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1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1
n }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1); 1 denotes the
empty word.
∼ is the equivalence relation generated by aia−1

i ∼ a−1
i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).
Every w ∈ A∗ has a unique reduced form, denoted w , (clearly
w = w in FA, and w is the shortest word with this property). We
also say w is a reduced word.
Again, 1 denotes the (class of the) empty word, and | · | the
(shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
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The universal property

The universal property: given a group G and a mapping
ϕ : A→ G, there exists a unique group homomorphism
Φ: FA → G such that the diagram

A
ϕ //

ι

��

G

FA

∃!Φ

>>~
~

~
~

commutes (where ι is the inclusion map).
Every group is a quotient of a free group

G = 〈a1, . . . , an | r1, . . . , rm〉 = FA/� r1, . . . , rm � .

So, the lattice of (normal) subgroups of FA is very important.
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Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vector
space is like this,

• Every group G is a quotient
of a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroup
of a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata
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Stallings automata

Definition
A Stallings automata is a finite A-labeled oriented graph with a
distinguished vertex, (X , v), such that:

1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same

vertex.

NO : •

a

��

b

����
��
��
��
��
��
�

• c // •
a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of
subgroups of FA.



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of
subgroups of FA.



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of
subgroups of FA.



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Reading the subgroup from the automata

Definition

To any given (Stallings) automaton (X , v), we associate its
fundamental group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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A basis for π(X , v)

Proposition

For every Stallings automaton (X , v), the group π(X , v) is free of rank
rk(π(X , v)) = 1− |VX |+ |EX |.

Proof:
Take a maximal tree T in X .
Write T [p, q] for the geodesic (i.e. the unique reduced path) in T
from p to q.
For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs
to π(X , v).
Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).
And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �
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a
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· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)

If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are
reduced words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings

automaton, denoted Γ(H).
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By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
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Independence from the process

Proposition

The automaton Γ(H) does not depend on the sequence of foldings

Proposition

The automaton Γ(H) does not depend on the generators of H.

Proofs can be made completely graphical and are not difficult.

This gives a very useful bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)
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First results
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4 Algebraic extensions and Takahasi’s theorem
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Computing the set of algebraic extensions
The algebraic closure
Pro-V closures
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Nielsen-Schreier Theorem

Theorem (Nielsen-Schreier)

Every subgroup of FA is free.

Proof:
Let H = 〈w1, . . . , wp〉 6f .g. FA.
By the bijection, we know that H = π(Γ(H)).
By the previous observation, H is free.
Everything extends easily to the infinitely generated case
(considering infinite graphs). �

The original proof (1920’s) was combinatorial and much more
technical.
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Membership & containment

(Membership)

Does w belong to H = 〈w1, . . . , wm〉 ?

Construct Γ(H),
Check whether w is readable as a closed path in Γ(H) (at the
basepoint).

(Containment)

Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),
Check whether all the wi ’s are readable as closed paths in Γ(H)
(at the basepoint).
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Basis & conjugacy

(Computing a basis)

Given H = 〈w1, . . . , wm〉, find a basis for H.

Construct Γ(H),
Choose a maximal tree,
Read the corresponding basis.

(Conjugacy)

Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e.
Hx = K for some x ∈ FA) ?

Construct Γ(H) and Γ(K ),
Check whether they are “equal" up to the basepoint.
Every path between the two basepoints spells a valid x .
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Finite index subgroups

(Finite index)

Given H = 〈w1, . . . , wm〉, is H 6f .i. FA ? If yes, find a set of coset
representatives.

→ For u ∈ VΓ(H), choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = π(Γ(H), •) · p = H · p

is a coset of FA/H.
→ FA/H is in bijection with the set of vertices of the “extended Γ(H)”

Construct Γ(H),
Check whether Γ(H) is complete (i.e. every letter going in and
out of every vertex),
Choose a maximal tree T in Γ(H),
{T [•, v ] | v ∈ VΓ(H)} is a set of coset reps. for H 6f .i. FA.
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More on finite index

(Schreier index formula)

If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|
= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)

Every f.g. subgroup H 6fg FA is a free factor of a finite index one,
H 6ff H ∗ L 6f .i. FA.

Proof:
Compute Γ(H) from a generating set,
Locate the “missing” heads and tails of edges (in equal number
for every letter),
Add new edges until having a complete automata (Y , v),
Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �
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Pull-back of automata

Definition

The pull-back of two Stallings automata, (X , v) and (Y , w), is the
cartesian product (X × Y , (v , w)) (respecting labels). This is not in
general connected, neither without degree 1 vertices, but it is folded.

Theorem ((H. Neumann)-Stallings)

For every f.g. subgroups H, K 6fg FA, Γ(H ∩ K ) coincides with the
connected component of Γ(H)× Γ(K ) containing the basepoint, after
trimming.

This gives a very nice and quick algorithm to compute intersections:
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Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.
To compute a basis for H ∩ K :

• a // •
b
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H ∩ K =? Clear that b2 ∈ H, but.... something else?
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Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of FA is again finitely
generated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)

r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)

r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).
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Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite
difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is strongly
connected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite
difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is strongly
connected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite
difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is strongly
connected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite
difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is strongly
connected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite
difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is strongly
connected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite
difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is strongly
connected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algebraic applications
First results
Finite index subgroups
Intersections

4 Algebraic extensions and Takahasi’s theorem
Takahasi’s theorem
Computing the set of algebraic extensions
The algebraic closure
Pro-V closures
Other closures



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algebraic applications
First results
Finite index subgroups
Intersections

4 Algebraic extensions and Takahasi’s theorem
Takahasi’s theorem
Computing the set of algebraic extensions
The algebraic closure
Pro-V closures
Other closures



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Takahasi’s Theorem

In linear algebra,

F 6 E ⇒ E = F ⊕ L, for some L

(every basis of F can be extended to a basis of E).

In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every H 6fg FA, has a finite set of extensions, {H0 = H, H1, . . . , Hm},
all of them finitely generated and computable, satisfying: for every
H 6 K 6 FA, ∃ i = 0, . . . , m such that H 6 Hi 6ff Hi ∗ L = K .

Let us reformulate this in a different way.
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Free and algebraic extensions

Definition
And extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some
L 6 FA), denoted H 6ff K ;
algebraic if H is not contained in any proper free factor of K (i.e.
H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily
H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily
K 6ff L.
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Reformulation of Takahasi’s theorem

Theorem (Takahasi, 1951)

For every H 6fg FA, the set of algebraic extensions, denoted AE(H),
is finite.

Original proof by Takahasi was combinatorial and technical,

A modern & much simpler graphical proof was given
independently by,

Ventura, Comm. Algebra (1997).
Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
Kapovich-Miasnikov, J. Algebra (2002).

And unified later in Miasnikov-Ventura-Weil, Trends in
Mathematics (2007).
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The modern proof

Proof:
Let us (temporarily) attach some “hairs" to Γ(H) an denote the
resulting (folded) automata by Γ̃(H).
Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1)
adding the appropriate hairs, 2) identifying several vertices to •,
3) folding; (note that adding extra hairs, the result will be the
same if we 4) trim at the end).
Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph
either Γ(H) or some quotient of it (i.e. Γ(H) after identifying
several sets of vertices (∼) and then folding, Γ(H)/ ∼).
The overgroups of H:
O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.
Hence, for every H 6 K , there exists L ∈ O(H) such that
H 6 L 6ff K .
Thus, AE(H) ⊆ O(H) and so, it is finite. �
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Computing AE(H)

Corollary

AE(H) is computable.

Proof:
Compute Γ(H),
Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),
Compute O(H),
Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that
K1 6ff K2 and deleting K2.
The resulting set is AE(H). �

For the cleaning step we need:
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Deciding free-factorness

Proposition

Given H, K 6 FA, it is algorithmically decidable whether H 6ff K .

Proved by:
Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (graphical algorithm, faster but still exponential),
Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in
polynomial time).
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1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

Example: AE(〈aba−1b−1〉)

O(H) = { 〈aba−1b−1〉, 〈a, bab−1〉, 〈b, aba−1〉, 〈ba, ab〉

〈ab−1, aba−1b−1〉, 〈ab−1, a2, b2〉, 〈a, b〉}

But

〈aba−1b−1〉 6ff 〈a, bab−1〉 = 〈a, aba−1b−1〉
〈aba−1b−1〉 6ff 〈b, aba−1〉 = 〈b, aba−1b−1〉
〈aba−1b−1〉 6ff 〈ba, ab〉 = 〈ba, aba−1b−1〉
〈aba−1b−1〉 6ff 〈ab−1, aba−1b−1〉
〈aba−1b−1〉 6ff 〈ab−1, a2, b2〉 = 〈ab−1, a2, aba−1b−1〉

So, AE(H) = {〈aba−1b−1〉, 〈a, b〉}, meaning that the element
aba−1b−1 is almost primitive.
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The algebraic closure

Lemma

If H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

Corollary

Let H 6fg FA. For an intermediate extension H 6 M 6 FA, TFAE:
(a) M is the smallest free factor of FA containing H,
(b) M is the biggest algebraic extension of H in F (A),
(c) M is a maximal element in AE(H),

The unique subgroup M satisfying these conditions is called the
algebraic closure of H in FA, and denoted ClFA(H). In particular,
H 6alg ClFA(H) 6ff FA.
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The algebraic closure

For an arbitrary extension of f.g. subgroups F 6 K 6 FA, we can do
the same relative to K and get:

Corollary

Every extension H 6 K of f.g. subgroups of FA splits, in a unique way,
in an algebraic part and a free factor part, H 6alg ClK (H) 6ff K .

One can define the notions of algebraically closed and algebraically
dense subgroups, in a similar way as in field theory.

Some properties are similar, some other are different...
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Varieties of finite groups

Definition
A variety V of finite groups is a family of finite groups closed under
taking subgroups, quotients, and finite direct products. V is
extension-closed if, for every short exact sequence
1→ G1 → G2 → G3 → 1, G1, G3 ∈ V implies G2 ∈ V.

Examples:
V = all finite groups, (it is ext. closed),
V = the p-groups, where p a prime number (it is ext. closed),
V = the P-groups, where P is a set of primes (it is ext. closed),
V = the nilpotent groups (it is not ext. closed),
V = the solvable groups (it is ext. closed),
V = the abelian groups (it is not ext. closed),
...
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The pro-V topology

Definition
Let V be a variety of finite groups. We can define the pro-V topology
in FA in either of the following equivalent ways:

the smallest topology for which all morphisms FA → G ∈ V are
continuous,
the topology for which the normal subgroups N 6 FA with
F/N ∈ V form a basis of neighborhoods of the unit,
the topology induced by the metric d(x , y) = 2−s(x,y), where
s(x , y) = min{#G | G ∈ V,∃ϕ : FA → G such that ϕ(x) 6= ϕ(y)}.

This topology is interesting for the study of other aspects of the free
group.
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Computing some pro-V closures

Theorem (Ribes-Zalesskiı̆)

If V is an extension-closed variety then, in the pro-V topology, every
free factor of a closed subgroup of FA is again closed.

Corollary

If V is extension-closed then, for every H 6fg FA, H 6alg ClV(H). In
particular, ClV(H) is again finitely generated.

Proposition

There is an algorithm to compute the
pro-p closure,
pro-P closure,
pro-nilpotent closure,

of finitely generated subgroups of FA.

But no algorithm is known for computing pro-solvable closures...
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The malnormal closure

Definition
A subgroup H 6 FA is called malnormal if, for every x ∈ FA, Hx ∩ H
equals either H or 1.

Proposition

It is algorithmically decidable wether a given H 6 FA is
malnormal.
H1, H2 6 FA malnormal⇒ H1 ∩ H2 malnormal.
H 6ff K 6 FA, and K malnormal⇒ H malnormal.

Corollary

The malnormal closure of H (i.e. the smallest extension H 6 K being
malnormal) is an algebraic extension of H and it is computable.
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The inert closure

Definition

A subgroup H 6 FA is called inert if r(H ∩K ) 6 r(K ) for every K 6 FA.

Proposition

H1, H2 6 FA inert⇒ H1 ∩ H2 inert.
H 6ff K 6 FA, and K inert⇒ H inert.

Question
Is the inert closure of H (i.e. the smallest extension H 6 K being
inert) computable ?
Is it algorithmically decidable wether a given H 6 FA is inert ?



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

The inert closure

Definition

A subgroup H 6 FA is called inert if r(H ∩K ) 6 r(K ) for every K 6 FA.

Proposition

H1, H2 6 FA inert⇒ H1 ∩ H2 inert.
H 6ff K 6 FA, and K inert⇒ H inert.

Question
Is the inert closure of H (i.e. the smallest extension H 6 K being
inert) computable ?
Is it algorithmically decidable wether a given H 6 FA is inert ?



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

The inert closure

Definition

A subgroup H 6 FA is called inert if r(H ∩K ) 6 r(K ) for every K 6 FA.

Proposition

H1, H2 6 FA inert⇒ H1 ∩ H2 inert.
H 6ff K 6 FA, and K inert⇒ H inert.

Question
Is the inert closure of H (i.e. the smallest extension H 6 K being
inert) computable ?
Is it algorithmically decidable wether a given H 6 FA is inert ?



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

The inert closure

Definition

A subgroup H 6 FA is called inert if r(H ∩K ) 6 r(K ) for every K 6 FA.

Proposition

H1, H2 6 FA inert⇒ H1 ∩ H2 inert.
H 6ff K 6 FA, and K inert⇒ H inert.

Question
Is the inert closure of H (i.e. the smallest extension H 6 K being
inert) computable ?
Is it algorithmically decidable wether a given H 6 FA is inert ?



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

The inert closure

Definition

A subgroup H 6 FA is called inert if r(H ∩K ) 6 r(K ) for every K 6 FA.

Proposition

H1, H2 6 FA inert⇒ H1 ∩ H2 inert.
H 6ff K 6 FA, and K inert⇒ H inert.

Question
Is the inert closure of H (i.e. the smallest extension H 6 K being
inert) computable ?
Is it algorithmically decidable wether a given H 6 FA is inert ?



1.The free group 2.The bijection Several algebraic applications 3.Algebraic extensions

THANKS


	The friendly and unfriendly free group
	

	The bijection between subgroups and automata
	

	Several algebraic applications
	First results
	Finite index subgroups
	Intersections

	Algebraic extensions and Takahasi's theorem
	Takahasi's theorem
	Computing the set of algebraic extensions
	The algebraic closure
	Pro-V closures
	Other closures


