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1. Introduction

The theory of fibrations and principal fibrations is ubiquous in Topology and Dif-
ferential Geometry In 1955, Grothendieck investigated a general theory of fibrations
focusing on functoriality issues [21]. In 1958, Grothendieck and Serre extended the
setting of G–bundles in algebraic geometry by means of the étale topology [33].

For simplicity we shall present this theory over rings or equivalently over affine
schemes. The general framework is close to that and can be found in other references
[10, 25, 6].

We shall focuss on the case of affine smooth curve over a field, starting with vector
bundles and quadratic vector bundles.

2. The Swan-Serre correspondence

This is the correspondence between projective finite modules of finite rank and
vector bundles, it arises from the case of a paracompact topological space [37].

We explicit it in the setting of affine schemes following the book of Görtz-Wedhorn
[18, ch. 11] up to slightly different conventions.

2.1. Vector group schemes. Let R be a ring (commutative, unital).
(a) Let M be an R–module. We denote by V(M) the affine R–scheme defined by
V(M) = Spec

(
Sym•(M)

)
; it is affine over R and represents the R–functor S 7→

HomS(M ⊗R S, S) = HomR(M,S) [11, 9.4.9].
It is called the vector group scheme attached to M , this construction commutes

with arbitrary base change of rings R→ R′.

Proposition 2.1. [32, I.4.6.1] The functor M → V(M) induces an antiequivalence
of categories between the category of R–modules and that of vector group schemes over
R. An inverse functor is G 7→ G(R).

(b) We assume now that M is locally free of finite rank and denote by M∨ its dual.
In this case Sym•(M) is of finite presentation (ibid, 9.4.11). Also the R–functor
S 7→ M ⊗R S is representable by the affine R–scheme V(M∨) which is also denoted
by W(M) [32, I.4.6].

Remark 2.2. Romagny has shown that the finite locally freeness condition on M is
a necessary condition for the representability of W(M) by a group scheme [29, th.
5.4.5].

Let r ≥ 0 be an integer.

Definition 2.3. A vector bundle of rank r over Spec(R) is an affine R-scheme X such
that there exists a partition 1 = f1 + · · · + fn and isomorphisms φi : V((Rfi)

r)
∼−→

X ×R Rfi such that φ−1
i φj : V((Rfifj)

r)
∼−→ V(Rr

fifj
) is a linear automorphism of

V((Rfifj)
r) for i, j = 1, . . . , n.
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Theorem 2.4. (Swan-Serre’s correspondence) The above functor M 7→ V(M) in-
duces an equivalence of categories between the groupoid of locally free R–modules of
rank r and the groupoid of vector bundles over Spec(R) of rank r.

Proof. See [18, prop. 11.7] for the general case. We check first that the functor is
well-defined. IfM is locally free of rank r, there exists a partition 1 = f1+· · ·+fn and
trivializations ψi : (Rfi)

r ∼−→ Mfi . It follows that the maps (ψi)
−1(ψ∗j ) : (Rfifj)

r ∼−→
(Rfifj)

r is a linear isomorphism for i, j = 1, . . . , n. By applying the functor V, we get
that V(M) is a vector bundle of rank r and the trivializations are the ψi : (ψ−1

i )∗ :

V((Rfi)
r)

∼−→ V(M)×R Rfi So V is well-defined and is fully faithful. To check it is
essentially surjective, it is enough to observe that the inverse functor G → G(R) of
V applies a vector bundle of rank r to a locally free R–module of rank r. �

Examples 2.1.1. (a) Given a smooth map of affine schemes X = Spec(S) → Y =
Spec(R) of relative dimension r ≥ 1, the tangent bundle TX/Y = V(Ω1

S/R) is a vector
bundle over Spec(S) of dimension r [12, 16.5.12].

(b) The tangent bundle of the real sphere Z = Spec
(
R[x, y, z]/(x2 + y2 + z2 − 1)

)
is

an example of vector bundle of dimension 2 which is not trivial. It can be proven by
differential topology (hairy ball theorem) but there are also algebraic proofs, see for
instance [38]. A consequence is that Z cannot be equipped with a structure of real
algebraic group.

2.2. Linear groups. Let M be a locally free R–module of finite rank. We consider
the R–algebra EndR(M) = M∨ ⊗R M . It is locally free R–module of finite rank
so that we can consider the vector R–group scheme V

(
EndR(M)

)
which is an R–

functor in associative and unital algebras [11, 9.6.2]. Now we consider the R–functor
S 7→ AutS(M ⊗R S). It is representable by an open R–subscheme of W

(
EndR(M)

)
which is denoted by GL(M) (loc. cit., 9.6.4). We bear in mind that the action of the
group scheme GL(M) on W(M) (resp. V(M)) is a left (resp. right) action.

In particular, we denote by GLr = Aut(Rr).

Remark 2.5. For R noetherian, Nitsure has shown that the finite locally freeness
condition onM is a necessary condition for the representability of GL(M) by a group
scheme [28].

(c) If B is a locally free OS–algebra of finite rank, we recall that the functor of
invertible elements of B is representable by an affine S-group scheme which is a
principal open subset of W(B). It is denoted by GL1(B) [6, 2.4.2.1].

2.3. Cocycles. Let M be a locally free R–module of rank r. We consider a par-
tition 1 = f1 + · · · + fn and isomorphisms φi : (Rfi)

r ∼−→ M ×R Rfi . Then
the Rfifj–isomorphism φ−1

i φj : (Rfifj)
r ∼−→ (Rfifj)

r is linear so defines an element
gi,j ∈ GLr(Rfifj). More precisely we have (φ−1

i φj)(v) = gi,j . v for each v ∈ (Rfifj)
r

(in other words, (Rfifj)
r is seen as column vectors).
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Lemma 2.6. The element g = (gi,j) is a 1–cocycle, that is, satisfies the relation

gi,j gj,k = gi,k ∈ GLr(Rfifjfk)

for all i, j, k = 1, . . . , n.

Proof. Over Ri,j,k we have φ−1
i φk = (φ−1

i φj) ◦ (φ−1
j φk) = Lgi,j ◦ Lgj,k = Lgi,jgj,k . �

If we replace the φi’s by the φ′i = φi ◦ gi for gi ∈ GLr(Rfi), we get g′i,j = g−1
i gi,jgj

and we say that (g′i,j) is cohomologous to (gi,j).
We denote by U = (Spec(Rfi)i=1,..,n the affine cover of Spec(R), by Z1(U/R,GLr)

the set of 1-cocycles and by H1(U/R,GLr) = Z1(U/R,GLr)/ ∼ the set of 1–cocycles
modulo the cohomology relation. The set H1(U/R,GLr) is called the pointed set of
Čech cohomology with respect to U .

Summarizing we attached to the vector bundle V(M) of rank r a class γ(M) ∈
H1(U/R,GLr).

Conversely by Zariski glueing, we can attach to a cocycle (gi,j) a vector bundle Vg

over R of rank r equipped with trivializations φi : V(Rr
fi

)
∼−→ Vg ×R Rfi such that

φ−1
i φj = gi,j.

Lemma 2.7. The pointed set H1(U/R,GLr) classifies the isomorphism classes of
vector bundles of rank r over Spec(R) which are trivialized by U .

For the proof, see [18, 11.15]. We can pass the limit of this construction over all
affine open subsets ofX. We define the pointed set Ȟ1

Zar(R,GLr) = lim−→U H
1(U/R,GLr)

of Čech non–abelian cohomology of GLn with respect to the Zariski topology of
Spec(R). By passage to the limit, Lemma 2.7 implies that Ȟ1

Zar(R,GLr) classifies
the isomorphism classes of vector bundles of rank r over Spec(R).

2.4. Functoriality. The principle is that nice constructions for vector bundles arise
from homomorphisms of group schemes. Given a map f : GLr → GLs, we can attach
to a vector bundle Vg of rank r the vector bundle Vf(g) of rank s. This extends to a
functor X 7→ f∗(X) from vector bundles of rank r to vector bundles to rank s.

We consider now the three following cases.
(a) Direct sum. If r = r1 + r2, we consider the map f : GLr1 ×GLr2 → GLr,

(A1, A2) 7→ A1 ⊕ A2. We have then f∗(V1,V2) = V1 ⊕V2.
Of course, it can be done with r = r1 + · · · + rl, in particular we have in the case

r = 1 + · · ·+ 1 the diagonal map (Gm)r → GLr which leads to decomposable vector
bundles, that is, direct sum of rank one vector bundles.

(b) Tensor product. If r = r1 r2, we consider the map f : GLr1 ×GLr2 → GLr,
(A1, A2) 7→ A1 ⊗ A2 (called the Knonecker product). We have then f∗(V1,V2) =
V1 ⊗V2.

(c) Determinant. We put det(V) = det∗(V), this is the determinant bundle.
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2.5. The case of a Dedekind ring. Let R be a Dedekind ring, that is, a noetherian
domain such that the localization at each maximal ideal is a discrete valuation ring.
The next result is a classical fact of commutative algebra, see [20, II.4, th. 13].

Theorem 2.8. A locally free R–module of rank r ≥ 1 is isomorphic to Rr−1 ⊕ I for
I an invertible R–module which is unique up to isomorphism.

Since I is the determinant of Rr−1 ⊕ I, the last assertion is clear. Our goal is to
provide a geometric proof of this statement.

Firstly it states that vector bundles over R are decomposable and secondly that
vector bundles over R are classified by their determinant. We limit ourself to prove
the following corollary.

Corollary 2.9. A locally free R–module of rank r ≥ 1 is trivial if and only its
determinant is trivial.

Proof. We are given a vector bundle V(M). It trivializes over an open affine subset
Spec(Rf ) and we put Σ = Spec(R) \ Spec(Rf ) = {p1, . . . ,pc} where the pj’s are
maximal ideals of R. Let R̂pj

be the completion of the DVR Rpi
and denote by

K̂pj
= K ⊗R R̂fi its fraction field.

According to Nakayama lemma, the R̂pi
–module M ⊗R R̂pi

is free so we pick a
trivialization φi : (R̂pi

)r
∼−→M ×R R̂pi

.
On the other hand, let φf : (Rf )

r ∼−→ M ×R Rf a trivialization. The linear map
φ−1
f φ̂i : (K̂pi

)r → (K̂pi
)r gives rise to an element gi ∈ GLr(K̂pi

). Taking into account
the choices, we attached to M an element of the double coset

cΣ(R,GLr) := GLr(Rf )\
∏

j=1,...,c

GLr(K̂pi
)/GLr(R̂pi

).

Claim 2.10. The map

ker
(
H1(R,GLr)→ H1(Rf ,GLr)

)
→ cΣ(R,GLr)

is injective.

For the sequel we need only to know that it has trivial kernel. Indeed if (gi) belongs
in the kernel, it means that we can adjust the trivializations in order to get gi = 1 for
i = 1, . . . , c. We claim that the isomorphism φf : Mf

∼−→ (Rf )
r extends (uniquely)

to an isomorphism M
∼−→ Rr. Since the map φf : M r

f
∼−→ (Rf )

r extended over K̂pi

extends to R̂pi
, it means that there are no denominators involved so that the map

extends φf to an R–linear mapping ψ : M r → Rr. For the same reason (φf )
−1 extends

as well and we conclude that φf extends to an R–linear isomorphism ψ : M r ∼−→ Rr.
We assume now that the determinant ofV(M) is trivial so that (gi) belongs by func-

toriality to the kernel of the map det∗ : cΣ(R,GLr)→ cΣ(R,Gm) = R×f \
∏

j=1,...,c

(K̂×pi
/R̂×pi

).
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Up to change the trivializations we can then assume that gi ∈ SLn(K̂pi
) for i =

1, . . . , c. Since SLn(K̂pi
) is generated by elementary matrices and since Rf is dense

in
∏

i K̂pi
, it follows that SLr(Rf ) is dense in

∏
i=1,...,c SLr(K̂pi

). On the other hand,
each group SLn(R̂pi

) is open (actually clopen) in SLr(K̂pi
) so that cΣ(R, SLr) = 1.

The Claim 2.10 enables us to conclude that V(M) is a trivial vector bundle. �

Remarks 2.11. (a) The general case is close; we need to apply the previous argument
to GL(Rr−1 ⊕ I) for an invertible R–module I.
(b) cΣ(R,Gm) = DivΣ(R)/R×f is isomorphic to ker

(
Pic(R) → Pic(Rf )

)
. This is

a general fact, i.e. the map of Claim 2.10 is surjective. It can be seen by using
patching techniques; more elementary one can use the fact that GLr(K)r maps onto∏
j=1,...,c

GLr(K̂pi
)/GLr(R̂pi

).

3. Zariski topology is not fine enough

The above definition of non–abelian cohomology extends for an arbitrary group
scheme. There are several complementary reasons for try to extend this theory.

3.1. The example of quadratic bundles. A quadratic form over an R–module M
is a map q : M → R which satisfies

(i) q(λx) = λ2q(x) for all λ ∈ R, x ∈M .
(ii) The formM×M → R, (x, y) 7→ bq(x, y) = q(x+y)−q(x)−q(y) is (symmetric)

bilinear.
This is stable by arbitrary base change. The form q is regular if bq induces an

isomorphism M
∼−→ M∨. A fundamental example is the hyperbolic form (V ⊕

V ∨, hyp) attached to a locally free R–module of finite rank defined by hyp(v, φ) →
φ(v).

We are given a regular quadratic form (M, q) where M is locally free of rank r. It
is tempting to make analogies with vector bundles and to use the orthogonal group
scheme O(q,M) which a closed subgroup scheme of GL(M). More precisely, we have

O(q,M)(S) =
{
g ∈ GL(M)(S) = AutS(M ⊗R S), | qS ◦ g = qS

}
for eachR–ring S. For an open cover U ofR as above we define similarly Z1(U/R,O(q,M))
and H1(U/R,O(q,M)) (it makes sense for any R–group scheme). What we get is the
following.

Lemma 3.1. The set H1
Zar(U/R,O(q,M)) classifies the isomorphism of regular qua-

dratic forms (q′,M ′) which are locally isomorphic over U to (q,M).

This is nice but the point is that regular quadratic forms over R of dimension r have
no reason to be locally isomorphic to (M, q) (e.g. this occurs already with R = R, the
field of real numbers). So the set H1(R,O(q,M)) is only a piece of what we would
like to obtain.
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3.2. Functoriality. If we have a map f : G → H of group schemes, we would like
to have some control on the map f∗ : H1

Zar(R,G)→ H1
Zar(R,H).

A basic example is the Kummer map fd : Gm → Gm, t 7→ td for an integer d. It
gives rise to the multiplication by d mapping on the Picard group Pic(R). In terms
of invertible modules, it corresponds to the map M 7→M⊗d.

We would like to understand its kernel and its image. We can already say some-
thing about the kernel. Given [M ] ∈ ker

(
Pic(R)

×d−→ Pic(R)
)
, then there exists a

trivialization θ : R
∼−→ M⊗d. We define then the commutative group Ad(R) of iso-

morphism classes of couples (M, θ) whereM is an invertible R–module equipped with
a trivialization θ : R

∼−→ M⊗d. We have a forgetful map A(R) → Pic(R) and we
claim that we have an exact sequence

R×/(R×)d
φ−→ Ad(R)→ Pic(R)

×d−→ Pic(R)

with φ(a) = [(R, θa)] where θa : R
∼−→ R⊗d = R, x 7→ ax. We let this as exercise

to the reader. We will see later that we can provide a cohomological meaning to the
group Ad(R) (Remark 4.11).

4. General definitions

Grothendieck-Serre’s idea is to extend the notion of covers in algebraic geometry.
They did it originally with étale covers but it turns out that the flat cover setting is
simpler in a first approach (this is that of the book by Demazure-Gabriel [10, §III],
there are other variants).

4.1. Čech non-abelian cohomology.

Definition 4.1. A flat (or fppf= fidèlement plat de présentation finie) cover of R is
a finite collection (Si)i∈I of R–rings satisfying

(i) Si is a flat R–algebra of finite presentation for i = 1, . . . , c;

(ii) Spec(R) =
⋃
i∈I Im

(
Spec(Si)→ Spec(R)

)
If we put S =

∏
i∈I Si, the conditions rephrase by saying that S is a faithfully flat

R–algebra of finite presentation. We can then always deal with a unique ring.
Remark 4.2. For a partition 1 = f1 + · · ·+ fn, then (Rfj)j=1,...,n is a flat cover of R
and so is Rf1 × · · · ×Rfn.

We define firstly non abelian cohomology. Let S is a faithfully flat R–algebra of
finite presentation. We denote by p∗i : S → S ⊗R S the coprojections (i = 1, 2) and
similarly q∗i : S → S ⊗R S ⊗R S (i = 1, 2, 3), q∗i,j : S ⊗R S → S ⊗R S ⊗R S the partial
coprojections (i < j).

Let G be an R–group scheme. A 1-cocycle for G and S/R is an element g ∈
G
(
S ⊗R S

)
satisfying

q∗1,2(g) q∗2,3(g) = q∗1,3(g) ∈ G
(
S ⊗R S ⊗R S

)
.
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We denote by Z1(S/R,G) the pointed set of 1-cocycles of S/R with values in G (it is
pointed by the trivial 1–cocycle).

Two such cocycles g, g′ ∈ G(S) are cohomologous if there exists h ∈ G(S) such
that g = p∗1(h−1) g′ p∗2(h). We denote by Ȟ1(S/R,G) = Z1(S/R,G)/ ∼ the pointed
set of 1-cocycles up to cohomology equivalence.

Remark 4.3. In the case of a Zariski cover given by a partition of 1, the definition
is the same as in §3.1. What is behind is that intersection of open subschemes is a
special case of fiber product.

We can pass to the limit on all flat covers of Spec(R) and define Ȟ1
fppf (R,G) =

lim−→Ȟ1(S/R,G) 1. This construction is functorial in R and in the group scheme G.

4.2. Torsors. A (right)G–torsorX (with respect to the flat topology) is an R-scheme
equipped with a right action of G which satisfies the following properties:

(i) the action map X ×R G→ X ×R X, (x, g) 7→ (x, x.g), is an isomorphism;
(ii) There exists a flat cover R′/R such that X(R′) 6= ∅.
The first condition reflects the simply transitivity of the action, we mean that G(T )

acts simply transitively on X(T ) for all R–rings T .
The second condition is a local triviality condition. An example is X = G with G

acting by right translations, it is called the split G–torsor.
If X(R) 6= ∅, a point x ∈ X(R) defines an morphism G → X, φx : g 7→ x.g which

is an isomorphism by the simple transitive property; we say that X is trivial and that
φx is a trivialization.

Condition (ii) states that an R–torsor X under G is locally trivial for the flat
topology.

A morphism of G–torsors X → Y is a G–equivariant map; once again the simple
transitivity condition shows that such a morphism is an isomorphism. Thus the
category of G–torsors under G is a groupoid.

The R–functor of automorphisms of the trivial G–torsor G is representable by G
(acting by left translations).

We denote by H1
fppf (R,G) the set of isomorphism classes of G–torsors for the flat

topology. If S is a flat cover R, we denote byH1
fppf (S/R,G) the subset of isomorphism

classes of G–torsors trivialized over S.
As in the vector bundle case, we shall construct a class map γ : H1

fppf (S/R,G)→
Ȟ1
fppf (S/R,G) as follows.
Let X be a G–torsor over R equipped with a trivialization φ : G×R S

∼−→ X×R S.
Over S⊗RS, we have then two trivializations p∗1(φ) : G×R(S⊗RS)

∼−→ X×R(S⊗RS)
and p∗1(φ). It follows that p∗1(φ)−1 ◦ p∗2(φ) is an automorphism of the trivial G–torsor
over S ⊗R S so is the left translation by an element g ∈ G(S ⊗R S). A computation

1There are subtle set-theoretic issues there, see [10, III.1.3] and [40]
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shows that g is a 1–cocycle [16, §2.2]; also changing φ changes g by a cohomologous
cocycle. The class map is then well-defined. Its study involves a glueing technique in
the flat setting.

4.3. Interlude: Faithfully flat descent. Let T be a faithfully flat extension of the
ring R (not necessarily of finite presentation). We put T⊗d = T ⊗R T · · · ⊗R T (d
times). One first important thing is that the Amitsur complex

0→M →M ⊗R T
d2−→M ⊗R T ⊗R T

d2−→M ⊗R T⊗3 . . .

is exact for each R–module M [25, III.1] where
dn(m ⊗ t1 ⊗ · · · ⊗ tn) =

∑
i=0,...,n

(−1)im ⊗ t1 ⊗ · · · ⊗ ti ⊗ 1 ⊗ ti+1 ⊗ · · · ⊗ tn. This

implies in particular that for any affine R-scheme X, we have an identification
X(R) =

{
x ∈ X(T ) | p∗1(x) = p∗2(x) ∈ X(T ⊗R T )

}
which holds actually for any R-scheme. Given a T–module N we consider the T⊗RT–
modules p∗1(N) = T ⊗RM and p∗2(N) = M ⊗R T .

A descent data on N is an isomorphism ϕ : p∗1(N)
∼−→ p∗2(N) of T⊗2–modules such

that the diagram

T ⊗R T ⊗R N
ϕ2

**

ϕ3
// N ⊗R T ⊗R T

T ⊗R N ⊗R T
ϕ1

44

is commutative where
• ϕ3(t1 ⊗ t2 ⊗ n) = ϕ(t1 ⊗ n)⊗ t2;
• ϕ2(t1 ⊗ t2 ⊗ n) = t2 ⊗ ϕ(t1 ⊗ n);
• ϕ1(t1 ⊗ n⊗ t3) = t1 ⊗ ϕ(n⊗ t3)

There is a clear notion of morphisms for T–modules equipped with descent data
from T to R. If M is an R–module, the identity of M gives rises to a canonical
isomorphism canM : p∗1(M ⊗R T )

∼−→ p∗2(M ⊗R T ), this is a descent data.
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Theorem 4.4. (Faithfully flat descent, see [25, III, th. 2.1.2] )
(1) The functor M → (M ⊗R T, canM) is an equivalence of categories between the
category of R–modules and that of T–modules with descent data. An inverse functor
(the descent functor) is (N,ϕ) 7→ {n ∈ N | n⊗ 1 = ϕ(1⊗ n)}.
(2) The functor above induces an equivalence of categories between the category of
R–algebras (commutative, unital) and that of T–algebras (commutative, unital) with
descent data.

For an exhaustive view, we recommend [39, Tag 023F]. We shall see later examples
of descent beyond the case of Zariski covers (e.g. 4.15).

4.4. The linear case. An important example is the extension of Swan-Serre’s corre-
spondence. A consequence of the faithfully flat descent theorem (and of the fact that
the property to be locally free of rank r is local for the flat topology [39, Tag 05B2])
is the following.

Theorem 4.5. Let r ≥ 0 be an integer.
(1) Let M be a locally free R–module of rank r. Then the R–functor
S 7→ IsomS−mod(S

r,M ⊗R S) is representable by a GLr–torsor XM over Spec(R).
(2) The functor M 7→ XM induces an equivalence of categories between the groupoid
of locally free R–modules of rank r and the category of GLr–torsors over Spec(R).

Proof. See [6, 2.4.3.1]. �

This implies that the GLr–torsors are the same with flat topology or with Zariski
topology.

Corollary 4.6. (Hilbert-Grothendieck 90) We have H1
Zar(R,GLr) = H1

fppf (R,GLr).
In particular, if R is a local (or semilocal ring), we have H1

fppf (R,GLr) = 1.

This is a special case of a more general statement which holds for GL1(B) where B
is a separable R–algebra (for example Azumaya or finite étale) which is a locally free
R–module of finite rank, see [17, §4.2].

4.5. Torsors and cocycles.

Lemma 4.7. The map γ : H1
fppf (S/R,G)→ Ȟ1

fppf (S/R,G) is injective.

Proof. Once again we limit ourselves to the kernel for simplicity (for the general
argument, see [16, §2.2]). If (X,φ) gives rise to a cocycle which is cohomologous to
the trivial cocycle, it means that there exists a trivialization φ′ : G×R S

∼−→ X ×R S
such that the associated cocycle is trivial. We put x = φ′(1) ∈ X(S). Then p∗1(x) =
p∗2(x) = 1. Since X(R) identifies with {x ∈ X(S) | p∗1(x) = p∗2(x)}, we conclude that
X(R) is non-empty. �

Theorem 4.8. If G is affine, the class map H1
fppf (S/R,G) → Ȟ1

fppf (S/R,G) is an
isomorphism.
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Note that by passing to the limit on the flat covers, we get a bijectionH1
fppf (R,G)→

Ȟ1
fppf (R,G).
The fact that we can descend torsors under an affine scheme is a consequence of

the faithfully flat descent theorem. The sketch is as follows. We are given a cocycle
g ∈ G(S ⊗R S). We consider the map L∗g : (S ⊗R S)[G]

∼−→ (S ⊗R S)[G] and define
ϕg by the diagram

S ⊗R S[G]

α∼=
��

ϕg

∼
// S[G]⊗R S

β∼=
��

(S ⊗R S)[G]
L∗g

∼
// (S ⊗R S)[G]

where α(s1⊗f) = (s1⊗1)p∗2(f) and β(f ⊗ s2) = p∗1(f)(1⊗ s2). The cocycle condition
implies that φg is a descent data for the S–algebra S[G]. Theorem 4.4 defines an
R–algebra R[X] and X is actually a G–torsor denoted by Eg.

This construction is a special case of Twisting. More generally, if Y is an affine
R–scheme equipped with a left action of G, then the action map g : Y ×R(S⊗RS)

∼−→
Y ×R (S ⊗R S) defines a descent data. This gives rises to the twist of Yg of Y by the
one cocycle g. It is affine over R.

A special case is the action of G on itself by inner automorphisms, Gg is called the
twisted R–group scheme; it acts on Yg for Y as above.

Remarks 4.9. (a) The above construction do not depend of choices of cocycles or of
trivializations. We can define for a G–torsor E the twist EY and EG.

(b) In practice, the affiness assumption is too strong. More generally we can twist
G–schemes equipped with an ample invertible G-linearized bundle, see [5, §6, th. 7
and §10, lemma 6] for details).

4.6. Examples. (a) Vector group schemes. Let M be a finite locally free R–module
of finite rank, we claim that Ȟ1(R,W(M)) = 0 so that each W(M)–torsor is trivial.

We are given a flat cover S/R. Since the complex M ⊗R S
p∗1−p∗2−−−→ M ⊗R S ⊗R S →

M ⊗R S ⊗R S ⊗R S is exact, each cocycle g ∈W(M)(S ⊗R S) = M ⊗R S ⊗R S is a
coboundary. Thus Ȟ1(S/R,W(M)) = 0 and Ȟ1(R,W(M)) = 0.
(b) An important case is when G = ΓR, that is, the finite constant group scheme
attached to an abstract finite group Γ. We mean that G(S) is the group of locally
constant functions Spec(S) → Γ. In other words, G = tγ∈Γ Spec(R)γ so that its
coordinate ring identifies with R(Γ).

In this case a ΓR–torsor Spec(S) → Spec(R) is the same thing than a Galois Γ–
algebra S and is called often a Galois cover. A special case is that of a finite Galois
extension L/k of fields of group Γ.
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(c) As for GLr, a special nice case is the case of forms, that is when G is the
automorphism group of some algebraic structure, see [6, §2.2.3] for an exhaustive
discussion.

For example, the orthogonal group scheme O2n is the automorphism group of the
hyperbolic quadratic form attached to Rn. As regular quadratic forms of rank 2n are
locally isomorphic to the hyperbolic form for the flat topology, descent theory provides
an equivalence of categories between the groupoid of regular quadratic forms of rank
2r and H1

fppf (R,O2n). This is what we wanted in §3, that is, H1(R,O2n) classifies
the isomorphism classes of regular quadratic R–forms of rank 2n [10, III.5.2].

(d) Another important example is that of the symmetric group Sn. For any R–
algebra S, the group Sn(S) is the automorphism group of the S–algebra Sn = S ×
· · · ×S (n–times). Since finite étale algebras of degree n are locally isomorphic to Rd

for the étale topology, the same yoga shows that there is an equivalence of categories
between the category of Sn–torsors and that of finite étale R–algebras of rank n.

The inverse functor is defined by descent but can be described explicitely. This is
the Galois closure construction done by Serre in [33, §1.5], see also [2].

4.7. Functoriality issues. Let G → H be a monomorphism of R–group schemes.
We say that an R-scheme X equipped with a map f : H → X is a flat quotient of
H by G if for each R–algebra S the map H(S) → X(S) induces an injective map
H(S)/G(S) ↪→ X(S) and if for each x ∈ X(S), there exists a flat cover S ′ of S
such that xS′ belongs to the image of H(S ′)→ X(S ′) (we say that f is “couvrant” in
French). If it exists, a flat quotient is unique (up to unique isomorphism); furthermore,
if G is normal in H, then X carries a natural structure of R–group schemes, we say
in this case that 1 → G → H → X → 1 is an exact sequence of R–group schemes
(for the flat topology).

Lemma 4.10. Assume that X is the flat quotient of H by G.
(1) The map H → X is a G–torsor.
(2) There is an exact sequence of pointed sets

1→ G(R)→ H(R)→ X(R)
ϕ−→ H1

fppf (R,G)→ H1
fppf (R,H)

where ϕ(x) = [f−1(x)].

For the proof, see [10, III.4.2, cor. 1.8 and III.4.4].

Remark 4.11. (a) Assume that X is affine (or is equipped with an ample G–
linearized invertible sheaf, see [5, §6, th. 7 and §10, lemma 6] for details). Then
the category of G–torsors over Spec(R) is equivalent to the category of couples (F, x)
where F is a H–torsor and x ∈ (FX)(R).

(b) If G is normal in H, then X has natural structure of R–group scheme. In this
case (a) rephrases by saying that the category of G–torsors over Spec(R) is equivalent
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to the category of couples (F, φ) where F is a H–torsor and φ a trivialization of the
X–torsor FX.

(c) Using the extended Swan-Serre correspondence 4.5, an example is that category
of SLr-torsors is equivalent to the category of pairs (M, θ) where M is a locally free
R–module of rank r and θ : R

∼−→ Λr(M) is a trivialization of the determinant of M .

(d) For an integer d, we have the Kummer exact sequence 1 → µd → Gm
×d−→

Gm → 1. Similarly the category of µd–torsors is equivalent to the category of pairs
(M, θ) where M is an invertible R–module and θ : R

∼−→ M⊗r a trivialization. This
is related with §3.2.

Examples 4.7.1. Gm is the flat quotient of GLr by SLr and Gm is the flat quotient
of Gm by µd.

There are of course many more functorial properties for example when G is com-
mutative normal.

4.8. Étale covers. We remind to the reader that an étale morphism of rings R→ S is
a smooth morphism of relative dimension zero [27, §I.3]. There are several alternative
definitions, for example, S is a flatR–module such that for eachR–field F , then S⊗RF
is an étale F–algebra (i.e. a finite geometrically reduced F–algebra).

Examples 4.12. (a) A localization morphism R→ Rf is étale.
(b) If d is invertible in R, the Kummer morphism Gm → Gm, t 7→ td is étale.
(c) More generally, if d is invertible in R and r ∈ R×, then S = R[x]/(xd− r) is a

finite étale R–algebra.

For an R–group scheme G, we define the subset H1
ét(R,G) of Ȟ1

fppf (R,G) of classes
ot torsors which are trivialized by an étale cover. We define similarly Ȟ1

ét(R,G)

Proposition 4.13. If G is affine smooth, then we have H1
ét(R,G) = H1

fppf (R,G).

Sketch. Smoothness is a local property with respect to flat topology so that any
G–torsor E is smooth affine over R. According to the existence of quasi-sections [12,
17.16.3], E admits locally sections with respect of the étale topology.

4.9. Isotrivial torsors and Galois cohomology. We are given a Galois R–algebra
S of group Γ. The action isomorphism Spec(S)×R ΓS

∼−→ Spec(S)×R Spec(S) reads
as the isomorphism S ⊗R S

∼−→ S ⊗R R(Γ) = S(Γ). A 1-cocycle is then an element
z = (zγ)γ∈Γ ∈ G(S ⊗R S) = G(S)(Γ) satisfying a certain relation.

Since Γ acts on the left on S, it acts as well on the left on G(S).

Lemma 4.14. (see [16, lemme 2.2.3]) A Γ-uple z = (zσ)σ∈Γ ∈ G(S(Γ)) = G(S)(Γ) is
a 1–cocycle for S/R if and only if

zστ = zσ σ(zτ )

for all σ, τ ∈ Γ.
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We find that Z1(S/R,G) is the set of Galois cocycles Z1(Γ, G(S)) and that Ȟ1(S/R,G)
is the set of non-abelian Galois cohomology H1(Γ, G(S)) = Z1(Γ, G(S))/ ∼ where
two cocycles z, z′ are cohomologous if zγ = g−1 z′γ σ(g) for some g ∈ G(S).

An interesting case is whenG is the constant group scheme associated to an abstract
group Θ. In this case, we have Z1(S/R,G) = HomR−gp(ΓS,ΘS) and Ȟ1(S/R,G) =
HomS−gp(ΓS,ΘS)/ΘR(S). In particular, if S is connected, we have Z1(S/R,G) =
HomR−gp(Γ,Θ) and Ȟ1(S/R,G) = Homgp(Γ,Θ)/Θ.

Remark 4.15. Galois descent is then a special case of faithfully flat descent. The
reader can check that the category of R-modules is equivalent to the category of
couples (N, ρ) where N is a S-module equipped with a semilinear action of Γ (i.e.
ρ(σ)(λ . n) = σ(λ) . ρ(σ)(n)).

We say that torsor E under an R–group scheme G is isotrivial if it is split by a
Galois finite étale cover. This is subclass of torsors which can be explicited by Galois
cohomology computations and this is a preliminary question is it is the case. For
example, for the ring of Laurent polynomials in characteristic zero and a reductive
group scheme, this is the case [17].
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5. Exercices

R is a commutative (unital) ring.

Exercice 1. LetM be a locally free R–module of rank 2n ≥ 2 equipped with a regular
quadratic form q. Show that locally for the flat topology that (M, q) is hyperbolic.
[Hint: one can deal first with the case of a local ring where 2 is invertible].

Exercice 2. Prove Lemma 3.1.

Exercice 3. Let R′ be a finite locally free R–algebra. Let r ≥ 0 be an integer.

(1) Show that the R–functor S 7→ EndS⊗RR′

(
S ⊗R R′)r

)×
is representable by

an affine R–group scheme. We denoted it by G̃ = RR′/R(GLr) (the Weil
restriction).

(2) Show that the category of G̃–torsors is equivalent to the category of locally
free R′-modules of rank r.

(3) Give an interpretation of the map H1(R,GLr) → H1(R, G̃) and show that
this map is not in general injective nor surjective.

(4) We denote by M = (R′)r the underlying R–module. Construct a map G̃ →
GL(M) and discuss the cohomological consequences.

Exercice 3. (Special case of Grothendieck-Margaux [26]) Let G be an affine R–group
scheme of finite presentation and let R∞ = lim−→λ

Rλ be a colimit of R–algebras. For
each λ, we put Gλ = G×R Rλ and similarly G∞ = G×R R∞.

Define a map lim−→H
1
fppf (Rλ, Gλ)→ H1

fppf (R∞, G∞) and show that it is bijective.

Exercice 4. Let d ≥ 1 be an integer and let R′ be a Z/dZ–Galois extension. We
denote by σ the canonical generator of Z/dZ.

(1) Show that the formula N(y) = y σ(y) . . . σr−1(y) defines a group scheme ho-
momorphism N : RR′/R(Gm)→ Gm.

(2) Show that 1 → ker(N) → RR′/R(Gm) → Gm → 1 is an exact sequence of
R–group schemes.

(3) Deduce an exact sequence involving H1(R, ker(N)).
(4) Show that the flat quotient of RR′/R(Gm) by Gm exists in the category of

schemes and is isomorphic to ker(N).
(5) Construct an exact sequence

R× → (R′)×
σ−1−−→ ker(N)(R)→ ker

(
Pic(R)→ Pic(R′)

)
.

(6) Discuss the case of the coordinate ring A = R[ker(N)] of ker(N).
(7) For R = R and S = C, is the Gm-torsor RS/R(Gm)→ RS/R(Gm)/Gm trivial?
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Exercice 5. Let B be standard Borel R–subgroup of upper triangular matrices of
GL2,R.

(1) Show that the flat quotient of GL2,R by B exists in the category of R–schemes
and is isomorphic to the projective line.

(2) Deduce an exact sequence of pointed sets

1→ B(R)→ GL2(R)→ P1(R)→ H1
fppf (R,B)→ H1

fppf (R,GL2).

(3) For R local, show that H1
fppf (R,B) = 1 and that H1

fppf (R,Ga) = 1.
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