Automata and algebraic extensions of free groups

Enric Ventura

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

Lyon, December 3, 2008

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Outline

- The friendly and unfriendly free group
- 2 The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

$$|1| = 0$$
, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$

1.The free group

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

1.The free group

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

$$|1| = 0$$
, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$

1.The free group

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

1.The free group

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

1.The free group

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$); 1 denotes the empty word.
- \sim is the equivalence relation generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.
- Again, 1 denotes the (class of the) empty word, and $|\cdot|$ the (shortest) length in F_A :

$$|1| = 0$$
, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

The universal property

The universal property: given a group G and a mapping φ: A → G, there exists a unique group homomorphism
 Φ: F_A → G such that the diagram

commutes (where ι is the inclusion map).

Every group is a quotient of a free group

$$G = \langle a_1, \ldots, a_n | r_1, \ldots, r_m \rangle = F_A / \ll r_1, \ldots, r_m \gg r_m$$

• So, the lattice of (normal) subgroups of F_A is very important.

The universal property

1.The free group

The universal property: given a group G and a mapping φ: A → G, there exists a unique group homomorphism
 Φ: F_A → G such that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} & G \\
\downarrow & & & \\
\downarrow & & & \\
F_A
\end{array}$$

commutes (where ι is the inclusion map).

Every group is a quotient of a free group

$$G = \langle a_1, \ldots, a_n | r_1, \ldots, r_m \rangle = F_A / \ll r_1, \ldots, r_m \gg .$$

• So, the lattice of (normal) subgroups of F_A is very important.

The universal property

The universal property: given a group G and a mapping φ: A → G, there exists a unique group homomorphism
 F_A → G such that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} & G \\
\downarrow & & & \downarrow & \downarrow \\
F_A & & & & & \\
\end{array}$$

commutes (where ι is the inclusion map).

Every group is a quotient of a free group

$$G = \langle a_1, \ldots, a_n | r_1, \ldots, r_m \rangle = F_A / \ll r_1, \ldots, r_m \gg .$$

So, the lattice of (normal) subgroups of F_A is very important.

- Kⁿ f.d. K-vector space
- Every f.d. K-vector
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup
- Not true.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector

•
$$K^n \simeq K^m \Leftrightarrow n = m$$
,

- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup
- Not true.
- The A-Stallings automata

1.The free group

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector

•
$$K^n \simeq K^m \Leftrightarrow n = m$$
,

- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup
- Not true.
- The A-Stallings automata

1.The free group

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,

•
$$K^n \simeq K^m \Leftrightarrow n = m$$
,

- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient
- $F_n \simeq F_m \Leftrightarrow n = m$,
 - (Nielsen-Schreier) Every subgroup
 - Not true.

 - The A-Stallings automata

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,

•
$$K^n \simeq K^m \Leftrightarrow n = m$$
,

Steinitz Lemma.

• $F \leq E \Rightarrow \dim F \leq \dim E$, • Very false: $F_{\aleph_0} \leq F_2$.

A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup
- Not true.
- The A-Stallings automata

1.The free group

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
 - (Nielsen-Schreier) Every subgroup
 - Not true.

 - The A-Stallings automata

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup
- Not true.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup
- Not true.
- The A-Stallings automata

Comparison with linear algebra

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free.
- Not true.
- The A-Stallings automata

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free.
- Not true.
- The A-Stallings automata

1.The free group

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free.
- Not true.
- The A-Stallings automata

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true.
- The A-Stallings automata

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leqslant E \Rightarrow \dim F \leqslant \dim E$, Very false: $F_{\aleph_0} \leqslant F_2$.

- - F_n f.g. free group

- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free.
- Not true.
- A basis The A-Stallings automata

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leqslant E \Rightarrow \dim F \leqslant \dim E$, Very false: $F_{\aleph_0} \leqslant F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free.
- Not true.
- The A-Stallings automata

1.The free group

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. *K*-vector space is like this,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- Steinitz Lemma.
- $F \leqslant E \Rightarrow \dim F \leqslant \dim E$, Very false: $F_{\aleph_0} \leqslant F_2$.
- A basis

- F_n f.g. free group
- Every group G is a quotient of a free group,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free.
- Not true.
- The A-Stallings automata

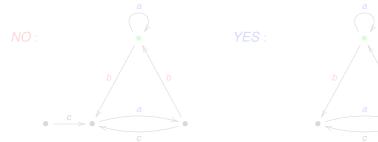
Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

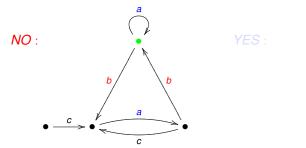
- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

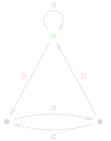


Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

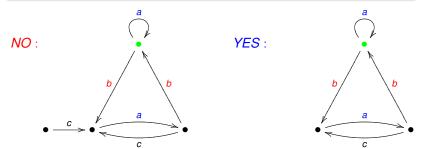




Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected.
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.



In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\}
```

which is crucial for the modern understanding of the lattice of subgroups of F_A .

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\},
```

which is crucial for the modern understanding of the lattice of subgroups of F_A .

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565.

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\},
```

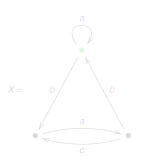
which is crucial for the modern understanding of the lattice of subgroups of F_A .

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

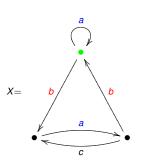
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

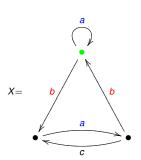
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

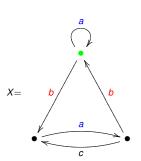
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

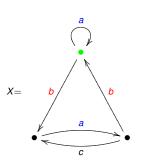
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

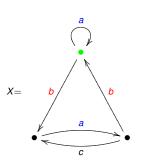
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X,\bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

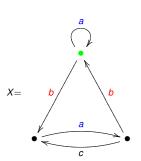
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

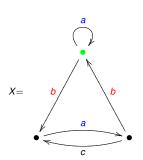
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

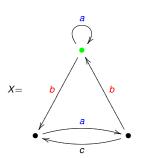
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

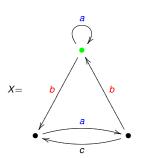
$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .



$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|.$

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- \bullet And, |EX ET| = |EX| |ET|

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

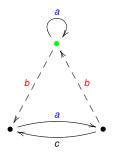
For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, \nu)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square

Proposition

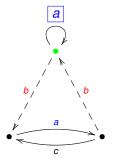
For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, \nu)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square

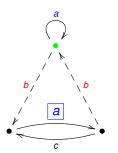


$$H = \langle \rangle$$

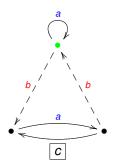
Example



$$H = \langle a, \rangle$$

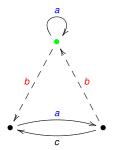


$$H = \langle a, bab, \rangle$$



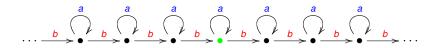
$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

Example



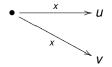
$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$
, $rk(H) = 1 - 3 + 5 = 3$.

Example-2



$$F_{\aleph_0} \simeq H = \langle \dots, b^{-2}ab^2, b^{-1}ab, a, bab^{-1}, b^2ab^{-2}, \dots \rangle \leqslant F_2.$$

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

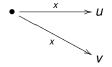


we can fold and identify vertices *u* and *v* to obtain

$$\bullet \longrightarrow U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

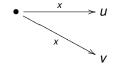


we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{x} U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{x} U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted Γ(H).

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

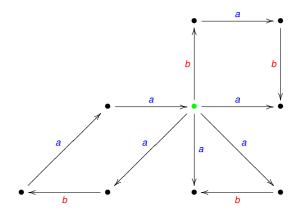
- 1- Draw the flower automaton.

Lemma (Stallings)

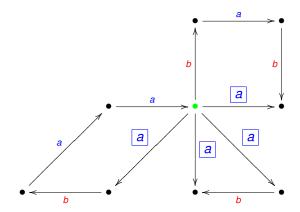
If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

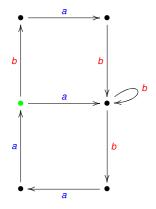
- 1- Draw the flower automaton.
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.



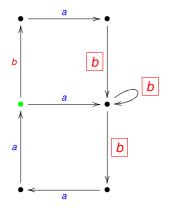
Flower(H)



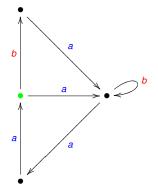
Flower(H)



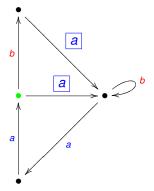
Folding #1



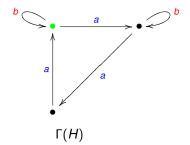
Folding #1.



Folding #2.

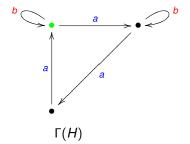


Folding #2.



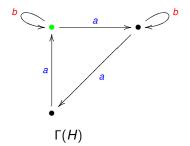
Folding #3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-1} \rangle$



Folding #3.

By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-2} \rangle$$



By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-2} \rangle = \langle b, aba^{-1}, a^3 \rangle$$
.

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proofs can be made completely graphical and are not difficult.

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proofs can be made completely graphical and are not difficult.

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proofs can be made completely graphical and are not difficult.

```
 \begin{cases} \textit{f.g. subgroups of } F_A \} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & H & \to & \Gamma(H) \\ & \pi(X,v) & \leftarrow & (X,v) \end{cases}
```

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Proofs can be made completely graphical and are not difficult.

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Outline

- The friendly and unfriendly free group
- 2 The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Theorem (Nielsen-Schreier)

Every subgroup of F_A is free.

- Let $H = \langle w_1, \ldots, w_p \rangle \leqslant_{f.g.} F_A$.
- By the bijection, we know that $H = \pi(\Gamma(H))$.
- By the previous observation, *H* is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). □
- The original proof (1920's) was combinatorial and much more technical.

Theorem (Nielsen-Schreier)

Every subgroup of F_A is free.

- Let $H = \langle w_1, \dots, w_p \rangle \leqslant_{f.g.} F_A$.
- By the bijection, we know that $H = \pi(\Gamma(H))$.
- By the previous observation, H is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). □
- The original proof (1920's) was combinatorial and much more technical.

Theorem (Nielsen-Schreier)

Every subgroup of F_A is free.

Proof:

- Let $H = \langle w_1, \dots, w_p \rangle \leqslant_{f.g.} F_A$.
- By the bijection, we know that $H = \pi(\Gamma(H))$.
- By the previous observation, H is free
- Everything extends easily to the infinitely generated case (considering infinite graphs). □
- The original proof (1920's) was combinatorial and much more technical.

3. Algebraic extensions

Theorem (Nielsen-Schreier)

Every subgroup of F_A is free.

- Let $H = \langle w_1, \dots, w_p \rangle \leqslant_{f.g.} F_A$.
- By the bijection, we know that $H = \pi(\Gamma(H))$.
- By the previous observation, *H* is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). □
- The original proof (1920's) was combinatorial and much more technical.

Theorem (Nielsen-Schreier)

Every subgroup of F_A is free.

- Let $H = \langle w_1, \dots, w_p \rangle \leqslant_{f.g.} F_A$.
- By the bijection, we know that $H = \pi(\Gamma(H))$.
- By the previous observation, *H* is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). □
- The original proof (1920's) was combinatorial and much more technical.

Theorem (Nielsen-Schreier)

Every subgroup of F_A is free.

- Let $H = \langle w_1, \dots, w_p \rangle \leqslant_{f.g.} F_A$.
- By the bijection, we know that $H = \pi(\Gamma(H))$.
- By the previous observation, *H* is free.
- Everything extends easily to the infinitely generated case (considering infinite graphs). □
- The original proof (1920's) was combinatorial and much more technical.

(Membership)

Does w belong to $H = \langle w_1, \dots, w_m \rangle$?

- Construct Γ(H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given
$$H = \langle w_1, \dots, w_m \rangle$$
 and $K = \langle v_1, \dots, v_n \rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the w_i 's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

(Membership)

Does w belong to $H = \langle w_1, \dots, w_m \rangle$?

- Construct Γ(H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given
$$H = \langle w_1, \dots, w_m \rangle$$
 and $K = \langle v_1, \dots, v_n \rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the w_i 's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

(Membership)

Does w belong to $H = \langle w_1, \dots, w_m \rangle$?

- Construct Γ(H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H = \langle w_1, \dots, w_m \rangle$ and $K = \langle v_1, \dots, v_n \rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the w_i 's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

(Membership)

Does w belong to $H = \langle w_1, \ldots, w_m \rangle$?

- Construct Γ(H),
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given
$$H = \langle w_1, \dots, w_m \rangle$$
 and $K = \langle v_1, \dots, v_n \rangle$, is $H \leqslant K$?

- Construct Γ(K),
- Check whether all the w_i 's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

(Computing a basis)

Given $H = \langle w_1, \dots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid *x*.

(Computing a basis)

Given $H = \langle w_1, \dots, w_m \rangle$, find a basis for H.

- Construct Γ(H),
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

- Construct $\Gamma(H)$ and $\Gamma(K)$.
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

(Computing a basis)

Given $H = \langle w_1, \dots, w_m \rangle$, find a basis for H.

- Construct Γ(H),
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

- Construct $\Gamma(H)$ and $\Gamma(K)$.
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid *x*.

(Computing a basis)

Given $H = \langle w_1, \dots, w_m \rangle$, find a basis for H.

- Construct Γ(H),
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

(Finite index)

Given $H = \langle w_1, \dots, w_m \rangle$, is $H \leqslant_{f.i.} F_A$? If yes, find a set of coset representatives.

- \rightarrow For $u \in V\Gamma(H)$, choose p (the label of) a path from \bullet to u; then,
 - {labels of paths from \bullet to u} = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

- $\rightarrow F_A/H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "
- Construct $\Gamma(H)$,
- Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f.i.} F_A$.

3. Algebraic extensions

(Finite index)

Given $H = \langle w_1, \dots, w_m \rangle$, is $H \leqslant_{f.i.} F_A$? If yes, find a set of coset representatives.

→ For $u \in V\Gamma(H)$, choose p (the label of) a path from • to u; then,

{labels of paths from
$$\bullet$$
 to u } = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

- $\rightarrow F_A/H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "
 - Construct $\Gamma(H)$,
 - Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
 - Choose a maximal tree T in $\Gamma(H)$,
 - $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f.i.} F_A$.

(Finite index)

Given $H = \langle w_1, \dots, w_m \rangle$, is $H \leqslant_{f.i.} F_A$? If yes, find a set of coset representatives.

→ For $u \in V\Gamma(H)$, choose p (the label of) a path from • to u; then,

{labels of paths from
$$\bullet$$
 to u } = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

- \rightarrow F_A/H is in bijection with the set of vertices of the "extended $\Gamma(H)$ "
 - Construct $\Gamma(H)$,
 - Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
 - Choose a maximal tree T in $\Gamma(H)$,
 - $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f.i.} F_A$.

(Finite index)

Given $H = \langle w_1, \dots, w_m \rangle$, is $H \leqslant_{f.i.} F_A$? If yes, find a set of coset representatives.

→ For $u \in V\Gamma(H)$, choose p (the label of) a path from • to u; then,

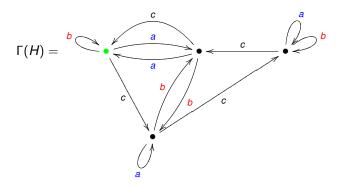
{labels of paths from
$$\bullet$$
 to u } = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

- \rightarrow F_A/H is in bijection with the set of vertices of the "extended $\Gamma(H)$ "
 - Construct Γ(H),
 - Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
 - Choose a maximal tree T in $\Gamma(H)$,
 - $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f,i} F_A$.

Example

$$H = \langle b, ac, c^{-1}a, cac^{-1}, c^{-1}bc^{-1}, cbc, c^4, c^2ac^{-2}, c^2bc^{-2} \rangle$$



Example

$$H = \langle b, ac, c^{-1}a, cac^{-1}, c^{-1}bc^{-1}, cbc, c^4, c^2ac^{-2}, c^2bc^{-2} \rangle$$

 $F_3 = H \sqcup Hc \sqcup Ha \sqcup Hac^{-1}$.

3. Algebraic extensions

(Schreier index formula)

If $H \leq_{f,i} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1).

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leqslant_{ff} \pi(Y, V) \leqslant_{f.i.} F_A$.

(Schreier index formula)

If $H \leq_{f,i} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

3. Algebraic extensions

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

$$= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \quad \Box$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leqslant_{ff} \pi(Y, v) \leqslant_{f.i.} F_A$.

3. Algebraic extensions

More on finite index

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

$$= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \quad \Box$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

- Compute $\Gamma(H)$ from a generating set.
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leqslant_{ff} \pi(Y, v) \leqslant_{f.i.} F_A$.

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

$$= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \quad \Box$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leqslant_{ff} \pi(Y, V) \leqslant_{f.i.} F_A$. \square

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

$$= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \quad \Box$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leqslant_{ff} \pi(Y, V) \leqslant_{f,i} F_A$. \square

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

$$= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \quad \Box$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leqslant_{ff} \pi(Y, V) \leqslant_{f.i.} F_A$.

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

$$= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \quad \Box$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leqslant_{ff} \pi(Y, v) \leqslant_{f.i.} F_A$.

Example

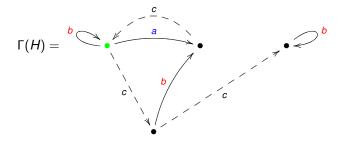
$$H = \langle b, cbc, c^2bc^{-2} \rangle$$

$$\Gamma(H) = \begin{pmatrix} c \\ b \\ c \end{pmatrix}$$

$$H \leq_{ff} H * \langle \rangle$$

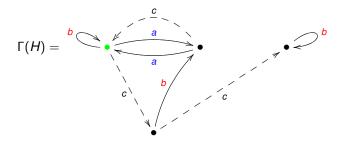
3. Algebraic extensions

$$H = \langle b, cbc, c^2bc^{-2} \rangle$$



$$H \leqslant_{\mathit{ff}} H * \langle ac \rangle$$

$$H = \langle b, cbc, c^2bc^{-2} \rangle$$



$$H \leqslant_{ff} H * \langle ac, c^{-1}a \rangle$$

$$H = \langle b, cbc, c^2bc^{-2} \rangle$$

$$\Gamma(H) = \begin{pmatrix} c \\ a \\ c \end{pmatrix} \begin{pmatrix} b \\ b \\ c \end{pmatrix}$$

$$H \leqslant_{ff} H * \langle ac, c^{-1}a, c^{-1}bc^{-1} \rangle$$

3. Algebraic extensions

$$H = \langle b, cbc, c^2bc^{-2} \rangle$$

$$H \leqslant_{\mathit{ff}} H * \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4 \rangle$$

$$H = \langle b, cbc, c^2bc^{-2} \rangle$$

$$H \leqslant_{\mathit{ff}} H * \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4, c^2ac^{-2} \rangle$$

$$H = \langle b, cbc, c^2bc^{-2} \rangle$$

$$\Gamma(H) = \begin{pmatrix} b & c & c \\ c & b & b \\ c & b & c \end{pmatrix}$$

$$H \leq_{ff} H * \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4, c^2ac^{-2}, cac^{-1} \rangle \leq_4 F_3$$

$$H = \langle b, cbc, c^2bc^{-2} \rangle$$

$$\Gamma(H) = \begin{pmatrix} c & c & c \\ c & b & c \\ c & b & c \\ c & c & d \\ c & c &$$

$$H \leq_{ff} H * \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4, c^2ac^{-2}, cac^{-1} \rangle \leq_4 F_3.$$

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y, (v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem ((H. Neumann)-Stallings)

For every f.g. subgroups $H, K \leq_{fg} F_A$, $\Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y, (v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem ((H. Neumann)-Stallings)

For every f.g. subgroups $H, K \leq_{fg} F_A$, $\Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and guick algorithm to compute intersections:

Pull-back of automata

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y, (v, w))$ (respecting labels). This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem ((H. Neumann)-Stallings)

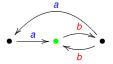
For every f.g. subgroups $H, K \leq_{fg} F_A$, $\Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:

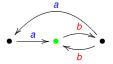
 $H \cap K = ?$ Clear that $b^2 \in H$, but.... something else?

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:

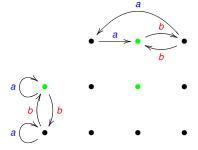


 $H \cap K = ?$ Clear that $b^2 \in H$, but.... something else?

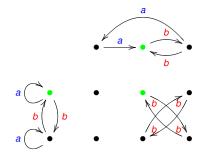
Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



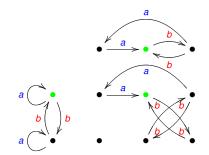
 $H \cap K = ?$ Clear that $b^2 \in H$, but.... something else?



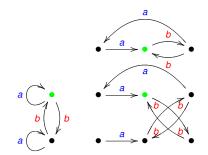
$$H \cap K = \langle b^2, \dots (?) \dots \rangle$$



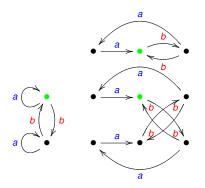
$$H \cap K = \langle b^2, \rangle$$



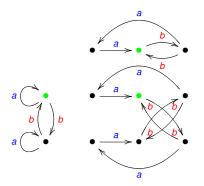
$$H \cap K = \langle b^2, a^{-2}b^2a^2, \rangle$$



$$H \cap K = \langle b^2, a^{-2}b^2a^2, \rangle$$



$$H \cap K = \langle b^2, a^{-2}b^2a^2, ba^2ba^2 \rangle$$
 ... and nothing else.



$$H \cap K = \langle b^2, a^{-2}b^2a^2, ba^2ba^2 \rangle$$
 ... and nothing else.

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leqslant 2\tilde{r}(H)\tilde{r}(K)$$
, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

$$\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$$

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

 $\tilde{r}(H \cap K) \leqslant 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Conjecture (H. Neumann)

 $\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$.

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$$
, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

$$\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K).$$

Rank of the intersection

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leqslant 2\tilde{r}(H)\tilde{r}(K)$$
, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

$$\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$$
.

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

$$\tilde{r}(H \cap K) \leqslant 2\tilde{r}(H)\tilde{r}(K)$$
, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

$$\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K)$$
.

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated ($\Leftrightarrow \Gamma(H)$ is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated (⇔ Γ(H) is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

- HNC holds if H (or K) has rank 1 (immediate).
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H))$ is strongly
- HNC in general is an open problem (...and considered very hard).

- HNC holds if H (or K) has rank 1 (immediate).
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated $(\Leftrightarrow \Gamma(H))$ is strongly
- HNC in general is an open problem (...and considered very hard).

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated (⇔ Γ(H) is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

- HNC holds if H (or K) has rank 1 (immediate),
- HNC holds for finite index subgroups (elementary),
- HNC holds if H has rank 2 (Tardös, 1992), (not easy),
- HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),
- HNC also holds if H is positively generated (⇔ Γ(H) is strongly connected), (Meakin-Weil, and Khan, 2002),
- HNC in general is an open problem (...and considered very hard).

Outline

- 1 The friendly and unfriendly free group
- 2 The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Takahasi's Theorem

In linear algebra,

$$F \leqslant E \implies E = F \oplus L$$
, for some L

(every basis of F can be extended to a basis of E).

In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant_{fg} F_A$, has a finite set of extensions, $\{H_0 = H, H_1, \ldots, H_m\}$, all of them finitely generated and computable, satisfying: for every $H \leqslant K \leqslant F_A$, $\exists i = 0, \ldots, m$ such that $H \leqslant H_i \leqslant_{ff} H_i * L = K$.

Let us reformulate this in a different way.

Takahasi's Theorem

In linear algebra,

$$F \leqslant E \implies E = F \oplus L$$
, for some L

(every basis of F can be extended to a basis of E).

In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant_{fg} F_A$, has a finite set of extensions, $\{H_0 = H, H_1, \ldots, H_m\}$, all of them finitely generated and computable, satisfying: for every $H \leqslant K \leqslant F_A$, $\exists \ i = 0, \ldots, m$ such that $H \leqslant H_i \leqslant_{ff} H_i * L = K$.

Let us reformulate this in a different way.

Takahasi's Theorem

In linear algebra,

$$F \leqslant E \implies E = F \oplus L$$
, for some L

(every basis of F can be extended to a basis of E).

In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant_{fg} F_A$, has a finite set of extensions, $\{H_0 = H, H_1, \dots, H_m\}$, all of them finitely generated and computable, satisfying: for every $H \leqslant K \leqslant F_A$, $\exists i = 0, \dots, m$ such that $H \leqslant H_i \leqslant_{ff} H_i * L = K$.

Let us reformulate this in a different way.

In linear algebra,

$$F \leqslant E \implies E = F \oplus L$$
, for some L

(every basis of F can be extended to a basis of E).

In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant_{fg} F_A$, has a finite set of extensions, $\{H_0 = H, H_1, \dots, H_m\}$, all of them finitely generated and computable, satisfying: for every $H \leqslant K \leqslant F_A$, $\exists i = 0, \dots, m$ such that $H \leqslant H_i \leqslant_{ff} H_i * L = K$.

Let us reformulate this in a different way.

Takahasi's Theorem

In linear algebra,

$$F \leqslant E \implies E = F \oplus L$$
, for some L

(every basis of F can be extended to a basis of E).

In free groups this is clearly false but ... almost true.

Theorem (Takahasi, 1951)

Every $H \leqslant_{fg} F_A$, has a finite set of extensions, $\{H_0 = H, H_1, \dots, H_m\}$, all of them finitely generated and computable, satisfying: for every $H \leqslant K \leqslant F_A$, $\exists i = 0, \dots, m$ such that $H \leqslant H_i \leqslant_{ff} H_i * L = K$.

Let us reformulate this in a different way.

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \le K_1 \le K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \le_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leq_{alg} L$ and $H \leq K \leq L$ imply $K \leq_{alg} L$ but not necessarily $H \leq_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \le K_1 \le K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \le_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \le K_1 \le K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \le_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leq_{alg} L$ and $H \leq K \leq L$ imply $K \leq_{alg} L$ but not necessarily $H \leq_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

Free and algebraic extensions

Definition

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \le K_1 \le K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \le_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leq_{alg} K \leq_{alg} L \text{ implies } H \leq_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leq_{alg} L$ and $H \leq K \leq L$ imply $K \leq_{alg} L$ but not necessarily $H \leq_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

Free and algebraic extensions

Definition

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \le K_1 \le K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \le_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \le K_1 \le K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \le_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leq_{ff} K \leq_{ff} L \text{ implies } H \leq_{ff} L.$
- $H \leq_{alg} L$ and $H \leq K \leq L$ imply $K \leq_{alg} L$ but not necessarily $H \leq_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \le K_1 \le K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \le_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{\mathit{ff}} K \leqslant_{\mathit{ff}} L \text{ implies } H \leqslant_{\mathit{ff}} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

Free and algebraic extensions

Definition

- a free extension if H is a free factor of K (i.e. K = H * L for some $L \leqslant F_A$), denoted $H \leqslant_{ff} K$;
- algebraic if H is not contained in any proper free factor of K (i.e. $H \leqslant K_1 \leqslant K_1 * K_2 = K$ implies $K_2 = 1$), denoted $H \leqslant_{alg} K$.
- $\langle a \rangle \leqslant_{ff} \langle a, b \rangle \leqslant_{ff} \langle a, b, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall r \in \mathbb{Z}$.
- if $r(H) \ge 2$ and $r(K) \le 2$ then $H \le_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- H ≤_# K ≤_# L implies H ≤_# L.
- $H \leq_{alg} L$ and $H \leq K \leq L$ imply $K \leq_{alg} L$ but not necessarily $H \leqslant_{ala} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern & much simpler graphical proof was given independently by,
 - Ventura, Comm. Algebra (1997).
 - Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
 - Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Theorem (Takahasi, 1951)

For every $H \leq_{fq} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern & much simpler graphical proof was given
 - Ventura, Comm. Algebra (1997).
 - Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
 - Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in

Theorem (Takahasi, 1951)

For every $H \leq_{fq} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern & much simpler graphical proof was given independently by,
 - Ventura, Comm. Algebra (1997).
 - Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
 - Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern & much simpler graphical proof was given independently by,
 - Ventura, Comm. Algebra (1997).
 - Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
 - Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Theorem (Takahasi, 1951)

For every $H \leq_{fq} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern & much simpler graphical proof was given independently by,
 - Ventura, Comm. Algebra (1997).
 - Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
 - Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- A modern & much simpler graphical proof was given independently by,
 - Ventura, Comm. Algebra (1997).
 - Margolis-Sapir-Weil, Internat. J. Algebra Comput. (2001).
 - Kapovich-Miasnikov, J. Algebra (2002).
- And unified later in Miasnikov-Ventura-Weil, Trends in Mathematics (2007).

Proof:

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given H ≤ K (both f.g.), we can obtain Γ(K) from Γ(H) by 1) adding the appropriate hairs, 2) identifying several vertices to •,
 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leq K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H)/\sim$).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_f K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

3.Algebraic extensions

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given H ≤ K (both f.g.), we can obtain Γ(K) from Γ(H) by 1) adding the appropriate hairs, 2) identifying several vertices to •,
 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if $H \leq K$ (both f.g.) then $\Gamma(K)$ contains as a subgraph either $\Gamma(H)$ or some quotient of it (i.e. $\Gamma(H)$ after identifying several sets of vertices (\sim) and then folding, $\Gamma(H)/\sim$).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given H ≤ K (both f.g.), we can obtain Γ(K) from Γ(H) by 1) adding the appropriate hairs, 2) identifying several vertices to •,
 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H) or some quotient of it (i.e. Γ(H) after identifying several sets of vertices (~) and then folding, Γ(H)/~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given H ≤ K (both f.g.), we can obtain Γ(K) from Γ(H) by 1) adding the appropriate hairs, 2) identifying several vertices to •,
 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H) or some quotient of it (i.e. Γ(H) after identifying several sets of vertices (~) and then folding, Γ(H)/~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leq K$, there exists $L \in \mathcal{O}(H)$ such that $H \leq L \leq_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given H ≤ K (both f.g.), we can obtain Γ(K) from Γ(H) by 1) adding the appropriate hairs, 2) identifying several vertices to •,
 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H) or some quotient of it (i.e. Γ(H) after identifying several sets of vertices (~) and then folding, Γ(H)/~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_f K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Let us (temporarily) attach some "hairs" to $\Gamma(H)$ an denote the resulting (folded) automata by $\tilde{\Gamma}(H)$.
- Given H ≤ K (both f.g.), we can obtain Γ(K) from Γ(H) by 1) adding the appropriate hairs, 2) identifying several vertices to •,
 3) folding; (note that adding extra hairs, the result will be the same if we 4) trim at the end).
- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H) or some quotient of it (i.e. Γ(H) after identifying several sets of vertices (~) and then folding, Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_f K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem.
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_H K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_f K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_f K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_f K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

Corollary

AE(H) is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_f K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

Corollary

AE(H) is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_f K_2$ and deleting K_2 .
- The resulting set is $\mathcal{AE}(H)$. \square

Corollary

AE(H) is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leq_f K_2$ and deleting K_2 .
- The resulting set is $\mathcal{AE}(H)$. \square

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Proposition

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$.

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Example: $\mathcal{AE}(\langle aba^{-1}b^{-1}\rangle)$

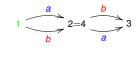
$$\begin{array}{c|c}
1=2 & a \\
b & \\
3=4 & a
\end{array}$$

$$\begin{array}{c}
b \\
1=4 \\
\end{array}$$

$$\begin{array}{c}
a \\
2=3 \\
\end{array}$$

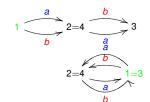
$$\begin{array}{c|c}
1 = 2 & a \\
 & b \\
3 = 4 & a
\end{array}$$

$$\begin{array}{c}
b \\
1=4 & \xrightarrow{a} 2=3
\end{array}$$



$$\begin{array}{c}
b \\
1=4 \\
\longrightarrow 2=3
\end{array}$$

$$4 \underbrace{\begin{array}{c} b \\ a \end{array}}_{a} 1=3 \underbrace{\begin{array}{c} a \\ b \end{array}}_{b} 2$$

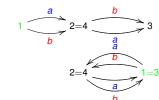


$$\begin{array}{cccc}
b & b \\
1 & & \\
1 & & \\
\end{array}$$

$$\begin{array}{cccc}
a & \\
2 & \\
\end{array}$$

$$\begin{array}{ccccc}
2 & \\
2 & \\
\end{array}$$

$$4 \underbrace{\begin{array}{c} b \\ a \end{array}}_{a} 1=3 \underbrace{\begin{array}{c} a \\ b \end{array}}_{b} 2$$



$$\begin{array}{c}
b \\
1=4 & \xrightarrow{a} 2=3
\end{array}$$

$$4 \underbrace{\begin{array}{c} b \\ \\ \\ a \end{array}} 1=3 \underbrace{\begin{array}{c} a \\ \\ \\ b \end{array}} 2$$

$$\mathcal{O}(H) = \{ \langle aba^{-1}b^{-1} \rangle, \langle a, bab^{-1} \rangle, \langle b, aba^{-1} \rangle, \langle ba, ab \rangle$$
$$\langle ab^{-1}, aba^{-1}b^{-1} \rangle, \langle ab^{-1}, a^2, b^2 \rangle, \langle a, b \rangle \}$$

$$\begin{array}{l} \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle a,bab^{-1}\rangle = \langle a,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle b,aba^{-1}\rangle = \langle b,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ba,ab\rangle = \langle ba,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \\ \end{array}$$

[] [] [] [] []

$$\mathcal{O}(H) = \{ \langle aba^{-1}b^{-1} \rangle, \langle a, bab^{-1} \rangle, \langle b, aba^{-1} \rangle, \langle ba, ab \rangle$$
$$\langle ab^{-1}, aba^{-1}b^{-1} \rangle, \langle ab^{-1}, a^2, b^2 \rangle, \langle a, b \rangle \}$$

But

$$\langle aba^{-1}b^{-1} \rangle \leqslant_{ff} \langle a, bab^{-1} \rangle = \langle a, aba^{-1}b^{-1} \rangle$$

$$\langle aba^{-1}b^{-1} \rangle \leqslant_{ff} \langle b, aba^{-1} \rangle = \langle b, aba^{-1}b^{-1} \rangle$$

$$\langle aba^{-1}b^{-1} \rangle \leqslant_{ff} \langle ba, ab \rangle = \langle ba, aba^{-1}b^{-1} \rangle$$

$$\langle aba^{-1}b^{-1} \rangle \leqslant_{ff} \langle ab^{-1}, aba^{-1}b^{-1} \rangle$$

$$\langle aba^{-1}b^{-1} \rangle \leqslant_{ff} \langle ab^{-1}, a^2, b^2 \rangle = \langle ab^{-1}, a^2, aba^{-1}b^{-1} \rangle$$

So, $\mathcal{AE}(H) = \{\langle aba^{-1}b^{-1}\rangle, \langle a, b\rangle\}$, meaning that the element $aba^{-1}b^{-1}$ is almost primitive.

$$\mathcal{O}(H) = \{ \langle aba^{-1}b^{-1} \rangle, \langle a, bab^{-1} \rangle, \langle b, aba^{-1} \rangle, \langle ba, ab \rangle$$
$$\langle ab^{-1}, aba^{-1}b^{-1} \rangle, \langle ab^{-1}, a^2, b^2 \rangle, \langle a, b \rangle \}$$

But

$$\begin{array}{l} \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle a,bab^{-1}\rangle = \langle a,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle b,aba^{-1}\rangle = \langle b,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ba,ab\rangle = \langle ba,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \\ \end{array}$$

$$\mathcal{O}(H) = \{ \langle aba^{-1}b^{-1} \rangle, \langle a, bab^{-1} \rangle, \langle b, aba^{-1} \rangle, \langle ba, ab \rangle$$
$$\langle ab^{-1}, aba^{-1}b^{-1} \rangle, \langle ab^{-1}, a^2, b^2 \rangle, \langle a, b \rangle \}$$

But

$$\begin{split} \langle aba^{-1}b^{-1} \rangle &\leqslant_{ff} \langle a,bab^{-1} \rangle = \langle a,aba^{-1}b^{-1} \rangle \\ \langle aba^{-1}b^{-1} \rangle &\leqslant_{ff} \langle b,aba^{-1} \rangle = \langle b,aba^{-1}b^{-1} \rangle \\ \langle aba^{-1}b^{-1} \rangle &\leqslant_{ff} \langle ba,ab \rangle = \langle ba,aba^{-1}b^{-1} \rangle \\ \langle aba^{-1}b^{-1} \rangle &\leqslant_{ff} \langle ab^{-1},aba^{-1}b^{-1} \rangle \\ \langle aba^{-1}b^{-1} \rangle &\leqslant_{ff} \langle ab^{-1},a^2,b^2 \rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1} \rangle \\ \langle aba^{-1}b^{-1} \rangle &\leqslant_{ff} \langle ab^{-1},a^2,b^2 \rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1} \rangle \end{split}$$

So, $\mathcal{AE}(H) = \{\langle aba^{-1}b^{-1}\rangle, \langle a, b\rangle\}$, meaning that the element $aba^{-1}b^{-1}$ is almost primitive.

Algebraic extensions

$$\mathcal{O}(H) = \{ \langle aba^{-1}b^{-1} \rangle, \langle a, bab^{-1} \rangle, \langle b, aba^{-1} \rangle, \langle ba, ab \rangle$$
$$\langle ab^{-1}, aba^{-1}b^{-1} \rangle, \langle ab^{-1}, a^2, b^2 \rangle, \langle a, b \rangle \}$$

But

$$\begin{split} \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle a,bab^{-1}\rangle &= \langle a,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle b,aba^{-1}\rangle &= \langle b,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ba,ab\rangle &= \langle ba,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle &= \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \end{split}$$

So, $\mathcal{AE}(H) = \{\langle aba^{-1}b^{-1}\rangle, \langle a, b\rangle\}$, meaning that the element $aba^{-1}b^{-1}$ is almost primitive.

Algebraic extensions

$$\mathcal{O}(H) = \{ \langle aba^{-1}b^{-1} \rangle, \langle a, bab^{-1} \rangle, \langle b, aba^{-1} \rangle, \langle ba, ab \rangle$$
$$\langle ab^{-1}, aba^{-1}b^{-1} \rangle, \langle ab^{-1}, a^2, b^2 \rangle, \langle a, b \rangle \}$$

But

$$\begin{array}{l} \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle a,bab^{-1}\rangle = \langle a,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle b,aba^{-1}\rangle = \langle b,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ba,ab\rangle = \langle ba,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle = \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \\ \end{array}$$

So, $\mathcal{AE}(H) = \{\langle aba^{-1}b^{-1}\rangle, \langle a, b\rangle\}$, meaning that the element $aba^{-1}b^{-1}$ is almost primitive.

Algebraic extensions

$\mathcal{O}(H) = \{ \langle aba^{-1}b^{-1} \rangle, \langle a, bab^{-1} \rangle, \langle b, aba^{-1} \rangle, \langle ba, ab \rangle \}$ $\langle ab^{-1}, aba^{-1}b^{-1} \rangle, \langle ab^{-1}, a^2, b^2 \rangle, \langle a, b \rangle \}$

But

$$\begin{split} \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle a,bab^{-1}\rangle &= \langle a,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle b,aba^{-1}\rangle &= \langle b,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ba,ab\rangle &= \langle ba,aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},aba^{-1}b^{-1}\rangle \\ \langle aba^{-1}b^{-1}\rangle \leqslant_{ff} \langle ab^{-1},a^2,b^2\rangle &= \langle ab^{-1},a^2,aba^{-1}b^{-1}\rangle \end{split}$$

So, $\mathcal{AE}(H) = \{\langle aba^{-1}b^{-1}\rangle, \langle a, b\rangle\}$, meaning that the element $aba^{-1}b^{-1}$ is almost primitive.

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem.
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Lemma

If $H \leq_{alg} K_1$ and $H \leq_{alg} K_2$ then $H \leq_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

Let $H \leq_{fg} F_A$. For an intermediate extension $H \leq M \leq F_A$, TFAE:

- (a) M is the smallest free factor of F_A containing H,
- (b) M is the biggest algebraic extension of H in F(A),
- (c) M is a maximal element in AE(H),

The unique subgroup M satisfying these conditions is called the algebraic closure of H in F_A , and denoted $Cl_{F_A}(H)$. In particular, $H \leqslant_{alg} Cl_{F_A}(H) \leqslant_{ff} F_A$.

3. Algebraic extensions

Lemma

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

Let $H \leq_{fg} F_A$. For an intermediate extension $H \leq M \leq F_A$, TFAE:

- (a) M is the smallest free factor of F_A containing H,
- (b) M is the biggest algebraic extension of H in F(A),
- (c) M is a maximal element in AE(H),

The unique subgroup M satisfying these conditions is called the algebraic closure of H in F_A , and denoted $Cl_{F_A}(H)$. In particular, $H \leqslant_{alg} Cl_{F_A}(H) \leqslant_{ff} F_A$.

For an arbitrary extension of f.g. subgroups $F \leq K \leq F_A$, we can do the same relative to K and get:

Corollary

Every extension $H \le K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free factor part, $H \le_{alg} Cl_K(H) \le_{ff} K$.

One can define the notions of algebraically closed and algebraically dense subgroups, in a similar way as in field theory.

Some properties are similar, some other are different...

For an arbitrary extension of f.g. subgroups $F \leq K \leq F_A$, we can do the same relative to K and get:

Corollary

Every extension $H \le K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free factor part, $H \le_{alg} Cl_K(H) \le_{ff} K$.

One can define the notions of algebraically closed and algebraically dense subgroups, in a similar way as in field theory.

Some properties are similar, some other are different...

For an arbitrary extension of f.g. subgroups $F \le K \le F_A$, we can do the same relative to K and get:

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free factor part, $H \leqslant_{alg} Cl_K(H) \leqslant_{ff} K$.

One can define the notions of algebraically closed and algebraically dense subgroups, in a similar way as in field theory.

Some properties are similar, some other are different...

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem.
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-ν closures
 - Other closures

Definition

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the P-groups, where P is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V =the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),
- ...

Definition

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the *P*-groups, where *P* is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V = the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),
- ...

Definition

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the *P*-groups, where *P* is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V = the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),
- ...

Definition

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the P-groups, where P is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V = the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),
- ...

Definition

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the P-groups, where P is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V = the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),
- ...

Definition

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the P-groups, where P is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V = the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),
- ...

Definition

1.The free group

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

Examples:

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the P-groups, where P is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V = the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),

..

Definition

A variety V of finite groups is a family of finite groups closed under taking subgroups, quotients, and finite direct products. V is extension-closed if, for every short exact sequence $1 \to G_1 \to G_2 \to G_3 \to 1$, $G_1, G_3 \in V$ implies $G_2 \in V$.

- V = all finite groups, (it is ext. closed),
- V = the p-groups, where p a prime number (it is ext. closed),
- V = the P-groups, where P is a set of primes (it is ext. closed),
- V = the nilpotent groups (it is not ext. closed),
- V = the solvable groups (it is ext. closed),
- V = the abelian groups (it is not ext. closed),
- ...

The pro- \mathcal{V} topology

Definition

Let V be a variety of finite groups. We can define the pro-V topology in F_A in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_A \to G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_A$ with $F/N \in \mathcal{V}$ form a basis of neighborhoods of the unit,
- the topology induced by the metric $d(x, y) = 2^{-s(x,y)}$, where $s(x, y) = \min\{\#G \mid G \in \mathcal{V}, \exists \varphi \colon F_A \to G \text{ such that } \varphi(x) \neq \varphi(y)\}$

The pro- \mathcal{V} topology

Definition

Let V be a variety of finite groups. We can define the pro-V topology in F_A in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_A \to G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_A$ with $F/N \in \mathcal{V}$ form a basis of neighborhoods of the unit,
- the topology induced by the metric $d(x, y) = 2^{-s(x,y)}$, where $s(x, y) = \min\{\#G \mid G \in \mathcal{V}, \exists \varphi \colon F_A \to G \text{ such that } \varphi(x) \neq \varphi(y)\}$

.The free group

The pro- \mathcal{V} topology

Definition

Let V be a variety of finite groups. We can define the pro-V topology in F_A in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_A \to G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_A$ with $F/N \in \mathcal{V}$ form a basis of neighborhoods of the unit,
- the topology induced by the metric $d(x,y) = 2^{-s(x,y)}$, where $s(x,y) = \min\{\#G \mid G \in \mathcal{V}, \exists \varphi \colon F_A \to G \text{ such that } \varphi(x) \neq \varphi(y)\}.$

The pro- \mathcal{V} topology

Definition

Let V be a variety of finite groups. We can define the pro-V topology in F_A in either of the following equivalent ways:

- the smallest topology for which all morphisms $F_A \to G \in \mathcal{V}$ are continuous,
- the topology for which the normal subgroups $N \leqslant F_A$ with $F/N \in \mathcal{V}$ form a basis of neighborhoods of the unit,
- the topology induced by the metric $d(x,y) = 2^{-s(x,y)}$, where $s(x,y) = \min\{\#G \mid G \in \mathcal{V}, \exists \varphi \colon F_A \to G \text{ such that } \varphi(x) \neq \varphi(y)\}.$

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskii)

If V is an extension-closed variety then, in the pro-V topology, every free factor of a closed subgroup of F_A is again closed.

Corollary

If V is extension-closed then, for every $H \leq_{fg} F_A$, $H \leq_{alg} Cl_V(H)$. In particular, $Cl_V(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,

of finitely generated subgroups of F_A .

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If V is an extension-closed variety then, in the pro-V topology, every free factor of a closed subgroup of F_A is again closed.

Corollary

If V is extension-closed then, for every $H \leq_{fg} F_A$, $H \leq_{alg} Cl_V(H)$. In particular, $Cl_V(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,

of finitely generated subgroups of F_A .

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If V is an extension-closed variety then, in the pro-V topology, every free factor of a closed subgroup of F_A is again closed.

Corollary

If V is extension-closed then, for every $H \leq_{fg} F_A$, $H \leq_{alg} Cl_V(H)$. In particular, $Cl_V(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,
- of finitely generated subgroups of F_A .

Computing some pro-V closures

Theorem (Ribes-Zalesskiĭ)

If V is an extension-closed variety then, in the pro-V topology, every free factor of a closed subgroup of F_A is again closed.

Corollary

If V is extension-closed then, for every $H \leq_{fg} F_A$, $H \leq_{alg} Cl_V(H)$. In particular, $Cl_V(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,
 of finitely generated subgroups of F_A

3.Algebraic extensions

Computing some pro-V closures

Theorem (Ribes-Zalesskii)

If V is an extension-closed variety then, in the pro-V topology, every free factor of a closed subgroup of F_A is again closed.

Corollary

If V is extension-closed then, for every $H \leq_{fg} F_A$, $H \leq_{alg} Cl_V(H)$. In particular, $Cl_V(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,

of finitely generated subgroups of F_A .

Computing some pro- \mathcal{V} closures

Theorem (Ribes-Zalesskiĭ)

If V is an extension-closed variety then, in the pro-V topology, every free factor of a closed subgroup of F_A is again closed.

Corollary

If V is extension-closed then, for every $H \leq_{fg} F_A$, $H \leq_{alg} Cl_V(H)$. In particular, $Cl_V(H)$ is again finitely generated.

Proposition

There is an algorithm to compute the

- pro-p closure,
- pro-P closure,
- pro-nilpotent closure,

of finitely generated subgroups of F_A .

But no algorithm is known for computing pro-solvable closures.

Outline

- The friendly and unfriendly free group
- The bijection between subgroups and automata
- Several algebraic applications
 - First results
 - Finite index subgroups
 - Intersections
- Algebraic extensions and Takahasi's theorem
 - Takahasi's theorem.
 - Computing the set of algebraic extensions
 - The algebraic closure
 - Pro-V closures
 - Other closures

Definition

A subgroup $H \leqslant F_A$ is called malnormal if, for every $x \in F_A$, $H^x \cap H$ equals either H or 1.

Proposition

- It is algorithmically decidable wether a given H ≤ F_A is malnormal.
- $H_1, H_2 \leqslant F_A$ malnormal $\Rightarrow H_1 \cap H_2$ malnormal.
- $H \leq_{ff} K \leq F_A$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called malnormal if, for every $x \in F_A$, $H^x \cap H$ equals either H or 1.

Proposition

- It is algorithmically decidable wether a given H ≤ F_A is malnormal.
- H_1 , $H_2 \leqslant F_A$ malnormal $\Rightarrow H_1 \cap H_2$ malnormal.
- $H \leq_{\text{ff}} K \leqslant F_A$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called malnormal if, for every $x \in F_A$, $H^x \cap H$ equals either H or 1.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_A$ is malnormal.
- $H_1, H_2 \leqslant F_A$ malnormal $\Rightarrow H_1 \cap H_2$ malnormal.
- $H \leq_{\text{ff}} K \leq F_A$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

The malnormal closure of H (i.e. the smallest extension $H \leqslant K$ being malnormal) is an algebraic extension of H and it is computable.

Definition

A subgroup $H \leqslant F_A$ is called malnormal if, for every $x \in F_A$, $H^x \cap H$ equals either H or 1.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_A$ is malnormal.
- $H_1, H_2 \leqslant F_A$ malnormal $\Rightarrow H_1 \cap H_2$ malnormal.
- $H \leq_f K \leq F_A$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

The malnormal closure of H (i.e. the smallest extension $H \leqslant K$ being malnormal) is an algebraic extension of H and it is computable.

Definition

A subgroup $H \leqslant F_A$ is called malnormal if, for every $x \in F_A$, $H^x \cap H$ equals either H or 1.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_A$ is malnormal.
- $H_1, H_2 \leqslant F_A$ malnormal $\Rightarrow H_1 \cap H_2$ malnormal.
- $H \leq_f K \leq F_A$, and K malnormal $\Rightarrow H$ malnormal.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called pure if $x^r \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_A$ is pure.
- H_1 , $H_2 \leqslant F_A$ pure $\Rightarrow H_1 \cap H_2$ pure.
- $H \leq_{ff} K \leqslant F_A$, and K pure $\Rightarrow H$ pure.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called pure if $x^r \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_A$ is pure.
- H_1 , $H_2 \leqslant F_A$ pure $\Rightarrow H_1 \cap H_2$ pure.
- $H \leq_{ff} K \leq F_A$, and K pure $\Rightarrow H$ pure.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called pure if $x^r \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_A$ is pure.
- H_1 , $H_2 \leqslant F_A$ pure $\Rightarrow H_1 \cap H_2$ pure.
- $H \leq_{ff} K \leq F_A$, and K pure $\Rightarrow H$ pure.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called pure if $x^r \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leq F_A$ is pure.
- H_1 , $H_2 \leqslant F_A$ pure $\Rightarrow H_1 \cap H_2$ pure.
- $H \leq_{ff} K \leqslant F_A$, and K pure $\Rightarrow H$ pure.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called pure if $x^r \in H$ implies $x \in H$.

Proposition

- It is algorithmically decidable wether a given $H \leqslant F_A$ is pure.
- H_1 , $H_2 \leqslant F_A$ pure $\Rightarrow H_1 \cap H_2$ pure.
- $H \leq_{ff} K \leqslant F_A$, and K pure $\Rightarrow H$ pure.

Corollary

Definition

A subgroup $H \leqslant F_A$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_A$.

Proposition

- $H_1, H_2 \leqslant F_A \text{ inert} \Rightarrow H_1 \cap H_2 \text{ inert.}$
- $H \leq_{ff} K \leq F_A$, and K inert $\Rightarrow H$ inert.

- Is the inert closure of H (i.e. the smallest extension H ≤ K being inert) computable ?
- Is it algorithmically decidable wether a given $H \leqslant F_A$ is inert?

Definition

A subgroup $H \leqslant F_A$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_A$.

Proposition

- $H_1, H_2 \leqslant F_A \text{ inert} \Rightarrow H_1 \cap H_2 \text{ inert.}$
- $H \leq_{ff} K \leq F_A$, and K inert $\Rightarrow H$ inert.

- Is the inert closure of H (i.e. the smallest extension H ≤ K being inert) computable?
- Is it algorithmically decidable wether a given H ≤ F_A is inert?

Definition

A subgroup $H \leqslant F_A$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_A$.

Proposition

- $H_1, H_2 \leqslant F_A \text{ inert} \Rightarrow H_1 \cap H_2 \text{ inert.}$
- $H \leq_{ff} K \leq F_A$, and K inert $\Rightarrow H$ inert.

- Is the inert closure of H (i.e. the smallest extension H ≤ K being inert) computable ?
- Is it algorithmically decidable wether a given H ≤ F_A is inert?

Definition

A subgroup $H \leqslant F_A$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_A$.

Proposition

- $H_1, H_2 \leqslant F_A \text{ inert} \Rightarrow H_1 \cap H_2 \text{ inert.}$
- $H \leq_{ff} K \leq F_A$, and K inert $\Rightarrow H$ inert.

- Is the inert closure of H (i.e. the smallest extension H ≤ K being inert) computable ?
- Is it algorithmically decidable wether a given $H \leq F_A$ is inert?

Definition

A subgroup $H \leqslant F_A$ is called inert if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant F_A$.

Proposition

- $H_1, H_2 \leqslant F_A \text{ inert} \Rightarrow H_1 \cap H_2 \text{ inert.}$
- $H \leq_{ff} K \leq F_A$, and K inert $\Rightarrow H$ inert.

- Is the inert closure of H (i.e. the smallest extension H ≤ K being inert) computable?
- Is it algorithmically decidable wether a given $H \leq F_A$ is inert?

THANKS