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Classification of torsors over Laurent polynomials

Philippe Gille

(joint work with Vladimir Chernousov, Arturo Pianzola)

Abstract. I will report on joint work with V. Chernousov and A. Pianzola [6].
Given a linear algebraic group G defined over a field k of characteristic zero, G-
torsors over Laurent polynomial rings naturally occur in infinite dimensional Lie
theory (e.g., the classification and the proof of conjugacy of Cartan subalgebras of
Extended Affine Lie Algebras [5, 7]). We explain that one can associate to such a
G-torsor another G-torsor, called its loop form, and how that construction clarifies
the classification problem of all G-torsors. At the end we will discuss analogies
with Brion’s theory of homogeneous torsors over abelian varieties.

Let k be a field of characteristic zero and let ks be a separable closure of k. Let G
be a linear algebraic group defined over k. We are interested in the classification of
G-torsors over the ring Rn = k[t±1

1
, . . . , t±1

n ] of Laurent polynomials (n ≥ 1), that
is of principal G–bundles over the torus (Gm)n = Spec(Rn). The G-torsors are
classified by the étale cohomology pointed set H1(Rn, G). Our goal is to compute
H1(Rn, G), far from an easy task. In the case of the linear group GLd, we have
that H1(Rn,GLd) = 1; this set classifies finitely generated projective Rn-modules
of rank d and those modules are free according to Quillen-Suslin-Swan’s theorem.
The motivation comes from the example of the algebraic group Aut(g) where g

is a finite dimensional split simple Lie k-algebra. In this case, the yoga of forms
shows that the set H1(Rn,Aut(g)) classifies isomorphism classes of Rn-forms of g,
that is of Lie Rn-algebras L with the property that there exists a flat cover S/Rn

such that L ⊗Rn
S ∼= g⊗k S.

Examples. (a) If n = 1 and k = C, the centreless core of an affine Kac-Moody
algebra is a R1-algebra which is R1-form of some g.

(b) More generally, for n ≥ 1 and k = C, the centreless core of an extended affine
Lie algebra is a Rn-algebra which is Rn-form of some g provided it is finitely
generated over its centroid [1, th. 3.3.1].

In both cases, the Rn-Lie algebras occurring carry a grading and are of some
are examples of so-called (multi)loop algebras. For defining the so-called loop
G-torsors, we introduce the ring Rsc

n which is the universal cover of Rn (in the
sense of SGA 1). It plays the role of the Galois closure for a field. We have Rn =

limindmks[t
1

m

1
, . . . , t

1

m

n ], where m runs over the positive integers. The fundamental
group of Rn is π1(Rn) = AutRn

(Rsc
n ). It is a profinite group which is isomorphic to

the projective limit of the µm(ks)
n ×Gal(ks/k). There is a natural isomorphism

(∗) H1(π1(Rn), G(Rsc
n )) ∼= ker

(

H1(Rn, G) → H1(Rsc
n , G)

)

where the right hand side is the (continuous) group non-abelian cohomology set
of π1(Rn) with coefficients in the π1(Rn)-group G(Rsc

n ). Note that the projection
map π1(Rn) → Gal(ks/k) gives rise to an action of π1(Rn) on G(ks).
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Definition. A G-torsor E is a loop G-torsor if its class belongs to the image of
the map

H1(π1(Rn), G(ks)) → H1(π1(Rn), G(Rsc
n )) →֒ H1(Rn, G).

We denote by H1

loop(Rn, G) ⊆ H1(Rn, G) the subset of classes of loop torsors.

Remarks (a) The map H1(π1(Rn), G(ks)) → H1(π1(Rn), G(Rsc
n )) has no reason

to be injective nor surjective. In case n = 1, it is true that all G-torsors are loop
but for n ≥ 2, there are exotic (=not loop) G-torsors for example for G = PGLd

[11, §3].

(b) The acyclicity theorem states that H1(Rsc
n , G) = 1 [12] so that we have a

bijection H1(π1(Rn), G(Rsc
n )) ∼= H1(Rn, G). In other words, the cohomology set

H1(Rn, G) can be computed by means of Galois cohomology cocycles.

Example. Let q be a regular quadratic form over k and consider the orthogo-
nal group O(q). Then H1(Rn, O(q)) classifies regular quadratic Rn-forms of rank
dim(q). By analogy, we can call loop quadratic forms the quadratic forms whose
underlying cohomology class is loop. Loop quadratic forms are those of the fol-
lowing form

⊥
⊕

I⊆{1,...,n}

qI ⊗ 〈tI〉

where qI is a regular quadratic k–form and tI =
∏

i∈I ti. In dimension 4 and n = 2,
there are exotic quadratic forms (Ojanguren-Sridharan’s construction), and those
are not diagonalizable.

Our main result of [6] states that there is a map H1(Rn, G) → H1

loop(Rn, G),

γ 7→ γloop such that for each class γ, then γ and γloop coincide locally for the
Zariski topology. Such a map is unique and we note that γloop = (γloop)loop.

For quadratic forms, this implies that we can associate to a regular Rn-quadratic
form q a unique diagonalizable Rn-quadratic form qloop such that q and qloop are
locally isometric with respect to the Zariski topology.

Remarks (a) We denote by Fn = k((t1)) . . . ((tn)) the field of iterated Laurent
series. The retraction is defined by using that the composite map

H1

loop(Rn, G) →֒ H1(Rn, G) → H1(Fn, G)

is an isomorphism. This map is then not easy to manipulate and the reason to work
with Fn is the use of Bruhat-Tits theory. The crucial step is to show that γ and
γloop coincide rationally, something that is accomplished by using the technique
of unramified Galois cohomology developed by Colliot-Thélène and Sansuc [9,
§3]. To conclude that γ and γloop coincide locally for the Zariski topology requires
Fedorov-Panin’s theorem [10] (former Grothendieck-Serre’s injectivity conjecture).

(b) The result shows that the classification of G-torsors requires two steps. The
first one is the classification of loop torsors and the second one is to compute the
Zariski topology cohomology set H1

Zar(Rn,
E G) for each loop G-torsor E where

EG stands for the twisted Rn-group scheme.
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If k is algebraically closed, the first step has been done completely for n = 2 [13]
and the second step in classical cases (in rank large enough) by Steinmetz-Ziketch
[14]. For n ≥ 3, there are partial results for step one and not much is known
concerning the second question beyond the fact that H1

Zar(Rn, G) = 1 [12].

From now on, we assume that k is algebraically closed and that G is reductive.
The notion of loop torsors is not specific to Laurent polynomials and can be defined
for an arbitrary geometrically connected k-variety [13, §3.1].

It turns out that M. Brion investigated loop torsors in the case of an abelian
variety X [2]. He proved that a G-torsor E over X is loop if and only if it
is homogeneous, that is its class in H1(X,G) is invariant by the action of the
group X(k) induced by the left translations (ibid, Th. 1.1). A natural question
is whether such a characterization (or a suitable variant) holds over Rn which
is the coordinate ring of the torus (Gm)n. Conversely, one can ask whether the
isotriviality statement over Rn has some counterpart over the abelian variety X.

Question. Let E be a G-torsor over X. Does there exists a finite étale cover
X ′ → X such that the G-torsor E ×X X ′ over X ′ is locally trivial for the Zariski
topology.

Remarks (a) There is a similar question raised by Colliot-Thélène and Iyer for
homogeneous projective G-schemes over X [8, Question 3.4].

(b) In the case of PGLd, the question admits a positive answer due to Campana-
Peternell [3, Lemma 7.4].
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