Classification of torsors over Laurent polynomials PHILIPPE GILLE (joint work with Vladimir Chernousov, Arturo Pianzola)

Abstract. I will report on joint work with V. Chernousov and A. Pianzola [6]. Given a linear algebraic group G defined over a field k of characteristic zero, G-torsors over Laurent polynomial rings naturally occur in infinite dimensional Lie theory (e.g., the classification and the proof of conjugacy of Cartan subalgebras of Extended Affine Lie Algebras [5, 7]). We explain that one can associate to such a G-torsor another G-torsor, called its loop form, and how that construction clarifies the classification problem of all G-torsors. At the end we will discuss analogies with Brion's theory of homogeneous torsors over abelian varieties.

Let k be a field of characteristic zero and let k_s be a separable closure of k. Let G be a linear algebraic group defined over k. We are interested in the classification of G-torsors over the ring $R_n = k[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ of Laurent polynomials $(n \ge 1)$, that is of principal G-bundles over the torus $(\mathbb{G}_m)^n = \operatorname{Spec}(R_n)$. The G-torsors are classified by the étale cohomology pointed set $H^1(R_n, G)$. Our goal is to compute $H^1(R_n, G)$, far from an easy task. In the case of the linear group GL_d , we have that $H^1(R_n, \operatorname{GL}_d) = 1$; this set classifies finitely generated projective R_n -modules of rank d and those modules are free according to Quillen-Suslin-Swan's theorem. The motivation comes from the example of the algebraic group $\operatorname{Aut}(\mathfrak{g})$ where \mathfrak{g} is a finite dimensional split simple Lie k-algebra. In this case, the yoga of forms shows that the set $H^1(R_n, \operatorname{Aut}(\mathfrak{g}))$ classifies isomorphism classes of R_n -forms of \mathfrak{g} , that is of Lie R_n -algebras \mathcal{L} with the property that there exists a flat cover S/R_n such that $\mathcal{L} \otimes_{R_n} S \cong \mathfrak{g} \otimes_k S$.

Examples. (a) If n = 1 and $k = \mathbb{C}$, the centreless core of an affine Kac-Moody algebra is a R_1 -algebra which is R_1 -form of some \mathfrak{g} .

(b) More generally, for $n \ge 1$ and $k = \mathbb{C}$, the centreless core of an extended affine Lie algebra is a R_n -algebra which is R_n -form of some \mathfrak{g} provided it is finitely generated over its centroid [1, th. 3.3.1].

In both cases, the R_n -Lie algebras occurring carry a grading and are of some are examples of so-called (multi)loop algebras. For defining the so-called loop G-torsors, we introduce the ring R_n^{sc} which is the universal cover of R_n (in the sense of SGA 1). It plays the role of the Galois closure for a field. We have $R_n =$ $\liminf_m k_s[t_1^{\frac{1}{m}}, \ldots, t_n^{\frac{1}{m}}]$, where m runs over the positive integers. The fundamental group of R_n is $\pi_1(R_n) = Aut_{R_n}(R_n^{sc})$. It is a profinite group which is isomorphic to the projective limit of the $\mu_m(k_s)^n \times \operatorname{Gal}(k_s/k)$. There is a natural isomorphism

(*)
$$H^1(\pi_1(R_n), G(R_n^{sc})) \cong \ker \left(H^1(R_n, G) \to H^1(R_n^{sc}, G) \right)$$

where the right hand side is the (continuous) group non-abelian cohomology set of $\pi_1(R_n)$ with coefficients in the $\pi_1(R_n)$ -group $G(R_n^{sc})$. Note that the projection map $\pi_1(R_n) \to \mathcal{G}al(k_s/k)$ gives rise to an action of $\pi_1(R_n)$ on $G(k_s)$. **Definition.** A G-torsor E is a *loop* G-torsor if its class belongs to the image of the map

$$H^1(\pi_1(R_n), G(k_s)) \to H^1(\pi_1(R_n), G(R_n^{sc})) \hookrightarrow H^1(R_n, G).$$

We denote by $H^1_{loop}(R_n, G) \subseteq H^1(R_n, G)$ the subset of classes of loop torsors.

Remarks (a) The map $H^1(\pi_1(R_n), G(k_s)) \to H^1(\pi_1(R_n), G(R_n^{sc}))$ has no reason to be injective nor surjective. In case n = 1, it is true that all *G*-torsors are loop but for $n \ge 2$, there are exotic (=not loop) *G*-torsors for example for $G = \text{PGL}_d$ [11, §3].

(b) The acyclicity theorem states that $H^1(R_n^{sc}, G) = 1$ [12] so that we have a bijection $H^1(\pi_1(R_n), G(R_n^{sc})) \cong H^1(R_n, G)$. In other words, the cohomology set $H^1(R_n, G)$ can be computed by means of Galois cohomology cocycles.

Example. Let q be a regular quadratic form over k and consider the orthogonal group O(q). Then $H^1(R_n, O(q))$ classifies regular quadratic R_n -forms of rank dim(q). By analogy, we can call loop quadratic forms the quadratic forms whose underlying cohomology class is loop. Loop quadratic forms are those of the following form

$$\bigoplus_{\subseteq \{1,\ldots,n\}}^{\perp} q_I \otimes \langle t_I \rangle$$

where q_I is a regular quadratic k-form and $t_I = \prod_{i \in I} t_i$. In dimension 4 and n = 2, there are exotic quadratic forms (Ojanguren-Sridharan's construction), and those are not diagonalizable.

Our main result of [6] states that there is a map $H^1(R_n, G) \to H^1_{loop}(R_n, G)$, $\gamma \mapsto \gamma^{loop}$ such that for each class γ , then γ and γ^{loop} coincide locally for the Zariski topology. Such a map is unique and we note that $\gamma^{loop} = (\gamma^{loop})^{loop}$.

For quadratic forms, this implies that we can associate to a regular R_n -quadratic form q a unique diagonalizable R_n -quadratic form q^{loop} such that q and q^{loop} are locally isometric with respect to the Zariski topology.

Remarks (a) We denote by $F_n = k((t_1)) \dots ((t_n))$ the field of iterated Laurent series. The retraction is defined by using that the composite map

$$H^1_{loon}(R_n, G) \hookrightarrow H^1(R_n, G) \to H^1(F_n, G)$$

is an isomorphism. This map is then not easy to manipulate and the reason to work with F_n is the use of Bruhat-Tits theory. The crucial step is to show that γ and γ^{loop} coincide rationally, something that is accomplished by using the technique of unramified Galois cohomology developed by Colliot-Thélène and Sansuc [9, §3]. To conclude that γ and γ^{loop} coincide locally for the Zariski topology requires Fedorov-Panin's theorem [10] (former Grothendieck-Serre's injectivity conjecture). (b) The result shows that the classification of *G*-torsors requires two steps. The first one is the classification of loop torsors and the second one is to compute the Zariski topology cohomology set $H^1_{Zar}(R_n, {}^E G)$ for each loop *G*-torsor *E* where ${}^E G$ stands for the twisted R_n -group scheme. If k is algebraically closed, the first step has been done completely for n = 2 [13] and the second step in classical cases (in rank large enough) by Steinmetz-Ziketch [14]. For $n \geq 3$, there are partial results for step one and not much is known concerning the second question beyond the fact that $H^1_{Zar}(R_n, G) = 1$ [12].

From now on, we assume that k is algebraically closed and that G is reductive. The notion of loop torsors is not specific to Laurent polynomials and can be defined for an arbitrary geometrically connected k-variety [13, §3.1].

It turns out that M. Brion investigated loop torsors in the case of an abelian variety X [2]. He proved that a G-torsor E over X is loop if and only if it is homogeneous, that is its class in $H^1(X, G)$ is invariant by the action of the group X(k) induced by the left translations (*ibid*, Th. 1.1). A natural question is whether such a characterization (or a suitable variant) holds over R_n which is the coordinate ring of the torus $(\mathbb{G}_m)^n$. Conversely, one can ask whether the isotriviality statement over R_n has some counterpart over the abelian variety X.

Question. Let *E* be a *G*-torsor over *X*. Does there exists a finite étale cover $X' \to X$ such that the *G*-torsor $E \times_X X'$ over X' is locally trivial for the Zariski topology.

Remarks (a) There is a similar question raised by Colliot-Thélène and Iyer for homogeneous projective G-schemes over X [8, Question 3.4].

(b) In the case of PGL_d , the question admits a positive answer due to Campana-Peternell [3, Lemma 7.4].

References

- B. Allison, S. Berman, Y. Gao, and A. Pianzola, Multiloop realization of extended affine Lie algebras and Lie tori, Trans. Amer. Math. Soc. 361 (2009), 4807-4842.
- [2] M. Brion, Homogeneous bundles over abelian varieties, J. Ramanujan Math. Soc. 27 (2012), 91-118.
- [3] F. Campana, T. Peternell, Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991), 169-187.
- [4] V. Chernousov, P. Gille and A. Pianzola, Torsors over the punctured affine line, American Journal of Mathematics 134 (2012), 1541-1583.
- [5] V. Chernousov, P. Gille, A. Pianzola, Conjugacy theorems for loop reductive group schemes and Lie algebras, Bulletin of Mathematical Sciences 4 (2014), 281-324.
- [6] V. Chernousov, P. Gille, A. Pianzola, Classification of torsors over Laurent polynomials, Comment. Math. Helv. 92 (2017), 37-55.
- [7] V. Chernousov, E. Neher, A. Pianzola, U. Yahorau, On conjugacy of Cartan subalgebras in extended affine Lie algebras, Adv. Math. 290 (2016), 260-292.
- [8] J.-L. Colliot-Thélène, J. N. Iyer, Potential density for some families of homogeneous spaces, J. Ramanujan Math. Soc. 27 (2012), 295-303.
- [9] J.-L. Colliot-Thélène, J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Annalen 244 (1979), 105–134.
- [10] R. Fedorov, I. Panin, A proof of Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 169-193.
- [11] P. Gille and A. Pianzola, Galois cohomology and forms of algebras over Laurent polynomial rings, Mathematische Annalen 338 (2007), 497-543.

- P. Gille and A. Pianzola, Isotriviality and étale cohomology of Laurent polynomial rings, J. Pure Appl. Algebra 212 (2008), 780–800.
- [13] P. Gille and A. Pianzola, Torsors, reductive group schemes and extended affine Lie algebras, Memoirs of AMS 1063 (2013).
- [14] W.A. Steinmetz Zikesch, Algèbres de Lie de dimension infinie et théorie de la descente, Mém. Soc. Math. France 129 (2012), 99 pages.