Examples of Non-rational Varieties of Adjoint Groups

Philippe Gille

Mathématiques, URA-CNRS 752, Bât. 425, Université de Paris-Sud, 91405, Orsay, France

Communicated by Michel Van den Bergh

Received September 18, 1996

Let k be a field of characteristic $\neq 2$ and k_0 a separable closure of k. We say that an algebraic variety X/k is stably k-rational if there exist two affine spaces $\mathbb{A}^m_k, \mathbb{A}^n_k$ and a k-rational map $\mathbb{A}^m_k \times X \rightarrow \mathbb{A}^n_k$. Merkurjev [9] gave a criterion of stable k-rationality for the adjoint classical groups with absolute rank ≤ 3, which covers the case of the variety $\text{PSO}(q)$ for any quadratic form q/k of rank ≤ 6. This criterion gives examples of field k and quadratic form q of rank 6 with non-trivial signed discriminant such that the variety $\text{PSO}(q)$ is not stably k-rational. The main result of this paper is the following:

Theorem. There exist a field k of characteristic 0 with cohomological dimension 3 and a quadratic form q/k with rank 8 and trivial signed discriminant such that the variety $\text{PSO}(q)$ is not stably k-rational.

This is the first example of the quadratic form with trivial signed discriminant such that the variety $\text{PSO}(q)$ is not stably k-rational and since [9], the 8-dimension is minimal. This example is an adjoint group which is an inner form of the split adjoint group of type D_4 [22] and it is the first example of an adjoint semisimple group which is an inner form and which is not a stably k-rational variety. In Section 3, we give another proof of the theorem with $\text{cd}(k) = 6$ which is more elementary because we don't use the Index Reduction Theory.

I thank J.-P. Tignol for answering my question about multiquadratic extensions (cf. Proposition 3) and the referee for pointing out a mistake in the first version of the paper.

Notations. We denote by $G_m = \text{Spec}(\mathbb{Z}[t, 1/t])$, $\mathbb{A}^n = \text{Spec}(\mathbb{Z}[t_1, t_2, \ldots, t_n])$ and for any scheme X, we denote by $G_m, X = G_m \times_{\text{Spec}(\mathbb{Z})} X$ and $\mathbb{A}^n_X = \mathbb{A}^n \times_{\text{Spec}(\mathbb{Z})} X$ the affine space of rank n on X ($n \in \mathbb{N}$). Let
$X' \to X$ be a finite locally free morphism of schemes. We can write [4] the
exact sequence of X-tori $1 \to R_{X'/X}^1 G_m \to R_{X'/X} G_m \to G_{m,X} \to 1$
where $R_{X'/X}^1 G_m$ is the restriction from X' to X of the X'-torus $G_{m,X}$.

Let X be a k-variety geometrically irreducible. We say that X is a
k-rational variety if there exist an affine space \mathbb{A}^n_k and a k-birational map
$X \cong \mathbb{A}^n_k$. We say that X is a stably rational k-variety if there exist two
affine spaces $\mathbb{A}^m_k, \mathbb{A}^n_k$ and a k-birational map $\mathbb{A}^m_k \times X \cong \mathbb{A}^n_k$. One defines
the norm group of X which is denoted $N_X(k)$ as the subgroup of k^\times
generated by the $N_L(k)$ for any finite field extension L/k such that
$X(L)$ is not empty.

If A/k is a central simple algebra, there exists a division algebra T/k
and an integer r (Wedderburn’s theorem) such that $A \cong M_r(T)$ and
the integer r and T are well defined. Then we denote $\text{ind}_{k}(D) = \sqrt{\dim_{k}(T)} \in \mathbb{Z}$
and $\deg(A) = \sqrt{\dim_{k}(A)} \in \mathbb{Z}$. If A/k, B/k are two
central simple algebras, we say that A and B are similar and we denote
$A \sim B$ if there exist some integers m, n such that
$M_m(A) \cong M_n(B)$. If $a, b \in k^\times$, we denote by $(a, b)_k$
the standard quaternion algebra. We assume that all quadratic forms will be regular. If q/k, q'/k are two
quadratic forms, we denote by $q \perp q'$ their orthogonal sum, by $q \otimes q'$
their tensor product, and by $\text{rk}(q)$ the rank of q. We denote by $C(q)$ the
Clifford algebra of q and by $C_0(q)$ the even Clifford algebra of q. We
denote by $W(k)$ the Witt ring of the field k, by $I(k)$ the fundamental ideal
generated by forms with even rank, and by $\text{disc} : I(k) \to k^\times/k^\times^2$
the morphism of signed discriminant. We will identify often a quadratic form q
and its class $[q] \in W(k)$. If q is a k-quadratic form and E/k a field
extension, we denote by q_E the quadratic form extended to E.

If (a_1, \ldots, a_n) is a family of elements of k^\times, we denote by $\langle a_1, a_2, \ldots, a_n \rangle$
the quadratic form $\sum_{i=1}^{n} a_i X_i^2$ and by $\langle \langle a_1, a_2, \ldots, a_n \rangle \rangle$
the n-fold Pfister form $\langle 1, a_1 \rangle \otimes \langle 1, a_2 \rangle \otimes \cdots \otimes \langle 1, a_n \rangle$. We denote by $\mathbb{H} = \langle 1, -1 \rangle$
the standard hyperbolic form of rank 2.

We recall that a central simple algebra D/k is a k-biquaternionic algebra
if D/k is isomorphic to an algebra $(a, b) \otimes_k (c, d)$ with $a, b, c, d \in k^\times$ [7]. We can associate to this isomorphism the Albert form $\langle a, b, -ab, -c, -d, cd \rangle$. Although this Albert form $\langle a, b, -ab, -c, -d, cd \rangle$ is not canonical, its similarity class is well defined and depends only on D. We said that a quadratic form ψ is an Albert form for D if ψ is similar to
$\langle a, b, -ab, -c, -d, cd \rangle$. We recall that D is a division algebra iff the
form $\langle a, b, -ab, -c, -d, cd \rangle$ is anisotropic, and that a k-form φ
with rank 6 and a trivial signed discriminant is an Albert form for some central
simple algebra which is similar to $C(\varphi)$.

If q is a quadratic form with even rank, we denote by $\text{SO}(q)$ (resp.
$\text{PSO}(q)$) the special orthogonal group of q (resp. projective special ortho-
By $G(q)$ the group of similarity factors of q, i.e., $G(q) = \{ \alpha \in k^* \mid \alpha q \equiv q \}$. It is well known that $G(1, -a) = N_{k(\sqrt{a})/k}(k(\sqrt{a})^*)$. If $a \in k^*$, we will denote sometimes $N_q(a) = N_{k(\sqrt{a})/k}(k(\sqrt{a})^*)$.

We denote by $cd(k)$ the cohomological dimension of a field k [19] and by $u(k)$ the u-invariant of k, i.e., the supremum in $\mathbb{N} \cup \{\infty\}$ of the dimensions of anisotropic k-quadratic forms. If $P \subset k^*$ is a subset of k^*, we denote by $\mathbb{Z}\langle P \rangle$ the subgroup of k^* generated by P.

1. PRELIMINARIES

1.1. Norm Groups and R-Equivalence [9, 10]

For any quadratic space (q, V) of even rank n, we denote by $\text{hyp}(q)$ the subgroup of k^* generated by the $N_{L/k}(L^*)$ for any finite field extension L/k such that q_L is hyperbolic. This condition can be written in another way. Indeed, let X_q be the variety of totally isotropic subspaces of V with dimension $n/2$. It is known that X_q is a k-projective smooth variety which has a k-rational point iff $q = 0 \in W(k)$, i.e., q is an hyperbolic form. Then we have $\text{hyp}(q) = N_{X_q}(k)$. This invariant is connected with the study of R-equivalence on the group $\text{PSO}(q)$. Recall the definition of R-equivalence.

Let G/k be a connected linear algebraic group. We recall that two rational points $g_0, g_1 \in G(k)$ are directly R-equivalent if there exists $g(t) \in G(k(t))$ such that $g(0) = g_0$ and $g(1) = g_1$ and that the R-equivalence is the equivalence relation generated by this elementary relation. It is known [3] that the group $G(k)/R$ is trivial if the variety of the group G/k is stably k-rational. Merkurjev gave a formula which computes $G(k)/R$ for the adjoint classical groups. In the case of a group $\text{PSO}(q)$, we have

$$\text{PSO}(q)(k)/R \to G(q)/\text{hyp}(q).k^{\times^2}.$$

Moreover, the invariant $G(k)/R$ (on suitable extensions of k) allows us to determine if an adjoint semisimple classical group with absolute rank ≤ 3 is (or is not) a stably k-rational variety. More precisely, in the case of $\text{PSO}(q)$ with a quadratic form q of rank ≤ 6. Merkurjev's criterion is the following:

Theorem 1 [9]. Let q/k be a quadratic form with rank $2m$ ($m = 2$ or 3) and signed discriminant $(d) \in k^*/k^{\times^2}$.

(a) If $d \in k^{\times^2}$, the variety $\text{PSO}(q)$ is k-rational and one has $G(q)/\text{hyp}(q).k^{\times^2} = 1$.

If \(d \neq k^{\times 2} \), we denote by \(L = k(\sqrt{d}) \) and \(C_q(q) \) the even Clifford algebra of \(q \) which is a central simple algebra over \(L \). One has the following alternative:

(i) If \(\text{ind}_k(C_q(q)) = 1 \) or 2, then the variety \(\text{PSO}(q) \) is stably \(k \)-rational and \(G(q) / \text{hyp}(q) . k^{\times 2} = 1 \).

(ii) If \(\text{Ind}_k(C_q(q)) = 4 \), then there exists a field extension \(E / k \) such that \(G(q_E) / \text{hyp}(q_E) . E^{\times 2} \neq 1 \) and the variety \(\text{PSO}(q) \) is not stably \(k \)-rational.

Case (ii) can appear only if \(\text{rk}(q) = 6 \). The proof of the theorem uses in a crucial way the Index Reduction theory (cf. [11, 18, 21]).

Remark 1. If \(k \) is a field (\(\text{car}(k) \neq 2 \)) with cohomological dimension 1, it is well known that any group \(\text{PSO}(q) \) is a quasi-split group and a \(k \)-rational variety. For illustrating case (ii) of the theorem, it is necessary to assume \(\text{cd}(k) \geq 2 \). We will show that \(\text{cd}(k) = 2 \) is sufficient.

The construction by Merkurjev [12] for any integer \(n \) \((n \geq 2)\) of a field with \(u \)-invariants (cf. Notations) equal to \(2n \) from a division algebra \(D / k \) is functorial in \(k \). More precisely, if \(D / k \) is isomorphic to \(Q_1 \otimes_k Q_2 \cdots \otimes_k Q_{n-1} \) where the \(Q_i \)'s are quaternion algebras, one associates a field \(F(k, D) \) with cohomological dimension 2 satisfying \(\text{ind}(D_{F(k, D)}) = 2^{n-1} \) and \(u(F(k, D)) = 2n \). Moreover, if \(k' / k \) is a field extension satisfying \(\text{ind}(D_{k'}) = \text{ind}(D_k) \), one has a natural embedding \(F(k, D) \hookrightarrow F(k', D_k) \).

Let us apply this remark. We fix a field \(k \) of characteristic zero, \(D/k \) a division algebra which is a tensor product of 2 quaternion algebras, and a proper quadratic field extension \(k' = k(\sqrt{d}) \) satisfying \(\text{ind}(D_k) = \text{ind}(D_{k'}) = 4 \). For example, we can take \(k = \mathbb{Q}(X_1, X_2, \ldots, X_{2n-1}) \), \(Q_i = (X_{2i}, X_{2i+1})_k \) for \(i = 1, \ldots, n-1 \) and \(k' = k(\sqrt{X_1}) \). Then we denote \(F = F(k, D) \) and \(F' = F(k', D_k) \). One has a natural embedding \(F \hookrightarrow F' \) and since \(\text{ind}(D_F) = 4 \), one has \(\text{ind}(D_{F'(\sqrt{d})}) = 4 \). Denote \(L = F(\sqrt{d}) \). Let us fix an Albert form \(\psi \) for \(D \) which represents \(-1\) and let us define the \(k \)-form \(q \) with rank 6 and signed discriminant \(d \) by \(\langle 1, -d \rangle \perp \psi = q \perp H \). Then \(C_q(L) \sim D_L \), \(\text{cd}(F) = 2 \), and \(q_F \) is an example of the quadratic form of case (ii) such that the variety \(\text{PSO}(q) \) is not stably \(F \)-rational.

1.2. Norm Group of a Family of Quadratic Forms

For any family of quadratic forms \(\langle q_i \rangle_{i=1}^m \) with even rank, we denote by \(\text{hyp}(q_1, q_2, \ldots, q_m) \) the subgroup of \(k^{\times} \) generated by the \(N_{L/k}(L^{\times}) \) such that the forms \(q_i|L \) are hyperbolic \((i = 1, \ldots, m)\). Let \(X_i \) be the variety of totally isotropic subspaces of \(q_i \) with dimension \(\text{dim}(q_i)/2 \). Then
by definition, we have
\[\text{hyp}(q_1, q_2, \ldots, q_m) = N_{X_1 \times X_2 \times \cdots \times X_m}(k) \subset k^\times. \]

Lemma 1. Let \((q_i/k)_{i=1, \ldots, m}\) be a family of quadratic forms with even rank and \(q/k\) a quadratic form with even rank.

(a) \(G(q \perp H) = G(q)\).

(a') \(\text{hyp}(q_1, q_2, \ldots, q_m, q \perp H) = \text{hyp}(q_1, q_2, \ldots, q_m)\).

(b) \(\text{hyp}(q_1, q_2, \ldots, q_m) \subset \bigcap_{i=1, \ldots, m} \text{hyp}(q_i)\).

(c) If \(L/k\) is a finite field extension, one has
\[N_{L/k}(\text{hyp}(q_1, q_2, \ldots, q_m, L)) \subset \text{hyp}(q_1, q_2, \ldots, q_m). \]

(d) Let \(L/k\) be a finite splitting field extension for the forms \((q_i)_{i=1, \ldots, m}\). Then
\[N_{L/k}(\text{hyp}(q_L)) \subset \text{hyp}(q_1, q_2, \ldots, q_m, q). \]

(e) (respectively [5, 9]). Denote \((d) = \text{disc}_\pm(q) \in k^\times/k^\times_2\). Then
\[G(q) = G(\langle 1, -d \rangle) \cap G(q \perp \langle 1, -d \rangle) \]
and
\[\text{hyp}(q_1, q_2, \ldots, q_m, q) = \text{hyp}(q_1, q_2, \ldots, q_m, (1, -d), q \perp \langle 1, -d \rangle) = N_{k(\sqrt{d})/k}(\text{hyp}(q_1, q_2, \ldots, q_m, k(\sqrt{d}), q_{k(\sqrt{d})})). \]

(f) Let \(\tilde{G}\) be a subgroup of the profinite Galois group \(Gal(k_\sigma/k)\) and \(\tilde{k} = k_\sigma^G\). Then
\[\text{hyp}(q_{1, \tilde{k}}, q_{2, \tilde{k}}, \ldots, q_{m, \tilde{k}}) = \bigcup_{k' \subset \tilde{k}} \text{hyp}(q_{1, k'}, q_{2, k'}, \ldots, q_{m, k'}), \]
where the union is taken on the extensions \(k' \subset \tilde{k}\) of finite degree over \(k\).

Remark 2. The main result of this paper is based on examples of quadratic forms for which the inclusion (b) is strict. For (e), Merkurjev’s Theorem 1 shows that the inclusion \(N_{k(\sqrt{d})/k}(G(q_{k(\sqrt{d})})) \subset G(q)\) is strict in general. For a quadratic form with rank 6 and signed discriminant \(d\), one has indeed \(G(q)/\text{hyp}(q)k^\times_2 = G(q)/N_{k(\sqrt{d})/k}(\text{hyp}(q_{k(\sqrt{d})}))k^\times_2 = G(q)/N_{k(\sqrt{d})/k}(G(q_{k(\sqrt{d})}))k^\times_2\) and this group is not trivial in general.
Proof. The assertion (a) is a straightforward result of Witt’s theorem. The assertions (b), (c), and (d) are direct consequences of the definition and of the functoriality of norm maps for a tower of field extensions. Let us show the assertion (e). It is clear that we can assume \(d \in k^\times \setminus k^{\times 2} \).

First, the inclusion \(G(\langle 1, -d \rangle) \cap G(q \downarrow \langle 1, -d \rangle) \subseteq G(q) \) is obvious. Conversely, if \(a \in G(q) \), one has \(\langle 1, -a \rangle \otimes q = 0 \in W(k) \) and since \(q = \langle 1, -d \rangle \mod I^2(k) \), one has \(\langle 1, -a \rangle \otimes \langle 1, -d \rangle = 0 \mod I^3(k) \) and it is known [17, p. 88, Theorem 14.3] that \(\langle 1, -a \rangle \otimes \langle 1, -d \rangle = 0 \in W(k) \).

Hence \(\langle 1, -a \rangle \otimes (q \downarrow \langle 1, -d \rangle) = 0 \in W(k) \) and \(a \in G(\langle 1, -d \rangle) \cap G(q \downarrow \langle 1, -d \rangle) \).

The second formula of (e) is simpler and results from the following fact: any field extension \(L/k \) such that \(q_L \) is hyperbolic satisfies \(d \in L^{\times 2} \) and then contains a subfield isomorphic to \(k(\sqrt{d}) \).

(f) This identity is formal. There exists a variety \(X/k \) such that \(\text{hyp}(q_{k,1}, q_{2,k}, \ldots, q_{m,k}) = N_X(k) \) and it is not difficult to show that \(N_Y(k) = \bigcup_{k < m} N_Y(k') \) for any variety \(Y/k \). Then one has the formula. \(\blacksquare \)

Let us give an application of Scharlau’s transfer map [17, Sect. 5] which will be useful for showing Proposition 1.

Lemma 2. Let \(q, q' \) be \(k \)-quadratic forms and \(k' = k(x)/k \) a finite field extension with degree \([k':k] \). Assume that \(q = \langle 1, x \rangle \otimes q' \in W(k') \).

(a) If \([k':k] \) is even, then one has \(\langle 1, -N_{k'/k}(x) \rangle \otimes q = \langle 1, -N_{k'/k}(x) \rangle \otimes q = 0 \in W(k) \), i.e., \(N_{k'/k}(x) \in G(q) \cap G(q') \).

(b) If \([k':k] \) is odd, then one has \(q = \langle 1, N_{k'/k}(x) \rangle \otimes q' \in W(k) \).

Proof. Denote \(r = [k':k] \). In the two cases, we apply Scharlau’s transfer \(s_{a}: W(k(x)) \to W(k) \) associated with the linear form \(s: k(x) \to k \) defined by \(s(1) = 1, s(x) = s(x^2) = \cdots = s(x^{r-1}) = 0 \). One has a projection formula \(s_{a}(\phi \otimes \psi) = \phi \otimes s_{a}(\psi) \) for any \(\phi \in W(k), \psi \in W(k') \) which reduces the calculation to \(s_{a}(\langle 1 \rangle) \) and \(s_{a}(\langle x \rangle) \).

(a) If \(r \) is even, one has \(s_{a}(\langle 1 \rangle) = \langle 1, -N_{k'/k}(x) \rangle \) and \(s_{a}(\langle x \rangle) = 0 \). Applying \(s_{a} \) to \(q \), one has \(\langle 1, -N_{k'/k}(x) \rangle \otimes q = \langle 1, -N_{k'/k}(x) \rangle \otimes q' \in W(k) \). Moreover, since \(\langle x \rangle \otimes q = \langle 1, x \rangle \otimes q' \in W(k') \), it follows \(\langle 1, N_{k'/k}(x) \rangle \otimes q' = 0 \in W(k) \) and \(\langle 1, -N_{k'/k}(x) \rangle \otimes q = 0 \in W(k) \).

(b) If \(r \) is odd, one has \(s_{a}(\langle 1 \rangle) = \langle 1 \rangle \) and \(s_{a}(\langle x \rangle) = \langle N_{k'/k}(x) \rangle \).

Applying \(s_{a} \) to \(q \), we obtain \(q = \langle 1, N_{k'/k}(x) \rangle \otimes q' \in W(k) \). \(\blacksquare \)

1.3. Milnor’s Residue Maps (cf. [17, p. 207])
We denote by $K = k((t))$ the field of formal series with valuation ring $O = k[[t]]$. Recall that there exists an exact sequence of groups

$$0 \to W(k) \overset{i}{\to} W(K) \overset{\partial_t}{\to} W(k) \to 0.$$

The map i is the restriction of k to K and let us describe the map ∂_t. A K-quadratic form q can be diagonalized in $\langle u_1, \ldots, u_m, w_1, \ldots, w_n \rangle$ where $u_j, v_j \in O^\times$. Then $\partial_t(q) = \langle \overline{v}_1, \ldots, \overline{v}_n \rangle$ where $\overline{v}_j \in k^t = (O/t)^\times$. Let us give an application for similarity factors.

Lemma 3. Let γ be a k-quadratic form.

(a) If γ is not hyperbolic, then $G(\gamma_K) = G(\gamma)K^{\times 2}$.

(b) One has $G(\langle t \rangle \otimes \gamma) = \mathbb{Z}\langle t \rangle.G(\gamma)K^{\times 2}$.

Proof. (a) The inclusion $G(\gamma).K^{\times 2} \subset G(\gamma_K)$ is obvious. Conversely, let x be in $G(\gamma_K)$. Then $x = t^{d^2}a^2\alpha$ with $a \in K^\times$, $\alpha \in k^\times$, and $d = 0$ or 1. If $d = 1$, one has $0 = \partial(\langle 1, -x \rangle \otimes \gamma) = \langle -\alpha \rangle \otimes \gamma \in W(k)$ then γ is hyperbolic and $d = 0$. Hence $\alpha \in G(\gamma_K) \cap k^\times$. It follows $0 = \langle 1, -\alpha \rangle \otimes \gamma_K = i(\langle 1, -\alpha \rangle \otimes \gamma)$. Hence $0 = \langle 1, -\alpha \rangle \otimes \gamma \in W(k), \alpha \in G(\gamma)$, and $x \in G(\gamma).K^{\times 2}$.

(b) If the form γ is hyperbolic, then the assertion is obvious. We can assume that γ is not hyperbolic. The inclusion $\mathbb{Z}\langle t \rangle.G(\gamma).K^{\times 2} \subset G(\varphi_K)$ is obvious. Conversely, let x be in $G(\varphi_K)$. Then $x = t^{d^2}a^2\alpha$ with $a \in O^\times$ and $\alpha \in G(\varphi_k) \cap k^\times$. Applying the residue map $\partial : W(K) \to W(k)$, it yields $0 = \partial(\langle 1, -\alpha \rangle \otimes \varphi) = \partial(\langle 1, -\alpha \rangle \otimes (\langle 1, t \rangle \otimes \gamma)) = \langle 1, -\alpha \rangle \otimes \gamma \in W(k)$. Hence $\alpha \in G(\gamma)$ and $x \in \mathbb{Z}\langle t \rangle.G(\gamma).K^{\times 2}$.

2. PROOF OF THE MAIN RESULT

The main result is a direct consequence of the following proposition and Merkurjev's Theorem 1.

Proposition 1. Let k be a field of characteristic zero. Let $(q_i)_{i=1,\ldots,m}$ be a family of k-quadratic forms, $a \in k^\times \setminus k^{\times 2}$ and ψ/k a quadratic form satisfying the following condition

(C) For any $b \in k^\times$, the form $\langle \langle -a, b \rangle \rangle \perp \psi$ is not hyperbolic.

We denote by $K = k((t))$ the field of formal series power with valuation ring $O = k[[t]]$ and

$q = \langle \langle -a, t \rangle \rangle \perp \psi$.

Then

$G(q_K) = (G(\langle 1, -a \rangle) \cap G(\psi))K^{\times 2}$.
and
\[\text{hyp}((q_i, k), q_k).K^x = \text{hyp}((q_i), (1, -a), \psi).K^x. \]

Proof. First, we observe that the condition (C) implies that the form \(\psi \) is not hyperbolic.

1st Step. The **first equality.** The inclusion \((G((1, -a)) \cap G(\psi)).K^x \subset G(q_k)\) is obvious. Conversely, let \(x \in G(q_k) \). Then \(x = t \beta^2 b \) with \(\beta \in K^x \), \(d = 0 \) or \(1 \), and \(b \in k^x \). If \(d = 1 \), applying the residue map \(\partial : W(K) \to W(k) \), one has \(0 = \partial(\langle 1, -bt \rangle \otimes q) = \partial(\langle -bt, t, -a \rangle) \perp \perp \langle 1, -bt \rangle \otimes \psi = (\langle -b, -a \rangle) \perp \perp \langle -b \rangle \otimes \psi \in W(k) \). Since \(-b \in G(\langle -b, -a \rangle \perp \perp \psi) \), it yields \(\langle -b, -a \rangle \perp \perp \psi = 0 \in W(k) \), which is a contradiction for the hypothesis \(\text{(C)} \).

It follows that \(d = 0 \) and \(b \in G(q_k) \cap k^x \). Applying again the map \(\partial \), one can see easily that \(b \in G(\langle 1, -a \rangle) \) and since \(q = \langle \langle t \rangle \rangle \otimes \langle 1, -a \rangle \perp \perp \psi \), one has \(b \in G(\langle 1, -a \rangle) \cap G(\psi) \) and \(x \in G(\langle 1, -a \rangle) \cap G(\psi).K^x \).

2nd Step. Reduction to the case where the base field \(k \) has no proper odd extension. For the second equality, we will show that we can assume that the base field \(k \) has no proper odd extension. First, let us check that the condition \(\text{(C)} \) stays when we extend the scalars with an odd field extension. If \(k' / k \) is a finite odd extension and if there exists \(b' \in k'^x \) such that \(\langle -a, b' \rangle \perp \psi = 0 \in W(k') \), since \([k': k(b')]\) is odd, Springer's theorem for odd extensions [17, p. 62] yields \(\langle -a, b' \rangle \perp \psi = 0 \in W(k') \) and Lemma 2 implies \(\langle -a, N_{k(b')/k}(b') \rangle \perp \psi = 0 \in W(k) \), which is a contradiction for the hypothesis \(\text{(C)} \).

Let \(G \subset G(\text{al}(k_x/k)) \) be a 2-Sylow subgroup of the profinite Galois group \(G(\text{al}(k_x/k)) \), \(\bar{k} = k_x \bar{G} \), and \(\bar{k} = K \otimes_k \bar{k} \) and let us assume that
\[\text{hyp}((q_i, \bar{k}), q_{\bar{k}}).\bar{k}^x = \text{hyp}((q_i, \bar{k}), (1, -a)_{\bar{k}}, \psi_{\bar{k}}).\bar{k}^x. \]

Due to Lemma 1(f), one has
\[\text{hyp}((q_i, \bar{k}), (1, -a)_{\bar{k}}, \psi_{\bar{k}}).\bar{k}^x = \bigcup_{k' \subset \bar{k}} \text{hyp}((q_i, k'), (1, -a)_{k'}, \psi_{k'}).k_{\bar{k}}^x, \]

where the reunion is taken on the subextensions \(k' \subset \bar{k} \) finite over \(k \). Now, we can show the equality
\[\text{hyp}((q_i, k), q_k).K^x = \text{hyp}((q_i), (1, -a), \psi).K^x, \]

where the inclusion \(\supset \) is obvious. For the inverse inclusion, let \(x \) be in
\[\text{hyp}((q_i, K)_{i=1, \ldots, m}, q_K).K^{x^2}. \]

Since the inclusion
\[\text{hyp}((q_i, K)_{i=1, \ldots, m}, q_K).K^{x^2} \subset \text{hyp}((q_i, \tilde{K}).K^{x^2}, \]

there exists a finite odd extension \(k'/k \) such that
\[x \in \text{hyp}((q_i, k'), (1, -a), \psi_k).K^{x^2}. \]

Hensel’s lemma allows us to assume that \(x \in k^{x^2} \). If \([k':k] = 2p + 1 \), one has \(\mathcal{N}_{k'/k}(x) = x^{2^{p-1}} \) and Lemma 1(c) yields \(x \in \text{Hyp}((q_i), (1, -a), \psi).K^{x^2}. \)

3rd Step. The Second Equality. We can assume that the field \(k \) has no proper odd extensions. The inclusion
\[\text{hyp}((q_i), (1, -a), \psi).K^{x^2} \subset \text{hyp}((q_i, K)_{i=1, \ldots, m}, q_K).K^{x^2} \]

is obvious. For the inverse inclusion, we have to show for any finite extension \(L/K \) splitting \(q \) and the \(q_i \)'s that \(\mathcal{N}_{L/k}(L^{x^2}) \subset \text{hyp}((q_i), (1, -a), \psi).K^{x^2} \). Let \(L/K \) be such a finite extension with valuation ring \(O_L \), residue field \(k' \), ramification index \(e \), and residual index \(f \). Let us denote by \(K'/K \) the maximal non-ramified extension of \(K \) with valuation ring \(O' \). Since \(k \) has characteristic zero, the field \(K' \) is \(k \)-isomorphic to \(k'((i)) \). Therefore we can assume that \(K' = k'((i)) \).

\[
\begin{array}{c|c|c}
L & e & f \\
\hline
K' & & \\
K & & \\
\end{array}
\]

We recall that there exists an uniformizing parameter \(\pi \) of \(L/K \) such that \(\pi^{e-1} \in k' \). If \(\pi \) is an uniformizing parameter of \(L \), then \(\pi^{e-1} \) has valuation 1 and since \(O^x/K^{x^e} = k^{x^e}/k^{x^e} \), there exists \(a \in O^x \) such that \((a, \pi)^{-1} \in k' \). Therefore we can take an uniformizing parameter \(\pi \) of \(L \) such that \(\pi^e = ut \) with \(u \in k' \). With Hensel’s lemma, we can compute easily the norm group \(\mathcal{N}_{L/k}(L^{x^2}) \) up to \(U_1 = \text{Ker}(O^x \to k^x) \), which is sufficient because one has \(U_1 \subset K^{x^2} \).

Lemma 4. \(\mathcal{N}_{L/k}(L^{x^2}) = \mathbb{Z}\left\langle \mathcal{N}_{k'/k}(1+u)^{e-1}(N_{k'/k}(k^{x^e}))^e \right\rangle \mod U_1. \)
In order to use the hypothesis \(q_L \) hyperbolic, we write the functoriality of Milnor's residue maps for the extensions \(K \subset K' \subset L \).

\[
\begin{array}{c}
0 \longrightarrow W(k) \overset{i}{\longrightarrow} W(K) \overset{\partial_i}{\longrightarrow} W(k) \longrightarrow 0 \\
\end{array}
\]

\[
\begin{array}{c}
0 \longrightarrow W(k') \overset{i}{\longrightarrow} W(K') \overset{\partial_i}{\longrightarrow} W(k') \longrightarrow 0 \\
0 \longrightarrow W(k') \overset{j}{\longrightarrow} W(L) \overset{\partial_j}{\longrightarrow} W(k') \longrightarrow 0,
\end{array}
\]

where \(\rho = 0 \) if \(e \) is even and \(\rho = \text{id}_{W(k')} \) if \(e \) is odd. Since \(L/K \) splits the \(q_i \)'s, the diagram shows that the \(q_i \)'s are hyperbolic forms.

(i) 1st Case. \(e \) Is Even. Lemma 4 shows that \(N_{L/K}(L^{\infty}) \subset \mathbb{Z}(N_{k'/k}(-u)\langle a \rangle)K^{\times 2} \). It is sufficient to show that \(f \) is even and that \(N_{k'/k}(-u) \in \text{hyp}(q_i, \langle 1, -a \rangle, \psi)k^{\times 2} \). One has \(q_L = \langle \langle u, -a \rangle \rangle \perp \psi = \langle \langle u^2, -a \rangle \rangle \perp \psi = j(\langle \langle u, -a \rangle \rangle) \perp \psi \). Then \(q_L = j(\langle \langle u, -a \rangle \rangle) \perp \psi \) and since \(q_L = 0 \in W(L) \), it follows

\[
0 = \langle \langle u, -a \rangle \rangle \perp \psi \in W(k').
\]

The hypothesis (C) implies that \(f = [k': k] = 2^2 > 1 \) and \(f \) is even. It remains to show that \(N_{k'/k}(-u) \in \text{hyp}(q_i, \langle 1, -a \rangle, \psi)k^{\times 2} \). If \([k': k(u)] = 2^2 > 1 \), one has \(N_{k'/k}(-u) \in k^{\times 2} \) and there is nothing to do. We can assume that \(k' = k(u) \). Let us denote \(k_1 = k(u^2) \subset k' = k(u) \) which is a quadratic extension and let us consider the following diagram of quadratic extensions:

\[
\begin{array}{ccc}
k' & \overset{k'(\sqrt{a})}{\longrightarrow} & k_1(\sqrt{a}) \\
\downarrow & & \downarrow \\
k_1 & \overset{k(\sqrt{a})}{\longrightarrow} & k_2
\end{array}
\]

Lemma 2 applied to the extension \(k'/k_1 = k_1(u)/k_1 \) and the identity \(\langle 1, u \rangle \otimes \langle 1, -a \rangle k_1 = \langle -1 \rangle \otimes \psi_k \) yields

\[
N_{k'/k}(u) \in G(\langle 1, a \rangle k_1) \cap G(\psi_{k_1}).
\]

Then \(N_{k'/k}(u) = N_{k'/k_1}(u) \subset N_{k_1/k_1}(u) \). On the other hand, since \(k_1(u) = k' \) and \(k_1(\sqrt{a}) \) are two quadratic extensions of \(k_1 \), it is
known (Lemma 1.4 of [7]) that
\[N_{k'/k}(k^\times) \cap N_{k'(\sqrt{-a})/k}(k_1(\sqrt{a})^\times) = N_{k'(\sqrt{-a})/k}(k_1(\sqrt{a})^\times).k_1^{\times^2}. \]

The extension \(k'(\sqrt{a}) \) splits the forms \((1, -a), \psi_k = (-1, -u) \) and \((1, -a)_{k'} \), and the \(q_i \)'s. Therefore one has \(N_{k'/k}(\{-u\}) \subseteq \text{hyp}(q_1, k_1), (1, -a)_{k'}, \psi_k).k_1^{\times^2} \). Applying Lemma 1(c) to the extension \(k_1/k \), it follows that \(N_{k'/k}(u) = N_{k_1/k}(N_{k'/k}(\{-u\}) \subseteq \text{hyp}(q_1), (1, -a), \psi).k_1^{\times^2} \). We showed this case.

(ii) 2nd Case. \(e \) Is Odd. With the diagram of Milnor's residue maps, we see that the form \((1, -a)_{k'} = \delta_2(q_1) \) is hyperbolic. Moreover, \(0 = d_2 = j((1, -a)_{k'}, \psi). \) Then the form \(\psi_{k'} \) is hyperbolic. Since \(\psi \) is not hyperbolic, according to Springer's theorem for odd extensions [17, p. 62], the integer \(f = [k' : k] \) is even. Hence, one has \(N_{k'/k}(L^\times) \subseteq N_{k'/k}(k^\times).K^{\times^2} \). The forms \(q_i, \psi_{k'}, \psi_k \) and \((1, -a)_{k'} \) are hyperbolic and then it yields \(N_{k'/k}(k^\times) \subseteq \text{hyp}(q_i, \psi, (1, -a)) \) and \(N_{k'/k}(L^\times) \subseteq \text{hyp}(q_i, (1, -a), \psi).K^{\times^2} \).

Theorem 2. Let \(a \in k^\times \setminus k^{\times^2} \) and \(D/k \) be a biquaternion algebra and let \(\psi/k \) be an Albert form associated with \(D \) which represents \(-1\). Denote \(K = k((t)) \). Let us define the \(k \)-form \(q_0 \) and the \(K \)-form \(q \) by
\[(1, -a) \perp \psi = q_0 \perp \mathbb{H} \]
and
\[\langle \langle -a, t \rangle \rangle \perp \psi = q \perp \mathbb{H}. \]
One has \(\text{rk}(q_0) = 6, \text{disc}(q_0) = (a), \text{rk}(q_0) = 8, \) and \(\text{disc}(q) = 1. \)

(a) If \(\text{ind}(D_{k(\sqrt{-a})}) = 1 \), there exists a natural isomorphism
\[G(q_0)/\text{hyp}(q_0).k^{\times^2} \sim G(q_K)/\text{hyp}(q_K).K^{\times^2}. \]

(b) If \(\text{ind}(D_{k(\sqrt{-a})}) = 4 \), there exists a field extension \(E/k \) such that \(G(q_{K \otimes E})/\text{hyp}(q_{K \otimes E})(K \otimes E)^{\times^2} \neq 1 \) and such that the variety \(\text{PSO}(q) \) is not stably \(K \)-rational.

Proof. Due to Lemma 1(a), we can do the proof with \(q_0 = (1, -a) \perp \psi \) and \(q = \langle \langle -a, t \rangle \rangle \perp \psi. \)

(a) We will apply the preceding proposition to the form \(q \) and we have to check hypothesis (C). Let \(b \in k^\times \) be such that \(\langle \langle -a, b \rangle \rangle \perp \psi = 0 \in W(k) \). Then the form \(\psi_{k(\sqrt{-a})} \) is hyperbolic and the algebra \(D_{k(\sqrt{-a})} \) is split, which is a contradiction for the hypothesis \(\text{ind}(D_{k(\sqrt{-a})}) > 1 \). The
hypothesis (C) is checked and the proposition yields

\[G(q_K) = (G(\langle 1, -a \rangle) \cap G(\psi)) \cdot K^{x^2} \]

and

\[\text{hyp}(q_K) \cdot K^{x^2} = \text{hyp}(\langle 1, -a \rangle, \psi) \cdot K^{x^2}. \]

Due to Lemma 1(e), one has \(G(q_0) = G(\langle 1, -a \rangle) \cap G(\psi) \) and \(\text{hyp}(q_0) \cdot k^{x^2} = N_{k(\langle \psi \rangle)/k}(\text{hyp}(\psi_{k(\langle \psi \rangle)})) \cdot k^{x^2} \). Then we have an isomorphism

\[G(q_0)/\text{hyp}(q_0) \cdot k^{x^2} \xrightarrow{\sim} G(q_K)/\text{hyp}(q_K) \cdot K^{x^2}. \]

(b) Since \(\text{ind}(D_{k(\langle \psi \rangle)}) = 4 \), Theorem 1 shows the existence of a field extension \(E/k \) such that \(a \notin E^{x^2} \), \(\text{ind}(D_{E(\langle \psi \rangle)}) = 4 \), and \(G(q_{0,E})/\text{hyp}(q_{0,E}) \cdot E^{x^2} \neq 1 \). Hence \(G(q_{K \otimes E})/\text{hyp}(q_{K \otimes E})(K \otimes_k E)^{x^2} \neq 1 \) and the variety \(\text{PSO}(q_K) \) is not stably \(K \)-rational.

Remark 1 yields a field \(k \) with cohomological dimension 2, a quadratic field extension \(L = k(\sqrt{a}) \), and an Albert form \(\psi \) which represents \(-1\) and satisfies \(\text{ind}(C_{\psi}(\psi_L)) = 4 \). We showed the result claimed in the introduction.

Theorem 3. There exist a field \(k \) of characteristic 0, with cohomological dimension 3 and a quadratic form \(q \) with rank 8 and signed discriminant 1 such that the variety \(\text{PSO}(q)/k \) is not stably \(k \)-rational.

Due to Theorem 1, the dimension 8 is minimal for such an example with trivial signed discriminant. On the other hand, we don't know if there exists such an example with \(\text{cd}(k) = 2 \). The method used here brings nothing if \(\text{cd}(k) = 2 \). In this case, due to the Merkurjev–Suslin theorem, the Galois symbol yields an isomorphism \(I^2(k') \rightarrow Br(k') \) for any finite extension \(k'/k \) (cf. [1]). For any quadratic form \(q \) with trivial signed discriminant and Clifford algebra \(C(q)/k \), one has \(k^{x^2} = \text{Nrd}(C(q)^{x^2}) \cdot k^{x^2} = \text{hyp}(q) \cdot k^{x^2} = G(q) \) and the invariant \(G(q)/\text{hyp}(q) \cdot k^{x^2} \) is trivial on \(k \).

We have to underline that we used the Index Reduction Theory through [9] for giving proof of our result. We shall see that with cohomological dimension 6 instead 3, we can show the same result without the Index Reduction Theory and thus we can produce explicit elementary examples of non-rational adjoint groups built from an iteration of Proposition 1 with a field of iterated formal power series. This method contains some analogies with Platonov's counterexample [15] to the Kneser–Tits conjecture, showing the existence of simply connected semisimple groups defined over a field \(k \), which are not \(k \)-rational varieties.
3. SUMS OF QUATERNIONIC FORMS

First, we introduce an invariant related to the multiquadratic extensions. This invariant will be used for computing some group PSO(q)/R.

Definition 1. Let \(A = (a_i)_{i=1,\ldots,m} \) be a family of elements of \(k^\times \). Denote \(k_i = k[i(i^2 - a_i)] \) for \(i = 1, \ldots, m \) and \(M = k_1 \otimes k_2 \otimes \cdots \otimes k_m \). One defines the group

\[
\Lambda(A/k) = \left(\prod_{i=1,\ldots,m} N_{k_i/k}(a_i) \right)/N_{M/k}(M^\times).k^\times^2.
\]

Proposition 2. Let \(k = (a_i)_{i=1,\ldots,m} \) be a family of elements of \(k^\times \) and \(M/k \) as in the definition. The following assertions hold.

(a) \(\text{hyp}((1 - a_i)_{i=1,\ldots,m}).k^\times^2 = N_{M/k}(M^\times).k^\times^2 \).

(b) Let \(T \) be the \(k \)-torus defined by the equations

\[
N_{k_1/k}(y_1) = N_{k_2/k}(y_2) = \cdots = N_{k_m/k}(y_m) \neq 0.
\]

Then, we have a natural isomorphism \(T(k)/R \simeq \Lambda(A/k) \).

Proof. We denote by \(G = \text{Gal}(M/k) \) the Galois group of \(k_1, k_2, \ldots, k_m/k \) and by \(G_i \subset G \) the subgroup which fixes \(\sqrt{a_i} \) (\(i = 1, \ldots, m \)). One can assume that \(a_i \neq k^\times_2 \) for \(i = 1, \ldots, m \) and let us denote by \(\sigma_i \) the generator of \(G/G_i = \text{Gal}(k_i/k) \). One has an injective morphism \(j: T \subset \prod_{i=1,\ldots,m} R_{k_i/k}\mathbb{G}_m \) and a morphism \(q = N_{k_1/k} \circ j: T \to \mathbb{G}_m \) whose kernel is denoted by \(T' = \prod_{i=1,\ldots,m} R_{k_i/k}\mathbb{G}_m \). We define a surjective morphism of \(k \)-tori

\[
p: R_{M/k}\mathbb{G}_m \times \mathbb{G}_m \times \prod_{i=1,\ldots,m} R_{k_i/k}\mathbb{G}_m \to T \subset \prod_{i=1,\ldots,m} R_{k_i/k}\mathbb{G}_m,
\]

where

\[
[p(y, x, y_1, \ldots, y_m)]_i = N_{k_i/k}(y).x.y_i/\sigma_i(y) \quad \text{for} \quad i = 1, \ldots, m.
\]

Let us denote by \(E = R_{M/k}\mathbb{G}_m \times \mathbb{G}_m \times \prod_{i=1,\ldots,m} R_{k_i/k}\mathbb{G}_m \), by \(S = \ker(p) \) the torus kernel of \(p \), and by \(\hat{S}^0 \) the Galois module of cocharacters of \(S \), i.e., \(\hat{S}^0 = \text{Hom}_{k^\times}(\mathbb{G}_m, S) \). The following lemma is easy to show.

Lemma 5. \(H^3(H, \hat{S}^0) = 0 \) for any subgroup \(H \subset G \).

In other words, the morphism \(p \) defines an exact sequence of \(k \)-tori

\[
1 \to S \to E \xrightarrow{p} T \to 1,
\]
which is a flasque resolution of the torus T (cf. [3]) and then the boundary map $\partial: T(k) \to H^1(k, S)$ induces an isomorphism $T(k)/R = H^1(k, S)$. Since $H^1(k, E) = 1$ [20, chap. X], one has an isomorphism $T(k)/p(E(k)) = H^1(k, S)$. We consider the following commutative exact diagram

$$
\begin{array}{c}
T'(k) \\
\downarrow \\
E(k) \xrightarrow{p} T(k) \xrightarrow{q} T(k)/R \longrightarrow 1.
\end{array}
$$

Since the torus $T' = \prod_{i=1,\ldots,m} R_{k_i/k} \mathbb{G}_m$ is a rational variety, the map $T(k) \to T(k)/R$ factorizes by p and then one has an isomorphism $T(k)/R = T(k)/p(E(k)) = q(T(k))/q \circ p(E(k)) = \Lambda(A/k)$.

Remark 3. Following [8], if k is a number field, the invariant $\Lambda(A/k)$ is always trivial, and Colliot-Thélène and Sansuc showed that the group $T(k)/R$ is finite for any torus defined over a field of finite type over the prime field [3]. Therefore, if the field k is of finite type over the prime field, the group $\Lambda(A/k)$ is finite.

We know that $n = 2$ yields $\Lambda(A/k) = 1$ [7, Lemma 1.4]. We can show this with the proposition (b). The torus T is indeed an open subset of a quadric having a rational point which is a rational variety, hence $1 = T(k)/R = \Lambda(A/k)$.

For $n = 3$, we can deduce the non-triviality of the invariant Λ of Proposition 2.4 of [8]. More precisely, one has the following nice result of Tignol which connects the invariant N_1 of a triquadratic extensions and Λ.

Proposition 3 (Tignol, unpublished). Let $A = (a, b, c)$ be a family k^\times. Denote $M = k(\sqrt[3]{a}, \sqrt[3]{b}, \sqrt[3]{c})$ and $E = k(\sqrt[3]{c})$. Then there exists an isomorphism of groups

$$N_1(a, b, c) = \frac{k^\times \cap N_k(a) \cdot N_k(b)}{(k^\times \cap N_k(a)) \cdot (k^\times \cap N_k(b))} \to \frac{N_k(a) \cap N_k(b) \cap N_k(c)}{N_{M/k}(M^\times) \cdot k^\times \cap N_k(a) \cdot N_k(b) \cdot N_k(c)}.$$

Proof. If the extension E/k is not proper, the two groups are trivial. We can assume that E/k is a proper extension and we denote by $h \to \overline{h}$ the action of $\text{Gal}(E/k)$ on E. One defines the map between the two quotients with the following map θ. If $f = N_{E(\sqrt[3]{c})/E}(x), N_{E(\sqrt[3]{b})/E}(y) \in k^\times$, we have
we define

$$\theta(f) = \left[N_{E/\varpi}(x) \right] = \left[f N_{E/\varpi}(y) \right]$$

$$\in N_k(a) \cap N_k(b) \cap N_k(c) \mod N_{M/k}(M^\times).k^2.$$

Let us show that the element $\theta(f)$ is well defined. Indeed, if $f = N_{E(\varpi)/E}(x')N_{E(\varpi)/E}(y')$, one has

$$N_{E(\varpi)/E}(x'y'^{-1}) = N_{E(\varpi)/E}(yy'^{-1})$$

$$\in N_k(a) \cap N_k(b) = N_{M/E}(M^\times).k^2$$

using again Lemma 1.4 of [7]. Hence $N_{E(\varpi)/E}(x') \in N_{M/k}(M^\times).k^2$. On the other hand, if $f \in (k^\times \cap N_k(a))(k^\times \cap N_k(b))$, then we can assume $N_{E(\varpi)/E}(x') \in k^\times$ and hence $N_{E(\varpi)/E}(x') \in k^\times^2$. Denoting again the quotient map by θ, we define a morphism of groups

$$\theta: \frac{k^\times \cap N_k(a) \cdot N_k(b)}{(k^\times \cap N_k(a))(k^\times \cap N_k(b))} \rightarrow \frac{N_k(a) \cap N_k(b) \cap N_k(c)}{N_{M/k}(M^\times).k^2}.$$

Let us show the injectivity of θ. If $N_{E(\varpi)/E}(x') = g^2 N_{M/E}(z)$ with $g \in k^\times$, $z \in M^\times$, then

$$N_{E/k}(N_{E(\varpi)/E}(x)) = N_{E/k}(g N_{M/E}(z)).$$

Hence by [20, chap. X], $N_{E(\varpi)/E}(x') = g N_{M/E}(z) h^{-1}$ with $h \in E$. Then $N_{E(\varpi)/E}(x) = (ghh^{-1}).N_{M/E}(z))$. One has

$$h^{-2} N_{M/E}(z) \in E^\times. N_{M/E}(M^\times) = N_k(a) \cap N_k(b).$$

Then the preceding equality shows that $ghh \in k^\times \cap N_k(a)$. On the other hand, since $f = N_{E(\varpi)/E}(x')N_{E(\varpi)/E}(y')$, one has

$$f = (ghh^{-1}).N_{M/E}(z) \cdot N_{E(\varpi)/E}(y').$$

The second term is an element of $N_k(b)$ but has to be also an element of k^\times, then $f \in (k^\times \cap N_k(a))(k^\times \cap N_k(b))$.

Let us show the surjectivity of θ for finishing the proof. If $t \in N_k(a) \cap N_k(b) \cap N_k(c)$, we can choose $u \in E^\times$ such that $t = N_{E/k}(u)$. Since $t \in N_k(a)$, one has $u \in k^\times N_k(a)$; in the same way, one has $u \in k^\times N_k(b)$ because $t \in N_k(b)$. Then

$$u = g N_{E(\varpi)/E}(x) = h N_{E(\varpi)/E}(y^{-1}).$$
and $g^{-1}h = N_{E(\overline{\mathbb{F}})/E}(x) \cdot N_{E(\overline{\mathbb{F}})/E}(y) \in k^\times \cap N_{E/E}(a)N_{E}(b)$ has for image by $	heta$, $N_{E(\overline{\mathbb{F}})/k}(x) = g^{-1}N_{E/k}(u) = t \mod k^\times$.

Remark 4. We denote by \mathbb{Q}_2 the 2-adic completion of \mathbb{Q}. If $k \in \mathbb{Q}_2(x)$ (or $\mathbb{Q}(x)$), it is shown in [16, Sect. 5.4] that $N_{k}(x+4, x+1, x) \neq 1$. Then for $A = (x+4, x+1, x)$, the group $\Lambda(A/\mathbb{Q}_2(x))$ is not trivial. Let us give an explicit element of $\Lambda(A/\mathbb{Q}_2(x))$. Due to Theorem 5.1 of [16], we know that the class of 2 in $N_{k}(x+4, x+1, x)$ is not trivial. If θ denotes the isomorphism $N_{k}(x+4, x+1, x) = \Lambda(A/\mathbb{Q}_2(x))$ given by the proposition, one computes easily $\theta(2) = -x$. Hence the class of $-x$ is not trivial in $\Lambda(A/\mathbb{Q}_2(x))$. There exists an example of non-trivial invariant Λ with the base field $\mathbb{C}(t_2, t_1)$ which has cohomological dimension 2 [16].

Theorem 4. Assume that the base field k has characteristic 0. Let m be an integer, $m \geq 2$, and $A = (a_i)_{1 \leq i \leq m}$ a family of elements in $k^\times \setminus k^\times$ such that $a_i/a_{i-1} \notin k^\times$ for $i = 2, \ldots, m$. Denote $k_i = k(\sqrt[n]{a_i})$ for $i = 1, \ldots, m$ and $M = k_1 k_2 \cdots k_m$. Let $(c_i)_{1 \leq i \leq m}$ be a family of elements of k^\times and $(X_i)_{1 \leq i \leq m}$ a family of indeterminates on k. Denote $F_0 = k$, $F_i = k((X_i))((X_{i-1}))$, $F = F_m$, and

$$
\Phi = \langle c_1 \rangle \otimes \langle -a_1, X_1 \rangle \perp \langle c_2 \rangle \otimes \langle -a_2, X_2 \rangle \cdots \perp \langle c_m \rangle \otimes \langle -a_m, X_m \rangle.
$$

Then one has

$$
G(\Phi_F) = \left(\bigcap_{i=1}^m N_{k}(a_i) \right) F^\times, \quad \text{hyp}(\Phi_F) F^\times = N_{M/k}(M^\times) F^\times,
$$

and

$$
\Lambda(A/k) \sim G(\Phi_F)/\text{hyp}(\Phi_F) F^\times.
$$

In order to apply Proposition 1, we have to check the validity of condition (C).

Lemma 6. Let m, Φ_1, \ldots as in Theorem 4. Denote

$$
\Phi^{m-1} = \langle c_1 \rangle \otimes \langle -a_1, X_1 \rangle \perp \langle c_2 \rangle \otimes \langle -a_2, X_2 \rangle \perp \cdots \perp \langle c_{m-1} \rangle \otimes \langle -a_{m-1}, X_{m-1} \rangle.
$$

Then for any $b \in F_{m-1}^\times$, one has

$$
\langle -a_m, b \rangle \perp \langle c_m^{-1} \rangle \Phi^{m-1} \neq 0 \in W(F_{m-1}).
$$
Proof of the Lemma. We denote by \(v_{X_{m-1}}; F_{m-1}^\times \rightarrow \mathbb{Z} \) the valuation associated to the uniformizing parameter \(X_{m-1} \). We apply the residue map \(\partial_{X_{m-1}}; W(F_{m-1}) \rightarrow W(F_{m-2}) \) to a relation \(\langle \langle - a_m, b \rangle \rangle \perp \langle c_m^{-1} \rangle \otimes \Phi^{m-1} \) 0 \in W(F_{m-1}) \) where \(b \in F_{m-1}^\times \). If \(v_{X_{m-1}}(b) \) is even, then \(\langle c_m^{-1} \rangle \otimes \langle 1, -a_m \rangle = 0 \in W(F_{m-2}) \) and \(a_m \in k^\times \cap F_{m-2}^\times = k^\times 2 \), which is wrong by hypothesis. Then \(v_{X_{m-1}}(b) \) is odd and the map \(\partial_{X_{m-1}} \) yields \(\langle c_m \rangle \otimes \langle 1, -a_m \rangle \perp \langle c_m^{-1} \rangle \otimes \langle 1, -a_m \rangle = 0 \in W(F_{m-2}) \). Taking the signed discriminant, we have \(a_m/a_{m-1} \in k^\times \cap F_{m-2}^\times = k^\times 2 \), which is wrong by hypothesis. We showed the lemma.

With this lemma, we can apply Proposition 1. Let us show by induction on \(m \geq 2 \) the equalities

(1) \(G(\Phi_F) = \left(\bigcap_{i=1}^{m} N_k(a_i) \right) F_{m}^\times \)

(2) \(\text{hyp}(q_{j,F}, \Phi_F).F_{m}^\times = \text{hyp}(\langle q_j \rangle, \langle 1, -a_1 \rangle, \ldots, \langle 1, -a_m \rangle).F_{m}^\times \)

for any finite family \(\{q_j\} \) of \(k \)-forms.

\(m = 2 \). Due to Proposition 1 applied to the base field of \(F_2 \) and forms \(\langle \langle a_1, X_1 \rangle \rangle, \psi = \Phi^1 = \langle c_1 \rangle \otimes \langle -a_1, X_1 \rangle \rangle \) and the uniformizing parameter \(X_1 \), one has

\[G(\Phi_{F_2}) = (G(\langle \langle - a_1, X_1 \rangle \rangle_{F_1}) \cap G(\langle 1, -a_2 \rangle_{F_1})).F_{2}^\times. \]

Applying Lemma 3 with the uniformizing parameter \(X_1 \), it produces

\[G(\langle 1, -a_2 \rangle_{F_1}) = G(\langle 1, -a_2 \rangle).F_{2}^\times. \]

Since \(k^\times \cap G(\langle 1, -a_2 \rangle).F_{2}^\times = G(\langle 1, -a_2 \rangle) \), one has

\[G(\Phi_{F_2}) = \left(\bigcap_{i=1,2} G(\langle 1, -a_i \rangle) \right) F_{2}^\times = \left(\bigcap_{i=1,2} N_k(a_i) \right) F_{2}^\times. \]

For the other equality, Proposition 1 shows that

\[\text{hyp}(\langle q_j, F_1 \rangle, \Phi_{F_2}).F_{2}^\times = \text{hyp}(\langle q_j, F_1 \rangle, \langle c_1 \rangle \otimes \langle -a_1, X_1 \rangle).F_{2}^\times = \text{hyp}(\langle q_j, F_1 \rangle, \langle 1, -a_1 \rangle_{F_1}, \langle 1, -a_2 \rangle_{F_1}).F_{2}^\times = \text{hyp}(\langle q_j \rangle, \langle 1, -a_1 \rangle, \langle 1, -a_2 \rangle).F_{2}^\times \quad (\text{Lemma 3}). \]

\(m \geq 3 \). Let us denote \(\Phi^{m-1} = \langle c_1 \rangle \otimes \langle - a_1, X_1 \rangle \perp \langle c_2 \rangle \otimes \langle - a_2, X_2 \rangle \perp \cdots \perp \langle c_{m-1} \rangle \otimes \langle - a_{m-1}, X_{m-1} \rangle \). Lemma 6 allows
us to apply Proposition 1 with the uniformizing parameter \(X_m \) and it yields
\[
G(\Phi_{F_m}) = (G(\Phi_{F_{m-1}}^{-1}) \cap G(\langle 1, -a_m \rangle_{F_{m-1}})).F_m^{x^2}.
\]
The induction hypothesis yields
\[
G(\Phi_{F_{m-1}}^{-1}) = \left(\bigcap_{i=1, \ldots, m-1} G(\langle 1, -a_i \rangle) \right).F_{m-1}^{x^2}
\]
and with an iteration of Lemma 3(b), one has
\[
G(\langle 1, -a_m \rangle_{F_{m-1}}) = G(\langle 1, -a_m \rangle).F_{m-1}^{x^2}.
\]
Since \(k^x \cap G(\langle 1, -a_m \rangle).F_{m-1}^{x^2} = G(\langle 1, -a_m \rangle) \), we have
\[
G(\Phi_{F_m}) = \left(G(\langle 1, -a_m \rangle) \cap \bigcap_{i=1, \ldots, m-1} G(\langle 1, -a_i \rangle) \right).F_m^{x^2}
\]
\[
= \left(\bigcap_{i=1, \ldots, m} N_k(a_i) \right).F_m^{x^2}.
\]
For the equality (2), Proposition 1 shows that
\[
\text{hyp}(\langle q_j, F_m \rangle, \Phi_{F_m}).F_m^{x^2}
\]
\[
= \text{hyp}(\langle q_j, F_{m-1} \rangle, \Phi_{F_{m-1}}^{-1}, \langle 1, -a_m \rangle_{F_{m-1}}).F_{m-1}^{x^2}
\]
\[
= \text{hyp}(\langle q_j, \langle 1, -a_1 \rangle, \langle 1, -a_2 \rangle, \ldots, \langle 1, -a_m \rangle \rangle).F_{m-1}^{x^2}
\]
due to the induction hypothesis applied with \(m-1 \) and the set of \(k \)-forms \(\langle q_j, \langle 1, -a_m \rangle \rangle \). We showed by induction the two equalities. Taking \(q_j = 0 \) in the equality (2), we have
\[
\text{hyp}(\Phi_{F_m}).F_m^{x^2} = \text{hyp}(\langle 1, -a_1 \rangle, \ldots, \langle 1, -a_m \rangle).F_m^{x^2} = N_{M/k}(M^x).F_m^{x^2}.
\]
Since \(k^x \cap F_{m-1}^{x^2} = k_{m-1}^{x^2} \), it is easy to check that one has an isomorphism
\[
\Lambda(k/k) \cong G(\Phi_{F_m})/\text{hyp}(\Phi_{F_m}).F_m^{x^2}.
\]
Application. Let \(a_1, a_2, a_3 \) be in \(k^x \) such that \(a_1/a_2, a_2/a_3 \notin k^{x^2} \) and let us denote \(F = k((X_1))((X_2))((X_3)) \) and \(M = k(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3}) \). Let us apply Theorem 4 to the quadratic form
\[
\Phi = \langle \langle -a_1, X_1 \rangle \rangle \perp \langle -1 \rangle \otimes \langle \langle -a_2, X_2 \rangle \rangle \perp \langle a_1 \rangle \otimes \langle \langle -a_3, X_3 \rangle \rangle
\]
\[
= q \perp \mathbb{H} \perp \mathbb{H}.
\]
The form \(q \) has rank 8 and signed discriminant 1, and with the notations of the theorem above, one has

\[
\Lambda(A/k) \sim G(\Phi_F)/\text{hyp}(\Phi_F).F^{\times 2} \sim G(q_F)/\text{hyp}(q_F).F^{\times 2}
\]

Then, for the field \(F = \mathbb{Q}_2(x)(X_1)(X_2)(X_3) \), which has cohomological dimension 6, or for the field \(F = \mathbb{Q}(x)(X_1)(X_2)(X_3) \), following Remark 4 and taking \(a_1 = x + 4 \), \(a_2 = x + 1 \), \(a_3 = x \), we have \(G(q_F)/\text{hyp}(q_F).F^{\times 2} \neq 1 \) and the variety \(\text{PSO}(q)/F \) is not \(F \)-stably rational. More precisely, in this case we have

\[
\Phi = \langle \langle - (x + 4), X_1 \rangle \rangle \perp \langle -1 \rangle \otimes \langle \langle - (x + 1), X_2 \rangle \rangle
\]

\[
\perp \langle x + 4 \rangle \otimes \langle \langle -x, X_3 \rangle \rangle
\]

\[
= q \perp H \perp H,
\]

and \(-x \) is a similarity factor of \(q_F \) such that \(-x \not\in \text{hyp}(q_F).F^{\times 2} \).

REFERENCES