Asymptotic cones of finitely generated groups Lacunary hyperbolic groups: a characterization and examples Constricted groups Amenable lacunary hyperbolic groups Central extensions of lacunary hyperbolic groups

Lacunary hyperbolic groups

Denis Osin (joint with A. Olshanskii and M. Sapir)

Department of Mathematics The City College of CUNY

March 6, 2007

Outline

- Asymptotic cones of finitely generated groups
- Lacunary hyperbolic groups: a characterization and examples
- 3 Constricted groups
- 4 Amenable lacunary hyperbolic groups
- 6 Central extensions of lacunary hyperbolic groups

Asymptotic cones of finitely generated groups
Lacunary hyperbolic groups: a characterization and examples
Constricted groups
Amenable lacunary hyperbolic groups
Central extensions of lacunary hyperbolic groups

ASYMPTOTIC CONES OF FINITELY GENERATED GROUPS

Asymptotic cones of metric spaces

Let X be a metric space. Fix an observation point $e = (e_n)$, $e_n \in X$, an increasing scaling sequence of positive integers $d = (d_n)$, and an ultrafilter ω .

Definition

Given two sequences $x = (x_n)$ and $y = (y_n)$ of elements of X, set

$$\operatorname{dist}(x,y)=\lim_{n\to\infty}\frac{\operatorname{dist}(x_n,y_n)}{d_n}.$$

Further,

$$x \sim y \Leftrightarrow \operatorname{dist}(x, y) = 0.$$

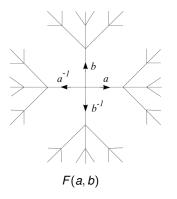
The asymptotic cone of X with respect to e, d, and ω is

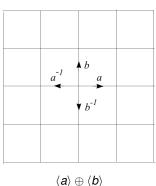
$$\operatorname{Con}^{\omega}(X, d, e) = \{x = (x_n) \mid \operatorname{dist}(x, e) < \infty\} / \sim$$

with the distance induced by dist. If X is homogeneous, the asymptotic cone in independent of e and is denoted by $\operatorname{Con}^{\omega}(X, d)$.

Cayley Graphs

Let $G = \langle S \rangle$. The set of vertices of the *Cayley graph* of G is G and vertices g and h are connected by an edge going from g to h and labelled by $s \in S$ whenever h = gs.





Asymptotic cones of finitely generated groups

Definition

Asymptotic cone of a finitely generated group G, $\operatorname{Con}^{\omega}(G, d)$, is the asymptotic cone of its Cayley graph.

Examples.

- If X is a finite group, then $Con^{\omega}(X, d)$ is a point $\forall d, \omega$.

More generally, for any finitely generated nilpotent group N, $\operatorname{Con}^{\omega}(N, d)$ is homeomorphic to $\mathbb{R}^n \, \forall \, d, \omega$, where n is the Hirsch number of N.

Varying scaling sequences and ultrafilters

Theorem (Thomas-Velickovic)

There exists a group G and two ultrafilters ω_1 , ω_2 , such that $\operatorname{Con}^{\omega_1}(G,(n))$ is a real tree while $\operatorname{Con}^{\omega_2}(G,(n))$ is not simply connected.

Theorem (Drutu-Sapir)

There exists a finitely generated group with uncountably many non-homeomorphic asymptotic cones.

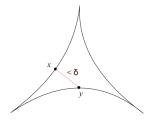
Theorem (Olshanskii–Sapir)

There exists a finitely presented group with at least 2 non-homeomorphic asymptotic cones.

Hyperbolic Spaces

Definition (Gromov)

A geodesic metric space X is *hyperbolic*, if $\exists \ \delta \geq 0$ such that \forall geodesic triangle Δ in X, each side of Δ belongs to the δ -neighborhood of the union of the other two sides.



Examples

- **1** Any bounded space X is hyperbolic with $\delta = \operatorname{diam} X$.
- 2 Any tree is hyperbolic with $\delta = 0$.
- **1** \mathbb{H}^n , and, more generally, any $CAT(\kappa)$ -space for $\kappa < 0$.

Hyperbolic Groups

Definition (Gromov)

A finitely generated group is *hyperbolic* if its Cayley graph is hyperbolic.

Examples

- Finite groups are hyperbolic.
- Finitely generated free groups are hyperbolic.
- Fundamental groups of closed hyperbolic manifolds are hyperbolic.
- $\mathbb{Z} \oplus \mathbb{Z}$ is not hyperbolic.

Asymptotic cones of hyperbolic groups

Theorem (Gromov)

A finitely generated group G is hyperbolic iff all asymptotic cones of G are \mathbb{R} -trees.

Theorem (M. Kapovich-Kleiner)

If G is a finitely presented group and at least one asymptotic cone of G is an \mathbb{R} -tree, then G is hyperbolic.

Definition

A finitely generated group G is *lacunary hyperbolic* if at least one asymptotic cone of G is a real tree.

Asymptotic cones of finitely generated groups
Lacunary hyperbolic groups: a characterization and examples
Constricted groups
Amenable lacunary hyperbolic groups
Central extensions of lacunary hyperbolic groups

LACUNARY HYPERBOLIC GROUPS: A CHARACTERIZATION AND EXAMPLES

Equivalent definitions of lacunary hyperbolic groups

Given a homomorphism $\alpha \colon G \to H$ and a generating set S of G, we define the *injectivity radius* $IR_S(\alpha)$ of α with respect to S to be the radius of the largest ball in G on which α is injective.

Theorem (Olshanskii-Osin-Sapir)

Let G be a finitely generated group. Then the following conditions are equivalent.

- G is lacunary hyperbolic.
- ② There exists a scaling sequence $d = (d_n)$ such that $Con^{\omega}(G, d)$ is an \mathbb{R} -tree for any ultrafilter ω .
- **3** *G* is the direct limit of a sequence of hyperbolic groups G_i generated by finite sets S_i and epimorphisms

$$G_1 \xrightarrow{\alpha_1} G_2 \xrightarrow{\alpha_2} \dots,$$

where $\alpha_i(S_i) = S_{i+1}$, G_i is δ_i -hyperbolic with respect to S_i , and $\delta_i = o(IR_{S_i}(\alpha_i))$.

Limits of hyperbolic groups that are not lacunary hyperbolic

Theorem (Drutu-Sapir)

Let G be a non-elementary finitely generated group. If $\operatorname{Con}^{\omega}(G, d)$ has a cut point, then $\prod^{\omega} G$ contains a non-abelian free subgroup.

Corollary

Non-elementary groups satisfying a law are not lacunary hyperbolic.

Example. The wreath product $(\mathbb{Z}/2\mathbb{Z})$ wr \mathbb{Z} and the free Burnside group $\overline{B(m,n)}$ are directed limits of hyperbolic groups, but are not lacunary hyperbolic.

Lacunary hyperbolic small cancellation groups

We say that a subset $L \subset \mathbb{N}$ is *sparse*, if for any $\varepsilon > 0$, there exists a segment $I = [a, b] \subset (1, +\infty)$ such that $I \cap L = \emptyset$ and $a/b < \varepsilon$.

Proposition (Olshanskii-Osin-Sapir)

Let $G = \langle X \mid \mathcal{R} \rangle$ be a group presentation, where X is finite and \mathcal{R} satisfies the $C'(\lambda)$ small cancellation condition for some $\lambda < 1/6$. Then G is lacunary hyperbolic if and only if the set $\{|R| \mid R \in \mathcal{R}\}$ is sparse.

Corollary

There are lacunary hyperbolic groups H_1 , H_2 such that $H_1 * H_2$ is not lacunary hyperbolic.

Idea of the proof: The union of two sparse sets is not necessarily sparse.

Asymptotic cones of finitely generated groups
Lacunary hyperbolic groups: a characterization and examples
Constricted groups
Amenable lacunary hyperbolic groups
Central extensions of lacunary hyperbolic groups

CONSTRICTED GROUPS

Constricted groups

Definition (Drutu-Sapir)

A group *G* is *constricted* if all asymptotic cones of *G* have cut points.

Examples.

- (Osin–Sapir) Relatively hyperbolic groups (fundamental groups of finite-volume complete hyperbolic manyfolds, groups acting freely on \mathbb{R}^n-trees, free products, etc.)
- Mapping class groups (Behrstock).
- **③** Groups acting k-acylindrically on trees (Drutu-Mozes-Sapir).

Under some mild assumptions, an action of a group on a homogeneous space with cut points leads to an action on an \mathbb{R} -tree. This allows to apply the Rips theory to study constricted groups.

Some questions about constricted groups

The following natural questions were open until now:

- Does every non-elementary constricted group contain a free non-abelian subgroup?
- Is every infinite constricted group non-simple?
- Oan a constricted group be periodic?
- Suppose a finitely generated group has cut points in some asymptotic cone. Is it constricted?

Strongly lacunary hyperbolic groups

Definition

A geodesic metric space X is *tree-graded* with respect to a collection of connected subsets \mathcal{P} (called *pieces*) if:

- Any two distinct pieces intersect by at most one point.
- Every non-trivial simple geodesic triangle in X is contained in a single piece.

If a geodesic space X is tree-graded with respect to a collection of circles whose diameters are uniformly bounded from above and from below, we call X a *circle-tree*.

Theorem (Olshanskii-Osin-Sapir)

- There exist infinite periodic strongly lacunary hyperbolic groups.
- 2 There exist strongly lacunary hyperbolic Tarskii Monsters (i.e., non-elementary finitely generated groups all of whose proper subgroups are cyclic). In particular these groups are simple.

Asymptotic cones of finitely generated groups: Lacunary hyperbolic groups: a characterization and examples Constricted groups

Amenable lacunary hyperbolic groups

Central extensions of lacunary hyperbolic groups

AMENABLE LACUNARY HYPERBOLIC GROUPS

Amenable groups

Definition

A group G is <u>amenable</u>, if there exists a finitely additive measure on the set of all subsets of G which is invariant under the action of G on itself by left multiplications.

Theorem (von Neumann)

The class of amenable groups contains all abelian and finite groups and is closed under taking subgroups, quotients, extensions, and directed limits.

Example. Non-abelian free groups are non amenable.

Problem (Kleiner)

Suppose that a group G is finitely generated, amenable, and not virtually cyclic. Can it have cut points in at least one asymptotic cone?

Amenable lacunary hyperbolic group

Theorem (Olshanskii-Osin-Sapir)

There exists a finitely generated group G satisfying the following properties.

- G is not virtually cyclic.
- @ G is lacunary hyperbolic.
- **③** G splits as $1 \to L \to G \to \mathbb{Z} \to 1$, where L is locally finite. In particular, G is elementary amenable.

Pick a prime p and a non-decreasing sequence of positive integers $c_1 \le c_2 \le \dots$ with fast growth.

$$G = \left\langle t, a \mid \begin{bmatrix} ...[a, t^{-i_1} a t^{i_1}], ..., t^{-i_{c_n}} a t^{i_{c_n}}] = 1, & n \in \mathbb{Z}, -n \le i_1, ..., i_{c_n} \le n \\ a^p = 1 & \end{pmatrix} \right\rangle$$

Asymptotic cones of finitely generated groups
Lacunary hyperbolic groups: a characterization and examples
Constricted groups
Amenable lacunary hyperbolic groups
Central extensions of lacunary hyperbolic groups

CENTRAL EXTENSIONS OF LACUNARY HYPERBOLIC GROUPS

Bounded cohomology and asymptotic cones

Theorem (Mineyev)

Let G be a hyperbolic group. Then the natural map $H^n_b(G,\mathbb{Z}) \to H^n(G,\mathbb{Z})$ is surjective for all $n \geq 2$.

$$H^2_b(G,\mathbb{Z}) \to H^2(G,\mathbb{Z})$$
 is surjective.

Any central extension 1 \to \mathbb{Z} \to H \to G \to 1 is quasi-isometric to G \times \mathbb{Z} .

For any $d=(d_n)$ and ω , $\mathrm{Con}^\omega(H,d)$ is bi-Lipschitz equivalent to $\mathrm{Con}^\omega(G,d)\times\mathbb{R}.$

Given a product $X \times Y$ of metric spaces X and Y, we define a metric on $X \times Y$ by the rule

$$\operatorname{dist}_{X\times Y}((x_1,y_1),(x_2,y_2)) = \operatorname{dist}_X(x_1,x_2) + \operatorname{dist}_Y(y_1,y_2).$$

We write $X \sim_{Lip} Y$ if metric spaces X and Y are bi-Lipschitz equivalent.

Theorem

Let N be a central subgroup of a finitely generated group G. Suppose that $\operatorname{Con}^{\omega}(G/N,d)$ is an \mathbb{R} -tree for some $d=(d_n)$ and ω . Then

$$\operatorname{Con}^{\omega}(G,d) \sim_{\operatorname{Lip}} \operatorname{Con}^{\omega}(N,d) \times \operatorname{Con}^{\omega}(G/N,d),$$

where $Con^{\omega}(N, d)$ is taken with respect to the metric on N induced from G.

Main example

Fix an infinite presentation

$$H = \langle a, b \mid R_1, R_2, \dots \rangle$$

such that:

- (a) The set of relations satisfies C'(1/24).
- (b) Lengths $r_i = |R_i|$ grow sufficiently fast. In particular, H is lacunary hyperbolic.

Given a sequence of integers $k = (k_n), k_n \ge 2$, consider the central extension of H defined by

$$G(k) = \langle a, b \mid [R_n, a] = 1, [R_n, b] = 1, R_n^{k_n} = 1, n = 1, 2, \dots \rangle$$
 (1)

Cut points in asymptotic cones

Problem (Drutu-Sapir)

Suppose an asymptotic cone of a finitely generated group G has cut points. Does every asymptotic cone of G have cut points?

By a *connectedness degree* $c(X) \in \{0, 1, ..., \infty\}$ of a metric space X we mean the minimal number of points whose removal disconnects X.

The negative answer to the above question is provided by

Theorem (Olshanskii-Osin-Sapir)

Let G(k) be the group corresponding to the sequence $k_n=m\geq 2$. Then for any ultrafilter ω and any scaling sequence $d=(d_n)$, exactly one of the following possibilities occurs and both of them can be realized for suitable ω and d.

- \bigcirc Con $^{\omega}(G(k), d)$ is an \mathbb{R} -tree.

Fundamental groups of asymptotic cones

Theorem (Erschler-Osin)

Any countable group can be realized as a subgroup of $Con^{\omega}(G, d)$ for some G, d, and ω .

Theorem (Drutu-Sapir)

For any countable groups Q, there exist G, d, ω such that $\pi_1(\operatorname{Con}^{\omega}(G, d))$ is the free product of uncountably many copies of Q.

Problem (Gromov)

Can the fundamental group of an asymptotic cone of a finitely generated group be countable and non-trivial?

The main difficulty comes from the fact that the (uncountable) group $\prod^{\omega} G$ acts on $\operatorname{Con}^{\omega}(G,d)$ transitively.

Asymptotic cones with cyclic fundamental groups

Let G = G(k) be the group corresponding to a sequence $k = (k_n)$ such that

$$k_n \to \infty$$
 and $k_n |R_n| = o(|R_{n+1}|)$.

Let $N = \langle R_1, R_2, \ldots \rangle$. Clearly N is central in G.

Theorem (Olshanskii–Osin–Sapir)

There exists a scaling sequence $d = (d_n)$ such that for any ultrafilter ω the following conditions hold:

- **1** Con $^{\omega}(G/N, d)$ is an \mathbb{R} -tree.
- **2** $\operatorname{Con}^{\omega}(N,d)$ is isometric to \mathbb{S}^1 .

In particular,

$$\operatorname{Con}^{\omega}(G,d) \sim_{\mathit{Lip}} \mathbb{S}^1 \times (\mathbb{R} - \operatorname{tree})$$

and
$$\pi_1(\operatorname{Con}^{\omega}(G,d)) = \mathbb{Z}$$
.