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The goal of this series if lecture is firstly to present basic results for re-
ductive algebraic groups for a non algebraically closed field k. Secondly, we
are interested in the Galois cohomology of linear algebraic groups and also
in invariants of such groups, e.g. weak approximation and R-equivalence.
The program is as follows.

• The variety of tori, unirationality of reductive groups.

• Steinberg’s theorem, Raghunathan’s theorem.

• Parabolic subgroups, Borel-Tits theorem

• Anisotropic groups, classification of semisimple groups

• Classification of semisimple groups II

• Kneser’s theorem, Bruhat-Tits theory

• R-equivalence, flasque resolutions of tori

• Norm principle, examples of non rational classical groups
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The variety of tori, unirationality of reductive groups

1. Homogeneous spaces and Galois cohomology

Let k be a base field assumed to be of characteristic zero. Let ks/k be
a separable closure of k and denote by Γk = Gal(ks/k) the absolute Galois
group of k.

Let G/k be a linear algebraic group. Let X be a (non empty) k-variety
equipped with a right G-action. We say that X is homogeneous (resp.
principal homogeneous) under G if G(ks) acts transitively (resp. simply
transitively) on X(ks).

The G-principal homogeneous spaces are also called G-torsors.

1.1. Examples. Given a non degenerate quadratic form q, the projective
quadric {q = 0} is homogeneous under the orthogonal group O(q). Given
an integer n ≥ 1 and a ∈ k×, the variety {xn = a} is principal homogeneous
under µn = Spec( k[t]

(tn−1)).

Given a k-subgroup H ⊂ G, recall that we can define the quotient H\G.
This is a quasi-projective variety and the quotient map G→ H\G is smooth
and surjective.

1.2. Lemma. Let X be a homogeneous space under G. Then the following
are equivalent:

(1) X(k) 6= ∅
(2) X ∼= H\G for some H ⊂ G.

Note that the subgroup H is not uniquely defined; this will be discussed
in Harari’s lectures.

For a quotient H\G or equivalently X := G/H, this is not true in general
that the map π : G(k)→ X(k) is surjective. For example, Gm is the quotient
of Gm by µn and the map k× → k×, x 7→ xn, is not surjective. Here comes
Galois cohomology into the picture. In this setting, we have the following
exact sequence of pointed sets

1→ H(k)→ G(k)→ X(k)
ϕ→ H1(k,H)→ H1(k,G).

The mapping ϕ is called the characteristic map. In term of cocycles, it is
defined as follows. Given x ∈ X(k), let g ∈ G(ks) such that π(g) = x. Then
zσ := g−1 σ(g) is a 1-cocycle with value in H(ks). The class [z] does not
depend of the choice of g, and φ(x) = [z].

As we have seen, it is convenient to see elements of X(k) as classes [gH]
with g ∈ G(ks) satisfying g−1 σ(g) ∈ H(ks) for all σ ∈ Γ.

There is an equivalent way to define the characteristic map. One knows
that H1(k, H) classifies the principal homogeneous spaces under H. The
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point is that the preimage ϕ−1(x) ⊂ G is a principal homogeneous space
under H, whose class is precisely φ(x).

1.3. Proposition. The characteristic map induces a bijection

G(k)\X(k) ∼−→ Ker
(
H1(k, H)→ H1(k, G)

)
.

In other words, the G(k)-orbits on X(k) are described in terms of Galois
cohomology. This is specially interesting when G = GLn since H1(k, GLn) =
1 (Hilbert 90). If X = GLn/H, we have

GLn(k)\X(k) ∼−→ H1(k,H).

2. The variety of tori

By a reductive group G/k, we mean a connected linear algebraic group
such that G ×k ks is reductive. Equivalently, a linear algebraic group G is
reductive if it is connected and has trivial unipotent radical. Firstly, we
recall the two following key statements of the theory of reductive groups.

• All maximal ks-tori are conjugated under G(ks).
Their common rank is called the rank of Gks and is denoted by rank(Gks).

Put rank(G) = rank(Gks), this is the absolute rank of G.
Ws say that k-subtorus T of G is maximal if T×kks is a maximal ks-torus.

2.1. Lemma. (1) there exists a k-subtorus T which is is maximal.
(2) Let S be a k-subtorus of G. Then there exists a maximal k-torus of

G containing S.

The idea for the first fact is to use the Lie algebra g = Lie(G) and the
adjoint action. An element X ∈ g is semisimple regular if its centraliser
CG(X) is a maximal k-torus. Moreover, in that case, the Lie algebra of
CG(X) is nothing but the infinitesimal centralizer Cg(X).

Since the semisimple regular case is the generic one, it follows by Zariski
density that it exists X ∈ g, X semisimple regular. Thus there exists a
k-subtorus which is maximal [Bo, §18.1].

For the second statement, we can assume that G is semisimple. It goes
by induction by considering the reductive subgroup CG(S) for a k-subtorus
S of G.

Let T ⊂ G be a maximal torus and denote by N = NG(T ) the normalizer
of T in G. We consider the quotient variety X := G/N .

2.2. Lemma. There is a natural bijection between X(k) and the set of max-
imal k-tori of G.

Proof. Given x = [gN ] ∈ X(k), we remark that the ks-subtorus gTg−1 ⊂
G ×k ks does not depend of the choice of g and is stable under Galois.
Therefore, Tx := gTg−1 is equipped with a k-structure, it is a maximal k-
subtorus of G. We defined a map from X(k) to the set of maximal k-tori of
G. The surjectivity comes from the conjugacy fact mentionned above. For
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the injectivity, we are given x′ = [g′N ] ∈ X(k) such that gTg−1 = g′Tg′−1.
Then gg′−1 ∈ N(ks) and x = x′. ¤

For this reason, X is called the variety of tori of G. The main result of
this lecture is the following.

2.3. Theorem. (Chevalley) The variety X of tori of G is k-rational, i.e.
birationally isomorphic to an affine space.

2.4. Sketch of proof. (after Borel-Springer [BSp, 7.9]) Let T be a maximal
torus of G. We use the fact that the variety of tori G/NG(T ) is also the
variety of Cartan sub-algebras of G = Lie(G). Let t ∈ t be a semisimple
regular element. Let U be the open subset of A(g) of elements x ∈ g such
that t+x is semisimple regular, i.e the Lie algebra hX = Cg(t+x) is a Cartan
subalgebra. We fix a decomposition of k-vector spaces g = t⊕m and define
the open (non empty) subvariety V ⊂ U of the elements x ∈ V such that
m ∩ hX = 0. One shows then that the map x 7→ hx is an open immersion of
V in G/NG(T ), the image being the open subvariety of G/NG(T ) consisting
of Cartan subalgebras h such that h ∩m = 0.

3. Unirationality and weak approximation

3.1. Theorem. (Grothendieck) The variety G is k-unirational, i.e there
exists a rational dominant map AN → G from an affine space to G. In
particular, G(k) is Zariski dense in G. Furthermore, Gss,reg(k) is Zariski
dense in G.

The proof goes firstly by showing the result for tori and secondly by using
the fibration use the fibration Gss,reg → X sending a semisimple regular
element to its centralizer.

It is obvious that one dimensional tori are k-rational varieties. It is also
true that 2-dimensional tori are rational varieties (Chevalley).

3.2. Corollary. Assume that rank(G) ≤ 2. Then G is a k-rational variety.

The corollary applies in particular to groups of type G2, namely auto-
morphism groups of octonion algebras.

The variety of tori relies to weak approximation by the so-called fibra-
tion method. The following is a special case of a result by Kunyavskǐı-
Skorobogatov [KH].

3.3. Theorem. Let G/Q be a reductive group. Then G(Q) is dense in G(R)
for the real topology.

Again, one shows first the result for tori and use the fibration Gss,reg → X.
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Steinberg’s theorem and Raghunathan’s theorem

4. Introduction

Let k be a base field assumed to be of characteristic zero. Let ks/k be
a separable closure of k and denote by Γk = Gal(ks/k) the absolute Galois
group of k.

Let G/k be a (connected) reductive group. Our goal is to describe repre-
sentants of the pointed set H1(k, G) coming from suitable subgroups. The
first statement of that flavour is the following.

4.1. Lemma. Let T ⊂ G be a maximal torus. Then the map H1(k,NG(T ))→
H1(k, G) is surjective.

It has been recently sharpened.

4.2. Theorem. [CGR] Let T ⊂ G be a maximal torus. Then there exists
a finite k-subgroup S ⊂ NG(T ) such that map H1(k, S) → H1(k, G) is
surjective.

In other words, all classes come from a fixed k-finite subgroup. For exam-
ple, for PGLn, one can take the semi-direct product S =

(
(µn)n/µn

)
o Sn.

5. Steinberg’s theorem

We say that G is split if G admits a maximal k-torus which is k-split, i.e.
isomorphic to Grank(G)

m . We say that G is quasi-split if G admits a Borel
subgroup B, i.e. such that B ×k ks is a Borel subgroup of G×k ks which is
by definition a maximal connected solvable subgroup of G×k ks.

5.1. Theorem. (Steinberg, 1965, [St])
Let G be a quasi-split reductive group. Then

H1(k,G) =
⋃

T⊂G

Im
(
H1(k, T )→ H1(k,G)

)

where T runs over the maximal k-tori of G.

Few examples were known before : PGLn, SO2n. That solved Serre’s con-
jecture I for fields of cohomological dimension ≤ 1, i.e. such that H2(k, A) =
0 for any finite Galois module A. The basic example of such a field is the
function field of a complex curve (Tsen’s theorem [S1, III.3]).

5.2. Corollary. Assume that cd(k) ≤ 1. Let G/k be a reductive group. Then
G is quasi-split and H1(k,G) = 1.
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For a field of cohomological dimension ≤ 1, the cohomology of tori van-
ishes. So the vanishing of H1(k, G) follows from Steinberg’s theorem for G
quasi-split. Since a group G is an inner form of a quasi-split reductive group
(see next lecture), it follows that it is quasi-split as well.

With some additional work (i.e. Grothendieck’s vanishing’s theorem of
non abelian H2), one can compute the Galois cohomology of an arbitrary
linear algebraic group.

5.3. Theorem. [S1, III.2.4, corollaire 3]
Assume that cd(k) ≤ 1. Let G/k be a linear algebraic group and let G0 be its
neutral component. Then the quotient map G→ G/G0 induces a bijection

H1(k, G) ∼−→ H1(k, G/G0).

6. Proof of Steinberg’s theorem

6.1. The adjoint quotient [H, III]. The argument is of geometrical nature.
Let G/k be a reductive group. We consider the ring of central functions

C(G) = k[G]ad(G) =
{

f ∈ k[G] | f(gxg−1) = f(x) ∀g ∈ G(k)
}

.

The variety G//G := Spec(C(G)) is the adjoint quotient of G . It turns
out that the quotient map G → G//G separates the semisimple conjugacy
classes.

Now let T ⊂ G be a maximal torus. We denote by WT := NG(T )/T its
Weyl group which is a finite étale k-group. We have a natural map

T//NG(T ) = T//WT → G//G.

6.1. Theorem. (Chevalley) The map T//WT → G//G is an isomorphism.

6.2. Case of quasi-split semisimple simply connected group. As-
sume that G is semisimple simply connected and quasi-split. Assume fur-
thermore that T is a maximal torus of a Borel subgroup of G. Then T//WT

is isomorphic to an affine space Ar
k. In the split case, the isomorphism

G//G→ Ar
k is provided by the fundamental characters χ1, · · · , χr of G, i.e.

the characters of the representations whose highest weight are the funda-
mental weights ω1, · · · , ωr (with respect to T ⊂ B). The map

π : G→ G//G ∼= Ar
k

is called the Steinberg’s map of G.

6.2. Example. If G = SLn, the fundamental representations are the alter-
nate powers of the standard one. Then Steinberg’s map applies an element
g ∈ SLn(k) to the coefficients of the characteristic polynomial of g.
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In that case, there is a splitting of π which is given by

(a1, · · · , an−1) 7→




0 0 . . 1
1 0 0 . an−1

. . . . .
0 . 1 0 a2

0 . 0 1 a1




.

This fact is actually general out of type Aodd.

6.3. Theorem. [St]
If G has no type Aodd, the Steinberg’s map π : G → Ar

k admits a section
C : Ar

k → Greg where Greg stands for the open subset of regular elements of
G.

The proof provides an explicit section built out from the Weyl group
and radicial subgroups of G. We are interested in its following consequence
(which is true also for type Aodd by a more subtle argument).

6.4. Corollary. Let g ∈ G(ks) be a regular semisimple element. Assume
that the geometric conjugacy class C(g) is rational, i.e. stable under Γk.
Then C(g) contains an element of G(k).

Proof. Our hypothesis implies that π(g) ∈ Ar(k). Put g0 = C(π(g)). Then
g0 is semisimple regular and belongs to the geometric conjugacy class of
g. ¤
6.5. Remark. For suitable generalizations of this statement to other conju-
gacy classes and arbitrary reductive groups, see Kottwitz [Ko].

We can now complete the proof of Steinberg’s theorem 5.1.

Proof. Let λ : Gsc → D(G) be the universal covering of the derived group of
G. The groups Gsc, D(G) and G are quasi-split and have the same adjoint
group, i.e. we have the following commutative diagram

Gsc λ−−−−→ D(G) ⊂ Gy
y

y
Gsc

ad = D(G)ad = Gad.

In particular, G acts by inner automorphisms on Gsc.
We are given a class [z] ∈ H1(k, G) and we want to show that it comes

from a maximal k-torus of G. We consider the twisted k-group zG
sc and

pick a semisimple regular element g0 ∈ zG
sc(k). We have

zG(k) =
{

g ∈ G(ks) | Ad(zσ).σ(g) = g
}

.

It follows that g0, seen in G(ks), defines a rational conjugacy class of G. By
Corollary 6.4, there exists h ∈ Gsc(ks) such that g1 := Ad(h−1) . g0 ∈ G(k).
From Ad(zσ).σ(g0) = g0, we get that

Ad(zσ) . σ(Ad(h) . g1) = Ad(h) . g1.
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Pushing by λ : Gsc(k)→ G(k) yields

Ad
(
λ(h)−1 zσ σ(λ(h))

)
. λ(g1) = λ(g1).

The element λ(g1) is semisimple regular so its centralizer T1 := CG(λ(g1))
is a maximal torus. Thus

[zσ] =
[
λ(h)−1 zσ σ(λ(h))

] ∈ Im
(
H1(k, T1)→ H1(k, G)

)
.

¤

cla

7. Raghunathan’s theorem

Steinberg’s theorem is indexed by the set of maximal tori of a quasi-split
group G. Our goal is to describe this set with regards to this result. We
denote by T ⊂ G a maximal torus of a given Borel subgroup B ⊂ G (T is
the centralizer in G of a maximal k-split torus of G). Consider the variety
X = G/N of maximal tori, where N := NG(T ). We have an exact sequence
1 → T → N → WT → 1 where WT is the Weyl group; it is a finite k-
group. By composing the characteristic map X(k) → H1(k, N) with the
map H1(k,N)→ H1(k,WT ), we get a map

Type : X(k)→ H1(k,WT ),

which is the type of a torus. When G is split, note that W is constant so the
pointed set H1(k, W ) = Homct(Γk,W )/int(W ) classifies Galois W -algebras
over k.

7.1. Example. For GLn, the maximal tori are the induced tori RE/k(Gm)
for E/k running over the étale k-algebras (i.e. product of finite separa-
ble fields extensions) of dimension n. The type has value in H1(k, Sn)
which classifies étale k-algebras of dimension n. It is an easy checking that
Type(RE/k(Gm)) = [E] ∈ H1(k, Sn).

7.2. Remark. This invariant is finer that the isomorphism class of the
torus. For example, for GLn, the type has value in H1(k, Sn) but the map
H1(k, Sn)→ H1(k, GLn(Z)) is not injective in general.

This invariant is the right one with respect to Steinberg’s theorem.

7.3. Lemma. Let T1, T2 be two maximal k-tori of G having same type in
H1(k, W ). Then

Im
(
H1(k, T1)→ H1(k, G)

)
= Im

(
H1(k, T2)→ H1(k,G)

)
.

We can now state Raghunathan’s theorem.

7.4. Theorem. (2004, [R]) All types of tori occur, i.e. the type map X(k)→
H1(k, WT ) is surjective.
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So this result completes nicely the picture. Moreover, it gives a way to
parametrize W -torsors by a k-rational variety.

The proof requires the following fact.

7.5. Lemma. (Tits) Let S/k be a torus. Assume that k is not an algebraic
extension of a finite field. Then there exists an element s ∈ S(k) such that
the group sZ is Zariski dense in S.

Proof of Theorem 7.4: We consider the case when Tits lemma holds.
Since the type of a k-torus does not change by central extensions of groups,
that boils down to the case of a semisimple simply connected group. We
are given [ξ] ∈ H1(k, WT ) and we want to show that the twisted torus
T ′ = ξT can be embedded in G. It is convenient to fix a trivialisation map
φ : T ×k ks

∼−→ T ′ ×k ks such that ξσ = φ−1σ(φ) for all σ ∈ Γk. By Lemma
7.5, there exists t′ ∈ T ′(k) such that (t′)Z is Zariski dense in T ′. Define
t := φ−1(t′) ∈ T (ks); this is a regular element of G.

7.6. Claim. The conjugacy class C(t′) is rational.

According to Chevalley’s isomorphism T//WT
∼= G//G (6.1), it is enough

to check that the conjugates of t are WT (ks)-conjugates of t. But σ(t) =
σ(φ−1(t′)) = φ−σ(t′) = (φ−σ φ)(t) = ξ−1

σ (t), hence the claim.
Steinberg’s result 6.4 provides an element t0 ∈ G(k) and h ∈ G(ks) such

that t = h−1.t0. Then the Zariski closure of (t0)Z in G is a k-torus T0 of G.
It remains to check that Type(T0) = [ξ]. Since T0 = hTh−1 the type of T0

is given by the image in WT of the cocycle h−1σ(h).
Given σ ∈ Γk, let nσ be a lifting of ξσ ∈ N(ks). From t0 = σ(t0), we have

h.t = σ(h.t)
= σ

(
h . φ−1(t′)

)

= σ(h) . φ−σ(t′) [ t′ ∈ T (k) ]
= σ(h) . n−1

σ . t.

It follows that h−1σ(h) . n−1
σ belongs to T (ks). Hence h−1σ(h) and nσ acts

in the same way on T = h−1 . T0. Thus Type(T0) = [ξ] as desired. ¤
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Parabolic subgroups, Borel-Tits theorem

8. Introduction

Let k be a base field assumed to be of characteristic zero. Let ks/k be
a separable closure of k and denote by Γk = Gal(ks/k) the absolute Galois
group of k.

Following Borel-Tits [BoT], our goal is to show in that lecture and the
next one how the classification of semisimple algebraic groups boils down to
the case of the anisotropic ones. Before to give the precise definition here,
let us present two important examples.

8.1. Example. Wedderburn’s theorem. Let A be a central simple k-
algebra. Then there exist a uniquely determined central division k-algebra
D and an integer r ≥ 1 such that A ∼= Mr(D).

8.2. Example. Witt’s theorem. Let q be a non-degenerated quadratic
form. Then there exists a uniquely determined anisotropic quadratic form q0

and a non-negative integer ν(q) (the Witt index) such that q ∼= q0 ⊥ ν(q)H,
where H stands for the hyperbolic plane, i.e. the quadratic form XY .

It turns out that both examples are special case of Borel-Tits’ results.
Those are obtained by the study of parabolic subgroups of reductive groups.

9. Basic facts on k-parabolic subgroups

9.1. Definition. Let G/k be a linear algebraic group. A k-subgroup P is a
k-parabolic subgroup if the quotient variety G/P is projective.

As a k-variety X ×k ks is projective (resp. quasi-projective) if and only
if X ×k ks is projective [EGA4, 9.1.5]. It follows that a k-subgroup P is
parabolic if and only if P ×k ks is parabolic.

Since a homogeneous space G/P is always quasi-projective, P is parabolic
if and only if G/P is proper.

For any linear algebraic group G, the unipotent radical Ru(P ) is a split
unipotent group and the neutral component of the quotient G/Ru(P ) is re-
ductive. Moreover, the quotient map is split, and we can write
G = Ru(G) o L with L ⊂ G. Such a k-subgroup is called a Levi subgroup
of G.

9.1. Lemma. Let P be a k-parabolic subgroup of a linear algebraic group G.
(1) Let P ] be a k-subgroup of G satisfying P ⊂ P ] ⊂ G. Then P is a

k-parabolic subgroup of P ] and P ] is a k-parabolic subgroup of G.
(2) The k-parabolic subgroups Q of G which are included in P are the

k-parabolic subgroups of P .
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Proof. (1) According to [DG, III.3.2.5], the morphism P ]/P → G/P is
a closed immersion. So P ]/P is projective. The map G/P → G/P ] is
surjective, so G/P ] is proper. Thus P ] is a k-parabolic subgroup of G.

(2) Let Q ⊂ P be a k-parabolic subgroup of G. The fibers of the map
G/Q→ G/P are projective, so P/Q is projective. Hence Q is a k-parabolic
subgroup of P . In the way around, assume that Q is a k-parabolic subgroup
of P . Then the map G/Q → G/P has proper geometric fibers, so G/Q is
proper. Thus Q is a k-parabolic subgroup of G. ¤

9.2. Fixed point theorem. Recall the following fundamental fact.

9.2. Theorem. (Rosenlicht, see [Sp, 14.1.7]) Let H be an connected split
solvable k-group (i.e. extension of a k-split torus by a split unipotent group)
acting on a proper k-variety X satisfying X(k) 6= ∅. Then XH(k) 6= ∅.

In the geometric case, this is Borel’s fixed point theorem [Bo, 10.4]. Recall
also that connected unipotent groups are always k-split in characteristic zero
[Sp, 14.3.9].

That enables us to investigate the behaviour of parabolic subgroups with
respect to quotient mod Ru(G).

9.3. Corollary. (1) Let P be a k-parabolic subgroup of G. Then RuG ⊂ P .
(2) The quotient morphism π : G → G/Ru(P ) induces a one to one

correspondence between the k-parabolic subgroups of G and those of
G/Ru(G).

Proof. (1) We may assume that k = ks. The unipotent group Ru(G) acts
on the proper k-variety G/P , se we can pick a point [gP ] ∈ (G/P )Ru(G)(k)
by Theorem 9.2. Hence Ru(G) ⊂ gPg−1. Since Ru(G) is a normal subgroup
of G, we get Ru(G) ⊂ P as desired.
(2) If P is a k-parabolic of G, it is clear that π(P ) is a k-parabolic subgroup
of G/Ru(G). From (1), we have moreover P = π−1(π(P )). ¤

10. Split reductive groups, the geometric case

If k = ks, all reductive groups are split. As several authors, we first review
split reductive groups under the assumption k = ks.

10.1. Isomorphism theorem. The major result is that reductive groups
are classified by root datas arising from the adjoint representation of G.

10.1. Theorem. [Sp, 10.1] Let Ψ = (X,R, X∨, R∨) be a root datum. Then
there exists a (connected) reductive group G over k with a maximal torus T
such that the root datum Ψ(G,T ) is isomorphic to Ψ. Such a group G is
unique up to isomorphism.
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10.2. Bruhat’s decomposition. Let (nw)w∈W be a set theoretic section
of NG(T )(k)→W . We have the decomposition

G(k) =
⊔

w∈W

B(k) nw B(k).

10.3. Parabolic subgroups. Recall that a split reductive k-group contains
a maximal k-torus T and a k-Borel subgroup B. The pair (T, B) is called a
Killing couple. All Killing couples are conjugated under G(k).

10.2. Lemma. A k–parabolic subgroup of G contains a Borel subgroup.

Proof. Let P be a k-parabolic subgroup of G. By Theorem 9.2, (G/P )B(k) 6= ∅.
By picking a point [gP ] ∈ (G/P )B(k) 6= ∅, we get g−1Bg ⊂ P . ¤

So it is enough to list the k-parabolic subgroups containing B. Let T ⊂ B
be a maximal torus of B. Those are the “standard” parabolic subgroups
PI = UI o LI defined as follows for any subset I ⊂ ∆, where ∆ is the basis
of the root system Φ(G,T ) defined by the Borel subgroup B. We denote by
[I] the subset of Φ(G,T ) of roots which are linear combination of elements
of I.

• TI =
( ⋂

α∈I

ker(α)
)0
⊂ T ;

• LI = CG(TI) ⊂ G;
• UI ⊂ U is the subgroup generated by the Uα, α ∈ Φ(G,T )+ \ [I].

The group Uα
∼= Ga is the root group attached to α and uα

∼= k is its Lie
algebra. The Lie algebra of PI is

pI := t⊕
⊕

α∈ [I]

uα

where [I] = Φ(LI , T ) ⊂ Φ(G,T ) stands for the root system generated by
I ⊂ ∆. In particular P∆ = B and P∅ = G.

The PI ’s give rise to distinct conjugacy classes. Therefore there is a one to
one correspondence between the conjugacy classes of k-parabolic subgroups
of G and subsets of ∆.

We may define as well the k-parabolics P−
I = U−

I o LI where U−
I is the

subgroup of G generated by the U−α for α ∈ I.

10.3. Remark. Parabolic groups are determined by their unipotent radical
since we have PI = NG(UI).

10.4. Remark. LI is the unique Levi subgroup of PI which contains T (see
[Sp, 8.4.4]).

11. More on parabolic groups

We come back to the case where the the ground field k is assumed only
of characteristic zero.
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11.1. Intersection of parabolic subgroups.

11.1. Proposition. Let P, Q be two k-parabolic subgroups of G.
(1) P ∩Q contains a maximal k-torus.
(2) (P ∩Q).Ru(P ) is a k-parabolic subgroup of G. It is equal to P if and

only if Q contains a Levi subgroup of P .

Proof. We can assume in the proof that k is separably closed.
(1) Lemma 10.2 boils down to show that the intersection of two Borel

subgroups B and B′ contains a maximal torus. We have B′ = gBg−1 for
a suitable g ∈ G(k). Let T ⊂ B be a maximal k-torus of B. By Bruhat
decomposition (10.2), there exists n ∈ NG(T )(k) such that g ∈ B(k)nB(k).
We write then g = b1nb2 and get b1Tb−1

1 ⊂ B ∩B′.
(2) Let (T, B) be a Killing couple. From (1), we may assume that
T ⊂ P ∩ Q and that B ⊂ P . Then P = PI is a standard k-parabolic
subgroup. We consider the root subsystem Φ(Q,T ) ⊂ Φ(G,T ). Since Q
is parabolic, we know that Φ(Q,T ) is a parabolic root subsystem, i.e.
Φ(G,T ) = Φ(Q,T ) ∪ −Φ(Q,T ). Thus any Borel subgroup B′ of P ∩ Q
containing T contains at least one of the Uα, U−α for every α ∈ [I]. Then
the k-solvable group B′.Ru(P ) contains T and one of the Uα, U−α for ev-
ery α ∈ Φ(G,T ). Therefore it is a Borel subgroup and by Lemma 9.1,
(P ∩Q).Ru(P ) is parabolic. The second assertion is obvious. ¤

11.2. Opposite parabolic subgroups.

11.2. Definition. Two k-parabolic subgroups of G are opposite if P ∩Q is
a common Levi subgroup of P and Q.

In the split case, the ks-parabolic subgroup P−
I is the only opposite ks-

parabolic subgroup of G which is opposite to PI and contains LI (or even
T by Remark 10.4). We abstract that with the following lemma.

11.3. Lemma. Let P be a k-parabolic subgroup of G. Then there is a one
to one correspondence between the opposite k-parabolic subgroups of P , the
Levi subgroups of P and the maximal tori of P .

In particular, opposite parabolic subgroups exist.

11.4. Lemma. [BoT, 4.10] Let P, P ′ be two k-parabolic subgroups. Then the
following conditions are equivalent:

(1) P and P ′ are opposite;
(2) The geometric conjugacy classes of P and P ′ are opposite1 and P, P ′

contain opposite Borel subgroups;
(3) (P ∩ P ′).Ru(P ) = P , (P ∩ P ′).Ru(P ′) = P ′, and P, P ′ contain

opposite Borel subgroups.
(4) P ∩Ru(P ′) = 1 and P ′ ∩Ru(P ) = 1.

1i.e. there exists g ∈ G(ks) such that gP ×k ks is opposite to gP ×k ks.
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We shall use only the implication (1) =⇒ (4). Let us prove it. We can
assume that k = ks and assume that P = PI , P ′ = P−

I are opposite standard
subgroups. Then PI ∩ U−

I = 0.

12. Borel-Tits’ theorem

We split the result in two statements.

12.1. Theorem. Let G be a reductive groups and let P be a k-parabolic
subgroup of G.

(1) The fibration G→ G/P is locally trivial for the Zariski topology.
(2) The variety G/P is k-rational.
(3) The map G(k) → (G/P )(k) is surjective and the map H1(k, P ) →

H1(k, G) is injective.

Proof. (1) Let P ′ be an opposite k-parabolic subgroup of P . By Lemma 11.4,
we have Ru(P ′) ∩ P = 1, so the map Ru(P ′) → G/P is an immersion. By
dimension reasons, it is an open immersion. Since G(k) is Zariski dense in G,
we can cover G/P by the trivializing open subsets gRu(P ′) (g ∈ G(k)) and
we conclude that the fibration G→ G/P is trivial for the Zariski topology.
(2) We have seen that Ru(P ′) is birationally isomorphic to G/P . As k-
variety, Ru(P ′) is isomorphic to an affine space. Thus G/P is a k-rational
variety.
(3) It readily follows that the map G(k) → (G/P )(k) is surjective. By the
long exact sequence of pointed sets

1→ P (k)→ G(k)→ (G/P )(k)→ H1(k, P )→ H1(k, G),

we get that the map H1(k, P ) → H1(k,G) has trivial kernel. For estab-
lishing the injectivity, we make use of the following “torsion trick”. We
have to show that the maps H1(k, zP ) → H1(k, zG) have trivial kernel for
all [z] ∈ H1(k, P ). But this works since zP is a k-parabolic subgroup of
zG. ¤

12.2. Theorem. Let G be a reductive group and let P, Q be two k-parabolic
subgroups of G.

(1) If P and Q are minimal k–parabolic subgroups, then P and Q are
conjugated under G(k).

(2) If P ×k ks and Q ×k ks are conjugated under G(ks), then P and Q
are conjugated under G(k).

Proof. (1) We are given two minimal k-parabolic subgroups P , Q of G. We
consider the action of Ru(Q) on the proper variety G/P . By Theorem 9.2,
(G/P )Ru(Q)(k) 6= ∅ and we pick a k-point x. Furthermore, Theorem 12.1
shows that x = [gP ] with g ∈ G(k). So Ru(Q) ⊂ gPg−1. Up to replace P
by its conjugate, we have then Ru(Q) ⊂ P . It follows that

(∗) (P ∩Q).Ru(Q) ⊂ P ∩Q.
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Proposition 11.1.2 tells us that the left handside is a k-parabolic subgroup.
By minimality of P and Q, we conclude that (P ∩Q).Ru(P ) = P = Q.
(2) Up to conjugate P by a suitable element of G(k), the same argument
shows that we can assume that Ru(Q) ⊂ P and the inclusion (∗) above
holds. For showing that P = Q, we can extend the scalars to ks. Since
(P ∩Q).Ru(Q) is parabolic, it contains a Killing couple (T, B). So P = PI

and Q = PJ are standard parabolic subgroups of G which are conjugated.
Thus P = Q. ¤
12.3. Corollary. Let P be a minimal k-parabolic of G. Then the conjugacy
class of P is auto-opposite.

13. Come back to the examples

13.1. Unicity in Wedderburn’s theorem. Let A be a central simple
algebra of degree d. Then A⊗k ks

∼= Md(ks), i.e. A is a k-form of the matrix
algebra Md(k). It follows that the k-group GL1(A) is a k-form of the linear
group GLd. If A = Mr(D) with D a central division k-algebra, the k-group

P =




D ∗ . . ∗
0 D ∗ . ∗
. . . . .
0 . 0 D ∗
0 . 0 0 D



⊂ GLr(D) = GL1(A)

is a minimal k-parabolic subgroup of GL1(A) and P/Ru(P ) = GL1(D)r. So
D is encoded in P , which yields unicity in Wedderburn theorem.

13.2. Witt theorem. Let q = q0 ⊥ νH with q0 an anisotropic quadratic
form. Let P ⊂ SO(q) be the subgroup which normalises V0, the underlying
vector space of q0. Then P is a minimal k-parabolic subgroup of SO(q) and
P/R(P ) = SO(q0). Borel-Tits’ theorem shows that the similartity class of q0

is encoded in SO(q), which is a weak version of Witt cancellation theorem.
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Anisotropic groups, classification of semisimple groups

We continue the last lecture.

14. Maximal k-split tori, irreducible and anisotropic groups

Let G be a reductive group. We first add the following consequence of
the fixed point theorem and of Borel-Tits theorem.

14.1. Corollary. Let S be a k-split torus of G and let P be a k-parabolic
subgroup. Then there exist g ∈ G(k) such that S ⊂ gPg−1.

14.1. From tori to parabolics.

14.2. Proposition. [Bo, §20] Let S ⊂ G be a k-split torus. Then CG(S) is
the Levi subgroup of a parabolic subgroup.

The proof goes by inspection of the Galois action on the root system
Φ(G ×k ks, T ×k ks) for a maximal k-torus T of G which contains S. The
following result generalizes the case of (split) ks-groups.

14.3. Theorem. Maximal k-split tori of G are conjugate under G(k).

Proof. The proof goes by induction on the semisimple rank. Let S, S′ be
two maximal k-split tori. If G does not contain any proper k-parabolic
subgroup, then S = S′ = 1 by Proposition 14.2. If G contains a proper
k-parabolic subgroup P , then we can assume that S and S′ are maximal
k-split tori of P by the preceding Corollary. Furthermore we can assume
that S, S′ are maximal tori of a Levi subgroup L of P . By induction, S and
S′ are conjugate under L(k). ¤

14.2. From parabolic to tori. Given a k-torus T , we denote by T̂ =
Hom(T,Gm) (resp. T̂ = Hom(Gm, T ) ) the Galois module of characters
(resp. cocharacters). We have a natural pairing T̂ × T̂ → Z. We denote
by Td the k-split torus of character group (T̂ 0)Γk . Then Td is the maximal
k-split torus of T .

14.4. Proposition. [Bo, 20.6] Let P be a proper k-parabolic subgroup of G,
L be a Levi subgroup of G and let S be the connected center of L. Then :

(i) L = CG(Sd);
(ii) P is minimal if and only if Sd is a maximal k-split torus of G.

As in the proof of Proposition 14.4, we can then define the relative root
system Φ(G,S) with respect to a maximal k-split torus S of G. Then with
mild modifications, the absolute theory works. In particular, we have stan-
dard parabolic subgroups and a Bruhat decomposition with respect to a
minimal k-parabolic subgroup.
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14.3. Reducibility and isotropy. We actually discuss already the notion
of irreducibility.

14.5. Definition. Let H be a linear algebraic group. We say that H is
reducible if H admits a proper k-parabolic subgroup.

We say that H is isotropic if H admits a non-trivial split k-subtorus.

The opposite notions are respectively irreducible and anisotropic. A non
trivial split k-torus is isotropic but irreducible. Both notions are stable
under central isogenies and also under extensions by a solvable group. From
Propositions 14.2 and 14.4, we can derive the following characterisations.

14.6. Corollary. (1) If G is reducible, then it is isotropic.
(2) If G is semisimple, reducible ⇐⇒ isotropic.
(3) G is anisotropic if and only its adjoint group Gad is anisotropic and

its connected center C(G)0 is anisotropic.

15. Beginning of the classification

15.1. Automorphism group of semisimple groups. We fix a semisim-
ple split group G/k and a Killing couple (T, B). We denote by Gad the
adjoint group of G and by Tad the image of T in Gad. We denote by ∆ the
base of the root system Φ(G, T ) defined by B.

15.1. Proposition. [Sp, 2.12] The functor Aut(G) is representable by a
linear algebraic group. It has the following properties:

(1) The quotient Out(G) := Aut(G)/Gad is a finite constant group.
(2) We have an exact sequence of k-algebraic groups

0→ Tad → Aut(G, B, T )→ Out(G)→ 1.

(3) We have Aut
(
G,B, T, (Uα)α∈∆

) ∼−→ Out(G), so the map above is
split.

(4) There is an injective map Out(G) ↪→ Aut(∆). It is an isomorphism
if G is simply connected or adjoint.

15.2. Example. Type An−1. Then there is an exact sequence
1→ PGLn → Aut(SLn)→ Z/2Z→ 1. From the theory of compact groups,
we know that the Cartan involution X → tX

−1 provides a splitting of that
exact sequence. But it not does normalize the Borel subgroup consisting of
upper triangular matrices. So the splitting given by the Proposition is the
conjugate of the Cartan involution by the antidiagonal standard matrix.

Then by descent, k-forms of G (up to isomorphism) correspond to the set
H1(k, Aut(G)). This the reason why we cannot avoid non-connected groups.
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15.2. Quasi-split forms.

15.3. Definition. A reductive group H is quasi-split if it admits a Borel
subgroup Q, i.e. Q×k ks is a Borel subgroup of H ×k ks.

15.4. Proposition. (1) Quasi-split k-forms of G are classified by
H1(k, Aut(G,B, T )) ∼−→ H1(k, Out(G)).

(2) A k-form of G is an inner twisted form of a unique quasi-split k–
form of G.

Proof. (1) Let us denote H1
qd(k, Aut(G)) ⊂ H1(k, Aut(G)) the subset of

quasi-split k-forms of G. The first step is to notice that

Im
(
H1(k,Aut(G,B, T ))→ H1(k, Aut(G))

)
= H1

qd(k, Aut(G)).

If z ∈ Z1(k, Aut(G,B, T )), the twisted group zB is a Borel subgroup of zG;
hence zG is quasi-split. In the way around, we are given z ∈ Z1(k,Aut(G))
such that G′ :=z G is quasi-split. It admits a Borel subgroup B′, and let
T ′ ⊂ B′ be a maximal torus of B′. Then (T ′ ×k ks, B

′ ×k ks) is a Killing

couple of G×k ks

φ
∼−→G′ ×j ksG. It follows that there exists g ∈ G(ks) such

that φ−1(T ′, B′) = g(B, T )g−1. Since zσ = φ−1 σ(φ), one checks that z′ =
g−1 zσ σ(g) normalises (B, T ); therefore [z] comes from H1(k,Aut(G, B, T )).
The second step is to establish that H1(k, Aut(G,B, T )) ∼= H1(k, Out(G)).
Let us de note by ρ the splitting of Out(G)→ Aut(G,B, T ) stated in Propo-
sition 15.1.(3). The associated map ρ∗ : H1(k, Out(G))→ H1(k,Aut(G, B, T ))
provides a splitting of p∗ : H1(k, Aut(G,B, T )) ∼= H1(k, Out(G)) which is
indeed split surjective. For the injectivity, it is enough to prove that the
p−1∗

(
[ρ(a)]

)
= [a] for any [a] ∈ H1(k, Out(G)). We use the exact sequence

1→ T/C(G)→ Aut(G,B, T )
p→ Out(G)→ 1.

Given such [a], we twist this sequence by ρ(a), i.e. we have

1→ ρ(a)(T/C(G))→ ρ(a) Aut(G,B, T )→ a Out(G)→ 1.

By the twisting trick, there is a bijection between the fiber of p∗ at ρ([a]) ∈
H1(k, Aut(G,B, T )) and

Im
(
H1(k,ρ(a) (T/C(G)))→ H1(k,ρ(a) Aut(G,B, T ))

)
.

The point is that the character group of T/C(G) is the lattice of roots, i.e.
̂(T/C(G)) = ⊕α∈∆Zα. The action of ρ on this lattice goes by permutation

of the roots (15.1.(4)). It follows that the character group of ρ(a)(T/C(G))
is a Γk-permutation module, hence ρ(a)(T/C(G)) is a induced torus. By
Shapiro’s lemma and Hilbert 90, the Galois cohomology of induced tori
vanishes, so H1(k, ρ(a)(T/C(G))) = 0 and p∗−1(ρ([a])) = {[ρ(a)]} as desired.

Since the map H1(k, Aut(G,B, T )) ∼= H1(k, Out(G)) factorises by H1(k, Aut(G)) ∼=
H1(k, Out(G)), it follows that H1(k, Aut(G,B, T )) injects in H1(k, Aut(G)).
Thus H1(k, Aut(G,B, T )) ∼= H1

qd(k,Aut(G)) ∼= H1
qd(k, Aut(G)).



19

(2) Let [z] ∈ H1(k, Aut(G)) and put a = p∗(z) ∈ Z1(k, Out(G)). The
same twisting trick shows that there exists z′ ∈ Z1(k,ρ(a) G) such that zG

is isomorphic to z′
(
ρ(a)

G
)
. The unicity of the quasi-split group ρ(a)G is a

consequence of (1).
¤

If the underlying quasi-split form associated to a given k-form M of G is
split, we say that M is an inner form. The morphism Out(G) → Aut(∆)
gives rise to the map

H1(k, Out(G))→ H1(k, Aut(∆)) = Homct(Γk, Aut(∆))/conjugacy .

In other words, we attach to a k-form of G an action of the Galois group Γk

on ∆ up to conjugacy by Aut(∆). This is the so-called star action of Γk on
∆.

16. More Galois cohomology

16.1. Witt-Tits decomposition. The most general statement seems the
following.

16.1. Theorem. Let H be an affine group such that its neutral component
H0 is split reductive. We denote by ∆H the Dynkin diagram of H.

(1) Let I ⊂ ∆H . Denote by H1(k, NH(PI))irr the classes of [z] such that
the twisted group zP I is irreducible. Then the map H1(k,NH(PI))irr →
H1(k, H) is injective.

(2) Let PI1, ... , PIl
be representants of H(ks)-conjugacy classes of the

k–parabolic subgroups of H. Then we have⊔

j=1,...,l

H1(k, NH(PIj ))irr
∼= H1(k, H).

The proof is based on Bruhat-Tits’s paper [BT3, section 3].

Proof. (1) We are given cocycles z, z′ ∈ Z1(k, NH(PI))irr having same image
in H1(k, H). So there exists h ∈ H(ks) such that z′σ = h−1 zσ σ(h) for all
σ ∈ Γk. Then PI defines in the same time a minimal k-parabolic subgroup
of the twisted groups zH

0 and z′H
0. Since Int(h) is a k-isomorphism zH

0 ∼=
z′H

0, we see that PI and hPIh
−1 are two mimimal parabolic k-subgroups of

zH
0. By Borel-Tits’ theorem, PI and hPIh

−1 are conjugate under zH
0(k).

It follows that there exists g ∈ zH
0(k) such that hPIh

−1 = gPIg
−1. Hence

n := g−1h ∈ NH(PI)(ks) and from the relation zσ σ(g) z−1
σ , we get

z′σ = h−1 zσ σ(h) = n−1zσ σ(n)

for all σ ∈ Γk. Thus [z] = [z′] ∈ H1(k, NH(PI)).
(2)First step : injectivity: We are given I, I ′ ⊂ ∆ occuring in the Ij ’s and
cocycles z ∈ Z1(k,NH(PI))irr, z′ ∈ Z1(k, NH(PI′))irr having same image in
H1(F, H). So there exists h ∈ H(ks) such that z′σ = h−1 zσ σ(h) for all σ ∈
Γk. Then PI (resp. PI′) defines a minimal k-parabolic of the twisted groups
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zH
0 (resp. z′H

0). By the same argument as above, it follows that PI and
hPI′h

−1 are conjugate under zH
0(k). Thus PI and PI′ are conjugate under

H(ks) and I = I ′. Statement (1) shows that [z] = [z′] ∈ H1(k, NH(PI)).
Third step : surjectivity: Let z ∈ Z1(k, H). Let P be a a minimal k-parabolic
subgroup of the twisted group zH

0. There exists I occuring in the I ′js such
that P = hPIh

−1 with h ∈ H(ks). It means that zσ σ(h) PIσ(h)−1 z−1
σ =

hPIh
−1 for all σ ∈ Γk, hence

h−1 zσ σ(h) PI σ(h)−1 z−1
σ h = PI .

It follows that h−1 zσ σ(h) ∈ NH(PI)(ks). We conclude that
[z] ∈ Im

(
H1(k, NH(PI))irr → H1(k, H)

)
. ¤

We can be slightly more precise with the following lemma.

16.2. Lemma. Let M = Ru(M) o L be a linear algebraic group. Then we
have natural bijections

H1(k, L) ∼= H1(k, M) ∼= H1(k, M/Ru(M)).

16.2. Classification. We specialise the decomposition to the case H =
Aut(G). For I ⊂ ∆, we needs to describe NG(PI) and its Levi subgroups.
Following [Sp, 16.3.9.(4)], we define the subgroup I-automorphisms of G by

AutI(G) = Aut(G,PI , LI).

There is then an exact sequence

1→ LI/C(G)→ AutI(G)→ OutI(G)→ 1,

where OutI(G) = Out(G) ∩Aut(∆, I). Note also that

Aut(G,PI) = UI oAutI(G).

The Witt-Tits decomposition takes then the following beautiful shape⊔

[I]⊂∆/ Out(G)

H1(k, AutI(G))irr
∼= H1(k, Aut(G)).

We see that the decomposition encodes the set Out(G).I. At this point we
can go back to our favorite examples.

16.3. Example. Wedderburn theorem. Let A be a central simple algebra
of degree d and consider its class [A] ∈ H1(k, PGLd). Then there exists a
unique index I such that [A] comes from a unique [z] ∈ H1(k, LI)irr. Such
an LI is of the shape

(
GLm1 × · · ·GLmr

)
/Gm with m1 + .. + mr = d. One

can check by hands (or below with the notion of eligible indices) that all mi

are equal, so LI is the quotient of (GLm)r by the diagonal Gm. It follows
that

zLI
∼= GL1(D)r/Gm

for some unique central simple algebra D. Since zLI is irreducible, we
conclude that D is a division algebra.
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16.4. Example. Witt theorem. In even rank, this is the case of the or-
thogonal group O(2n) of the hyperbolic quadratic form

∑
i=1,...,n XiYi. The

set H1(k,O(2n)) classifies quadratic forms of rank 2n. In the decomposi-
tion, one can keep only the indices whose Levi supplement is O(2)×Gn−1

m ,
O(4)×Gn−2

m , · · · O(2n− 2)×Gm, O(2n) (there are no contribution of the
others). Then the decomposition reads

⊔

i=1,...,n

H1(k, O(2i))irr
∼= H1(k, O(n)).

which is exactly Witt’s theorem.

The Witt-Tits decomposition boils down the classification of arbitrary
semisimple groups to irreducible one. In a certain extent, for [z] ∈ H1(k,AutI(H))irr,
the group zG can be recovered from its so-called anisotropic kernel zD(LI)
which is an anisotropic semisimple k-group [T1].

16.3. Tits indices. To a given k-form zG of G with z ∈ Z1(k,G), that its
first invariant is its quasi-split form. The geometric conjugacy class of a
minimal k-parabolic subgroup of zG provides the subset I ⊂ ∆. This the
Witt-Tits index of zG.

Let us give an example about how we represent this data. The diagram

r r r r r
r

i i
α1 α3 α4 α5 α6

α2

means that we deal with an inner k-form of a E6-group such that the conju-
gacy class of minimal k-parabolic subgroups is I = {α1, α6}. The diagram

¨
§r r r

rr
ri i

α2 α4 α3 α1

α6α5corresponds to an outer k-form of type E6 such that the type of a minimal
k-parabolic is {α2, α4}.

Since the orbit Out(G) .I ⊂ ∆ is encoded in the Witt-Tits decomposition,
it follows that I is necessarily stable under Out(G) and even by Aut(∆) by
considering the adjoint group of zG; We have already seen in the previous
lecture that I is always auto-opposite. There is one more condition related
to action of the Weyl group.

16.5. Definition. We say that a subset I ⊂ ∆ is eligible if it is self-opposite
and if any J ⊂ ∆ the following holds:

(∗) J = w I for some w ∈W if and only I = J .

Now we can state our observation.

16.6. Proposition. Let I ⊂ ∆ be the Witt-Tits indice of a twisted k-form
of G. Then I is eligible.
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Proof. It is convenient to assume that G is adjoint. The Witt-Tits decompo-
sition enables us to assume that our given k-form of G is zG where z is a co-
cycle with value in AutI(G). Consider a trivialization φ : G×k ks

∼= zG×k ks

satisfying φ−1σ(φ) = zσ for every σ ∈ Γk. The twisted k–group zP I is a
minimal parabolic k–subgroup of zG, it is then of type I.

We have already seen that I is self-opposite. Let J ⊂ ∆ such that
J = w I for some w ∈ W . Let nw ∈ NG(T )(k) be a lift of w. Then
nw.LJ = LI . In other words, LI is a Levi k–subgroup of PI and of Q :=
nwPJn−1

w . Hence φ(Q) defines a parabolic k–subgroup of zG, which has
the same dimension than PI . Borel-Tits’s theorem implies that φ(PI) and
φ(Q) are zG(k)-conjugated. This provides an element g ∈ G(ks) such that
φ(Q) = φ(gPIg

−1). Thus PI ×k ks et and Q×k ks are G(ks)-conjugated and
I = J . ¤
16.7. Remark. Geometrically speaking, eligible indexes are those of para-
bolic subgroups whose geometric conjugacy class is determined by the con-
jugacy class of their Levi subgroups.

The Tits indices (for all forms over all fields) were determined by Tits
[T1]; the tables are also at the end of Springer’s book [Sp].

We do not have tables for eligible indices, so we cannot compare both
tables. Note that for the An-case, eligible indices are precisely the symmetric
one, i.e. of the shape

. . . . . . . . .r r r ri iα1 αd αrd αn

We think interesting to compare both lists. One way could be by means
of Tits indices of abelian subgroups of Aut(G), see section 3 of [GP].
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Classification of semisimple groups II

Except in section 3, the ground field k is assumed for simplicity to be of
characteristic zero.

17. Isogenies, Tits class

17.1. Simply connected coverings.

17.1. Definition. An isogeny H1 → H2 is a surjective morphism of (con-
nected) reductive with finite kernel.

We know that the kernel of an isogeny is a central subgroup of H1 → H2.
We fix once for all a semisimple split k-group G and a Killing couple (B, T ).
We denote by Gad = G/C(G) the adjoint group of G. We know that G
admits a simply connected covering λ : Gsc → G defined by the following
property : any isogeny H → G factorises uniquely by λ : Gsc → G. The
group ker(λ) is a split finite k-group of multiplicative type (i.e. a product
of µm).

17.2. Examples. The morphism SLn → PGLn is the simply connected
covering of PGLn; its kernel is µn.

17.3. Remark. Geometrically speaking, this is true indeed that the group
variety G ×k ks is a simply connected variety. This can be seen from the
analytic case by comparison theorems [SGA1]. If k is not separably closed,
the variety G is not simply connected in the usual sense (but in the pointed
sense).

The universal condition implies that Aut(G) acts on λ : Gsc → G. So
given a k-form zG, we can twist everything by z ∈ Z1(k, G). So we get
zλ : zG

sc → zG. By descent, one see that zλ is the universal covering of
zG (check it !). Note that the fundamental group of zG is z Ker(λ), which
depends only of the quasi-split form of zG.

17.2. Boundary maps [S1, I.5.7]. Let f : H̃ → H be a surjective mor-
phism of reductive groups with central kernel A. We can then extend on
the right the usual exact sequence. More precisely, there is a boundary map
δ : H1(k, H)→ H2(k, A) such that the sequence

H1(k, A)→ H1(k, H̃)→ H1(k, H) δ→ H2(k, A)

is an exact sequence of pointed sets. The boundary map is defined in terms
of cocycles as follows. Let [z] ∈ Z1(k, H). Since the map H̃(ks)→ H(ks) is
surjective, we take liftings z̃σ of the zσ’s. Given σ, τ ∈ Γk, the point is that
aσ,τ := z̃σ σ(zτ ) z̃−1

στ belongs to A(ks). One checks then this is a 2-cocycle
whose cohomology class is independent of the lifting chosen. This class is
δ([z]) = [aσ,τ ] ∈ H2(k, A).
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17.4. Example. For the exact sequence 1→ Gm → GLn → PGLn → 1, we
get then a map H1(k, PGLn) → Br(k) = H2(k,Gm). This map associates
to the class of a central k-algebra A of degree n its class [A] in the Brauer
group. A nice consequence of Hilbert 90 theorem is that this boundary map
is injective [GS, §3].

17.3. Tits class. We shall define a natural invariant of a semisimple adjoint
algebraic group in the H2 of Galois cohomology of its fundamental group.

Given a semisimple adjoint group H, let H̃ → H be its simply connected
covering and µH be its fundamental group. We have then a boundary map

δH : H1(k, H)→ H2(k, µH).

Now let z ∈ Z1(k, Aut(G)) and denote by G0 the quasi-split form of G. By
the previous lecture, we know that there exists a ∈ Z1(k, G0,ad) such that
zG ∼= aG0. The first try to define such an invariant of the group zG is to
apply the boundary

δG0 : H1(k, G0,ad)→ H2(k, µG0)

to the class [a] ∈ H1(k,G0,ad). The problem is that this class is only well de-
fined up to the action of the finite group Out(G0). More precisely, by the tor-
sion trick, the fiber at [a] of H1(k, G0)→ H1(k, Aut(G0)) ∼= H1(k,Aut(G))
is ker

(
H1(k, zG)→ H1(k, Aut(zG))

)
which has no reason to be trivial.

The right construction has been pointed out by Knus, Merkurjev, Rost
and Tignol [KMRT, page 426]. The idea is to see G0

∼=b (zG) as an
inner twisted form of zG with b ∈ Z1(k, zGad) (b is the “opposite” co-
cycle of a). As before, the class [b] ∈ H1(k, zG) is well defined up to
Out(G0). But Aut(G0)→ Out(G0) is split surjective, so ker

(
H1(k,G0,ad)→

H1(k, Aut(G0))
)

= 1. Hence the class [b] ∈ H1(k, zGad) is uniquely defined.
Therefore, we can define the Tits class

t(zG) = −∆Gad
(b) ∈ H2(k, µGad

).

The Tits class does not vary under isogenies. This fundamental invariant is
related to representation theory. More precisely, the obtructions to define
rationally geometrical representations can be explicited in terms of the Tits
class [T2] [KMRT, page 427].

18. Serre’s conjecture II

18.1. Conjecture. Let k be a field such that cd(k) ≤ 2. Let H be a simply
connected semisimple group. Then H1(k, H) = 1.

The first important case is the case of the group SL1(A) for a central
simple algebra A/k. we know that H1(k, SL1(A)) = k×/Nrd(A×).

18.2. Theorem. (Merkurjev-Suslin [MS]) Assume that cd(k) ≤ 2. Then
Nrd(A×) = k×.
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There is some converse statement: cd(k) ≤ 2 iff Nrd(D×) = L×.for any
central simple L-algebra D whose center L/k is a finite field extension.

For the other classical groups, G2 and F4, Serre’s conjecture II has been
proven by Bayer-Parimala [BP]. For other exceptional groups, it is still
open despite recent progress [C][G3][COP][CGP]. Colliot-Thélène could
come back to that in his serie of lectures. The conjecture has the following
consequence on the classification of semisimple groups.

18.3. Proposition. Assume that conjecture II holds for the field k.
(1) Let H be a semisimple group. Then the boundary map H1(k,H)→

H2(k, µH) is injective.
(2) The twisted k-forms of G are classified by their quasi-split forms

and by their Tits classes. We mean that that two k-forms of G are
isomorphic iff they have isomorphic quasi-split forms and same Tits
classes.

In the next lecture, we are interested in the case of p-adic fields which are
of cohomological dimension 2 by local class field theory. More generally, we
are interested in fields K which are complete for a discrete valuation with
perfect residue field κ of cohomological dimension one. That includes fields
of Laurent series κ((t)). Before local fields, we have to cover the case of
finite fields.

19. Groups over finite fields

Let k = Fq be a finite field of characteristic p > 0. For an affine variety
X = Spec(A), recall that the map A → A, x 7→ xq, defines the Frobenius
morphism F : X → X relatively to k.

19.1. Lang’s isogeny. Let G/k be a linear algebraic connected k-group.
Then F : G → G is a group morphism. We define the “Lang’s isogeny”
(which is not a group morphism) by

P : G→ G, P(g) = g−1 F (g),

Note that in the case of the additive group Ga, this is nothing but the Artin–
Schreier’s covering. The right viewpoint is to consider the (right) action of
G on itself by

sa(g) := a . g = g−1 aF (g).

19.1. Theorem. a) The group G(ks) acts transitively on itself by the action
above.

b) The morphism P : G→ G is a Galois covering of group G(k).

Proof. a) We denote by i : g → g−1 the inversion morphism. Let a ∈ G.
Then for any X ∈ Lie(G)

(
k(a)

)
, one has

(dsa)e(X) = die(X)a + a.dF (X).

By means of a faithful representation, we see that die = −id. In the other
hand, it is well known that dF = 0. Hence (dsa)e = −id. By homogeneity,
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it follows that (dsa)g is invertible for all g ∈ G. The morphism sa is then
open. But this holds for any a ∈ G, so the orbit of a is also closed. Since G
is connected, we conclude that there is a single orbit.
b) For avoiding any confusion, we denote by P : G1 = G → G. Since P is
étale and surjective, it is faithfully flat. For seeing that P is a G(k)-Galois
covering, we first notice given σ ∈ G(k) and g ∈ G1 we have P(g−1σ) =
σ−1gF (g−1) F (σ) = P(σ). We deal then with a free action on G(k) on the
fibers of P. It remains to see that the morphism

G1 ×k G(k)
γ−→ G1 ×G G1

defined by (g, σ)→ (g, g.σ) = (g, σ−1g) is an isomorphism. We know that γ
is an isomorphism iff for any k–algebra A of finite type, we have a bijection
(G1 ×G(k))(A) ≈ (G1 ×G G1)(A). Let A be such a k-algebra. We have

(
G1 ×G G1)(A) = {(g, h) ∈ G(A)2 | P(g) = P(h)}

= {(g, h) ∈ G(A)2 | (gh−1) = F (gh−1)}
= {(g, h) ∈ G(A)2 | h ∈ g.G(k)}
=

(
G1 ×G(k)

)
(A).

This completes the proof that P is a G(k)-Galois covering. ¤
19.2. Homogeneous spaces. Lang’s isogeny is the main ingredient for
proving that homogeneous spaces have k-rational points.

19.2. Corollary. [Bo, 16.5] Assume that G acts on some non-empty k-
variety V . Then V (k) 6= ∅.

In particular H1(k,G) = 1 (Lang’s theorem [La]). We get then the same
consequences as in Steinberg’s theorem.

19.3. Corollary. Let H/k be a reductive group. Then H is quasi-split and
H1(k, H) = 1.

19.4. Corollary. [S1, III.2.4, corollaire 3] Let H/k be a linear algebraic group
and let H0 be its neutral component. Then the quotient map H → H/H0

induces a bijection
H1(k, H) ∼−→ H1(k, H/H0).

We assume now that G is reductive. It is quasi-split, so admits a Killing
couple. In the first lectures, we used several times the hypothesis made on
the base field by picking a regular semisimple element in the Lie algebra
of G. This can be achieved in the present setting granting to the following
result by Chevalley.

19.5. Theorem. [SGA3, XIV.7] There exists X ∈ Lie(G) which is semisim-
ple regular.
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Kneser’s theorem, Bruhat-Tits theory

20. Introduction

We discuss the following result.

20.1. Theorem. (Kneser [K1]) Let K be a p-adic field. Let H/K be semisim-
ple group.

(1) If H is simply connected, then H1(K, H) = 1.
(2) Let λ : H̃ → H be the universal covering of H and µH = Ker(λ).

Then the boundary map induces a bijection

H1(k, H)
δ∼−→ H2(K, µH).

So Serre’s conjecture II holds for p-adic fields. In particular, H1(k, H)
is equipped then with a structure of abelian group. By Tate’s duality [S1,
II.5], the right handside is isomorphic to H0(K, µ̂)D, where D stands for the
Pontryagin dual and µ̂ = Hom(µ,Gm) is the Galois module of characters
of µ. In particular, H1(K, H) is a finite set; this was known previously by
Borel-Serre [BS] [S1, III.4.3].

The Tits indices of such groups are listed [T1][T3] and the main ingredient
is the following.

20.2. Theorem. Let H/K be an anisotropic group defined over a p-adic
field K. Then H is of type A× · · ·A.

The proof of Kneser’s theorem goes by case by case analysis. Note that
the classical groups are the matter of Kneser’s lectures [K2]. Bruhat and
Tits gave an uniform way to prove the first part. We discuss here three
things:

(1) Proof of part (2) of Kneser’s theorem.
(2) Kneser’s proof for the group Spin(q).
(3) Bruhat-Tits proof for a split semisimple simply connected group.

21. Proof of the second part of Kneser’s theorem

The proof goes by subtori. We need three lemmas.

21.1. Lemma. Let F be a field of characteristic zero and let T/F be a torus.
Then the natural map

lim−→
n

H2(F, nT )→ H2(F, T )

is an isomorphism.

Then Tate’s duality has its counterpart for tori.
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21.2. Lemma. Let T/K be a torus defined over the p-adic field K.

(1) H2(K,T ) ∼−→ lim←−
n

H0(k, n̂T )/n.

(2) If T is anisotropic, then H2(K,T ) = 0.

Proof. (1) From Lemma 21.1, we have

H2(K,T )D ∼−→ lim←−
n

H2(K, nT )D

∼−→ lim←−
n

H0(k, n̂T ) [Tate duality].

The exact sequence 0→ T̂
×n→ T̂ → n̂T → 0 gives a map H0(k, n̂T )/n ↪→

H0(k, n̂T ) and the same kind of argument as in Lemma 21.1 shows that

lim←−
n

H0(k, n̂T )/n
∼−→ lim←−

n

H0(k, n̂T ).

(2) If T is anisotropic, then T̂ (k) = 0. Hence H2(k, T ) = 0 by (1).
¤

21.3. Lemma. Let H be a quasi-split semisimple group defined over the
p-adic field K. Then H admits a maximal K-torus T which is anisotropic.

Proof. Let H0 be the split form of H.
Step 1: H = H0: Let (T0, B0) be a Killing couple of H0. Denote by W0 the
Weyl group of T0 and by X0 = G0/NH0(T0) the variety of tori of G0. Raghu-
nathan’s theorem states that the type map X0(K) → H1(K, W0) is surjec-
tive. But H1(K, W0) = Homct(ΓK , W0)/int(W0) and we have a natural sur-
jective morphism ΓK → Ẑ. We define then a morphism
φ0 : ΓK → W0 by sending the Frobenius (i.e. the topological generator
of Ẑ on the Coxeter element w0 of W0. Since w0 has no non trivial fixed
point on T̂ ⊗Z R, it follows that the twisted torus φ0T0 is anisotropic. Thus
φ0T0 embeds in H0.
Step 2: the general case: Then H = aH0 for a cocycle a ∈ Z1(k, Aut(H0, B0, T0)).
The point is that w0 is fixed under Aut(H0, B0, T0), so we can twist the torus
φ0T0 by a. This new torus, say T , is a fortiori anisotropic and can be em-
bedded in H according to Raghunathan’s theorem. ¤

We can now proceed to the proof of Theorem 20.1.(2).

Proof. The first statement (1) of Theorem 20.1 and the torsion trick show
that the boundary map δH is injective. We focus then on the surjectivity.
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Step 1: Reduction to the adjoint case: We consider the following commuta-
tive diagram

1y
1 νy

y
1 −−−−→ µH −−−−→ Hsc −−−−→ H −−−−→ 1y ||

y
1 −−−−→ µHsc −−−−→ Hsc −−−−→ Had −−−−→ 1y

y
ν 1y
1

By taking cohomology, we get the following commutative diagram of pointed
sets

H1(K, ν) = H1(K, ν).y ∆

y
H1(K, H) δH−−−−→ H2(k, µH)y

y
H1(K, Had) −−−−→ H2(k, µHsc)y

y
H2(K, ν) = H2(K, ν).

If the boundary map for Had is surjective, it follows that Im(δH).∆(H1(K, ν)) =
H2(k, µH). But there is a natural action of H1(K, ν) on H1(K,H), thus
Im(δH) = H2(k, µH).
Step 2: Reduction to the quasi-split case: The adjoint group H is an inner
form of its quasi split form H0. Then H = a(H0) for a cocycle a ∈ Z1(k,H0).
Denote by µ the fundamental group of H0 and H. The following commuta-
tive diagram

H1(k, H0)
δH0−−−−→ H2(k, µ)

θz

xo ?+δ([z])

xo

H1(k, H) δH−−−−→ H2(k, µ)
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commutes [S1, I.5.7]. So the surjectivity of δH0 is equivalent to the surjec-
tivity of δH .
Step 3: By the reductions, we deals with a quasi-split adjoint group H/K.
Lemma 21.3 provides a maximal K-torus T sc of Hsc which is anisotropic.
Define T = T sc/µH . The commutative diagram

1 −−−−→ µH −−−−→ T sc −−−−→ T −−−−→ 1

||
y

y
1 −−−−→ µH −−−−→ Hsc −−−−→ H −−−−→ 1

induces the following commutative diagram of pointed sets

H1(K,T ) −−−−→ H2(K, µH) −−−−→ H2(K,T sc)y ||

H1(K,H) δH−−−−→ H2(K, µH)

But H2(K,T sc) = 0 by Lemma 21.2. So we conclude that the boundary
map δH is surjective. ¤

21.4. Remark. The proof shows that any semisimple K-group H has a
maximal K-split torus which is anisotropic. In other words, Lemma 21.3
extends to all groups and the proof of that fact is done in an uniform way
(compare [PR, Theorem 6.21]).

21.5. Remark. The proof shows also that the map H1(K,T )→ H1(K, H)
is surjective for any maximal K-torus which is anisotropic. This fact is true
also in the real case.

22. Galois cohomology of Spin(q)

We recall firstly facts from the quadratic form theory [Sc] for a base field
k such that Char(k) 6= 2.

22.1. Witt group. We denote by W (k) the Witt group of k, i.e. the abelian
group with the following presentation:

Generators: isometry classes of (regular) quadratic k-forms,
Relations: [q ⊥ q′]− [q]− [q′], [H].

22.1. Examples. W (C) = Z/2Z and W (R) = Z.

The Witt theorem shows that there is a correspondence between W (k) and
the isometry classes of anisotropic quadratic forms. The tensor product of
quadratic forms provides a ring structure on W (k). The dimension modulo
2 induces a ring homomorphism

W (k)→ Z/2Z



31

whose kernel I(k) is the fundamental ideal. We get then a sequence

· · · In+1(k) ⊂ In(k) ⊂ · · · I2(k) ⊂ I(k) ⊂W (k).

Observe that the tensor product induces a structure of k×-modules on the
In(K) (and even of k×/(k×)2-modules). Recall the notation 〈a1, ..., an〉 for
the quadratic forms

∑
aix

2
i and denote by 〈〈a1, ..., an〉〉 = 〈1,−a1〈⊗ · · · ⊗

〈1,−an〉 for n-fold Pfister forms. The k×-module In(k) is generated by
Pfister forms. Recall the following facts.

• The discriminant induces an isomorphism I(k)/I2(K) ∼−→ k×/(k×)2;
• The group W (k) has the following presentation:

Generators: k×,
Relations: a2, ab +

(
ab(a + b)

)− a− b;
• The Pfister forms are multiplicative (i.e. the product of two values is a
value); isotropic Pfister forms are hyperbolic [Sc, §4].

Indeed the quadratic forms 〈a, b〉 and 〈ab, ab(a + b)〉 are isomorphic; the
amazing fact is there are no other relations.

22.2. Remark. It is a deep theorem by Arason-Pfister that
⋂
n

In(k) = 0,

see [Sc, §4].

22.2. Residues, quadratic forms over local fields. Let K be a complete
field for a discrete valuation. Denote by O its valuation ring and by κ its
residue field (of characteristic 6= 2). Let π be an uniformizing parameter of
K. A quadratic K-form q can be written as

q = 〈u1, ..., ur〉+ π〈v1, ..., vs〉
where the ui’s and the vj ’s are units of O. By reducing mod π, we get then
two quadratic κ-forms q0 = 〈u1, ..., ur〉, q1 = 〈v1, ..., vs〉. It turns out that
the Witt class of q0 and q1 are well defined. This can be checked using the
presentation of W (K). We get then a map

W (K) sπ⊕∂−−−−→ W (κ)⊕W (κ)

[q] 7→ ([q0], [q1])

The map sπ is called the specialization map, it depends of the choice of π.
The map ∂ is the residue map, it is canonically defined.

22.3. Theorem. (Springer, see [M, §5])
(1) The map

W (K) sπ⊕∂−−−−→ W (κ)⊕W (κ)
is an isomorphism.

(2) If q, q0, q1 are as above, q is anisotropic K-form if and only of q0

and q1 are anisotropic κ-forms.
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Note that for working in a canonical way, it is necessary to deal with the
exact sequence

0→W (k)→W (K) ∂→W (κ)→ 0.

If K is a p-adic field, since W (κ) is a group of order 4 (its structure depends
of

(−1
p

)
), the group W (K) is of order 8 and is isomorphic to (Z/4Z)2 or

(Z/2Z)4. Since rank three quadratic forms over κ of isotropic, Theorem
22.3.(2) shows that any quadratic K-form of rank ≥ 5 is isotropic.

22.3. Galois cohomology of SO(q). Let q be a regular a quadratic form, as
consequence of descent, we have seen that H1(k, O(q) classifies the (regular)
quadratic forms of rank rank(q). One can see also that directly by using
Hilbert 90 as follows. Let O(q) ⊂ GL(V ) be the standard representation
of O(q). Given z ∈ Z1(k, O(q)), we have zσ = g−1 σ(g) for some g ∈
GL(V )(ks). One sees that the quadratic form q′ = q ◦ g−1 is defined over k
and its isometry class is function of [z] ∈ H1(k, O(q)).

22.4. Lemma. Let q be a regular quadratic form of even rank 2n. Then
H1(k, SO(q)) injects in H1(k,O(q)) and corresponds to the isometry classes
of (regular) quadratic forms of rank 2n of discriminant disc(q).

Proof. We write q = 〈a1, · · · , an〉 in diagonal form. The point is that
the exact sequence 1 → SO(q) → O(q) → µ2 → 1 is split, so the map
H1(k, SO(q)) → H1(k, O(q)) has trivial kernel. Since this is true for all
twists, this map is indeed injective by the usual torsion trick. About its
image, we know that the map H1(k, O(q)) → H1(k, µ2) = k×/(k×)2 sends
a class [q′] to disc(q′)/disc(q) . (k×)2, hence the statement. ¤

Following [S1, III, annexe], we investigate the case of Spin(q) which is
the simply connected covering of SO(q) (dim(q) = 2n). We have an exact
sequence

1→ µ2 → Spin(q)→ SO(q)→ 1.

As usual, it induces the exact sequence of pointed sets

1→ µ2 → Spin(q)(k)→ SO(q)(k)
ϕ→

k×/(k×)2 → H1(k, Spin(q))→ H1(k, SO(q)) δ→ 2 Br(k).

The characteristic map is called the spinor norm Ns : SO(q)(k)
ϕ→ k×/(k×)2.

It is easy to describe by the Cartan-Dieudonné theorem which states that
O(q)(k) is generated by reflexions τv for anisotropic v. Recall that τv(v) = v
and τv is the identity on the orthogonal space of v with respect to q. The
group SO(q)(k) is then generated by even product of reflexions (2n are
enough); we have

Ns
( 2n∏

i=1

τvi

)
=

∏

i

q(vi) ∈ k×/(k×)2.
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22.5. Remark. If q is isotropic, then the spinor norm Ns : SO(q)(k)
ϕ→

k×/(k×)2 is surjective.

The boundary map δ is more complicated and it is related with the
Hasse-Witt invariant of quadratic forms. Given [q′] ∈ H1(k, SO(q), we have
[q′]− [q] ∈ I2(k). We have then a map H1(k, SO(q)) ⊂ I2(k). In the other
hand, we have the Milnor’s morphism [M, §4]

e2 : I2(k)/I3(k)→ 2 Br(k), 〈〈a, b〉〉 7→ [(a, b)],

where (a, b) stands for the quaternion algebra X2 = a, Y 2 = b,XY + Y X = 0.
It turns out that the diagram

H1(k,SO(q)) −−−−→ I2(k)/I3(k)

δ

y e2

y
2 Br(k) = 2 Br(k)

commutes. But e2 is injective by Merkurjev’s theorem (and even bijective).
So by diagram chase, we get that the image of H1(k, Spin(q)) in H1(k, SO(q))
is the set of isometry classes of quadratic form q′ of rank 2n such that
[q′]− [q] ∈ I3(k) ⊂W (k).

22.4. Kneser’s theorem for Spin(q). Let K be a p-adic field with p ≤ 3.
Let q be a quadratic K-form of rank ≤ 5. We proceed to the proof of
the vanishing of H1(K, Spin(q)). By remark 22.5, the spinor norm for q is
surjective, so it is enough to show that the map

H1(K, Spin(q))→ H1(K, SO(q))

is trivial. Its image is included in [q] ⊕ I3(K). But the K× module I3(K)
is generated by three Pfister forms 〈〈a, b, c〉〉. Since 8 ≥ 5, three Pfister
forms are isotropic and then hyperbolic.So I3(K) = 0 and we conclude that
H1(K, Spin(q)) = 1.

22.6. Remark. The fact that e2 is bijective for local fields is actually quite
easy by appealing to the classification of quadratic forms for such fields. So
there is no need of Merkurjev’s theorem here.

23. Bruhat-Tits buildings and Galois cohomology

Let K be a complete field for a discrete valuation, O its ring of integer.
We assume that the residue field κ of O is perfect. We denote by K̃ the
maximal unramified extension of K and by Õ its valuation ring.

23.1. Parahoric subgroups. Let G/Spec(Z) be a semisimple simply con-
nected Chevalley group scheme. It is equipped with the following data

(1) a maximal split torus T/ Spec(Z) of G,
(2) an irreducible reduced root system Φ = Φ(T, G) ⊂ T̂ ⊗Z R (where

T̂ = HomZ−gr(T,Gm,Z) stands for the character group of T ) equipped
with a base ∆ which defines Φ+,
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(3) a family of morphisms (Uα : Ga,Z → G)α∈Φ and a Borel subggroup
B/ Spec(Z) of G such that for any ordering Φ+ = (αi)i=1,..,q, the
product on G induces an isomorphism of Z–schemes

T ×
∏

i=1,..,q

Ga

id× Q
i=1,..,q

Uαi

−−→ B.

We denote by α0 the opposite of the maximal root of Φ, T̂ 0 = HomZ−gr(Gm,Z, T ),
Φ∨ = (α∨)α∈Φ ⊂ T̂ 0 the dual root sytem and by (ωα)α∈∆ the fundamental
weights, i.e. the elements of T̂ ⊗Z R satisfying 〈ωα, β∨〉 = β∨(ωα) = δα,β.
We denote by V = T̂ 0⊗Z R and its dual V ′ = T̂ ⊗Z R. Recall that an affine
root a = (α, n) with α ∈ Φ, n ∈ Z is an affine function V → R

a(v) = (α, v) + n,

We consider the following finite set of affine roots

∆e = {(α, 0)}α∈∆ ∪ {(α0, 1)},
which consist of vertices of the completed Dynkin diagram associated to ∆.
The elements ∆e define the “alcôve”

C = { v ∈ V | a(v) > 0 ∀a ∈ ∆e}.
Ths standard parahoric subgroups of G(K) are certain (abstract) bounded
subgroups of G(K). Let π be an uniformizing parameter of K. To any non-
empty subset Ω of V , we can attach the subgroup PΩ of G(K) generated
by

T (O), Uα(πnΩ(α)O) (α ∈ Φ),

with
nΩ(α) = Sup

{
[(α, v)], v ∈ Ω

}
.

The second part of Bruhat-Tits [BT2] theory provides a group scheme
PΩ/ Spec(O) satisfying the following properties :

(1) PΩ/Spec(O) is smooth,
(2) PΩ(O) = PΩ,
(3) PΩ ×O K = GK .
(4) The special fiber PΩ ×O κ is a connected κ-group.

In particular, we can define for a non-empty subset Θ ⊂ ∆e the parahoric
group scheme PΘ/Spec(O) associated to

C(Θ) = { v ∈ V | a(v) > 0 ∀a ∈ Θ}.
The torus T×ZO is a maximal O–torus of PΘ and the K-subgroups (Uα/K)α∈Φ

de GK extend in subgroup schemes UΘ,α ⊂ PΘ (loc. cit., §4.1). In partic-
ular,if Θ = ∆e \ ∆, we have PΘ/Spec(O) = G ×Spec(Z) Spec(O). The
group P∆e is a Iwahori subgroup (which plays here the role of a Borel sub-
group); the parahoric subgroups (PΘ/Spec(O))Θ⊂∆e are called the standard
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parahoric subgrioups of GK ; the abstract subgroups (PΘ(O))Θ⊂∆e are the
parahoric subgroups of G(K) containing the Iwahori subgroup P∆e(O).

We denote by PΘ/κ the special fiber PΘ. It is connected and is gener-
ated by the k–torus T ×Z κ and the UΘ,α for α ∈ Φ. We denote MΘ/k =
(PΘ)réd/k, i.e. the quotient of PΘ by its unipotent radical. It is isomorphic
to the Levi subgroup of PΘ/k generated by T/k and the UΘ,α for α ∈ Θ.

We defined then standard parahoric subgroups; there are r + 1 (r =
rank(G)) maximal bounded subgroups. The other parahoric subgroups are
the G(K)-conjugate of those groups.

23.2. Buildings. The Bruhat-Tits building I of G/K is the polysimplicial
complex whose vertices are the maximal parahoric subgroups of G(K) and
a subset F of the set of vertices is the set of vertices of a simplex of I if and
only if the intersection of the P ∈ F is a parahoric subgroup. The group
G(K) acts on I and the stabilizers of I for this action are the parahoric
subgroups of G(K). The building I is a contractible topological space. The
simplest example if for SL2 on the field F2((t)); this is the Bruhat-Tits
building. In this case, one has P0 = SL2(F2[[t]]) and

P1 =
(

F2[[t]] tF2[[t]]
t−1F2[[t]] F2[[t]]

)
∩ SL2(F2((t))).

The building Ĩ of the group G/K̃ is equipped with the action of G(K̃)oΓκ.

23.3. The decomposition. The Bruhat-Tits decomposition is the follow-
ing ∐

Θ⊂∆e

H1(κ, MΘ)irr
∼−→ H1(Γκ, G(K̃)) ∼−→ H1(K, G).

The bijectivity of the right handside follows from Steinberg’s theorem since
cd(K̃) = 1. The map H1(k, MΘ)→ H1(K, G) is defined by the commutative
diagram

H1(Γκ, PΘ(Õ)) −−−−→ H1(K, G)

o
y

H1(κ,PΘ),

o
y

H1(κ,MΘ),
where the first vertical map is an isomorphism according to Hensel’s lemma.
The second vertical map is an isomorphism as well because the unipotent
radical of PΘ is a κ–split unipotent subgroup. As in the case of the injec-
tive map H1(κ, P ) → H1(κ,G) for a parabolic subgroup P/κ of G/κ, the
injectivity of the map H1(κ, MΘ) = H1(Γκ, PΘ(Õ))→ H1(Γκ, G(K̃)) comes
from a conjugacy statement. The injectivity of the sum is an immediate
consequence of the parahoric-parabolic correspondence. That is a one to
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one correspondence between parahoric subgroups of PΘ and parabolic sub-
groups of MΘ. The surjectivity is indeed the central link between Galois
cohomology and buildings. Let zσ be a 1-cocycle of Γκ with value in G(K̃).
We define the twisted action du group Γκ on the building Ĩ by

σ ∗ x = zσ . σ(x) (x ∈ I).

As Γκ is a compact group and Ĩ is a space with negative curvature (precisely
CAT (0)), there exists a fixed point x de Ĩ for the twisted action of Γκ. There
exists then θ ∈ C and g ∈ G(K̃) such that x = g . θ. Up to replace zσ by
z′σ = g−1 zσ σ(g), we can assume that x = θ. Hence

zσ.θ = θ (σ ∈ Γκ),

which means that z has value in Pθ(Õ) = PΘ(Õ) for a subset Θ of ∆.

23.1. Remark. We can recover actually the decomposition of the Witt group
of K from Bruhat-Tits decomposition. In other words, this decomposition
generalises to arbitrary semisimple groups the Springer decomposition of
W (K).

23.4. Kneser’s theorem in the split case. We assume now that K is a
p-adic field. By Langs’ theorem, the cohomology sets H1(κ,MΘ) vanishes.
We conclude then that H1(K,G) = 1.

23.2. Remark. The general case is technically more complicated but the
split case relates quite faithfully the proof of Kneser’s theorem by Bruhat-
Tits [BT3, 3.15].
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R-equivalence, flasque resolutions of tori

24. Introduction

As usual, the ground field is assumed for simplicity to be of characteristic
zero. Given a k-variety X, Y. Manin defined the R-equivalence on the
set of k-points X(k) as the equivalence relation generated by the following
elementary relation. Denote by O the semi-local ring of A1

k at 0 and 1.

24.1. Definition. Two points x0, x1 ∈ X(k) are elementary R-equivalent is
there exists x(t) ∈ X(O), such that x(0) = x0 and x(1) = x1.

We denote then by X(k)/R the set of R-equivalence classes. This invari-
ant measures somehow the defect for parametrizing rationally the k-points
of X. The following properties follow readily from the definition.

(1) additivity : (X ×k Y )(k)/R ∼= X(k)/R× Y (k)/R;
(2) “homotopy invariance” : X(k)/R

∼−→ X(k(v))/R.

The plan is to investigate R-equivalence for linear algebraic groups and
to focus on the case of tori worked out by Colliot-Thélène-Sansuc [CTS1]
[CTS2].

25. R-equivalence for linear algebraic groups

Let G/k be a connected linear algebraic group. First the R-equivalence
on G(k) is compatible with the group structure. More precisely, denote by
R(k, G) ⊂ G(k) the R-equivalence class of e. Then R(k, G) is a normal
subgroup and G(k)/R(k,G) ∼= G(k)/R. Therefore G(k)/R has a natural
group structure. We can already ask the following optimistic open question
based on known examples.

25.1. Question. Is G(k)/R an abelian group ?

Notice the following fact.

25.2. Lemma. Two points of G(k) which are R-equivalent are elementary
equivalent.

Thus the elementary relation is an equivalence relation.

25.3. Proposition. Let U ⊂ G be an open subset. Then U(k)/R
∼−→

G(k)/R.

Proof. By Grothendieck’s theorem, G is an unirational k-variety. It means
that there exists a (non-empty) subset V of an affine space and a dominant
map h : V → G. We can assume that e ∈ h(V (k)). Then h(V (k)) is
Zariski dense in G and consists of elements R-equivalent to e. In particular
R(k, G) is Zariski dense in G, so R(k,G).U = G. Hence U(k)/R→ G(k)/R
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is surjective. In the way around, we are given two elements u, u′ ∈ U(k)
which are R-equivalent in G. By Lemma 25.2, there exists g ∈ G(O) such
that g(0) = u and g(1) = u′. But we see that g belongs actually to U(O),
so we conclude that u and u′ are R-equivalent in U . ¤

Recall that X is k-rational if X is birationally isomorphic to an affine
space.

25.4. Corollary. Let G1 and G2 be linear algebraic groups which are stably
rationally equivalent. Then there is a bijection G1(k)/R ∼= G2(k)/R. In
particular, if G is k-rational, then G(k)/R = 1.

We say that X a k-variety is stably k-rational if there exists n ≥ 0 such that
X ×k An

k is k-rational. By the additivity property, we have

25.5. Corollary. If G is k-rational, then G(k)/R = 1.

26. R-equivalence on tori

We shall use that the category of k–tori is anti-equivalent to the category
of Γk-lattices, i.e. the category of lattices equipped with a continuous action
of Γk.

26.1. Coflasque modules. Let Γ be a finite group. We denote by C(Γ)
the following semigroup:

Generators : [M], M Γ-lattice;
Relations : [P ] = 0, P permutation Γ-lattice.

In other words, two Γ–lattices M, N have same class in C(Γ) if M ⊕P ∼=
N ⊕Q with P, Q permutation Γ-lattice.

26.1. Definition. Let M be a Γ-lattice. We say that M is invertible if there
exists a Γ-lattice N such that its class is invertible in C(Γ).

In other words, invertible Γ-modules are direct summands of permutation
modules.

26.2. Definition. Let M be a Γ-lattice. We say that M is coflasque if
H1(Γ′,M) = 0 for all subgroups Γ′ ⊂ Γ.

We say that M is flasque if the dual module M0 is coflasque. By Shapiro’s
lemma, it follows that permutation lattices are flasque and coflasque. More
generally, invertible Γ-lattices are flasque and coflasque.

26.3. Remark. This notion is stable by change of groups f : Γ̃ → Γ: if
M is a coflasque Γ-lattice, then it is a coflasque Γ̃-lattice as well. If f is
surjective, then the converse is true. Therefore this notion makes sense for
profinite groups.

26.4. Lemma. [CTS2, 0.6] Let M be a Γ-lattice.
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(1) M admits a coflasque resolution, that is an exact sequence of Γ-
modules

0→ C → P →M → 0
such that P is permutation and C is coflasque.

(2) M admits a flasque resolution, that is an exact sequence of Γ-modules

0→M → P → F → 0

such that P is permutation and F is flasque.
(3) The class of F in C(Γ) depends only of M .

We get then an additive map

p :
{

Γ-lattices
} −−−−→ C(Γ)

M 7→ [F ].

26.2. Flasque resolution of tori. We are given a k-torus T , its character
group T̂ is a Γk–lattice. The kernel of the action Γk → Aut(T̂ ) is of finite
index, this is the Galois group of the minimal splitting field kT /k. We denote
by Γ(T ) its Galois group.

We say that T is coflasque (resp. flasque) if T̂ a flasque (resp. coflasque)
Γk-lattice. Equivalently, T̂ a coflasque (resp. flasque) Γ(T )-lattice. By
dualizing Proposition 26.4, we get a flasque resolution of the torus T , namely

1→ S
i→ E

f→ T → 1,

where E is an induced torus and S is a flasque torus.

26.5. Theorem. The characteristic map T (k) → H1(k, S) induces an iso-
morphism

T (k)/R
∼−→ H1(k, S).

If the theorem is true, we should have H1(k, S) ∼−→ H1(k(t), S) by prop-
erty (2) of the introduction. The proof goes by proving that fact before.

26.6. Lemma. Let S/k be a flasque torus as above. Then

H1(k, S) ∼−→ H1
(
Γk, S(Oks)

) ∼−→ H1
(
Γk, S(ks(t))

) ∼−→ H1(k(t), S).

Proof. Tensorising the split sequence of Galois modules

1→ k×s → ks(t)× →
⊕

x∈A1(ks)

Z→ 0

by Ŝ0 provides the split exact sequence of Γk- modules

1→ S(ks)→ S(ks(t))→
⊕

M∈A1
0

Coindk(M)
k (Ŝ0)→ 0

Since S/k is flasque, H1
(
k, Coindk(M)

k (Ŝ0)
)

= H1(k(M), Ŝ0) = 0, so the
long exact sequence of cohomology yields an isomorphism H1(k, S) ∼−→
H1

(
Γk, S(ks(t))

)
. The last isomorphism is true for an arbitrary torus and
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the midle one follows of the fact that S(Oks) is a direct summand of S(ks(t)).
¤

We can now proceed to the proof of Theorem 26.5.

Proof. We have the exact sequence

E(k)
f→ T (k) δ→ H1(k, S)→ H1(k, E) = 1,

whose last term vanishes by Hilbert 90. We want to show that f(E(k)) = R(k, T ).
One way is obvious: since E is a k-rational variety, we have f(E(k)) ⊂ R(k, T ).
In the other hand, we have the exact sequence of Γk-modules

1→ S(Oks)→ E(Oks)→ T (Oks)→ 1.

We have then the following commutative diagram

E(k)
f−−−−→ T (k) δ−−−−→ H1(k, S) −−−−→ 1y

y
yo

E(O)
f−−−−→ T (O) δ−−−−→ H1(Γk, S(Oks)) −−−−→ H1(Γk, E(Oks)) = 1,

where the last term vanishes by the Lemma (note that the evaluation at 0
provides a splitting of all vertical maps). We are given x ∈ R(k, T ). It exists
x(t) ∈ T (O) such that x(0) = e and x(1) = x. From the Lemma we get that
δ(x(t)) = 0 ∈ H1

(
Γk, S(Oks)

)
. So by diagram chase, there exists y ∈ E(O)

lifting x. By specializing at 1, we get that x = x(1) = f(y(1)) ∈ f(E(k)) as
desired. ¤

27. Examples, local fields

27.1. Case of a cyclic group. The proof of the following fact is based on
cyclotomic polynomials,

27.1. Proposition. (Endo-Miyata [EM], [CTS1, prop. 2]) Assume that Γ
is a cyclic group. Let M be Γ-lattice. Then the following are equivalent:

(1) M is flasque;
(2) M is coflasque;
(3) M is invertible in C(Γ).

27.2. Corollary. Let T/k be a torus split by a cyclic extension L/k. Then
T (k)/R = 1.

We can also give another proof of the following fact already seen in the
first lecture.

27.3. Corollary. Let T/Q be a torus. Then T (Q) is dense in T (R).
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27.2. Norm tori. Let L/k be a finite Galois extension of group Γ. The
norm torus R1

L/k(Gm) is the kernel of the norm map RL/k(Gm)→ Gm. We
have an exact sequence

1→ R1
L/k(Gm)→ RL/k(Gm)

NL/k−−→ Gm → 1.

27.4. Proposition. For the norm torus T = R1
L/k(Gm), we have

T (k)/R
∼−→ H−1(Γ, L×) = Ker(L× → k×)/IΓ . L×.

In particular, it vanishes in the cyclic case; this is a version of Hilbert 90.

27.5. Sketch of proof. Define the map

RL/k(Gm)Γ
f−−−−→ R1

L/k(Gm)

(yσ) 7→ ∏
σ∈Γ

σ(yσ)/yσ.

One shows that this map is surjective and its kernel is a flasque k-torus.
Theorem 26.5 yields that T (k)/R = H−1(Γ, L×).

27.3. Local fields. Assume here that we deal with a p-adic field K. Tate’s
duality for tori [S1, II.5.8] states that the natural pairing

H1(K,T )×H1(K, T̂ )→ H2(K,Gm) ∼= Q/Z
is a perfect duality of finite groups.

27.6. Corollary. Let T/K be a K-torus and let 1→ S → E → T → 1 be a
flasque resolution. Then

T (K)/R
∼−→ H1(Γ, Ŝ)D.

In the case of norm tori, we have a nice formula.

27.7. Example. Let T = R1
L/K(Gm) be the norm torus of a Galois extension

L/K of group Γ. Then we have

T (K)/R
∼−→ H3(Γ,Z)D

Proof. We use the flasque resolution which arises in the proof of Proposition
27.4. Then we have an exact sequence of Γ-modules

0→ T̂ → Ê → Ŝ → 0.

By Shapiro’s lemma, we get an isomorphism

H1(Γ, Ŝ) ∼−→ H2(Γ, T̂ ).

In the other hand, from the sequence 0 → Z → Z[Γ] → T̂ → 0, we get an
isomorphism H2(Γ, T̂ ) ∼−→ H3(Γ,Z). ¤

We know that for bicyclic groups Γ = Z/nZ×Z/nZ, we have H2(Γ,Q/Z) ∼−→
H3(Γ,Z) = Z/nZ. This provides an example of torus T/K such that
T (K)/R 6= 1.
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28. R-trivial tori, Voskresenskǐı’s conjecture

28.1. R-trivial tori. Let T/k be a k-torus.

28.1. Theorem. The following are equivalent:
(i) T is R-trivial, i.e. T (F )/R = 1 for all extensions F/k;
(ii) There exists a k–torus T ′ such that T ×k T ′ is a k-rational variety;
(iii) p(T̂ ) is invertible in C(Γ).

The proof of (ii) =⇒ (iii) requires some geometry. It shall be part of
Colliot-Thélène’s lectures.

Proof. (i) =⇒ (ii) : Denote by ξ : Spec(k(T )) → T the generic point of the
torus T . Then

ξ ∈ Im
(
E(k(T ))

f→ T (k(T ))
)
.

This means that there exists an open subset U of T such that f−1(U) ∼=
U ×k S. Hence T ×k S is k-birational to the k-rational variety E. Thus
T ×k S is k-rational.
(iii) =⇒ (i) : We assume that there exists a k-torus T ′ such that T ×k T ′
is a k-rational variety. Then T (k)/R × T ′(k)/R = 1, so T (k)/R = 1. The
same holds for any extension F/k. ¤
28.2. Stably k-rational tori. Given a k-torus T , we have the following
characterisation of stably k-rational tori.

28.2. Theorem. The following are equivalent:
(i) T is the quotient of two induced tori;
(ii) T is a stably rational k-variety;
(iii) p(T̂ ) = 0 ∈ C(Γ).

The proof of (ii) =⇒ (iii) is the same than for Theorem 28.1, so it requires
as well some geometry.

28.3. Sketch of proof. (i) =⇒ (ii) : Assume that there is an exact sequence
1 → E1 → E2 → T → 1 where E1, E2 are quasi-trivial tori. By Hilbert 90,
T is R-trivial and the same argument as in the proof of Theorem 28.1 shows
that T ×k E1 is birationally k-isomorphic to E2. Since induced tori are
k-rational varieties, we conclude that T is stably k-rational.
(iii) =⇒ (i) : Let 1 → S → E → T → 1 be a flasque resolution of T . Our
hypothesis is that there exist quasi-trivial tori E1, E2 such that E2 = S×E1.
Replacing S by S×E1 and E by E×E1, we conclude that T is the quotient
of induced tori.

We can now state Voskresenskǐı’s conjecture.

28.4. Conjecture. If T is stably k-rational, it is k-rational.

There are few evidences for this conjecture. Even the case of tori split by
cyclic extensions is not known [V].
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Norm principle, examples of non rational classical groups

As usual, the ground field k is assumed for simplicity to be of characteristic
zero.

29. Introduction

Our goal is to present certain results for R-equivalence on semisimple
groups. The first interesting case is G = SL1(D) for a central simple division
algebra D. Clearly the commutator subgroup [D×, D×] ⊂ G(k) consists of
elements of R(k, G) (i.e. R-equivalent to e). This is a result by Voskeresenkǐı
that we have [D×, D×] = G(k). In other words, there is an isomorphism

SL1(D)(k)/[D×, D×] ∼−→ SL1(D)(k)/R.

The left handside is linked with K-theory, it is denoted by SK1(D) =
ker

(
K1(D) → K1(k)

)
. The proof goes by showing that this group does

not change under transcendental extensions of k [V, 18.2]. Platonov found
examples of D such that SK1(D) 6= 0 [P].

We come back at the end to this case which is a simply connected one.
The plan is to discuss mainly the cases of PSO(q) and Spin(q) and to relate
them with the general case involving norm principles.

30. Beginning for the reductive case

30.1. Reduction to the anisotropic case. Our first goal is to reduce
the investigations to the case of anisotropic semisimple groups. The first
reduction is obvious.

30.1. Lemma. If G = Ru(G)o L, then L(k)/R
∼−→ G(k)/R.

So we can assume from now on that G is reductive. More interesting is
the following reduction.

30.2. Proposition. [G4, 1.2] Let P be a minimal k-parabolic subgroup. Let
L = CG(S) be a Levi subgroup of P where S is a maximal k-split torus of G.
Then G is birationally isomorphic to L/S and we have group isomorphisms

(L/S)(F )/R
∼←− L(F )/R

∼−→ G(F )/R

for all fields F/k.

30.3. Remark. Note that L/S is anisotropic. If G is semisimple and an
inner form, note that L/S is semisimple. If moreover G is adjoint, L/S is
adjoint as well.

30.4. Corollary. Assume that G is a quasi-split reductive group. Let S ⊂ G
be a maximal k-split torus and denote by T = CG(S) its centralizer.

(1) Then T (k)/R
∼−→ G(k)/R;

(2) If G is semisimple simply connected of adjoint, then G(k)/R = 1.



44 MCM, MARCH 2007

Assertion (2) follows from the fact that the torus T is an induced torus
(equivalently T̂ is a permutation module) in the simply connected/adjoint
case.

30.2. R-equivalence under certain group extensions. Let 1 → G →
G̃

λ→ T → 1 be an extension of the reductive group G by a k-torus T . Our
purpose is to compare G(k)/R and G̃(k)/R. There is something to do here
since we have the following exact sequence

1→ G(k)→ G̃(k)→ T (k)
ϕ→ H1(k, G)→ H1(k, G̃)→ H1(k, T ).

We observe first that R-equivalence can be defined for an arbitrary functor

F :
{

semilocal k-algebra
}
→ Sets, A 7→ F (A),

so not only functors which are representable by a k-variety. We say that two
elements f0, f1 are elementary R-equivalent if there exists f ∈ F (O) such
that f(0) = f0 and f(1) = f1. The R-equivalence is the equivalence relation
generated by this relation; this defined F (k)/R. The relevant functor here
is

Tλ :
{

semilocal k-algebra
}
→ Abelian groups, A 7→ Tλ(A) = Coker(G̃(A)→ T (A)

)
.

By definition, we have an exact sequence

1→ G(A)→ G̃(A)→ G(A)→ Tλ(A)→ 1

Note that Tλ(k) = ker
(
T (k)

ϕ→ H1(k,G)
)
. This permits to formulate the

following formal fact.

30.5. Lemma. [G1, II.1.3] We have a natural exact sequence of groups

G(k)/R→ G̃(k)/R→ Tλ(k)/R→ 1.

30.6. Examples. If A is a central simple algebra of degree n, for the exact
sequence 1 → SL1(A) → GL1(A) → Gm → 1, we have Tλ(k) = Nrd(A×) ⊂
k×.



45

Let q be a quadratic form of even rank n. Recall first that the Clifford
group Γ+(q) is defined by the following commutative diagram

1 1y
y

1 −−−−→ µ2 −−−−→ Spin(q) −−−−→ SO(q)→ 1y
y ||

1 −−−−→ Gm −−−−→ Γ+(q) −−−−→ SO(q)→ 1

×2

y Ns

y
Gm = Gmy

y
1 1

Since the morphism Ns : Γ+(q)(k)→ k× lifts the spinor norm SO(q)(k)→
k×/(k×)2, it is also called the spinor norm. Its image Tλ(k) is the subgroup
of k× generated by even products of non trivial values of q.

The things go actually in the way around. One constructs first the
group Γ+(q) and then Spin(q). Recall the definition of the Clifford algebra
C(q, V ) = Sym(V )/v⊗v−q(v) of the quadratic form (q, V ). Then C+(q, V )
is the subalgebra consisting of classes of even products v1 ⊗ ... ⊗ v2r. The
Clifford group Γ(q) is the group of invertible elements of C+(q, V ) preserving
V [Sc, §9]. This group surjects on O(q) and Γ+(q) is the neutral component
of Γ(q).

31. The group PSO(q)

Let q be a quadratic form of even rank 2n. We have an exact sequence of
k–groups

1→ µ2 → SO(q)→ PSO(q)→ 1.
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It fits in the following commutative diagram
1 1y

y
1 −−−−→ µ2 −−−−→ SO(q) −−−−→ PSO(q)→ 1y

y ||
1 −−−−→ Gm −−−−→ GO+(q) −−−−→ PSO(q)→ 1

×2

y λ

y
Gm = Gmy

y
1 1

where the group GO+(q) is the neutral component of the group GO(q) of
similitudes of (q, V ), i.e.

GO(q) =
{

(g, a) | q ◦ g = a q
}
⊂ GL(V )×Gm.

The map λ, (g, a) 7→ a, is called the multiplier map. So Tλ(k) = G(q) is
the group of multipliers (or similarity factors of q). Note that GO+(q) and
PSO(q) are stably k-rationally equivalent, so GO+(q)(k)/R

∼−→ PSO(q)(k)/R.
Since SO(q) is a k-rational variety (Cayley map), we have GO+(q)(k)/R

∼−→
Tλ(k)/R by Lemma 30.5. In other words, we have to deal with R-equivalence
for similarity factors of q.

31.1. Theorem. (Milnor-Tate [M, §5]) The local residues induces an exact
sequence

0→W (k)→W (k(t))→
⊕

π

W (kπ)→ 0,

where runs over the monic irreducible polynomials of k[t] (as usual kπ =
k[t]/π(t)).

Given a polynomial P (t), by applying residue maps to [P (t)q] − [q] ∈
W (k(t)), we get the following fact.

31.2. Corollary. The group G(q)
(
k(t)

)
is the subgroup of k(t)× which is

generated by (k(t)×)2, G(q) and the monic irreducible polynomials π such
that kπ splits q.

When specializing those polynomials at 1, we get elements of Nkπ/k(k×π ).
We proved essentially the following result.

31.3. Proposition.

GO+(q)/R
∼−→ PSO(q)/R

∼−→ Tλ(k)/R
∼−→ G(q)/(k×)2.hypq(k),
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where hypq(k) is the subgroup of k× generated by the NL/k(L×) for L/k
running over the finite splitting extensions of q.

For rank 6 quadratic forms, the question of stable rationality is fully
understood by means of R-equivalence.

31.4. Theorem. (Merkurjev [Me4, theorem 3]) Assume that rank(q) = 6.

(1) If q has trivial signed discriminant, then PSO(q) is k-rational.
(2) Assume that q has non trivial signed discriminant δ ∈ k×/(k×)2 and

put L = k(
√

δ).
(a) If the Clifford L-algebra C(q) has index2 1 or 2, then PSO(q) is

stably k-rational.
(b) If the Clifford L-algebra C(q) has index 4, then PSO(q) is not

R-trivial and then not stably k-rational.

The generic form 〈t1, t2, t3, t4, t5, t6〉 provides then an example of a group
PSO(q) which is not R-trivial disproving then Platonov’s rationality conjec-
ture for adjoint groups. The proof uses index reduction theory [Me2]. For
more concrete (and quite elementary) such examples over fields of iterated
Laurent series, see [G2]. For the other adjoint classical groups, see [BMT],
[Me2] and [V, §19].

32. Norm principle

Recall first the following results for a quadratic form q and a finite field
extension L/k.

• (Scharlau’s norm principle [Sc, II.8.6]) NL/k(G(qL)) ⊂ G(q);

• (Knebusch’s norm principle [La, VII.5]) Denote by Dq(k) the subgroup
of k× generated by the values of q. Then NL/k(Dq(L)) ⊂ Dq(k).

So we have examples of groups of the shape Tλ(k) ⊂ T (k) which satisfies
a norm principle.

32.1. Question. Given a morphism λ : G̃ → T to the k-torus T , is is true
that

NL/k

(
Tλ(L)

)
⊂ Tλ(k) ⊂ T (k),

where Tλ(k) = Im
(
G(k)→ T (k)

)
.

There are a lot of evidences but no general proof.

2If A/k is a central simple algebra, Wedderburn’s theorem states that A ∼= Mr(D) for

a unique central simple division algebra D. The index of A is indk(A) =
p

dimk(D).



48 MCM, MARCH 2007

32.1. Link with R-equivalence. If we come back to the case of the sim-
ilarity factors G(q), we remark that the R-trivial elements hyp(q) satisfies
obviously the norm principle NL/k(hyp(qL)) ⊂ hyp(q) (the same holds for
reduced norms of a central simple algebra). It turns out that this fact is
general.

32.2. Theorem. [G1, II] [Me2] Let λ : G̃→ T be a morphism to the k-torus
T .

(1) With the notations above, we have

NL/k

(
R(L, Tλ)

)
⊂ R(k, Tλ) ⊂ T (k).

(2) If G̃(L)/R = 1, then the norm principle holds.

The second assertion follows immediately of (1). Since the Clifford group
Γ+(q) is k-rational, Theorem 32.2 shows that the image of the spinor norm
of a quadratic form q is stable under norm maps. If q represents 1, it yields
another proof of Knebusch norm’s principle; and the general case follows
then easily [G1, II.4.3]

32.2. Norm groups. The group hyp(q) is a special case of norm group.

32.3. Definition. Let X be a k-variety. The norm group NX(k) of X is the
subgroup of k× which is generated by the NL/k(L×) for L/k running over
the finite extensions of k such that X(L) 6= ∅.
32.4. Examples. • If X is the variety of maximal isotropic subspaces of
the projective quadric associated to the even dimensional quadratic form q,
then NX(k) = hyp(q).

• If X is the projective quadric associated to a quadratic form q, Knebusch’s
norm principle permits to show that NX(k) is the image of the spinor norm.

• If X is the Severi-Brauer variety of central simple algebra A, then NX(k) =
Nrd(A×) [GS, §2, exercise 8].

For any functor F :
{
étale k-algebras

} → {Abelian groups} equipped
with norm maps NL/k : F (L)→ F (k) satisfying the usual composition rule,
we can define its norm group NX(k, F ) with respect to the k-variety X.
This is the subgroup of F (k) which is generated by the NL/k(F (L)) for L/k
running over the finite extensions of k such that X(L) 6= ∅.

That applies to a k-torus T defining then NX(k, T ) ⊂ T (k). Note that
NX(k) = NX(Gm). We are interested in the case of the variety X of Borel
subgroups of our reductive group G. Recall its construction. If G0 is the
quasi-split form of G, we can assume that G = zG0 for z ∈ Z1(k, G0,ad) and
we have X = z(G0/B0) where B0 is a k-Borel subgroup of G0. The variety
X is homogeneous under G and X(k) corresponds to the k-Borel subgroups
of G. In particular, X(k) 6= ∅ if and only if G is quasi-split.
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32.5. Proposition. Assume that G = Ker(λ) is semisimple simply con-
nected. Then

NX(k,R( . , T )) ⊂ R(k, Tλ) ⊂ Tλ(k) ⊂ T (k).

The hypothesis on G is used in the following lemma.

32.6. Lemma. Assume that G is quasi-split (and semisimple simply con-
nected). Then the map G̃(A) → T (A) is surjective for any semi-local k-
algebra A.

Proof. Let S ⊂ S̃ be respectively maximal k–split tori of G and G̃. Then
CG(S) (resp. C eG(S̃)) is a maximal k-torus of G (resp. G̃). Hence we have
an exact sequence of tori

0→ CG(S)→ C eG(S̃) λ→ T → 1.

We have then an exact sequence for étale cohomology

C eG(S̃)(A)→ T (A)
ϕA→H1

ét(A,CG(S)).

But CG(S) is an induced torus, so Hilbert 90 for étale cohomology shows
that H1

ét(A,CG(S)) vanishes [CTS2, 4.1]. Thus C eG(S̃)(A) → T (A) is onto
and a fortiori G̃(A)→ T (A) is surjective. ¤

We can now proceed to the proof of Proposition 32.5.

Proof. First case: G is quasi-split: In that case X(k) 6= ∅ and we have then
to prove that

R(k, Tλ) = R(k, T ).

But this follows from the Lemma.
General case: Let L/k be a finite field extension such that X(L) 6= ∅. So
GL is quasi-split. By Lemma 30.4.(2), G(L)/R = 1, so the norm principle
holds for L/k, i.e. NL/k(R(L, Tλ)) ⊂ R(k, Tλ). By the first case, we have
R(L, Tλ) = R(L, T ), so we get NL/k(R(L, T )) ⊂ R(k, Tλ). The proposition
follows by gathering all such extensions L/k. ¤

32.3. Case of local fields. We assume here that everything is defined over
a p-adic field K.

32.7. Lemma. Let X/K be the variety of Borel subgroup of G. Then
NX(K) = K×.

If T = Gm, it follows of Proposition 32.5 that we have an isomorphism

G(K)/R
∼−→ G̃(K)/R

In the other hand, we know that simply connected K–groups are stably K-
rational [CP]. With some mild additional effort [BK, appendix], we get the
following general result.
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32.8. Theorem. Let λ : G̃ → T be a surjective morphism whose kernel is
simply connected. Then we have an isomorphism

G̃(K)/R
∼−→ T (K)/R.

In other words, that reduces the computation of this invariant to the case
of tori.

33. Simply connected groups

33.1. SL1(A). Let A/k be a central division k–algebra.

33.1. Theorem. (Wang, see [GS, §4.7]) If ind(A) is squarefree, then SK1(A) = 0.

33.2. Sketch of proof. There is a standard reduction which boils down
to the case of a central simple division algebra A of prime degree p. We
are given an element a ∈ A× of reduced norm 1 and we want to show
that a is a product of commutators. Since [A×, A×] is Zariski dense, we
can assume that a /∈ k. Let L ⊂ A be the k-subalgebra generated by a;
it is a degree p field extension of k. We have Nrd(a) = NL|k(a) = 1. The
algebra AL := A⊗k L contains the subalgebra L⊗k L which is not a division
algebra, hence neither is AL. Since degL(AL) = p, Wedderburn’s theorem
shows that A ⊗k L must be split. We now use that there is a norm map
SK1(AL) → SK1(A) coming from K-theory (e.g. [GS, §2.8]). By the split
case we have SK1(AL) = 0, hence the composite map

SK1(A)→ SK1(AL)
NL|k→ SK1(AL)

is trivial. Hence pSK1(A) = 0. Take a Galois closure L̃|k of L and denote
by K|k the fixed field of a p-Sylow subgroup in Gal(L̃|k). Since Gal(L̃|k) is
a subgroup of the symmetric group Sp, the extension L̃|K is a cyclic Galois
extension of degree p. The composite

SK1(A)→ SK1(AK)
NK|k→ SK1(A)

is multiplication by [K : k] which is prime to p. But we know that pSK1(A) = 0,
so the map SK1(A)→ SK1(AK) is injective. Up to replacing k by K and L

by L̃, we may thus assume that L|k is cyclic of degree p. Let σ be a generator
of Gal(L|k). According to the classical form of Hilbert’s Theorem 90, there
exists c ∈ L× satisfying a = c−1σ(c). On the other hand, L is a subfield
of A which has degree p over k, so we know that there exists b ∈ A× with
b−1cb = σ(c) (Skolem-Noether theorem). Hence a = c−1σ(c) = c−1b−1cb is
a commutator in A×, and as such yields a trivial element in SK1(A).

33.3. Conjecture. (Suslin) If ind(A) is not squarefree, then SL1(A) is not
R-trivial.

Merkurjev has proven the conjecture when 4 divides ind(A) [Me2]. Its
proof uses Rost theorem for SK1 of biquaternion algebras, i.e. tensor prod-
uct of two quaternions algebras.
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33.4. Theorem. [Me1] Let A = (a1, b1) ⊗ (a2, b2) be a quaternion algebra
and consider its Albert form3 q = 〈a1, a2,−a1a2,−b1, b2, b1b2〉. Denote by
k(q) the function field of the projective quadric defined by q. Then there is
an exact sequence

0→ SK1(A)→ H4(k,Z/2Z)→ H4(k(q),Z/2Z).

Note that Suslin defined for a central simple algebra A/k of degree n
an invariant SK1(A) → H4(k, µ⊗3

n ) [Su]. This last invariant is trivial for
biquaternion algebras. However it is expected that Suslin invariant is the
double of an invariant which is Rost invariant in the case of biquaternion
algebras (voir [G5]).

33.2. Spin groups. Theorem 33.4 deals already with Spin groups because
we have the exceptional isomorphim Spin(q) ∼= SL1(A) [KMRT, §16]. Let q
be a quadratic form. Our goal is to present Chernousov-Merkurjev-Rost’s
theorem relating the group Spin(q)/R and the K-cohomology of the projec-
tive quadric X defined by q [CM]. We consider the following map

∂ :
⊕

x∈X(1)

KM
2 (k(x))→

⊕

x∈X(0)

k(x)×

made from Bass-Tate tame symbols [GS, §7.1]. Its cokernel is denoted by
A0(X, K1). Since X is proper, the norm map

N :
⊕

x∈X(0)

k(x)× → k×

vanishes on Im(∂). It defines a map A0(X, K1)→ k× whose kernel is denoted
by A0(X, K1).

Rost defined a natural homomorphism ρ : Γ+(q)(k) → A0(X, K1) such
that the following diagram

Γ+(q)(k)
ρ−−−−→ A0(X,K1)

Ns

y N

y
k× = k×

commutes [Ro]. It induces then a homomorphism Spin(q)(k)→ A0(X, K1).

33.5. Theorem. [CM] The preceding map induces an isomorphism

Spin(q)(k)/R
∼−→ A0(X,K1).

The vanishing of A0(X,K1) for certain quadrics is a crucial ingredient of
Voevoedsky’s proof of the Milnor’s conjecture [Vo] [K]. So the theorem is
applied within its following corollary (which involves only the surjectivity of
the Rost invariant).

33.6. Corollary. If Spin(q) is stably k-rational, then A0(X, K1) = 0.

3which is defined only up to similarity.
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The group Spin(q) is k-rational for the forms of the special kind below
[Me5, 6.4].

33.7. Theorem. Assume that q is a Pfister neighbor (i.e. a subform of a
Pfister form 〈〈a1, ..., an〉〉 of dimension greater than 2n−1). Let p a quadratic
form of rank at most 2. Then for the quadratic form q ⊥ p, A0(Xq⊥p,K1) =
0.
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