
LECTURES ON R-EQUIVALENCE ON LINEAR
ALGEBRAIC GROUPS

P. GILLE

1. Introduction

As usual1, the ground field is assumed for simplicity to be of characteristic
zero. Given a k-variety X, Y. Manin defined the R-equivalence on the set
of k–points X(k) as the equivalence relation generated by the following
elementary relation. Denote by O the semi-local ring of A1

k at 0 and 1.

1.1. Definition. Two points x0, x1 ∈ X(k) are elementary R-equivalent is
there exists x(t) ∈ X(O), such that x(0) = x0 and x(1) = x1.

We denote then by X(k)/R the set of R-equivalence classes. This invari-
ant measures somehow the defect for parametrizing rationally the k-points
of X. The following properties follow readily from the definition.

(1) additivity : (X ×k Y )(k)/R ∼= X(k)/R× Y (k)/R;
(2) “homotopy invariance” : X(k)/R

∼−→ X(k(v))/R.

The plan is to investigate R-equivalence for linear algebraic groups. We
focus on the case of tori worked out Colliot-Thélène-Sansuc [CTS1] [CTS2],
on the case of isotropic simply connected groups [G5] and of the case of
number fields [G1] [C2] and two dimensional geometric fields [CGP] [Pa].

Let G/k be a connected linear algebraic group. First the R-equivalence
on G(k) is compatible with the group structure. More precisely, denote by
R(k, G) ⊂ G(k) the R-equivalence class of e. Then R(k, G) is a normal
subgroup and G(k)/R(k,G) ∼= G(k)/R. Therefore G(k)/R has a natural
group structure. We can already ask the following optimistic open question
based on known examples.

1.2. Question. Is G(k)/R an abelian group ?

Notice first the following fact.

1.3. Lemma. [G1, II.1.1] Two points of G(k) which are R-equivalent are
elementary equivalent.

Thus the elementary relation is an equivalence relation.

1.4. Proposition. Let U ⊂ G be an open subset. Then U(k)/R
∼−→

G(k)/R.

1Version of June 21, 2010.
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Proof. By Grothendieck’s theorem, G is an unirational k-variety. It means
that there exists a (non-empty) subset V of an affine space and a dominant
map h : V → G. We can assume that e ∈ h(V (k)). Then h(V (k)) is
Zariski dense in G and consists of elements R-equivalent to e. In particular
R(k, G) is Zariski dense in G, so R(k,G).U = G. Hence U(k)/R → G(k)/R
is surjective. In the way around, we are given two elements u, u′ ∈ U(k)
which are R-equivalent in G. By Lemma 1.3, there exists g ∈ G(O) such
that g(0) = u and g(1) = u′. But we see that g belongs actually to U(O),
so we conclude that u and u′ are R-equivalent in U . ¤

Recall that X is k-rational if X is birationally isomorphic to an affine
space.

1.5. Corollary. Let G1 and G2 be linear algebraic groups which are ratio-
nally equivalent. Then there is a bijection G1(k)/R ∼= G2(k)/R. In partic-
ular, if G is k-rational, then G(k)/R = 1.

We say that X a k-variety is stably k-rational if there exists n ≥ 0 such that
X ×k An

k is k-rational. By the additivity property, we have

1.6. Corollary. If G is stably k-rational, then G(k)/R = 1.

2. Examples

2.1. Normic torus. Let L/k be a finite Galois algebra of group Γ. We
consider the Weil restriction torus (called also induced or quasitrivial)

RL/k(Gm)

which is defined by RL/k(Gm)(A) = (A⊗k L)× for each k–algebra A. Each
element of Γ induces a homomorphism σ∗ : RL/k(Gm) → RL/k(Gm). The
product

∏
σ∗ gives rise to a norm map

NL/k : RL/k(Gm) → Gm

whose kernel T = R1
L/k(Gm) is called the normic torus attached to K/k.

The group T (k) contains the image of of (σ − 1).L× for each σ ∈ Γ. It
generates the subgroup IΓ.L× where IΓ ⊂ Z[Γ] stands for augmentation
ideal. We have (see §3.3.2 below)

T (k)/R ∼= T (k)/IΓ.L×.

If L/k is a field, the following are equivalent :

(1) T is R–trivial, i.e. T (F )/R = 1 for any extension F/k;

(2) Γ is metacyclic, i.e. his Sylow subgroups are cyclic.

If Γ is cyclic, note that (1) is nothing but the theorem 90 of Hilbert.
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2.2. Common norm torus. Let l be a prime number and let k1, ..., kn be
étale extensions of k of degree l. We consider the common norm torus T

Nk1/k(y1) = · · ·Nkn/k(yn)

inside the quasitrivial torus Rk1/k(Gm)×· · ·Rkn/k(Gm). Put M = k1 ⊗k · · · ⊗k kn.
We have a natural map

Gm×NM/k(Gm) → Rk1/k(Gm)×· · ·Rkn/k(Gm), (x, y) 7→ (x NM/k1
(y), · · · , x NM/k1

(y))

whose image for k-rational points consists of R-trivial elements. We have
indeed [G2, §3]

T (k)/R =
⋂

i

Nki/k(k
×
i ) / (k×)l.NM/k(M

×).

If l = 2 and n = 2, this group is trivial since T is a quadric which is a
k–rational variety.

If l is 2 (resp. odd) and M is a field, Merkurjev has shown that T is
R-trivial if and only if n ≤ 2 (resp. n ≤ 3) [Me3].

2.3. Special linear groups. Let A/k be a central simple algebra and put
G = SLn(A) for n ≥ 1. This is the kernel of the reduced norm map

GLn(A) → Gm

which is the twisted version of the determinant. The commutator subgroup
[A×, A×] consists of R–trivial elements of G(k) and we have indeed

G(k)/R = G(k)/[A×, A×] = SK1(A)

i.e. this group is independent of n ≥ 1.
By Wedderburn’s theorem A ∼= Mr(D) where D is a division algebra and

the degree of A is by definition the square root of dimk(D). Wang has shown
that if deg(A) is squarefree, then G is R–trivial. Suslin conjectured the
converse is true [Su]. The main evidence for Suslin’s conjecture is the degree
4 case proven by Merkurjev [Me2][Me7]. If A/Q is a cyclic division algebra
of degree 4, we know that SK1(A) = 0 by a result of Wang but Merkujev
showed that the generic point of G does not belong to [A×k(G), A

×
k(G)].

Suslin’s conjecture is an explanation to Platonov’s examples [P] of divi-
sions algebras D of index l2 with non-trivial SK1. Using those examples,
Wouters showed recently that Suslin’s conjecture is true for generic central
simple algebras of index l2 [W].

2.4. Projective special linear groups. Let q be a regular quadratic form
over a finite even dimensional k-vector space V . By Cayley parametrisation,
the special orthogonal group is a k–rational variety, so SO(q) is R-trivial.
The center of SO(q) is µ2 and its adjoint quotient PSO(q) = SO(q)/µ2

occurs as a quotient of GO+(q) [KMRT], that is the neutral component of
the similarity group of q where

GO+(q)(R) =
{

(f, a) ∈ GL(V )(R)×R× | q◦f = q and det(f) = a
dim(V )

2

}
.
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We have a commutative exact diagram of reductive groups

1 1y
y

1 −−−−→ µ2 −−−−→ SO(q) −−−−→ PSO(q) −−−−→ 1y
y ||

1 −−−−→ Gm −−−−→ GO+(q) −−−−→ PSO(q) −−−−→ 1

×2

y µ

y=p1

Gm = Gmy
y

1 1

By the theorem 90 of Hilbert 90, the fibration GO+(q) → PSO(q) is generi-
cally trivial, hence Corallary 1.5 yields a bijection GO+(q)(k)/R

∼−→ PSO(q)(k)/R.
The multiplier induces an isomorphism [Me5]

PSO(q)(k)/R
∼−→ G(q)/NX(k).(k×)2

where G(q) stands for the image of µk namely the similarity factors of the
quadratic form q and NX(k) is the norm group of the projective quadric
X = {q = 0}. More precisely, NX(k) is the subgroup of k× generated by
the NL/k(L×) for L/k running over the finite field extensions of k such that
qL is isotropic.

Another very interesting example is the case of Spin(q) worked out by
Chernousov, Merkurjev and Rost [CM], see also [G5]. The vanishing of
Spin(q)(k)/R for certain q is a key ingredient in Voevodsky’s proof of the
Milnor conjecture [Vo].

2.5. Specialization methods. The examples are not independent of each
other. Let l be a prime and assume that the base field k admits a primitive
l–root of unity ζl.

For a field k((x))((y)) of iterated Laurent serie power, one can show that
the special linear group of the tensor product of symbol algebras

A/k((x))((y)) := (a, x)ζl
⊗ (b, y)ζl

degenerates to the normic torus T attached to the bicyclic field extension
k( l
√

a, l
√

b); it gives rise to a surjective induced map SK1(A) → T (k)/R.
Platonov’s examples are constructed in such a way [P].

Similarly, there is a relation between R–equivalence for certain quadratic
forms over iterated Laurent serie fields and common norm tori of quadratic
extensions [G2].
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3. R-equivalence on tori

We shall use that the category of k–tori is anti-equivalent to the category
of Γk-lattices, i.e. the category of lattices equipped with a continuous action
of Γk. One way is to associate to a k-torus T its Galois module of characters
defined by T̂ = Homks−gp(T ×k ks,Gm,ks).

3.1. Coflasque modules. Let Γ be a finite group. We denote by C(Γ) the
following semigroup:

Generators : [M], M Γ-lattice;
Relations : [P ] = 0, P permutation Γ-lattice.

In other words, two Γ–lattices M, N have same class in C(Γ) if M ⊕P ∼=
N ⊕Q with P, Q permutation Γ-lattice.

3.1. Definition. Let M be a Γ-lattice. We say that M is invertible if there
exists a Γ-lattice N such that its class is invertible in C(Γ).

In other words, invertible Γ-modules are direct summands of permutation
modules.

3.2. Definition. Let M be a Γ-lattice. We say that M is coflasque if
H1(Γ′,M) = 0 for all subgroups Γ′ ⊂ Γ.

We say that M is flasque if the dual module M0 is coflasque. By Shapiro’s
lemma, it follows that permutation lattices are flasque and coflasque. More
generally, invertible Γ-lattices are flasque and coflasque.

3.3. Remark. This notion is stable by change of groups f : Γ̃ → Γ: if M is
a coflasque Γ-lattice, then it is a coflasque Γ̃-lattice as well. If f is surjective,
then the converse is true. Therefore this notion makes sense for profinite
groups.

3.4. Lemma. [CTS2, 0.6] Let M be a Γ-lattice.
(1) M admits a coflasque resolution, that is an exact sequence of Γ-

modules
0 → C → P → M → 0

such that P is permutation and C is coflasque.
(2) M admits a flasque resolution, that is an exact sequence of Γ-modules

0 → M → P → F → 0

such that P is permutation and F is flasque.
(3) The class of F in C(Γ) depends only of M .

We get then an additive map

p :
{

Γ-lattices
} −−−−→ C(Γ)

M 7→ [F ].
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3.2. Flasque resolution of tori. We are given a k-torus T , its character
group T̂ is a Γk–lattice. The kernel of the action Γk → Aut(T̂ ) is of finite
index, this is the Galois group of the minimal splitting field kT /k. We denote
by Γ(T ) its Galois group.

We say that T is coflasque (resp. flasque) if T̂ a flasque (resp. coflasque)
Γk-lattice. Equivalently, T̂ a coflasque (resp. flasque) Γ(T )-lattice. By
dualizing Proposition 3.4, we get a flasque resolution of the torus T , namely

1 → S
i→ E

f→ T → 1,

where E is an induced torus and S is a flasque torus.

3.5. Theorem. The characteristic map T (k) → H1(k, S) induces an iso-
morphism

T (k)/R
∼−→ H1(k, S).

If the theorem is true, we should have H1(k, S) ∼−→ H1(k(t), S) by prop-
erty (2) of the introduction. The proof goes by proving that fact before.

3.6. Lemma. Let S/k be a flasque torus as above. Then

H1(k, S) ∼−→ H1
(
Γk, S(Oks)

) ∼−→ H1
(
Γk, S(ks(t))

) ∼−→ H1(k(t), S).

Proof. Tensorising the split sequence of Galois modules

1 → k×s → ks(t)× →
⊕

x∈A1(ks)

Z→ 0

by Ŝ0 provides the split exact sequence of Γk- modules

1 → S(ks) → S(ks(t)) →
⊕

M∈(A1)0

Coindk(M)
k (Ŝ0) → 0

Since S/k is flasque, H1
(
k, Coindk(M)

k (Ŝ0)
)

= H1(k(M), Ŝ0) = 0, so the
long exact sequence of cohomology yields an isomorphism H1(k, S) ∼−→
H1

(
Γk, S(ks(t))

)
. The last isomorphism is true for an arbitrary torus and

the midle one follows of the fact that S(Oks) is a direct summand of S(ks(t)).
¤

We can now proceed to the proof of Theorem 3.5.

Proof. We have the exact sequence

E(k)
f→ T (k) δ→ H1(k, S) → H1(k, E) = 1,

whose last term vanishes by Hilbert 90. We want to show that f(E(k)) = R(k, T ).
One way is obvious: since E is a k-rational variety, we have f(E(k)) ⊂ R(k, T ).
In the other hand, we have the exact sequence of Γk-modules

1 → S(Oks) → E(Oks) → T (Oks) → 1.
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We have then the following commutative diagram

E(k)
f−−−−→ T (k) δ−−−−→ H1(k, S) −−−−→ 1y

y
yo

E(O)
f−−−−→ T (O) δ−−−−→ H1(Γk, S(Oks)) −−−−→ H1(Γk, E(Oks)) = 1,

where the last term vanishes by the Lemma (note that the evaluation at 0
provides a splitting of all vertical maps). We are given x ∈ R(k, T ). It exists
x(t) ∈ T (O) such that x(0) = e and x(1) = x. From the Lemma we get that
δ(x(t)) = 0 ∈ H1

(
Γk, S(Oks)

)
. So by diagram chase, there exists y ∈ E(O)

lifting x. By specializing at 1, we get that x = x(1) = f(y(1)) ∈ f(E(k)) as
desired. ¤
3.3. Examples, local fields.

3.3.1. Case of a cyclic group. The proof of the following fact is based on
cyclotomic polynomials,

3.7. Proposition. (Endo-Miyata [EM], [CTS1, prop. 2]) Assume that Γ is
a cyclic group. Let M be Γ-lattice. Then the following are equivalent:

(1) M is flasque;
(2) M is coflasque;
(3) M is invertible in C(Γ).

3.8. Corollary. Let T/k be a torus split by a cyclic extension L/k. Then
T (k)/R = 1.

3.9. Corollary. Let T/Q be a torus. Then T (Q) is dense in T (R).

3.3.2. Normic tori. Let L/k be a finite Galois extension of group Γ. The
normic torus R1

L/k(Gm) is the kernel of the norm map RL/k(Gm) → Gm.
We have an exact sequence

1 → R1
L/k(Gm) → RL/k(Gm)

NL/k−−→ Gm → 1.

3.10. Proposition. For the norm torus T = R1
L/k(Gm), we have

T (k)/R
∼−→ H−1(Γ, L×) = Ker(L× → k×)/IΓ . L×.

In particular, it vanishes in the cyclic case; this is a version of Hilbert 90.

3.11. Sketch of proof. Define the map

RL/k(Gm)Γ
f−−−−→ R1

L/k(Gm)

(yσ) 7→ ∏
σ∈Γ

σ(yσ)/yσ.

One shows that this map is surjective and its kernel is a flasque k-torus.
Theorem 3.5 yields that T (k)/R = H−1(Γ, L×).
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3.3.3. Local fields. Assume here that we deal with a p-adic field K. Tate’s
duality for tori [?, II.5.8] states that the natural pairing

H1(K,T )×H1(K, T̂ ) → H2(K,Gm) ∼= Q/Z
is a perfect duality of finite groups.

3.12. Corollary. Let T/K be a K-torus and let 1 → S → E → T → 1 be a
flasque resolution. Then

T (K)/R
∼−→ H1(Γ, Ŝ)D.

In the case of norm tori, we have a nice formula.

3.13. Example. Let T = R1
L/K(Gm) be the norm torus of a Galois extension

L/K of group Γ. Then we have

T (K)/R
∼−→ H3(Γ,Z)D

Proof. We use the flasque resolution which arises in the proof of Proposition
3.10. Then we have an exact sequence of Γ-modules

0 → T̂ → Ê → Ŝ → 0.

By Shapiro’s lemma, we get an isomorphism

H1(Γ, Ŝ) ∼−→ H2(Γ, T̂ ).

In the other hand, from the sequence 0 → Z → Z[Γ] → T̂ → 0, we get an
isomorphism H2(Γ, T̂ ) ∼−→ H3(Γ,Z). ¤

We know that for bicyclic groups Γ = Z/nZ×Z/nZ, we have H2(Γ,Q/Z) ∼−→
H3(Γ,Z) = Z/nZ. This provides an example of torus T/K such that
T (K)/R 6= 1.

3.4. R-trivial tori, Voskresenskǐı’s conjecture.

3.4.1. R-trivial tori. Let T/k be a k-torus.

3.14. Theorem. The following are equivalent:
(i) T is R-trivial, i.e. T (F )/R = 1 for all extensions F/k;
(ii) There exists a k–torus T ′ such that T ×k T ′ is a k-rational variety;

(iii) p(T̂ ) is invertible in C(Γ).

The proof of (ii) =⇒ (iii) requires some geometry, see for example [C1,
§5].

Proof. (i) =⇒ (ii) : Denote by ξ : Spec(k(T )) → T the generic point of the
torus T . Then

ξ ∈ Im
(
E(k(T ))

f→ T (k(T ))
)
.

This means that there exists an open subset U of T such that f−1(U) ∼=
U ×k S. Hence T ×k S is k-birational to the k-rational variety E. Thus
T ×k S is k-rational.
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(iii) =⇒ (i) : We assume that there exists a k-torus T ′ such that T ×k T ′
is a k-rational variety. Then T (k)/R × T ′(k)/R = 1, so T (k)/R = 1. The
same holds for any extension F/k. ¤

3.4.2. Stably k-rational tori. Given a k-torus T , we have the following char-
acterisation of stably k-rational tori.

3.15. Theorem. The following are equivalent:
(i) T is the quotient of two induced tori;
(ii) T is a stably rational k-variety;

(iii) p(T̂ ) = 0 ∈ C(Γ).

The proof of (ii) =⇒ (iii) is the same than for Theorem 3.14, so it requires
as well some geometry.

3.16. Sketch of proof. (i) =⇒ (ii) : Assume that there is an exact sequence
1 → E1 → E2 → T → 1 where E1, E2 are quasi-trivial tori. By Hilbert 90,
T is R-trivial and the same argument as in the proof of Theorem 3.14 shows
that T ×k E1 is birationally k-isomorphic to E2. Since induced tori are
k-rational varieties, we conclude that T is stably k-rational.
(iii) =⇒ (i) : Let 1 → S → E → T → 1 be a flasque resolution of T . Our
hypothesis is that there exist quasi-trivial tori E1, E2 such that E2 = S×E1.
Replacing S by S×E1 and E by E×E1, we conclude that T is the quotient
of induced tori.

We can now state Voskresenskǐı’s conjecture.

3.17. Conjecture. If T is stably k-rational, it is k-rational.

There are few evidences for this conjecture. Even the case of tori split by
cyclic extensions is not known [V].

4. Case of isotropic simply connected groups

For simplicity, we deal with a semisimple simply connected group G/k
which is assumed to be absolutely k–simple, i.e. G×kks

∼= SLn,ks , Spin2n+1,ks
,

Sp2n;ks
, etc... We assume G to be isotropic, that is, G carries a proper k-

parabolic subgroup P . We denote by Ru(P ) its unipotent radical.
We denote by G(k)+ ⊂ G(k) the normal subgroup generated by the con-

jugates of Ru(P )(k); this group does not depend of the choice of P . We
denote by Z the center of G(k). Tits simplicity theorem states that a
proper normal subgroup of G(k)+ is a subgroup of Z(k) [T1]. So simplicity
statements for the abstract group G(k) boils down to the vanishing of the
Whitehead group W (k, G) = G(k)/G(k)+. For G = SLn(D) with n ≥ 2,
we have W (k, G) ∼= SK1(D) which is nothing but G(k)/R. It is surprizing
since G(k)+ consists of elements which can be linked to 1 within a mapping
A1

k → G. This is actually a general fact.
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4.1. Theorem. [G5, 7.2] W (k,G) ∼−→ G(k)/R.

Our interpretation is that the R-equivalence is the right extension to
arbitrary reductive groups to the Whitehead groups. The key step to show
the homotopy invariance property.

4.2. Theorem. [G5, 5.8] W (k,G) ∼−→ W (k(t), G) ∼−→ W (k((t)), G).

4.3. Sketch of proof. The fact that the map G(k[[t]]) → W (k((t)), G) is
onto is a quite easy application of Bruhat-Tits theory. We shall use that
fact for each closed point M of the affine line A1

k be used, namely

G(ÔM ) →→ W (F̂M , G)

where ÔM
∼= k(M)[[πM ]] stands for the completion of k[t] at the point M

and K̂M = Frac(ÔM ). We want to show that G(k(t)) = G(k(t))+ G(k). We
are given g ∈ G(k(t)) which can be written g = hM gM with hM ∈ G(F̂M )+

and gM ∈ G(ÔM ). Put U = Ru(P ) and consider the unipotent radical U−
of a k–parabolic subgroup P− which is opposite to P . We know [BoT3,
§6] that G(E)+ is generated by U(E) and U−(E) for an arbitrary field
extension E/k. We can then approximate strongly the hM by an element
h ∈ G(k(t))+, that is

h−1 hM ∈ G(ÔM )

for all M ∈ A1. Up to replace g by h−1 g, we can then assume that

g ∈ G(k[t]) = G(k(t)) ∩
∏

M

G(ÔM ).

Margaux-Soulé’s theorem states that G(k[t]) is generated by G(k) and U(k[t])
[Ma], so g ∈ G(k(t))+ G(k) as desired.

We have shown that a torus T is R-trivial if and only if G is a direct
summand of a k-rational variety so a fortiori iff T is a retract rational variety
(ibid, 5.9), this is a “retraction of a k–rational variety”, a notion due to
Saltman [Sa]. So it is natural to ask the following

4.4. Question. Let H be a reductive k–group. If H is R-trivial, is H a
retract k–rational variety ?

By an important characterisation of retract rational varieties, this is to ask
whether the map H(A) → H(A/mA) is onto for an arbitrary local algebra
A.

5. Reductive groups

Our purpose is to compute concretly the group G(k)/R for reductive
groups over nice fields.



R-EQUIVALENCE 11

5.1. Flasque resolution of reductive groups. Recall that a linear al-
gebraic group G/k is reductive if it is connected and has trivial unipotent
radical. We say that G is quasi-trivial if DG is simply connected and if its
coradical torus E := G/DG is quasi-trivial. A flasque resolution of G is an
exact sequence of k–groups

1 → S → G̃ → G → 1

such that S is a flasque k–torus and G̃/k is a quasi-trivial reductive group.
Flasque resolutions exist and are essentially unique. One way to show the

existence is by using geometry after Voskresenskǐı [V], Borovoi-Kunyavskǐı
[BK] and Colliot-Thélène [C2].

5.1. Theorem. Let X be a smooth compactification of G. Let S be the
Néron-Severi torus of X, i.e. of character module Pic(X×kks). Let (T , t0)/X

be the universal S-torsor of (X, e) and denote by G̃ = G×X T . Then (G̃, t0)
admits a unique structure of algebraic groups such that the mapping G̃ → G
defines a flasque resolution of G.

Let us explain what means here “universal torsor” [Sk]. The point e ∈
G(k) ⊂ X(k) gives rise to a decomposition

H1
ét(X, S) = H1(k, S)⊕H1(X×kks, S)Γk = H1(k, S)⊕HomΓk

(
Ŝ, Pic(X×kks)

)
.

This is to say that the class of the S-torsor T /X maps to (0, id).

5.2. Sketch of proof. S is flasque. Let Y be the variety of Borel subgroups
of G. Since Y is a geometrically connected variety, Borovoi and Kunyavskǐi
noticed that S is flasque iff S ×k k(Y ) is flasque [BK]. This trick permits to
assume that G is quasi-split, that is G carries a Borel subgroup B. Let T
be a maximal k-torus of B, then G is k-birational to G/B ×B. Since G/B
is a k-rational variety (Borel-Tits) and B = Ru(B) o T , it follows that T
and G are stably k-birationnally equivalent.

The point is that the class of Ŝ in the semigroup C(Γk) does not depend of
the choice of the compactification, and depends only of the stably birational
class of the variety [Vo, §4.4], G in our case. So we are reduced to the case
of a smooth compactification of the torus T which is Voskresenskǐi [V, §4.6].

G̃ is a k-group. The point here is the fact that the S-torsor G̃ → G is
“multiplicative”, namely

p∗1([G̃]) + p∗2([G̃]) = m∗([G̃]) ∈ H1
ét(G,S).

The choice of an isomorphism determines then a k-group structure on G̃
[C2, §5].

The k-group G̃ is quasi-trivial. The derived group G̃ is semisimple and is
simply connected iff Pic(DG̃×k ks) = 0. Since the map DG̃×k ks → G̃×k ks
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is split, it is enough to check that Pic(G̃×k ks) = 0. We consider the exact
sequence

0 −−−−→ ks[G]×/k×s −−−−→ DivTks\ eGks
−−−−→ Pic(Tks) −−−−→ Pic(G̃ks) → 0.

But Pic(T ×kks) = 0, hence Pic(G̃×kks) = 0. Therefore ks[G̃/DG̃]×/k×s ==
ks[G̃]×/k×s is a permutation Galois module, so the coradical torus of G̃ is
quasi-trivial.

As for tori, it is interesting for R-equivalence.

5.3. Lemma. Let 1 → S → G̃ → G → 1 be a flasque resolution. Then the
characteristic map ϕk;G(k) → H1(k, S) gives rise to an exact sequence

G̃(k)/R → G(k)/R → H1(k, S) → H1(k, G̃) → H1(k, G)

Note that we have an exact sequence for the centers 1 → S → Z(G̃) →
Z(G) → 1. Technically speaking, it is important since it shows that the
map H1(k, S) → H1(k, G̃) factorises by H1(k, Z(G̃)).

The computation of G(k)/R essentially decomposes to the quasi-trivial
case and to the control on the image of the characteristic map.

5.2. Norm priciple and norm groups. We are given the exact sequence
1 → DG̃ → G̃

f→ E → 1 and would like to control the image of R(k, G̃)
inside E(k). The key ingredient is the norm principle of Gille-Merkurjev
[G1] [Me4] which reads as follows

NL/k

(
fL(R(L, G̃)

)
⊂ fk(R(k, G̃))

for field extension L/k. If G̃L is quasi-split (i.e. admits a Borel L–subgroup),
G̃ is L–rational, and R(L, G̃) = G̃(L) surjects onto E(L). We have then the
inclusion

NL/k(E(L)) ⊂ fk(R(k, G̃)) ⊂ E(k).

By taking all norm groups for finite fields extensions which quasi-split G̃,
we get then the inclusion

NX(k,E) = fk(R(k, G̃)) ⊂ E(k)

where X stands for the variety of Borel subgroups of G̃.

5.3. Fields of cohomological dimension ≤ 2. We shall discuss here the
case of fields of cohomological dimension ≤ 2, e.g. function fields of surfaces
or totally imaginary number fields.

Norm groups: We have shown that NX(k) = k× [G3, th. 6]. By decom-
posing the quasi-trivial torus E, it is easy to see that the previous inclusion
yields that fk(R(k, G̃)) = E(k) [BK, appendix]. It follows that

DG̃(k)/E → G̃(k)/R

is onto.
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Surjectivity of the characteristic map: Using the theorem 90 of Hilbert, the
exact sequence 1 → DG̃ → G̃ → E → 1 yields that the map H1(k, DG̃) →
H1(k, G̃) is onto. If Serre’s conjecture II holds2 for DG̃, we have H1(k, DG̃) =
1 and can conclude that the characteristic map G(k) → H1(k, S) is trivial.

We know that H1(k, Z(G̃)) → H1(k, DG̃) is trivial [G3, th. 6] which is
enough to conclude. We have then proven the following

5.4. Theorem. Let u : G̃ → G be a flasque resolution of the reductive group
G/k defined over a field of cohomological dimension ≤ 2. Put S = ker(u).
Then we have an exact sequence

DG̃(k)/R → G(k)/R → H1(k, S) → 1.

In several cases, in particular by the rationality results of Chernousov-
Platonov [CP], we know that G̃ is a k-rational variety, which enables us to
conclude of the vanishing of G̃(k)/R.

5.4. p-adic fields and totally imaginary number fields. If k is a p-adic
field, Voskresenskǐi has proven that DG̃(k)/R = 1 ( utside ot type A, the
job is done by the previous general statement). We have

G(k)/R
∼−→ H1(k, S) ∼= H1(k, Ŝ)D

which generalizes the case of tori.
Similarly, if k is a totally imaginary number field, we know that DG̃(k)/R =

1 by Platonov et al ([PR], see also [G1, III.1.1]), then

G(k)/R
∼−→ H1(k, S)

which generalizes as well the case of tori. In particular, G(k)/R is a finite
abelian group which depends only of the center of G.

5.5. Geometric fields. If k is the function field of a complex surface, we
have shown that the groups are very isotropic exactly as in preceding case
[CGP]. This permits to conclude that

G(k)/R
∼−→ H1(k, S).

Furthermore, this is a finite group (loc. cit, §3.2).

5.6. Open question. Let k be a finitely generated field over Q or C. Let
G/k be reductive group. Is the group G(k)/R finite ?

2Serre’s vanishing conjecture II is known in several cases, see [G7] for a survey.
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of the American Mathematical Society 356 (2004), 4465–4474.

[G5] P. Gille, Le problème de Kneser-Tits, Séminaire Bourbaki 983, Astérisque 326
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