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1. Introduction

The theory of affine algebraic groups over an algebraically closed field
of characteristic zero is well spread out and is rather close of the theory
of complex Lie groups. When dealing with semisimple real Lie groups, we
deal real algebraic groups and that theory extends well to a base field of
characteristic zero. When dealing in the positive characteristic case, new
objects (as non smooth groups for examples) and new phenomenons (as
failure of reducibility for linear representations of GL2) occur. Technically
speaking, it is also harder since the language of varieties is not anymore
adapted (and quite dangerous) and the natural framework is that of group
schemes.

The theory of affine algebraic groups over a field of positive characteristic
was significantly extended recently by the theory of pseudo-reductive groups
of Conrad-Gabber-Prasad; it will be presented in the course of B. Conrad.

To start with this topic, I recommend “Basic theory of affine group
schemes” by Milne [M1] before reading the Demazure-Gabriel’s book.

Let me discuss basic examples for motivating the lectures. We denote by
k a base field and by p ≥ 1 its characteristic exponent.

1.1. Over an algebraically closed field of characteristic p > 0.

1.1.1. There are non trivial commutative extensions of Ga by itself. Such
an example is provided by the k–group W2 of Witt vectors of length 2. As
k-variety, we have W2 = A2

k and the (commutative) rule law is given on k2

by (x0, x1) + (y0, y1) =
(
x0 + y0, x1 + y1 − S1(x0, y0)

)
where

S1(x, y) =

p−1∑
i=1

i!(p− 1)!

(p− i)!
xiyp−i.

The projection map W2 → Ga is a group homomorphism and we have an
exact sequence (a precise sense will be provided, see §4) of k–groups

0→ Ga →W2 → Ga → 0
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This sequence is not split. For simplicity we consider the case p = 2. It the
sequence splits, we would have a k–group morphism Ga →W2, t 7→ (t, f(t))
where f ∈ k[t]. Such a f satisfies the rule f(x+ y) = f(x) + f(y) + xy and
xy cannot be written as a difference f(x + y) − f(x) − f(y). Another way
for k = Fp is to see that W2(Fp) ∼= Z/p2Z.

In constrast, recall that in characteristic zero, any commutative k–group
which is extension of Ga by itself is trivial [DG, 2.4.2].

1.1.2. Intersection of smooth subgroups are not necessarily smooth. In the
additive group G = G2

a, we consider the closed k–subgroup H1 given by
the equation xp + x = y. Then H1 is isomorphic to Ga, hence is smooth.
In the other hand, we consider the additive subgroup H2 of G defined by
the equation x = y. Then the intersection H = H1 ∩ H2 is given by the
equations x = y and xp = 0, so is isomorphic to the infinitesimal group
αp whose coordinate ring is k[t]/tp. It is not smooth. In the language
of varieties, the intersection is trivial but is not in the scheme-theoretical
viewpoint.

1.2. Over a non-perfect field of characteristic p > 0.

1.2.1. Groups with few points. We start with the following example due to
Tits. We put K = Fp(t) (or Fp(t)) and consider the K–subgroup G of G2

a,K

defined by the equation
x+ txp + yp = 0.

Geometrically, G is very nice since GK( p√t)
∼= Ga,K( p√t); in particular, G is

smooth and connected. This illustrates the descent technique.
If p > 2, we claim that G(K) = {(0, 0} (if p = 2, G(K) is infinite

since G is a smooth curve of genus zero). Let (x(t), y(t)) ∈ G(K). If
x(t) = 0, then y(t) = 0 so we can deal with the case x(t) = P

Q where P,Q

are coprime irreducible polynomials of Fp[t]. By deriving the equation, we
get that P ′Q− PQ′ + P pQ2−p = 0 which is impossible since p > 2.

This contrasts with the fact that H(F ) is schematically dense in H for
every affine algebraic connected group H defined over a field F of charac-
teristic zero [Bo, 18.3].

I thank Michel Brion, Brian Conrad and Ronan Terpereau for their com-
ments.
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Lecture I: Generalities

2. Sorites

We shall work over a base ring R (commutative and unital) and discuss
more precisely the case of our base field k.

2.1. R-Functors. We denote by AffR the category of affine R-schemes.
We are interested in R–functors, i.e. covariant functors from AffR to the
category of sets. If X an R-scheme, it defines a covariant functor

hX : AffR → Sets, S 7→ X(S).

Given a map f : Y → X of R-schemes, there is a natural morphism of
functors f∗ : hY → hX of R-functors.

We recall now Yoneda’s lemma. Let F be a R-functor. If X = Spec(R[X])
is an affine R–scheme and ζ ∈ F (R[X]), we define a morphism of R-functors

ζ̃ : hX → F

by ζ̃(S) : hX(S) = HomR(R[X], S)→ F (S), f 7→ F (f)(ζ).
Each morphism ϕ : hX → F is of this shape for a unique ζ ∈ F (R[X]): ζ

is the image of IdR[X] by the mapping ϕ : hX(R[X])→ F (R[X]).
In particular, each morphism of functors hY → hX is of the shape hv for

a unique R–morphism v : Y→ X.

A R-functor F is representable by an affine scheme if there exists an affine
scheme X and an isomorphism of functors hX → F . We say that X represents
F . The isomorphism hX

∼−→ F comes from an element ζ ∈ F (R[X]) which
is called the universal element of F (R[X]). The pair (X, ζ) satisfies the
following universal property:

For each affine R-scheme T and for each η ∈ F (R[T]), there exists a
unique morphism u : T→ X such that F (u∗)(ζ) = η.

We can also deal with R–functors in groups. A basic example is the R–
functor Aut(X) of automorphisms of a given R-scheme X, that is defined
by Aut(X)(S) = AutS(XS). for each R–ring S. We can add of course
additional structures (groups,...).

2.1.1. Example. Automorphisms of the additive group. In characteristic
zero, it is well-known that the R–functor Autgr(Ga) is representable by Gm.
That is for each k–ring R, the R-group schemes automorphisms of Ga,R

are homotheties by R× [DG, II.3.4.4]. In characteristic p > 0, the k–functor
Autgr(Ga) is not representable by an algebraic k–group since for each k–ring

R, Autgr(Ga)(R) consists in the morphisms X → a0X+a1X
p+ · · ·+arX

pr

where a0 ∈ R× and the ai are nilpotent elements of R.
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2.2. Definition. An affine R–group scheme G is a group object in the cat-
egory of affine R-schemes. It means that G/R is an affine scheme equipped
with a section ε : Spec(R)→ G, an inverse σ : G→ G and a multiplication
m : G×G→ G such that the three following diagrams commute:

Associativity:

(G×R G)×R G
m×id−−−−→ G×R G

m−−−−→ G

can

y∼= ↗ m

G×R (G×R G)
id×m−−−−→ G×R G

Unit:

G×R Spec(R)
id×ε−−−−→ G×R G

ε×id←−−−− Spec(R)×G

p2 ↘ m

y ↙p1

G

Symetry:

G
id×σ−−−−→ G×R G.

sG

y m

y
Spec(R)

ε−−−−→ G

We say that G is commutative if furthermore the following diagram com-
mutes

G×R Spec(R)
switch−−−−→ G×R G

m

y m

y
G = G.

Let R[G] be the coordinate ring of G. We call ε∗ : R[G] → R the counit
(augmentation), σ∗ : R[G]→ R[G] the coinverse (antipode), and denote by
∆ = m∗ : R[G] → R[G] ⊗R R[G] the comultiplication. They satisfies the
following rules:

Co-associativity:

R[G]
m∗−−−−→ R[G]⊗R R[G]

m∗⊗id−−−−→ (R[G]⊗R R[G])⊗R R[G]

m∗ ↘ can

x∼=
R[G]⊗R R[G]

id⊗m∗−−−−→ R[G]⊗R (R[G]⊗R R[G]).

Counit:

R[G]
id⊗ε∗−−−−→ R[G]⊗R R[G]

ε∗×id←−−−− R[G]

id ↖ m∗
x ↗id

R[G]
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Cosymmetry:

R[G]⊗R[G]
σ∗⊗id−−−−→ R[G].

m∗
x s∗G

x
R[G]

ε∗−−−−→ R.

In other words, (R[G],m∗, σ∗, ε∗) is a commutative Hopf R–algebra1. Given
an affine R–scheme X, there is then a one to one correspondence between
group structures on X and Hopf R–algebra structures on R[X].

If G/R is an affine R–group scheme, then for each R–algebra S the abtract
group gG(S) is equipped with a natural group structure. The multiplication
is m(S) : G(S) × G(S) → G(S), the unit element is 1S = (ε ×R S) ∈ G(S)
and the inverse is σ(S) : G(S) → G(S). It means that the functor hG is
actually a group functor.

2.2.1. Lemma. Let X/R be an affine scheme. Then the Yoneda lemma
induces a one to one correspondence between group structures on X and
group structures on hX.

In other words, defining a group law on X is the same that do define
compatible group laws on each G(S) for S running over the R-algebras.

2.3. Examples.

2.3.1. Constant group schemes. Let Γ be a finite abstract group. We con-
sider the R–scheme G =

⊔
γ∈Γ Spec(R). Then the group structure on Γ

induces a group scheme structure on G with multiplication

G×R G =
⊔

(γ,γ′)∈Γ2

Spec(R)→ G =
⊔
γ∈Γ

Spec(R)

applying the component (γ, γ′) to γγ′. There usual notation for such an
object is ΓR. This group scheme occurs as solution of the following universal
problem.

2.3.2. Vector groups. Let N be a R–module. We consider the commutative
group functors

VN : AffR → Ab, S 7→ HomS(N ⊗R S, S) = (N ⊗R S)∨,

WN : AffR → Ab, S 7→ N ⊗R S.

2.3.1. Lemma. The R–group functor VN is representable by the affine R–
scheme V(N) = Spec(S∗(N)) which is then a commutative R–group scheme.
Furthermore N is of finite presentation if and only if V(N) is of finite
presentation.

1This is Waterhouse definition [Wa, §I.4], other people talk about cocommutative coas-
sociative Hopf algebra.
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Proof. It follows readily of the universal property of the symmetric algebra

HomR′−mod(N ⊗R R′, R′)
∼←− HomR−mod(N,R

′)
∼−→ HomR−alg(S

∗(N), R′)

for each R-algebra R′. �

The commutative group scheme V(N) is called the vector group-scheme
associated to N . We note that N = V(N)(R).

Its group law on the R–group scheme V(N) is given by m∗ : S∗(N) →
S∗(N) ⊗R S∗(N), applying each X ∈ N to X ⊗ 1 + 1 ⊗ X. The counit is
σ∗ : S∗(N)→ S∗(N), X 7→ −X.

2.3.2. Remarks. (1) If N = R, we get the affine line over R. Given a map
f : N → N ′ of R–modules, there is a natural map f∗ : V(N ′)→ V(N).

(2) If N is projective and finitely generated, we have W (N) = V (N∨) so
that W(N) is representable by an affine group scheme.

(3) If R is noetherian, Nitsure showed the converse holds [Ni04]. If N is
finitely generated projective, then W(N) is representable iff N is locally
free.

2.3.3. Lemma. The construction of (1) provides an antiequivalence of cate-
gories between the category of R-modules and that of vector group R-schemes.

2.3.3. Group of invertible elements, linear groups. Let A/R be an algebra
(unital, associative). We consider the R-functor

S 7→ GL1(A)(S) = (A⊗R S)×.

2.3.4. Lemma. If A/R is finitely generated projective, then GL1(A) is rep-
resentable by an affine group scheme. Furthermore, GL1(A) is of finite
presentation.

Proof. We shall use the norm map N : A → R defined by a 7→ det(La)
constructed by glueing. We have A× = N−1(R×) since the inverse of La
can be written Lb by using the characteristic polynomial of La. The same
is true after tensoring by S, so that

GL1(A)(S) =
{
a ∈ (A⊗R S) = W(A)(S) | N(a) ∈ R×

}
.

We conclude that GL1(A) is representable by the fibered product

G −−−−→ W(A)y N

y
Gm,R −−−−→ W(R).

�

Given a R–module N , we consider the R–group functor

S 7→ GL1(N)(S) = AutS−mod(N ⊗R S).
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So if N is finitely generated projective. then GL1(N) is representable by an
affine R–group scheme. Furthermore GL1(N) is of finite presentation.

2.3.5. Remark. If R is noetherian, Nitsure has proven that GL1(N) is rep-
resentable if and only if N is projective [Ni04].

2.3.4. Diagonalizable group schemes. Let A be a commutative abelian (ab-
stract) group. We denote by R[A] the group R–algebra of A. As R-module,
we have

R[A] =
⊕
a∈A

Rea

and the multiplication is given by ea eb = ea+b for all a, b ∈ A.
For A = Z, R[Z] = R[T, T−1] is the Laurent polynomial ring over R. We

have an isomorphism R[A] ⊗R R[B]
∼−→ R[A × B]. The R-algebra R[A]

carries the following Hopf algebra structure:

Comultiplication: ∆ : R[A]→ R[A]⊗R[A], ∆(ea) = ea ⊗ ea,
Antipode: σ∗ : R[A]→ R[A], σ∗(ea) = e−a;

Augmentation: ε∗ : R[A]→ R, ε(ea) = 1.

2.3.6. Definition. We denote by D(A)/R (or Â) the affine commutative
group scheme Spec(R[A]). It is called the diagonalizable R–group scheme of
base A. An affine R–group scheme is diagonalizable if it is isomorphic to
some D(B).

We denote by Gm = D(Z) = Spec(R[T, T−1]), it is called the multi-
plicative group scheme. We note also that there is a natural group scheme
isomorphism D(A⊕B)

∼−→ D(A)×R D(B).

2.3.7. Proposition. Assume that R is connected. The above construction
induces an anti-equivalence of categories between the category of abelian
groups and that of diagonalizable R–group schemes.

Proof. It is enough to contruct the inverse map HomR−gp(D(A),D(B)) →
Hom(A,B) for abelian groups A,B. We are given a group homomorphism
f : D(A)→ D(B). It induces a map

f∗ : HomR−gp(D(B),Gm)→ HomR−gp(D(A),Gm),

hence a map B → A. �

3. Basic results on algebraic groups

The first thing is that an affine algebraic group G can be embedded as
closed k–subgroup to some GLn [DG, II.2.1]. The reader must to be caution
with the concept of “linear algebraic group” which means furthermore than
G is smooth.
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3.0.8. Remark. Gordeev and Popov proved a more precise embedding state-
ment for G affine smooth over an infinite field k [GP]. There exists a linear
representation V of G such that G embeds as closed k–subgroup of GL(V )
as automorphism of some tensor f ∈ V ∗⊗V ∗⊗V . In particular, G is given
by concrete equations of degrees ≤ 3 (note that explicit constructions have
been given recently by Garibaldi/Guralnick [GG]). Then V is equipped with
a (non associative, non unital) algebra structure V ⊗ V → V and G arises
as group automorphism group of that algebra.

3.1. Reduced subschemes of affine algebraic groups. Let G be an
affine algebraic k-group and denote by Gred its underlying reduced scheme.
We have an isomorphism (Gred ×k Gred)red

∼−→ (G×k G)red [EGA1, 5.1.8].

If the base field k is perfect, we have (Gred ×k Gred)red
∼−→ Gred ×k Gred

so that the group law G×G→ G induces a group law on Gred. Hence Gred

is a closed subgroup k–scheme of G. But Gred is not normal in general in
G, consider for example the F3–group µ3 oZ/2Z in characteristic 3 (for the
semi-direct product, cf. §4.0.1).

If the base field k is not perfect, we cannot do that and we have the
following counterexample. Over K = Fp(t), we consider the K–subgroup G

of Ga,K defined by the equation xp
2

= t xp. Then K[G] = K[x]/xp(xp− t) ∼=
K[x]/xp×k[x]/(xp−t), hence a k–isomorphism K[Gred] ∼= K×K[x]/(xp−t),
we postpone the proof that Gred is not a k–subgroup.

3.2. Smoothness. We have the following nice criterion.

3.2.1. Lemma. Let G be an affine algebraic k–group. Then the following
are equivalent:

(1) G is smooth;

(2) G is geometrically reduced;

(3) the ring OG,e ⊗k k is reduced.

(4) G admits an non empty open subscheme U which is smooth.

We recall that for an affine algebraic k-variety X that we say that X is
geometrically reduced if the algebra k[X] is reduced (that is k[X] is separable
in the Bourbaki sense [Bbk1, V.2]). If this condition is satisfied, it implies
that the smooth locus of X is dense [GW, th. 6.20.(ii)] and also that the
set X(ks) is dense in X (ibid, prop. 6.21).

Proof. Without lost of generality, one can assume than k is algebraically
closed. The implications (1) =⇒ (2) =⇒ (3) are trivial.

(3) =⇒ (4): We assume that the ring OG,e is reduced. Let J be the nilradi-
cal of k[G]; it is a basic fact that the formation of nilradical commutes with
localization. Hence J⊗OG,e is the nilradical of OG,e so is zero and since the
k[G]–module J is finitely generated, there exists an affine open neighbour-
hood U of e in G such that k[U ] is reduced. Then U is generically smooth,
so that there exists a nom-empty open U ′ ⊂ U ⊂ G which is smooth.
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(4) =⇒ (1): We denote by U the smooth locus of G, it is an non empty
open subset of G which is stable by left translations under G(k). We have
then U = G(k)U = G, thus G is smooth. �

3.2.2. Remarks. (a) In characteristic zero, algebraic groups are smooth
(Cartier, [DG, II.6.11]), see [Oo] for another proof.

(b) The algebraic subgroup xp = typ of Ga,Fp(t) is reduced but not geo-
metrically reduced. Hence reduceness is not enough to detect smoothness.

We can come back to the K = Fp(t)–group G defined by the equation
x2p = txp. Then Gred is not smooth and OGred,e = K, so Gred cannot be
equipped with a K–group structure. In particular, Gred is not a k–subgroup
of Ga,K .

3.3. Algebraic subgroups generated by images, derived group of a
smooth group.

3.3.1. Proposition. [SGA3, VIB.7.1] Let G/k be an affine algebraic k–
group. Let (fi : Vi → G)i∈I be a family of k-morphisms where the Vi are
geometrically reduced k–schemes. Then there exists a unique smallest k–
closed subgroup ΓG((fi)i∈I) of G such that each fi factorizes within that
k–group. Furthermore ΓG((fi)i∈I) is smooth.

3.3.2. Remarks. (a) The k–group ΓG((fi)i∈I) is called the k–subgroup gen-
erated by the fi. Its formation commutes with arbitrary base field exten-
sions.

(b) If we are given a morphism of k–groups f : H → G whereH is an affine
smooth k–group. The above statement provides a closed k–group G′ such
that f factorizes within G′. By construction, it is the reduced subscheme of
G whose topological space consists in the reunion of the images of H2n → G,
(h1, h2, . . . , h2n−1, h2n) 7→ f(h1)f(h2)−1 . . . f(h2n−1)f(h2n)−1, hence ΓG(f)
is the reduced subscheme of G with underlying topological space f(H).

(c) If (Hj)j∈J are smooth k–subgroups of G, then ΓG
(
ij : Hj → G

)
is

called the closed k–subgroup generated by the Hj . It is smooth. Further-
more, if the Hi are connected, then ΓG

(
ij : Hj → G

)
is connected [SGA3,

VIB.7.2.1].

3.3.3. Corollary. Let G/k be an affine algebraic k–group. Then G admits
a maximal smooth closed k-subgroup which is denoted by G†. It satisfies the
following properties:

(i) G† is the maximal smooth closed k-subscheme of G and the maximal
geometrically reduced closed k–subscheme of G.

(ii) We have G†(k) = G(k); if k is separably closed, and G† is the
schematic closure of G(k) in G;

(iii) If k is perfect, then Gred = G†;

(iv) If K/k is a separable field extension, then G† ×k K = (GK)†.
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Proof. We apply the above remark c) to the family of all closed k-subgroups
of G.

(ii) Let i : X ⊂ G be a geometrically reduced closed k–subscheme of G.
Then ΓG(i) is a smooth closed k–subgroup of G, hence X ⊂ ΓG(i) ⊂ G†;
(iii) If g ∈ G(k), we have then gG† ⊂ G†, hence g ∈ G†(k). Thus G†(k) =
G(k). If k is separably closed, G†(k) is schematically dense in G†, so we
conclude that G† is the schematic closure of G(k) in G.

(iv) Since G† is smooth, it is reduced so we have G† ⊂ Gred. If k is perfect,
then Gred is geometrically reduced, hence Gred ⊂ G†, thus Gred = G†.

(v) See [CGP, lemma C.4.1].
�

3.3.4. Remarks. (a) Consider again the caseG = µ3oZ/2Z in characteristic
3. Then G† = Z/2Z and is not normal in G.

(b) The formation of G† does not commute with inseparable extensions. Put
k = Fp(t) and consider the k–subgroup xp+ typ = 0 of G2

a,k. Since t 6∈ (ks)
p,

G(ks) = 0 hence G† = 0. We put k′ = k( p
√
t) = k(t′). Then we write

xp + typ = (x+ t′y)p = 0 and G†k′ is isomorphic to Ga,k′ .

(c) If G is connected, G† can be disconnected, see [CGP, C.4.3].

If G is an affine smooth k–subgroup, we consider the bracket map f :
G ×k G → G, (g1, g2) 7→ [g1, g2]. The k–subgroup ΓG(f) of G is called the
derived k–group of G and is denoted by DG. It is a normal k–subgroup of
G and is characterized by the fact that DG(k) = [G(k), G(k)].

How far as I know, there is no general way to define the derived group
beyond the smooth case.

3.4. Morphisms, I.

3.4.1. Proposition. Let f : H → G be a morphism of affine algebraic k–
groups. We assume that G is reduced. Then the following are equivalent:

(1) f is faithfully flat;

(2) f is surjective (that is H(k)→ G(k) is surjective);

(3) f is dominant.

Note that (3) rephrases by saying that the map f∗ : k[G] → k[H] is
injective, it is then the viewpoint of [Wa, §14.1]; also (1)⇐⇒ (3) is true for
G affine non reduced.

Proof. The implications (1) =⇒ (2) =⇒ (3) are obvious. Assume that f is
dominant. Then the Chevalley generic flatness theorem [DG, I.3.3.7] shows
that the flat locus U ⊂ G is dense. Then V = f−1(U) is a dense open
subscheme of H which is flat over G. Since Hk is covered by the hV for h

running over H(k), it follows that Hk is flat over Gk. Equivalently, H is flat
over G so the morphism f . Its topological image f(H) is open in G hence
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is close as well. Since the image is dense, we conclude that f is surjective.
Thus f is flat and surjective. �

3.4.2. Proposition. Let f : H → G be a morphism of affine algebraic k–
groups. Then the following are equivalent:

(1) f is a closed immersion;

(2) f is an immersion;

(3) f is a monomorphism, that is ker(f) = 1.

Proof. We do only the case H smooth (see §9.5 for a sketch of the general
case or [DG, II.5.5.1]). The three assertions are insensitive to the base
change from k to k, so we can assume than k is algebraically closed.

The implications (1) =⇒ (2) =⇒ (3) are obvious. For the implication
(3) =⇒ (1), we consider the closed k–subgroup I = ΓG(f) defined by
Proposition 3.3.1. It is smooth and according to Remark 3.3.2.(b), it is
the schematic image of f . We may assume that G is smooth and that f
is dominant. By the previous Proposition, f is faithfully flat. We want to
show that f is an isomorphism by construction a section s : G→ H. Since f

is a monomorphism, we have idH ◦ p1 = idH ◦ p2 : H ×GH → H
id→ H. Now

f is a strict epimorphism ([M1, 2.17, 2.18]), so that there exists a morphism
of k–schemes s : G→ H making the factorization as follows

H

f
��

idH

!!
G

s // H.

We conclude that f is an isomorphism. �

3.4.3. Remark. One could conclude also by using the more general result
that a finitely presented faithfully flat monomorphism is an open immersion
[EGA4, 17.9.1] so that the previous proposition yields that f is an isomor-
phism.
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Lecture II: Using functors

4. Sequences of group functors

We say that a sequence of R–group functors

1→ F1
u→ F2

v→ F3 → 1

is exact if for each R–algebra S, the sequence of abstract groups

1→ F1(S)
u(S)→ F2(S)

v(S)→ F3(S)→ 1

is exact.
If w : F → F ′ is a map of R–group functors, we denote by ker(w) the

R–group functor defined by ker(w)(S) = ker(F (S) → F ′(S)) for each R–
algebra S. If w(S) is onto for each R–algebra S/R, it follows that

1→ ker(w)→ F
w→ F ′ → 1

is an exact sequence of R–group functors.

4.0.4. Lemma. Let f : G→ G′ be a morphism of R–group schemes.

(1) Then the R–functor ker(f) is representable by a closed subgroup scheme
of G.

(2) The sequence of R–functors 1 → ker(f) → G → G′ → 1 is exact iff
there exists a k–map s : G′ → G such that f ◦ s = idG3.

Proof. (1) Indeed the carthesian product

N −−−−→ Gy f

y
Spec(R)

ε′−−−−→ G′

does the job.

(2) Assume that the sequence is exact and take idG3 ∈ G3(R[G3]). It lifts to
an element s ∈ G2(R[G3]) = HomR(G3,G2) which satisfies by construction
f ◦ s = idG3 . The converse is obvious. �

4.0.5. Lemma. Let 1 → F1
i→ F2

f→ F3 → 1 be an exact sequence of R–
group functors. If F1 and F3 are representable by affine R–schemes (and
then by affine R–group schemes), so is F2.

Proof. denote by G1 (resp. G3) the affine R–group scheme which represents
F1 (resp. F3). Again we lift the identity idG3 ∈ G3(R[G3]) = F3(R[G3])
to an element s ∈ F2(R[G3]) which satisfies by construction f ◦ s = idG3 .
We consider the R–map ρ : F1 × F3 → F2 defined for each R–ring S by
F1(S) × F3(S) → F2(S), (α1, α3) 7→ i(α1)s(α3). We claim that ρ is an
isomorphism of R–functors. For the injectivity of ρ(S), assume we have
i(α1)s(α3) = i(α′1)s(α′3). By pushing by f , we get that α3 = α′3, so that
α1 = α′1. For the surjectivity of ρ(S), we are given α2 ∈ F2(S) and put
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α3 = f(α2). Then f applies α2s(α3)−1 to 1, so that by exactness, there
exists α1 ∈ F1(S) such that i(α1) = α2s(α3)−1. This ρ is aan isomorphism
of R–functors and we conclude that F2 is representable by an affine R–
scheme.

�

We can define also the cokernel of a R–group functor. But it is very rarely
representable. The simplest example is the Kummer morphism fn : Gm,R →
Gm,R, x 7→ xn for n ≥ 2 for R = C, the field of complex numbers. Assume
that there exists an affine C–group scheme G such that there is a four terms
exact sequence of C–functors

1→ hµn → hGm

hfn→ hGm → hG → 1

We denote by T ′ the parameter for the first Gm and by T = (T ′)n the pa-
rameter of the second one. Then T ∈ Gm(R[T, T−1]) defines a non trivial

element of G(R[T, T−1]) which is trivial in G(R[T ′, T ′−1]) It is a contradic-
tion.

4.0.1. An example : the semi-direct product. Let G/R be an affine group
scheme acting on another affine group scheme H/R, that is we are given a
morphism of R–functors

θ : hG → Aut(hH).

The semi-direct product hH oθ hG is well defined as R–functor.

4.0.6. Lemma. hY oθ hX is representable by an affine R-scheme.

Proof. We consider the affine R-scheme X = H×R G. Then hX = hH oθ hG
has a group structure so defines a group scheme structure on X. �

4.0.2. Extensions by a vector group scheme. We come back firstly to the
example of Witt vectors of length 2 given in the introduction.

4.0.7. Example. We work over the prime field k = Fp and equip the affine
plane A2

k with the following commutative group law (x0, x1) + (y0, y1) =(
x0 + y0, S1(x0, y0)

)
where

S1(x, y) = x1 + y1 −
p−1∑
i=1

i!(p− 1)!

(p− i)!
xiyp−i

can be interpreted as (x+y)p−xp−yp
p . The projection mapW2 → Ga, (x0, y0) 7→

x0 is a group homomorphism and we have an exact sequence of k–group fun-
tors

0→ Ga
i→W2 → Ga → 0

where i(t) = (0, t). It is no split.
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Assume that we are given an action θ : G→ Aut(V (M)) where V (M) is
a vector R–group scheme attached to a f.g. projective R–module. In that
case, the classification of group functors extensions of G by V (M) is quite
similar with that of abstract groups. Let 0 → V (M) → E → G → 1 be
an extension of R–group functors. By lifting the identity id ∈ G(R[G]) to
E(R[G]), we get a section s : G → E and an isomorphism of R–functors

E
∼−→ V (M)×RG so that E is representable by a R–group scheme. For each

S/R, the section s defines a 2–cocycle G(S)×G(S)→ V (M)(S) = M ⊗R S.
It defines then a class in the Hochschild cohomology group H2

0 (G,M) with
respect of the action. As in the abstract case, it is straightforward to show
that H2

0 (G,M) classifies indeed the isomorphism classes of of group functors
extensions of G by V (M) with action θ, see [DG, II.3.2.3].

Let us give an important example.

4.0.8. Example. IfG = DR(A) is a diagonalizableR–group scheme, Grothendieck
has shown that Hochschild’s cohomology vanishes in positive weight [SGA3,
I.5.3.3]. It follows that group functors extensions of G by V (M) are split.

5. Actions, transporters, centralizers, normalizers

5.1. Actions. Let F be a R–functor. We denote by Aut(F ) the R–functor
in groups of automorphisms ofX, that is defined by Aut(X)(S) = AutS−functor(FS).
An action of an affine group scheme G/R is a homomorphism of R–functors
in groups θ : hG → Aut(F ).

5.2. Transporters, normalizers, centralizers. If F1, F2 ⊂ F are R–
subfunctors, the transporter is

Transp(F1, F2)(S) =
{
g ∈ G(S), | θ(g)(F1(S′)) ⊂ F2(S′) for all S–rings S′

}
and the transporter strict is

Transpst(F1, F2)(S) =
{
g ∈ G(S), | θ(g) induces a bijection F1(S′))

∼−→ F2(S′) for all S–rings S′
}

for eachR–ring S. Both areR–subfunctors of hG. If F1 = F2, Transpst(F1, F1)
is called also the normalizer (or stabilizer) of F1 in F and is denoted by
NormG(F1).

This is coherent with the usual terminology of group normalizers for the
action of G on itself by inner automorphisms. Also the centralizer of F1 is
the R–subfunctor of G defined by

CentG(F1)(S) =
{
g ∈ G(S), | θ(g)(f) = f for all S–rings S′ and for all f ∈ F1(S′))

}
5.2.1. Theorem. [DG, II.1.3.6] Assume that an affine algebraic k–group acts
on a separated k–scheme X of finite type. Let Y,Z be closed k–subschemes
of X.

(1)The k–functors Transp(Y,Z) and Transpst(Y,Z) are represented by closed
k–subgroups of G.
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(2) The k–functors CentG(Y ) and NormG(Y ) are represented by closed k–
subgroups of G.

In particular, if H is a closed k-subgroup of G, then the centralizer and the
normalizer CentG(H) and NormG(H) are represented by closed k–subgroups
denoted respectively by CentG(H) and NormG(H). It is called the scheme-
theoretical centralizer (resp. normalizer). Finally, CentG(G) is called the
scheme-theoretical center of G and is denoted by C(G).

5.2.2. Example. Assume than k is algebraically closed. In the book of
Borel, centralizers and normalizers are considered in the setting of varieties.
This centralizer (resp. normalizer) is the reduced subgroup of the scheme
theoretical one. We present here an example where the objects are distincts.
We assume that k is of characteristic 2 and consider the k–group G =
PGL2 = GL2/Gm where GL2 is equipped with the standard coordinates(
a b
c d

)
. The equation c = 0 defines the standard Borel subgroup B of

G. We denote by U its unipotent radical. The equation c2 = 0 défines
another k–subgroup J of G and we observe that B = Jred. We claim that
J ⊂ NG(U) and in particular that B $ NG(U). In other words, the classical
result “P = NG(U)” ([Hu, §30.4, exercice 4]) holds only in the setting of
reduced varieties.

We denote by u± : Ga → G the standard root groups of G and by α2 the
kernel of the groyp Ga → Ga, t 7→ t2. According to [W93, prop. 4], the
morphism of k-schemes

α2 ×k B → J, (x, b) 7→ u−(x) b

is an isomorphism. It remains then to check that u−(α2) ⊆ NG(U). Let R
be a k–algebra, let x ∈ α2(R) and b ∈ R; we compute in GL2(R)(

1 0
x 1

)(
1 b
0 1

)(
1 0
−x 1

)
=

(
1− bx b

x− x(bx+ 1) 1 + bx

)
= (1+bx)

(
1 b(1 + bx)
0 1

)
.

It yields that u−(α2) ⊆ NG(U) thus J ⊆ NG(U).

6. Weil restriction

We are given the following equation z2 = 1 + 2i in C. A standard way
to solve it is to write z = x + iy with x, y ∈ R. It provides then two real
equations x2 − y2 = 1 and xy = 1. We can abstract this method for affine
schemes and for functors.

We are given a ring extension S/R or j : R → S. Since a S-algebra is a
R–algebra, a R-functor F defines a S-functor denoted by FS and called the
scalar extension of F to S. For each S–algebra S′, we have FS(S′) = F (S′).
If X is a R-scheme, we have (hX)S = hX×RS .
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Now we consider a S–functor E and define its Weil restriction to S/R
denoted by

∏
S/R

E by

(∏
S/R

E
)

(R′) = E(R′ ⊗R S)

for each R–algebra R′. We note the two following functorial facts.

(I) For a R-map or rings u : S → T , we have a natural map

u∗ :
∏
S/R

E →
∏
T/R

ET .

(II) For each R′/R, there is natural isomorphism of R′–functors(∏
S/R

E
)
R′

∼−→
∏

S⊗RR′/R′

ES⊗RR′ .

For other functorial properties, see appendix A.5 of [CGP].

At this stage, it is of interest to discuss the example of vector group
functors. Let N be a R–module. We denote by j∗N the scalar restriction
of N from S to R [Bbk1, §II.1.13]. The module j∗N is N equipped with
the R–module structure induced by the map j : R → S. It satifies the
adjunction property HomR(M, j∗N)

∼−→ HomS(M ⊗R S,N) (ibid, §III.5.2).

6.0.3. Lemma. (1)
∏
S/R

V (N)
∼−→ V (j∗N).

(2) If N is f.g. projective and S/R is finite and locally free, then
∏
S/R

W (N)

is representable by the vector group scheme W(j∗N).

For a more general statement, see [SGA3, I.6.6]. , finite locally free is
equivalent to finite flat of finite presentation [GW, §12.6]; in particular if R
is noetherian, finite locally free is equivalent to finite flat.

Proof. (1) For each R-algebra R′, we have(∏
S/R

W (N)
)

(R′) = W (N)(R′⊗RS) = N⊗S(R′⊗RS) = j∗N⊗RR′ = W (j∗N)(R′).

(2) The assumptions implies that j∗N is f.g. over R, hence W (j∗N) is
representable by the vector R–group scheme W(j∗N). �

If F is a R-functor, we have for each R′/R a natural map

ηF (R′) : F (R′)→ F (R′ ⊗R S) = FS(R′ ⊗R S) =
(∏
S/R

FS

)
(R′);
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it defines a natural mapping of R–functor ηF : F →
∏
S/R

FS . For each

S–functor E, it permits to defines a map

φ : HomS−functor(FS , E)→ HomR−functor
(
F,
∏
S/R

E
)

by applying a S–functor map g : FS → E to the composition

F
ηF→

∏
S/R

FS

∏
S/R

g

−→
∏
S/R

E.

Proof. We apply the compatibility with R′ = S2 = S. The map S → S⊗RS2

is split by the codiagonal map ∇ : S ⊗R S2 → S, s1 ⊗ s2 → s1s2. Then we
can consider the map

θE :
(∏
S/R

E
)
S2

∼−→
∏

S⊗RS2/S2

ES⊗RS2

∇∗→
∏
S/S

E = E.

This map permits to construct the inverse map ψ of φ as follows

ψ(h) : FS
lS→

(∏
S/R

E
)
S2

θE→ E

for each l ∈ HomR−functor
(
F,
∏
S/R

E
)
. By construction, the maps φ and ψ

are inverse of each other. �

In conclusion, the Weil restriction from S to R is then right adjoint to
the functor of scalar extension from R to S.

6.0.4. Proposition. Let Y/S be an affine scheme of finite type (resp. of
finite presentation). Assume than S is finite and locally free over R. Then
the functor

∏
S/R hY is representable by an affine scheme of finite type (resp.

of finite presentation).

Again, it is a special case of a much more general statement, see [BLR,
§7.6].

Proof. Up to localize for the Zariski topology, we can assume that S is
free over R, namely S = ⊕i=1,...,dRωi. We see Y as a closed subscheme
of some affine space AnS , that is given by a system of equations (Pα)α∈I
with Pα ∈ S[t1, . . . , tn]. Then

∏
S/R

hY is a subfunctor of
∏
S/R

W (Sn)
∼−→

W (j∗(S
n))

∼−→W (Rnd) by Lemma 6.0.3. For each I, we write

Pα

( ∑
i=1,..,d

y1,iωi,
∑

i=1,..,d

y2,iωi, . . . ,
∑

i=1,..,d

yn,i

)
= Qα,1 ω1 + · · ·+Qα,r ωr
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withQα,i ∈ R
[
yk,i; i = 1, .., d; k = 1, ..., n

]
. Then for eachR′/R,

( ∏
S/R

hY

)
(R′)

inside R′nd is the locus of the zeros of the polynomials Qα,j . Hence this func-
tor is representable by an affine R-scheme X of finite type. Furthermore, if Y
is of finite presentation, we can take I finite so that X is of finite presentation
too. �

In conclusion, if H/S is an affine group scheme of finite type, then the R–
group functor

∏
S/R

hH is representable by an R-affine group scheme of finite

type. There are two basic examples of Weil restrictions.

(a) The case of a finite separable field extension k′/k (or more generally
an étale k-algebra). Given an affine algebraic k′-group G′/k′, we associate
the affine algebraic k–group G =

∏
k′/k

G′ which is often denoted by Rk′/k(G
′),

see [Vo, §3. 12]. In that case, Rk′/k(G
′) ×k ks

∼−→ Rk′⊗kks/ks(G
′
k′⊗kks

)
∼−→∏

γ
G′×γk′ks where γ runs over the k–embeddings of k′ → ks. In particular, the

dimension of G is [k′ : k] dimk′(G
′); the Weil restriction of a finite algebraic

group is a finite group.

(b) The case where S = k[ε] is the ring of dual numbers which is of very

different nature. For example the quotient k-group
( ∏
k[ε]/k

Gm,k[ε]

)
/Gm is

the additive k–group. Also if p = char(k) > 0,
∏

k[ε]/k

µp,k[ε] is of dimension 1.

We list nice formal properties of Weil restriction taken from [CGP, A.5.2].

6.0.5. Proposition. Let S be finite and locally free over R. (1) The for-

mation of the Weil restriction commutes with fiber products: if f : Y → X
and g : Z → X are S–morphisms then the natural map

∏
S/R

(
Y ×X Z

)
→∏

S/R

Y × ∏
S/R

X

∏
S/R

Z is an isomorphism.

(2) Let f : Y → X be a smooth map of affine S–schemes. Then
∏
S/R

f :∏
S/R

Y →
∏
S/R

X is smooth and similarly for the property for being étale or an

open immersion. In particular, if X is smooth over S, then
∏
S/R

X is smooth

over R.

(3) Let f : Y → X be a smooth S-map of affine S–schemes. If f is
surjective, so is

∏
S/R

f :
∏
S/R

Y →
∏
S/R

X.

6.0.6. Remarks. a) It is not true that an open cover U of X provides by
Weil restriction an open cover of

∏
S/R

X. Take R = k, S = k× k, X = A1
k×k
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and the cover U0 = {t 6= 0}×RS and U1 = {t 6= 1}×RS. Then
∏
S/k(X)

∼−→
A1
k×kA1

k and
∏
S/k(U0) = Gm×Gm and

∏
S/k(U1) =

(
A1 \{1}×A1 \{1}

)
,

hence the point (0, 1) is not in
∏
S/k(U0) ∪

∏
S/k(U1) [CGP, A.5.3].

b) The assertion (3) is false without smoothness hypothesis. We assume
that k is of positive characteristic p > 0. Put k = R and S = k[t]/t2 and
f : Gm,S → Gm,S , t 7→ tp. It is surjective but

∏
S/R

f :
∏
S/R

Gm,S →
∏
S/R

Gm,S

is not surjective since Lie(x 7→ xp) : k → k is trivial.

6.0.7. Remark. It is natural to ask whether the functor of scalar extension
from R to S admits a left adjoint. It is the case and we denote by

⊔
S/R

E this

left adjoint functor, see [DG, §I.1.6]. It is called the Grothendieck restriction.
If ρ : S → R is a R–ring section of j, it defines a structure Rρ of S–ring.

We have
⊔
S/R

E =
⊔

ρ:S→R
E(Rρ). If E = hY for a S–scheme Y,

⊔
S/R

Y is

representable by the R–scheme Y. This is simply the following R-scheme

Y→ Spec(S)
j∗→ Spec(R).

6.1. The case of a purely inseparable field extension. Let k′ be a
purely inseparable extension of k. In some respect, this case behave well.

6.1.1. Lemma. [CGP, A.5.4.(2)] Then
∏
k′/k

commutes with the formation of

disjoint unions. If (U ′i)i∈I is an affine cover of an affine k′–scheme X ′, then(∏
i∈I

U ′i
)
i∈I is an affine cover of

∏
i∈I

X ′.

The lemma permits by glueing to define Weil restriction for an arbitrary
quasi-compact quasi-separated k–scheme. We have seen that

∏
k′/k applies

vector k′-groups (resp. affine smooth k′–group) to vector k-groups (resp.
affine smooth k–group). It does not apply diagonalizable groups to diag-
onalizable groups. If [k′ : k] > 1, then Rk′/k(Gm) is not diagonalizable

(not even of multiplicative type) since Rk′/k(Gm)×k k′′
∼−→ Rk′⊗kk′′/k′′(Gm)

contains a non-trivial additive k–group provided k′ ⊂ k′′.

7. Tangent spaces and Lie algebras

7.1. Tangent spaces. We are given an affine R–scheme X = Spec(A).

Given a point x ∈ X(R), it defines an ideal I(x) = ker(A
sx→ R) and de-

fines an A–structure on R denoted Rx. We denote by R[ε] = R[t]/t2 the
ring of R-dual numbers. We claim that we have a natural exact sequence of
pointed set

1 −−−−→ DerA(A,Rx)
ix−−−−→ X(R[ε]) −−−−→ X(R)→ 1

||

HomR

(
A,R[ε]

)
.
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where the base points are x ∈ X(R) ⊂ X(R[ε]). The map ix applies a
derivation D to the map f 7→ sx(f) + εD(f). It is a ring homomorphism
since for f, g ∈ A we have

ix(fg) = sx(fg) + εD(fg)

= sx(f) sx(g) + εD(f) sx(g) + εsx(f)D(g) [derivation rule]

= (sx(f) + εD(f)) . (sx(g) + εD(g)) [ε2 = 0].

Conversely, one sees that a map u : A→ R[ε], f 7→ u(f) = sx(f) + ε v(f)
is a ring homomorphism iff v ∈ DerA(A,Rx).

7.1.1. Remark. The geometric interpretation of DerA(A,Rx) is the tangent
space at x of the scheme X/R (see [Sp, 4.1.3]). Note there is no need of
smoothness assumption to deal with that.

We have a natural A-map

HomA−mod(I(x)/I2(x), Rx) → DerA(A,Rx);

it maps a A–map l : I(x)/I2(x) → R to the derivation Dl : A → R,
f 7→ Dl(f) = l(f − f(x)). This map is clearly injective but is split by
mapping a derivation D ∈ DerA(A,Rx) to its restriction on I(x). Hence
the map above is an isomorphism. Furthermore I(x)/I2(x) is a Rx–module
hence the forgetful map

HomA−mod(I(x)/I2(x), Rx)
∼−→ HomR−mod(I(x)/I2(x), R)

is an isomorphism. We conclude that we have the fundamental exact se-
quence of pointed sets

1 −−−−→
(
I(x)/I2(x)

)∨ ix−−−−→ X(R[ε]) −−−−→ X(R)→ 1.

We record that the R–module structure on I(x)/I(x)2 is induced by the
change of variable ε 7→ λ ε. This construction behaves well with fibred
products.

7.1.2. Lemma. Let Y = Spec(B) be an affine R–scheme and y ∈ Y(R). The
dual of the R–module map v : I(x)/I2(x)⊕ I(y)/I2(y)→ I(x, y)/I2(x, y) is
an isomorphism and fits in the following commutative diagram

1 −−−−→
(
I(x)/I2(x)

)∨ ⊕ (I(y)/I2(y)
)∨ ix×iy−−−−→ X(R[ε])×Y(R[ε]) −−−−→ X(R)×Y(R)→ 1

v∨
x∼= | | | |

1 −−−−→
(
I(x, y)/I2(x, y)

)∨ i(x,y)−−−−→ (X×R Y)(R[ε]) −−−−→ (X×R Y)(R)→ 1.

commutes.

We note that a R-module, I(x) is a direct summand of R[X]. If we

consider a R-ring S, il follows that I(x)⊗R S is the kernel of R[X]
sx⊗id→ S.
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In conclusion, we have then defined a (split) exact sequence of pointed R–
functors

1 −−−−→ V(I(x)/I(x)2)
ix−−−−→

∏
R[ε]/R

XR[ε] −−−−→ X −−−−→ 1.

If X/R is smooth of dimension d (see appendix ), I(x)/I(x)2 is locally free
of rank d, so that V(I(x)/I(x)2) = W

(
I(x)/I(x)2

)
is a nice vector R–group-

scheme.

7.2. Lie algebras. Now G/R is an affine group scheme. We denote by
Lie(G)(R) the tangent space at the origin 1 ∈ G(R). This is the dual of
I/I2 where I ⊂ R[G] is the kernel of the augmentation ideal. We define the
“Lie algebra of G” vector R–group scheme by

Lie(G) = V(I/I2).

It fits in the sequence

0 −−−−→ Lie(G)(R) −−−−→ G(R[ε]) −−−−→ G(R)→ 1

X 7→ exp(εX)

which is a split exact of abstract groups where Lie(G)(R) is equipped with
the induced group law.

7.2.1. Lemma. That induced group law is the additive law on Lie(G)(R),
namely exp(εX + εY ) = exp(εX) . exp(εY ) for each X,Y ∈ Lie(G)(R).

Proof. We apply Lemma 7.1.2 and use the product map m : G ×R G → G
to construct the following commutative diagram

1 −−−−→
(
I/I2

)∨ ⊕ (I/I2
)∨ exp× exp−−−−−−→ G(R[ε])×G(R[ε]) −−−−→ G(R)×G(R)→ 1

v∨
x∼= | | | |

1 −−−−→
(
I(G×R G)/I(G×R G)2

)∨ expG×RG−−−−−−→ (G×R G)(R[ε]) −−−−→ (G×R G)(R)→ 1.

m∗

y m

y m

y
1 −−−−→

(
I/I2

)∨ exp−−−−→ G(R[ε]) −−−−→ G(R)→ 1.

Since the composite G
id×ε→ G×R G

m→ G is the identity, the composite map(
I/I2

)∨ id×0→
(
I/I2

)∨⊕(I/I2
)∨ → (

I/I2
)∨

is the identity. It is the same for
the second summand, so we conclude that that the left vertical composite
map is the addition. �

7.2.2. Remark. The natural map Lie(G)(R)⊗RS → Lie(G)(S) is not bijec-
tive in general. It is the case if I/I2 is a projective R–module of finite type,
and in particular if G is smooth over R. The condition “f.g. projective” is
actually necessary for having this property in general, see [DG, II.4.4].
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7.2.3. Example. Let M be a R-module and consider the R-vector group
scheme V(M). For each S/R, we have

V(M)(S[ε]) = HomS[ε](M ⊗R S[ε], S[ε]) = HomR(M,S[ε]) = V(M)2(S),

hence a R-isomorphism V(M)
∼−→ Lie(V(M))(R).

The exact sequence defines an action of G(R) on Lie(G)(R) and actually
a representation Ad : G → Aut(Lie(G)) = Aut(V(I/I2)). It is called the
adjoint representation and denoted by Ad.

7.2.4. Remark. If I/I2 is f.g. projective then V(I/I2) = W((I/I2)vee) and
then (I/I2)vee is a R−G-module.

Denoting by s : G(R)→ G(R[ε]) the section, we have

Ad(g) exp(εX) = s(g) exp(εX) s(g−1) ∈ G(R[ε]).

If f : G → H is a morphism of affine R-group schemes, we have a map
Lie(f) : Lie(G) → Lie(H) of R-vector groups and the commutativity prop-

erty f
(
exp(εX)

)
= exp

(
ε .Lie(f)(X)

)
.

7.2.5. Lemma. Let M be a f.g. projective R-module and put G = GL(M).
Then EndR(M) = Lie(G)(R) and the adjoint action is

Ad(g) . X = g X g−1.

Proof. The R–group scheme G is open in W (EndR(M)) so that the tangent
space at 1 in G is the same than in W (EndR(M)). By example 7.2.3, we

get then an R–isomorphism EndR(M)
∼−→ Lie(G)(R). We perform now the

computation of Ad(g) exp(εX) in G(R[ε]) ⊂ EndR(M) ⊗R R[ε]. We have

Ad(g) exp(εX) = g (Id+ εX) g−1 = Id+ εgXg(1 = exp(ε g X g−1). �

More generally, we can define the Lie algebra R–functor of a group R–
functor F by putting

Lie(F )(S) = ker
(
F (S[ε])→ F (S)

)
.

It is a subgroup equipped with a map S × Lie(F )(S) → Lie(F )(S) coming
from the base change ε 7→ λε. Also there is an adjoint action of the R–
functor F on Lie(F ). In that generality, we are actually mainly interested
in the following examples.

7.2.6. Lemma. (1) Let M be a R–module. Then W (M)
∼−→ Lie(W (M))

and EndS(M ⊗R S)
∼−→ Lie(GL(W (M))(S) for each S/R.

(2) Let N be a R–module. Then EndS
(
V (N)(S)

) ∼−→ Lie
(
GL(V (N)

)
(S)

for each S/R.

Proof. (1) The first thing is similar as example 7.2.3. For each S/R, we have
indeed a split exact sequence of abstract groups

0 −−−−→ EndS(M ⊗R S) −−−−→ GL(W(M))(R[ε]) −−−−→ GL(M)(R) −−−−→ 1.

f 7→ Id+ εf
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(2) The proof is the same. �

We come back to the case of the affine R-group G. We see the adjoint
representation as a morphism of R–group functors

Ad : G→ GL(Lie(G)) = GL
(
V(I/I2)

)
By applying the Lie functor, it induces then a morphism of vector R-group
schemes

ad : Lie(G)→ Lie
(

GL
(
V(I/I2)

))
.

For each S/R, we have then a S–map

ad(S) : Lie(G)(S)→ Lie
(

GL
(
V(I/I2)

))
(S) = EndS(Lie(G)(S)).

For each X,Y ∈ Lie(G)(S), we denote by

[X,Y ] = ad(S)(X). Y ∈ Lie(G)(S)

the Lie bracket of X and Y .

7.2.7. Lemma. (1) Let f : G→ H be a morphism of affine R–group schemes.
For each X,Y ∈ Lie(G)(R), we have

Lie(f) . [X,Y ] = [Lie(f) . X, Lie(f) . Y ] ∈ Lie(G)(R).

(2) In the case G = GL(M) with M f.g. projective, the Lie bracket EndR(M)×
EndR(M)→ EndR(M) reads [X,Y ] = XY − Y X.

Proof. (1) This readily follows from the fact that the map Lie(f) : Lie(G)→
Lie(H) is a G-module morphism where Lie(H) where G acts on Lie(H) by
AdH ◦ f .

(2) We consider the adjoint representation Ad(R) : GL(M)(R)→ GL(EndR(M))(R)
known to be Ad(g).X = gXg−1. We consider Ad(R[ε]) : GL(M)(R[ε]) →
GL(EndR(M))(R[ε]); forX,Y ∈ EndR(M) we compute inside (EndR(M))(R[ε])
using Lemma 7.2.5

Ad(R[ε])(exp(εX)) . Y = (1 + εX)Y (1 + εX)−1

= (1 + εX)Y (1− εX)

= Y + ε(XY − Y X).

We conclude that [X,Y ] = XY − Y X. �

7.2.8. Proposition. The Lie bracket defines a Lie R-algebra structure on
the R–module Lie(G)(R), that is

(i) the bracket is R–bilinear and alternating;

(ii) (Jacobi identity) For each X,Y, Z ∈ Lie(G)(R), we have

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0.

We give here a short non orthodox proof specific to affine group schemes;
for a more general setting, see [DG, II.4.4.3] and [SGA3, Exp. II].
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Proof. We consider here only the case where G admits a faithful represen-
tation in GL(Rn). Then the R–map Lie(G) → Lie(GL(M)) is a monomor-
phism. From Lemma 7.2.7, it is then enough to check it for the linear group
GLn. That case is straightforward, we have Lie(GLn)(R) = Mn(R) and the
bracket is [X,Y ] = XY −XY (lemma 7.2.7). �

7.2.9. Remark. If j : R → S is a finite locally free morphism and H/S a
group scheme over S, it is a natural question to determine the Lie algebra
of G. It is done in [CGP, A.7.6]. and we have Lie(G) = j∗Lie(H), that is
Lie(G)(R′) = Lie(H)(S ⊗R R′) for each R′/R.

7.2.10. Example. If k is a field of characteristic p > 0, Lie(µp)(k) = k with
trivial Lie structure.
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Lecture III: Descent techniques, quotients

8. Descent

We start with a classical descent issue.

8.1. Embedded descent, field of definition. We are given an affine k-
scheme X0 and are interested to descend closed subschemes defined over a
field extension K/k. We say that Z descends to k if there exists a closed
k–scheme Z0 of X0 such that Z0 ×k K = Z. If X0 is an affine space, that
means that we can find equations defining Z inside XK . The first remark
is that if Z descends to k, then Z0 is unique. Assume that we have Z0, Z

′
0,

then IZ0 ⊗k K = IZ′0 ⊗k K = IZ , so that IZ0 = IZ′0 since K/k is faithfully
flat.

8.1.1. The Galois case. Assume that K/k is Galois (finite or infinite). Then
the following are equivalent:

(i) Z descends over k;

(ii) for each γ ∈ Gal(K/k), IZ = γ(IZ);

It is obvious than (i) =⇒ (ii). To prove than (ii) =⇒ (i), we can apply
Speiser’s lemma on Galois descent for vector spaces [GS, 2.3.8]. We put

I0 = (IZ)Gal(K/k), it is an ideal of k[X] which satisfies I0 ⊗k K
∼−→ IZ .

This shows that a ks–subscheme Z of Xks has a field of definition kZ

defined by Gal(kZ/k) =
{
γ ∈ Gal(ks/k) | γ(IZ) = IZ

}
.

8.1.2. Field of definition (cf. [EGA4, §4.8]). Consider a k–vector space V0

and aK–vector subspaceW of V = V0,K . Among all k–subfields F ⊆ K such
that W arises by scalar extension of a vector F–space of V0 ⊗k F , we claim
there is one such F that is contained in all others. To see that such minimal
field F exists, choose a k–basis (ei)i∈I of V0 a subset B = (ei)i∈J projecting
to a K–basis of V/W . Then F is generated over k by the coefficients of
the vectors (eimodW )i 6∈J relative to the K–basis B of V/W (as follows of
[Bbk1, II.8.6, prop. 7.(i)].

We call F the field of definition of the K–subspace W of V = V0 ⊗k K.
This defines a unique F–subspace W ′ of V0 ×k F such that W ′ ⊗F K = W .

Coming back to Z inside X0,K , the field of definition F of IZ is called
the field of definition of Z. It defines a F–vector space I ′ of F [X] which is
an ideal so defines a closed F–subscheme Z ′. So Z descends to F and Z
descends to k if and only if k = F .
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8.1.3. Descent for vector spaces in the inseparable case of height one. As-
suming p > 1, we consider a finite algebraic field extension K/k of height
≤ 1, that is satisfying Kp ⊆ k. In this case, descent for vector spaces
rephrases in some differential calculus. If V is a K–vector space, a connec-
tion is a map∇ : V → Ω1

K/k⊗KV which satisfies∇(a v) = a∇(V )+da⊗v for

all a ∈ K, v ∈ V , it is called a p-connection if it satisfies some extra property.
Then there is an equivalence of categories between the category of vector
spaces and the category of K—vector spaces equipped with p–connections
[GS, 9.3.6]. In one way, we associate to a k–vector space V0 the K–vector
space K⊗k V and the connection ∇(a⊗ v) = da⊗ v. In the way around, we

associate to a pair (V,∇) the k–vector space V ∇ =
{
v ∈ V | ∇(v) = 0

}
.

8.2. Faithfully flat descent. See [BLR, §6], [Br, §2] or [Vi, §4.3.1].

9. Flat sheaves

Our presentation is that of Demazure-Gabriel [DG, III] which involves
only rings.

9.1. Covers. A fppf (flat for short) cover of the ring R is a ring S/R which
is faithfully flat and of finite presentation2 “fppf” stands for “fidèlement plat
de présentation finie”.

9.1.1. Remarks. (1) If 1 = f1+· · ·+fs is a partition of 1R with f1, ...fr ∈ R,
the ring Rf1 × · · · ×Rfr is a Zariski cover of R and a fortiori a flat cover.

(2) If S1/R and S2/R are flat covers of R, then S1 ⊗R S2 is a flat cover
of R.

(3) If S/R is a flat cover of S and S′/S is a flat cover of S, then S′/R is
a flat cover of R.

(4) Finite locally free extensions S/R are flat covers, in particular finite
étale surjective maps are flat covers.

9.2. Definition. We consider a R-functor F : {R − Alg} → Sets. It is
called additive if the natural map F (S1 × S2)→ F (S1)× F (S2) is bijective
for all R–rings S1, S2.

For each R–ring morphism S → S′, we can consider the sequence

F (S) // F (S′)
d1,∗ //

d2,∗
// F (S′ ⊗S S′) .

A functor of F : {R − Alg} → Sets is a fppf sheaf (or flat sheaf) for short
if it is additive and if for each R–ring S and each flat cover S′/S, and the

2One may consider also not finitely presented covers, it is called fpqc, see [SGA3, IV]
and [Vi].
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sequence

F (S) // F (S′)
d1,∗ //

d2,∗
// F (S′ ⊗S S′)

is exact. It means that the restriction map F (S) → F (S′) is injective and
its image consists in the sections α ∈ F (S′) satisfying d1,∗(α) = d2,∗(α) ∈
F (S′ ⊗S S′).

Given a R–module M and S′/S as above, the theorem of faithfully flat
descent states that we have an exact sequence of S–modules

0→M ⊗R S → (M ⊗R S)⊗S S′
d1,∗−d2,∗−→ (M ⊗R S)⊗S S′ ⊗S S′ .

This rephases by saying that the vector group functor V (M)/R (which is
additive) is a flat sheaf over Spec(R). A special case is the exactness of the
sequence

0→ S → S′
d1,∗−d2,∗−→ S′ ⊗S S′.

If N is a R-module, it follows that the sequence of R–modules

0→ HomR(N,S)→ HomR(N,S′)
d1,∗−d2,∗−→ HomR(N,S′ ⊗S S′)

is exact. This shows that the vector R–group scheme W(M) is a flat sheaf.
More generally we have

9.2.1. Proposition. Let X/R be an affine scheme. Then the R–functor of
points hX is a flat sheaf.

Proof. The functor hX is additive. We are given a R–ring S and a flat cover
S′/S. We write the sequence above with the R-module R[X]. It reads

0→ HomR−mod(R[X], S)→ HomR−mod(R[X], S′)
d1,∗−d2,∗→ HomR−mod(R[X], S′⊗SS′).

It follows that X(S) injects in X(S′) and identifies with
HomR−rings(R[X], S′) ∩ HomR−mod(R[X], S). Hence the exact sequence

X(S) // X(S′)
d1,∗ //

d2,∗
// X(S′ ⊗S S′) .

�

9.2.2. Remark. More generally, the proposition holds with a scheme X/R,
see [Ro, 2.4.7] or [Vi, 2.5.4].

9.2.3. Examples. If E,F are flat sheaves over R, the R–functor Hom(E,F )
of morphisms from E to F is a flat sheaf. Also the R–functor Isom(E,F ) is
a flat sheaf and as special case, the R–functor Aut(F ) is a flat sheaf.
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9.3. Monomorphisms and epimorphisms. A morphism u : F → E of
flat sheaves over R is a monomorphism if F (S)→ E(S) is injective for each
S/R. It is an epimorphism if for each S/R and each element e ∈ E(S), there
exists a flat cover S′/S and an element f ′ ∈ F (S′) such that e|S′ = u(f ′).

A morphism of flat sheaves which is a monomorphism and and an epi-
morphism is an isomorphism (exercise, solution [SGA3, IV.4.4]).

We say that a sequence of flat sheaves in groups over R
1 → F1 → F2 → F3 → 1 is exact if the map of sheaves F2 → F3 is
an epimorphism and if for each S/R the sequence of abstract groups 1 →
F1(S)→ F2(S)→ F3(S) is exact.

9.3.1. Examples. (1) For each n ≥ 1, the Kummer sequence 1 → µn,R →
Gm,R

fn→ Gm,R → 1 is an exact sequence of flat sheaves where fn is the
n–power map. The only thing to check is the epimorphism property. Let
S/R be a ring and a ∈ Gm(S) = S×. We put S′ = S[X]/(Xn−a), it is finite
free over S, hence is faithfully flat of finite presentation. Then fn(X) = a|S′
and we conclude that fn is an epimorphism of flat sheaves.
(2) More generally, let 0→ A1 → A2 → A3 → 0 be an exact sequence of f.g.
abelian groups. Then the sequence of R–group schemes

1→ D(A3)→ D(A2)→ D(A1)→ 1

is exact.

9.4. Sheafification. Given a R-functor F , there is natural way to sheafify

it in a flat functor F̃ . The first thing is to make the functor additive. For
each Zariski cover (Sj)j∈J (J–finite), we have a map

F (S)→
∏
j∈J

F (Sj)

We define
Fadd(S) =

∏
j∈J

F (Sj)

where the limit is taken on Zariski covers of S. By construction, Fadd is an
additive functor and there is a natural map F → Fadd

Now, for each S/R, we consider the “set” Cov(S) of flat covers3. Also if
f : S1 → S2 is an arbitrary R-ring map, the tensor product defines a natural
map f∗ : Cov(S1)→ Cov(S2). We define then

F̃ (S) = lim−→
I⊂Cov(S)

ker
( ∏

i∈I Fadd(Si)
d1,∗ //

d2,∗
// Fadd(Si ⊗S Sj)

)
where the limit is taken on finite subsets I of Cov(S). It is a R-functor since

each map f : S1 → S2 defines f∗ : F̃ (S1) → F̃ (S2). We have also a natural

mapping uF : F → Fadd → F̃ .

3We do not enter in set-theoric considerations but the reader can check there is no
problem there.
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9.4.1. Proposition. (1) For each R–functor F , the R–functor F̃ is a flat
sheave.

(2) The functor F → F̃ is left adjoint to the forgetful functor applying a
flat sheaf to its underlying R–functor. For each R–functor F and each flat
sheaf E, the natural map

Homflat sheaves(F̃ , E)
∼−→ HomR−functor(F,E)

(applying a morphism u : F̃ → E to the composite F → F̃ → E) is bijective.

(1) follows essentially by construction [DG, III.1.8]. Note that in this
reference, the two steps are gathered in one. For (2) one needs to define the
inverse mapping. Observe that the sheafification of E is itself, so that the

sheafification of F → E yields a natural morphism F̃ → E.

Given a morphism of flat R-sheaves f : E → F , we can sheafify the
functors

S 7→ E(S)/Rf (S), S 7→ Im
(
E(S)→ F (S)

)
,

where Rf (S) is the equivalence relation defined by f(S). We denote by
Coim(f) and Im(f) their respective sheafifications. We have an induced
mapping

f∗ : Coim(f)→ Im(f)

between the coimage sheaf and the image sheaf. We say that f is strict
when f∗ is an isomorphism of flat sheaves.

9.4.2. Lemma. If f is a monomorphism (resp. an epimorphism), then f is
strict.

In the first case, we have E
∼−→ Coim(f)

∼−→ Im(f); in the second case,

we have coker(f)
∼−→ Im(f)

∼−→ F , see [DG, III.1.2].

9.5. Group actions, quotients sheaves. Let G be a R–group flat sheaf
and let F be a flat sheaf equipped with a right action of G. The quotient
functor is Q(S) = F (S)/G(S) and its sheafification is denoted by F/G. It
is called the quotient sheaf4.

When G and F are representable, the natural question is to investigate
whether the quotient sheaf Q is representable. It is quite rarely the case. A
first evidence to that is the following fact.

9.5.1. Proposition. We are given an affine group scheme G and a monomor-
phism G→ H into an affine group scheme. Assume that the quotient sheaf
H/G is representable by a R–scheme X. We denote by p : H → X the
quotient map and by εX = p(1G) ∈ X(R).

(1) The R–map H×R G→ H×X H is an isomorphism.

4One can work in a larger setting, that of equivalence relations and groupoids, see [DG,
§III.2].
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(2) The diagram

G
i−−−−→ Hy y

Spec(R)
εX−−−−→ X

is carthesian.

(3) The map i is an immersion. It is a closed immersion iff X/R is sepa-
rated.

(4) p is an affine morphism.

(5) G/R is flat iff p is flat.

(6) G/R is smooth iff p is smooth.

The general statement is [SGA3, VIB.9.2].

Proof. (1) The map H×RG→ H×XH is a monomorphism. Let us show that
it is an epimorphism of flat sheaves. We are given S/R and (h1, h2) ∈ H(S)2

such that p(h1) = p(h2). There exists a flat cover S′/S and g ∈ G(S′) such
that h1|S′ = h2|S′ g. Hence g ∈ G(S′) ∩ H(S). Since i is a monomorphism,
we conclude by descent that g ∈ G(S) whence (h1, h2) comes from (h1, g).

(2) It follows that the following diagram

G
1H×id−−−−→ H×R G ∼= H×X H −−−−→ Hy yp1 yp

Spec(R)
1H−−−−→ H

p−−−−→ X

is carthesian as desired.

(3) If X is separated, εX is a closed immersion and so is i.

(4) By faithfully flat descent with respect to H→ X, it follows from (1) that
X is affine over R [EGA4, IV2.2.7.1.(xiii)].

(5) and (6) If p is flat (resp. smooth), so is i by base change. �

One very known case of representatiblity result is the following.

9.5.2. Theorem. Let k be a field. Let H/k be an affine algebraic group and
G/k be a closed subgroup. Then the quotient sheaf H/G is representable by
a k–scheme of finite type X. Furthermore, if H is normal in G, G/H is
affine and canonically equipped with a group struture and we have an exact
sequence of k–groups 1→ H → G→ G/H → 1.

9.5.3. Remark. A natural question is to determine the rational points of
H/G. The first thing is to remark that G(k) acts transitively on (G/H)(k),

so that we have a bijection G(k)/H(k)
∼−→ (G/H)(k). Then

(G/H)(k) =
{

[g] ∈ G(k)/H(k) | d1,∗(g)H(k ⊗k k) = d2,∗(g)H(k ⊗k k)
}
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where the identity holds inside G(k ⊗k k). If k is perfect, it is nothing but

the Galois fact (G/H)(k) =
(
(G(ks)/H(ks)

)Gal(ks/k)
.

The first part of Theorem 9.5.2 uses the following important representabil-
ity statement.

9.5.4. Proposition. [DG, III.3.5.2] Let G acts on a quasi-projective k–
scheme X. Let x ∈ X(k) and denote by Gx = CentG(x) the stabilizer
of x.

(1) The quotient G/Gx is representable by a quasi-projective k-variety.

(2) The orbit map induces an immersion G/Gx → X.

The homeomorphic image of the immersion G/Gx → X is called the orbit
of x with respect to G.

9.5.5. Remark. The above can be suitably generalized over rings, see [SGA3,
XVI.2], by means of the theorem of Grothendieck-Murre.

Sketch of proof: We assume firstly that G is smooth, that is absolutely
reduced. By faithfully flat descent, one can assume that k is algebraically
closed.

(1) We know denote by X0 the reduced subscheme of the schematic image
of fx. Since G is smooth, it is (absolutely) reduced and acts then on X0.
We know that the X0 \G.x consists in orbits of smaller dimensions so that
G.x is an open subset of X0. We denote it by Ux. We claim that the map
hx : G→ Ux is faithfully flat. The theorem of generic flatness [DG, I.3.3.7]
shows that the flat locus of hx is not empty. By homogeneity, it is Ux, hence
hx is faithfully flat. Let us show now that it implies that Ux represents
the orbit of x. The morphism hx : G → Ux gives rise to a morphism of

k–sheaf h†x : G/Gx → Ux. Since the map hx : G → Ux is faithfully flat, the
morphism hx is an epimorphism of flat sheaves5.

h†x is a monomorphism. Let S be a R–ring and let y1, y2 ∈ (G/Gx)(S) having
same image u in Ux(S). There exists a flat cover S′/S such that y1 (resp.
y2) comes from some g1 ∈ G(S′) (resp. g2). Then g1 . x = g2 . x ∈ Ux(S′) so
that g−1

2 g1 ∈ Gx(S′). Thus u1 = u2 ∈ (G/Gx)(S).

(2) By construction, Ux is locally closed in X.

We come back to the general case. Let k′/k be a finite inseparable field
extension such that the k–group (Gk)red is defined over k′, that is there

exists a k′–group G′ such that G′ ×′k k = (Gk)red. Then G′ is geometrically
reduced and is smooth over k′. From the first case, G′/G′x is representable
by a quasi-projective k′-scheme and the map G′/G′x → Xk′ is an immersion.
But G′x = (Gx)k′ ∩G′ and by [DG, lemme III.3.5.1], the representability of
G′/G′x is equivalent to that of Gk′/Gx,k′ . By faithfully flat descent, we have

5We are given S/R and a point u ∈ Ux(S). Then h−1
x (u) = Spec(S′) is a flat cover of

S and there is a point v ∈ G(S) mapping to u.
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that G/Gx is representable by a quasi-projective k–scheme. To establish
that i : G/Gx → X is an immersion, we can assume that k is algebraically
closed. Since i is a monomorphism, we know that there exists a dense open
subset U of X such that i−1(U)→ U is an immersion [DG, I.3.4.7] (or [GW,
ex. 10.31]). But the gi−1(U) for g ∈ G(k) cover G/Gx, so we conclude that
i is an immersion. �

The fisrt part of Theorem 9.5.2 follows then of the fact that G admits
a representation V such that there exists a point x ∈ P(V )(k) such that
G = Hx [DG, II.2.3.5]. Now, if H is normal, G/H is then a flat sheaf in
R–groups then a R–functor in groups. What is much harder to establish is
the fact that te quotient k–group G/H is affine, see [DG, II.3.5.6].

9.5.6. Remark. One interest of the Chevalley quotient is the fact it is uni-
versal. That is for each k–algebra R, (H/G) ×k R represents the quotient
R–sheaf (H ×k R)/(G ×k R). It can use as follows (see [CTS2, 6.12]). As-
sume we are given a closed immersion ι : G→ H of R-group schemes, a flat
cover R′/R and a commutative square

G×R R′
ιR′−−−−→ H×R R′

u

y∼= v

y∼=
G×k R′

i×kR
′

−−−−→ H ×k R′

where u, v are isomorphisms. We claim then that the quotient sheaf H/G
is representable by a R-scheme. According to Theorem 9.5.2, HR′/GR′ is
representable by a quasi-projective R′-scheme which indeed descends to R.

9.5.7. Examples. (a) For each n, we have an exact sequence 1 → µn →
Gm

fn→ Gm → 1 where fn(t) = tn.

(b) The projective linear group over k is PGLn = GLn/Gm, that is the
quotient of the linear group by its center.

9.6. k-orbits. We remind the definition of k–orbits [BLR, §10.2].

9.6.1. Definition. Let G/k be an algebraic group acting on a k–scheme X
of finite type. A k–orbit under G over X is a locally closed k–subscheme
Y of X which is G-stable and such that there exists a finite field extension
k′/k and a point x ∈ X(k′) such that Yk′ is the orbit of x under Gk′.

In particular, the G–orbit of a k-point of X defines a k–orbit under G
over X.

9.6.2. Lemma. Under the conditions of Definition 9.6.1, the following as-
sertions hold:

(1) In the case of a trivial action, a k–orbit over X is nothing but a k–point
of X.

(2) Let Y be locally closed k–subscheme of X which is G-stable.
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(a) The following are equivalent:

(i) Y is a k–orbit under G over X;

(ii) Yk is a Gk–orbit over Xk;

(iii) Yk is a k–orbit under Gk over Xk.

(b) Let L/k be a finite field extension. Then Y is a k–orbit on X
under G if and only if YL is a L–orbit on XL under GL.

(3) Let f : H → G be a faithfully flat morphism of k–groups. Let Y be a
locally closed k–subscheme of X. Then Y is a k–orbit on X under G if and
only if Y is k–orbit on X under H (for the pull-back action of H on X).

9.6.3. Lemma. Under the conditions of Definition 9.6.1, the following as-
sertions hold:

(1) Let Z be a k–orbit over X for G and let X+ be another k–scheme of
finite type equipped with an action of G. If u : X → X+ is a G–equivariant
morphism, then there exists a unique k-orbit Z+ under G over X+ such
that the map Z → X → X+ factorizes within Z+. Furthermore the map
Z → Z+ is faithfully flat.

(2) Let f : H → G is a morphism of k–groups. Let Z be a k–orbit on X
under H (for the pull-back action of H on X). Then Z is included in a
unique k-orbit on X under G.

9.7. Frobeniuseries (see [SGA3, VIIA.4]. We assume here that p > 1.
We denote by F : k → k the Frobenius and for each k-scheme X, we
denote by X(p) = X×Fk the relative frobenius. For each k-algebra A, we

have X(p)(A) = X(A(p)) where A(p) = A is equipped with the k–algebra

structure (c, a) 7→ cpa. Since we have a k–morphism A → A(p), a 7→ ap

for all k–algebra A, we get a natural k–morphism Fr : X → X(p). If G
is an affine algebraic k–group, G(p) is equipped with a natural structure of
algebraic k–group and Fr : G→ G(p) is a homomorphism of k–groups. We
can iterate the construction and define Frn : G→ G(pn) for each ≥ 0.

We denote by FrnG the kernel of Frn : G → G(pn), it is called the
Frobenius kernel of G. From the case of GLd, it is easy to show that FrnG is a
finite k–subgroup of G. In particular, we get a closed immersion G/FrnG→
G(pn).

9.7.1. Proposition. [SGA3, VIIA.8.3] There exists an integer n0 ≥ 0 such
that G/FrnG is smooth.

In other words, an affine algebraic k–group is an extension of a smooth
k–group by a finite k–group.
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Lecture IV: Unipotent radicals, Levi subgroups

10. Solvable and unipotent groups

10.1. Unipotent groups.

10.1.1. Definition. An affine algebraic k–group U is unipotent if Uk admits

a finite composition serie over k with each successive quotient isomorphic to
a k–subgroup of Ga,k.

In characteristic zero, Ga,k has no proper k–subgroup except {0}, so in this

case, each successive quotient of the composition serie is isomorphic to a k–
subgroup of Ga,k. In characteristic p > 0, the non-trivial proper k–subgroups

of Ga,k are given as the locus of a p-polynomial a0 +a1x
p + · · ·+arx

pr [DG,

IV.2.1]. For example αnp and Z/pnZ for n ≥ 1; since each such a k–group
admits a composition serie with each successive quotient isomorphic to αp
(resp. Z/pZ), we can assume that Uk has a composition serie with each
successive quotient isomorphic to αp, Z/pZ or Ga,k.

10.1.2. Lemma. (1) An extension of an unipotent k–group by another unipo-
tent k–group is unipotent.

(2) A closed k-subgroup (resp. a quotient) of a k–unipotent k–subgroup
is unipotent.

(3) Let U be a unipotent k–group. Then Homk,gp(U,Gm) = 0.

Proof. (1) follows of the definition and (2) is left to the reader.

(3) We can assume than k is algebraically closed. By induction on the
length of a composition serie of U , we have only to consider the case Ga and
if p > 1, the cases of αp, Z/pZ. Each case is easy by considering respective
Hopf algebras. �

The commutative unipotent k–groups are very interesting objects. We
have seen in the introduction the case of Witt vectors of length 2 and Tits
example of a k–form G of Ga, that is Gk

∼= Ga,k.

We have other nice characterizations of unipotent k–groups.

10.1.3. Proposition. (1) [SGA3, XVII.3.5] (1) Let G be an affine algebraic
k–group. The following are equivalent:

(1) G is unipotent;
(2) G can be embedded in some k–group of upper triangular matrices;
(3) For each linear representation V of G, we have H0(G,V ) 6= 0.

(2) [SGA3, XVII.4.11] Let G be a smooth connected k–group. The following
are equivalent:

(1) G is unipotent;
(2) G admits a central composition serie such that the successive quo-

tients are k–forms of (Ga)
ni (that is isomorphic over k to (Ga,k)

ni).



36

In the other hand, we know that the ks/k–forms of the group Gn
a are

trivial [SGA3, XVII.4.1.5] whence the next fact.

10.1.4. Corollary. Over a perfect field k, a smooth connected unipotent k–
group is k–split, that is successive extensions by Ga.

A nice consequence of the characterization of unipotent k–groups by the
fixed point property 10.1.3 is the following.

10.1.5. Lemma. (Rosenlicht lemma) [SGA3, XVII.5.7.3] Let G be an unipo-
tent k–group acting on a quasi–affine k–scheme of finite type. Then for each
point x ∈ X(k), the map G/Gx → G is a closed immersion.

10.2. Structure of commutative algebraic groups.

10.2.1. Definition. An affine algebraic k-group G is of multiplicative type
if Gk is diagonalizable. It is called a k–torus if Gk is isomorphic to Gr

m,k
.

10.2.2. Theorem. Let G be a commutative affine algebraic k–group.

(1) [DG, IV.1.2.2] The following are equivalent;

(1) G is of multiplicative type;
(2) Homk−gp(Gk,Ga,k) = 0;

(3) For each unipotent k–group H, Homk−gp(Gk, H) = 0;

(4) For each unipotent k–group H, Homk−gp(G,H) = 0;
(5) Homk−gp(G,Ga) = 0.

(2) [DG, IV.3.3.1] G admits a largest k–subgroup of multiplicative type
Gm (that is diagonalizable over k) and G/Gm is unipotent.

(3) If k is perfect, the extension 0→ Gm → G→ G/Gm → 0 is split.

(4) [DG, V.1.2.5] If k is perfect and G is unipotent, then there exists a
morphism f : Gn

a → Gr
a such that G is isomorphic to ker(f).

The way to pass from (2) to (3) is to define Gm as the intersection of the
kernels if all homomorphisms from G to a commutative unipotent k–group.
Note that (3) is also a consequence of the next fact that the geometric
unipotent radical is defined over the perfect closure of the field k (see lemma
11.0.5).

10.2.3. Exercise. We consider a purely inseparable field extension k′/k and
G =

∏
k′/k(Gm,k′). Show that Gm = Gm and that the sequence 0→ Gm →

G→ G/Gm → 0 is not split but splits after extension to k′.

10.3. Solvable k–groups.

10.3.1. Definition. Let G be an affine algebraic k–group. The k–group G is
solvable (resp. k–solvable) if G admits a composition serie whose successive
quotients are commutative affine algebraic k–groups (resp. Ga or Gm).

Solvable and k–solvable groups behave well by extension. A k–subgroup
an a quotient of a solvable k–group is solvable.
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10.3.2. Lemma. Let G be an affine algebraic k–group and let K/k be a field
extension. Then G is solvable if and only if GK is solvable.

11. Unipotent radicals and Levi subgroups

11.0.3. Lemma. Let G be an smooth connected affine algebraic k–group.

(1) G admits a largest smooth connected unipotent normal k–subgroup
Ru,k(G). Furthermore Ru,k

(
G/Ru,k(G)

)
= 1.

(2) G admits a largest k-split unipotent normal k–subgroup Rus,k(G).
Furthermore Rus,k

(
G/Rus,k(G)

)
= 1.

Proof. (1) If U is a unique maximal smooth connected unipotent normal
k–subgroup of G, then G/U has no non-trivial smooth connected unipo-
tent normal since the pull-back of such a subgroup would contradict the
maximality of U . This remark shows in particular the last point.

Unicity: We are given two maximal smooth connected unipotent normal
k–subgroup U1, U2 of G. By Lemma 10.1.2, U2/(U1 ∩ U2) is a unipotent k–
subgroup of G/U1, it is smooth connected so U2 = U1 ∩ U2. Hence U2 ⊂ U1

and by symmetry we conclude that U1 = U2.

Existence: It is obvious by noetherian reasons.

The proof of (2) is verbatim. �

11.0.4. Lemma. Let G be an affine algebraic k–group.

(1) G admits a unique maximal smooth connected normal solvable k–
subgroup Rk(G). Furthermore, we have Rk

(
G/Rk(G)

)
= 1.

(1) G admits a unique maximal smooth connected normal k–solvable k–
subgroup Rs,k(G). Furthermore, we have Rs,k

(
G/Rs,k(G)

)
= 1.

The proof is similar to that of 11.0.3. The group Ru,k(G) is called the
k–unipotent radical of G and

11.0.5. Proposition. [CGP, 1.1.9] The formation of Ru,k(G), Rus,k(G) and
Rk(G) commutes with separable field extensions. In particular Ru(Gk) =
Ru,split(Gk) (and R(Gk)) descend to the perfect closure of k.

11.0.6. Remark. It is not true that the formation of those radicals commute
with inseparable extensions. We come back to our favorite example of G =
Rk′/k(Gm,k′) with k′/k a non-trivial purely inseparable extension. We claim
that Ru,k(G) = 0. Let U be an unipotent k-subgroup of G. By adjunction,

we have Homk−gp(U,G)
∼−→ Homk′−gp(Uk′ ,Gm,k′) which is zero by Lemma

10.1.2. In the other hand, the exercise 10.2.3 shows that the k′–unipotent
radical is of dimension [k′ : k]− 1 so is not defined over k.

11.0.7. Definition. Let G be a smooth connected affine algebraic k–group. If
Ru(Gk) (resp. R(Gk) = 1), we say that G is reductive (resp. semisimple).

If Ru,k(G) = 1, we say that G is pseudo-reductive.
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11.0.8. Remarks. (a) Reductivity and semisimplicity are insensitive to field
extensions.

(b) There is a notion of pseudo-semisimple k–group but which is not
related to the radical. We say that a pseudo-reductive k–group is pseudo-
semisimple is G is perfect, that is DG = G.

11.0.9. Definition. Let G be a smooth algebraic k–group. A Levi subgroup
L of G is a k–subgroup such that the k–morphism Lk → Gk → Gk/Ru(Gk)
is an isomorphism.

It implies that Gk is the semi-direct product of Lk by Ru(Gk).
If the geometric unipotent radical Ru(Gk) is defined over k, it is to say

that L→ G/Ru,k(G) is an isomorphism.
In characteristic zero, Levi subgroups always exist (and areG(k)-conjugated),

it is a theorem of Mostow [Mo], see [De] for a cohomological proof. In posi-
tive characteristic, even in the algebraically closed case, it is a delicate issue
to decide whether Levi subgroup exist, see [MN1, MN2]. A nice case is when
dealing with quotient which are commutative reductive, namely tori.

11.0.10. Theorem. [SGA3, XVII.3.11] Let G be an extension of a k–torus T

(i.e. a k–form of Gr
m) by a smooth unipotent subgroup U . Then G

∼−→ UoT .

Next is a nice useful case of existence of Levi subgroup (note that example
of remark 11.0.6 is a special case).

11.0.11. Proposition. [CGP, A.5.16] Let k′/k be a finite field purely insep-
arable extension. Let G be a reductive k–group and put H = Rk′/k(Gk′).
Then G ↪→ H is a Levi subgroup.

We sketch now a counterexample which is fully explained in [CGP, A.5.6].
The Greenberg functor permits to contruct an extension H of SL2 over
Fp by a vector Fp–group U such that H(Fp) = SL2(Z/p2Z) and the map
H(Fp) → SL2(Fp) is the reduction map. We claim that the sequence 0 →
U → H → SL2 → 1 is not split. The thing is that the mapping of abstract
groups SL2(Z/p2Z)→ SL2(Fp) does not split.

12. List of structure results

We assume in this section that k is of characteristic p > 0.

12.1. Tits structure theorems for smooth solvable k–groups. The
statements are taken from [T] and [C2].

12.1.1. Definition. We say that an affine algebraic k–group is k–wound if
G(k) = G

(
k[t±1]

)
.

We may ask also the stronger condition G(k[[t]]) = G
(
k((t))

)
and we get

the same family of solvable k–groups. The following statement clarifies the
structure of solvable groups (and can be precised further).
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12.1.2. Theorem. Let G be a smooth connected solvable affine k-group.

(1) Then G/Rk,split(G) is a k–wound smooth connected solvable k–group.

(2) Assume that G is k–wound. Then G is a central extension of a k–wound
smooth connected unipotent subgroup by an anisotropic k–torus.

(3) Assume that G is unipotent and k–wound. Then G admits a composition
serie 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G by normal subgroups such that Gi+1/Gi
is smooth connected commutative unipotent and of p–torsion.

12.2. On the field of definition of the solvable radical.

12.2.1. Proposition. [CGP, 5.3.3] Let G be a perfect smooth connected
affine k–group. The maximal semisimple quotient of Gk and maximal semisim-
ple adjoint quotient of Gk have the same field of definition over k. In partic-
ular, if the solvable radical of Gk is defined over k, then the maximal adjoint
quotient of Gk is defined over k.

13. Greenberg’s functor

Many interesting group extensions arise from the Greenberg functor which
has the flavour of the Weil restriction. We recall here basic facts, see the
references [Gb], [M2, §III.4], [BLR], [B].

We are given a complete discrete valuation field K of valuation ring O =
OK and of perfect residue field k = O/πO of positive charactteristic p. Here
π ∈ O is a uniformizer. We denote by e0 the absolute ramification index of
O, i.e. p = uπe0 for a unit u ∈ O. We denote by Osh the strict henselization
of O, or in other words, its maximal unramified extension.

For each k-algebra Λ and r ≥ 0, we denote by Wr(Λ) the group of Witt
vectors of length r and by W (Λ) = lim←−Wr(Λ) the ring of Witt vectors

(see [Se2, §II.6]). There exists a unique ring homomorphism W (k) → O
commuting with the projection on k = W0(k) (ibid, II.5).

Let S be an affine W (k)-scheme. Recall that for each r ≥ 0, the functor
k–alg → Sets given by

Λ→ S(Wr(Λ))

is representable by an affine k–scheme Greenr(S). The projective limit

Green (S) : = lim←−
r

Greenr(S)

is a scheme which satisfies Green(S)(Λ) = S(W (Λ)). If X is an affine O–
scheme, we deal also with the relative versions of the Greenberg functor

Gr(X) := Greenr(
∏

O/W (k)

X), G(X) := Green (
∏

O/W (k)

X).

We have Gr(X)(k) = X(O/prO) and G(X)(k) = X(O). We also have
G(Spec(O)) = Spec(k); if X is a O–group scheme, then G(X) and the Gr(X)
carry a natural k-group structure [B, 4.1].
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Also if H is a smooth affine group scheme defined over O, then we have a
natural exact sequence of affine algebraic k–groups [CGP, A.6.3]

(∗) 0→W (Lie(Hk)
(p)))→ G2(H)→ Hk → 1.

Furthermore the adjoint action of G2(H) on itself induces an representa-

tion of Hk on Lie(Hk) which is nothing but the composite Hk → H
(p)
k

Ad(p)→
GL(Lie(Hk))

(p).

If Hk is reductive, then W (Lie(H
(p)
k ) is the unipotent radical of G2(H).

It is known that if Hk is non-commutative, then the sequence (∗) does not
split [CGP, A.6.4].
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Sci. Publ. Math. no 11,17 (1961-1963).

[EGA4] A. Grothendieck (avec la collaboration de J. Dieudonné), Eléments de Géométrie
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