
NOTES ON BRUHAT-TITS THEORY

LENS, JUNE 2009

PHILIPPE GILLE

Of course, it has no sense to present quickly the full monument which is
the Bruhat-Tits theory (references [7] to [12]). We shall limit ourself to very
special and nice cases in this survey1.

1. Introduction, case of linear groups

Let G be a semisimple Lie group. Elie Cartan has proven that G admits
a unique (up to conjugacy) maximal compact subgroup K. Furthermore K
is algebraic in the sense that it is given by polynomial equations. The basic
example is that of G = SLn(R), where K is the special orthogonal group
SOn(R). There are several variations of the proof of the conjugacy theorem.

(1) Consider the quotient SLn(R)/SOn(R). It is a symmetric space of
negative curvature (i.e. sectional curvature ≤ 0) and is equipped with an
isometric action of SLn(R). Since it is of negative curvature, every compact
group K of SLn(R) has a fixed point on X [18, §I.13, VI.2]. In other words,
K is a subgroup of a conjugate of SOn(R).

(2) If K is a compact subgroup of SLn(R), the (left invariant) Haar mesure
on K permits to form the mean value

Q(x) :=
∫

K
q(g−1.x) dg

of a given positive definite quadratic form q on Rn. Then Q is still a positive
definite quadratic form which is K–invariant, hence K ⊂ O(Q).

One important fact is that SOn(R) occurs as the real points of a semisim-
ple algebraic group. This is a general fact about compact subgroups of
GLn(C) [23, §3.7]. Actually the two ways are close since they have to do with
metrics. The point is that we can see the quotient space SLn(R)/SOn(R) as
the space of euclidean metrics on Rn up to scalars namely Symn,>0(R)/ ∼,
the quotient of the space of positive definite matrices of size n by R×

+. We
have a bicontinuous map

SLn(R)/SOn(R) −→ Symn,>0(R)/ ∼, g 7→ g tg.

1Version of June 24, 2009.
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Example 1.1. If n = 2, the space Sym2,>0(R)/ ∼ is nothing but the
hyperbolic space of dimension 2, namely H2 = {z ∈ C | z |< 1} [17]. A
positive definite matrix Q reads

Q = Pdiag(λ+, λ−) tP

where P = Rθ is a matrix rotation and λ+ (resp. λ−) stands for for the
biggest (resp. lowest) eigenvalue of Q. We apply h to λ−

λ+
e2iθ. This defines

an isomorphism Sym2,>0(R)/ ∼−→ H2.
Furthermore the distance between the classes of two positive quadratic

forms [q] and [q′] is

d([q], [q′]) =
1
2

(
Supx6=0(q′(x)/q(x))
Infx6=0(q′(x)/q(x))

)
.

The first issue was to investigate the analogies in the case of p–adic fields.
It was achieved by Iwahori and Matsumoto for split semisimple simply
connected group groups over p–adic fields [19]. The Bruhat-Tits frame-
work is larger : we are given a field K equipped with a discrete valuation
ω : K× → Z assumed to be henselian (complete for example). We denote by
O its valuation ring, π an uniformizing parameter and by k = O/π its residue
field 2. It deals with a reductive group G/K over K. By means of a faithfull
representation3 G ↪→ GLn, we get a topology on G(K) ⊂ GLn(K) ⊂ Kn2

by taking the induced topology of Kn2
on G(K). We are then interested

in bounded subgroups of G(K) and especially in the maximal ones. Let us
start with the following basic examples.

Lemma 1.2. (1) If G = Gn
m, then (O×)n is the unique maximal

bounded subgroup of G(K) = (K×)n.
(2) If G = GLn, then GLn(O) is the unique maximal bounded subgroup

(up to conjugacy) of GLn(K).
(3) If G = SLn, then SLn(K) admits n maximal bounded subgroups up

to conjugacy, namely the giSLn(R)g−1
i where gi = diag(πi, 1, · · · , 1)

for i = 0, ..., n− 1.

Proof. (1) The valuation induces an exact sequence 1 → (O×)n → (K×)n →
Zn → 0. Since a bounded subgroup of (K×)n maps to 0 in Zn, (O×)n is the
unique maximal bounded subgroup of (K×)n.
(2) Let Γ ⊂ GLn(K) be a bounded subgroup. Consider the R–submodule
M of Kn which is generated by g.Rn for g running over Γ. Then M spans
the K–vector space Kn and M is bounded, hence M is a lattice. So there
exists g ∈ GLn(K) such that g(M) = Rn, thus Γ ⊂ g−1GLn(R)g.
(3) We leave this as an exercise to the reader.

¤
The Bruhat-Tits (extended) building of GLn(K) is the space of norms of

Goldman-Iwahori. We recall the definition of an additive norm of V = Kn:
it is a function α : V → R ∪ {∞} satisfying

2There is no need at this stage to assume that the residue field k is perfect.
3Of course, the topology is independent of that choice, see [38, app. III].



NOTES ON BRUHAT-TITS THEORY 3

• α(x + y) ≥ Inf
{
α(x), α(y)} for all x, y ∈ V ;

• α(λx) = ω(λ) + α(x) for all λ ∈ K, x ∈ V ;
• α(x) = ∞ if and only if x = 0.

Note that |x|= exp(−α(x)) is a ultrametric norm. We denote by B(GLn,K)
the space of additive norms. It is a reunion of “apartments” namely the
A(e1, ..., en) ∼= Rn for e = (ei) running over the basis of Kn consisting in
the additive norms

αe,c

(∑
λiei

)
= Inf

{
ω(λi) + ci

}

for c = (ci) ∈ Rn. Note that
{

x ∈ Kn | αe,0(x) ≥ 0
}

= O e1 ⊕ · · · ⊕O en

is a lattice. Conversely, we have

αe,0(x) = Sup
{

n ∈ Z | x ∈ πn(O e1 ⊕ · · · ⊕O en)
}

.

These kind of additive norms correspond exactly to the maximal bounded
subgroups of GLn(K), we shall see later that those are the vertices for the
simplical structure of B(GLn,K).

Remark 1.3. This is the prototype of euclidean buildings. Note that two
additive norms belong to a common apartment as noticed by A. Weil [39,
§II.2]. In odd characteristic, this permits to define buildings of classical
groups [12] [3] [24]. For a recent analytic viewpoint on Bruhat-Tits theory,
see the recent preprint [27] of Rémy-Thuillier-Werner.

Remark 1.4. Except for the case n = 2, the Goldman-Iwahori metric is
not the metric of the Bruhat-Tits building but defines the same topology.

2. Bruhat-Tits building of Chevalley groups

The plan is to try to explain how we can guess after Iwahori-Matsumoto
what are the maximal bounded subgroups in the case of a split group. This
permits to construct the Bruhat-Tits building and to show indeed that the
guess was correct. In other words, the strategy is the same than for real
groups.

2.1. The standard apartment. Let G/Z be an almost simple simply con-
nected Chevalley group equipped with a pinning. Recall this is the following
data.

• a maximal Z– split torus T/Z of G,

• an irreducible and reduced root system Φ = Φ(T, G) ⊂ T̂⊗ZR (where
T̂ = HomZ−gr(T,Gm,Z) stands for the cocharacter group of T ) equipped
with a basis ∆ which defines the set of positive roots Φ+,
• A family of morphisms (Uα : Ga,Z → G)α∈Φ and a Borel subgroup B/K

of G such that for each ordering Φ+ = (αi)i=1,..,q, the product law on G



4 PHILIPPE GILLE

induces an isomorphism of Z–schemes

T ×
∏

i=1,..,q

Ga

id× Q
i=1,..,q

Uαi

−−→ B.

We are interested in bounded groups of G(K) which contain the maximal
subgroup T (K)b of T (K). We shall see later that the subgroup G(O) is a
maximal bounded subgroup of G(K) which plays an important role. Since
a building is done by apartments, let us define the standard apartment

A = φ + T̂ 0 ⊗Z R

This is an affine space which is defined by means of a given point φ and its
underlying vector space V = T̂ 0 ⊗Z R, the coroot system vector space.

An affine coroot a = (α, n) with α ∈ Φ(G,T ) and n ∈ Z is the affine
function

V → R, v 7→ a(v) = 〈α, v〉+ n.

We denote by α0 the opposite of the highest root of Φ, which reads as follows

α0 +
∑

α∈∆

cαα = 0.

Then the set of affine roots

∆a = {(α, 0)}α∈∆ ∪ {(α0, 1)},
stands for the set of vertices of the extended Dynkin diagram of ∆.

2.2. Certain bounded subgroups. For a subset Ω ⊂ A, define the integer

nΩ(α) = Sup
{

[(α, v)], v ∈ Ω
}

for each α ∈ Φ. We consider the subgroup PΩ of G(K) which is generated
by

T (K)b, Uα(πnΩ(α)O) (α ∈ Φ).
It is easy to check that PΩ is bounded4. Note that Pφ = G(O).

2.3. The Tits system. Since T (K) = T̂ 0⊗Z K×, the valuation ω : K× →
Z induces a map ν : T (K) → T̂ 0.

Define N = NG(T ) and W = NG(T )/T .
The affine space A is equipped with an action of N(K) = T (K).W by

nw.(φ + v) = φ + w. v,

for nw ∈ N(Z) a lift of w ∈ W and

τ.(φ + v) = φ + v − ν(g) (g ∈ T (K)).

The kernel of this action is T (O) and we define the affine Weyl group

Wa := N(K)/T (O) ∼−→ T̂ 0 oW.

4A nice way to ckeck that is to notice that PΩ stabilizes the lattice

t⊕
M
α∈Φ

πnΩ(α)uα

inside the Lie algebra of G. Note that we deals with a Lie algebra over O, this is the first
appearance of the algebraic structure linked to PΩ.
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We define the chamber

C =
{

φ + v ∈ A | 〈α, v〉 > 0 ∀α ∈ ∆ 〈α0, v〉+ 1 < 0
}

.

The closure of the chamber is a simplex which is a simplicial fundamental
domain for the action of the group Wa on A. To a point c of C, we can attach
its underlying facet Fc ⊂ C, it is defined as the interior of the smallest facet
of C which contains C. By transport of structure, this permits to define the
facet Fx attached to an arbitrary point x ∈ A.

Let (α∗)α∈∆ be the dual basis ∆ of T̂ ⊗Z R. The extremal points of C
are θα0 = 0 and the θα = α∗

cα
for α running over ∆, so are given by ∆a.

Definition 2.1. The type of a facet Fc is the set of the extremal points of
F c. This defines the type of an arbitrary facet of A.

The expected maximal bounded subgroups of G(K) are the subgroups
Pθα for α ∈ ∆e.

The space V comes equipped with a scalar product which is W–invariant.
Consider the set S = (rα)α∈∆a of orthogonal reflexions of A with respect

to the walls φ + ker(α) for α ∈ ∆ and φ + α−1
0 (−1).

The subgroup PC will play the role of the Borel subgroup in the classical
theory; it is called an Iwahori subgroup and is nothing but

PC =
{

g ∈ G(O) | g ∈ B(k)
}

where g stands for the image of g ∈ G(k). We have N(K)∩PC = T (O) and
N(K)/T (O) = Wa.

Theorem 2.2. The quadruple (G(K), PC , N(K), S) is a Tits system,
namely satisfies the following rules:

(T1) The set PC ∪ N(K) generates G(K) and PC ∩ N(K) = T (O) is a
normal subgroup of N(K).

(T2) The set S generates Wa and consists of elements of order 2.

(T3) For each s ∈ S and for each w ∈ Wa, we have

sPC w ⊂ PC w PC ∪ PC sw PC

(T4) For each s ∈ S, we have sPC s 6= PC .

The only serious point is (3). There are several consequences of that result
by taking into account the theory of Tits systems.

(1) The Bruhat decomposition :

G(K) =
⊔

w∈Wa

PC w PC .

(2) Parahoric subgroups : if X ⊂ S, define Wa,X as the (finite) subgroup
of Wa which is generated by X. Then PX Wa,X PC is a bounded subgroup
of G(K). Furthermore, the parahoric subgroups PX and PX′ are conjugated
under G(K) if and only if X = X ′.
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If x ∈ C, we know that the fixator Wa,x is generated by Wa,x ∩ S. Hence
Px = PC Wa,x PC is a subgroup of G(K), and is actually nothing but the
subgroup Px defined before.

Remark 2.3. The reason why the theory is slightly simpler in the semisim-
ple simply connected case is that the action of Wa on A preserves the type
and furthermore that the fixators and the stabilizers are the same. The
same properties occur for the action of G(K) on B.

2.4. The building. We define the Bruhat-Tits building B = B(GK) by the
standard procedure

B =
(
G(K)× C

)
/ ∼

where (g, x) ∼ (g′, x′) if x = x′ and g−1 g′ ∈ Px. The group G(K) acts on B
by

g.(h.x) = (gh, x).

The building is a simplicial space and by construction 1× C is a simplicial
fundamental domain for the action of G(K) on B.

We have
A = (Wa × C)/ ∼

where (w, x) ∼ (w′, x′) if x = x′ and g−1 g′ ∈ Wa,x. So we can embed A in
B by

j([(w, x]) = [(nw, x)]
where nw ∈ N(K) stands for an arbitrary lifting of w in N(K). We see then
A inside B and the apartments of B are then by definition the g .A for g
running over G(K). This also permits to define the facet of a given point of
B and its type. We review two crucial facts about apartments.

Lemma 2.4. There is a one-to-one correspondence between the apartments
of B and the maximal K-split tori of GK .

Proof. Since maximal K–tori are conjugated, both sets are homogeneous
under G(K). The stabilizer of A in T (K) is NG(T )(K) = N(K), hence the
statement. ¤

Lemma 2.5. Two points of B belong to a common apartment.

Proof. It is enough to show that for each chamber C ′ of B, there is an
apartment which contains C and C ′. We have C ′ = g.C. Using Bruhat
decomposition, we have C ′ = pnC with n ∈ N(K) and p ∈ PC . Hence
C ′ = p n p−1 pC, thus C and C ′ are both inside the apartment p.A. ¤

2.5. The metric. The standard apartment is equipped with an euclidean
metric, so each apartment A′ of B is equipped by transport of structure of
an euclidean metric dA′ . Given two points x, y ∈ B, a subtle point5 is to
check that dA′(x, y) is the same for each apartment A′ containing x and y.
This permits to define the distance function d : B × B → R+.

By the same kind of arguments, it is indeed a distance which makes B as
a complete geodesic space. By construction, G(K) acts isometrically on B.

5Involving the retraction to an apartment [8, §2.3].
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Furthermore the equality d(x, z) = d(x, y) + d(y, z) implies that x, y, z
belong to a common apartment. This is related to the negative curvature
property called CAT (0) (see [2, §11]). It means that given three points
x, y, z of B, for any p ∈ [x, y], the distance d(z, p) is lower that for a triangle
of the euclidean space with same lengths.

This negative curvature permits to define the circumcenter c(Y ) of a
bounded subset Y ⊂ B. This is the unique point of B where the radius
function

r(x, Y ) := Sup
{

d(x, y) | y ∈ Y
}

takes its minimal value. In other words, c(Y ) is the center of the smallest
closed ball which contains Y .

Theorem 2.6. (Bruhat-Tits fixed point theorem) Let Γ be a group acting
isometrally on B such that it stabilizes a non-empty bounded subset of B.
Then BΓ 6= ∅.

The fixed point is the circumcenter of the given non-empty bounded sub-
set Y stabilized by G.

2.6. The maximal bounded subgroups.

Theorem 2.7. There are rank(G)+1 G(K)-conjugacy classes of maximal
bounded subgroups of G(K), namely the parahoric subgroups attached to the
extremal points of C.

In particular G(O) = Pφ is a maximal bounded subgroup of G(K).

Proof. By the second consequence of Theorem 2.2, this is enough to show
that a given bounded subgroup Γ of G(K) belongs to some Px, i.e. that Γ
has a fixed point on B. But the orbit Γ.φ is bounded, hence the fixed point
theorem applies and shows that BΓ 6= ∅.

¤
2.7. Functoriality. The functoriality with respect of groups and field ex-
tensions is a complicate topic of Bruhat-Tits theory, see [8, §9.1.19] [28]
[21], [26]. What we use in the lectures are the two following easy facts
which follow of the construction.

(1) If K ′/K is an unramified extension of henselian DVR, we have a
natural embedding (and metric) B(GK) → B(GK′).

(2) Let K ′/K be a finite Galois extension, then G(K ′)o Gal(K ′/K) acts
on B(GK′).

3. Models

If X/K is an affine scheme, a model is a flat affine O-scheme such X such
that X ×O K ∼= X. If X/K is an algebraic group, we require that X/O is
a flat group scheme. For constructing models, it is convenient to assume
that O is strictly henselian, i.e. the residue field k is separably closed6. We
assume this until the end of the section.

6In practice, we have then to replace O by its strict henselization Osh and go down by
Galois descent for defining the wished group scheme over O.
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Theorem 3.1. Let Ω ⊂ A be a non-empty subset. Then there exists a
unique smooth model PΩ/O of G/K such that PΩ(O) = PΩ. Furthermore

O[PΩ] =
{

f ∈ K[G] | f(PΩ) ⊂ O
}

and PΩ/O is connected.

The group scheme PΩ is called the canonical Bruhat-Tits smooth model
attached to PΩ. Its unicity is guaranteed by the following general fact.

Lemma 3.2. ([9, §1.7]) Let X/O be a smooth scheme of generic fiber X.
Then

O[X] =
{

f ∈ K[X] | f(PΩ) ⊂ O
}

.

The hard thing is then the existence of an integral model. There are
three different constructions, the original construction by Bruhat-Tits [9],
the application of Artin-Weil’s theorem (see [13, §5]) or Yu’s construction
[40]. We sketch it in the case of a maximal parahoric subgroup Px.

Proof. The idea is to define the O–group scheme G by

O[G] =
{

f ∈ K[G] | f(Px) ⊂ O
}

.

It is a flat Hopf algebra over O, so defines indeed a group scheme G/O which
is a model of G/K. By construction we have Px ⊂ G(O). Since G is a closed
subgroup of some GLn,O [9, §1.4.5], G(O) is a bounded subgroup of G(K),
hence Px = G(O).

If k is of characteristic zero, G is smooth by Cartier theorem and we are
done. In positive characteristic, Raynaud’s smoothening theorem [13, §3.1]
provides a smooth affine model G̃/O such that G̃(O) = G(O). ¤

4. Soulé’s theorem

We assume now that K = k((1
t )) and we consider the action of the group

Γ = G(k[t]) on B(GK). Define T̂ 0
+ =

{
λ ∈ T̂ 0

+ | 〈λ, α〉 ≥ 0 ∀α ∈ ∆
}
.

Theorem 4.1. The “quartier” Q = φ + T̂ 0
+⊗ZR is a simplicial fundamental

domain for the action on Γ on B(GK).

For the SL2 case, see [30, II.1.6]. For the proof see the original paper [32]
or its generalization by Margaux [22]. Since B(GK) is connected and simply
connected, it follows that Γ is the direct limit of the stabilizers (Γx)x∈Q
with respect to their intersections. This can be refined as the direct limit of
(ΓI)I⊂∆ with respect to their intersections with

ΓI = UI(k[t])o LI(k)

where PI = UI o LI stands for the standard parabolic subgroup of type I.

Remark 4.2. Using the theory of twin buildings, Abramenko showed an
analogous result for the action of G(k[t, t−1]) on B(Gk((t))) × B(Gk(( 1

t
))) [1,

prop. 5]. This result actually covers Soulé ’s theorem.
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5. Application to Galois cohomology

6. The non-split case
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