $x \in A$, $h(x) \in f(x)$, and
 - 2. for each $y \in B$, $||h^{-1}(y)|| \le c(y)$.

(II) For each
$$X \subset A$$
, $||X|| \leq \sum_{y \in F(X)} c(y)$.

(III) For each $Y \subset B$, $||\{x \mid f(x) \subset Y\}|| \le \sum_{y \in Y} c(y)$.

Illustration of the method

One particular result

Theorem

There exists a 4-boundedly simple group generated by two non-commutators.

C'est tout, merci de votre attention.