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Introduction

0.1. Letk be afield of one of the three types below, whigés an algebraically closed
field of characteristic O:

(gl) a function fieldk in two variables overkg, i.e., the function field of a smooth,
projective, connected surface ovey;

(I the field of fractiong of a two-dimensional, excelig henselian local domaia with
residue fieldkg;

(sl) the Laurent series fieltl=1((z)) over a field! of characteristidO and cohomological
dimensiorL.

Let G be a connected line&rgroup.In the casggl) we always assume thét has no
factors of typeFs.

0.2.In [11,12] the arithmetic of linear algebraic groups over such fields was in-
vestigated. In particular, whe& is semisimple simply connected, it was proved that
H(k,G) =1 andG (k)/R = 1 (whereG (k)/ R denotes the group of classesPfequiva-
lence); in the cases (gl) or (Il) it was proved that the defect of weak approxim&sics)
equals 1 with respect to any finite sBtof associated discrete valuations, i@.has weak
approximation property with respect . It was proved that in the second non-abelian
cohomology seH?(k, L) all the elements are neutral, if thekernel -band)L = (G, «)
is such thatG is semisimple simply connected.

Assume that is a reductivek-group admitting a special covering, i.e., there exists an
exact sequence

l1->pu—->GoxN—->G—1,

whereGy is a semisimple simply connected grouy,is a quasi-trivial torus ang is a
finite abeliank-group. For such groupS the group of classes at-equivalences (k)/R
and the defect of weak approximatidn: (G) were computed by Colliot-Thélene, Gille,
and Parimala [12] in terms @f.

0.3. In the present paper we do not assume thadmits a special covering. Basing
on the fundamental results of [12], for a connected line@roup G we compute the
groupG(k)/R, the groupA s (G) (in the cases (gl) and (ll)), the Galois cohomology set
H(k, G), and the Tate—Shafarevich sat (k, G) (in the case (I)) in terms of the algebraic
fundamental groupr1(G). We prove that the group&(k)/R and Ax(G) and the set
ml(k, G) are stablyk-birational invariants ofG. We also consider the case wherés
a number field.

0.4. We describe our results in more detail. Firstidbe any field of characteristic 0.
Let I' = Gal(k/k), wherek is a fixed algebraic closure d&f. For a reductivek-group
G let 71(G) denote the algebraic fundamental group®fintroduced in [6]. For any
connected lineak-groupG let GY denote its unipotent radical and I6t®= G/GY; itis
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a reductive group. We set (G) := 1(G"%; it is a finitely generated (ovét) I"-module.
(For another definition of1(G) see [33, Section 10].)

We consider an additive functét from the category of-tori to the category of abelian
groups, with the following propertyt{(N) = 0 for any quasi-trivial torugv. An example
of such a functor ig" — H(k, T).

In Section 1 we consider a coflasque resolutioniG)

0> Q00— P—->m(G)—0

(i.e., P is a permutation"-module andQ is a coflasqud"-module). LetF; denote the
flasque torus such tha,(Fg) = Q, whereX, denotes the cocharacter group. We show
that H(F¢) is determined uniquely by up to canonical isomorphism, and we obtain a
functorG — H(Fg).

In Section 2 we consider a smooth ratiortalariety X. Let Vx denote a smooth
compactification off. Write V x = Vyx x; k. Let Sx be the Néron—Severi torus &k, i.e.,
the k-torus such thaX*(Sy) = PicV x, whereX* denotes the character group. We show
that H(Sx) is determined uniquely b up to canonical isomorphism, and we obtain a
functorX — H(Sx). The groupH(Sx) is a stablyk-birational invariant ofx.

In Section 3 we prove that for a connectedroupG, PicV s is a flasquel"-module
(thus we generalize a theorem of Voskresenskitori). Using this result we prove that
H(Fg) ~H(Sg) and thatFg x N1~ Sg x N2 for some quasi-triviak-tori N1 and Na.

In Section 4 we assume thatis as in 0.1. We prove thag (k)/R ~ H(k, Fg). We
take H(T) = H(k, T). Using the results of Sections 3 and 2, we obtain thét)/R ~
H(k, Sg) and therefore the groug(k)/R is a stablyk-birational invariant oG.

In Section 5 we consider weak approximation &@mwith respect to a finite set’ of
associated discrete valuationskofWe assume thatis of type (gl) or (Il). For a&-torusT
set

ulk, T)= coker[Hl(k, T)— ]_[ H(k,, T)]
veX

(4 is pronounced “cheh”). We prove thatis(G) ~ q}:(k, Fg). We take H(T) =
4. (k, T). Using the results of Sections 3 and 2, we obtain thatG) ~ 1. (k, S¢) and
thereforeA 5 (G) is a stablyk-birational invariant ofG.

In Section 6 we consideff 1 (k, G). In [6] for any fieldk of characteristic O the group
of abelian Galois cohomologylgb(k, G) was defined in terms aot1(G). A canonical
abelianization map db H(k, G) — H}(k, G) was defined. We prove here thatkifis
as in 0.1, then abis a bijection. Thu#/1(k, G) has a canonical, functorial structure of an
abelian group.

In Section 7 we consider the Hasse principle ébwhenk is of type (ll). Using the
result of Section 6, we prove that there is a canonical bijeatidtk, G) ~ m?(k, Fg). We
takeH(T) = m(k, T). Using the results of Sections 3 and 2, we obtain thatk, G) ~
m?(k, Sg) and that the cardinality of the satl(k, G) is a stablyk-birational invariant
of G. In particular, ifG is stablyk-rational, therm! (k, G) = 1.
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The results of Sections 4—7 hold also whers a totally imaginary number field.

In Section 8 we establish analogues of these results whsnany number field, not
necessarily totally imaginary.

The proof of our formula fotG (k) /R in Section 4 is based on the difficult Lemma 4.12.
This lemma is proved in Appendix by P. Gille. Gille also proves a similar (and more
difficult) result over a number field which we use in Section 8.

For a discussion of our results (with references) see the text of the paper below. Here
we only note that we use the method of Kottwitz [27] in order to reduce the assertions to
the known case of tori.

0.5. Notation and conventions

k is a field of characteristic & is a fixed algebraic closure &f I" = Gal(k/k). By a
I'-module we mean a finitely generated o¥ediscretel"-module.

Let G be a connected linear algebraic group defined év&ve defineG' andG"% as
in 0.4. LetGSSdenote the derived group 6% it is semisimple. SeG™" = G4/ GSS, it
is a torus. LetGS¢ denote the universal covering 6FS, it is simply connected.

In Sections 1-3H is a covariant functor from the category/otori to the category of
abelian groups satisfying the following conditions:

(1) let f1, f2:T" — T” be two homomorphisms df-tori, thenH(f1 + f2) = H(f1) +
H(f2);

(2) H(T1 x T2) >~ H(T1) @ H(T>) for any twok-tori T; andT>;

(3) H(N) = 0 for any quasi-triviak-torusnN .

A functor satisfying (1) is called additive, and (2) follows from (1), cf. [30, Chap-
ter VIII.2, Proposition 4 on p. 193]. From (2) and (3) follows the following property:

(4) if pr:T x N — T is the projection, whereV is a quasi-trivial torus, thempr, :
H(T x N) — H(T) is an isomorphism.

An example of such a functor i%((T) = H(k, T). Another example isH(T) =
m(k, T) whenk is a number field.

1. Functor H(Fg)

Let k be a field of characteristic 0. In this section we construct a fun@Gtes H(Fg)
from the category of connected linear algebraigroups to abelian groups. Hefg is the
flasque torus coming from a coflasque resolutioniG).

1.1. A I'-module P is called a permutation module if it is torsion-free and has a
I-invariant basis. A”-module is called coflasque if it is torsion-free aHd (I, Q) =0
for every open subgroup’ C I". Any permutation module is coflasque.
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A coflasque resolution of &-moduleA is an exact sequence d-modules
0-Q0—-P35 A0, (R)
whereP is a permutation module an@ is a coflasque module.

Lemma1.2[16, Lemme 0.6]Every/"-moduleA admits a coflasque resolution. Moreover
if I" is the image of " in Aut A, then there exists a coflasque resolut{&) of A such that
I’ acts onP and Q throughr.

1.3. A k-torus F is called flasque if its cocharacter grouf.(F) is a coflasque
I'-module. A k-torus N is called quasi-trivial if it is isomorphic to the product
Il; Rx:/xGm.k;, whereK;/k are finite extensions. In other wordy, is quasi-trivial if
and only if X, (N) is a permutatior”-module.

Let (R) be a coflasque resolution offa-moduleA. Let F(ry denote the flasque torus
such thaiX.(FRr)) = Q. SetF(R) = H(Fr)), whereH is a functor as in Section 0.5. We
shall prove thatF (R) depends only oa and is functorial inA.

Note that for two coflasque resolutions

ofaI"-moduleA, we haveQ; @ P; ~ Q2 ® P, for some permutation modulgy andP,,
cf. [16, Lemme 0.6]. Thu%{(F(R/l)) i~ H(F(sz)) by property (4) ofH, see Section 0.5. We

prove below that there existeanonicaisomorphism, permitting to identifgrt(F(R/l)) and
H(FRry))-
2

1.4. Let
0—>Q,'—>P,'i>A,'—>0 (l=1,2) (R,)
be coflasque resolutions. We always reg@gdas a subgroup of;. A morphism(R1) —
(Rp) is a pair of homomorphisms df-modulesf : A1 — Ay, ¥ : P — P2 such that the

following diagram is commutative:

a1
P —— A

Jdo )

a2
P, —— Ao

Thenyr defines a homomorphis®; — Q> (as the restriction ofy to Q1). Thus a pair
(f, ¥) gives rise to a homomaorphisf( f, ) : F(R1) — F(R2).

Lemma 1.5. Let

00 — P % A0, (R)
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0> Q' =P %5 A" >0 (R")

be coflasque resolutions. Lgt: A" — A” be a homomorphism af'-modules. Thery
extends to a morphisiy, ¥) : (R) — (R).

Proof. SetP = P’ x4» P" ={(x',x") e P' x P | f(o'(x")) =" (x")}. Letp': P — P’
denote the projection defined ly(x’, x”) = x’. Clearly kerp’ ~ Q”. We obtain an exact
sequence

0>0" -PL P 0.

SinceP’ is a permutation module ar@” is a coflasque module, we have Ex’, Q") =0
(cf. [29, Proposition 1.2]). fius there exists a splitting: P’ — P such thatp’ o 8 =idp:.
Write B(x") = (x', ¥ (x)), wherey (x') € P”, " (¥ (x")) = f (¢ (x")). Clearly(f, ) is a
morphism(R") — (R”) extendingf. O

Lemmal.6. Let(R), (R”) be asin Lemma.5. Let(f, ¥): (R) — (R”) be any morphism
of coflasque resolutions. Then the homomorphisaf, v) : F(R1) — F(R2) does not
depend ony.

Proof. Let i1, Y2: P — P” be two homomorphisms of'-modules compatible with
fiA— A", Let x =1 — Y2: P’ — P”. Then clearly iny € kera”” = Q”. We may
and shall regargt as a homomorphism: P' — Q.

Letd;: Q" — Q" be the homomorphismsinduced ¥y (i = 1, 2), where we regar@’,
Q" as submodules aP’, P”, respectively. Thef; (x’) = ¥, (x") for anyx’ € Q’. We see
thatd, — 01 = x|o'. But x|o': Q" — Q" factors throughP’. It follows that

F(f,¥2) — F(f, ¥1) - H(FRry) — H(FRrr)

factors throughH(N'), where N’ is the k-torus such thaX,(N’) = P’. SinceN’ is a
quasi-trivial torus, we havé{(N’) = 0 and F(f, ¥2) — F(f, ¥1) = 0. ThusF(f, ¥1) =
F(f,¥2). O

We shall write7(f)r,r) instead ofF(f, ¥).

1.7. Now using Lemmas 1.2, 1.5 and 1.6, we shall prove by a categoric argument that the
correspondenca — F(R) defines a functoA — F(A) from the category of"-modules
to the category of abelian groups.

(i) Assume we have three coflasque resolutig®is, (R”), (R”) as above. Lef : A’ —
A” andg: A” — A” be homomorphisms af'-modules. Then it is easy to see that

F(go flr,rm =F(@r® R oF(HR,R)-
(ii) Consider the case when we have dnenoduleA and one coflasque resolution

0O—-Q—->P—>A—0. (R)
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ThenF(ida)r R : F(R) = F(R) equals ig R .
(iii) Consider the case of two coflasque resolutions of the sBrmeoduleA:

0>0,>P—>A—>0 (i=12). (Ri)

Setpir = F(ida)(R..Ry : F(R1) = F(R2). One can easily prove thai, is an isomor-
phism. We have constructed a canonical isomorphissn F(R1) — F(R2).
(iv) Now consider three coflasque resolutions of éghenoduleA:

0—>Q—>P—>A—>0 (i=123). (Ri)

By (iii) we have canonical isomorphismsg; : 7 (R;) — F(R;). By (i) we havepyzo p12 =
$13.

(v) Let A be ar"-module. For any two coflasque resoluti@is), (R2) of A we identify
F(R1) with F(R2) using the canonical isomorphispa,. We thus obtain an abelian group
which we denote byF(A). Note that the grougF (A) is well defined because of (iv).

(vi) Let f: A" — A” be ahomomorphism df-modules, and letR}) — (R}) (i =1,2)
be two morphisms of coflasque resolutions extendinghen it is easy to see that the
following diagram is commutative:

f g / !/
}_(R,l) (f)(Rl’Rl)

‘ﬂ/izl/ . \L ?1s
) (ryr3)
F(Ry) F(Rg)

F(R])

(vii)Let f: A" — A” be ahomomorphism df-modules. Choose coflasque resolutions
(R) and (R”) of A’ and A", respectively. We defineF(f): F(A") — F(A”) to be
F(HRr.Rry:FR) = FR"). By (vi) this homomorphism is well defined (does not
depend on the choice of resolutions).

Thus we have defined a functdr— F(A) from I'-modules to abelian groups. We
shall denoteF(A) by H(F4).

1.8. We recall the definition of algebraic fundamental graypG) of a connected linear
algebraic grouggs from [6].
First assume that is reductive. Consider the composition

0:G¢— G G.

In general the homomorphism is neither surjective nor injective. Lef c G be a
maximal torus (defined ovel). SetTS¢= p~1(T) c G, it is a maximal torus inGSC.
The homomorphism : 7S¢ — T induces a homomorphism éf-modulesp,, : X (75 —
X.«(T), whereX, denotes the cocharacter group. SetG) = X.(T)/p«X«(T. It is
shown in [6] that theI"-module 71(G) is well defined, i.e., does not depend on the
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choice of a maximal toru¥ c G. To a homomorphisnf : G1 — G there corresponds a
homomorphism of -modulesf; : 71(G1) — 71(G2).

For an arbitrary connected linear algebriaigroupG (not necessarily reductive) we set
71(G) := 71(G"Y. Thenxny is a functor from the category of connected linear algebraic
k-groups to the category df-modules.

1.9. Consider the functaF o1 : G — H(Fy,(c)) from the category of connected linear
algebraicc-groups to the category of abelian groups. We shall wWiité&'s) for H(Fr,(c))-
Recall that a finite group is called metacyclic if all its Sylow subgroups are cyclic.

Proposition 1.10. Assume that the image of I'" in Aut1(G) is a metacyclic group. Then
H(Fg) =0.

Proof. By definition H(Fg) = H(F) for a flasque torug” coming from a coflasque
resolution ofrr1(G). By Lemma 1.2 we may assume thAt splits over a metacyclic
extension. By a theorem of Endo and Miyata (cf. [15, Proposition 2, p. 184]) there exists a
k-torusT such that the torug' x T is quasi-trivial. We obtain

HF) @H(T)=H(F xT)=0,

henceH(Fg) =H(F)=0. O

2. Functor H(Sx)

2.1. Letk be afield of characteristic 0. L&t be a smooth rationak-variety (i.e.,.X x k
is birational to an affine space). L&k be a smootlt-compactification ofX. We consider
the I'-module PidV x, whereVx = Vyx x; k. It is a torsion-free group of finit&-rank
(cf., e.g., [44, 4.5]). LetSx denote the Néron—Severi torus Bf, i.e., thek-torus with
character group<*(Sy) = PicVx. We shall show in this section th&t(Sy) does not
depend on the choice &fy, and that the correspondenke—> H(Sx) extends to a functor
from the category of smooth ration&dvarieties to the category of abelian groups. (The
similar assertion about the correspondeiice> H1(k, PicV ) is known to experts, cf.
[39, 9.0], but we could not find a reference where it was written in detail.) Moreover we
shall prove that{(Sy) is a stablyk-birational invariant ofX .

2.2. Let X be a smooth geometrically integriadvariety. A smooth compactification
V of X is a pair(V,v: X — V), whereV is a smooth completg-variety, andv is an
embedding ol into V as a dense open subset. We often write jugtstead of(V, v). We
say that a smooth compactificatioV’, v') dominategV, v) if there exists &-morphism
A: V' — V such thab = A o V'. Then such is unique (because (X) is dense inV’).

We need three propositions emooth compactifications.

Proposition 2.3 [24]. For any smooth geometrically integratvariety X there exists a
smooth compactificatioV/, v) of X.
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Proposition 2.4. For any two smooth compactificatios, V> of a smooth geometrically
integral k-variety X, there exists a smooth compactificatigg of X dominating bothvy
and V.

Proof. The proposition is a special case of Proposition 2.6 belaw.

2.5. Let f: X’ — X” be a morphism of smootk-varieties. Let(V’, V"), (V”,v") be
smooth compactifications &f’, X”, respectively. We say that a morphigm V' — V" is
compatiblewith f if the following diagram commutes:

V/ 11/ > V//

; T T .
i

X/ ~ X//

Proposition 2.6. Let f:X’ — X” be a morphism of smooth geometrically integral
varieties, and letV’, V” be smooth compactifications &f, X", respectively. Then there
exist a smooth compactificatioiy of X’ dominatingV’ and a morphismy : vV, — V”
compatible withf .

Proof. See [7, 1.2.2]. This proof was communicated to us by J.-L. Colliot-Théléme.

2.7. From now on to the end of the section we assumeXhiata smoothational variety
(i.e.,k-rational). LetVy be a smooth compactification &f. We defineSy asin 2.1.

2.8. Let Vi, Vo be two smooth compactifications of, and let S1, S2 be the
corresponding Néron—Severi tori (i.&X(S;) = PicV;, i = 1, 2). We wish to construct
an isomorphismei2:H(S1) — H(S2). By Proposition 2.4, there exists a smooth
compactificationV of X dominating bothVy and V,. Let S denote the corresponding
Néron—Severi torus. The domination morphigat V — V1 induces a homomorphism
A1 S — 81, and there exists an isomorphis$i~ S1 x N1, where N7 is a quasi-trivial
k-torus andi1, corresponds to the projection ¢f x Ny onto Sy (cf. [44, 4.4]). We
thus obtain an isomorphisiy : H(S) — H(S1) by property (4) ofH, see Introduction.
Similarly, the domination morphisriz:V — V» induces an isomorphisiy : H(S) —
H(S2). We obtain an isomorphisgnz = 2 0 7 > H(S1) — H(S2).

2.9.If vV’ is another smooth compactification &f dominating bothV; and Va,
we obtain another isomorphisgy,:H(S1) — H(S2). However there exists a smooth
compactificationv” of X dominating bothV and V’, and using this fact one can easily
show thaty}, = ¢12. Thus we have constructed a canonical isomorphigmH(S1) —
H(S2).

2.10. Now let Vi, V2, V3 be three smooth compactifications &f, let S1, S2, S3
denote the corresponding Néron—Severi tori, angh et (S;) — H(S;) be the canonical
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isomorphisms. Le¥2 (respectivelyV,3) be a smooth compactification &f dominating

V1 and Vs, (respectivelyWW, and V3). Let V be a smooth compactification & dominating
V12 andVo3. ClearlyV dominates/;, Vo, andVs, and using this fact, one can easily show
thatg13 = g230 @12.

2.11. Let V4, Vo, 81, S2 be as in 2.8. We can now identif§((S1) with H(S2) using
the canonical isomorphisigy o, for all pairs(Vi, V2). We denote the obtained group by
H(Sx). The groupH(Sx) is well defined because of the equalitys = 230 12 0f 2.10.

2.12. Let f: X’ — X" be a morphism of smooth rational varieties. By Proposition 2.6
there exists a morphism of smooth compactificatignsV’ — V”; here (V’,v") and
(V”,v") are smooth compactifications &f and X", respectively, and the diagram

V/ > V//

; T T .
i

X/ s X//

commutes. We obtain a homomorphigm: H(Sx,) — H(Sx,).

Let nowyr1: V] — Vi andyr2: V, — V., be two morphisms of smooth compactifica-
tions extending &-morphismy : X1 — X». Then using Propositions 2.4 and 2.6, we can
construct a morphism of smooth compactificatigns V; — V3" dominating bothy; and
Y2 (in the obvious sense). Using this fact one can easily show that the diagram

H(sp) 2 H(sy)

?io l \L ?1>

, 1//2* 1
H(Sz) - H(Sz)

commutes. (Herd] is the Néron—Severi torus &, and so on.) Thus we have constructed
a canonical homomorphisify : H(Sx/) — H(Sx»).

If f:X'— X", g:X" — X" arek-morphisms of smooth rational varieties, then using
Proposition 2.6 one can construct a commutative diagram

V/ > V// > V///

L

X/ M X// S X///

whereV’, V", V"7 are smooth compactifications &f, X”, X"’, respectively. It follows
that (g o f)« = g« o fx. We see that we have constructed a funcfor H(Sx) from the
category of smooth rationatvarieties to the category of abelian groups.
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2.13. Let f: X1 — X> be arational map of smooth rational varieties defined évén
other words, let/; ¢ X1 andU, C X2 be open subvarieties anfl : U1 — Uz a regular
map, all defined ovet. We may takeVy, = Vx, (v =1, 2), thus we can identif$<(Sy,)
with H(Sx,). The regular mag’: U; — Uz induces a homomorphism of abelian groups
f1:H(Sy,) = H(Sy,), see 2.12. Thus we obtain a homomorphj&mH (Sx,) — H(Sx,)
which does not depend on the choicelafandUs. Clearly if f: X1 — X3 is a birational
isomorphism, thery, is an isomorphism.

Recall that twok-varietiesX1, X, are called stably-birationally equivalent, ifX; x
P}t and X x P}? arek-birationally equivalent for somes, ny (hereP;* andP}? are
projective spaces).

Proposition 2.14. H(Sx) is a stablyk-birational invariant of X.

Proof. Let X1 andX> be two stably-birationally equivalent varieties. Thefy x P;* and
Xo x Pzz arek-birationally equivalent for some1, ny. SetY, = X, x PZ“ v=12),
then there is &-birational isomorphismf: Y, — Y». The birational isomorphismny
induces an isomorphisri, : H(Sy;) — H(Sy,), see 2.13. The projections, : ¥, — X,
induce isomorphisms),.: H(Sy,) — H(Sx,) (v = 1,2). We obtain an isomorphism
Yox o fyo Yt i H(Sx,) = H(Sx,). O

3. Isomorphism H(Fg) ~ H(Sg)

Let £ be a field of characteristic 0. In this section we construct an isomorphism of
functorsG — H(Sg) and G — H(Fg) on the category of connected linear algebraic
k-groups. But first we need to generalize a result of Voskresenski

Proposition 3.1 ([43, 4.8], [44, 4.6]) For anyk-torus T the I"-modulePicV 7 is flasque.

Here aI'-moduleM is called flasque if the dual moduM™ := Hom(M, Z) is coflas-
que.
We prove the following theorem.

Theorem 3.2. Let G be a connected linear algebraicgroup. ThenPicV s is a flasque
module.

Proof. (i) First, we reduce the assertion to the case of a reductive group. A Levi
decomposition gives an isomorphism bivarieties G ~ G"9 x GY, where G! is a
k-rational variety. We may tak&; = Vred x Viu, then PicV g = PicV grea © P, where
P is a permutation module. Thus if Pit;req is flasque, then Pig ¢ is also flasque. So we
may and shall assume thatis reductive.

(i) Let us now prove the assertion of the theorem in the case whiéseuasi-split, i.e.,
has a Borel subgroup defined ovetk. Then it follows from the Bruhat decomposition
that there exists an open subsetdrisomorphic toU~ x T x U, whereT is a maximal
torus of G, U is the unipotent radical oB, andU ~ is the opposite unipotent subgroup
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of G. HereU andU ~ arek-rational varieties. It follows that Pi¢g ~ PicV 7 & P, where
P is a permutation module. Since Rig is flasque by Proposition 3.1, we conclude that
PicV is flasque.

(iii) The general case can be reduced to the quasi-split case by the device of passage to
the variety of Borel subgroups. The following argument mimics [17, Theorem 2.B.1] (see
also [13, Theorem 4.2] and [7, Theorem 2.4]).

Let G be any connected reductivegroup (not necessarily quasi-split). LEtdenote
the variety of Borel subgroups @f (see [40, t. lll, Exp. XXII, 5.8.3] for the definition). It
is a geometrically integral smookhvariety, becaus¥; ~ G;/B, whereB C Gy is a Borel
subgroup. The variety has the following property: i (k') # ¢ for a field extension’/ k,
thenGy is quasi-split, and then by (i) the assertion of the theorem holds for &ych

Let k(Y) be an algebraic closure &{(Y) containingk(Y). SinceY is geometrically
integral, we see that is algebraically closed it (Y), and therefore Gat(Y)/k(Y)) ~
Gal(k/k). The varietyY has ak(Y)-point (the generic point of), henceGyy) is quasi-
split. It follows that PicV g, ,, is a flasque module.

(iv) We can now finish the proof of the theorem. L& = Vs be a smooth
compactification ofG. SinceG is k-rational, it follows from [44, 4.4] that P&/ xj k)
is a torsion-free abelian group of finite rank, and that( Pi k) = Pic(V xj k(Y)) =
Pic(V x k(Y)). We denote this group by Pt. Let 0 = Hom(PicV, Z). We wish to prove
that PicV is a flasque™-module, i.e., thap is a coflasqué™-module. We know tha@ is
a coflasque Gat(Y)/k(Y))-module because Pi¢is a flasque G&k(Y)/k(Y))-module.

Let k' /k be a finite field extension ik. SetI"”’ = Gal(k(Y)/k'(Y)), g’ = Gal(k(Y)/

k' (Y)), h = Gal(k(Y)/k(Y)). Thenp acts trivially on Pid/ and hence orQ. We have an
isomorphisml™ >~ g’ /.

We have an inflation-restriction exact sequence

0— HYI", @") —» H(¢/, 0) — H(h, 0),

cf. [1, Chapter IV, Proposition 5.1]. We hav@h = Q. Since Q is a coflasque
Gal(k(Y)/k(Y))-module, we havéi*(g’, Q) = 0. HenceH'(I"’, 0) = 0. We have proved
that Q is a coflasqud™-module. Thus Pi¥ is a flasque™-module. O

Lemma 3.3. Let L be a flasque™-module. TherH1(y, L) = 0 for any closed procyclic
subgroupy C I.

Proof. Let Q = LY, then Q is a coflasque module. Lgt denote the image of in
Aut L, it is a finite cyclic group. Sinc@ is coflasqueH (7, Q) = 0. By duality for Tate
cohomology with coefficients in a torsion-free module (cf. [9, Chapter VI, §7, Exercise 3]),
we haveH ~1(y, L) = 0. By periodicity for Tate cohomology of finite cyclic groups (cf.
[1, Chapter IV, Theorem 8.1]) we havé!(y, L) =0. ThusH(y, L) =0. O

Corollary 3.4 [13, Proposition 3.2]Let G be a connected linear algebraicgroup, then
Hl(y, PicV ) = 0for any closed procyclic subgroupc Gal(k/ k).

Proof. The corollary follows from Theorem 3.2 and Lemma 3.31
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Theorem 3.5. There exists a canonical isomorphism of funct6rs> H(Fg) and G —
H(S¢) from the category of connected linear algebraigroups to the category of abelian
groups.

Corollary 3.6. H(F) is a stablyk-birational invariant ofG.
Proof. The corollary follows from Theorem 3.5 and Proposition 2.141

In the proof of Theorem 3.5 we use the method of Kottwitz [27].
We need the following lemma which was stated in [6] without proof.

Lemma3.7.Letl - G1 % G» LN G3 — 1Dbe an exact sequence of connected reductive
k-groups. Then the sequence

1— 71(G1) = m1(G2) = m1(G3) = 1
is exact.

Proof. Let 7> C G2 be a maximal toruslz = 8(12) C G3, T =~ 1(T») C G1. We have
a commutative diagram with exact rows

0 —— Xu(T7) —= Xu(T3) —= Xu(13°) —0

N

0 —— Xy(T1)) —— Xyu(T2) —— Xy(I3) ——= 0

where the vertical arrows are injective and cgXe(7;>9) — X.(T;)] = m1(G;) for i =
1, 2, 3. Now our lemma follows from the snake lemmag

Corollary 3.8. If G is a reductivek-group andG®S is simply connected, then the map
t:G — G"induces a canonical isomorphisg 71(G) = X4(G©").

Proof. We have an exact sequences1GS® — G — G — 1, wherer1(G®) =1 and
n,l(Gtor) :X*(Gtor)_ O

3.9. We now construct an isomorphism of functggs: H(Fg) — H(S¢) for reductive
groupsG such thaiG3%is simply connected.

Choose a smooth compactificatigp of G. Consider the exact sequence of Voskresen-
skil ([41,42], [44, 4.5])

0— X*(G) > P — PicVg — PicG — 0,
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where P is a permutation module. We have'(G) = X*(G™N). Since GSS is simply
connected, we have Rig = 0 (cf. [39, 6.9, 6.11]). We thus obtain an exact sequence of
torsion-freel"-modules

0— X*(Gtor) — P — PicVg— 0.
The dual exact sequence is
0— X4(Sg) — P’ — X,(G"") — 0, (3.1)

where P’ is a permutation module. By Theorem 3.2, Pig is a flasque module, hence
X«(Sg) is a coflasque module. By Corollary 38,(G'") = 71(G). We see that (3.1) is

a coflasque resolution af; (G). Thus we may takéd’; = Si. We obtain an isomorphism
&6 ' H(Fg) — H(Sc).

3.10. We show thats does not depend on the choice of a smooth compactificdtion
of G.

Let V4 and V> be two smooth compactifications of. Proposition 2.4 shows that it
suffices to consider the case whéndominatesd/,. LetA : V1 — V> denote the domination
morphism. LetS; and S» be the Néron—Severi tori of; and Vo, respectively. Then.
induces a homomorphisiy, : 1 — S2 and an isomorphismaio = A, : H(S1) — H(S2),
where @12 is the canonical isomorphism defined in 2.8. Since Voskresemskiact
sequence is functorial (G, Vi), the morphisni. : (G, V1) — (G, V>) induces a morphism
of coflasque resolutions

0—— X4($1) ——= PL ——m1(G) ——=0

S

0 —— X4(852) —— P, ——71(G) ——= 0

where P; and P, are permutation modules. Thag: S; — S» is the morphism of flasque
tori corresponding to a morphism of coflasque resolutions of treoduler1 (G). In other
words, if we setF; = S1 and F> = Sz, then we have a commutative diagram

H(S1) == H(F1)
<ﬂ12l lﬁﬂlz
H(S2) H(F2)

where the left vertical arrow is defined in 2\8hile the right vertical arrow is defined
in 1.7(iii). Thus the isomorphisrés is well defined (does not depend on the choice of a
smooth compactification af).

One can easily show thgg is functorial inG (using Proposition 2.6 and the fact that
Voskresenskis exact sequence is functorial (7, Viz)).
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3.11. The next step is to exteng; to all connected reductivie-groups. We use the
method ofz-extensions.

A z-extension of a reductive-group G is an exact sequence of connected reductive
k-groups

1—>Z—>H£>G—>1

such thatHSS is simply connected and is a quasi-trivialk-torus. By a lemma of
Langlands, cf. [34, Proposition 3.1], every reductivgroup admits g-extension.
We need two lemmas.

Lemma 3.12. Let
1— G1—>G2£>G3—>1

be an exact sequence of connected lineagroups. Assume tha¥; is k-rational and
that H1(K, G1) = 1 for any field extensiork /k. Then B, : H(Sg,) = H(Sg,) is an
isomorphism of abelian groups.

Proof. Since H1(K, G1) = 0 for any field extensiork /k, in particular fork = k(G3),
the epimorphisng admits a rational section: Us — U», whereUs is an open subset in
Gz andU, = ~1(U3). Let g’ : U, — Uz be the map induced by, theng’ o s = idy,. We
define an isomorphism df-varieties

AUz x Gy— Uz, (g3,81) > s(g3)g1

(we assume thab, C G»). By [15, Lemme 11] we have Ri¥ y, x Vg,) = PicVy, @
PicVg,, hencex induces an isomorphisi(Sy,) x H(Sg,) — H(Sy,). SinceGi is a
k-rational variety,Sg is a quasi-trivial torus, an@{(Sg,) = 0. We see that induces an
isomorphisms,, : H(Sy,) — H(Su,). Sincep’ o s = idy,, we haveg, o s, = id. We see
that 8, : H(Su,) — H(Sy,) is an isomorphism.

Consider the commutative diagrams

Uy —2 > Gy H(Su,) —2= H(SG,)
ﬂ’l lﬂ and ﬂ;l lﬂ*
Us — > G3 H(Sus) —2 = H(Sc,)

whereip andiz are the inclusions. Clearly, andis, in the right diagram are isomorphisms
(we may takeVy, = Vg, and Vy, = Vi,). We have proved thag, is an isomorphism,
henceg, is an isomorphism. O

Corollary 3.13. Let H LN G be az-extension with kerneX. Theng, : H(Sy) — H(Sg)
is an isomorphism of abelian groups.
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Corollary 3.14. Let G be a connectedl-group,r : G — G the canonical epimorphism.
Then the induced homomorphism H(Sg) — H(Sgred) is an isomorphism.

Lemma3.15. Let H > G be az-extension with kernet. Theng, : H(Fy) — H(Fg) is
an isomorphism of abelian groups.

Proof. By Lemma 3.7 we have an exact sequence
0— Xu(Z) = m(H) L5 711(G) — 0.
Let
0— Q¢ — P —> m1(G)—0

be a coflasque resolution 81 (G). SetP = Pg x5, ) m1(H). We have exact sequences

0— X4 (Z) > P L% p; -0, (3.2)
0— Qg — P24 71(H)— 0, (3.3)

where pg and py are the projections. Sincé,(Z) and P are permutation modules,
the sequence (3.2) splits. Therefapels a permutation module, and (3.3) is a coflasque
resolution ofr1(H).

Consider the morphism of resolutio(s., p):

0 06 p—"L pi(H)——> 0
R
0 0c Pg 71(G) —= 0

Clearly pglos:Qc — Qg is the identity map. Thus the induced homomorphism
H(Fy) — H(Fg) is an isomorphism. O

We shall use the following lemma.
Lemma3.16[27,Lemma 2.4.4]LetG1 — G2 be a homomorphism of connected reductive
k-groups, and letH; — G; (i =1, 2) be z-extensions. Then there exists a commutative

diagram

Hi <— H3 —— H>

L

G <=— G1— Go
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in which the homomorphisntéz — H; and H3 — H» are surjective, anddz3 — G is a
z-extension.

3.17. We can now extend the isomorphisig : H(Fg) — H(Sg) to all connected

reductivek-groups. LetG be a reductive group. ChoosezaextensionH 2, G. The
isomorphisméy is already defined becaugg®s is simply connected. We must defige
so that the following diagram of isomorphisms is commutative:

&n
H(Fg) — H(SH)

v |

&
H(FG) ——= H(Sc)

By Corollary 3.13 and Lemma 3.15, the vertical arrows are isomorphismgaigithus
defined. Using Lemma 3.16, one can easily check thattgudoes not depend on the

choice of az-extensionH 2, G and s functorial inG.
To extendg to all connected-groupsG, we need a lemma.

Lemma 3.18. Let G be a connected-group,r: G — G the canonical epimorphism.
Then the induced homomorphism H(Fg) — H(Fgred) is an isomorphism.

Proof. By definitionz1(G) = 71(G'™%, and thereforé{(Fg) = H(Fgred). O

3.19. We can now extendg to the category of all connectédgroupsG. We must
define&s so that the following diagram is commutative:

e}

H(Fg) H(Se)

§red

H(Fgred) ——> H(Sgred)

By Corollary 3.14 and Lemma 3.18, the vertical arrows are isomorphismgaigithus
defined. This isomorphis#y is functorial inG.
This completes the proof of Theorem 3.5.

Remark 3.20. (i) Theorem 3.2 generalizes [13, Proposition 3.2]. It was an observation by
V. Chernousov that the device of passage to the variety of Borel subgroups can simplify
the proof of that proposition. This observati@aong with discussions with P. Gille, led us
to Theorem 3.2. P. Gille suggested another proof of Theorem 3.2.

(i) A particular case of Theorem 3.5 (for semisimple groups over number fields) was
proved in [21] in the course of the proof of Theorem I11.4.3. Discussions with P. Gille
around this result led us to Theorem 3.5. P. Gille suggested another proof.
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Theorem 3.21. SetQ¢ = X«(Fg), then theI’-modulesQ¢ and (PicV )" are similar,
i.e.,0¢ ® P1~ (PicV¢s)Y @ P2, whereP; and P, are some permutation modul@ecall
that ()¥ denotes the dual modyle

Proof. We have actually proved this while proving Theorem 3.5. Indeed, in 3.9 we
proved that for a reductive grou@ such thatG®S is simply connected, we may take
Q¢ = (PicVg)V. In the proofs of Corollaries 3.13, 3.14 and Lemmas 3.15 and 3.18 we
proved that ifG is any connected-group, thenQg is similar to Qg and (PicVg)Y is
similar to (PicV y)" for some reductive groufl such thatiSis simply connected. O
Remark 3.22. In Sections 1-3 we assumed thit is a covariant functor only for
simplicity. All the results (with evident changes) also hold for an additivetravariant
functor’H such thatH(N) = 0 for any quasi-triviak-torusN.

Theorem 3.23. Let G be a connected linedr-group. Then there is a canonical functorial
isomorphism

HY(k,PicVg) ~ HY(k, 0f),
whereQ/; is the dual module t@¢, and Qg comes from a coflasque resolution
0— Qg — P — m1(G)— 0.

Proof. Since PidVg = X*(Sg) and Q/f = X*(Fg), the theorem follows from Theo-
rem 3.5 applied to the contravariant funcior> H(T) = X*(T). O

Corollary 3.24. Let E be a principal homogeneous space of a connected likegoupG.
Then there is a canonical isomorphism

HY(k, PicVE) ~ H(k, QF).
Proof. The functorX — F(X) = H(k, PicV x) on the category of rational-varieties
is additive, i.e..F (X1 x X2) = F(X1) ® F(X2), cf. [15, Lemme 11, p. 188]. By [39,
Lemme 6.4] applied to the functd¥, there is a canonical isomorphiski(k, PicV g) ~

H(k,PicV ), and the corollary follows from Theorem 3.230)

Remark 3.25. By Corollary 3.4 and Theorem 3.21 we can write Corollary 3.24 as follows:
H(k, PicV ) ~ ker[Hl(k, 0%) - [H'0 Qg)},
Y

wherey runs over closed procyclic subgroups of @Gélk). From this formula one can
deduce the formula of [7, Theorem 2.4].
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4. R-equivalence

In this section fork as in 0.1 we construct an isomorphism of funct6ré)/R —
H(k, Fg). (Clearly the functorT — Hl(k,T) on the category ofk-tori satisfies
conditions (1)—(3) of Introduction, so we have functats— H(k, F5) and X —
H(k, Sx) asin Sections 1 and 2.) We start with stating the results of [1&-eqguivalence
on tori and the results of [12,22] aR-equivalence on reductive groups admitting special
coverings. We derive some corollaries which will be used below.

4.1. The notion ofR-equivalence was introduced by Manin [31]. Létbe an algebraic
variety over a fieldk. We say that two points, y € X (k) are elementarily related if there
exists a rational magf of the projective lineéP! to X such thatf is defined in 0 and 1
and f(0) = x, f(1) = y. Two pointsx, y are calledR-equivalent if there exists a finite
sequence of pointsg = x, x1, ..., x, = y such thatx; is elementarily related ta;_1
fori =1,...,n. We denote byX (k)/R the set of equivalence classesirtk). If G is a
connected linear algebraic group o¥ethen the seG (k)/R has a natural group structure.

4.2. Let T be ak-torus. Let

00— Q—P—X(T)—0 (R)
be a coflasque resolution. Let

1-Fp—>N—->T-—=1

be the corresponding exact sequence of tori, wig&/') = P andX..(Fr) = Q. Consider
the exact sequence

Nk = T 2L HY(k, Fr) — HY(k, N) = 0.

Theorem 4.3 [15, Theorem 2, p. 199The mapSy induces an isomorphiséy,: T (k)/R
= HY(k, Fr).

Coroallary 4.4. The collection of isomorphisnds, : T (k)/R — HY(k, Fr) is an isomor-
phism of functorg from k-tori to abelian groups.

Proof. Easy diagram chasing.O

Let nowk be asin 0.1. LeG be a connected lineargroup. In the case (gl) we always
assume that; has no factors of typ&s.

We say that a connectédgroupG admits a special coveringdf is reductive and there

is an exact sequence

l-pu—-G—->G6G—-1
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with u finite andG’ the product of a semisimple simply connected group and a quasi-trivial
torus.

Theorem 4.5([22], [12, Theorem 4.12]) etk be as in0.1. LetG be a connected reductive
k-group admitting a special covering. In tligl) case, assume th&t contains no factor of
typeEs. Let

l1-p—-F—->N-—>1

be a flasque resolution ¢f (i.e., F is a flasque torus and is a quasi-trivial torug. Then
the Galois cohomology sequences induce an isomorphism of g@UpsR ~ H(k, F).

Corollary 4.6. Under the hypotheses of Theorehd, suppose thatf :G1 — G2 is a
homomorphism ok-groups admittig special coverings, and assume thatextends to
a morphism of coverings

1 w1 G G1 1
l @ l 1 l f
1 w2 G Go 1

whereg : n1 — 2 is an isomorphism. Then the induced homomorphfsnG1(k)/R —
G2(k)/R is an isomorphism.

Proof (idea). We can choose flasque resolutions
l->ui—>F,—>N—>1 (i=12

so thaty extends to an isomorphism of resolutions

1 M1 i N1 1
\LW \La \Lﬁ
1 n2 F> No 1

(i.e.,¢, @ andp are isomorphisms). O

4.7. We can now state and prove our main resulReaquivalence on groups over a field
kasinO0.1.

Let k be a field of characteristic 0. Consider two functors from the category of
connected linear algebrategroups to the category of abelian groupsi~> G(k)/R and
G — HY(k, Fg) (the latter functor was introduced in 1.9). The collection of m&psof
Theorem 4.3 is an isomorphism of these functors on the categaryaof.
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Theorem 4.8. Assume that is as in0.1 In the(gl) case assume that has noEg-factors.
Then the isomorphism of functodg, extends uniquely to an isomorphism of functors
06:G(k)/R — H(k, Fg).

Corollary 4.9. For k andG as in Theorerd.8, if the image ofGal(k/k) in Autm1(G) is a
metacyclic group, the (k)/R = 1.

Proof. The corollary follows from Theorem 4.8 and Proposition 1.101
Corollary 4.10. Letk and G be as in Theorem.8, then

(i) there is a canonical isomorphisGi(k)/R ~ H(k, Sg):
(i) the groupG (k)/R is a stablyk-birational invariant ofG.

Proof. The corollary follows from Theorem &, Theorem 3.5, and Proposition 2.143

Remark 4.11. (i) It is clear that thesetG (k) /R is a stablyk-birational invariant ofG, but
it is not cleara priori that thegroup G(k)/R is a stablyk-birational invariant ofG, cf.
[15, p. 201].

(i) Let k,G1, G2 be as in Theorem 4.8, and lgt: G1 — G2 be a rational map
defined overk. In other words, we are given open subvarietlésc G, (v = 1,2)
and a regular mapf’:U; — Uz, all defined overk. The map f’ induces a map
fl:Ui(k)/R — Ua(k)/R. Leti,: U, — G, denote the inclusions, thep, : U, (k)/R —
G,(k)/R are bijections, cf. [15, Proposition 11]. We identify, (k)/R with G,(k)/R
usingi,« (v =1, 2). Then we obtain a mafi.: G1(k)/R — G2(k)/R. On the other hand,
in 2.13 we constructed the induced homomorphigmH(k, Sg,) — H(k, Sg,). By
Corollary 4.10(i) we have canonical isomorphis@is(k)/R — H(k, Sg,) (v=1,2).
However in general the diagram

G1k)/R — "~ Gak)/R

| |

1 S+ 1
H>(k, SG,) — H~(k, SG,)

is not commutative! For example také; = G, = G, and letf be a left translation, i.e.,
f(g) =ag (g € G) for a fixed element: € G(k). Then f,:G(k)/R — G(k)/R may
take the identity element to another element, while H1(k, Sg) — H1(k, S¢) is an
isomorphism of abelian groups.

(iif) Corollary 4.9 and the similar corollaries below (Corollaries 5.11 and 7.8) generalize
results of [12] (Corollary 4.11(iv), Corollary 4.14(iv), and Theorem 5.2(b)(i)) proved for
semisimpla@roups splittig over a metacyclic extension.

To prove Theorem 4.8 we need some lemmas.
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Lemma 4.12. Let k be as in0.1. Let G be a reductive group such tha&tss is simply
connected. Then the map(k) — G (k) induces an isomorphisii(k)/R — G'(k)/R.

Proof. We give two proofs.

(1) See Appendix by P. Gille, Theorem 1(b).

(2) (with the help of J.-L. Colliot-Thélene) (i) First assume tldatadmits a special
covering

l1->pu—->GoxN—->G—1,

whereGy is a simply connected group amd is a quasi-trivial torus. Sinc&5Sis simply
connected, we see thatN Go = 1. We have a commutative diagram with exact rows

11— M4 —=>=GoxN G 1
1 l/«t N Gtor 1

where u — u' is an isomorphism. Hence by Corollary 4.6 we get an isomorphism
G(k)/R — G©"(k)/R.

(i) Let now G be any reductivek-group such thatz®S is simply connected. By [39,
Lemme 1.10] there exist a natural numbeand a quasi-trivial torug' such thaiG™ x T
admits a special covering. Cleanlg™ x T)SSis simply connected. By (i),

(G™ x T)(k)/R — ((G™)'™ x T)(k)/R

is an isomorphism. ThusG (k)/R)™ — (G'°'(k)/R)™ is an isomorphism, an€ (k) /R —
G'"(k)/R is an isomorphism. O

Lemma 4.13. Let k be a field of characteristi© and let G be a connected reductive
k-group such thatGsS is simply connected. Then the mapG — G induces an
isomorphism, : H1(k, Fg) — H(k, Fgtor).

Proof. By Lemma 3.7771(G) ~ 71(G'""), and the lemma follows. O
4.14. We can now extend the isomorphiség; :G(k)/R — Hl(k, Fg) from the
category ofk-tori to the category of reductivé-groups G such thatG>s is simply

connected. Namely, we must define an isomorphiigmG (k)/R — H(k, Fg) so that
the following diagram is commutative:

G)/R —C— Hlk, Fo)

t*l lt*
O tor

1
GO (k)/R —— H(k, Fgor)
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wherer:G — G'" is the canonical epimorphism. Here the left vertical arrow is an
isomorphism by Lemma 4.12, and the right vertical arrow is an isomorphism by
Lemma 4.13. Thu8; is defined.

The next step is to exterfig; to all connected reductive-groups. We use the method of
z-extensions. We need a lemma.

Lemma4.15. Letk be a field of characteristi® and let
1— G1—>G2£>G3—>1

be an exact sequence of connected linegroups. Assume thak1(k)/R = 1 and that
HY(K,G1) =1 for any field extensiok /k. Thenpg,:G2(k)/R — Gz(k)/R is a group
isomorphism.

Proof. The mapg, is clearly a group homomorphism. We wish to prove tigatis
bijective.

Since H(K, G1) = 0 for any field extensionk/k, the epimorphismg admits a
rational sectiory : Uz — Uz, whereUs is an open subset i6rz and U, = B~ L(U3). Let
B':Up — Uz be the map induced by, theng’ o s =idy,. As in the proof of Lemma 3.12,
we define an isomorphism éfvarieties

AUz x Gy— Uz, (g3,81) > s(g3)g1

(we assume that1 C G2). Thenx induces a bijectio/z(k)/R x G1(k)/R — Ua(k)/R.
By assumptiorG1(k)/R = 1. We see that induces a bijection, : Us(k)/R — U2(k)/R.
Since g’ o s = idy,, we havep; o s, = id. We see thap, :Ua(k)/R — Us(k)/R is a
bijection.

Consider the commutative diagrams

U —2> G, Ua(k)/R —2> Ga(k)/R
ﬂ’l lﬂ and ﬁ;l lﬁ*
Us —> Gs Us(k)/R —== Ga(k)/R

wherei, andig are the inclusions. By [15, Proposition 114, andis, in the right diagram
are bijections. We have proved thgit is a bijection, hencg, is a bijection. We conclude
that 8. is a group isomorphism. O

Corollary4.16.LetH 2, Gbe az-extension with kernet. Theng,.: H(k)/R — G(k)/R
is an isomorphism of groups.

Corollary 4.17. Let G be a connected-group. Then the homomorphism: G (k)/R —
G'4(k)/R is an isomorphism.
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4.18. We can now extend the isomorphisig: G(k)/R — H(k, Fg) to all reductive
k-groups. The construction is similar to that of 3.17. We choosexgtensionH LNye)

We must defin®g so that the following diagram is commutative:

H(k)/R — H(k, Fyy)

o

GH)/R — = HIk, Fg)

Here the left vertical arrow is an isomorphism by Corollary 4.16, and the right vertical
arrow is an isomorphism by Lemma 3.15. As in 3.17, using Lemma 3.16, one can easily
check that oud; does not depend on the choice of thextensionH LN G and is
functorial inG.

4.19. We extendd; to all connected-groups. We denote by: G — G"9the canonical
epimorphism. Using Corollary 4.17 and Lemma 3.18, we can constgictor any
connected-groupG so that the following diagram is commutative:

G(k)/R _ % HY(k, Fg)

r* l l r*
QGred

G"®(k)/R —— HY(k, Fred)

This isomorphisndg is functorial inG.
Theorem 4.8 is completely proved.

Remark 4.20. Theorem 4.8 also holds wheh is a non-archimedean local field of
characteristic O or a totally imaginary number field. The assertion similar to Theorem 4.5
was proved for such fields by Gille (in [21, 111.2.7] for local fields and in [21, 111.4.1(1)]
for totally imaginary number fields).

4.21. We now show how one can derive the formula of Theorem 4.5 from the formula
of Theorem 4.8.
Let k be a field of characteristic @ a reductivek-group admitting a special covering

l-u—-GoxNog-SG—1

where Gg is a simply connected group and, is a quasi-trivial torus. We identifysg
with GSC. Let

l>-u—>F—>N-—>1 (4.2)
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be a flasque resolution @f, i.e., F is a flasque torus ani¥ is a quasi-trivial torus. We
wish to construct a coflasque resolutionaf G) of the form

0— X4 (F)—> P —>m1(G)—0

where P is a permutation module. Then we may take = F, henceHl(k, Fg) =
HY(k, F).
Let T C G be a maximal torus. We obtain an exact sequence

lou—->TCxNg—-T—1

whereT'S¢ x No = a~1(T) andT'S¢is a maximal torus 0&S¢. Going over to cocharacters,
we obtain an exact sequencelofmodules (cf. [21, Lemme A.3])

0— X4(T%9) & X4 (No) = Xu(T) = pu(=1) - 0.

We now factor ouk ., (7% taking into account the definition afy (G) (see 1.8). We obtain
an exact sequence

0— X4(No) > 71(G) —> u(—=1)— 0.
Going over to cocharacters in (4.1), we obtain
0— Xyu(F) = X4 (N) > u(=1) — 0.

Let P = m1(G) xu(—1) X«(N) be the fibered product. We obtain exact sequences

0— X4(Ng) > P — X4(N)— 0, (4.2)
0— Xu(F)— P — m(G)— 0. (4.3)

Sequence (4.2) splits becausg No) andX . (N) are permutation modules (cf. [29, Propo-
sition 1.2]), henceP is a permutation module. Thus sequence (4.3) is a required coflasque
resolution.

5. Weak approximation

In this section we computa 5 (G) whereG is a field of type (gl) or (ll). But first we
consider weak approximation in a more general setting.
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5.1. Letk be a field of characteristic 0. Lef be a finite set of non-equivalent absolute
values onk, cf. [28, Chapter XII, 81]. For € X let k, denote the completion of
with respect tov. Let G be a connected linear-group. We setky = [[, .5 kv, then
Gks) =[] ex Gky). Let G (k) denote the closure of the image 6f(k) under the
diagonal embedding (k) — G (kx). We say thatG has the weak approximation property
with respect ta¥ if G(k) is dense inG(kx), i.e.,G(k) = G(kx).

Proposition 5.2 (stated in [35, Proposition 1.3]letk, ¥, G be asin5.1 ThenG (k) is
an open subgroup af (kx).

Proof. Since chafk) =0, G is ak-unirational variety, cf. [2, Theorem 18.2(ii)]. It follows
that there exists a smooth morphism lofvarietiesAr:U — G, whereU is an open
subvariety inP} for somen. We haveU (k) = U(kx). Since is a smooth morphism,
the mapi,:U(k,) — G(ky,) is open for eachv, cf. [23, Satz 1.1.1], hence the map
AU (kx) — G(kyx) is open. We see that the satlU (kyx)) is open inG (ky).

We haveG (k) D A(U(k)) D MU (k)) = AU (ks)). We see that the subgroup(k)
of G(kx) contains the open sei(U (kx)). It follows that the subgroug (k) is open in
Gky). O

Proposition 5.3 [35, Proposition 1.4]Let k, ¥, and G be as in5.1 Assume that
GS%(k) = G®%(ky). Then the closur& (k) of G(k) in G(kx) is a normal subgroup, and
the quotientd x (G) := G (kx)/G (k) is an abelian group.

Proof. We use an idea of [26, proof of Satz 6.1]. It suffices to provehay contains the
commutator subgroup @¥ (ky).

First we assume thaF is reductive. Consider the homomorphigmG*¢ — G. By
[26, Hilfssatz 6.2] (see also [18, 2.0.3]) the commutator subgrak,), G(k,)] is
contained inp(GS%k,)) for eachwv. It follows that [G(kx), G(kx)] is contained in
p(GS%kx)). ButG3%(kx) = GS¢(k) by assumption. Since(GS%(k)) C G (k), we conclude
that[G(ks), G(ks)] C G(k), which was to be proved.

We now consider the case of genef@l (not necessarily reductive). Consider the
canonical map:G — G'™9. Lets:G™ — G be the splittiy corresponding to a Levi
decompositiorG =~ GY x G™9. ThenG (k) = GY(k) - s(G"%k)). Clearly we have (k) =
GU(k) - s(G™d(k)). Since GY is k-rational, GU(k) = G'(kx), henceG (k) = GY(ks)
s(G'ed(k)). Clearly r—1(G"d(k)) = GY(kx) - s(G"®(k)), and therefore—1(G'ed(k)) =
G (k). Since[G"™(kx), Gk x)]  G"®d(k), we conclude thatG (kx), G(ks)] C G(k),
which was to be proved. O

5.4. Let nowk be a field of one of types (Il) or (gl). Le® denote the associated set of
discrete valuations of, see [12, 81]. Le® C £2 be a finite subset. Le% be a connected
linear k-group. In the case (gl) assume thi@thas noEg-factor. By [12, Theorem 4.7],
GS%(k) is dense inGS(kx). By Proposition 5.3G (k) is a normal subgroup ofi (kx),
and the quotientA x(G) := G(kx)/G (k) is an abelian group (this was earlier proved in
[12, Theorem 4.13(i)]).
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Lemmab.5. Letk and X be as in5.4, and let
1— G1—>G2£>G3—>1

be an exact sequence of connected lingagroups. Assume thaH1(k, G1) = 1,
H(k,, G1) = 1 for eachv € ¥. Assume thaG1 has the weak approximation property
with respect toX. Then the induced homomorphisfa: Ax(G2) — Ax(G3) is an
isomorphism.

Proof. We use an idea of [36, proof of Lemma 3.8]. First we prove i@tz (k)) = G3(k).
By Lemma 5.2,G2(k) is open inG2(ky). Since the homomorphisti: G2 — G3 is
surjective, it is a smooth morphism, hence the Ma@ (kx) — G3(kx) is open (cf. [23,
Satz 1.1.1]), and therefore the groBG2(k)) is open inGs(kx). But any open subgroup
of a topological group is closed, hence the gr@(e;2(k)) is closed inGs(kyx). Since
Hl(k, G1) =1, we have8(Ga(k)) = G3(k), henceB(Ga(k)) D Ga(k). ThusB(Ga(k)) is

a closed subgroup @¥3(kx) containingGs(k), and we see tha(G2(k)) = Gz(k).

Next we prove tha~1(G3(k)) = G2(k). Let go € Ga(kx) be such thaB(g») € Ga(k).
Then there existg, € G2(k) such thatg(g,) = B(g2). We havega(gs) ! € Gi(kx) (we
assume thaG1 C Gy). By assumptionG1(ks) = G1(k), hencegs € G1(k) - Go(k) =
G2(k). Thusp=1(Ga(k)) = G2(k).

Consider the homomorphism of abelian gropsA 5 (G2) — A 5 (G3). We prove that
B is bijective. SinceH(k,, G1) = 1 for eachv € ¥, we haveB(Ga(kx)) = Ga(ky),
henceg, is surjective. Sincgg~1(Ga(k)) = G2(k), the mapg, is injective. Thusg, is
bijective. O

Corollary 5.6. Letk and X' be as in5.4, and let
1— G1—>G2£>G3—>1

be an exact sequence of connected linkaroups. If G1 is a quasi-trivial torus or a
unipotent group, thep, : A (G2) — Ax(G3) is an isomorphism. O

Proof. The corollary follows from Lemma 5.5. We give another proof. We use the fact that
B admits a rational section.

SinceHY(K, G1) = 1 for any field extensiok / k, the maps admits a rational section.
This means that there exist a Zariski open subsst G3 and a regular map: Us — U,
whereU, = ~1(Us), such thai|y, o s = idy, (all defined ovek).

Let g3 € Ga(k). SinceHL(k, G1) = 1, there existg» € G2(k) such thatgz = B(g2).
Consider the open sggU3z and define a mapyp,s : gaUs — g2U2 by

(8245)(x) = gos(g3'x)  (x € gaUa).

Clearly Blq,u, 0 8245 = igau,, i.€., 8245 is a rational section of.
We prove thatGz(k) C B(G2a(k)). Let gax € G3(k) C G3(kx). Using the fact that
G3(k) is Zariski dense inGs, one can show that there exists € G3(k) such that
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g3x € (g3U3)(ky). We shall writeUs instead ofgzUsz ands instead ofgo.s. Setgoy =
s(g3x). Sincegsy € Ga(k), we havegss € Us(k), andgzs € s(Uz(k)) € Ga(k). Thus
G3(k) C B(G2(k)). o

Next, using the fact that1(ky) = G1(k) (becauses; is k-rational), we can prove that
B~ L(G3(k)) = Go(k). It follows that the mags,.: A (G2) — Ax(G3) is injective.

Since H(k,, G1) = 1 for anyv € ¥, the mapp:Ga(ky) — G3z(ky) is surjective,
henceg, : Ax(G2) — Ax(G3) is surjective. Thug, is bijective. O

Corollary 5.7. Letk, ¥ andG be as in5.4 Then the canonical epimorphismG — G4
induces an isomorphism : A5 (G) — Ax(G"9).

Proof. The corollary follows from Corollary 5.6. The second proof can be simplified in
this case, using the fact that a Levi decomposition gives a splitting®? — G of the
epimorphisnr. O

5.8. Letk andX be as in 5.4. For the notation}:(k, T), whereT is ak-torus, see 0.4.
Clearly the functorT — q}:(k, T) satisfies conditions (1)—(3) of Introduction, so we
have functorsG — 4al.(k, Fg) and X — ul.(k, Sx), as in Sections 1 and 2. We wish
to construct an isomorphism of functofs : A5 (G) — q}: (k, Fg).

We start from tori.

Proposition 5.9. Let k and X' be as in5.4, and letT be ak-torus. Let0 > Q — P —
X«(T) — 0 be a coflasque resolution &.(7), and letl - Ff - N — T — 1 be the
corresponding flasque resolution Bf(i.e., X (N) = P, X\ (Fr) = Q).

Then the epimorphismg (k) — H(k, Fr) and T(k,) — H(k,, Fr) define a
canonical isomorphismy : Ax(T) — q}:(k, Fr). This isomorphism is functorial ifi.

Proof. See [15, Proposition 18], [12, §3.3]O0

We now pass to the case of any connected linear algebmgioupG.

Theorem 5.10. Let k& be a field of typgll) or (gl). In the case(gl) we assume thaf;

has no factor of typ&s. Let X C §2 be a finite set of places &t Then the isomorphism

of functors of Propositiorb.9 can be uniquely extended to an isomorphism of functors
ne . As(G) —> q}: (k, Fg) from the category of connected lineaigroups to the category

of abelian groups.

Corollary5.11. For k, G, and X asin Theorens.10Q, if the image oGal(k/ k) in Autr1(G)
is a metacyclic group, theA 5 (G) = 1.

Proof. The corollary follows from Theorem 5.10 and Proposition 1.10.

Corollary 5.12. Letk, G, and X be as in Theorers.10, then
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() [12, Theorem 4.13())A = (G) is finite
(i) Ax(G) =gk, So);
(i) the abelian group 5 (G) is a stablyk-birational invariant ofG.

Proof. By [12, Theorem 3.2]H(k,, F) is finite for anyv € £2, henceul.(k, Fg) is
finite. Now the assertion (i) follows from Theorem 5.10. The assertion (ii) follows from
Theorems 5.10 and 3.5. The assertidhfollows from (ii) and Proposition 2.14. O

Corollary 5.13. Letk, G, and X' be asin Theorerf.10 Let0— L_1 — Lo — 71(G) —
0 be a torsion-free resolution af; (G). LetT_1 and Ty be thek-tori such thatX . (T;) = L;,
i =—1,0. ThenAx(G) ~ 4% (k, T_1 — To), where

uQ(k, T_1 — To) = coker[]HIo(k, 71— To)— [ [ Bk, T-1 — To):|,
veX

HC denoting thed-dimensional Galois hypercohomology.

Proof (ided). Note thatq%(k, T_1 — Tp) does not depend on the resolution. We take
a coflasque resolution® Q — P — m1(G) — 0 and prove thatq%(k, Fg —> N) ~
ul.(k, Fg), whereFg andN are thek-tori such thaX,.(Fg) = Q, X«(N) = P. O

We prove Theorem 5.10 in the rest of this section. We use the method of Kottwitz. We
need two lemmas.

Lemma 5.14. Let G be as in Theorenb.10, and assume that is reductive and
GSS is simply connected. Then the canonical homomorphisé — G™" induces an
isomorphisnt, : Ax(G) — Ax(G"").

Proof. We give two proofs.

(1) By [12, Theorem 4.7]GSS(k) = G®%(kx). Sincek is of type (gl) or (ll), k, is of
type (sl) for anyv € 2 (see [12, end of §1]), and by the results of [12, §1] we have
HY(k, G =1 andH(k,, G5 = 1 for anyv. The lemma now follows from Lemma 5.5.

(2) Similar to the second proof of Lemma 4.12, but using [12, Theorem 4.13] instead of
Corollary 4.6 [12, Theorem 4.12].0

Lemma5.15. Let G be as in Lemmé.14, then the canonical homomorphisnG — G
induces an isomorphism: gl (k, Fg) — qi.(k, Fguor).

Proof. This is an immediate consequence of Corollary 3.8.

5.16. We can now extend the isomorphism of functoig: Ax(G) — q}:(k, Fg)
from the category ok-tori to the category of reductivé-groupsG such thatGss is
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simply connected (and in the case (@gl)has noEg-factor). Namely, we must define an
isomorphismyg : As (G) — al(k, Fg) so that the following diagram is commutative:

n
A5 (G) ——= 4k (k, Fo)

tory 10 1
Ay (G —— LIx(k, Fgtor)

By Proposition 5.9, Lemmas 5.14 and 5.15, all the other three arrows in the diagram are
isomorphisms. The isomorphisig is functorial inG.

5.17. We can now extendg to the category of all connected reducthsgroupsG such

that in the case (giy has no factor of typ&s. Choose a-extensionH LN G. We must
defineng so that the following diagram is commutative:

As(H) — ol k. F
> (H) us(k, F)

Jo

As(G) —Z ul (k, Fg)
Z‘ ) G

The left vertical arrow is an isomorphism by Corollary 5.6, the right vertical arrow is an
isomorphism by Lemma 3.15, and the top horizontal arrow is an isomorphism by 5.16, and
ng is thus defined. Using Lemma 3.16, one can easily checkjihaoes not depend on

the choice of a-extensiond - G and is functorial inG.

5.18. We can now extendg to the category of all connected linear algebraigroups
G such that in the case (gfj"9 has no factor of typeZg. We must defing); so that the
following diagram is commutative:

n
As(G) —— al.(k, Fg)

Ngred
Ax (G — gl (k, Frea)

The left vertical arrow is an isomorphism by Corollary 5.7, the right vertical arrow is an
isomorphism by Lemma 3.18, and the bottom horizontal arrow is an isomorphism by 5.17,
andrg is thus defined. The isomorphispg is functorial inG.

Theorem 5.10 is completely proved.
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6. Galois cohomology

In this section for a connected linear algebraic graupver a fieldk of one of types
(gl), (s), (I) we computeH1(k, G) in terms ofr1(G).

6.1. Letk be afield of characteristic 0. Léi be a connected line&rgroup. Let
O—-L_1—>Lo—>m1(G)—0

be any (not necessarily coflasque) resolutiontofG), where L_; and Lg are finitely
generated torsion-fred’-modules. LetT_1, To be the k-tori such thatX,(7T-1) =
L_1, X«(To) = Lo. SetH}(k, G) = H"(k, T-1 — To) (hypercohomology) for > —1.
Then H},(k, G) does not depend on the choice of a resolution (see [6, 2.6.2]), and it is a
functor of G.

In the case whew is a reductive group, there exist abelianization maps

ab':H"(k,G) > Hyj(k,G) (n=0,1)

constructed in [6, Section 3]. Whei is any connected linear-group, we consider the
canonical map : G — G"%and define abas the composed maps

ad': H"(k, G) = H"(k, G"™% — H2(k,G) (n=0,1).
We wish to prove that the map 4lis bijective over certain fields. Since the map
re  HY(k, G) — HY(k, G™9 is bijective (cf. [39, Lemme 1.13]), we may and shall assume

in the rest of this section that is reductive.
There is a canonical exact sequence

HY(k, G5 > HY(k, G) 2% HL(k. G).

Moreover we can describe the fibers of the map &let € Z1(k, G), and leté denote
the cohomology class of the cocyale Then by [6, 3.17(ii)]

(ath) *(abt(®)) ~ B4k, G\H (k. y G%) 6.1)

where the abelian grouHaob(k, G) acts on the setH 1(k, »G®9 and , G°¢ denotes the
twisted form of GS€ defined byy.

Proposition 6.2. Let G be a connected linear algebraic group over a fietdof
characteristic 0 such that/(k, , G = 1 for any twisted form;, G5¢ of GSC. Then the
mapabt: H1(k, G) — HX(k, G) is injective.

Proof. The proposition follows from (6.1). O

We wish to describe the image of the map abterms of the second non-abelian Galois
cohomology.
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6.3. A crossed module df-groups is a homomorphism bfgroupsx : H — G together
with an action ofG on H satisfying certain conditions (see, e.g. [6, Definition 3.2.1]). In
[6, Section 3] Galois hypercohomolod¥' (k, H — G) (n = 0, 1) with coefficients in a
crossed module was defined (Breen [8] defined hypercohomology with coefficients in a
crossed module in a very general setting). A 1-cocyele) € Z1(k, H — G) is a pair of
continuous mappings

w:l'xI'—>H(k), :I'—>G(k),
such that
Yor = a(ucr,r) Yo “’ﬁr,

Yoo _
Ugry 7 Ury =Usrv - Us 1

whereo, 7,v € I'. Two cocycles(u, ) and (u’, y') are called cohomologous, if there
exist a continuous mag: I' — H (k) and an elemery € G (k) such that

The first Galois hypercohomology set is denoted%k, H — G). The short exact
sequence

1-1-G6G)-H—>G)—-(H—->1 -1
gives rise to an exact sequence

HYk,H) > HY*k,G) L H Yk, H > G), (6.2)
cf. [6, 3.4.3()].
6.4. Construction

Let (u, ¥) e_Zl(k, H — G). We wish to construct a 2-cohomology clasé, ¥) with
coefficients inH . For everyo € I we define ar-semialgebraic automorphism &f

fr € SAUtH, f,(h)=Y"°h forheH

(see [5, 1.1] for the definition of semialgebraic automorphisms). Then

fot = int(ua,r) o fcr o fry

Usg,tu * fo (”r,v) =Ust,v " Uo,T-
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Thus(u, f) is a non-abelian 2-cocycle in the sense of [5, 1.5]. Let
ko = fo (MOdAUtH ) € SOUtG

(see [5, 1.2] for the notation). We obtain a homomorphisn — SOutH. Then(u, f) €
Z2%(k, H, k). SetA(u, ¥) = Cl(u, f) € H%(k, H, k), where Cl denotes the cohomology
class.

Proposition 6.5. A hypercohomology clas€l(u, y) € Hl(_k,H — G) comes from
H(k, G) if and only if A(u, ¥) is a neutral element off2(k, H., «).

Proof. If Cl(u, ¥) comes fromH(k, G), then there exist : I" — H (k) andg € G (k)
such that

-1
-1 -1
8 (a(rr ‘Ug,T W"“ar “dg, ) =1

Then
Aot *Ug,T * fo (ar)il : a;l =1,

henceA(u, y) = Cl(u, f) is neutral, cf. [5, 1.6, 1.5]. .
Conversely, ifA(u, ¥) = Cl(u, f) is neutral, then there exisés I" — H (k) such that

-1 -1
ot " Ug,7* Jfo(az) Ay = 1

Then

o -1 -1
a(,r-u(,,r-w(I a; -a; =1,

hence Clu, ) comes fromH(k, G). O
Proposition 6.6. Let G be a connected linear algebraic group over a fietdof
characteristicO. Assume that for ank-kernel of the formL = (GS€, ) all the elements of
H2(k, L) are neutral. Then the magbt: H1(k, G) — HX(k, G) is surjective.
Proof. First we describe the construction of the mag ab[6, Section 3]. We assume
that G is reductive. Consider the map: G — G. Let T C G be a maximal torus. Set
TS= p~(T) C G ThenH} (k, G) = H(k, TS°— T). The embedding

1 (T°—>T) - (G- G)

is a quasi-isomorphism of crossed modules, hence

As Hl(k, 7S¢ — T) — Hl(k, GS¢— G)
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is a bijection, cf. [6, Theorem 3.5.3]. We have a canonical map of (6:2)1(k, G) —
H(k, G°— G). By definition

abt=xtoy: HY(k, G) — HL(k, G).

It suffices to prove thaf is surjective. But this follows from Proposition 6.5, because
by assumption all the elements B (k, G5, k) are neutral for any. O

Theorem 6.7. Letk be a field of one of typdgl), (sl), (Il) and letG be a connected linear
k-group. In the caségl) assume thaG has no factors of typ&g. Then the abelianization
mapabt: H1(k, G) — HX(k, G) is bijective.

Proof. By [12, §1] we haveH (k, , G5 = 1 for any twisted formy, G°¢ of G*¢, and by
[12, Remark after Proposition 5.3] all the elementg#iik, GSC, k) are neutral for any.
The theorem now follows from Propositions 6.2 and 6.61

Remark 6.8. (i) In the case whert is a non-archimedean local field, Theorem 6.7 was
proved in [6, Corollary 5.4.1]. The surjectivity of lwas proved by a different method.
This result is essentially due to Kottwitz [27roposition 6.4]. Note that the method of the
present paper also works. The atisa that all the elements d#2(k, L) are neutral when
L = (G, «) with G semisimple simply connected, was proved in [19, Theorem 1.1], see
also [5, Corollary 5.6].

(i) Theorem 6.7 also holds whenis a totally imaginary number field. The injectivity
of abt follows from the Hasse principle for simply connectegroups (Kneser—Harder—
Chernousov). The surjectivity holds for any number fieldee Theorem 8.14 below.

7. Hasseprinciple

In this section we consider the case wheig a field of type (ll). For a connected linear
algebraick-groupG one can define the Tate—Shafarevich kernel

mt(k, G) = ker[Hl(k, G) —> ]_[ H(ky, G)}
vesR

which is a finite set [12, Theorem 5.1]. Hegzis the associated set of places, see [12, §1].
We computar®(k, G) in terms ofr1(G) and in terms o, and prove that the cardinality
of ml(k, G) is a stablyk-birational invariant ofG.

We definentl (k, G) = kel H} (k. G) = [[yeo Hi(kv, G)].

Theorem 7.1. Let k be a field of typgll), and G a connected lineak-group. Then
the abelianization magb*: H(k, G) — H2(k, G) induces a bijectionu’(k, G) =
i (k, G).
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Proof. Sincek is of type (Il), k, is of type (sl) for anyv € 2. By Theorem 6.7, in the
commutative diagram

Hi(k,G) ——— H}(k.G)
[Tee H kv, G) — [lyeq Hapkv. G)
both horizontal arrows are bijections, and our theorem follows.
7.2. We now take aoflasqueresolution
0—- Q00— P—->m(G)—0

whereP is a permutation module an@ is a coflasque module. Lét andN be thek-tori
such thaX.(F) = Q, X«(N) = P. The exact sequence of complexes of tori

1-1->N)—->F—->N)-—>F->1—->1
induces an exact sequence
0= HYk,N)—> HYk, F — N) 2> H%(k, F) — H?(k, N). (7.1)
Clearly we havél!(k, F — N) = H(k, G).

Lemma 7.3. For any quasi-trivial torus N’ over a field k of type () we have
m?(k, N') = 0.

Proof. The lemma follows from [12, Theorem 1.6] (proved in [14, Corollary 1.10]) and
Shapiro’s lemma. O

Proposition 7.4. The mapA: HL(k, G) — H?(k, F) of (7.1) induces an isomorphism
il (k, G) — mi?(k, F).

Proof. We have a commutative diagram with exact rows

A
0 — HYk G) ——— H2(k, F) ——= H2(k, N)

| |

0 — [[, HY(k, G) —— [], H?(k, F) — [], H?(k, N)

By Lemma 7.3,m2(k, N) = 0. Now the proposition can be proved by easy diagram
chasing. O
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7.5. Over a fieldk of type (ll) the functorT — m(k, T) on the category ok-to-
ri satisfies the properties (1)—(3) of Introduction (by Lemma 7.3), so we have functors
G +— m?(k, Fg) andX +— 112(k, Sx) as in Sections 1 and 2.

Theorem 7.6. Let G be a connected linear algebraic group over a fieldf type(ll) . Then

(i) there exist canonical isomorphismel (k, G) ~ w?(k, Fg) ~ m?(k, S¢) and a
canonical bijectionm! (k, G) ~ m?(k, S );

(i) the groupméb(k, G) and the setmi’(k, G) are stablyk-birational invariants of a
connected lineak-groupG.

Proof. (i) In 7.2 we may write Fs instead of F, then by Proposition 7.4 we have a
canonical isomorphisrm;b(k, G) ~1?(k, Fg). By Theorem 3.5 there exists a canonical
isomorphismm?(k, Fg) ~ mr(k, Sg). From these isomorphisms and the bijection of
Theorem 7.1 we obtain a canonical bijectimrt (k, G) ~ m?(k, Sg).

(ii) The assertion follow$rom (i) and Proposition 2.14. O

Corollary 7.7. If G is a stablyk-rational group, theru! (k, G) = 1.
Corollary 7.8. If the image ofGal(k/k) in Autz1(G) is metacyclic, them! (k, G) = 1.

Theorem 7.9. Letk be a field of typ€ll), G a connected lineak-group. If there exists a
k-variety X such thatG x X is k-rational, thenmr (k, G) = 1.

Proof. Assume thatG x X is k-rational. We argue as in [12, proof of Theorem 5.2].
By [17, Proposition 2.A.1, p. 461] there existsramodule M such that Pid’¢ & M

is a permutation module. L&t be the torus such that*(7) = M, then we obtain that
S x T is a quasi-trivial torus. By Lemma 7.3 we hawe (k, Sg) x m?(k, T) = 0, whence
m?(k, Sg) = 0. By Theorem 7.6()mt(k, G)=1. O

Remark 7.10. (i) Theorem 7.9 generalizes [12, Theorem 5.2(b)(ii)].

(i) Corollary 7.7 proves a conjecture of [12, Remark (i) after Theorem 5.2].

(iii) The canonical bijectionu’ (k, G) — 11, (k, G) of Theorem 7.1 defines a canonical
and functorial structure of an abelian groupmnh(k, G), and this abelian group is a stably
k-birational invariant ofG.

(iv) The results of this section also hold wheis a totally imaginary number field.

8. Case of anumber field

All the results of Sections 4—7 hold whérnis a totally imaginary number field. In this
section we suppose thais anynumber field, not necessarily totally imaginary. We prove
analogues of the results of Sections 4, 5, 7.

We start fromR-equivalence.
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Proposition 8.1. Let G be a semisimple simply connected group over a number ield
Assume tha6 has no anisotropic factors of types. ThenG(k)/R = 1.

Proof. First assume that is isotropic. LetS be a maximal split torus of5, and
Z;(S) the centralizer of§ in G. ThenZg(S) is connected reductive, ard; (S)5Sis a
k-anisotropic simply connected semisimgjeup. By Appendix by P. Gille (Corollary)
the mapZq(S)3S(k)/R — G(k)/R is surjective. This reduces the proposition to the case
of an anisotropic group.

The anisotropic groups were treated, case by case, by many people, see [10] and [38,
Chapter 9]. A difficult case ot D4 was treated in [10]. O

Proposition 8.2. Let G be a connected reductive group over a number fielithout
anisotropic factors of typ&s. Assume tha; admits a special covering

l1->u—->GoxNo—>G—1
whereGy is simply connected andlp is a quasi-trivial torus. Let
l-p—-F—->N-—>1

be a flasque resolution oft. Then Galois cohomology exact sequences induce an
isomorphism of group& (k)/R ~ H'(k, F).

Proof. By [21, Theorem 111.3.1] Galois cohomology exact sequences induce an exact
sequence

Go(k)/R x No(k)/R — G(k)/R — H*(k, F) — 1.

We haveNy(k)/R = 1 becauseVg is k-rational, andGo(k)/R = 1 by Proposition 8.1.
Thus we obtain an isomorphis6xk)/R ~ H(k, F). O

Lemma 8.3. Let G be a connected reductive group over a number fielavithout
anisotropic factors of typ&s. Assume thaG>S is simply connected. Then the canonical
map? : G — G induces an isomorphism: G(k)/R — G°'(k)/R.

Proof. We outline two proofs.

(1) The lemma follows from Theorem 1(a) of the Appendix by P. Gille, and Proposi-
tion 8.1.

(2) Similar to the second proof of Lemma 4.12. Instead of Corollary 4.6 of Theorem 4.5
we use Proposition 8.2.0

Theorem 8.4. Let k be a number field, and consider the category of connected
linear k-groups G such that G has no anisotropic factors of typ&s. Then the
isomorphism of functorsy, of Theorem4.3 extends uniquely to an isomorphism of
functorstg : G(k)/R — H(k, Fg).
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Proof. Similar to that of Theorem 4.8.0
Corollary 8.5. Letk and G be as in Theorer.4 Then

(i) there is a canonical isomorphis@i(k)/R ~ H(k, S¢);
(i) the groupG (k)/R is a stablyk-birational invariant ofG.

8.6. We pass to weak approximation over a number fleldet £2 be the set of all places
of k. We write 2, (respectivelys2 ) for the set of all infinite (respectively finite) places
of k.

Lemma 8.7 (stated in [39, Proposition 3.3])et G be a connected linear algebraic group
over a number field. Let > be a finite set of places &f Then the canonical epimorphism
r:G — G"™%induces an isomorphism : A (G) — Ax(G'™9).

Proof. Similar to that of Corollary 5.7, second prooft

Lemma 8.8. Let G andk be as in Lemm®.7, and letX’ > X', whereX' — ¥ C 2.
Then the projectioG (kx/) — G(ky) induces an isomorphist sy (G) — Ax(G).

Proof. The lemma follows from results of Sansuc [39]. Indeed, by Lemma 8.7 we may
assume tha is reductive. By [39, Lemme 1.10] we may assume tadmits a special
covering

l1->u—->GoxNo—G—1

whereGyg is a simply connected group ang is a quasi-trivial torus. By [39, (3.3.1)] there
is a canonical and functorial i isomorphismd 5 (G) — ql2 (k, ). By [39, formula after
Lemma 1.5], the canonical map,, (k, ) — 4} (k, ) is an isomorphism. Hence the map
As/(G) — Ax(G) is anisomorphism. O

Lemma 8.9. Let
1— G1—>G2£>G3—>1

be an exact sequence of connected linear algebraic groups over a numbét. fledldume
that H(k,, G1) = 1 for all v € 227 and thaturl(k, G1) = 1. Let ¥ C £2 be a finite set.
Assume tha#l 5 (G1) = 1. Thenthe map.: Ax(G2) - Ax(G3) is an isomorphism.

Proof. We prove thap, is surjective. By Lemma 8.8 we may assume that £27. Then
H(k,,G1) =1 forallv e X, hence the map : Ga(ks) — Gs(ky) is surjective, thug,
is surjective.

We prove thatg, is injective. We use an idea of [36, proof of Lemma 3.8]. By
Lemma 8.8 we may assume that 2.



330 M. Borovoi et al. / Journal of Algebra 276 (2004) 292—-339

First we prove thap(Ga(kx)) N Ga(k) C B(G2(k)). Let gos € Go(ks) and assume
that B(g2x) € G3(k). By Lemma 5.2 the subgrou@,(k) is open inGz(kx), and the
mappB:Ga(ks) — Ga(ky) is open, hence the groups := B(G2(k)) is open inGs(kyx).
The open sefB(g25)Us is an open neighborhood & (g2x). Since B(g2x) € G3(k),
there existxs; € B(g2x)Us N G3(k). Thengsy = B(g2x)B(g2), wheregs € Ga(k). Thus
g3k = B(g2x g2) Wheregax g2 € Ga(ky). SinceX D 2+, We see thags lifts to Ga(ky)
for everyv € 2o, and by assumptiongg; lifts to Ga(k). Thusgs, = B(g2k) for some
g2k € Ga(k). We obtain thap(g2s) = B(gag; ) Wheregu g, ' € Ga(k)Ga(k) = Ga(k).
ThusB(gos) € B(G2(k)), which was to be proved.

Then we prove tha~1(G3(k)) C G2(k). The proof is similar to the argument in
the proof of Lemma 5.5 (we use the assumption thgt(G1) = 1). From the inclusion
B~1(Ga(k)) C Ga(k) it follows immediately that the map, : A5 (G2) — As(G3) is
injective. ThusB, is bijective. O

Corollary 8.10. Let
15 G1— G2t G 1

be an exact sequence of connected linear algebraic groups over a numbet.fistd
X C £2 be afinite set. Assume th@j is a quasi-trivialk-torus or a unipotent group. Then
the mapB.: Ax(G2) - Ax(G3) is an isomorphism.

Proof. The corollary follows from Lemma 8.9. For another proof see Corollary 5.6, second
proof. O

Theorem 8.11. Letk be a number fieldX' C £2 a finite set of places. Then the isomorphism
of functorsny : Ax(T) — qlz(k, Fr) of Proposition5.9 can be uniquely extended to an
isomorphism of functorsg : A5 (G) — qlz(k, Fg) from the category of connected linear
k-groups to the category of abelian groups.

Proof. Similar to that of Theorem 5.10. We use Lemma 8.9, Corollary 8.10, and
Lemmas8.7. O

Corollary 8.12. Letk, X, andG be as in Theorer.11 Then

() Az(G)=~uk(k, S¢);

(ii) [37, Theorem 2.1(3)ihe abelian group 5 (G) is a stablyk-birational invariant ofG;
(i) Asx(G)=~u%(k, T_1 — To) with the notation of Corollar.13
Remark 8.13. In the proof of Theorem 8.11 we actually proved thgt (G) = A (T),
where T = H' and H is a z-extension ofG"Y. This result was earlier proved in
[36, Lemma 3.8].

Now we pass to Galois cohomology and Hasse principle.
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Theorem 8.14. Let G be a connected linear algebraic group over a number fiel@ihen
the mapab*: H(k, G) — HX(k, G) is surjective.

Proof. By [39, Lemme 1.13] the map.: H1(k, G) — H(k, G™9 is bijective, hence we
may assume that is reductive. In this case the assertion was proved in [6, Theorem 5.7].
We give here another proof (assuming th@t is reductive). By Douai’'s theorem
[20, Theorem 5.1], see also [5, Corollary 5.6], for dniernel of the typel. = (GSC, k),

all the elements oH?(k, L) are neutral. By Proposition 6.6 the mag absurjective. O

Note that over a number field the map‘atan be non-injective.
We definem?, (k, G) as in Section 7.

Theorem 8.15 [6, Theorem 5.13].Let G be a connected linear algebraic group
over a number fiel. Then the mamb': H(k, G) — HL(k, G) induces a bijection
mt(k, G) — il (k, G).

Whenk is a number field, we have?(k, N) = 0 for any quasi-triviak-torusN. Hence
the functorH (7)) = m2(k, T) satisfies conditions (1)—(3) of Introduction. It follows that
we can define functomsi?(k, Fg) andr?(k, Sx) as in Sections 1 and 2.

Theorem 8.16. Let G be a connected linear algebraic group over a number fieldihen

(i) there exist canonical isomorphismel (k, G) ~ m?(k, Fg) ~ m?(k, Sg) and a
canonical bijectionm! (k, G) ~ m?(k, S );

(i) the groupméb(k, G) and the setmi’(k, G) are stablyk-birational invariants of a
connected lineak-groupG.

Proof. Similar to that of Theorem 7.6.0

Remark 8.17. (i) The setr (k, G) over a number field# was computed in terms afy (G)
in[27,4.2].

(i) Sansuc [39, (9.5.1)] proved by a different method that there exists a bijection
ml(k, G) ~ m?(k, Sg), and he deduced that the set'(k, G) is a stablyk-birational
invariant of G.

Corollary 8.18. Let G be a connected linear algebraic group over a number fieldf
the image ofzal(k/k) in Autr1(G) is metacyclic, theiw (k)/R =1, Ax(G) = 1 for any
finite ¥, andm!(k, G) = 1.

Proof. We use Propason 1.10. O
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Appendix*

In the papers [21,22] we passed from semisimple groups to reductive groups using
Sansuc’s special isogenies. Some results can be formulated and proved in the setting of this
paper, which roughly speaking lepes isogenies by morphisnis— 7T from reductive
groups to tori and usesextensions. We give here other formulations of Theorem 111.3.1
of [21], Theorem 6 of [22] and Theorem 4.12 of [12] &equivalence.

Letk be afield. LetF be a covariant functor from commutativealgebras to sets. Let
O denote the semilocal ring of the polynomial algebkfd at the points =0 andr = 1.

Let us say that two elemenisb € F (k) are elementarily related if there exigte F(O)
such that (0) = a and&(1) = b. By definition, R-equivalence orF (k) is the equivalence
relation generated by the previous elementary relation. Thus two elemendsF (k) are
R-equivalent if and only if there exists a finite set of elements . ., x,+1 € F(k), with
x0 =a andx,1 = b, such thatx; is elementarily related te@; 1 for 0 <i <n. We let
F(k)/R denote the quotient set for this equivalence relation. For any Kietdntainingk,
we define a similar equivalence relation 1K) by using the semilocal ring ok [¢] at
the pointst = 0 andr = 1. There is a natural, functorial mapk)/R — F(K)/R. If F
goes from commutative-algebras to groups, the class®fequivalence ot, denoted by
RF(k),is anormal subgroup df (k), andF (k)/R = F (k)/RF (k); any element oR F (k)
is elementarily related to 1 (cf. [21, Lemme II.1.1]) Af= FY is the functor associated to
a k-variety X, namelyFy (A) = X (A), we get theR-equivalence orX (k), as defined by
Manin.

Lemma 1 (see [21, Proposition I1.1.3]pet1 — G > G %> T — 1 be an exact sequence
of reductivek-groups whereT/k is a k-torus. We denote by, the functor A —
AMG(A)) C T(A) from commutativé-algebras to groups. Thex(RG (k)) = RC; (k) and
we have a natural exact sequence of groups

6(k)/R — G(k)/R— C)(k)/R — 1.

Proof. We have to prove thaRC; (k) C A(RG(k)). Let ¢ € RC, (k). Then there exists
¢ € C(0) such thatc(0) = 1 andc(1) = c¢. By definition, there existg € G(0O) such

4 By Philippe Gille.



M. Borovoi et al. / Journal of Algebra 276 (2004) 292—-339 333

that A(g) =c. The sequence of groupfé(k) N G (k) — T (k) is exact; so there exists
%0 € G(k) such thati(go) = g(0). We setg’ := gi(30)~! € G(0). Theng’(0) = 1, so
g'(1) € RG (k) andi(g'(1)) = A(g)(1) = c(1) = c andc € A(RG (k). O

Theorem 1. Letk be a field of one of the following types

(i) kis anumber field,
(i) char(k) =0andcd(k) < 2.

Letl— G — G %> T — 1 be an exact sequence of reductisgroups whereG/k is
semisimple and simply connected afytk is ak-torus. In casdii), we assume that Serre’s
Conijecturell holds forG /k, i.e., H (k, G) = 1.

(a) There is a natural exact sequence of groups
G(k)/R — G(k)/R —> T(k)/R — 1.

(b) If moreoverk is a field as in0.1 and G has noEg-factor in the caségl), then there is
a natural isomorphisnt (k)/R = T (k)/R.

We recall (cf. [44, §10]) that a toru/R over the field of real numbers is isomorphic to
aproductS = G/, x Rc/r(Gp)* x Ré/R(Gm)f, s0S(R) = (R¥)" x (C*)* x (S1)! and we
denote byS(R) := (R})" x (C*)* x (s1! the connected component 8(R). If S/k is
a torus defined over a number fidldwe denote by (k). the preimage of [, ,eaS(kv)+
by the diagonal mags (k) — [, ;eaS(kv), Where the product is taken over the real places
of k.

Lemma 2. Assume that is a number field. Let. - S — E 2> 7 — 1 be a flasque
resolution of7 (whereS is a flasque torus and’ is a quasi-trivial toru3.

(a) The groupRT (k) is dense in[ [, ;o5 7 (ky) and we havel' (k) = T'(k)+.RT (k) and
T (k)4 N RT (k) = f(E(k)4).

(b) The groupRG (k) is dense i [, ;641G (kv).

(¢) T(ky)+ C Cy(ky) C T (ky) for any real placev of k.

(d) T4 C IM(Gk) 2> T (k)).

Proof. (a) As R-equivalence is the trivial relation ové& (cf. [21, §lll.2.c, p. 218]) we
have the following commutative diagram

Sk EG) — Th) —— HYk. S)

| | |

l_lv realS (ky) —— Hv real £ (ky) —— Hv real ] (kv) ——— 1.
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The groupkE (k) is dense in [, ,eq E (kyv), SO the groumRT (k) is dense i [, ;eq 7 (kv).

For any real place of k, the mapE(k,)+ — T(ky)+ iS surjective, and a diagram
chase givesf (E(k)).T (k)+ = T(k), so RT (k).T (k);+ = T (k). We have to prove that
RT(k)NT (k)+ C f(E(k)+).Letr € RT (k)NT (k)+. Then there exists € E (k) such that
f(e) =t. There existe, € E(ky)+ such thatf (e,) =t € T (k,) ands, := ee;l e S(ky).
The weak approximation holds fdr at the real places [39, Lemme 1.8, p. 19], so there
existss € S(k) such thaks; ™t € S(k,)+. Thenf (es™!) =1 andes ™ € E (k).

(b) We have to show that any eleme®t) €[], a1 G (ky) can be approximated by
elements ofRG (k). As RG (k) is a Zariski-dense subgroup 6f we can assume that some
gy Is semisimple regular. Léf be an open neighborhood ¢f,). The groupG/ k satisfies
weak approximation at real places [39, Corollaire 3.5.c, p. 26] so there gxists(k) such
thatg € U/ and we may assume thats semisimple regular. We consider the maximal torus
Zg(g) of G. By the statement (a), the grolR¥ (g) (k) is dense in the closed subgroup
[, reaZG(8)(ky) Of [, 1ea1G (kv), SOU N RZ g (g) (k) # ¥ anda fortiori U N RG (k) # .

(c) We consider the exact sequence of pointed sets

ky

Gl 2 T(ky) — HY(k,. §).

The bogndary ma,: T (ky,) — H(k,, G) is continuous for the real topology, and
H(k,, G) is finite, 08, is trivial on T (k,)+ andT (ky)+ C AM(G(ky)) = Ci (k).

(d) We use now the Hasse principle (Kneser—Harder—Chernousov) for the simply
connected group~} and we consider the following exact commutative diagram of pointed
sets

Gy —* T (k) >~ H(k.G)

|

3y ~
I, realG ko) — T, real” ko) —— [T, rea i (kv. G).

By assertion (c), the mags’s are trivial onT (k,)+ and a diagram chase shows thas
trivial on T'(k) 4, i.e.,T (k)+ C Im(G (k) N Tk)). O

Proof of Theorem 1. (a) First step G is quasi-split Then G contains a quasi-trivial
maximal k-torus E. We consider the maximal-torus Zg (E) of G, and we have the
following exact sequence @ftori

1> E—>Zg(E)—>T — 1.
By Hilbert 90 Theorem we havE1(k, E) = 0, so the mags (E) (k) — T (k) is surjective
anda fortiori the mapG (k) — T (k) is surjective. Moreover, sincg is quasi-trivial, by

Lemma 4.15 of this paper we have an isomorphism

Zg(E)(k)/R — T (k)/R.
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But according to Proposition 14(i) of [15] on quasi-split groups, we HayeE) (k) /R —>
G (k)/R, and we conclude that the m&jk)/R — T (k)/R is an isomorphism.

Second stepthe general casaNVe do first the case of number fields (i) and shall explain
after, how the proof works also for fields of kind (ii). LBG (k) denote theR-equivalence
class of 1inG (k). We denote byC; (k) C T (k) (respectivelyRC, (k) C T (k) ) the image
by A of G (k) (respectivelyRG (k)). Let1— S — E — T — 1 be a flasque resolution of
T (whereS is a flasque torus anfl is a quasi-trivial torus) and let us consider the map
f1E(k) — T (k). We begin with the following

Lemma3. f(E(k)+) C IM(RG (k) 22> RT (k).

Proof. The torusk is quasi-trivial, hence we haveé = [];_; . Ri;/x(Gn) = []; Ei
where thek;/k’s are finite field extensions. We denote hy: E; — E the morphism
defined byh;(e;) =(1,...,1,¢;,1,...,1). As E(k)+ =[], Ei(k)+, it is enough to prove
that f (h; (E;(k)+)) C Im(RG (k) LN RT (k)) fori =1,...,r. We firstly recall the norm
principle, i.e., Theorem 3.9 of [32], applied to the extension G — G 2 T — 1. It
states that for any finite field extensidr k the norm magVy /. : T (L) — T (k) preserves
the image by. of RG(L), i.e., Nk (AM(RG(L))) C A(RG(k)) C T (k). In other words, we
have

Nr/k(RCi(L)) C RCy.(k) C T (k). (%)
(D) ki =kandE; =G,,. Let L/k be afinite field extension such th@ay, is quasi-split,
i.e., L satisfiesX (L) # @, whereX denotes the variety of the Borel subgroupgoBy the
first step, we have(RG(L)) = RT (L) = f(E(L)), SORC; (L) = RT (L) = f(E(L)). By
the norm principle, we get
Ni/k(f(E(L))) C RCy.(k) C RT (k).
The restriction to the factak; yields
f(hi(NLye(L™))) = Noyi(f (hi (Ei (L)) € RCa (k).

By taking all the finite extensionk such thatX (L) # @, we get

f(hi(Nx(k))) € RC;.(k) C RT (k),
where Ny (k) denotes the normgroup of, i.e., the subgroup of* generated by the

Np k(L) for L/k finite satisfyingX (L) # @. We use now the Hasse principle of Kato—
Saito [25, Theorem 4] for the normgroup &f

k™ /Nx (k) = ED k) /Nx (ky),
vES
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where $2 denotes the set of places bf For a finite placev of k, one hasNy (k,) =k
[21, Lemme 111.2.8], s C Nx (k). We conclude that

£(hi (k%)) € RCL(K).

(2) Ei = Ry, /xGn. There exists an étale algeh#a/k; such thatk; ®x ki = G i, x
R4, /,;Gm. We consider the following commutative diagram of corestrictions

L Tl
Ei(ki) =k x A] —— T (ki)

Nei l N 1k l

< feohi
Ei(k) =k; ——— T (k).

The first case applied tg andG,, i, gives
i (hi (k] x 1)) C RCi(ky).
The norm principle (i.e., identityx) above) applied to the extensiéyy k yields
Ni; 7k (RCr(ki)) C RCy.(k),
o)
Ni: /i ((fig 0 i) (k) x 1)) C RCy (k).
But the normVy, /¢ : E; (k;) — E; (k) induces the identity on the first factbf, so
(fi, © hi) (Ei(k)+) C RCx(K),

which completes the proof of the lemma.
By Lemma 1, we have an exact sequence

é(k)/R —> G(k)/R —> C)(k)/RC) (k) — 1.
So it remains to prove that the mép (k)/RC; (k) — T (k)/R is an isomorphism.
Surjectivity We have to check thaf (k) = RT (k).C, (k). According to Lemma 2(d),
one hasl' (k)4 C Cy.(k), so

RT (k).T (k)4 C RT (k).C).(k).

By Lemma 2(a), we havRT (k).T (k)4 = T (k), SOT (k) = RT (k).C, (k).
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Injectivity: We have to check thakC; (k) = C, (k) N RT (k). The inclusionRC) (k) C
C, (k) N RT (k) is obvious, let us show the converse by taking C, (k) N RT (k). By
Lemma 2(c), we have the inclusions

[[T7®)+c [] Gtk c [T Tk,

v real v real v real

and the group[ [, jea? (kv)+ is open in[], ;eaCa(ky). By Lemma 2(b), the group
RC) (k) is a dense subgroup df], ;o5 Cx(ky), SO there existsg € RCy (k) such that

tto_l eT(k)+ =Tk N, real (kv)+. By Lemmas 2(a) and 3, one has
RT (k)N T (k)1 = f(E(k)+) C RCy(k),

sortyt € RC;. (k) and finallyr = (115 1)10 € RC; (k). We conclude tha€;, (k) N RT (k) =
RC, (k) as desired.

The case of a field of type (ii) is much simpler and one replaces the Hasse principle of
Kato—Saito by the fact thaVy (k) = k* [22, Theorem 6.a]. In that case, Lemma 3 yields
RT (k) = RC), (k). Moreover, the assumption on the vanishindf(k, G) implies that the
mapG (k) — T (k) is surjective. Sa, (k)/RC; (k) = T (k)/RT (k) and the exact sequence
(Lemma 1)

G(k)/R —> G(k)/R —> C;.(k)/RCy.(k) — 1,
induces the exact sequence
G(k)/R — G(k)/R —> T(k)/R— 1
as desired. O
(b) If k is as in 0.1, Serre’s Conjecture Il holds by Theorems 1.3, 1.4 and 1.5 of [12]
and the groups satisfiesG(k)/R = 1 (ibid., Corollary 4.6). In this case we deduce that
the mapG(k)/R — T (k)/R is an isomorphism. O
Corollary. Letk be afield as in Theoreth LetG be a semisimple simply connected group
and S C G be ak-split torus of G. Then the groupZ(S)S® is semisimple and simply
connected and the natural map
ZG($)*(k)/R — G(k)/R
is surjective.
Proof. Accordingto Theorem 4.15.a of [3], the centraliz&s(S) is the Levi subgroup of
somek-parabolic subgrou® of G. The fact thatZ (S)%5/ k is simply connected is well-

known, it can be deduced from the presentation of standard parabolic subgroups [3, §4]
and Corollary 4.4 of [4]. We denote by the unipotent radical o and we consider
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the opposite parabolic group— of P with respect taZs (S); it is the uniquek-parabolic
subgroupQ of G containingZg(S) such thatQ N P = Z;(S) [3, 84.8]. LetU ™ be the
unipotentradical oP~. As PNU~ = 1, each fiber of the multiplication mdp x Zg (S) x
U~ — G consists of a single point, so this mia@n open immersion by [2, Proposition AG
18.4]. So by Propositin11 of [15], we haveU x Zg(S) x U™)(k)/R = G(k)/R. ButU
andU ~ are affine spaces, so one has an isomorpHtigits) (k)/R = G(k)/R. We denote
by T = Zg(S)°" = Z5(S)/Z5(S)SS the coradical torus oE (S); the preceding theorem
produces then the exact sequence

ZG($)k)/R — Zg(S)(k)/R — T(k)/R — 1.

As Z(S) is a Levi subgroup oP, we have a natural isomorphish®" = Z ()" =T.
According to Lemma 5.6 of [12], the fact th&tis simply connected implies that the torus
T = P! is quasi-trivial. So we havé (k)/R = 1 and the mags(S)55k)/R — G(k)/R

is surjective. O
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