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Theorem 6. The category Tg is canonically antiequivalent to the category of lo-

cally unitary finite-dimensional Ag-modules, where Ag = lim−→A
r
g
.

Theorem 7. The algebras Ao(∞) and Asp(∞) are isomorphic, therefore the cate-

gories To(∞) and Tsp(∞) are equivalent.
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On conjugacy of MADs in k-loop algebras

Vladimir Chernousov

(joint work with P. Gille, A. Pianzola)

Throughout k will denote a field of characteristic 0. For integers n ≥ 0 we set
R = Rn = k[t±1

1 , . . . , t±1
n ]. We let ġ denote a split simple finite dimensional Lie

algebra over k and Ġ the corresponding simple simply connected algebraic group
over k. Recall that a Lie algebra g over R is called a form of ġ⊗k R if there exists
a faithfully flat R-algebra S such that

g⊗R S ≃ (ġ⊗k R)⊗R S ≃ ġ⊗k S.

Our form g can also be viewed as a Lie algebra over k (which is infinite dimensional
if n ≥ 1). In the theory of affine Kac-Moody algebras, or more generally for
extended affine Lie algebras, the emphasis is in viewing the relevant objects over k
(and not R). We now introduce the most relevant k-objects attached to g in this
work.

A subalgebra m of the k-Lie algebra g is called an AD subalgebra if g admits a
k-basis consisting of simultaneous eigenvectors of m, i.e. there exists a family (λi)
of functionals λi ∈ m∗, and a k-basis { vi }i∈I of g such that

[h, vi] = 〈λi, h 〉 vi ∀h ∈ m.

It is not difficult to see that any such m is necessarily abelian, so AD can be
thought as shorthand for abelian k-diagonalizable or ad-k-diagonalizable. An AD
subalgebra which is maximal (in the sense that it is not properly included in
another AD) is called a MAD.

In infinite dimensional Lie theory m plays the role which a Cartan subalgebra
h plays for ġ in the classical theory. One of the central theorems of classical
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Lie theory is that all split Cartan subalgebras of ġ are conjugate under Ġ(k), a
theorem of Chevalley. This result yields the most elegant proof that the type of
the root system of (ġ, ḣ) is an invariant of ġ. The main thrust of our work is to
investigate the question of conjugacy of MADs of g. Our first result says that the
conjugacy of MADs is equivalent to conjugacy of maximal split tori in a simple
simply connected group scheme over R corresponding to g.

Theorem. Let G be a simple simply connected group scheme over R and

g = Lie (G) = Lie (G)(R).

(1) If S is a maximal split torus of G then its Lie algebra Lie (S) ⊂ g contains a
unique MAD m = m(S) of g.

(2) Let m be a MAD of g. Then ZG(Rm) := H is a reductive R-group. Its radical
contains a unique maximal split torus S (m) of G.

(3) The process m → S (m) and S → m (S) described above gives a bijection
between the set of MADs of g and the set of maximal split tori of G.

From the way we constructed the above bijective correspondence it follows that
the conjugacy of two maximal k-diagonalizable subalgebras in g is equivalent to
conjugacy of the corresponding maximal R-split tori in G. The following example
shows that in general case maximal R-split tori are not necessary conjugate.

Example. Let D be a quaternion algebra over R = k[t±1
1 , t±1

2 ] with generators
T1, T2 and relations T 2

1 = t1, T 2
2 = t2 and T2T1 = −T1T2 and let A = M2(D). We

may view A as a D-endomorphism algebra of a 2-dimensional space V = D ⊕D

over D where D acts on V on the right. Let G = SL (1, A). It contains an R-split
torus S1 whose R-points are matrices of the form

(

x o

0 x−1

)

where x ∈ R×. Let K = k(t1, . . . , tn). Since K-rank of G is equal to 1, the torus
S1 is a maximal split in G.

Consider now a D-linear map f : V = D ⊕D → D given by

(u, v)→ (1 + T1)u− (1 + T2)v.

Let L be its kernel. One can show that L is a projective D-module which is not
free. Since f is split, we have another decomposition V ≃ L ⊕ D. Let S2 be an
R-split torus in G consisting of linear transformations acting on the first summand
L by multiplication x ∈ R× and on the second summand by x−1. As above, S2

is a maximal R-split torus in G. We claim that S1 and S2 are not conjugate. To
see this we note that given S1 we can restore two summands in the decomposition
V = D⊕D as two subspaces in V consisting of eigenvectors of elements s ∈ S1(R).
Similarly, we can uniquely restore two summands in the decompositions V = L⊕D

out of S2. Assuming now that S1 and S2 are conjugate by an element in G(R)
we obtained immediately that the subspace L in V is isomorphic to one of the
components of V = D ⊕D, in particular L is free – a contradiction.
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Thus for twisted forms of a split group scheme over R the conjugacy fails in
general case. However for a large class of Lie algebras called multiloop algebras
and for the corresponding group schemes we do have conjugacy. We recall that a
group scheme G and its Lie algebra g are called multiloop if G is a twisted form
of a split Ġ by a cocycle with coefficients in Aut (Ġ)(k̄).

Theorem. Let G be a simple simply connected multiloop R-group scheme. Then
two maximal R-split tori S1, S2 in G such that their centralizers in CG(Si) are
multiloop are conjugate by an element in G(R).

Remark. The above counter-example shows that the assumptions that G and
CG(Si) are multiloop cannot be dropped in general case.

The main ingredient of the proof of conjugacy is the following result on torsors
over R which provides us with the classification of multiloop group schemes and
their Lie algebras.

Theorem. Let G be an algebraic group over k. Let F = k((t1)) · · · ((tn)). Then
a canonical mapping H1

loop(R,G)→ H1(F,G) is bijective.

Gerbes, gerbal representations and 3-cocycles

Jouko Mickelsson

In this talk I will explain relations between on one hand the recent discussion on
3-cocycles and categorical aspects of representation theory, [FZ], and on the other
hand gauge anomalies, gauge group extensions and 3-cocycles in quantum field
theory, [CGRS].

The set up for categorical representation theory consists of an abelian category
C, a group G, and a map F which associates to each g ∈ G a functor Fg in the
category C such that for any pair g, h ∈ G there is an isomorphism

ig,h : Fg ◦ Fh → Fgh.

For a triple g, h, k ∈ G we have a pair of isomorphisms ig,hk ◦ ih,k and igh,k ◦ ig,h
from Fg ◦ Fh ◦ Fk to Fghk :

They are not necessarily equal; one can have a central extension (with values
in an abelian group)

ig,hk ◦ ih,k = α(g, h, k)igh,k ◦ ig,h

with α(g, h, k) ∈ C× a 3-cocycle.
The smooth loop group LG (G compact,simple) has a central extension defined

by a (local) 2-cocycle. According to Frenkel and Zhu, increase the cohomoligal
degree by one unit by going to the double loop group L(LG). They do this al-
gebraically, utilizing the idea of A. Pressley and G. Segal by embedding the loop
group LG (actually, its Lie algebra) to an appropriate universal group U(∞) (or
its Lie algebra). The point of this talk is to show how this is done in the smooth


